Univerzita Karlova v Praze

Přírodovědecká fakulta

Studijní program: Chemie Studijní obor: Chemie životního prostředí

Sandra Stachová

Kvantitativní analýza práškovou rentgenovou difrakcí

Quantitative analysis by X-ray powder diffraction

Bakalářská práce

Vedoucí závěrečné práce: Doc. RNDr. David Havlíček, Csc.

Praha 2011

Prohlášení:

Prohlašuji, že jsem závěrečnou práci zpracovala samostatně, a že jsem uvedla všechny použité informační zdroje a literaturu. Tato práce ani její podstatná část nebyla předložena k získání jiného nebo stejného akademického titulu.

V Praze, 31.05.2011

Podpis

Děkuji svému vedoucímu Doc. RNDr. Davidu Havlíčkovi, Csc. za odborný dohled a vedení při řešení bakalářské práce.

Děkuji RNDr. Ivaně Císařové, Csc. za odbornou pomoc s experimentálním měřením na monokrystalovém difraktometru.

Děkuji Vlastimile Pitterové za asistenci u experimentálních měření.

Abstrakt

Metody kvantitativní analýzy s použitím rentgenové práškové difrakce jsou stále vysoce aktuálním pojmem v oblastech výzkumu moderních materiálů. V této bakalářské práci je použita rentgenová prášková difrakce pro kvantitativní analýzu modelových vzorků s použitím metody RIR. Modelové vzorky jsou vytvořeny jako směsi korundu, mullitu a kalcitu. Pro získání difrakčních záznamů směsí jsou použity dva různé difraktometry, jejichž výstupy jsou v práci vzájemně porovnány.

Klíčová slova: kvantitativní analýza, rentgenová prášková difrakce, difraktometr, Reference Intensity Ratio, RIR

Abstract

Quantitative analysis methods using X-ray powder diffraction are still highly actual conception in the area of research of modern materials. The Reference Intensity Ratio (RIR) method is used here for quantitative analysis by X-ray powder diffraction of model samples in this bachelor thesis. The model samples are three mixtures of corundum, mullite and calcite. To get diffraction patterns of the mixtures, two different diffractometers are used and their outputs are then compared.

Keywords: quantitative analysis, X-ray powder diffraction, diffractometer, Reference Intensity Ratio, RIR

Seznam použitých symbolů

Θ	difrakční úhel
λ	vlnová délka rentgenového záření
$oldsymbol{\varTheta}_{hkl}$	difrakční úhel na souboru rovin hkl
d_{hkl}	mezirovinná vzdálenost na souboru rovin hkl
hkl	Müllerovy indexy souboru rovin
I_i	integrální intenzita i-té složky
I_j	integrální intenzita j-té složky
I_0	integrální intenzita referenční linie (standardu)
I_c	integrální intenzita korundového standardu souboru rovin 113
P_i	přístrojový faktor
Q_i	faktor daný ideální krystalovou strukturou
T_i	faktor daný reálnou krystalovou strukturou
C_i	kalibrační konstanta pro dané experimentální uspořádání
D_i	kalibrační konstanta i-té složky
Wi	hmotnostní podíl složky i
Wj	hmotnostní podíl složky j
W ₀	hmotnostní podíl standardu
Wc	hmotnostní podíl korundového standardu
$\mu_{\rm m}$	hmotnostní absorpční koeficient vzorku
ki	hodnota RIR složky i
kj	hodnota RIR složky j
μ_i	změřený či vypočtený hmotnostní absorpční koeficient pro čistou látku při
	záření CuKα
k _i (Mo)	hodnota RIR pro vybranou difrakci záření MoKα
k _i (Cu)	hodnota RIR pro vybranou difrakci záření CuKα
Lp _i (Mo)	Lorentz-polarizační faktor pro vybranou difrakci záření MoK α
Lp _i (Cu)	Lorentz-polarizační faktor pro vybranou difrakci záření CuKa
Lp _c (Mo)	Lorentz-polarizační faktory pro korundovou hkl(113) difrakci záření MoKa
Lp _c (Cu)	Lorentz-polarizační faktory pro korundovou hkl(113) difrakci záření CuKa
W	hmotnostní zlomek krystalické fáze příslušného std. materiálu ve směsi

Obsah

1. OBECNÝ ÚVOD K RENTGENOVÉ PRÁŠKOVÉ DIFRAKTOMETRII	7
1 1 Rentgenové záření	7
1.1.1 Zdroje rentgenového záření	
1.1.2 Detektory rentgenového záření	
1.2 Difrakce rentgenového záření	9
1.2.1 Princin metody.	9
1.2.2 Hlavní charakteristiky difrakčních linií	
1.2.3 Parametry difrakční linie	
1.2.4 Vyhodnocení	
1.3 Difraktometry	
1.3.1 Difraktometr s uspořádáním Bragg-Brentano	
1.3.2 Monokrystalový difraktometr s pozičně citlivým detektorem	
1.4 Kvantitativní fázová analýza práškovou difrakcí	
1.4.1 Princip metody	
1.4.2 Metoda vnějšího standardu	
1.4.3 Metoda vnitřního standardu	
1.4.4 Referenční intenzitní poměry (Reference Intensity Ratio, RIR)	
1.4.5 Neurčitost výsledků kvantitativní fázové analýzy	
2. CÍL PRÁCE	
2 Ενδεριμεντάι νί σάςτ	10
5. EAF ENIMENTALINI CAST	
3.1 Standardní materiály	19
3.1.1 Korund	
3.1.2 Mullit	
3.1.3 Kalcit	
$3.1.4 \alpha$ -křemen	
3.2 Binární a ternární směsi	
3.3 Postup měření	
3.3.1 Difraktometr s uspořádáním Bragg-Brentano	
3.3.2 Monokrystalový difraktometr s pozičně citlivým detektorem	
3.4 REFERENČNÍ KONSTANTY RIR	
3.5 Výsledky	
3.5.1 Určeni obsahu krystalických fázi standardních materialů	
3.5.2 Urceni hmotnostnich pomeru v modelovych ternarnich smesich	
4. DISKUZE A ZÁVĚR	26
LITERATURA	28
PŘÍLOHA 1 – DATOVÉ SOUBORY PROGRAMU ZDS	
	10
rkilona z – ukazka gkafickych vystupu	

1. Obecný úvod k rentgenové práškové difraktometrii

Prášková difrakce prožívá v posledním desetiletí renesanci. Je to spojeno především s velkým důrazem na oblast výzkumu nových materiálů, kde hraje důležitou roli, a také s rozvojem experimentální techniky zejména v oblasti detekce záření a rentgenové optiky. Pod pojem práškové difrakce se zahrnuje difrakce na všech polykrystalických materiálech – prášcích, objemových vzorcích i tenkých vrstvách. Metoda je informačně bohatá a experimentálně poměrně jednoduchá, odhlédneme-li od ceny zařízení. Příprava vzorku nečiní většinou principiální problémy a nezanáší do vzorku mikrostrukturní změny. Základní a tradiční metoda je spojena s tzv. symetrickým Braggovým-Brentanovým uspořádáním, i když v poslední době se stále více uplatňují další geometrie. Jelikož každá krystalická fáze má svůj specifický difraktogram, má prášková difrakce široké použití v oblasti kvalitativní a kvantitativní analýzy směsí tuhých fází [1].

1.1 Rentgenové záření

Úplné spektrum elektromagnetického záření zahrnuje interval vlnových délek od nekonečna do hodnot menších než 10⁻⁴ nm. Dlouhovlnnou část spektra reprezentují radiovlny, krátkovlnnou záření gama a kosmické paprsky. Rentgenové záření je v elektromagnetickém spektru "umístěno" mezi ultrafialovým zářením a zářením gama. Z hlediska vlnových délek neexistují mezi těmito druhy záření ostrá rozhraní; rozdíly jsou však v mechanismu jejich vzniku. Nejrozšířenějším zdrojem rentgenového záření pro mikrostrukturní rentgenografii jsou vakuové trubice se zatavenými elektrodami (katodou a anodou), na něž je vložen rozdíl potenciálů (10³ až 10⁴) V. Rentgenové paprsky vznikají při dopadu rychle se pohybujících elektronů na atomy hmoty. Podnětem k uvolnění záření mohou být dva procesy:

- a) Ionizace atomů. Jsou-li uvolněny elektrony z vnitřních energetických hladin, obsadí jejich místo elektrony z hladin vyšších. Přechody elektronů doprovází vznik kvanta rentgenového záření.
- b) Zabrzdění elektronů v elektrickém poli atomového jádra. Při tom elektron odevzdá část nebo celou svou energii E = hv ve formě záření frekvence v (h – Planckova konstanta).

Na rozdíl od prvního způsobu vzniku, kdy je záření vlivem diskrétních hladin v atomech čárové, se mohou při brzdění vyzářit všechny možné frekvence. Získané spektrum nazýváme spojité. Rentgenová spektra jsou tedy vytvořena ze dvou složek: spojitého (brzdného) spektra,

které je v analogii k viditelnému světlu označováno také bílé záření, a spektra čárového (charakteristického) [2].

1.1.1 Zdroje rentgenového záření

Technicky nejdůležitějšími zdroji rentgenového záření jsou rentgenové trubice (rentgenové lampy, rentgenky). Původně byly konstruovány jako výbojky naplněné plynem o tlaku (10^o až 10⁻¹) Pa se dvěma studenými elektrodami. K uvolnění elektronů z katody v nich dochází nárazem kladných iontů. Při dané hodnotě napětí je intenzita proudu závislá na tlaku plynové náplně. Realizace stabilních podmínek těchto tzv. iontových trubic je obtížná. Jejich výhoda spočívá v "čistotě" emitovaného záření a v jednoduchosti potřebných elektrických obvodů. Rozhodující význam mají však v současné době rentgenky, v nichž je zdrojem elektronů rozžhavené wolframové vlákno (Coolidgeovy trubice) [2]. Z pohledu konstrukčních odlišností známe rentgenky s normálním ohniskem, rentgenky s mikroohnisky, a rentgenky s rotující anodou.

Alternativou ke klasickým zdrojům rentgenového záření je tzv. synchrotronové záření. Synchrontronové (magnetické, brzdné) záření vzniká při pohybu vysokoenergetických nabitých částic, např. elektronů, v magnetickém poli. Hlavní výhodou tohoto elektromagnetického záření, emitovaného v tečném směru k dráze částic, je vysoká intenzita v široké spektrální oblasti. Jeho spojité spektrum polarizované v rovině orbitu zahrnuje oblast vlnových délek od 10³ nm do 10⁻² nm. Rentgenová část spektra synchrotronového záření má i po monochromatizaci intenzitu převyšující už dnes o 2 až 3 řády intenzitu nejvýkonnějších rentgenek. Protože se o několik řádů oproti rentgenkám zkrátí expoziční doby, je možné difrakčními metodami využívajícími synchrotronového záření sledovat dynamiku strukturních změn probíhajících v materiálu. Nejvhodnějším zařízením pro vznik synchrotronového záření k aplikaci v mikrostrukturní rentgenografii jsou elektronové akumulační prstence [2]. Na rozdíl od laboratorních zdrojů jsou však velmi nákladnou záležitostí.

1.1.2 Detektory rentgenového záření

Detekce, měření a registrace intenzity rentgenového záření jsou založeny na využití jeho luminiscenčních, ionizačních nebo fotografických účinků a na schopnosti zvyšovat elektrickou vodivost některých materiálů. Podle těchto vlastností lze detektory rentgenových paprsků klasifikovat do čtyř hlavních skupin:

- a) fluorescenční stínítka, scintilační počítače
- b) ionizační komory, proporcionální počítače

- c) polovodičové detektory
- d) fotografický film

Jiné členění umožňuje druh absorbujícího prostředí (inertní plyn, pevná látka) nebo způsob konstrukce (detektory bodové a plošně citlivé). Společným kritériem použitelnosti všech typů detektorů v rentgenové difrakční analýze je citlivost v oblasti vlnových délek (0,05 až 0,25) nm. S výjimkou fluorescenčních stínítek a fotografického filmu jsou na detektory kladeny ještě další požadavky, např. možnost indikace prostorově úzkých svazků ($\approx 10 \text{ mm}^2$), rozsah měření intenzit 10⁻¹ až 10⁶ pulsů za sekundu, přesnost (0,1 až 1) % [2].

1.2 Difrakce rentgenového záření

Dopadá-li rentgenové záření na krystal, pak díky periodičnosti krystalu dochází k rozptylu záření a k následné interferenci tohoto záření, tj. k difrakci. K vysvětlení difrakce rentgenového záření na krystalech byly vypracovány dvě teorie: kinematická Lauem a dynamická Darwinem a Ewaldem. Jejich podrobnější výklad však daleko přesahuje rozsah tohoto úvodu.

1.2.1 Princip metody

Podmínkou pro difrakci rentgenového záření o vlnové délce λ na osnově rovin s difrakčními indexy *hkl* a mezirovinnou vzdáleností d_{hkl} je, aby záření dopadalo na tyto roviny pod úhlem Θ_{hkl} , který splňuje Braggovu rovnici:

$$2d_{hkl} \cdot \sin \Theta_{hkl} = \lambda$$

V případě monokrystalu je možné tuto podmínku splnit vhodnou orientací krystalu vzhledem k dopadajícímu svazku záření. V případě polykrystalického nebo práškového vzorku s náhodnou orientací jednotlivých krystalových zrn je pravděpodobné, že některá zrna budou orientována tak, že zmíněné roviny (*hkl*) budou právě v difrakční poloze. Tato pravděpodobnost bude tím větší, čím větší bude počet zrn v ozářeném objemu. Záření difraktované rovinami (*hkl*) jednoho zrna se bude dále šířit ve směru, který svírá úhel $2\Theta_{hkl}$ se směrem dopadajícího záření. Kdybychom natáčeli uvažované krystalové zrno kolem osy totožné se směrem dopadajícího záření, zůstávaly by roviny (*hkl*) stále v difrakční poloze (neboť stále svírají úhel Θ_{hkl} s dopadajícím svazkem) a difraktované paprsky by se posouvaly po ploše kužele s vrcholovým úhlem $4\Theta_{hkl}$ a s osou ležící ve směru dopadajícího záření. Po této kuželové ploše se budou šířit i difraktované paprsky od všech zrn, jejichž roviny (*hkl*) jsou právě v difrakční poloze [4].

1.2.2 Hlavní charakteristiky difrakčních linií

Difrakční diagram polykrystalických látek je tvořen souborem linií, které při daném uspořádání, získáme fotografickou nebo počítačovou registrací difraktovaných paprsků. Vzhled linií závisí na stavu zkoumaného materiálu, tj. na uspořádání krystalků, jejich velikosti a dokonalosti vnitřní stavby.

Difrakční linie jsou na diagramu charakterizovány svým profilem – zobrazením závislosti difraktované intenzity záření na úhlu Θ . Analýza profilu umožňuje stanovit polohu linie, její integrální intenzitu, šířku i další veličiny, na jejichž znalosti je založena většina aplikací rentgenových difrakčních metod [2].

1.2.3 Parametry difrakční linie

Parametry difrakční linie přímo souvisí s některými strukturními a mikrostrukturními charakteristikami materiálu, jak je uvedeno v následujícím schematickém přehledu [4]:

Parametry	Charakter získaných informací					
Polohy difrakčních píků (Θ _o)	mřížové parametry - geometrie krystalové mříže - poruchy krystalové mříže, zbytková napětí					
	kvalitativní fázová analýza					
Integrální intenzity (I)	struktura krystalové mříže (strukturní motiv, druh atomů,)					
	ozářený objem vhodně orientovaných krystalitů - přednostní orientace krystalitů, kvantitativní fázová analýza					
	Debyeovy-Wallerovy faktory (střední kvadratické výchylky atomů)					
Šířky	velikost koherentně difraktujících oblastí - krystalitů					
(FWHM – pološířka, integrální šířka)	vnitřní nehomogenní mikroskopická napětí, poruchy krystalové mříže (dislokace, dislokační smyčky)					
Tvarové parametry (Fourierovy koeficienty, poměr integrální šířky a pološířky)	rozdělení poruch, velikostí částic, indikace typu poruch					

1.2.4 Vyhodnocení

Vyhodnocení práškových difraktogramů se provádí zhruba dvěma způsoby. Jednak je to určení parametrů difrakčních profilů – poloh, intenzit, šířek, tvaru a jejich následná analýza a jednak modelování celého difraktogramu analytickou funkcí zahrnující řadu parametrů ideální a reálné krystalové struktury i parametry instrumentální a jejich určení nějakou optimalizační metodou [1].

1.3 Difraktometry

Zařízení, na kterých prakticky provádíme difrakci rentgenového záření na krystalickém materiálu, nazýváme rentgenové přístroje. Tyto přístroje se skládají ze tří základních částí: zdroje rentgenového záření (viz. 1.1.1), zařízení pro difrakci na vzorku a zařízení registrujícího difraktované záření (viz. 1.1.2).

Zařízení, ve kterém je umístěn zkoumaný vzorek, se nazývá difraktograf resp. difraktometr podle toho, zda je difraktované záření registrováno filmem (dnes již spíše historická metoda) nebo čítačem. Někdy výběr metody může být ovlivněn tvarem vzorku, který nemůžeme nebo nechceme měnit. Množství vzorku potřebná ke studiu činí běžně řádově desítky až stovky miligramů, přičemž většinu vzorku je možno vrátit, a to bez změny [3]. Existují i zařízení pro tzv. "mikrodifrakci" umožňující difrakční studium jednotlivých zrn. Nadále se budeme v této práci držet pojmu "difraktometr" a to i v kontextu označení celého rentgenového přístroje.

1.3.1 Difraktometr s uspořádáním Bragg-Brentano

Difraktometr s Braggovým-Brentanovým uspořádáním, jehož princip je na obrázku 1, patří k nejběžnějším typům difraktometrů pro polykrystalické a práškové vzorky. Jedná se o dvoukruhový difraktometr. V jeho hlavní ose je umístěn rovinný vzorek, jehož povrch je tečný k fokusační kružnici. Poloměr této kružnice se mění v závislosti na natočení vzorku kolem hlavní osy. Difraktované paprsky se fokusují na kružnici o poloměru, který je roven vzdálenosti hlavní osy goniometru od čarového ohniska rentgenové lampy. Detektor difraktovaného záření se pohybuje podél této kružnice dvojnásobnou úhlovou rychlostí než vzorek. To znamená, že dopadající svazek i svazek difraktovaného záření, které je právě registrováno detektorem, svírají s povrchem vzorku stejný úhel rovný Braggovu úhlu pro určitou osnovu rovin. Z hlediska absorpce ve vzorku se tedy jedná o symetrický Braggův případ a pokud je vzorek natolik tlustý, že lze zanedbat záření jím procházející, je absorpce úhlově nezávislá.

Obr. 1 Schéma Braggova-Brentanova uspořádání¹

Snímání četnosti difrakčních pulsů je prováděno buď spojitě, což je vhodné především k získání komplexních a přehledných difraktogramů, nebo je prováděno krokově. Difrakční záznam úhlové závislosti četnosti pulsů se následně ukládá na vhodné záznamové médium (paměť počítače, dříve grafický zapisovač apod.) [5].

1.3.2 Monokrystalový difraktometr s pozičně citlivým detektorem

Pro monokrystalovou difraktometrii se používá řada metod. Difraktometr použitý v této práci využívá metody rotační. Krystal je umístěn na goniometrické hlavičce v ose válcové kazety a vykonává rotační nebo oscilační pohyb kolem osy hlavičky. Ve směru kolmém k ose hlavičky dopadá na krystal primární paprsek vymezený kolimátorem а monochromatizovaným β-filtrem. Difraktované paprsky jsou soustředěny do kuželů koaxiálních s osou hlavičky a dopadají na detektor ve válcové kazetě. Krystal musí být umístěn tak, aby osa rotace byla totožná s vektorem přímé mříže. Z rozteče vrstevnic lze vypočítat jeho délku [6].

Jako pozičně citlivý detektor se v minulosti používal film, v současné době převažují elektronické plošné polohově citlivé detektory (CCD detektory). Elektronická detekce je oproti fotoregistraci mnohem citlivější, další výhodou je okamžité ukládání naměřených dat do paměti počítače, aniž by bylo třeba fotochemicky zpracovávat film s naexponovaným difraktogramem. Dvojrozměrný pozičně citlivý detektor lze využít i k registraci a následnému vyhodnocování radiálního profilu difrakčních linií, podobně jako v konvenčním difraktometru. Expoziční časy jsou mnohem kratší, neboť registrace je simultánní a nikoli

¹ http://www.dep.fmph.uniba.sk/mambo/images/stories/laboratories/xrd/braggbrentano9_b.png

sekvenční, jako při použití konvenčního difraktometru. Většina moderních monokrystalových difraktometrů s pozičně citlivým detektorem obsahuje program pro měření polykrystalických vzorků v kapiláře, přičemž získaná data přibližně odpovídají datům získaných v minulosti tzv. Debye-Scherrerovou metodou.

1.4 Kvantitativní fázová analýza práškovou difrakcí

Kvantitativní fázová difrakční analýza je založena na vztahu mezi integrální intenzitou difrakčních linií jednotlivých fází a obsahem fází ve směsi. Intenzita linií dané složky závisí přímo na objemovém podílu krystalků této složky v celkovém ozářeném objemu vzorku. Oproti chemické nebo fluorescenční fázové analýze má difrakční metoda celou řadu předností. Patří k nim zejména:

- možnost analýzy směsí tvořených polymorfními modifikacemi téže látky,
- přímé určení relativních množství fází ve vzorku (chemickou nebo fluorescenční analýzou jsou stanovována pouze relativní množství iontů, resp. atomů),
- nedestruktivní charakter měření,
- potřeba velmi malých množství analyzovaného materiálu.

Použijeme-li difraktometrickou techniku, lze analýzu provést s dostatečnou přesností a velmi rychle. Metoda je proto zvláště výhodná pro vyhodnocováni velkých sérií vzorků téhož typu [2].

1.4.1 Princip metody

Podíl fáze v analyzované směsi je přímo úměrný intenzitě difrakcí (difrakčních linií) té fáze. Intenzita I_i zvolené difrakční čáry *i*-té fáze

$$I_i = P_i \cdot Q_i \cdot T_i \cdot w_i = P_i \cdot Q_i \cdot w_i ; \quad i = 1, 2, \dots, l$$

kde

 P_i přístrojový faktor (mění se od přístroje k přístroji podle detailů experimentálního uspořádání);

 Q_i faktor daný ideální krystalovou strukturou dané fáze (polohami atomů v základní buňce krystalové struktury *i*-té fáze a jejich teplotními kmity kolem těchto poloh);

 T_i . faktor daný reálnou strukturou difraktujícího preparátu, tj. tím, jak velké jsou krystalky jednotlivých fází obsažených v preparátu, jaký je jejich tvar, orientace, umístění a nejrůznější odchylky od ideální krystalové struktury;

w_i hmotnostní koncentrace *i*-té fáze v preparátu.

Intenzita zvolené difrakční linie *i*-té fáze nezáleží tedy jenom na tom kolik je té fáze ve vzorku (w_i) a jaká je to fáze² (Q_i), ale také na tom, jaké se použilo experimentální uspořádání. O tento přístrojový vliv (P_i) je třeba naměřené hodnoty intenzit redukovat, abychom je mohli použít pro výpočet obsahu jednotlivých fází ve zkoumaném preparátu. Vliv reálné struktury na intenzitu difrakčních linií (T_i) se často, v první aproximaci, zanedbává. Ve skutečnosti je to však nejdůležitější zdroj chyb (příčina neurčitosti výsledků) kvantitativní fázové analýzy.

Chceme-li z naměřených hodnot intenzit difrakčních linií I_i vypočítat hmotnostní koncentrace w_i jednotlivých fází přítomných v analyzovaném preparátu

$$w_i = \frac{I_i}{P_i \cdot Q_i \cdot T_i} = \frac{I_i}{P_i \cdot Q_i}$$

musíme intenzity difrakčních linií I_i redukovat o vliv experimentálního uspořádání P_i a vzít v úvahu o jakou se jedná fázi (a jakou difrakční linii jsme si vybrali pro tu fázi jakožto analytickou) – Q_i . Tomu se říká kalibrace. Kalibrace se provádí různými způsoby, většinou "metodou vnějšího standardu" nebo "metodou vnitřního standardu". Teorie difrakce umožňuje kalibraci obejít výpočtem faktorů P_i a Q_i na základě známé struktury určované fáze při zvoleném experimentálním uspořádání [7]. Sem patří také metoda RIR použitá v této práci (viz. 1.4.4).

Kromě metod vnějšího a vnitřního standardu existují další postupy, které jsou buď modifikací těchto základních metod, případně jsou reakcí na praktické problémy při experimentální realizaci fázové analýzy. Jde zejména o následující metody [7]:

- metoda referenčních směsí (Chungova, RIR popsána v části 1.4.4),
- metoda homologických párů,
- metoda přídavku (doping method),
- metoda zřeďovací (dilution method).

1.4.2 Metoda vnějšího standardu

V tomto případě měříme nejen intenzity I_i zvolených linií určovaných l fází (i = 1, 2, ..., l) analyzovaného vzorku, ale navíc ještě intenzitu I_o referenční linie nějakého dalšího vzorku, který jsme si vybrali jako "vnější standard". Volba vnějšího standardu a jeho referenční linie není v podstatě ničím omezena; zejména nemusí mít žádnou souvislost se složením a strukturou analyzovaného vzorku. Kromě toho musíme změřit hmotnostní

² a kterou její difrakční linii jsme si zvolili jako analytickou

absorpční koeficient μ_m analyzovaného vzorku. Pro obsah (hmotnostní koncentraci) w_i *i*-té fáze v analyzovaném vzorku platí

$$w_i = \frac{I_i}{I_0} \cdot \mu_m \cdot C_i$$

kde C_i je kalibrační konstanta pro *i*-tou fázi (zvolenou linii) a použité experimentální uspořádání a μ_m je součinitel zeslabení (absorpční koeficient). Kalibrační konstanty C_i pro *l* fází, jež nás zajímají, můžeme určit z daného vzorce, pokud máme k dispozici preparáty známého fázového složení [7].

1.4.3 Metoda vnitřního standardu

V tomto případě musíme ke každému analyzovanému vzorku přimíchat určitý (hmotnostní) podíl w_o nějaké další látky, kterou jsme si vybrali jako "vnitřní standard". Volba vnitřního standardu není v podstatě ničím omezená. Omezení je však v tom, že vnitřní standard musíme k analyzovanému vzorku "přimíchat"; analyzovaný vzorek musí být tedy (snadno a beze změny fázového složení) dělitelný: pro kompaktní a těžko nebo problematicky dělitelné vzorky se kalibrační metoda vnitřního standardu nehodí. Na difraktogramu takto modifikovaného analyzovaného vzorku, tj. analyzovaného vzorku, ke kterému je přidán vnitřní standard, pak měříme nejen intenzity I_i zvolených linií určovaných l fází, ale navíc ještě intenzitu I_o referenční linie přimíchaného vnitřního standardu. Pro obsah (hmotnostní koncentraci) w_i *i*-té fáze v analyzovaném vzorku platí

$$w_i = \frac{I_i}{I_0} \cdot w_0 \cdot D_i$$

kde D_i je kalibrační konstanta pro *i*-tou fázi (zvolenou linii) a použité experimentální uspořádání. Kalibrační konstanty D_i pro *l* fází jež nás zajímají můžeme určit z daného vzorce pokud máme k dispozici preparáty známého fázového složení [7].

1.4.4 Referenční intenzitní poměry (Reference Intensity Ratio, RIR)

Metoda použití referenčních konstant pro analýzu směsí rentgenovou difrakcí byla formulována Chungem v letech 1974-1975 v [8], [9], [10]. Přestože již před uvedením jeho prací byly známy přístupy, které byly založeny na obdobném použití proporcionálních konstant nebo kombinací takovýchto konstant, teprve Chung definoval komplexní přístup demonstrující následující klíčové vlastnosti analýzy využívající poměru referenčních intenzit, označovaný jako Reference Intensity Ratio (RIR) [11]:

 Interní standard *nemusí být přidán do analyzovaného vzorku*, aby šlo unikátně určit (prostřednictvím znalosti předem určených hodnot RIR), hmotnostní podíly všech složek směsi, při nepřítomnosti neznámých nebo amorfních složek:

$$w_{j} = \left[\frac{k_{j}}{I_{j}}\sum_{i=1}^{n}\frac{I_{i}}{k_{i}}\right]^{-1}$$

kde w_j je hmotnostní poměr složky j; k_i , k_j jsou hodnoty RIR složky i, resp. j (hodnoty k_i jsou nám známy); I_i , I_j jsou intenzity měřené pro peak i-té, resp. j-té složky směsi.

2) Při známých hodnotách RIR *a při přidání vnitřního standardu*, mohou být individuální hmotnostní podíly určeny bez ohledu na cokoliv dalšího, co by mohlo být přítomno ve vzorku (*a pokud* byly určeny hmotnostní podíly všech krystalických složek směsi, množství amorfních složek, ale nikoliv jejich složení, je možno určit také):

$$w_{j} = \frac{w_{c} \cdot I_{j}}{k_{j} \cdot I_{c}}$$

kde w_j je hmotnostní poměr složky j; k_j je hodnota RIR složky j; I_j a I_c jsou intenzity měřené pro peak j-té složky a standardu (korund); w_c je hmotnostní podíl korundového standardu ve složeném vzorku (původní vzorek + přidaný korund).

3) Vlivem absorpce rentgenového záření látkou dochází k jeho útlumu, což negativně ovlivňuje přesnost rentgenové práškové difrakce. Metoda RIR je ze své povahy odolná vůči vlivům absorpce. Z dříve uvedeného tak vyplývá, že použití metody RIR vede ke korektnímu získání hodnoty hmotnostního podílu složky, bez ohledu na povahu ostatních složek ve vzorku.

1.4.5 Neurčitost výsledků kvantitativní fázové analýzy

Nejdůležitějším zdrojem chyb (příčinou neurčitosti) kvantitativní rentgenové difrakční fázové analýzy je reálná struktura. Ta ovlivňuje intenzitu difraktovaného záření a tento vliv není jednoduché (a někdy dokonce ani možné) od vlivu, který má na intenzitu difrakcí fázové složení, odlišit. Reálnou strukturou rozumíme velikost (velikostní distribuci) krystalků, jejich tvar (tvarovou distribuci), prostorové a směrové rozložení a rozličné strukturní defekty (odchylky od ideální krystalové struktury). Tak už jenom proto, že krystalky jsou velké, dochází k rozptylu naměřených hodnot intenzity difraktovaného záření, což může přesnost výsledků kvantitativní fázové analýzy podstatně snížit. Jsou-li krystalky velké asi 40 mm, bude to představovat zhoršení o 66%, u krystalků velkých 10 mm o 8% a dokonce i v případě, že krystalky jsou velké jenom 1 mm, zhorší to neurčitost výsledků kvantitativní fázové

analýzy o nezanedbatelné 1%. Hrubozrnnost zmenšuje přesnost kvantitativní fázové analýzy tím více, čím menší je podíl určované fáze ve vzorku [12].

2. Cíl práce

Cílem této bakalářské práce je realizace kvantitativní analýzy modelových vzorků směsí tuhých látek, a to pomocí techniky rentgenové práškové difrakce s použitím metody referenčních intenzitních konstant (metody RIR, označované také jako Chungova metoda).

Dílčím cílem je porovnání výsledků kvantitativní analýzy modelových vzorků, provedené na dvou difraktometrech se vzájemně odlišným geometrickým uspořádáním: (1) difraktometrem s klasickým uspořádáním Bragg-Brentano a (2) monokrystalovým difraktometrem s pozičně citlivým detektorem.

Je-li přednostní orientace jedním z nejvýznamnějších faktorů, které ovlivňují intenzitu jednotlivých difrakcí, měl by přístroj (2), v kombinaci s metodou RIR, poskytovat přesnější výsledky analýzy. Tento předpoklad bude v experimentální části práce potvrzen nebo vyvrácen.

Vlastní analýza bude provedena na třech různých směsích korundu, mullitu a kalcitu. Obsahy krystalických fází jednotlivých komponent budou zjištěny analýzou binárních směsí standardu DQ³ 12, o definovaném složení krystalické fáze.

Měření (1) bude provedeno na přístroji X-Pert PRO MPD, od společnosti PANalytical. Srovnávací měření (2) bude provedeno na přístroji Nonius KappaCCD, od společnosti Bruker/Nonius.

³ Deutsche Quartz

3. Experimentální část

3.1 Standardní materiály

V této části bakalářské práce jsou popsány standardní materiály: korund, mullit, kalcit a α-křemen použité k přípravě experimentálních směsí – modelových vzorků.

3.1.1 Korund

Název sloučeniny: oxid hlinitý Chemický vzorec: Al₂O₃ Krystalová soustava: klencová Prostorová grupa: $R\bar{3}c$ (167) Mřížkové parametry: a(Å): 4,7580 b(Å): 4,750 c(Å): 12,9910 gama(°): 120,0000 Hustota (g/cm³): 3,99 Ref. č. PDF⁴: 00-010-0173 μ_i (cm²g m⁻¹): 31,8 ± 3,2 [14]

Použit standardní referenční materiál SRM 676 (alumina powder), U.S. Department of Commerce, NIST, Gaithersburg, MD 20899.

3.1.2 Mullit

Název sloučeniny: oxid hlinito-křemičitý Chemický vzorec: 3Al₂O₃ 2SiO₂ Krystalová soustava: kosočtverečná Prostorová grupa: Pbam (55) Mřížkové parametry: a(Å): 7,5490 b(Å): 7,6810 c(Å): 2,8840 Hustota (g/cm³): 3,16 Ref. č. PDF: 01-074-2419

⁴ Powder Diffraction File

 μ_i (cm² g m⁻¹): 32,7 ± 3,3 [14]

Standard mullitu byl připraven žíháním kaolinu na teplotě 1400 °C, po dobu 2-3 hodin. Současně vznikající cristobalit byl odstraněn kyselinou fluorovodíkovou [13]. Kaolin pocházel od společnosti Sedlecký kaolin, a.s.

3.1.3 Kalcit

Název sloučeniny: uhličitan vápenatý Chemický vzorec: CaCO₃ Krystalová soustava: klencová Prostorová grupa: $R\bar{3}c$ (167) Mřížkové parametry: a(Å): 4,8500 b(Å): 4,8500 c(Å): 16,6000 gama(°): 120,0000 Hustota (g/cm³): 3,12 Ref. č. PDF: 00-002-0714 μ_i (cm² g m⁻¹): 74,3 ± 5,3 [14] Byl použit čistý kalcit od společnosti Lachema.

3.1.4 α-křemen

Název sloučeniny: oxid křemičitý Chemický vzorec: SiO₂ Krystalová soustava: šesterečná Prostorová grupa: P3₂21 (154) Mřížkové parametry: a(Å): 4,9134b(Å): 4,9134c(Å): 5,4052gama(°): 120,000 Hustota (g/cm³): 2,65 Ref. č. PDF: 00-046-1045 μ_i (cm² g m⁻¹): 36,4 ± 2,3 [14] Byl použit standard křemene DQ 12 (Deutsche Quartz) s definovaným obsahem 87% krystalické fáze.

3.2 Binární a ternární směsi

Binární směsi byly připraveny z důvodu nutnosti určení krystalické fáze ve standardních materiálech – vždy šlo o čisté látky, ovšem s neznámým obsahem krystalické fáze. U binární směsi BS 1 byl určen obsah krystalické fáze korundu, přičemž jako standard byl použit α -křemen s deklarovaným obsahem 87% krystalické fáze. Z důvodu malého množství α -křemene, který nebyl pro další experimenty k dispozici, byl pro binární směsi BS 2 a BS 3 brán jako standard korund, s již vypočteným obsahem krystalické fáze. Měření, za účelem stanovení obsahu krystalických fází, byla provedena na obou přístrojích. Výsledné hodnoty obsahů krystalických fází jsou uvedeny v tabulce č. 1 (viz. část 3.5).

Následně byly ternární směsi, již se známým obsahem krystalických fází korundu, mullitu a kalcitu, smíchány ve třech různých poměrech. Přehled složení experimentálních směsí⁵:

BS 1:	korund (58,2 mg) + α -křemen (30,9 mg)
BS 2:	korund (27,4 mg) + mullit (61,7 mg)
BS 3:	korund (33,9 mg) + kalcit (54,7 mg)
TS 1 (33/33/33 %):	korund (30,0 mg) + mullit (30,0 mg) + kalcit (30,0 mg)
TS 2 (60/10/30 %):	korund (54,4 mg) + mullit (9,1 mg) + kalcit (27,0 mg)
TS 3 (20/40/40 %):	korund (17,9 mg) + mullit (36,0 mg) + kalcit (36,9 mg)

Prakticky byly směsi připravovány tak, že po navážení množství jednotlivých standardních materiálů byly tyto materiály smíchány, a vzniklé směsi homogenizovány a rozetřeny v třecí misce.

3.3 Postup měření

3.3.1 Difraktometr s uspořádáním Bragg-Brentano

Práškové vzorky v kyvetě byly měřeny za laboratorní teploty, při proudu 40 mA a napětí 30 kV, na difraktometru X-Pert PRO MPD s klasickým uspořádáním Bragg-Brentano, s detektorem PIXCEL, při použití záření z rentgenové lampy s Cu anodou (antikatodou).

⁵ Jde o celkové hmotnostní poměry látek, nikoliv jen jejich krystalických fází.

Snímky pokrývaly rozsah 10-60° 2θ. Výstupní data byla zpracována programem ZDS a tím byly získány integrální intenzity změřených difrakcí, viz. tabulka 1.

Směs	std. materiál	d	hkl	20	int. intenzita
BS1	α-křemen	4,24985	100	20,9018	36,476
	korund	2,08483	113	43,4019	100,000
BS2	mullit	5,38422	110	16,4633	47,062
	korund	2,08545	113	43,3882	58,446
BS3	kalcit	3,03697	014	29,4091	100,000
	korund	2,08711	113	43,3520	36,362
TS1	mullit	5,39989	110	16,4152	10,857
	kalcit	3,03972	014	29,3819	100,000
	korund	2,08810	113	43,3305	42,943
TS2	mullit	5,38442	110	16,4627	3,174
	kalcit	3,03495	014	29,4292	100,000
	korund	2,08635	113	43,3686	59,498
TS3	mullit	5,39601	110	16,4271	7,724
	kalcit	3,03800	014	29,3990	100,000
	korund	2,09126	113	43,2616	11,267

Tab 1. Použitá výstupní data z difraktometru Bragg-Brentano

3.3.2 Monokrystalový difraktometr s pozičně citlivým detektorem

Práškové vzorky v kapiláře o vnitřním průměru 0,5 mm byly měřeny za laboratorní teploty na monokrystalovém difraktometru Nonius KappaCCD, s plošným CCD detektorem ApexII (aktivní plocha 62 x 62 mm, 4096 x 4096 pixelů, rozměr pixelu 15 μm x 15 μm) při použití záření z rentgenové lampy s Mo anodou, které bylo monochromatizováno grafitovým monochromátorem. Vzdálenost detektoru od vzorku byla nastavena na 100 mm, kapilára rotovala kolem osy, doba měření 40s. Snímky pokrývaly rozsah 0-30° θ. Soubor snímků byl integrován modulem PILOT programu Apex2. Výstupní data byla zpracována programem ZDS a tím byly získány integrální intenzity změřených difrakcí, viz. tabulka 2.

Směs	std. materiál	d	hkl	20	int. intenzita
BS1	α-křemen	4,23720	100	9,6213	15,990
	korund	2,07877	113	19,6849	43,466
BS2	mullit	5,36681	110	7,5929	22,387
	korund	2,08165	113	19,6575	27,492
BS3	kalcit	3,03903	014	13,4296	100,000
	korund	2,09248	113	19,5547	41,178
TS1	mullit	5,39760	110	7,5495	14,570
	kalcit	3,04172	014	13,4176	100,000
	korund	2,09116	113	19,5671	55,629
TS2	mullit	5,36592	110	7,5941	3,076
	kalcit	3,03802	014	13,4341	100,000
	korund	2,09116	113	19,5672	47,450
TS3	mullit	5,43098	110	7,5030	6,139
	kalcit	3,04024	014	13,4242	100,000
	korund	2,10051	113	19,4792	24,556

Tab 2. Použitá výstupní data z monokrystalového difraktometru

3.4 Referenční konstanty RIR

Hodnoty referenčních intenzitních konstant jednotlivých standardních materiálů, používané při výpočtech v experimentální části práce, pocházejí ze zdroje [14]. Jde o tabelované hodnoty pro měření s Cu zdrojem záření. Protože však měření na monokrystalovém difraktometru s pozičně citlivým detektorem byla prováděna na Mo zdroji záření, bylo zapotřebí přepočítat konstanty CuK_a na MoK_a za pomoci dále uváděných vztahů. Podle Davise [14] můžeme přepočítat konstanty RIR publikované pro CuK_a záření na MoK_a záření, podle následujícího vzorce:

$$k_i(Mo) = \frac{Lp_i(Mo) \cdot Lp_c(Cu) \cdot k_i(Cu)}{Lp_i(Cu) \cdot Lp_c(Mo)}$$

kde $k_i(Mo)$ a $k_i(Cu)$ jsou RIR konstanty pro vybranou difrakci záření MoK_a, resp. CuK_a, L $p_i(Mo)$ a L $p_i(Cu)$ jsou Lorentz-polarizační faktory pro vybranou difrakci záření MoK_a, resp. CuK_a, a L $p_c(Mo)$ a L $p_c(Cu)$ jsou Lorentz-polarizační faktory pro korundovou hkl(113) difrakci záření MoK_a, resp. CuK_a, všechny získané podle vztahu z mezinárodních tabulek pro rentgenovou krystalografii pro geometrii Debye-Scherrer [15]:

$$Lp = \frac{1 + \cos^2 2\Theta}{\sin^2 \Theta \cdot \cos \Theta}$$

RIR konstanty, přepočtené pro monokrystalový difraktometr s rentgenovou lampou s Mo anodou, jsou uvedeny v tabulce č. 3.

Std. materiál	d	hkl	2θ (Cu)	k _i (Cu)	20 (Mo)	k _i (Mo)
α-křemen	4,260	100	20,85	0,72	9,57	0,65
korund	2,085	113	43,36	1,00	19,62	1,00
kalcit	3,035	014	29,43	2,00	13,42	1,85
mullit	5,372	110	16,50	0,47	7,59	0,41

Tab. 3 Použité RIR konstanty

3.5 Výsledky

3.5.1 Určení obsahu krystalických fází standardních materiálů

Zpracovaná výstupní data (změřené integrální intenzity) a tabelované⁶, resp. přepočtené⁷ RIR konstanty, byly použity pro výpočet obsahu krystalických fází jednotlivých standardních materiálů v binárních směsích. Získané obsahy krystalických fází prezentuje tabulka č. 4.

Tab. 4 Obsah krystalických fází ve standardních materiálech

Standardní materiál	Difraktometr mono [%]	Difraktometr B-B [%]
korund	82	91
mullit	72	69
kalcit	67	78

3.5.2 Určení hmotnostních poměrů v modelových ternárních směsích

Z určených obsahů krystalických látek standardních materiálů, z hmotnostních zlomků příslušných krystalických fází standardních materiálů ve směsi, z RIR konstant a ze zpracovaných výstupních dat pro ternární směsi, byly následně vypočteny hmotnostní poměry reálné, a hmotnostní poměry získané z difraktometru Bragg-Brentano a difraktometru monokrystalového. Získané výsledky jsou prezentovány v tabulce č. 5⁸.

⁶ pro difraktometr Bragg-Brentano

⁷ pro monokrystalový difraktometr, viz. část 3.4

⁸ dopočtem w do hodnoty 1 lze získat celkový obsah amorfních fází ve směsi

Ternární směs 1	korund mono	korund B-B	mullit mono	mullit B-B	kalcit mono	kalcit B-B	
w	0,273	0,303	0,240	0,230	0,223	0,260	
Poměr reálný	1		0,879	0,759	0,817	0,858	
Poměr z mono	1		0,63	39	0,9	072	
Poměr z B-B	1		0,53	38	1,1	.65	
Ternární směs 2	korund mono	korund B-B	mullit mono	mullit B-B	kalcit mono	kalcit B-B	
w	0,493	0,547	0,073	0,070	0,200	0,233	
Poměr reálný	1		0,148	0,128	0,406	0,426	
Poměr z mono	1		0,15	59	1,139		
Poměr z B-B	1		0,11	13	0,841		
Ternární směs 3	korund mono	korund B-B	mullit mono	mullit B-B	kalcit mono	kalcit B-B	
w	0,162	0,180	0,285	0,273	0,272	0,317	
Poměr reálný	1		1,759	1,517	1,679	1,761	
Poměr z mono	1		0,61	10	2,201		
Poměr z B-B	1		1,46	50	4,438		

Tab. 5 Hmotnostní poměry standardních materiálů v ternárních směsích s ohledem na obsah krystalických fází určený příslušným difraktometrem

4. Diskuze a závěr

Cílem této bakalářské práce byla realizace kvantitativní analýzy modelových směsí pomocí rentgenové práškové difrakce a metody RIR, a vzájemné porovnání výsledků této analýzy provedené dvěma rozdílnými difraktometry.

Porovnání přesnosti výsledků při určování hmotnostních poměrů látek v ternárních směsích, vzhledem ke známým (reálným) hmotnostním poměrům, nevyznívá jednoznačně příznivě pro žádný ze dvou použitých difraktometrů. Primární rozdíly obou přístupů jsou zjevné již při určování obsahu krystalických fází jednotlivých standardních materiálů, viz. tabulka č. 4. Největší rozdíly hodnot jsou patrné u kalcitu (cca 15 %) a korundu (cca 10 %), zatímco u mullitu je rozdíl menší (cca 4 %). Ačkoliv je neurčitost výsledků (až k úrovni 15 %) poměrně vysoká, lze konstatovat, že u kvantitativní analýzy práškovou difrakcí nejde o hodnotu neobvyklou. Vzniklý rozdíl, zejména u kalcitu, lze zřejmě připsat možnému vlivu přednostní orientace (jako důležitého faktoru), kdy dochází k tomu, že jsou klence kalcitu (u geometrie Bragg-Brentano) přednostně uhlazeny podél svých plošek při instalaci vzorku do laboratorní kyvety. Obecně lze říci, že měření v kapiláře, použité u monokrystalového difraktometru, by měla poskytnout lepší výsledky, protože dochází daleko méně k mechanické manipulaci se vzorkem, než je tomu při použití kyvety (pěchování, zarovnání). Dalším důvodem může být také vysoký (cca dvojnásobný) molární absorpční koeficient kalcitu proti ostatním standardním materiálům. U RIR metody sice nezáleží na celkovém absorpčním koeficientu směsi, avšak absorpční koeficienty mohou u velkých krystalitů jednotlivých složek zeslabit intenzitu difraktovaného záření jednotlivými zrny.

Hodnoty hmotnostních poměrů, stanovené u ternárních směsí jednotlivými metodami, vykazují nekonzistentní výsledky, jenž neumožňují jednoznačně stanovit, která z metod je přesnější. Z výsledků uvedených v tabulce č. 5 vyplývá, že nejvyšší přesnosti při určování hmotnostních poměrů bylo dosaženo u směsi TS 1 a TS 3 monokrystalovým difraktometrem, zatímco u směsi TS 2 byl přesnější difraktometr s geometrií Bragg-Brentano. Lze konstatovat, že z použitých standardů produkuje nejrozporuplnější výsledky stanovení obsahu kalcitu, naproti tomu stanovení obsahu mullitu poskytuje poměrně vyvážené výsledky, a to i v případě ternární směsi s jeho minoritním podílem (TS 2). Obdobně lze konstatovat, že nejvyváženější výsledky v rámci analýzy konkrétní ternární směsi poskytuje směs s vyváženým poměrem složek (TS 1).

Výchozí předpoklad, že monokrystalový difraktometr s pozičně citlivým detektorem bude, v kombinaci s metodou RIR, poskytovat přesnější výsledky analýzy, se tedy nepodařilo zcela potvrdit.

Literatura

- Kužel, R., Rafaja, D.: Prášková difraktometrie, Materials Structure, vol. 9, no. 1, 2002, str. 6-8
- [2] Kraus, I.: Úvod do strukturní rentgenografie, Academia, 1985
- [3] Loub, J.: Krystalová struktura, symetrie a rentgenová difrakce, Státní pedagogické nakladatelství, 1987
- [4] Kužel, R.: Rentgenografické difrakční určení mřížového parametru známé kubické látky, http://krystal.karlov.mff.cuni.cz/kfes/vyuka/lp/
- [5] Valvoda, V., Polcarová, M, Lukáč, P.: Základy strukturní analýzy, Karolinum Praha, 1992, ISBN 80-7066-648-X
- [6] Hybler, J.: Monokrystalové metody s registrací na film nebo obdobná plošná media,
 FÚ AVČR, http://http://www.xray.cz/xray/csca/kol2002/doc/jiri_hybler.htm
- [7] Fiala, J.: Kvantitativní prášková analýza, Nové technologie Výzkumné centrum,
 ZČU Plzeň, http://www.xray.cz/kryst/difrakce/fiala1/kvantita.htm
- [8] Chung, F. H.: Quantitative Interpretation of X-ray Diffraction Pattems of Mixtures. I. Matrix Flushing Method for Quantitative Multicomponent Analysis, Journal of Applied Crystallography 7, 519-525, 1974.
- [9] Chung, F. H.: Quantitative Interpretation of X-ray Diffraction Patterns of Mixtures. II. Adiabatic Principle of X-ray Diffraction Analysis of Mixtures, Journal of Applied Crystallography 7, 526-531, 1974.
- [10] Chung, F. H.: Quantitative Interpretation of X-ray Diffraction Patterns of Mixtures. III. Simultaneous Determination of a Set of Reference Intensities, Journal of Applied Crystallography 8, 17-19, 1975.
- [11] Davis, B. L.: Quantitative Phase Analysis with Reference Intensity Ratios, Proceedings of the international conference Accuracy in Powder Diffraction II, Gaithersburg, 1992
- [12] Smith, D. K.: Defect and Microstructure Analysis by Diffraction, R. L. Snyder, J. Fiala & H. J. Bunge (eds), 333-345. New York 1999. Oxford University Press.
- [13] Havlíček, D. Přibil, R., Kratochvíl, B.: Content of quartz and mullite in some selected power-plant fly ash in Czechoslovakia, Atmospheric Environment 23 (3), 1989, str. 701-706

- [14] Davis, B. L.: Reference intensity method of quantitative X-ray diffraction analysis.South Dakota School of Mines and Technology Press, Rapid City, 1988
- [15] The International Tables for Crystallography, Kluwer Academic Publishers, Dordrecht (Boston) London, 2002, 5th edition

ZDS - System ver.5.17	03-01-2010 /22:51										
UNTITLED UNTITLED											
Profile Fitting											
Sample: sioalo											
Source: C:\ZDS\J\sioalo.ZDS Source Parameters:											
Step Size: 0.013 Start Angle: 10.007 End Angle: 60.005 Number of Points: 3847 Time per Step: 100.0 se Wavelength: 1.54178	3 ř2é 7 ř2é 5 ř2é ec. A Cu										
Posit_2é Posit_d FWHM Width Height Integr 20.9018 4.24985 0.1398 0.1570 57.397 36.476 43.4019 2.08483 0.1917 0.2474 100.000 100.000	ral R 6 99.9452 0 99.4636										
Maximum Height: 32.58 cps Maximum Integral:	8.06 2é.cps										
Profile-Shape-Parameters: PSF: Pearson VII Background: Linear Doublet: No Split: No Lp-correction: No ConvergMode: Automatic ConvergParam= 3.55											

Příloha 1 – Datové soubory programu ZDS

03-18-2010 /13:01

ZDS - System ver.5.17

UNTITLED	
UNTITLED	

	==		==	==	==	==	===	 	===	===		===		
]	Р	r	0	f	i	1	е	F	i	t	t	i	n	g

Sample: Almullit

_____ Source: C:\ZDS\J\Almullit.ZDS Source Parameters:
 Step Size:
 0.013
 ř2é

 Start Angle:
 10.007
 ř2é

 End Angle:
 60.005
 ř2é
 Number of Points: 3847 Time per Step: 10.0 sec. Wavelength: 1.54178 A Cu _____ Posit_2éPosit_dFWHMWidthHeightIntegralR16.46335.384220.18120.214149.83147.06299.987823.58513.772060.21190.24053.7343.96499.9869 10.00010.772000.21190.24053.7343.96425.60953.478290.16400.187141.13033.94126.00553.426200.20770.244569.60375.05726.31463.386660.19680.2267100.000100.00030.98152.886330.18160.206517.64416.06733.25812.693780.21240.2451100.000100.000 99.9968 99.9968 99.9968 16.067 41.396 99.9809 33.2581 2.69378 0.2134 0.2454 38.251 99.9912 35.22182.547970.22510.247382.94837.01712.428410.21740.261912.65837.80922.379340.18760.220722.317 99.9712 90.475 14.629 21.715 99.9600 99.9600 2.29306 0.2277 0.2743 13.596 16.453 39.2891 99.9045 40.8642 2.20824 0.2265 0.2582 51.195 58.306 99.9587

 40.8642
 2.20824
 0.2265
 0.2582
 51.195
 58.306

 42.6213
 2.12118
 0.2592
 0.3532
 19.891
 30.995

 43.3882
 2.08545
 0.2064
 0.2466
 53.728
 58.446

 48.2176
 1.88726
 0.2533
 0.2757
 5.448
 6.630

 49.4954
 1.84149
 0.2941
 0.3532
 7.456
 11.612

 50.8242
 1.79642
 0.2634
 0.3317
 2.195
 3.210

 52.5849
 1.74034
 0.2411
 0.2939
 22.675
 29.398

 53.4500
 1.71420
 0.2932
 0.4034
 6.637
 11.805

 53.8567
 1.70221
 0.2042
 0.3178
 4.287
 6.016

 54.0991
 1.69515
 0.3214
 0.4230
 11.886
 22.172

 57.5311
 1.60193
 0.2413
 0.3463
 59.152
 90.353

99.7907 99.7907 99.9711 99.7290 99.9677 99.7401 99.7401 99.7401 99.7401 1.601930.24130.346359.15290.35399.11801.578980.46210.61936.47017.68199.1180 57.5311 58.4473 1.57898 0.4621 0.6193 Maximum Height: 251.47 cps Maximum Integral: 57.01 2é.cps _____ Profile-Shape-Parameters: PSF: Pearson VII Background: Linear Split: No Lp-correction: No Doublet: No ConvergMode: Automatic ConvergParam= 4.87 _____

03-18-2010 /12:50

ZDS - System ver.5.17

UNTITLED
UNTITLED

		==				==	===	 ===							=
]	Ρ	r	0	f	i	1	е	F	i	t	t	i	n	g	

Sample: Alkalcit

Source	e: C:\ZDS\J\A Parameters:	lkalcit.	ZDS				_
			S Number Tim	Step Size: tart Angle: End Angle: of Points: e per Step: Wavelength:	0.013 10.007 60.005 3847 10.0 sec 1.54178 A	ř2é ř2é ř2é Cu	
Posit_2é	e Posit_d	FWHM	Width	Height	Integra	l R	_
23.0607	3.85662	0.1682	0.1897	8.366	7.846	99.9931	
25.5893	3.48098	0.1557	0.1753	13.751	11.924	99.9872	
29.4091	3.03697	0.1769	0.2022	100.000	100.000	99.9907	
31.4412	2.84517	0.2249	0.2687	2.059	2.731	99.9722	
35.1659	2.55189	0.1738	0.1962	20.036	19.440	99.9418	
35.9859	2.49560	0.1983	0.2279	11.085	12.495	99.9418	
37.7919	2.38039	0.1788	0.2009	8.047	7.991	99.9013	
39.4238	2.28553	0.2144	0.2434	15.523	18.685	99.9712	
43.1501	2.09641	0.1607	0.2088	10.650	10.994	99.8779	
43.3520	2.08711	0.2329	0.3065	23.995	36.362	99.8779	
47.1192	1.92866	0.2113	0.2675	4.417	5.841	99.9197	
47.5083	1.91377	0.2639	0.3234	14.597	23.344	99.9197	
48.5159	1.87635	0.2586	0.3002	14.720	21.852	99.9197	
52.5720	1.74074	0.2298	0.2840	8.603	12.079	99.1545	
56.5819	1.62652	0.2738	0.3186	2.053	3.235	99.8669	
57.4952	1.60284	0.2639	0.3580	22.293	39.461	99.5397	_
Maximum ======	Height: 51	0.52 cps		Maximum Int	cegral:	103.24 2é.cps	_
Profil	e-Shape-Para PSF: Pearso	meters: n VII	a 11.	I	Background:	Linear	
	Doublet: No	Deck and	Split:	No I	_p-correcti	on: No	
	ConvergMode:	Automat	ic C	onvergParam=	= 4.62		

04-26-2010 /03:27

ZDS - System ver.5.17

			U T	INTITLED INTITLED			
	===		======================================		======================================		
		Pr	0 1 1 1	e rit	ιıng		
Sample	: ternar111						
Source	C:\ZDS\J\t	ternar11.	ZDS				
Source	Parameters:	:					
			_	Step Size:	0.013	ř2é	
			2	Start Angle:	10.007	ŕ2é	
			Numbor	End Angle:	60.005 3847	rze	
			number Tim	e ner Sten.	10 0 500		
			1 1 1	Wavelength:	1.54178 A	Cu	
				=============			
Posit_2é	e Posit_d	FWHM	Width	Height	Integral	R	
16.4152	5.39989	0.1759	0.1986	11.003	10.857	99.9913	
23.0343	3.86098	0.1721	0.1861	9.426	8.715	99.9722	
25.5633	3.48447	0.1675	0.1936	22.958	22.080	99.9932	
25.9555	3.43269	0.2105	0.2349	15.198	17.723	99.9932	
20.2000	3.39287	0.2059	0.2397	23.250	27.685	99.9932	
29.3013	2 89077	0.1701	0.2013	5 169	5 370	99.9091	
31 3980	2 84891	0.1726	0.2092	2 481	2 523	99 9924	
33.2128	2.69735	0.2244	0.2504	8.723	10.842	99.9935	
35.1585	2.55240	0.2120	0.2378	39.045	46.112	99.9533	
35.9532	2.49779	0.2008	0.2284	11.872	13.468	99.9533	
36.9546	2.43237	0.2422	0.2726	2.670	3.609	99.9820	
37.7644	2.38206	0.1918	0.2194	12.885	14.040	99.9761	
39.3782	2.28808	0.2457	0.2864	18.117	25.778	99.9062	
40.8145	2.21081	0.2251	0.2591	13.922	17.914	99.9653	
42.5707	2.12359	0.2371	0.3516	4.912	8.583	99.9388	
43.1172	2.09793	0.1744	0.2620	12.569	16.359	99.9388	
43.3305	2.08810	0.2302	0.2607	33.167	42.943	99.9388	
47.0949	1.92960	0.2549	0.3003	4.620	6.896	99.9712	
47.4021	1 91470	0.2070	0.2930	15.709	20.114	99.9712	
40.4007	1 84274	0.2300	0.3038	1 893	3 815	99.8890	
52 5390	1 74173	0.2451	0.2951	13 101	19 205	99 6857	
53.3962	1.71580	0.3324	0.3818	1.492	2.832	99.9909	
53.7921	1.70410	0.1659	0.1807	1.202	1.071	99.9909	
54.0401	1.69687	0.3480	0.3881	2.644	5.091	99.9909	
56.5095	1.62844	0.4544	0.6501	2.511	8.113	99.4952	
57.4731	1.60341	0.2660	0.3771	33.991	63.659	99.4952	
======= Maximum	Height: 33	38.53 cps		Maximum In	======================================	68.16 2é.cps	
Profil	.e-Shape-Para	ameters:		=			
	PSF: Pearso	on VII		1	Background:	Linear	
	Doublet: No		Split:	No	Lp-correctio	on: No	
	ConvergMode	: Automat	ic C	ConvergParam	= 4.64		

04-26-2010 /04:33

ZDS - System ver.5.17 _____

			U	NTITLED			
			U	NTTTLED			
	===					===	
		Рr	ofil	e Fitt	ing		
					-		
~							
Sample:	terna631						
Source:	C:\ZDS\J\t	erna631.	ZDS				
Source E	Parameters:		-				
				Step Size:	0.013	ř2é	
			S	tart Angle:	10.007	ř2é	
				End Angle:	60.005	ř2é	
			Number	of Points:	3847		
			Tim	e per Step:	10.0 sec	•	
				Wavelength:	1.54178 A	Cu	
Posit 2é	Posit d		Width	Height	Integra	======================================	
16.4627	5.38442	0.1667	0.1964	2.917	3.174	99.9928	
23.0810	3.85329	0.1542	0.1692	9,955	9.321	99.9906	
25.6024	3.47923	0.1569	0.1783	20.105	19.851	99.9918	
26.0010	3.42680	0.1850	0.2099	4.340	5.038	99.9918	
26.3112	3.38709	0.1868	0.2206	6.268	7.656	99.9918	
29.4292	3.03495	0.1629	0.1806	100.000	100.000	99.9778	
30.9739	2.88702	0.1601	0.1745	1.258	1.221	99.9856	
31.4574	2.84375	0.1691	0.2037	2.058	2.319	99.9856	
33.2541	2.69409	0.2086	0.2321	2.322	2.985	99.9618	
35.1887	2.55028	0.1885	0.2101	31.394	36.518	99.9038	
36.0065	2.49422	0.1815	0.2004	11.618	12.894	99.9038	
37.0477	2.42648	0.2496	0.2694	0.727	1.087	99.9032	
37.8077	2.37943	0.1815	0.2043	12.676	14.336	99.9032	
39.4409	2.28458	0.2020	0.2298	16.060	20.439	99.9065	
40.8659	2.20815	0.2037	0.2280	3.651	4.605	99.9586	
42.6000	2.12220	0.1139	0.2177	1.369	1.653	99.6886	
43.1639	2.09577	0.1224	0.1564	9.864	8.544	99.6886	
43.3686	2.08635	0.2144	0.2924	36.738	59.498	99.6886	
4/.1418	1.92779	0.2117	0.2426	4.388	5.892	99.7881	
47.5326	1.91284	0.2376	0.2846	13.4/1	21.238	99.7881	
48.53//	1.8/556	0.2313	0.2697	14.501	21.660	99.7881	
52.5842	1.74036	0.2239	0.2743	13.978	21.227	99.1118	
50.0008 57 5125	1 602307	0.2452	0.2703	1.990 25 175	2.900	99.8779	
	1.00230	0.2326	0.3200		02.320	99.1730	
Maximum He	eight: 49	9.07 cps		Maximum Int	.egral:	90.12 2é.cps	
Profile-	Para	 meters:					
P.C	SF: Pearso	n VII		P	ackground:	Linear	
	ublet: No	•	Split:	No T	p-correctio	on: No	
Cc	onvergMode:	Automat	ic C	onvergParam=	5.00	· · ····	
==========	==========		=======	=============	============		

04-26-2010 /04:04

ZDS - System ver.5.17

			U U	NTITLED NTITLED		
	===	======== P r		========= e Fitt	; ing	===
Sample:	terna442					
Source:	C:\ZDS\J\t	erna442.	ZDS			
Source P	arameters:			Stop Sizo.	0 013	*24
			S	tart Angle:	10.007	ř2é
			2	End Angle:	60.005	ř2é
			Number	of Points:	3847	
			Time	e per Step:	10.0 sec	
			I	Wavelength:	1.54178 A	Cu
Posit_2é	Posit_d	FWHM	Width	Height	Integra	L R
16.42/1	5.39601	0.1689	0.1909	1.512	1.124	99.9930
23.0538	3.85///	0.156/	0.1/90	10.483	10.103	99.9843
23.5644	3.1/532	0.1/40	0.1868	0.789	0.796	99.9843
25.5/08	3.48340 2.42110	0.1030	0.1978	11 1/2	1.042	99.9915
25.9072	3.43110	0.1934	0.2200	16 935	20 364	99.9913
20.2002	3 03800	0.1900	0.2234	100.935	100 000	99.9913
30 9479	2 88939	0.1731	0.1078	3 803	4 051	99 9731
31 4246	2 84664	0.1721	0.2280	2 468	3 026	99 9731
33 2290	2 69607	0.2162	0.2200	6 484	8 699	99 9885
35.2181	2.54822	0.2244	0.2518	10.244	13.885	99,9796
35.9756	2.49629	0.1898	0.2112	11.523	13.098	99,9796
36.9862	2.43037	0.2291	0.2698	1.984	2.876	99.9723
37.7617	2.38223	0.1918	0.2770	1.318	1.971	99.9723
39.4005	2.28683	0.2273	0.2678	16.820	24.256	99.9167
40.8366	2.20967	0.2198	0.2480	10.349	13.815	99.9559
42.5817	2.12306	0.2587	0.3543	3.592	6.848	99.9864
43.1366	2.09703	0.1497	0.1908	10.168	10.441	99.9864
43.2616	2.09126	0.2298	0.2800	7.473	11.267	99.9864
47.1187	1.92868	0.2129	0.2702	4.642	6.758	99.8385
47.4979	1.91416	0.2396	0.2924	13.967	21.987	99.8385
48.5021	1.87685	0.2418	0.2962	15.173	24.196	99.8385
49.4626	1.84263	0.2572	0.2904	1.207	1.891	99.9642
52.5348	1.74188	0.2750	0.3620	1.638	3.195	99.9418
53.4049	1./1554	0.2982	0.3652	1.113	2.190	99.9418
53.8033	1.70377	0.2637	0.48/2	0.806	2.120	99.9418
54.0610	1.69626	0.3258	0.414/	2.008	4.4/9	99.9418
57 1510	1 60200	0.3044	U.43/6 0 4001	3.ULU 11 017	/.410 22 720	99.1203 00.7252
JI.4JIZ	T.00330	=======		/ / · · · · · /	۵۵،۱۷۵ ========	یر ۲۷، ۲۷۵ ==================
laximum He	ight: 54	0.90 cps		Maximum Int	cegral:	100.47 2é.cps
Profile	Shane-Para	======= motore •				
P.G	F: Pearso	n VIT		Ŧ	Background.	Linear
	ublet: No	·· · · ·	Split: 1	No T	p-correctio	on: No
20				-	- · · = = = = = = = = = = = = = = = = =	

09-09-2010 /22:36

ZDS - System ver.5.17 _____

UNTITLED	
UNTITLED	

			Ŭ	NTITLED		
	===			e Fitt	======================================	===
					J	
Sample	: bimonok1					
Source	: C:\ZDS\I\2	2}_bilmo.	ZDS			
SOULCE	Parameters	•		Step Size:	0.155	ř2é
			S	tart Angle:	0.155	ř2é
				End Angle:	62.775	ř2é
			Number	of Points:	405	
			Tim	e per Step:	10.0 sec	
				Wavelength:	0.71069 A	Мо
Posit_2é	Posit_d	FWHM	Width	Height	Integra	l R
1.8584	21.91150	0.6228	0.6115	2.709	1.852	99.9998
9.6213	4.23720	0.6526	0.7360	19.427	15.990	99.9884
12.1679	3.35276	0.8123	0.8941	100.000	100.000	99.8630
16.0900	2.53907	0.6565	0.7106	42.753	33.978	99.9788
17.2031	2.37590	0.9852	1.3265	21.293	31.589	99.9788
18.2704	2.23818	0.6678	0.6827	3./80	2.886	99.9788
19.6849	2.07877	0.6750	0.7643	50.851	43.466	99.9411
20.9814	1.95163	3.8018	1.9106	1./61	3.766	99.9411
22.6093	1.812/4	0.5770	0.6195	9.298	6.443	99.9481
23.0042	1 50/19	0.6760	0.0291	21.001	19.529	99.9481
23.7391	1 52217	0.0300	1 0442	44.799	44.197	99.7009
27.0000	1.5221/	1 01591	1.0443	1.4/2	8.128	99.7869
29.9744	1 20125	1.0136	1.4393	2 2 2 5	0 102	99.0489
33 5005	1 23298	0.0300	0.0394	2.555	0.102	99.0409
31 0100	1 10220	0.7221	0.0010	5 244	5 200	00 0315
38 5600	1 07618	0.9147	0.0000	7 130	1 262	99.0313
40 0410	1 03794	0.6206	0.0300	7 348	6 053	99 9798
41 9985	0 99160	1 4381	1 3300	6 311	9 388	99 9849
46 3300	0 90330	1 0337	1 1275	4 605	5 805	99 9879
49,2747	0.85240	0.8806	0.9285	1.756	1 823	99,9726
50.9031	0.82687	0.3274	0.4049	1.494	0.676	99.8116
======================================	uojaht.			Mowimum Tod	======================================	
	neigni: 42	======================================			======================================	======================================
Profil	e-Shape-Para	ameters:				
	PSF: Pearso	on VII		Ι	Background:	Linear
	Doublet: No		Split:	No	Lp-correcti	on: No
	ConvergMode	: Automat	ic C	onvergParam=	= 3.28	
				=============		

09-09-2010 /23:21

ZDS - System ver.5.17 _____

			U U	NTITLED NTITLED		
	===	======= P r •	======================================	e Fit†	========= t i n g	===
Sample:	bimonok2					
Source	C•\7D9\T\1		======= 7 D 9			
Source	Parameters:					
			S Number	Step Size: tart Angle: End Angle: of Points:	0.155 0.155 62.775 405	ř2é ř2é ř2é
			Tim	e per Step:	10.0 sec	
				Wavelength:	0.71069 A	Mo
Posit_2é 2.0589	Posit_d 19.77800	======= FWHM 0.6402	Width 0.5757	Height 9.377	Integra 6.836	l R 99.4353
7.5929	5.36681	0.6424	0.7008	25.225	22.387	99.9946
11.9942	3.40116	0.7073	0.7895	100.000	100.000	99.9677
14.1663	2.88173	0.3349	0.4622	5.738	3.359	99.8482
15.2142	2.68430	0.5578	0.5963	14.649	11.06/	99.9794
16.0980	2.53/81	0.6285	0.6868	47.786	41.5/2	99.9794
10 5005	2.38088	0.5719	1 4412	6.713	5.105	99.9794
10,5885	2.20021	1.1324	1.4412	44./93	81./0/	99.9414
19.05/5	2.08165	0.6065	U.0000 1 1000	51.522	27.492	99.9414
22.1301	1 72756	0.0784	0 0314	1 791	7.740 0.189	99.9310
23.7400	1 71101	1 1612	1 1071	4.794	26 744	99.9706
25.9002	1 59279	0 7153	0 78/2	17.700	20.744	99.9700
27 0720	1 51820	0.7155	0.7042	24 480	25 596	99.9909
28 5907	1 43911	0.1941	0.0200	7 912	3 107	99 7719
29 5161	1 39495	1 8933	2 1024	10 371	27 610	99 7719
30 1231	1 36747	0 2856	0 5047	6 825	4 358	99 7719
31 0496	1 32762	0.2000	0.6292	5 285	4 208	99 7719
32 6342	1 26478	0.9323	1 0850	13 482	18 524	99 9888
33 4924	1 23327	0.7503	0 8207	6 688	6 954	99 9888
34 8808	1 18561	0 2881	0 3828	2 1 9 2	1 062	99 8892
37 8646	1 09522	0 7112	0 6995	3 366	2 981	99 9830
40.0231	1.03838	0.2680	0.3788	1.596	0.763	99.8490
41.8422	0.99514	1.5962	1.6303	8.359	17.258	99.9901
	===========		=======			
Maximum H =======	leight: 16	1.03 cps		Maximum Int	tegral:	127.13 2é.cps
Profile F C	e-Shape-Para 2SF: Pearso Doublet: No ConvergMode:	meters: n VII Automat	Split: ic C	I No onvergParam=	Background: Lp-correcti = 3.27	Linear on: No

09-02-2010 /18:36

ZDS - System ver.5.17

			====== τ τ	JNTITLED JNTITLED			
	===	Pr(c f i l	e Fit	======================================		
Sample	: bimonok3						
	======================================	imonok3.	====== ZDS				
Source	Parameters:						
			S Number Tin	Step Size Start Angle End Angle of Points he per Step	: 0.030 : 6.380 : 43.940 : 1253 : 10.0 sec.	ř2é ř2é ř2é	
				waverengtn ==========	. 0.71009 A	MO =============	
Posit_2é	Posit_d	FWHM	Width	Height	Integral	======================================	
10.5605	3.86130	0.4855	0.5806	12.165	15.473	99.9923	
11.7128	3.48257	0.5234	0.6409	13.905	19.512	99.9923	
13.4296	3.03903	0.4260	0.456/	100.000	100.000	99.9898	
16.0089	2.55185	0.5214	0.5981	20.553	26.925	99.9925	
10.3982	2.49166	0.4804	0.5563	11.582	14.101	99.9925	
17.1199	2.38/3/	0.3903	0.4192	8.623	7.908	99.9925	
1/.8/9/	2.28668	0.5084	0.5892	24.68/	31.841	99.9925	
19.554/	2.09248	0.4624	0.4905	38.331	41.1/8	99.9983	
21.3523	1.91811	0.5013	0.5391	27.289	32.222	99.9981	
21.8199	1.8//49	0.4548	0.4949	22.842	24.752	99.9981	
23.5334	1.74251	0.4872	0.5164	9.520	10.766	99.9997	
25.5803	1.60513	0.4931	0.5217	30.282	34.585	99.9989	
27.0193	1.52111	0.5845	0.5989	12.731	16.692	99.9980	
28.6021	1.43854	0.5622	0.6165	/.814	10.556	99.9931	
29.221/	1.40869	0.4908	0.5327	8.066	9.413	99.9931	
29.9573	1.37486	0.4407	0.4760	11.521	12.005	99.9931	
31.7646	1.29848	0.4055	0.4586	4.151	4.173	99.9981	
32.1030	1.28515	0.4906	0.5713	1.897	2.363	99.9981	
33.3280	1.23918	0.5798	0.6318	8.919	12.329	99.9969	
34.8782	1.18570	0.5256	0.6343	4.690	6.517	99.9707	
35.9359	1.15191	0.5684	0.7418	6.770	10.995	99.9707	
36.8954	1.12295	5.4219	2.1798	1.418	6.764	99.9707	
39.7482	1.04527	0.6444	0.6470	10.303	14.596	99.9965	
====== Maximum	======================================	4.92 cps		Maximum I	======================================	52.48 2é.cps	
Profil	======================================	motors.					
LIOIII	e Shape-rafa PSF: Pearso Doublet: No ConvergMode:	n VII Automati	Split:	No	Background: Lp-correctio	Linear on: No	

09-02-2010 /19:28

ZDS - System ver.5.17

			ט ט	NTITLED NTITLED			
	===	 P r	 o f i l	e Fitt	ing	===	
Sample	: trimonol						
Source Source	: C:\ZDS\I\t Parameters:	trimonol.	ZDS				
			S Number Tim	Step Size: tart Angle: End Angle: of Points: e per Step: Wavelength	0.030 5.010 47.130 1405 60.0 sec 0.71069 A	ř2é ř2é ř2é	
				=======================================	===========	================================	
Posit_2é 7.5495	Posit_d 5.39760	FWHM 0.2962	Width 0.3823	Height 13.412	Integra 14.570	 l R 99.9840	
10.4207	3.91297	15.0965	0.9571	2.745	7.506	99.9993	
10.5407	3.86854	0.4677	0.5165	12.314	17.881	99.9993	
11.8742	3.43539	0.5451	0.6233	39.451	69.316	99.9870	
11.7787	3.46315	85.8231	1.7929	5.020	25.386	99.9870	
13.4176	3.04172	0.3204	0.3556	100.000	100.000	99.9969	
15.1325	2.69870	0.3126	0.3416	8.941	8.609	99.9956	
16.0006	2.55316	0.3204	0.3480	40.314	39.514	99.9956	
16.3423	2.50012	0.3154	0.3489	12.000	11.700	99.9956	
17.1128	2.38835	0.3202	0.3463	10.667	10.375	99.9861	
17.8640	2.28868	0.2966	0.3204	20.784	18.764	99.9861	
18.4955	2.21118	0.3102	0.3474	15.373	15.011	99.9861	
19.5671	2.09116	0.3584	0.3899	50.745	55.629	99.9961	
21.3616	1.91729	0.3742	0.4098	22.196	25.607	99.9996	
21.8107	1.87827	0.3551	0.4101	21.490	24.724	99.9996	
23.5437	1.74176	0.3497	0.3784	16.471	17.439	99.9972	
24.0958	1.70242	0.4582	0.5262	6.902	10.155	99.9972	
25.6073	1.60347	0.3674	0.4011	46.745	52.759	99.9961	
27.9043	1.47378	0.2439	0.9319	2.196	5.740	99.9958	
28.5433	1.44145	0.5729	0.8774	12.784	31.567	99.9958	
29.2610	1.40683	0.3536	0.4105	14.510	16.777	99.9958	
29.9505	1.37516	0.3810	0.4467	18.118	22.737	99.9958	
30.8365	1.33657	0.4726	0.5940	9.176	15.232	99.9958	
33.3665	1.23779	0.4551	0.4896	9.569	13.245	99.9951	
Maximum	Height: 2	12.75 cps		======================================	egral:	4.53 2é.cps	
Profile	e-Shape-Para PSF: Pearso Doublet: No ConvergMode	ameters: on VII : Automat	Split: ic C	E No I ConvergParam	ackground: p-correctio 2.00	Linear on: No	

09-05-2010 /14:02

ZDS - System ver.5.17

			 ບ ບ	INTITLED			
	===	Pr	======================================	e Fit	ting	===	
Sample	: trimono2						
Source Source	: C:\ZDS\I\t Parameters:	rimono2.	ZDS				
			S Number Tin	Step Size: Start Angle: End Angle: of Points: me per Step:	0.030 6.100 54.910 1628 40.0 sec	ř2é ř2é ř2é	
				Wavelength:	0.71069 A	Мо ===============	
Posit_2é 10.5598 11.7767 13.4317 16.0587 17.1254 17.8781 18.5350 19.5680 21.3530 21.8246 23.5472 25.6021 27.0133 28.5830 29.2463 29.9681 33.3598 34.8579	Posit_d 3.86155 3.46373 3.03856 2.54398 2.38660 2.28688 2.20650 2.09107 1.91805 1.87709 1.74150 1.60379 1.52144 1.43949 1.40753 1.37437 1.23803 1.18637	FWHM 0.1122 0.5982 0.4199 0.5235 0.3238 0.3873 0.3233 0.4182 0.4891 0.4656 0.3760 0.4357 0.5431 0.5193 0.3965 0.3891 0.4878 0.7596	Width 0.1538 0.6618 0.4540 0.5947 0.3433 0.4251 0.4159 0.4573 0.5274 0.5109 0.4095 0.5077 0.5758 0.5615 0.4270 0.4211 0.5262 0.7778	Height 6.280 26.557 100.000 34.420 8.688 20.490 4.297 50.599 27.142 22.632 14.090 45.729 15.740 8.582 10.977 17.004 10.338 5.801	Integra: 2.140 38.716 100.000 45.106 6.565 19.197 3.927 50.967 31.536 25.469 12.720 51.143 19.959 10.610 10.317 15.768 11.987 9.936	R 99.8837 99.9888 99.9816 99.9284 99.9922 99.9922 99.9922 99.9922 99.9922 99.9928 99.9984 99.9984 99.9984 99.9951 99.9951 99.9961 99.9961 99.9979 99.9961 99.9951	
39.7945	1.04410	0.5811	0.6439	10.790	10.903	99.9963	
======================================	======================================	5.16 cps		Maximum In		34.12 2é.cps	
Profil	e-Shape-Para PSF: Pearsc Doublet: No ConvergMode: ====================================	meters: n VII Automat	Split: ic C	No ConvergParam	Background: Lp-correctio = 3.16	Linear on: No	

ZDS - System ver.5.17

09-05-2010 /14:15

UNTITLED

Profile Fitting

Sample: trimono3

Source	: C:\ZDS\I\t	======= rimono3.	ZDS				
			S Number Tim	Step Size: tart Angle: End Angle: of Points: me per Step: Wavelength:	0.030 3.780 45.090 1378 20.0 sec. 0.71069 A	ř2é ř2é ř2é Mo	
Posit_2é	Posit_d	FWHM	Width	Height	Integral	R	
7.5030	5.43098	0.3743	0.4039	6.477	6.139	99.9939	
10.5453	3.86686	0.4631	0.4960	8.121	9.450	99.9987	
11.9484	3.41412	0.4248	0.4663	23.579	25.784	99.9960	
13.4242	3.04024	0.3925	0.4263	100.000	100.000	99.9810	
14.1665	2.88170	0.6869	0.6265	7.579	11.138	99.9961	
15.1066	2.70330	0.3787	0.4053	6.757	6.424	99.9961	
15.9746	2.55729	0.4347	0.4910	8.028	9.252	99.9958	
16.3329	2.50156	0.4228	0.4706	13.944	15.391	99.9958	
17.8522	2.29018	0.4375	0.4844	24.729	28.108	99.9861	
18.4977	2.21092	0.3964	0.4483	12.636	13.287	99.9861	
19.4792	2.10051	0.4768	0.5201	20.121	24.556	99.9861	
21.3538	1.91798	0.4725	0.5132	25.290	30.454	99.9970	
21.8232	1.87721	0.4483	0.5188	23.523	28.612	99.9970	
24.0755	1.70383	0.4752	0.5229	4.290	5.262	99.9851	
25.5635	1.60617	0.5593	0.6173	15.636	22.649	99.9855	
26.9675	1.52398	0.4852	0.5184	18.112	22.035	99.9780	
28.5330	1.44196	0.4716	0.5066	9.505	11.291	99.9954	
28.9713	1.42060	0.5525	0.6654	3.748	5.854	99.9954	
30.7445	1.34047	0.6362	0.6720	5.963	9.406	99.9950	
33.3490	1.23842	0.4407	0.4810	3.346	3.771	99.9927	
34.9174	1.18441	0.5333	0.7486	3.869	6.797	99.9726	
35.9149	1.15256	0.6139	0.7624	5.065	9.055	99.9726	
39.6970	1.04657	0.6855	0.7229	5.271	8.945	99.9945	
Maximum Height: 107.00 cps			Maximum Int	tegral:	45.61 2é.cps		
Profile-Shape-Parameters:							
PSF: Pearson VII Background: Linear							
	Doublet: No Split: No Lp-correction: No						
ConvergMode: Automatic ConvergParam= 3.03							

Příloha 2 – Ukázka grafických výstupů

Graf 1. Difraktogram směsi TS1 z difraktometru Bragg-Brentano

Graf 2. Difraktogram směsi TS1 z monokrystalového difraktometru

