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DIPLOMOVÁ PRÁCE
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V d̊usledku naléhavé potřeby řešit problémy souvisej́ıćı s modelováńım elastických

vlastnost́ı materiál̊u s tvarovou pamět́ı dř́ıve, než se přistouṕı k aplikaćım, soustřed́ı se

tato práce na popis a modelováńı elastických a paměťových vlastnost́ı těchto materiál̊u.

Vedle výstuhy cévńıch náhrad jsou materiály s tvarovou pamět́ı využ́ıvány např. jako

prvky aktivńıho tlumeńı lopatek větrných elektráren. Větš́ı část práce byla vypra-

cována ve spolupráci s Ústavem termomechniky AV ČR, v.v.i., kde je jak problematika

termomechanických vlastnost́ı materiál̊u s tvarovou pamět́ı tak i jejich aplikaćı řešena

v rámci mezinárodńıho projektu MULTIMAT a projekt̊u GA ČR a MŠMT ČR.
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modelu s experimenty. Tyto experimenty provedli Ing. Jan Pilch a Audrey Kujawa –
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z NiTiNOLu při tepelně-mechanickém zatěžováńı. Pro fitovaćı funkce v navrženém
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phase transformation and thus belongs among shape memory alloys. In the form of a

thin wire it is used in many applications (e.g. as a reinforcement for veins).

MT is studied with respect to the extended non-equilibrium thermomechanics of

mixtures and the Clusius-Clapeyron equation is derived for it. A new phenomeno-

logical model iRLOOP, developed at AS CR, simulating thermomechanical behavior

of a NiTiNOL wire is mathematically formulated. Restrictions on fitting functions in

proposed hysteresis mechanism are derived from the second law of thermodynamics.

The existence and uniqueness of the solution of an initial problem are proven for the

superelasticity model. Experiments are compared with results modeled by numerical

implementation of iRLOOP.
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Chapter 1

Introduction

Shape memory alloys (SMAs) have the unusual material property of being able to

sustain and recover large strains (of the order of 10%) without inducing irreversible

plastic deformation and to ”remember” a previous configuration and return to it with

a temperature change. These interesting material characteristics arise due to distinc-

tive internal crystalline phase transformations with temperature and/or applied stress,

thus can be studied within the extended non-equilibrium thermodynamics frame. The

increasing number of investigations of SMAs in the past two decades reflects grow-

ing global interest in this type of material, which is promising from the wide range

of possible applications point of view. The natural result is that modeling of shape

memory effects (SMEs) is attractive both for physicists, who are interested in confir-

mation of proposed explanation of experimental results, and for engineers, demanding

accurate prediction of SMAs behavior needed in new products development, and even

for mathematicians, who often try to employ advanced mathematical tools to predict

SMA behavior ab initio. This work deals with SMEs phenomenological modeling taking

principles of thermodynamics into account.

In the next chapter the martensitic phase transition is introduced and shape memory

effects extensively described. Some specific properties of NiTiNOL are also mentioned.

In the third chapter the basics of extended non-equilibrium thermodynamics with

respect to martensitic phase transformation are formulated. The second law of thermo-

dynamics is employed to obtain non-equilibrium entropy of mixtures and a constitutive

relation for homogenous isotropic thermo-visco-elastic material is derived. Also, the

Clausius-Clapeyron equation for a solid-to-solid martensitic phase transition is derived.

In the fourth chapter a brief overview of shape memory effects modelling approaches

and the general thermodynamic framework for thermodynamics based models can be

found. Some types of one-dimensional SMEs models and of models for hysteresis are

also reviewed.

In the fifth chapter a new phenomenological model developed at the Academy of

Sciences of the Czech Republic and called iRLOOP is introduced and mathematically

formulated. The model was constructed gradually, each stage expanded the previ-

ous one.
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First, superelastic behavior with R-phase contribution and return point memory

effect were introduced to the ”superelasticity model”. Detailed description of computa-

tional mechanism is followed by derivation of restrictions on functions forming the major

hysteresis loop (fitting functions of the model) in involved extended Duhem-Madelung

model of hysteresis. These restrictions result from the second law of thermodynamics.

Employing Picard-Lindelöf theorem the existence and uniqueness of the solution of an

initial problem are proven for this model, too.

Next, pseudoplasticity, reorientation process and thus also one-way SME in tension

were added to establish ”pseudoplasticity model”. The new features of this model

and possible fitting procedure for material parameters are described and experimental

results are compared with results of ”pseudoplasticity model” implemented to MATLAB

programming language.

So far the last stage – ”thermomechanical model” – connects all previous effects

and their interaction to complex tension-compression algorithm. This algorithm is just

sketched, since it is still under construction.

In the last chapter conclusions of this thesis can be found.
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Chapter 2

Basic Properties of Shape Memory

Alloys

2.1 Martensitic Transformation

Intermetallic alloys exhibiting the unique shape memory effects (SMEs) are known as

shape memory alloys (SMAs). Although these effects were firstly observed at Au-Cd

alloy in 1951, the research has intensified after 1963, when the commercially most

successful Ni-Ti-based shape memory alloys were discovered.

The key physical process for understanding of all shape memory effects, which are

described in more detail in the next section, is the martensitic phase transition (MT).

This first-order solid-to-solid phase transition from the parent phase, which is referred

to as austenite, to the less-ordered product phase, martensite, is a typical example

of so called military transformation. The mechanism of this type of transformation

consists of a regular rearrangement of the lattice in such way that relative displacement

of neighboring atoms does not exceed the interatomic distances and the atoms do not

interchange places. This ”shearing of the parent lattice into the product” is sometimes

referred as lattice-distortive transition. The name emphasizes the analogy between

the coordinated motion of atoms crossing the glissile interface between the parent and

product phases and that of soldiers moving in ranks on the parade ground. (In contrast,

the uncoordinated transfer of atoms across a non-glissile interface results in what is

known as a civilian transformation.) That is why the interface between austenitic and

martensitic phases reaches almost the speed of sound in the solid.

The martensitic transformation in most cases is nucleated heterogeneously by for-

mation of thin plates of parent/product phase in the matrix of product/parent phase, at

special defect sites in a SMA material, forming a two-phase austenite-martensite zone.

The defects induce a strain field that facilitates the initiation of the transformation

(lowers the energy barrier for nucleation). In a SMA polycrystalline body, the mech-

anism of martensite phase transformation is complicated by interaction of the walls

of growing or shrinking martensite plates with the grain boundaries of the austenite

matrix. The two principles determining MT were established by Kurdjumov [1]:
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1. A martensitic transformation is a strain transformation, i.e. the lattice strain (also

called self-strain) is a transformation parameter which determines physical state

of an initial phase and a product phase. The self-strain in a more general case

can include, in addition to the homogeneous strain, some kind of rearrangement

or shuffling of lattice sites, provided that this shuffling is unambiguously related

to the strain. (The free energy as a function of an uniform transformation strain

is then a primary quantitative characteristic of martensitic transition determining

its thermodynamics and kinetics.)

2. The coherency of a two-phase structure determines its evolution from an initial

phase to a product phase.

Let us recall here the first-order phase transitions exhibit a discontinuity in the first

derivative of the thermodynamic potential (e.g. free energy) with respect to the ther-

modynamic variable, e.g. a discontinuity in strain, in entropy (which is connected with

the latent heat), etc.

In general, the martensitic transformation is diffusionless and athermal . It means

the amount of martensite formed is a function only of the temperature and not of the

length of time at which the alloy is held at that temperature. Athermal transforma-

tions start at well-defined temperatures, which are usually insensitive to rate-effects.

Furthermore, in the case of SMA the MT is of thermoelastic type (in contrast to ferrous

materials), which indicates:

1. The thermodynamic driving force for the phase transformation is rather small.

2. The domain walls are very mobile (small internal friction) and their motion is

reversible.

3. The product phase stays coherent with the parent phase (the displacement field

is continuous).

These properties imply that no plastic flow is generated during the transformation,

the transformation is fully reversible – therefore SMA products can undergo a great

number of transformation cycles almost without any fatigue – and dissipation of energy

during transformation is quite small. Energy dissipation, although small, is responsible

for hysteretic properties of SMA and therefore plays an important role in the process

of transformation. The essential contributions to the energy dissipation are associated

with interfacial friction, defect production and acoustic emission caused by nucleation

and growth of martensite plates and interactions between them during transformation

[2]. Further metallurgical aspects of MT (as detailed description of martensite nucle-

ation and growth or stabilization) can be found, for instance, in [3].

The MT can be driven by temperature or by changing external stresses or by simul-

taneous change of stresses and temperature. The temperature induced transformation

proceeds by formation, expansion and migration of a two-phase zone from cooled or

heated boundaries. In a SMA polycrystalline body the stress induced transformation
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can be driven by shear loading or by tension or compression, since even a simple uni-

axial loading induces a complex 3-D microstress field with nonzero shear component in

individual grains of polycrystalline body due to its inhomogeneous structure. The shift

of the two-phase equilibrium under stress results not only in the change of quantity of

a martensite phase but also in the change of the variant fractions in it.

If there is no preferred direction for the occurrence of the transformation, the

martensite takes advantage of the existence of different possible ordering, forming a se-

ries of crystallographically equivalent variants. The product phase growing to a platelet

shape is then termed multiple-variant martensite and is characterized by a twinned

microstructure, which minimizes the misfit between the martensite and surrounding

austenite. On the other hand, if there is a preferred direction for the occurrence of

transformation (e.g. imposed stress), all the martensitic crystals tend to be formed to

the most favorable variant. The product phase is termed fully oriented martensite1 and

is characterized by a detwinned structure, which again minimizes the misfit between

the martensite and the surrounding austenite. Moreover, the conversion of each variant

of martensite into different single variant is possible. Such process is known as reori-

entation process . Two effects determine the change of the martensitic variants fraction

during stress induced processes:

• selection of martensite plates with preferable orientation with respect to the ex-

ternal stress,

• increase of fraction of the preferable variants in a martensite plates.

From a crystallographic point of view, in general SMA parent phases have super-

lattice body-centered cubic structures and are classified as β-phase alloys. The marten-

site crystals obtained from β-phase austenite are indicated as β′ and have periodic

stacking order structures. Since in the martensite atoms of different radii are packed

without any symmetry, the super-lattice structure tends to deform slightly, resulting

in a typical monoclinic configuration. Depending on alloy, upon cooling and before the

formation of martensite, slight crystallographic changes, such a small lattice distortion,

might be observed. These intermediate phases are often termed pre-martensitic phases.

In some SMAs, structure of the martensitic lattice can slightly change when chang-

ing temperature or stress which leads to forming intermartensitic phases . Usually, the

maximum amount of recoverable strain and the hysteresis loop in these cases are small

compared to the ones associated with the full martensitic transition.

In the last decade the magnetic shape memory alloys, where MT is induced by tem-

perature, stress and even external magnetic field change, were developed and intensively

studied. Probably the most promising are Ni-Mn-Ga-based magnetic SMAs (see e.g.

[4]).

1more often, but less precise termed single-variant martensite in the literature
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Figure 2.1: Stress-temperature space. Area where austenite/martensite exists denoted

by ’A’/’M’, area where R-phase can occur contoured with thick line, transformation

strips marked with grey color.

2.2 Shape Memory Effects

For better understanding of shape memory effects, let us restrict ourselves to complex

thermal and one-dimensional mechanical loading of a SMA specimen, which has been

very well experimentally examined and explained in many previous works (for NiTiNOL

see the comprehensive paper [5] and the references cited therein, for instance) and is

sufficient with respect to one-dimensional thin wires modelling studied in this work.

The activation of martensitic transformation occurs due to the presence of driving

forces, either thermal or kinetic. To initiate a transformation, the chemical free energy

difference between the parent and product phases must be greater than the necessary

free energy barriers, such as transformational strain energy or interface energy. For the

determination of when transformations initiate, the space parameterized by stress, σ,

and temperature, T , is commonly used, since the thermodynamic driving force depends

only on stress and temperature in a very good approximation. The stress-temperature

(σ-T ) space is referred to as the phase space and is depicted in figure 2.1.
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In the figure the transformation temperatures Ms, Mf , As and Af indicate the start

and finish temperatures at zero stress for martensite and austenite production, re-

spectively. σre and −σre denote the critical finish stresses of martensite reorientation

processes, σpl (−σpl) indicate the values of stress above (under) which plastic slip will

occur.

Depending upon the path taken within the phase space, certain characteristic fea-

tures of the stress-strain response will manifest themselves. If austenite is cooled from

above Af to below Mf at zero stress, the resulting effect will be the creation of a self-

accommodating (or twinned) microstructure. This process begins at Ms and completes

at Mf . The ensuing multiple variants, which form, tend to average the overall defor-

mation to a net zero change in shape on the macroscopic scale (neglecting thermal

expansion). If this material is subsequently mechanically stressed, the multiple vari-

ants will coalesce into one variant in the preferred direction of loading, in a process of

reorientation (also known as detwinning). This process finishes at σre. Upon removal

of the mechanical load, a permanent deformation is retained in the specimen. (Pref-

erential variants are stable until the loading direction is reversed, i.e. from tension to

compression or vice versa.) This is sometimes called pseudoplasticity or quasiplasticity.

If the material is now heated above the critical temperature Af , it reverts to austenite

and completely recovers its original shape – i.e. the so-called one-way shape memory

effect . The recovery process begins at As and completes at Af , see a schema of the

process in the temperature-strain-stress space, figure 2.2.

When the temperature is above the finish temperature Af and the specimen is

loaded mechanically above a critical stress level given by Clausius-Clapeyron equation

(see section 3.4) and marked as two diagonals (one for tension, one for compression)

starting at Ms in figure 2.1, austenite will start to transform into a martensite with

respect to the direction of loading, accompanied by a large macroscopic strain (so called

transformation strain εtr). The transformation is finished by crossing the diagonals

starting form Mf . The strain is recovered upon removal of the mechanical load in a

reverse process, since martensite is not stable at low stress and high temperatures and

it transforms into austenite in the stripe of σ-T plane bounded by parallel lines starting

in As and Af temperatures. Typically, this type of process is called superelasticity

(or pseudoelasticity), since the behavior is such that the material returns to its initial

configuration upon removal of the loading. Let us recall this processes are possible due

to reversibility of MT, which is specific for SMAs.

In a typical loading-unloading experiment under tension and compression where the

stress level is assumed to be smaller than the plastic yield stress the tension-compression

asymmetry will demonstrate itself. When martensite plates grow, different preferen-

tial crystallographic variants are favorable for tension or compression loading and thus

different internal martensitic structure is established. As a result, the transformation

strain induced by phase transformation under compression is smaller and the absolute

value of stress level required to start the forward phase transformation under compres-

sion is higher than that of the tension experiment. Experimentally, a wider hysteresis

13



Figure 2.2: Stress-strain-temperature space. Some important shape memory effects are

sketched.

loop along the stress axis is observed under compression and the size of the stress-

strain hysteresis along the strain axis is considerably smaller under compression. The

explanation of different critical stress level for MT in tension and compression at fixed

temperature (see figure 2.1) is based on Clausius-Clapeyron equation and it is given in

the next chapter.

When changing the direction of stress under Ms (tension to compression or vice

versa), martensite variant tend to arrange themselves in the preferred direction of load-

ing. This process of reorientation of inappropriately oriented variants also finishes at

(approximately temperature-independent) values σre and −σre for tension and com-

pression, respectively, and it is analogous to detwinning. This process contributes to

change of the total strain of specimen. In this work martensite created at positive val-

ues of stress is referred ”tensile martensite”, martensite created at negative values of

stress is referred ”compressive martensite”. This artificial classification simplifies the

complexity of internal structure, but it is useful for brief description.

Since the response of the system depends not only on the current values of stress

and temperature but also on their previous values (”direction of evolution”), hysteresis

is a manifestation of ”memory” in the system. An interesting property of hysteresis in

SMAs is the return point memory (RPM), global memory of the system. After a cyclic

variation of the driving, the system follows exactly the same trajectory that it would

have followed if the cyclic variation had not taken place. In this way, a hierarchy of

loops within loops is formed, each internal subloop being characterized by the point at

which it was initiated – return point – i.e. by the point, where the direction of lading

14



is changed. Results of RPM experiments can be summarized by the following [6].

• The path resulting from complete forward transformation and complete reverse

transformation sets the boundaries of the two-phase region, where RPs may occur.

The transformation path followed by the system in this two-phase region depends

on its previous history through the ensemble of return points in the path.

• The influence of a return point on the evolution of a transformation path dis-

appears when the transformation path reaches the return point again. At the

same time the influence of previous return point, constituting the same inter-

nal subloop, also disappears and system evolutes as the subloop has never been

formed. This phenomena is called wiping out property .

• The RPM in SMA is very well established in polycrystals and very often found

in single crystals, in both thermally and stress-induced transformations, although

differing behaviors have also been reported in the last case.

Different behavior mentioned in the last item refer to experimental results, in which

the memory of the return points evolve with time. Some observations also show the

hysteresis loop is sensitive to the transformation rate. Both abnormalities are related

and rigorously, they would be in contradiction with the basic physical assumption of

reversible athermal MT. But they can be easily explained by the progressive difficulty

in evacuating or absorbing the transformation latent heat at high strain rates (the

latent heat not absorbed by environment increases the temperature of specimen, which

changes transformation conditions) or irreversible internal evolution of microstructure

SMA (e.g. ageing). If the loading is quasistatic and the ambient temperature is kept

constant, the hysteresis loops tend asymptotically to be independent on the strain rate.

Since hysteresis in present even in martensite reorientation, the process of reverse

transformation from tensile martensite to austenite occurs also in negative stresses be-

tween the lines starting at points As, Af prolonged from σ ≥ 0 half space (and similarly

for compressive martensite) (see [7]).

Partial (transformation) cycle is another often referred term connected with hys-

teretic behavior. By partial cycle we mean a thermomechanical cycle, at which the

initial and the final state of material are the same pure phase (martensite or austenite),

the phase transition is initiated but, due to one abrupt reversion of driving during the

cycle, it is not completed.

SMAs, when constrained, can develop very large macroscopic stress upon heating

commonly called the recovery stress (see [8], for instance). It has to be necessarily

measured and simulated in multistage thermomechanical load, in the former stage of

which the SMA element transforms with no restriction on the macroscopic strain. In

the latter stage (when a part of material has transformed), an external constraint on

macroscopic strain is imposed and the element is loaded thermally. The stress evolving

in the latter stage, when thermally induced transformation proceeds, is called recovery

stress. It can be shown experimentally, that the recovery stress may increase or decrease

15



depending on the history and material parameters of the alloy, test limits or on the

constraint.

Reaching the σpl stress level in tension or −σpl stress level in compression, the

processes determined by plastic deformation as plastic slip or creep will occur. Neither

these, neither other plastic changes induced by permanent load or long-term cycling

(two-way shape memory effect) are concerned in this work, thus not described herein.

(Details can be found elsewhere in the literature.)

2.3 NiTiNOL

Many alloys exhibiting SMEs have been discovered since 1950s. Due to type of the

martensitic crystallographic lattice, we can distinguish these groups of SMAs (number

of crystallographic variants and some examples are given):

• tetragonal lattice (3) – InTl, Ni2MnGa, NiAl, FePt

• orthorhombic lattice (6) – AuCd, CuNiAl

• monoclinic lattice (12) – CuZn, CuAlZn, NiTi

Only some of these can be produced and manufactured at reasonable price and hence

are useful for commercial applications. At the present time, most of the SMA products

are based on NiTi alloy.

Ni-Ti-based SMA were discovered in 1963 at the Naval Ordnance Laboratory (NOL),

hence the usually referred acronym NiTiNOL. In NiTiNOL, as like in other SMA,

the diffusionless MT is from one ordered structure to another and effectively enables

the alloy to be deformed by a thermoelastic (non-plastic) shear mechanism, i.e. the

transformation is reversible. Although the reversibility essentially involves an alloy of

nominally stoichiometric composition, small additional increase in Ni can be tolerated.

This increase in Ni content has an important effect of decreasing the martensite start

temperature (content change within range of 1% implies Ms change of more 100K; see

[3], page 436).

For the full MT the recoverable memory strain in NiTiNOL is of the order 8%,

while the hysteresis width is typically 30–50K. The martensite-like intermediate trans-

formation is called R-phase transformation in NiTiNOL. For R-phase transition the

recoverable memory strain is up to 1% and the corresponding hysteresis width is of

1–2K, but R-phase structure only occurs for specific compositions and annealing tem-

peratures [9]. In figure 2.1 the transformation temperatures of R-phase transition are

denoted Rs, Rf (hysteresis neglected). Note steep slopes of critical transformation stress

lines in this case. The area of σ-T space where R-phase can occur is marked with thick

line.

The combination of cold-working and subsequent annealing has been explored as a

way to improve NiTiNOL characteristics. Depending on the composition and on the

16



heat treatment, it is possible to obtain Ni-Ti alloy for which the properties associated

with transition stabilize after few training cycles. This stability of the material proper-

ties is important for the cyclic applications. NiTiNOL has excellent corrosion-resistance

and fulfil severe biocompatibility requirements, too.

The unique properties of SMAs are used in such applications as self-erecting space

antennae, helicopter blades, surgical tools, reinforcement for arteries and veins, self-

locking rivets, actuators, etc. SMAs are convenient for many dynamic applications,

but at higher frequencies rate-independence of transition can be affected by retarded

heat transfer. The remarkable features of SMAs that make them especially suitable for

active elements in actuators are their capacity for high forces, high displacements and

reliability with temperature control. In contrast to actuators based on piezoelectric

or magnetostrictive materials, SMA actuators offer the advantage that they can exert

large repeatable displacements at zero or constant load.

Many applications use SMAs in wire form, since it is generally the least expensive

and most readily available form. Thin NiTiNOL wires as basic structural components

have several advantages over bulk elements — they are stronger, show enhanced func-

tional properties, the structures made of them are less prone to failure and able to be

actuated with higher frequencies (cooling and heating is faster).
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Chapter 3

Thermodynamics of Shape Memory

Alloys

3.1 Conception of Continuum Thermodynamics

An elementary term of the theory of continuum is a material point, which is not a single

atom or molecule, but enough small elementary particle of solid or fluid, whose state

represents the local state of material. Position and temperature are the fundamental

physical quantities describing a material point developing in time.

The other fundamental physical quantities are defined by balance laws (which will

be formulated next) and following physical axioms, which help to complete the system

of variables and equations [10]:

1. causality – evolution of the system results from evolution of position and temper-

ature of its material points

2. determinism – all parameters of a material point at thermodynamic equilibrium

are determined by history of motion and temperature of all other material points

of the system

3. equipresence – all constitutive relations are assumed to be dependent on the same

variables, but any of these variables can be excluded due to another axiom

4. objectivity – coordinates transformation invariance

5. material invariance – constitutive relations have to respect material symmetries

6. influence of vicinity – evolution of any material point can be influenced by evo-

lution of any other material point, but usually the influence is decreasing with

increasing distance of these points

7. memory of material – influence of history of material to its future development

8. time irreversibility – second law of thermodynamics
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9. maximum probability – the system tends to reach the most probable state

Moreover, for mixtures we assume following conditions:

• all properties of a mixture result from properties of its components, but new

properties can occur due to their mutual interactions

• in the special case of one substance in a mixture, form of all laws for the mixture

is identical with form of these laws for pure substance

Physical and mathematical formulation of maximum probability axiom at instability

of systems is difficult and not satisfactorily solved so far. Non-equilibrium thermody-

namics focuses on such unstable systems, i.e. chemical reactions, phase transformations

or systems at critical states. The constitutive relations are supposed to be dependent

on both usual quantities (internal energy, deformation) and, moreover, on dissipative

processes (especially heat flux, diffusion flux and dissipative part of stress tensor).

In the following sections, first variables are introduced and balance laws are for-

mulated. After that the second law of thermodynamics is employed to obtain non-

equilibrium entropy of mixtures and a constitutive relation for homogenous isotropic

thermo-vicso-elastic material is derived. Also, standard definition of chemical poten-

tial is extended to the case of finite deformations and Clausius-Clapeyron equation for

solid-to-solid phase transition is derived. Finally, hysteresis is introduced as a dissipa-

tive process.

We further assume the elementary notions of thermodynamics (temperature, energy,

entropy) are well-known (for precise introduction see [10], for instance). The consid-

ered functions are supposed to be smooth. Vectors and tensors are in bold type or

denoted by (Roman alphabet) components. We use Einstein summation convention for

Roman alphabet subscripts and superscripts. The summation symbol without bounds

of summation (
∑

) is used to denote summation
∑r

α=1, i.e. sum for all α = 1, 2, . . . , r.

3.2 Elements of Continuum Mechanics

Material point corresponds to pure substance in a reference configuration. We suppose

there are r pure components Cα, α = 1, 2, . . . , r in the mixture, each in a reference state

at the beginning of studied process. A pure component is not a chemical substance

only, but it can be a different crystalline modification or phase. The initial reference

state at time t = 0 is given by the position

Xα = (X1
α, X2

α, X3
α) ∈ V0,α, α = 1, 2, . . . , r (3.1)

of each material point Xα with temperature Tα(Xα), V0,α is reference volume of com-

ponent α.

The mixture of the chemical components or phases Cα is created by ”mixing pro-

cess”, after which each material point of mixture

X = (X1, X2, X3) ∈ V0, (3.2)
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is composed from all components (V0 is reference volume).

Position of material point Xα at time t is represented by (vector) function

x = xα(Xα, t), i.e. xi = xi
α(XI

α, t), i = 1, 2, 3 (3.3)

and temperature of substance α of material point Xα is represented by function

Tα(Xα, t) = Tα(x, t), i.e. Tα(XI
α, t) = Tα(xi, t). (3.4)

In following text we assume the system is spatially isothermal, i.e. Tα(x, t) = T (t), α =

1, 2, . . . , r. Then there is a unique correspondence between reference configuration X at

time t = 0 and actual configuration x at arbitrary time t represented by function (3.3).

This function has to be continuous in the first derivatives with respect to XI , I = 1, 2, 3,

for all times t and Jacobian determinant ια has to be non-zero, i.e.

ια = det

∣∣∣∣
∂xi

α

∂XI
α

∣∣∣∣ 6= 0, for i, I = 1, 2, 3; α = 1, 2, . . . , r. (3.5)

(Relations between elements of volume and area in reference and actual configuration

are determined by ια.)

Velocity of material point Xα is defined as follows

vα(Xα, t) :=
∂xα(Xα, t)

∂t

∣∣∣∣
Xα

= x̀α(Xα, t), (3.6)

or in the subscript notation

vi
α(XI

α, t) :=
∂xi

α(XI
α, t)

∂t

∣∣∣∣
XI

α

= x̀i
α(XI

α, t). (3.7)

Acceleration of material point Xα is defined as follows

aα(Xα, t) :=
∂2xα(Xα, t)

∂t2

∣∣∣∣
Xα

, i.e. ai
α(XI

α, t) :=
∂2xi

α(XI
α, t)

∂t2

∣∣∣∣
XI

α

= v̀i
α(XI

α, t) (3.8)

If velocity is considered as a function of actual coordinates, i.e. vα(x, t), then

v̀i
α(xj, t) =

∂vi
α(xj, t)

∂t
+

∂vi
α(xj, t)

∂xl

∂xl(XL
α , t)

∂t

∣∣∣∣
XL

α

=
∂vi

α(xj, t)

∂t
+ vl

α(XL
α , t)

∂vi
α(xj, t)

∂xl
(3.9)

From now on we suppose the quantities are expressed in actual configuration im-

plicitly and we do not denote it explicitly, i.e. for quantities o,O

o ≡ o(x, t) or O ≡ O(x, t), i.e. Oi ≡ Oi(x, t), i = 1, 2, 3. (3.10)

20



The mass center point trajectory is defined implicitly in the vicinity of x point and

the mass center velocity v is defined as follows

v :=
1

ρ

∑
ραvα i.e. vi :=

1

ρ

∑
ραvi

α. (3.11)

As a consequence of mass center velocity we introduce diffusion velocity of substance α

vDα := vα − v, i.e. vi
Dα := vi

α − vi, (3.12)

and diffusion flux of substance α with respect to the mass center point

jDα := ραvDα, i.e. ji
Dα := ραvi

Dα. (3.13)

Now it is clear ∑
jDα = 0. (3.14)

Let ϑα be a smooth scalar function. We distinguish two different material deriva-

tives:

• Material derivative with respect to the trajectory xα of component Cα (already

introduced and denoted with`):

ϑ̀α =
∂ϑα(x, t)

∂t

∣∣∣∣
Xα

=
∂ϑα(xj, t)

∂t
+

∂ϑα(xj, t)

∂xl

∂xl(XL
α , t)

∂t

∣∣∣∣
XL

α

=
∂ϑα

∂t
+ vl

α

∂ϑα

∂t
.

(3.15)

(We assume the trajectory xα coincides with the geometrical point x.)

• Material derivative with respect to the trajectory x of mass center of the mixture

(denoted with ˙ ):

ϑ̇α =
∂ϑα(x, t)

∂t

∣∣∣∣
X

=
∂ϑα(xj, t)

∂t
+

∂ϑα(xj, t)

∂xl

∂xl(XL, t)

∂t

∣∣∣∣
XL

=
∂ϑα

∂t
+ vl ∂ϑα

∂t
.

(3.16)

Following important relations between material derivative of ϑα(x, t) with respect

to pure substance and with respect to mixture (velocity of mass center) are clear from

previous definitions:

ϑ̇α = ϑ̀α − vl
Dα

∂ϑα

∂xl
(3.17)

ραϑ̇α = ραϑ̀α − jl
Dα

∂ϑα

∂xl
(3.18)

Let us assume following system of chemical reactions (or phase transitions) involved

in our thermodynamical system:
∑

νβαCα ­
∑

ν ′βαCα νβα, ν ′βα ∈ N, β = 1, 2, . . . , κ (3.19)

where κ is the number of all substances (components) concerned in reactions (transi-

tions) and νβα, ν ′βα are stoichiometric coefficients.
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To characterize the chemical (or phase) composition we introduce following variables

(in actual configuration; for clarity, [SI units] of quantities stated):

nα [mol] molar amount of substance α

n [mol] molar amount of mixture

ρα [kg/m3] (mass) density of substance α

ρ [kg/m3] (mass) density of mixture

mα [kg] partial mass of substance α

m [kg] total mass of mixture

Vmα [m3/mol] molar volume of substance α

Mα [kg/mol] molar mass of substance α

cα [mol/m3] molar concentration of substance α

c [mol/m3] molar concentration of mixture

xα := nα

n
[1] molar fraction of substance α

wα := ρα

ρ
[1] mass fraction of substance α

ξα := Vmαcα [1] volume fraction

Identities following from previous definitions:

n =
∑

nα, ρ =
∑

ρα, m =
∑

mα, c =
∑

cα, (3.20)

∑
xα = 1,

∑
wα = 1,

∑
ξα = 1, (3.21)

And moreover,

ρα = Mαcα, cα = ρ
wα

Mα

, wα =
Mα

ρVmα

ξα. (3.22)

Now, we can formulate general form of balance laws. Let ϑ is an intensive quantity

of a mixture and ϑα an intensive quantity for substance α. We assume the following

equations hold

ρϑ =
∑

ραϑα. (3.23)

j(ϑ) =
∑

j(ϑα), (3.24)

σ(ϑ) =
∑

σ(ϑα). (3.25)

where j(ϑ) is flux of quantity ϑ through the boundary of an elementary volume and

σ(ϑ) is production the same quantity in the elementary volume.

Balance law for substance α in global form:

`∫

V

ραϑα dv =

∫

∂V

jl
α(ϑα) dal +

∫

V

σα(ϑα) dv, (3.26)

where the left term describes the total increment of quantity ϑ in a volume V , first term

on the right stands for flux of the quantity through boundary of V and the last term is
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production of quantity in the volume V . Local form of balance law for each component

α can be found by standard procedures (Gauss theorem, principle of locality):

∂(ραϑα)

∂t
+

∂(ραϑαvl)

∂xl
+

∂[ϑαjl
Dα − jl

α(ϑα)]

∂xl
− σα(ϑα) = 0, (3.27)

Adding the equations (3.26) for all components α = 1, 2, . . . , r with respect to

(3.23)–(3.25) we obtain global balance law for mixture

˙∫

V

ρϑ dv =

∫

∂V

jl(ϑ) dal +

∫

V

σ(ϑ) dv. (3.28)

The expected local form of balance law for mixture is

∂(ρϑ)

∂t
+

∂(ρϑvl)

∂xl
− ∂jl(ϑ)

∂xl
− σ(ϑ) = 0, (3.29)

if we require ∑
ϑαjDα = 0. (3.30)

This physical constraint ensures there is no transport of quantity ϑ due to self-diffusion.

By special choice of variable ϑα (uα denotes internal energy)

ϑα ∈
{

1, vi
α,

(vi
α)2

2
, uα, uα +

(vi
α)2

2

}
(3.31)

we can obtain conservation laws for each substance α = 1, 2, ..., r. Their specific form

can be found elsewhere (see [11], for instance). Similarly, the conservation law of mass,

momentum and kinetic, internal (u) and total energy for mixture in usual form can be

obtained when

ϑ ∈
{

1, vi,
(vi)2

2
, u, u +

(vi)2

2

}
. (3.32)

Balance law for entropy is deeply discussed in the next section.

For future reference let us recall two conservation laws for mixture. First, introduc-

ing ωβ as velocity of reaction β, the production of mass of substance α in the system

is
κ∑

β=1

Mα(ν ′βα − νβα)ωβ. (3.33)

As a result the conservation of mass has the form

ρẇα +
∂jl

Dα

∂xl
=

κ∑

β=1

Mα(ν ′βα − νβα)ωβ. (3.34)

Conservation of internal energy u when production of mechanical energy due to gradi-

ents of velocity field is neglected in the system:

∂(ρu)

∂t
+

∂(ρuvl)

∂xl
+

∂

∂xl

(
ql +

∑
uαjl

Dα

)
= tli

∂vi

∂xl
+

∑ (
tliα

∂vi
Dα

∂xl
+ ji

Dαbi
α

)
, (3.35)
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where bα are external volume forces, q stands for heat flux and t is stress tensor (see

also section 3.3). Let us recall the conservation of angular momentum implies the stress

tensor t is symmetric.

Deformation of continuum is usually described by deformation gradient Fα, which

is defined as follows

F i
I,α =

∂xi(Xk
α, t)

∂XI
α

, (3.36)

and Cauchy tensor (related to actual configuration)

cα = F−T
α F−1

α , i.e. ckl,α =
∂XI

α

∂xk

∂XI
α

∂xl
. (3.37)

Relative deformation is described by Euler tensor

eα =
1

2
(I− cα), i.e. ekl,α =

1

2
(δkl − ckl,α) . (3.38)

Next, let us assume the Amagade conception, where volume is equal to sum of vol-

umes of substances and thus deformation is equal to sum of deformations of substances,

i.e.

e =
∑

eα, and eij,α = ξαeij. (3.39)

For description of deformation dynamics material derivative of deformation tensors

are used. Velocity gradient l is defined by equation

lij =
∂vi

∂xj
. (3.40)

and can be decomposed into symmetric deformation rate tensor D,

dij =
1

2

(
∂vi

∂xj
+

∂vj

∂xi

)
, (3.41)

and antisymmetric spin tensor W,

wij =
1

2

(
∂vi

∂xj
− ∂vj

∂xi

)
. (3.42)

Thus

l = D + W, i.e. lij = dij + wij. (3.43)

Similarly, we define deformation rate tensor Dα for component α

dij
α =

1

2

(
∂vi

α

∂xj
+

∂vj
α

∂xi

)
. (3.44)

An important identity can be obtained by several computations

ėij,α = dij,α − elj,α
∂vl

∂xi
− eil,α

∂vl

∂xj
, (3.45)
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i.e.

ėij,α = dij,α − elj,αlli − eil,αllj. (3.46)

Similarly for mixture

ėij = dij − eljl
li − eill

lj. (3.47)

With respect to (3.39) and (3.45) it follows

ėij =
∑

(ξαėij,α + eij,αξ̇α) =
∑ [

ξα

(
dij,α − elj,α

∂vl

∂xi
− eil,α

∂vl

∂xj

)
+ eij,αξ̇α

]
. (3.48)

Comparing (3.47) and (3.48) we obtain relation

dij =
∑

(ξαdij,α + eij,αξ̇α). (3.49)

3.3 Extended Non-Equilibrium Thermodynamics of

Mixtures

Following the axiom of determinism, we assume values of all quantities of material

point are determined by values of following independent variables (α = 1, 2, . . . , r) at

thermodynamic equilibrium ([SI units] of quantities stated):

uα [J · kg−1] internal energy of component α

wα [1] mass concentration of component α

jDα [kg ·m−2 · s−1] diffusion flux vector of component α

qα [J ·m−2 · s−1] heat flux vector of component α

eα [1] Euler deformation tensor of component α

tdis [J ·m−3] dissipative part of stress tensor

for which we suppose (3.14),(3.21) and

ρu =
∑

ραuα, u =
∑

wαuα, qi =
∑

qi
α, i = 1, 2, 3,

eij =
∑

eij
α , tijdis =

∑
tijdisα, i, j = 1, 2, 3, (3.50)

The symmetric stress tensor t is assumed to be composed of elastic and dissipative

part:

t = tel + tdis (3.51)

and the dissipative part is further considered to be independent variable.

Specific entropy of material

s(u,wα, jDα,q, e, tdis) =
∑

wαsα(uα, wα, eα, tdisα, jDα,qα) (3.52)

is defined by entropy balance law

ρṡ− ∂jl(s)

∂xl
= σ(s) ≥ 0 (3.53)
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where the non-equality is an expression of the second law of thermodynamics (and the

time irreversibility axiom). A specific form of entropy production, σ(s), arise from

balance laws for other extensive quantities; resulting forms of entropy, s, and its flux,

j(s), are revealed by entropy balance law.

First, let us assume the entropy change is due to heat conduction only. Then entropy

flux density is defined as follows:

j(s) =
q

T
, i.e. ji =

qi

T
, (3.54)

and (3.53) implies

σ(s) = ρṡ + qi ∂

∂xi

(
1

T

)
+

1

T

∂qi

∂xi
≥ 0. (3.55)

Using balance law for internal energy in the form of equation (3.35) we obtain

σ(s) = ρ

(
ṡ− u̇

T

)
+ qi ∂

∂xi

(
1

T

)
+

1

T
tli

∂vi

∂xl
−

1

T

∂

∂xl

(∑
uαjl

Dα

)
+

1

T

∑
tliα

∂vi
Dα

∂xl
+

1

T

∑
ji
Dαbi

α ≥ 0. (3.56)

Let us expand material derivative of specific entropy s

ṡ =

(
∂s

∂u

)
u̇ +

(
∂s

∂eij

)
˙eij +

∑ (
∂s

∂wα

)
ẇα +

(
∂s

∂tijdis

)
˙

tijdis +
∑ (

∂s

∂ji
Dα

)
˙

ji
Dα +

(
∂s

∂qi

)
q̇i, (3.57)

decompose the stress tensor to dissipative and elastic part (3.51), recall definition (3.40)

and decomposition (3.43). Next, employing (3.47) and recalling the scalar product of a

symmetric and an antisymmetric tensor is equal to zero, we obtain fairly complex term

for entropy production:

σ(s) = ρ

[
∂s

∂u
− 1

T

]
u̇ + ρ

[
∂s

∂eij

− ∂s

∂eil

elj − ∂s

∂elj

eil +
tijel
ρT

]
dij +

ρ
∂s

∂tijdis

˙
tijdis +

tijdis

T
dij +

1

T

∑
(tlielα + tlidisα)

∂vi
Dα

∂xl
+

ρ
∂s

∂qi
q̇i + qi ∂

∂xi

(
1

T

)
+

∑[
ρ

(
∂s

∂ji
Dα

˙
ji
Dα

)
− 1

T

∂(uαjl
Dα)

∂xl

]

∑[
ρ

∂s

∂wα

ẇα +
ji
Dαbi

α

T

]
≥ 0. (3.58)

It is clear that

− 1

T

∂(uαjl
Dα)

∂xl
= − ∂

∂xl

(
uαjl

Dα

T

)
+ uαjl

Dα

∂

∂xl

(
1

T

)
. (3.59)

26



Conservation of mass in form (3.34) helps to convert:

∑
ρ

∂s

∂wα

ẇα =
∑ ∂s

∂wα

(∑
Mα(νβα − ν ′βα)ωβ − ∂jl

Dα

∂xl

)

=
∑ ∂s

∂wα

(∑
Mα(νβα − ν ′βα)ωβ

)

−
∑ ∂

∂xl

(
∂s

∂wα

jl
Dα

)
+

∑
jl
Dα

∂

∂xl

∂s

∂wα

. (3.60)

Taking into account both previous equations we have

1

T

∂(uαjl
Dα)

∂xl
+

∑
ρ

∂s

∂wα

ẇα =
∑ ∂

∂xl

(
uαjl

Dα

T
+

∂s

∂wα

jl
Dα

)
+

∑
jl
Dα

[
uαjl

Dα

∂

∂xl

(
1

T

)
+

∂

∂xl

∂s

∂wα

]
+

∑ ∂s

∂wα

(∑
Mα(νβα − ν ′βα)ωβ

)
. (3.61)

The first term on the right is divergence of additional entropy flux, thus we redefine

(3.54) as follows

ji(s) =
qi

T
+

∑ ∂

∂xl

(
uαjl

Dα

T
+

∂s

∂wα

jl
Dα

)
. (3.62)

and thus diffusion is included.

Hence, inequality (3.58) in the new form:

σ(s) = ρ

[
∂s

∂u
− 1

T

]
u̇ + ρ

[
∂s

∂eij

− ∂s

∂eil

elj − ∂s

∂elj

eil +
tijel
ρT

]
dij +

∑ ∂s

∂wα

Mα(ν ′βα − νβα)ωβ +

ρ
∂s

∂tijdis

˙
tijdis +

tijdis

T
dij +

1

T

∑
tijdisαLij

Dα +

ρ
∂s

∂qi
q̇i + qi ∂

∂xi

(
1

T

)
+

∑
uαji

Dα

∂

∂xi

(
1

T

)
+

∑ [
ρ

∂s

∂ji
Dα

˙
ji
Dα + ji

Dα

∂

∂xi

∂s

∂wα

+
ji
Dαbi

α

T

]
≥ 0. (3.63)

The fundamental restriction of non-negative entropy production in (3.63) is fulfilled

if and only if (see [11] or [12], for instance) following 6 equations hold:

∂s

∂u
=

1

T
, (3.64)

∂s

∂eij

− ∂s

∂eil

elj − ∂s

∂elj

eil = − tijel
ρT

, (3.65)

∂s

∂wα

= −µα

T
, (3.66)
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∂s

∂ji
Dα

= −τDα

ρ

∂

∂xi

(µα

T

)
, (3.67)

∂s

∂qi
=

τT

ρ

∂

∂xi

(
1

T

)
, (3.68)

∂s

∂tijdis

=
τp

ρ

dij

T
, (3.69)

and thus, material derivative of entropy (3.57) has the form

ṡ =
u̇

T
− tijel

ρ

dij

T
−

∑ µα

T
ẇα +

τp

ρ

dij

T

˙
tijdis +

τT

ρ

∂

∂xi

(
1

T

)
q̇i −

∑ τDα

ρ

∂

∂xi

(µα

T

)
˙

ji
Dα

︸ ︷︷ ︸
ṡN

. (3.70)

We have introduced time derivative of non-equilibrium entropy ṡN (it manifest itself at

rapid processes only), times of relaxation of non-equilibrium processes

τp relaxation time of plastic flow

τDα relaxation time of diffusion waves

τT relaxation time of temperature waves

and a new parameter µα, chemical potential, which is further described in the next

section.

For τp = τDα = τT = 0 we get usual Gibbs definition of entropy for solid body:

ṡ =
u̇

T
− tijeld

ij

ρT
−

∑ µαẇα

T
(3.71)

Another useful quantity is affinity of chemical reaction

Aβ = −Mα(ν ′βα − νβα)µβ, β = 1, 2, . . . , κ. (3.72)

Considering this definition and equations (3.64)–(3.69), the final form of entropy pro-

duction is

σ(s) =

(
τp

˙
tijdis + tijdis

)
dij

T
+

[
τT q̇i +

(
qi +

∑
uαji

Dα

)] ∂

∂xi

(
1

T

)
+

κ∑

β=1

Aβωβ

T

−
∑ (

τDα
˙

ji
Dα + ji

Dα

) ∂

∂xi

(µα

T

)
+

1

T

∑(
tijα

∂vi
Dα

∂xj
+ ji

Dαbi
α

)
≥ 0. (3.73)

For an arbitrary 3-dimensional tensor (of rank 2), T, let us define its trace

T(1) := T ijδij (3.74)

and its deviatoric part

T ij
(0) := T ij − δij

3
T(1), (3.75)
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where δij represents Kronecker delta symbol:

δij :=

{
1 i = j,

0 i 6= j.
(3.76)

Then sufficient conditions for non-negative production of entropy can be written as

follows:

τp

˙
tijdis(0) + tijdis(0) = Lµd

ij
(0), (3.77)

τp
˙tdis(1) + tdis(1) = Lµvd(1) +

κ∑

β=1

LµβAβ, (3.78)

τT q̇i + qi +
∑

µαji
Dα = Lq

∂

∂xi

(
1

T

)
+ Lq,Dα

∂

∂xi

(µα

T

)
, (3.79)

τDα
˙

ji
Dα + ji

Dα = −LDα
∂

∂xi

(µα

T

)
+ LDα,q

∂

∂xi

(
1

T

)
, (3.80)

ωβ = LβAβ + Lβµd(1). (3.81)

where the equations describe subsequently viscoplasticity, volume viscosity, heat con-

ductivity, diffusion and velocity of chemical reaction and processes connected with

introduced coefficients are (α = 1, 2, . . . , r; β = 1, 2, . . . , κ):

Lµ shear viscosity

Lq heat conductivity

LDα diffusion

Lµv volume viscosity

Lβ velocity of chemical reaction

Lq,Dα thermal transfer by diffusion

LDα,q thermodiffusion

Lµβ mechanical stress induced by chemical reactions

Lβµ velocity of chemical reactions induced by mechanical stress

Let us neglect the last term on the left-hand side of inequality (3.73) and employ

phenomenological relations (3.77)–(3.81). The production of entropy represented by

the left-hand side of the inequality is then a quadratic form of variables

dij
(0),

∂

∂xi

(
1

T

)
,

∂

∂xi

(µα

T

)
, d(1), Aβ (3.82)

where i, j = 1, 2, 3; α = 1, 2, . . . , r; β = 1, 2, . . . , κ. If we further assume

Lq,Dα = LDα,q, Lµβ = Lβµ, α = 1, 2, . . . , r; β = 1, 2, . . . , κ, (3.83)

then this quadratic form is positive-definite, if the well-known Sylvester criterion is met.

This further restricts values of phenomenological coefficients Lµ, Lq, LDα, Lµv, Lβ and

Lq,Dα, LDα,q, Lµβ, Lβµ.
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As an example let us consider homogenous isotropic thermo-visco-elastic material

of Hookean type. Then elastic part of stress tensor is given by the Hook’s law

tijel = Ke(1)δ
ij + 2Geij

(0) (3.84)

where K is the bulk modulus and G is the shear modulus. Employing (3.51), (3.65),

(3.77), (3.78) and (3.84) we finally get constitutive relation for homogenous isotropic

thermo-visco-elastic material following the Hook’s law:

τp
˙tij + tij = τp

˙
tijel + tijel + τp

˙
tijdis + tijdis

= K
(
e(1) + τpė(1)

)
+ 2G

(
eij
(0) + τp

˙
eij
(0)

)
+

δij

3

(
Lµd

ij +
∑

LµβAβ

)
+ Lµvd

ij
(0). (3.85)

By experimental methods we usually obtain Young modulus, E, and Poisson’s ratio,

υ. Relations between them and parameters K,G are following:

E =
9GK

3K + G
, (3.86)

υ =
3K − 2G

2(3K + G)
. (3.87)

3.4 Chemical Potential of Solids; Clausius-Clapeyron

Equation

The relation between the specific entropy of the mixture, s, and the specific entropy of

each component, sα (α = 1, 2, . . . , r), can be expressed

s =
∑

wαsα or ρs =
∑

ραsα, (3.88)

because of

wα :=
ρα

ρ
. (3.89)

In the Pascal’s conception of mixtures (”partial pressure conception”)

p

ρ
= p

∑
wαvα [J · kg−1], (3.90)

where p is pressure and vα is a partial volume of component α. This concept is sufficient

for a mixture of fluids, however, for a mixture of solids Amagat’s conception (”partial

volume conception”) based on the assumption

tele = tel

∑
eα [J ·m−3], (3.91)

30



is more acceptable. Let us recall

eα = ξαe, ξα =
Vmα

Mα

ρwα. (3.92)

To realize the Amagat’s concept we apply the Legendre transformation to change

the independent variables (see [11], for instance)

u, e, wα ⇒ T, tel, µα, (3.93)

and we introduce the Gibbs function g

g = u− tele

ρ
− Ts i.e. g = u− tijeleij

ρ
− Ts (3.94)

and

g =
∑

wαµα. (3.95)

Material derivative implies

ġ = u̇− tijel
ρ

ėij − eij

˙(
tijel
ρ

)
− T ṡ− sṪ (3.96)

and

ġ =
∑

(wαµ̇α + µαẇα) (3.97)

The right-hand side of (3.96) can be expanded using (3.70):

ġ = −sṪ − eij

˙
tijel
ρ

+
eijt

ij
el

ρ2
ρ̇ +

tijel
ρ

(dij − ėij)− T ṡN +
∑

µαẇα (3.98)

Let us assume the non-equilibrium part of the entropy of mixture in the form

ṡN =
∑

wαṡN,α. (3.99)

Then, after some algebra, by comparison of equations (3.96) and (3.97) we obtain to so

called Gibbs-Duham equation for substance α (recall (3.89)):

µ̇α = −sαṪ − eij,α

˙
tijel

ρα

+
eij,αtijel

ρα

ρ̇

ρ
+

tijel
ρα

(dij,α − ėij,α)− T ṡN,α (3.100)

If we neglect non-equilibrium entropy (rapid irreversible processes) in (3.70), the

entropy of a mixture of solid materials can be calculated by the equation

ṡ =
u̇

T
− tijeld

ij

ρT
−

∑ µαẇα

T
. (3.101)

This equation holds for a mixture (both in equilibrium states and in non-equilibrium

states) where equilibrium processes are running, e.g. phase transition processes. These

processes are driven by the differences of chemical potentials (3.100) for different α.
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Consider thermodynamical equilibrium in the mixture, i.e.

ṡ = 0, (3.102)

when system adiabatically isolated and no external forces act

T (t) = const., tij(t) = const., i, j = 1, 2, 3. (3.103)

Then (3.101) implies ∑
µαẇα = 0. (3.104)

In the special case of phase transition with 2 components a decrease of one phase must

be substituted by an increase of the other, i.e.

dw1 = dw2, (3.105)

therefore

µ1 = µ2. (3.106)

and for slow isothermal changes (equilibrium process) also holds

µ̇1 = µ̇2. (3.107)

With respect to the subject of this thesis, let us consider one-dimensional case

of solid-to-solid phase transition between martensite, denoted by M , and austenite,

denoted by A, i.e.

eα =




εα 0 0

0 −υαεα 0

0 0 −υαεα


 , dα =




dα 0 0

0 −υαdα 0

0 0 −υαdα


 , (3.108)

t =




σ 0 0

0 0 0

0 0 0


 , (3.109)

α = M, A, (υα is the Poisson ratio of a component α). Then modified (3.100) implies

µ̇α = −sαṪ − σ̇εα

ρα

+
σ

ρα

(
dα − ε̇α +

ρ̇

ρ
ε̇α

)
α = M, A. (3.110)

The change in density (ρ̇) is usually negligible for solids, therefore equation (3.107)

takes the form

Ṫ (sA − sM) = σ̇

(
εM

ρM

− εA

ρA

)
+ σ

(
dA − ε̇A

ρA

− dM − ε̇M

ρM

)
. (3.111)

In the case of small deformations, i.e. ε̇α = dα, α = M, A, we obtain so called

Clusius-Clapeyron equation for solid-to-solid phase transition

dσ

dT
=

sA − sM
εM

ρM
− εA

ρA

. (3.112)
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The difference between density of martensite and density of austenite is very small

(< 1%), but martensitic phase transition induces great transformation strains, since

the crystallographic lattice is deformed (see section 2.1). Hence, for martensitic phase

transformation the Clusius-Clapeyron equation has the form

dσ

dT
=

ρ∆s

Λ
, (3.113)

where σ denotes (one-dimensional) stress, ρ is density of martensite, ∆s := sA − sM

denotes entropy change due to phase transition and Λ = εM − εA is (maximum) trans-

formation strain. For experimental reasons, the usual form is

dσ

dT
=

ρh

TΛ
. (3.114)

Both transformation heat, h := T∆s, and transformation strain, Λ, are well-measurable

quantities.

In SMA studies, the Clausius-Clapeyron equation is used to approximate the value

of the critical stress inducing the phase transition. From now on, let us assume the

entropy change ∆s is temperature independent (at least for reasonable temperature

ranges it is well-satisfied assumption). We define

s :=
ρ∆s

Λ
(3.115)

and call this value critical transformation slope. Critical transformation stress for tensile

martensite is then defined

σcr(T ) := Ms + s(T −Ms), T ≥ Ms (3.116)

This equation reflects the experimental observations, in which the uniaxial stress re-

quired to induce the martensitic transformation in SMA is (approximately) linearly

dependent on the temperature T .

Thermodynamical driving force of transformation is usually defined (see next chap-

ters):

ϕ :=
σ

s
− T + Cϕ, (3.117)

where Cϕ is arbitrary constant, stress- and temperature-independent. Thus, driving

force is constant for critical stresses. The value of this driving force is further consid-

ered to express the actual state (phase composition) of material. The process of reverse

transformation from tensile martensite to austenite occurs to some extent also in neg-

ative stresses (and similarly for compressive martensite). Hence, the equation (3.116)

can be defined even for T < Ms deliberately.

Interesting fact is the tension-compression asymmetry. In compression different

value of maximum transition strain Λ influence the form of (3.113) and thus the value

of parameter s and definition of driving force. That is why in SMAs models driving

force for tensile and compressive martensite differs (see chapter 5).
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3.5 Hysteresis and Return Point Memory in Shape

Memory Alloys

As mentioned in chapter 2, an important property of martensitic transformation is

hysteresis. From the thermodynamical point of view, hysteretic systems are not in

thermodynamic equilibrium. They behave like systems with a rugged free-energy land-

scape, in which thermal fluctuations are not sufficient to reach the absolute free-energy

minimum. Instead, under the external driving, they pass from one relative minimum

to another, in a sequence of metastable equilibria. The energy dissipation occurs in the

passage from one minimum to another, which often results in large variations of the

system response.

Let us summarize the properties of hysteresis in SMAs as decsribed by Ort̀ın and

Delaey in their work [13]. Many properties of hysteresis depend on the relation between

two time scales. The intrinsic time scale of relaxation in the system (the typical time

taken by the system to reach the nearest relative free-energy minimum) and the time

scale at which the system is driven externally. When the time scale of relaxation

is comparable to the time scale of driving, hysteresis is a dynamic phenomenon, in

which the driving rate plays a major role. On the other extreme, when the time scale of

relaxation is negligible in comparison with the time scale of driving, hysteresis is a static

phenomenon: the system is almost all the time in a state of metastable equilibrium.

In this limit, the driving rate has no influence on branching. The actual behavior of

the majority of hysteretic systems, however, is somewhere in between these two limits.

This represents an additional difficulty in the theoretical description of hysteresis.

A generic energy balance applies to the macroscopic evolution of the system under

an external driving. The balance reads:

d

dt
Eexin =

d

dt
Estored +

d

dt
Edis, (3.118)

where Eexin is an excess of energy input externally in the system, Estored represents

energy stored in the system and Edis is energy dissipated. The first term in the equation

originates from the driving, and it is positive or negative depending on the direction of

driving. The second term is the time rate at which energy is stored or released in the

system, and again has no definite sign. In SMA, energy is stored as the elastic strain

energy between domains, strain energy due to the interaction with lattice defects, and

interfacial energy of the multiple interfaces of the two-phase microstructure. Along a

monotonous driving, the energy stored changes non-monotonously, in general, as the

multi-domain structure of the material changes. Associated with the changes in stored

energy there is energy dissipation, whose rate of change is represented by the third

term in the balance. This term is responsible for hysteresis, and it must be always

non-negative.

When a cyclic driving is considered, no matter its extension, the closed-contour

integration of the first term in the balance gives the area of the hysteresis cycle. That
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of the second term is identically zero (since the same multi-domain microstructure is

recovered after the cycle), and that of the third term is non-negative. The result is that

the cycle can be contoured only in one sense, not in the other, and the area enclosed

by the cycle (in the proper coordinates) measures the energy dissipated in the cycle.

It implies, the evolution of the energy dissipation as the transformation proceeds in

SMA can be derived from the area enclosed by partial cycles. This kind of experiments

shows that the energy dissipated increases monotonously with the volume fraction of

martensite, ξ, approximately as ξ2. The amount of energy dissipated in thermally

induced transformations is always small compared to the latent heat of transformation.

The preceding example of cycling dealt with static hysteresis in SMAs, i.e. with

dissipative behaviors, which appeared to be independent of time. Although static ap-

proximation of hysteresis in SMA is most useful and appropriate in the majority of

situations, it should not be forgotten that it corresponds to a limiting case. Time-

dependent phenomena associated with ageing, intensive cycling, or large driving rates

(unavoidable in certain applications) lead to non-static hysteresis, i.e. to hysteresis

cycles which evolve in time, in SMA. However, this phenomena is out of interest of this

work and it not considered next.

Lastly, given a physical system or a model displaying hysteresis, Sethna and cowork-

ers have shown rigorously that the RPM effect will hold when the following conditions

are fulfilled [14]:

i. The possible states of the system admit a (partial) ordering. The ordering may

be only partial because many states do not admit mutual comparison.

ii. The ordering of states is preserved by the dynamics. By this we mean that, from a

given initial condition, any monotonous excursion of the driving makes the system

go through the same ordered sequence of states.

iii. The dynamics are independent of driving rate, i.e. there is no influence of driving

rate on the behavior of the system.

The first condition establishes an ordering of the different possible two-phase mi-

crostructures and it is a rather natural condition for domain-forming systems. The

second condition is the most restrictive. The behavior of the system must be such

that the possible microstructures are obtained in the right order, always the same,

upon monotonous drivings. This kind of deterministic and reproducible behavior at

the microstructural level has been observed in SMA, both directly through microscopic

observations, and indirectly through the reproducibility of the associated acoustic emis-

sions, for example. The third condition emphasizes that thermal fluctuations must be

irrelevant, so that the evolution of the system is governed entirely by the driving values,

independent of the time rate at which these values are reached. This is the case for SMA

which operate via a thermoelastic martensitic transformation, since this transformation

is athermal.
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Chapter 4

Models of Structure Evolution in

Shape Memory Alloys

4.1 Overview of Modelling Approaches

Mathematical and computational modelling of SMAs represents a certain tool of theo-

retical understanding of transformation processes and may both complete experimental

results and predict response of new materials or applications in engineering workpieces

even before made. Effective description of the microstructure in SMAs can be done,

depending on a purpose and on available data as well as on computational abilities, at

various levels compromising rigor with phenomenology. One of possible classification

as proposed by Roub́ıček in [15] is following:

I. Atomic level: the description counts barycenter of particular atoms and inter-

atomic potentials

II. Microscopic level: continuum mechanics is used to describe deformation, stress,

strain, etc. at material points

III. Mesoscopic level: microstructure is described by volume fractions which mix de-

formation gradients of particular phases, while an averaged deformation is treated

by tools of continuum mechanics

IV. Transient level: macroscopic deformation with volume fractions are used to de-

scribe configuration at given material point but no specific orientation or anisotropy

is recorded (the geometric interaction between grains is often counted)

V. Macroscopic level: all detailed information about the microstructure and spatial

dependence of variables are suppressed (lumped parameters approach)

With respect to internal structure, the second and the third levels are appropriate

for single crystals modelling, whereas the last two are used in polycrystalline models.

Describing the complex characteristics involved in the phase transitions in polycrys-

talline SMAs have been a significant challenge to researchers. These include modelling
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the hardening during phase transition; the asymmetric response that SMAs exhibit

in tension and compression; the modelling of detwinning of martensite; complicated

thermomechanical paths beyond isobaric or isothermal ones; one-way shape memory

effect; the effect of reorientation; the accumulation of plastic strains during cyclic load-

ing; etc. The applications of shape-memory alloys and the need for a design tool have

motivated a number of macroscopic constitutive models for these materials. Although

the results of the microscopic and mesoscopic approaches give us valuable information

how much correct our understanding of the physical principles of involved processes is,

from the practical point of view, macroscopic models with several well-defined and well-

measurable material variables appear to be the most powerful and successful tools for

SMA-products behavior description so far. Their main advantages over other modelling

approaches are usually simple numerical implementation, less time-consuming calcula-

tions or possibility to simulate wide range of materials and situations (by change of

material and fitting parameters) for macroscopic objects.

Macroscopic modeling approaches involve the following two important aspects:

• constitutive relation between stress, strain and temperature,

• the driving force and evolution of phase transformation.

Some models take a thermodynamically consistent approach wherein using the concept

of free energy both the constitutive relations and evolution kinetics are derived. How-

ever, to arrive at simpler models an independent assumption in the nature of evolution

kinetics is sometimes made based on empirical data. An alternative to using internal

variables and defining evolution equations not discussed thereinafter are the energy

minimization methods.

In general, thermodynamics based models use some form of free energy (Gibbs,

Helmholtz, etc.) that depends on state and internal variables used to describe the

degree of phase transition. The free energy is composed of two parts, temperature

dependent chemical part dealing with the entropies of volume fraction of the individual

phases and the mechanical part dealing with the stress/strain field due to external

loading and the interaction between the various phases. The interaction is due to the

strains associated with the phase transformations and can be determined. Thus, using

this approach evolution of phase boundaries can be determined. The driving force for

the transformation is equated to dissipative terms from interfacial energy and internal

friction. This approach is briefly summarized in the next section. (Thermodynamics

based models for modelling of polycrystalline SMAs are reviewed in papers by Bo and

Lagoudas [16]–[19] in detail.)

A closely related group of models, often referred as phenomenological in the litera-

ture, separates out the two aspects of modeling mentioned above. The phase evolution

and transformation conditions are incorporated using empirically determined σ-T phase

diagram (as used in section 2.2). Subsequently, a constitutive relation that uses the

phase fraction derived out of the explicit evolution kinetic is used to describe the ther-
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momechanical behavior. This leads to simplified models facilitating their use as design

tools.

The macroscopic models do not directly depend on material parameters at the mi-

croscopic level, but on a set of parameters at the macroscopic level which are determined

by experimental observations. With respect to the topic of this thesis, we will focus on

some of these models designed in one-dimensional form.

4.2 Macroscopic Models – General Thermodynamic

Framework

In this section the general thermodynamic framework developed by Bo and Lagoudas in

[16] is briefly reviewed. We restrict ourselves to one-dimensional case without plasticity

effects, which correspond to the context of present work.1

The main idea is to formulate the mass-specific Gibbs free energy of the SMA

polycrystalline material as a weighted sum of the free energies of the austenitic and the

martensitic phases plus the free energy of mixing:

g(σ, T, ξ, εtr) = gA(σ, T ) + ξ(gM(σ, T )− gA(σ, T )) + gmix(σ, T, ξ, εtr), (4.1)

where gA and gM are the specific Gibbs free energy of austenite and martensite, re-

spectively, and gmix is the specific free energy of mixing. σ denotes the stress, T the

temperature, ξ the volume fraction of martensite and εtr is transformation strain. The

following form for the Gibbs energy for both phases is assumed:

gi(σ, T ) = − 1

2ρ

σ2

Ei
− 1

ρ
σαi(T − T0) + ci

[
(T − T0)− T ln

(
T

T0

)]
− si

0T + ui
0 (4.2)

with the superscript i = A for austenitic and i = M for martensitic phases, respectively.

Here, α is the (linear) coefficient of thermal expansion, E the Young’s modulus, c is

the specific heat capacity, s0 and u0 denote the specific heat and specific entropy at the

reference temperature T0, respectively. Since the martensitic phase transformation is

approximately volume conserving, the mass density ρ is supposed to be the same for

both phases.

Let us note the definition (4.2) correspond to relation (3.94), if internal energy and

entropy are divided to the reference values u0, s0 and the increment due to specific heat

c. Moreover, the thermoelastic part of strain is assumed to be linearly dependent on

stress (Hook’s law) and on temperature (linear thermal expansion).

A wide range of models can be presented within this formulation if the following

assumption is made on the mixing term:

gmix = −1

ρ
σεtr + f(ξ), (4.3)

1For a three-dimensional formulation see [20], for instance.
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where f(ξ) is a generic function. Combining previous equations, the free energy reduces

to the following equation:

g(σ, T, ξ, εtr) = − 1

2ρ
S(ξ)σ2 − 1

ρ
σ

[
α(ξ)(T − T0) + εtr

]

+c(ξ)

[
(T − T0)− T ln

(
T

T0

)]
− s0(ξ)T + u0(ξ) + f(ξ).

(4.4)

Effective material properties S(ξ), α(ξ), c(ξ), s0(ξ), u0(ξ) were calculated in terms of the

martensitic volume fraction using the rule of mixtures:

S(ξ) :=
1

EA
+ ξ

(
1

EM
− 1

EA

)
=

1

EA
+ ξ∆S (4.5)

α(ξ) := αA + ξ(αM − αA) = αA + ξ∆α (4.6)

c(ξ) := cA + ξ(cM − cA) = cA + ξ∆c (4.7)

s0(ξ) := sA
0 + ξ(sM

0 − sA
0 ) = sA

0 + ξ∆s0 (4.8)

u0(ξ) := uA
0 + ξ(uM

0 − uA
0 ) = uA

0 + ξ∆u0 (4.9)

Note that (4.5) corresponds to the so-called Reuss formula for elastic modulus

1

E
=

ξ

EM
+

1− ξ

EA
. (4.10)

This expression is used when it is assumed the phase transformations occur by nucle-

ation and growth of platelet inclusions, mainly directed in the imposed stress direction.

In this conception each part of wire is either in martensitic or austenitic phase in the

whole cross section. Another formula, Voigt expression, can be obtained regarding the

material as composed by strips of austenite and martensite parallel to the direction of

the stress:

E = ξEM + (1− ξ)EA. (4.11)

However, experimental evidence shows that the assumption of strips parallel to the

stress direction is not quite realistic (in the case of uniaxial loading).

Further, general flow rule for transformation strain is usually assumed to have the

type:

εtr(ξ) = Λξ, (4.12)

where Λ is one-dimensional ξ- and time-independent transition tensor (i.e. scalar)

corresponding to maximal transformation strain, thus the Gibbs free energy is a function

of three independent state variables: σ, T and ξ.

The evolution equation for martensitic volume fraction can be obtained syste-

matically by introducing a dissipation potential in conjunction with the second law

of thermodynamics. By performing standard calculations, the strong form of the sec-

ond law of thermodynamics can be written in the following form for the local internal

dissipation rate:

T η̇ = −
(

ε + ρ
∂g

∂σ

)
σ̇ − ρ

(
s +

∂g

∂T

)
Ṫ − ρ

∂g

∂ξ
ξ̇ ≥ 0, (4.13)
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where ε is the total strain, s is the total entropy, and η̇ is the local dissipation rate

which does not include the entropy production rate due to heat conduction.

Next, standard thermodynamics arguments (as used in section 3.3) are employed

to obtain the following set of constitutive equations by identically satisfying inequality

(4.13):

ε = −ρ
∂g

∂σ
, (4.14)

s = − ∂g

∂T
, (4.15)

−ρ
∂g

∂ξ
ξ̇ ≥ 0. (4.16)

Usually the thermodynamic force π conjugate to ξ is introduced

π := −ρ
∂g

∂ξ
. (4.17)

The flow rule (4.12) then implies:

π =
1

2
∆Sσ2 + σ [∆α(T − T0) + Λ]

−ρ∆c
[
(T − T0)− T ln

(
T
T0

)]
+ ρ∆s0(T − T0)− ρ∆u0 − ρf ′(ξ).

(4.18)

Note if we neglect some less significant terms in the last equation (Hook’s elasticity,

thermal expansion, heat capacity, derivative of generic function) we obtain

π ≈ Λσ + ρ∆s0T + C, (4.19)

where C is stress- and temperature-independent constant. This after rescaling leads to

definition of driving force ϕ (3.117).

By evaluating (4.14) we obtain constitutive equation with three contributions to the

total strain – elastic, thermal and transformation:

ε = S(ξ)σ + α(ξ)(T − T0) + Λξ

= εel + εth + εtr.

(4.20)

The phase transformation criterion can be written using the following Kuhn-Trucker

conditions (see [21] for details)

Φ ≤ 0, (4.21)

Φξ̇ = 0, (4.22)

where the transformation function Φ, which separates the thermoelastic response region

from the transformation region, is given by

Φ =

{
π − Y, ξ̇ > 0,

−π − Y, ξ̇ < 0.
(4.23)
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The non-negative material constant Y is a measure of the internal dissipation due

to microstructural changes during the phase transformation. Since ξ̇ 6= 0 during the

transformation process, equation (4.22) implies

Φ = 0, (4.24)

when transition proceeds. Next, (4.23) and (4.24) give

Φ̇ = ±π̇ = 0 (4.25)

during the transition, which is used by some authors for determination of martensite

evolution laws.

Using equations (4.13) and (4.24), the total internal dissipation (hysteresis) during

a complete forward and reverse phase transformation cycle is given by term

∮
T dη =

∮
π dξ =

∫ 1

0

Y dξ +

∫ 0

1

(−Y ) dξ = 2Y. (4.26)

To complete the constitutive model, the generic function of mixing f(ξ) in the term

(4.3) needs to be defined. The most general assumption is that it is different for the

forward and reverse transformation

f(ξ) =

{
fM(ξ), ξ̇ > 0,

fA(ξ), ξ̇ < 0.
(4.27)

and the particular choice of f(ξ) is governed by experimental observations. Depending

on the chemical composition, heat treatment, mechanical training, etc., different choices

have been made in literature.

Review of the existing thermodynamic and free energy based models can be found

in paper [20] (see also [22]), some of the most significant ones are briefly introduced in

section 4.4.

4.3 Macroscopic Models – Hysteresis Subloops

Although a transition hysteresis mechanism must be involved in each SMA model,

the way it simulates partial cycles and internal subloops may be inaccurate or even

incorrect, since in these cases RPM effect plays the major role.

The dissipative mechanisms responsible for hysteresis are operative at many differ-

ent spatial scales [13]: at a microscopic scale, both the nucleation of the new phase and

the interaction of interfaces with defects (dislocations, vacancies) contribute to hys-

teresis; at a mesoscopic scale, sources of hysteresis are the formation, annihilation and

rearrangement of elastically interacting domains; at a macroscopic scale, the problem

of heat transfer within the material, and between the material and the surroundings,

has an effect on hysteresis. At the present stage of knowledge, the procedures to go

from one scale of description to the next one are not well established. Here, we will
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focus on a phenomenological approach to modeling of hysteresis aiming to macroscopic

description of the thermomechanical behavior of SMA, including dissipative effects, and

briefly summarize three often referred hysteresis models. More extensive review can be

found in [19] for instance.

From now on the partial cycles and internal subloops are termed as minor (hystere-

sis) loops , whereas the hysteresis loop established by completed forward and reverse

transformation is referred as major (hysteresis) loop.

The principle of mathematical models is shown for the case the driving variable

is thermodynamic driving force ϕ, the driven variable is volume fraction ξ, i.e. ”ϕ-ξ

process”. However, this can be easily transformed to other hysteresis cases, e.g. ”T -ξ

process” (σ kept constant) or ”σ-ε process” (T kept constant).

4.3.1 Thermomechanics-Based Models

This group of models is based on the theory of continuum thermomechanics. It covers

most of existing constitutive models for polycrystalline SMAs, at least all described in

the next section. These models emphasize the transformation hardening behavior of

SMAs during major loop phase transformation. The thermomechanical response under

minor hysteresis loops is not studied in detail. It is usually assumed in these models

that the transformation criterion, such as the one given by equation (4.22), remains

the same for both major and minor hysteresis loops. Consequently, a minor hysteresis

loop will be part of the major one, the segment being decided by the loading path.

The results indicate that the assumption of minor hysteresis loops being part of the

major one is not valid and thus this model do not simulate the minor hysteresis loops

appropriately.

An attempt to modify this approach was done by Bo and Lagoudas in [19]. Their

paper reveals that the macroscopic energy dissipation per unit volume of transforming

SMA is the average energy dissipation of all single crystals that transform in the same

loading step and it is concluded that the amount of energy dissipation during minor loop

phase transformation cycles should be variable (compare with (4.26)). An evolution

equation of that energy dissipation is proposed. (The wiping out property for the

model is similar to that of the Preisach model.)

4.3.2 Duhem-Madelung Hysteresis Model

A simple way to improve the minor loop predictions, given by the thermomechanical

model discussed above, is to introduce the Duhem-Madelung hysteresis model into

the present formulation. This model was introduced to model minor hysteresis loops

of SMAs by Ivshin and Pence in [23]. In their paper the state equation of martensitic

volume fraction for minor hysteresis loops is related to the expression of the martensitic

volume fraction for the major hysteresis loop. If tk indicate the last ϕ-reversal time

for forward transition, then ϕ(t) is non-increasing after tk (until a new reversal in ϕ(t)
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evolution) and:

ξ(ϕ(t)) =
ξ(tk)

ξmax(ϕ(tk))
ξmax(ϕ(t)), (4.28a)

If tj indicate the last ϕ-reversal time for reverse transition, then ϕ(t) is non-decreasing

after tj (until a new reversal in ϕ(t) evolution) and:

ξ(ϕ(t)) = 1−
{

1− ξ(tj)

1− ξmin(ϕ(tj))

}
[1− ξmin(ϕ(t))]. (4.28b)

In the above, ξmin and ξmax (ξmin(ϕ) ≤ ξmax(ϕ) ∀ϕ) are the martensite volume frac-

tion for the lower branch of the major hysteresis loop and the upper branch of the

major hysteresis loop, respectively. Both ξmax and ξmin are functions of driving force

ϕ. A geometric interpretation of (4.28a) and (4.28b) is that the current minor hys-

teresis loop curve ξ is self-similar to the major hysteresis loop with the scaling factor

ξ(tk)/ξmax(ϕ(tk)) and [1− ξ(tj)]/[1− ξmin(ϕ(tj))], respectively.

Note that both Duhem-Madelung hysteresis model as introduced by Ivshin and

Pence and the thermomechanical hysteresis model discussed in the previous subsection

have local memory, i.e., the behavior of the current minor loop depends only on the

latest reversal point, and the loading history prior to the reversal point has no influence

on the present minor hysteresis loop. It means these models do not capture the RPM

effect. In the case of Duhem-Madelung model the internal subloops are not usually

closed, which reminds time-dependent hysteresis (described in section 3.5). On the other

side, this model succeeds in partial cycles modeling, especially when minor hysteresis

loops are located at the middle of the major hysteresis loop. A possible extension co-

vering the RPM effect was introduced by Bouvet et al. in a superelasticity model [24].

When establishing internal subloop, model of Bouvet does not projects the whole major

loop (as in (4.28)), but only its part with respect to the nearest return point. This useful

concept is adopted by iRLOOP model and thus described in chapter 5 rigorously.

4.3.3 Preisach Hysteresis Model

The main idea for the Preisach model is that the material to be modeled is assumed

to be composed of an infinite number of simple hysteresis relays. Each hysteresis relay

is represented mathematically by a hysteresis operator, γαβ. There is a weighting dis-

tribution function, µ(ϕα, ϕβ), associated with each hysteresis relay. The input can be

taken to be the transition driving force, ϕ(t), where t is time. The output is volume

fraction, ξ, in that case. Since ξ can only take a value between 0 and 1, the hysteresis

operator γαβ is selected to have two states either 0 or 1 (in usual definition it takes a

value either −1 or 1). Given an input history ϕ(t), the output ξ(t) can be obtained by

counting how many relays are in state 1. Mathematically, this counting process can be

written in the limit by the following integral

ξ[ϕ(t)] =

∫ ∫

ϕα≥ϕβ

µ(ϕα, ϕβ)γαβϕ(t) dϕα dϕβ. (4.29)
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In the above, the square brackets indicate that ξ is a functional of the temperature

history. A key issue for the application of the model to describe a specific material is

to determine the distribution function µ(ϕα, ϕβ). A systematic way to obtain it numer-

ically has been established using experimental data (see [6], for instance). However,

the process of distribution function determination needs a relatively great number of

experiments.

4.4 Macroscopic Models – Examples

Following several models were developed in one dimension and capture the main char-

acteristics of SMAs.

Prominent among them is the model developed by Tanaka in 1986, who was among

the first to use phenomenological approach for SMA to study superelasticity with

martensitic fraction ξ as an internal variable. In his work [25], he used strain and

temperature as the control variables and derived a simple constitutive relation similar

to equation (4.20). The generic function of mixing was defined as follows:

fM(ξ) = kT
1 [(1− ξ) ln(1− ξ) + ξ] + cT

1 ξ,

fA(ξ) = kT
2 [ξ ln(ξ)− ξ] + cT

2 ξ,

where kT
1 , kT

2 , cT
1 and cT

2 are material parameters dependent constants. Using equation

(4.25), the exponential hardening rule for martensite evolution was deduced.

Cycling, transformation induced plasticity and effect of the prior incomplete trans-

formation on the subloops were the topics to be further investigated by Tanaka and

co-workers with this model in [26] or [27]. (The local residual stress, local residual strain

and the volume fraction of the martensite phase which takes no part in the subsequent

transformations, were introduced as the internal variables there, in order to characterize

the microscopic processes occurring in the alloys during cyclic loading.)

Tanaka’s model was also adapted by Liang and Rogers in [28] and Brinson in [29].

To obtain a better fit to the experimental data, Liang and Rogers modified the phase

kinetic to a cosine based function, which means the generic function is chosen as follows:

fM(ξ) =

∫ ξ

0

(−kLR
1 )[π − arccos(2ζ − 1)] dζ + cLR

1 ξ,

fA(ξ) =

∫ ξ

0

(−kLR
2 )[π − arccos(2ζ − 1)] dζ + cLR

2 ξ,

where kLR
1 , kLR

2 , cLR
1 and cLR

2 are material dependent constants. However, since reorien-

tation processes are not concerned, this model does not properly capture the material

response at temperatures below the martensite start temperature.

Based on the broad framework of Tanaka and Liang and Rogers, Brinson proposed a

modified model to also account for the shape memory effect [29]. The essential difference

in Brinson’s model is splitting the martensitic phase fraction into two parts, temper-

ature induced twinned fraction (ξt) and stress induced detwinned fraction (ξd), which
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contributes to the transformation strain. This differentiation of the phase fractions is

necessary to capture recovery stress/strain. To describe the constitutive behavior, Brin-

son derived the constitutive model with non-constant elastic stiffness during MT, which

has been further refined by Bekker and Brinson (see [2], [30]). The phase diagram is

divided into ”active zones”, where transitions occur, and ”dead zones”, where marten-

site fraction does not change. Every loading process is represented by a trajectory in

the diagram and the intensity of transition process depends on the tangential vector of

the path. The driving equation is chosen in ”switching points”, where transformation

process starts or finishes. The generic mixing term function f(ξ) has similar form as

was used by Liang and Rogers and lead to a simple cosine hardening law. When cyclic

partial loading simulated (Duhem-Madelung hysteretic model incorporated), staircase

transformation paths that lie outside of major loop are obtained. This behavior is in-

consistent with the RPM effect. Although the Brinson’s constitutive model was used

extensively in the literature to model SMA material and devices ([2], [30] and others),

recently Buravalla and Khandelwal highlighted an inconsistency in it (see their work

[22]).

The similar approach to the one presented by Bekker and Brinson could be found

in the model proposed by Govindjee and Kasper in [31]. It is assumed that during the

martensitic phase transformation two different ”martensitic variants” (corresponding

volume fractions denoted as ξ+ and ξ−) may form, depending on the sign and mag-

nitude of the applied loading (tension/compression asymmetry). In addition, if the

material is cooled in stress-free condition, both variants form simultaneously, resulting

in zero macroscopic transformation strain. Further mechanical loading will result in

growth of one martensitic variant at the expense of the other, thus producing observ-

able macroscopic transformation strain in the direction of the loading. The modified

constitutive relation (4.20) involves plasticity strain. This model can be classified as

a phase diagram based. For each involved transition the start and finish boundary

lines σ-T phase diagram are established and the value of martensitic volume fraction

in these ”transformation zones” is driven by linear evolution rule. Thanks to dividing

martensite to two parts (”tension and compression variants”), effects of detwinning and

reorientation, pseudoplasticity as well as one-way shape memory effect could be simu-

lated. (Moreover, plasticity effects are considered by introducing irreversibly deformed

part of ξ inactive in further processes.)

One of often referred models based on σ-T phase diagram is that developed by Au-

ricchio in [32]. There are three different phases (austenite, single-variant martensite

and multiple-variant martensite) introduced and mutual transformations (including re-

orientation process) in the ”transformation zones” are driven with exponential flow rule

similar to the one used by Tanaka. Superelasticity and one-way shape memory effect

are modeled in one dimension, but the model was also extended to three dimensions.

Auricchio’s model was implemented in finite element method algorithm and a lot of

favorable simulations were conducted (e.g. [33], [34], etc.).

One of the latest model was suggested by Sadjadpour [35] in 2006 and it is pre-
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sented both in one-dimensional and in three-dimensional version. Since only ξ can

not differentiate microstructures of martensite, the second internal variable, effective

transformation strain of the martensite εM , is introduced. Although Sadjadpour uses

basic principles of thermodynamics, the evolution law for ξ is empirical and does not

correspond to the concept described in the previous section. The effective transfor-

mation strain increment is linearly dependent on stress σ. Since the rate dependent

non-proportional loading, tension-compression asymmetry, influence of texture in poly-

crystals and general plasticity are concerned, the model becomes rather complex.

As an example of a (phenomenological) one-dimensional model let us summarize

the RLOOP algorithm for simulation of rate independent hysteretic responses of SMA

in cyclic uniaxial thermomechanical loads developed by Šittner et. al. in 2000 and

described in [36]. The algorithm is proposed in a compact differential form that uses

ten well defined material parameters and is adjustable to a particular alloy by fitting a

single experimental pseudoelastic loop. It has been developed as a tool for predictions

of history dependent uniaxial σ-ε-T responses of SMA elements to be embedded into

the smart structures and composites.

The material parameters characterizing the SMA element are elastic modulus of

martensite, EM, and elastic modulus of austenite, EA, measured at reference temper-

atures TM
ref and TA

ref ; temperature- and phase-independent coefficient of linear thermal

expansion, α; (maximum) transformation strain, Λ; martensite and austenite start tem-

perature, Ms, As respectively; slope s of the temperature dependence of transformation

start stresses, σtr, in tensile pseudoelastic tests above austenite finish temperature, Af ;

reorientation stress, σre, observed as yield stress in tensile tests below martensite finish

temperature, Mf . The Young’s modulus of the SMA, E(ξ, T ), is calculated from the

martensite and austenite moduli, each of them linearly dependent on the temperature

with characteristic rates REM and REA (compare with equation (4.11)):

E(ξ, T ) = ξ[EM + REM(T − TM
ref)] + (1− ξ)[EA + REA(T − TA

ref)]. (4.30)

Complex hysteretic SMA behavior is supposed to be derived from the knowledge

of the evolution function for martensite phase fraction ξ = ξ(σ, T, history) as a func-

tion of stress, temperature and history. The evolution function is assumed to be rate

independent in agreement with the approximation of the rate independence of energy

dissipation in SMAs.

Šittner and co-workers assumed an existence of a general thermomechanical driving

force on the MT when constructing a governing kinetics equation for the evolution

martensite phase fraction ξ. The martensite phase fraction rate, ξ̇, is supposed to be a

function of an internal variable ϕ:

ϕ = T − σ

s
, (4.31)

and its rate

ϕ̇ = Ṫ − σ̇

s
, (4.32)
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combining the effects of temperature and applied uniaxial stress on the MT in accord

with the Calusius-Clapeyron equation (compare with (3.117)). An equilibrium between

austenite and martensite phases under stress is assumed to exist when

T − σ

s
− T0(ξ) = 0. (4.33)

T0(ξ) denotes an ”effective equilibrium temperature”, which is assumed to be linearly

dependent on the martensite volume fraction ξ according to equation

T0(ξ) = (1− ξ)Ms + ξAs. (4.34)

(Equation (4.33) correspond with (4.18) if some less significant terms except of deriva-

tive of generic function f ′(ξ) (connected with T0(ξ)) are neglected and equation is

rescaled. Also (4.25) with this rescaled driving force is satisfied.)

Term ϕ − T0 quantifies the thermomechanical driving force both on the forward

transformation (i.e. when austenite transforms into martensite) and on the reverse

transformation. The equilibrium exists when driving forces on forward and reverse

MT are equal, i.e. only if ϕ − T0 = 0 as given by (4.33). Note that, according to

this definition, the forward transformation may proceed equally well upon cooling or

heating. Such defined thermomechanical driving force depends on the uniaxial stress,

temperature and history and does not differentiate between the stress-induced and

thermally-induced martensitic transformations.

The unknown evolution function ξ = ξ(ϕ) is searched as a solution of two proposed

differential equations governing the kinetics of the forward (ϕ̇ < 0) and reverse (ϕ̇ > 0)

transformations:

ϕ̇ < 0 : ξ̇ = c
G

s
ξl(1− ξ)m+ne−G(ϕ−T0)ϕ̇, (4.35a)

ϕ̇ > 0 : ξ̇ = c
G

s
ξl+n(1− ξ)meG(ϕ−T0)ϕ̇, (4.35b)

(Note the evolution is not driven by (4.25) with rescaled driving force (4.33) in this

case.) In addition to the four material parameters (Ms, As, s, σ
re), there are five fit-

ting constants G, c, n, l and m introduced. Their values are determined by fitting the

algorithm to a single experimental σ-ε pseudoelastic curve to yield solutions featur-

ing correct hysteresis width and further features of the simulated thermomechanical

responses.

Equations (4.35a) and (4.35b) are mutually switched on/off whenever the rate of the

thermomechanical driving force ϕ̇ changes its sign. There is a discontinuity of the ξ̇, ϕ̇

time derivatives in the return points, therefore ξ̇ is arbitrarily set to zero there. Current

values of the ξ at the return points are taken over by the newly activated differential

equation, whose solution contains the previous RP. This roughly constitutes the unique

memory mechanism built in the algorithm, which is different from the ones summarized

in the previous section, but specific for proposed governing equations.

Besides, the ideal transformation deformability is supposed, which means that any

deformation mechanisms considered are rate independent and that other deformation
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mechanisms as the plastic strains due to dislocation slip, fracture and/or any time de-

pendent phenomena are neglected. The macroscopic uniaxial strain of the transforming

SMA element hence consists of its elastic, εel, thermal, εth, and transformation, εtr,

strain parts, respectively, according to constitutive equation (compare with (4.20))

ε̇ =
σ̇

E(ξ, T )
+ α Ṫ + Λ tanh

(
k1

σ

σre − k2

)
ξ̇. (4.36)

The transformation strain εtr sharply decreases towards zero if the simulated trans-

formation proceeds at stresses σ < σre. This is achieved by including the hyperbolic

tangent function fitted by coefficients k1 and k2 into the third term of equation (4.36).

The hyperbolic tangent function was picked up just because it can be well parametrized

by the σre to reach the required effect. The transformation strain εtr thus vanishes, even

if the martensite fraction ξ = 1, when MT is induced only thermally (σ = 0).

Although the algorithm has been primarily designed to simulate the inelastic strains

due to the thermomechanically induced MT, the inelastic strains appearing upon tensile

loading in the martensitic state and thermal loading under very low stresses σ < σre are

formally considered by observing special boundary conditions on the internal variable

ϕ in the case T ≤ Ms. Then the mathematical formalism developed for martensitic

transformation is applied to the description of pseudoplastic deformation at low tem-

peratures T ≤ Ms, where physically different deformation processes take place. Such

approach, although useful for quantitative results, is incorrect in terms of the physical

principles.

In numerical implementation (e.g. finite element method) the actual temperature

of the SMA wire element and its actual strain instead of imposed stress is prescribed.

Also in various experiments and practical applications ”strain driven” process is in-

volved. In that case implicit formula (4.36) for σ must be solved with respect to

equations (4.31) and (4.35). The model RLOOP was numerically implemented and

various simulations (uniaxial superelastic tests, cyclic thermal load tests, one-way SME

tests, recovery stress tests, etc.; see [36], [8]) for SMA wires were conducted. In work

[37] the model was upgraded (the version called RCLOOP) to capture SMA-polymer

composites thermomechanical behavior.

Although RLOOP is successful in thin wires thermomechanical tests modelling,

some difficulties significant for its further development have revealed. Since differen-

tial formulas (4.35a) and (4.35b) are not analytically integrable, numerical solution is

needed. The argument of exponential function may vary in a wide range of values

dependent on actual σ and T , which can make error control problematic. In the strain

driven process discretized algorithm is unable to meet integration tolerances without

reducing the step size to the smallest value allowed. In more complex geometrical struc-

tures enormous computational time would be spend and modelling would be ineffective.

As mentioned above, the pseudoplasticity modelling is covered incorrectly by the algo-

rithm and the system becomes hardly expandable to complex σ-ε-T -space description

to be able to capture compression behavior, R-phase transition or one-way SME. All

these problems have lead to development of program iRLOOP.
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Chapter 5

iRLOOP

In the first chapter the unique properties of shape memory alloys were described. Since

invention of NiTiNOL there has been considerable effort to utilize these properties in ap-

plications. Thin wires are especially suitable for significant part of possible applications

as intervascular stents, medical devices or actuators; they can be easily incorporated to

textile fibres or embedded in composites, etc. They are easy to be produced at reason-

able price and their metallurgical production and processing is quite well established.

However, development of new products by repeated production and testing of proto-

types could be expansive and time-consuming, thus quite ineffective. That is why for

proper post-processing treatment and design purposes robust and stable computational

model capable of reliable reproducing the complex SMA behavior, which could be easily

implemented to finite element models, is highly desired.

First of all, model must be capable to simulate superelasticity, because it is of great

importance for most of thin wires applications. In fact, practically used SMA elements

work typically in partial cycles, so it is a very good test of the engineering applicability

of any SMA model, to inspect, whether it is capable to reproduce the hysteresis and

partial subloops features in thermal, mechanical and particularly in thermomechanical

loads. Since strain connected with R-phase transition affects mechanical behavior of

SMAs, incorporating of multiple transition mechanisms including R-phase is necessary

for modelling products operating in R-phase transition temperatures. Next important

step is to involve martensite reorientation process, which enables us to simulate pseu-

doplasticity and one-way shape memory effect. The above described processes occur in

also compression (negative stress values), which is involved in bending of wires, thus it

tension-compression asymmetry must be concerned for correct finite element method

implementation. Since shape memory alloys are functional materials, made for the

functions they do, instability and fatigue of their functional properties is important for

safe design of structures containing them.
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5.1 Introduction

Although the earlier elaborated uniaxial RLOOP model captures well the mechanical

behavior of straight NiTi wires in tensile thermomechanical tests including partial in-

ternal cycles, it is fairly unsuitable for further development particularly since it could

not have been easily numerically implemented in FEM codes. This lead to the idea to

develop a new model inspired by integral form of the RLOOP model.

The new model should:

• keep the concept of thermodynamic force linking stress and temperature, which

drives the transformation processes,

• reliably describe both entire and partial martensite to austenite and reverse trans-

formation processes with partial cycles and internal subloops equally well as

RLOOP model,

• capture the strains due to multiple deformation mechanisms taking place in NiTi

transforming through austenite→R-phase→martensite sequence,

• capture reorientation processes taking place in martensite phase,

• capture asymmetric behavior in tension and compression,

• be able to be driven by prescribed evolution of strain and temperature of a wire,

• be able to adapt to particular material by changing several experimentally well-

measurable input parameters,

• be implementable into finite element models by a relatively simple way.

The most important SME found by experiments – superelasticity, pseudoplasticity,

one-way SME, RPM (hysteretic subloops) and R-phase transition, all both in the case of

tension and compression – are based on these requirements, thus fulfilling them ensure

the effects are included in the model. On the other side, fatigue, stability of mechanical

properties and cyclic training are connected with plasticity effects, thus could not be

simulated when only above requirements are concerned.

With intension to satisfy the requirements, a new phenomenological one-dimensional

model was developed at Institute of Thermomechanics and Institute of Physics, Academy

of Sciences of the Czech Republic. It was called iRLOOP and it is extensively described

in this chapter. Thermomechanical behavior is rather complex, so the model was con-

structed gradually, each stage expanded the previous one. First, superelastic behavior

with R-phase contribution, partial cycles and return point memory effect were modeled.

Next, pseudoplasticity, reorientation process and thus also one-way SME in tension were

added. So far latest proposed model connects all previous effects to complex tension-

compression algorithm. Each step is described in its own section.
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As emphasized in previous text, the evolution of SMA element is not determined only

by actual values of state variables, but strongly depends on thermomechanical history

of material. The proposed algorithm follows this experimental fact and we suppose the

initial conditions including history and the trajectory in σ-T plane uniquely determine

the evolution of state of SMA material at any point of the curve. Let us define an

internal time t, which is a non-negative real variable

t ∈ R+
0 := 〈0, +∞). (5.1)

The algorithm is rate independent, which means computed values of strains are inde-

pendent on time rescaling. The input is supposed to be prescribed evolution of state

variables stress σ(t) and temperature T (t), where

σ(t) : R+
0 → R, σ(t) ∈ C1(R+

0 ) (5.2)

T (t) : R+
0 → R+, T (t) ∈ C1(R+

0 ) (5.3)

(thermodynamically reachable temperature is a real positive value; C1(R+
0 ) denotes

(space of) continuously differentiable functions defined for non-negative real numbers).

Time evolution of functions σ(t), T (t) uniquely establishes a trajectory in σ-T space.

It remains to properly introduce initial conditions with respect to thermomechanical

history of material. This could be rather problematic for states when the material is

partially transformed (experimental determining of ξ, description of history). Thus,

for simplicity we suppose the element of material is in pure austenitic state just after

completed transition, no loading is imposed and material has ”no thermomechanical

history” (in the sense of RPs as defined next) at the beginning of computational process

t = 0, i.e.

T (0) = Af ,

σ(0) = 0,
(5.4)

This assumption is not restrictive, since any other possible physical state of material

can be reached by thermomechanical loading arising from this initial state.

Let us also define a real closed unit interval

I := 〈0, 1〉. (5.5)

5.2 Superelasticity Model

5.2.1 Physical Model

In this section we concentrate on the part of σ-T phase space marked with yellow color

on figure 5.1, we suppose σ ≥ 0 and

T ≥ Ss := Af +
σre

s
. (5.6)
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Figure 5.1: Stress-temperature space. Part considered in the superelasticity model

marked with yellow color.

This condition ensures no martensite reorientation is involved in the processes and ma-

terial is in pure austenite at the beginning. The grey area between lines starting at

points Ms,Mf marks points in σ-T space where volume fraction of martensite increases,

similarly for the area where martensite transforms to austenite (lines starting at points

As, Af) and for R-phase transformation strip. The area where R-phase is present is

marked by thick line. Since R-phase can transform reversibly with negligibly small or

no hysteresis, we assume austenite to R-phase transition is non-hysteretic. Transfor-

mation strain of R-phase is assumed to be stress-dependent with maximal value after

reorientation stress level σRre is attained. The Young’s modulus of R-phase is sup-

posed to be the same as Young’s modulus of austenite and the transformation strain

for R-phase transforming to martensite is assumed to be the same as the transformation

strain of austenite transforming to martensite at the same conditions.

We will neglect thermal expansion contribution to the total strain in equation (4.20),

since εth ¿ εel, εth ¿ εtr for considered magnitudes of stress and temperature, but it

can be introduced to the model straightforwardly.

52



5.2.2 Algorithm

Inspired by previous models we define transformation driving force, which links stress

σ and temperature T in accordance with Clausius-Clapeyron equation (see section 3.4).

Each point in the σ-T phase plane is assigned a value of martensitic phase transforma-

tion driving force

ϕ(t) :=
σ(t)

s
− (T (t)− Af). (5.7)

and a value of R-phase transformation driving force

ϕR(t) :=
σ(t)

sR
− T (t), (5.8)

s and sR are constants described below. The difference T (t)−Af only change ϕ values

so they are equal to zero whenever the reverse transition is just finished. This ”addition

of a constant” has no influence on physical essence of the problem.

We introduce internal variables

ξ(t) a real function representing volume fraction of martensite,

ξ(t) : R→ I

ξR(t) a real function representing volume fraction of R-phase in austenite,

ξR(t) : R→ I

RP (t) a set of ordered pairs of real variables representing set of return points

in evolution of martensite,

RP (t) := {[ϕ(t1), ξ(t1)], [ϕ(t2), ξ(t2)], . . . , [ϕ(tn), ξ(tn)]; ϕ(ti) ∈ R,

ξ(ti) ∈ I, 0 ≤ ti ≤ t, ∀ i = 1, 2, . . . , n(t), n(t) ∈ N, n(t) ≥ 2}
Let us note, due to this definition ξR = 1 when all austenite is transformed to

R-phase, no matter what the volume fraction of austenite is. The volume fraction of

R-phase in material is given by product (1− ξ)ξR.

Next, we introduce following parameters corresponding to material properties:

Af real constant, martensite to austenite finish temperature

EM real constant, Young’s elastic modulus of martensite

EA real constant, Young’s elastic modulus of austenite

s real constant, critical transformation slope of martensitic transition

sR real constant, critical transformation slope of R-phase transition

Λ real constant, maximum transformation strain of martensitic transi-

tion

eR(σ) real function, transformation strain of austenite to R-phase transition

ξA2M(ϕ) real function, completed martensite to austenite transition

ξM2A(ϕ) real function, completed austenite to martensite transition

ξA2R(ϕ) real function, completed austenite to R-phase transition

ξA2M(ϕ) and ξM2A(ϕ) represent completed austenite (or R-phase) to martensite and

53



reverse transition, thus must fulfill following physically motivated conditions:

ξM2A(ϕ) : R→ I is a non-decreasing continuously differentiable function,

{ϕ ≤ 0 ⇒ ξM2A(ϕ) = 0} ∧ {ϕ > 0 ⇒ ξM2A(ϕ) > 0},
∃! As ∈ R : {ϕ ≥ Af − As ⇒ ξM2A(ϕ) = 1} ∧ {ϕ < Af − As ⇒ ξM2A(ϕ) < 1}.

(5.9)

ξA2M(ϕ) : R→ I is a non-decreasing continuously differentiable function,

∃! Ms ∈ R : {ϕ ≤ Af −Ms ⇒ ξA2M(ϕ) = 0}
∧ {ϕ > Af −Ms ⇒ ξA2M(ϕ) > 0},

∃! Mf ∈ R : {ϕ ≥ Af −Mf ⇒ ξA2M(ϕ) = 1} ∧ {ϕ < Af −Mf ⇒ ξA2M(ϕ) < 1},
(5.10)

and

ξA2M(ϕ) ≤ ξM2A(ϕ) ∀ϕ ∈ R. (5.11)

Real constants Ms,Mf , As, Af correspond to transition temperatures (introduced in sec-

tion 2.2), thus they must satisfy one of relations:

Af < As ≤ Ms < Mf or Af ≤ Ms < As ≤ Mf . (5.12)

Similarly, for completed austenite to R-phase transition we assume function (since

no hysteresis is supposed, the reverse transition follows the same evolution reversely)

ξA2R(ϕ) : R→ I is a non-decreasing continuously differentiable function,

∃! Rf > 0 : {ϕR ≥ −Rf ⇒ ξA2R(ϕR) = 1} ∧ {ϕR ≤ −Rf ⇒ ξA2R(ϕR) < 1},
∃! Rs > Rf : {ϕR ≤ −Rs ⇒ ξA2R(ϕR) = 0} ∧ {ϕR > −Rs ⇒ ξA2R(ϕR) > 0},

(5.13)

Real constant Rs corresponds to temperature when austenite starts to transform to

R-phase, Rf to temperature when the process finishes.

Transformation strain of R-phase formed at constant stress σ (i.e. at thermally

induced transition) is described by input function eR(σ), which can be obtained exper-

imentally. If σ > σRre (σRre denotes reorientation stress of R-phase), R-phase is fully

oriented and and its transformation strain is maximal, if σ = 0, R-phase is not oriented

and it has no transformation strain. (Let us note for materials undergoing process

of training, not considered in this work, R-phase transformation strain could develop

during training.) Thus, function eR(σ) is assumed to fulfil following conditions:

eR(σ) : R→ R+
0 is a non-decreasing continuously differentiable function,

eR(σ) = −eR(−σ) ∀σ ∈ R (odd function),

eR(σ) = ΛR if σ > σRre,

(5.14)

where positive constant ΛR represents maximum R-phase transformation strain. (Def-

inition is extended ∀σ ∈ R with respect to further development of the model.)

To capture the history of thermomechanical loading of material a set of return points

RP (t) was introduced. (For evolution of return points see figure 5.2.) At the beginning

of computational process, we define

RP (0) = {[+∞, 1], [−∞, 0]}. (5.15)
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Figure 5.2: Return point memory mechanism. In the upper figure an internal loop is

being closed, after which history of the closed loop is ”forgotten” – evolution continues

in a partial cycle in the lower figure. Area of possible internal trajectories of ξ-evolution

is marked with grey color.

(Here +∞ and −∞ denotes a very large positive and negative numbers, respectively,

which cannot be reached by physically reasonable values of stress and temperature.

Reasonable values of stress are less than plasticity stress, reasonable values of temper-

ature are positive less than melting point.)

Then, the actual values ϕ(t), ξ(t) at time t > 0 are added to the set RP if change

in ”direction” of ϕ evolution has occurred, i.e.

∃ t∗ ∈ R+, t∗ > t : {ϕ̇(τ) < 0 ∀ τ ∈ (t, t∗)} ∧
∃ t̃ ∈ R+

0 , t̃ < t : {ϕ̇(τ) ≥ 0 ∀ τ ∈ (t̃, t); ϕ̇(t̃) > 0}
⇒ RP (t) = RP (t) ∪ [ϕ(t), ξ(t)],

(5.16)

or

∃ t∗ ∈ R+, t∗ > t : {ϕ̇(τ) > 0 ∀ τ ∈ (t, t∗)} ∧
∃ t̃ ∈ R+

0 , t̃ < t : {ϕ̇(τ) ≤ 0 ∀ τ ∈ (t̃, t); ϕ̇(t̃) < 0}
⇒ RP (t) = RP (t) ∪ [ϕ(t), ξ(t)]

(5.17)

(The above notation means the set of return points is upgraded at time t.) We can

distinguish two subsets of each set of RPs depending on the change in sign of driving
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force increment leading to addition of RPs. In the first group there are RPs added

due to mechanism (5.16) (denoted by superscript ’f’ next, because forward transition

was interrupted), whereas RPs appearing when (5.17) are included in the second group

(and denoted by superscript ’r’ next, because reverse transition was interrupted):

RP (t) = RP f(t) ∪RP r(t). (5.18)

It is clear that creation of a return point of the first group must be followed by creation

of a new RP of the second group and vice versa and

RP f(t) ∩RP r(t) = ∅. (5.19)

Conversely, a return point is removed from the set, if the actual value of driving

force and martensite volume fraction is equal to values of the return point – loop has

been closed, i.e.

[ϕ(ti), ξ(ti)] ∈ RP (t) ∧ ϕ(t) = ϕ(ti) ∧ ξ(t) = ξ(ti)

⇒ RP (t) = RP (t) \ [ϕ(ti), ξ(ti)]
(5.20)

Furthermore, wiping out property (introduced in (2.2)) requires all the RPs established

inside the just closed subloop must be removed too (system ”forgets” this part of its

evolution history). But which RPs should be wiped out depends on prescribed ξ(ϕ(t))

evolution, so let us describe the evolution first and return to this problem later on.

Since for computational mechanism is not important at which time RP appeared or

disappeared, let us simplify notation:

ϕi = ϕ(ti),

ξi = ξ(ti).

If ϕ̇(t) = 0, there is no evolution of variable ξ(t). Else algorithm chooses the

actual nearest appropriate return point Lt (let us denote tl time, when it was formed).

This is the RP in one of subsets RP f , RP r in accord with the sign of ϕ̇ (”direction of

evolution”), whose ϕ-coordinate is the nearest to ϕ(t), i.e.

ϕ̇(t) > 0 ⇒ Lt := [ϕf
i, ξ

f
i ] ∈ RP f(t) :

|ϕ(t)− ϕf
i| = min

1≤j≤nf
|ϕ(t)− ϕf

j|, (5.21a)

ϕ̇(t) < 0 ⇒ Lt := [ϕr
i, ξ

r
i ] ∈ RP r(t) :

|ϕ(t)− ϕr
i| = min

1≤j≤nr
|ϕ(t)− ϕr

j|. (5.21b)

(nf and nr corresponds to the total number of RPs in RP f and RP r, respectively.)

And similarly the algorithm finds the actual nearest return point K(t) (let us denote tk
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time, when it was formed) in the other subset, i.e. the nearest RP ”behind” the actual

one:

ϕ̇(t) > 0 ⇒ Kt := [ϕr
i, ξ

r
i ] ∈ RP r(t) :

|ϕ(t)− ϕr
i| = min

1≤j≤nr
|ϕ(t)− ϕr

j|, (5.22a)

ϕ̇(t) < 0 ⇒ Kt := [ϕf
i, ξ

f
i ] ∈ RP f(t) :

|ϕ(t)− ϕf
i| = min

1≤j≤nf
|ϕ(t)− ϕf

j|. (5.22b)

Then the algorithm assigns:

ϕ̇(t) > 0 ⇒ if ξA2M(ϕ(tk)) = ξA2M(ϕ(tl)) then ξ(t) := ξ(ϕ(tk)) else (5.23a)

ξ(t) :=
ξ(tk)− ξ(tl)

ξA2M(ϕ(tk))− ξA2M(ϕ(tl))
[ξA2M(ϕ(t))− ξA2M(ϕ(tl))] + ξ(tl),

ϕ̇(t) < 0 ⇒ if ξM2A(ϕ(tk)) = ξM2A(ϕ(tl)) then ξ(t) := ξ(ϕ(tk)) else (5.23b)

ξ(t) :=
ξ(tk)− ξ(tl)

ξM2A(ϕ(tk))− ξM2A(ϕ(tl))
[ξM2A(ϕ(t))− ξM2A(ϕ(tl))] + ξ(tl),

which corresponds to a projection of function ξA2M(ϕ) or ξM2A(ϕ) between points

K = [ϕK , ξK ] and L = [ϕL, ξL].

Properties of this modification of Duhem-Madelung model of hysteresis (compare

with section (3.5)) and a restriction on envelope functions imposed by physics,

[ξA2M(ϕ)− ξA2M(ϕL)]
dξM2A(ϕ)

dϕ
≤ [ξM2A(ϕ)− ξM2A(ϕL)]

dξA2M(ϕ)

dϕ
∀ϕ ∈ R, (5.24)

are further discussed later. Now note only, evolution of ξ(t) keeps the monotonicity of

ϕ(t) evolution, for equations (5.23a), (5.23b) keep monotonicity of ξA2M(ϕ), ξM2A(ϕ).

Now, it is easy to show, the sequence of RPs appearing in RP f is non-increasing

and the sequence of RPs appearing in RP r is non-decreasing (in the sense ξ(ϕ)). For

instance, let us consider the case of RP f . After formation of a return point P (let

us denote this time tP ) values of ϕ(t) do not increase and thus values of ξ(t) do not

decrease until a next RP (belonging to RP r) is created. Only after that, when ϕ is

non-decreasing again, another RP (let us denote tQ time, when it has occurred) can

appear in RP f . But then it must hold ϕ(tQ) < ϕ(tP ), ξ(tQ) ≤ ξ(tP ) otherwise P would

be erased, when ϕ(t) = ϕ(tP ) ⇒ ξ(t) = ξ(tP ) because of (5.23a), (5.23a). Hence, we

can express RPs sets as follows:

RP f =
{
[ϕf

1, ξ
f
1], [ϕf

2, ξ
f
2], . . . , [ϕf

n, ξ
f
nf ]; ϕf

i ∈ R, ξf
i ∈ I, i = 1, 2, . . . , nf ;

nf ∈ N; ϕf
j > ϕf

j+1, ξf
j ≥ ξf

j+1, j = 1, 2, . . . , nf − 1
}

, (5.25)
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RP r = {[ϕr
1, ξ

r
1], [ϕr

2, ξ
r
2], . . . , [ϕr

nr , ξr
nr ]; ϕr

i ∈ R, ξr
i ∈ I, i = 1, 2, . . . , nr;

nr ∈ N; ϕr
j < ϕr

j+1, ξr
j ≤ ξr

j+1, j = 1, 2, . . . , nr − 1
}

, (5.26)

and

ϕf
nf > ϕr

nr ∧ ξf
nf ≥ ξr

nr . (5.27)

Moreover, as the sequences are monotonous, it is always easy to find the nearest

RP as introduced in (5.20) – it is simply the last formed RP in the subset. Now, we

can also specify the mechanism ensuring the wiping out property is involved. When

the subloop is being closed and the last RP in the appropriate subset is erased, no

other return points of both RP f and RP r can remain ”inside it”, since the sequences

keep monotonous. Thus the only point which has to be wiped out is the nearest one

of alternative subset (forming ”the other end” of the subloop), which is, due to the

monotonicity, the last created RP there again. In summary, RPs disappear in pairs,

one is erased from RP f and one from RP r.

This RPM mechanism was proposed in the work of Bouvet et al. [24]. Due to just

proved properties, creation and disappearance of return points in each subset follows

”last in, first out” rule.

Experimentally often observed fact is that thermomechanically induced internal

transformation subloops are not uniquely determined by the hysteretic envelope for

completed forward and reverse transition. Their shape can slightly change depending on

type of material, manufacturing or thermomechanical history. One of many possibilities

how to influence the shape of subloops to some extent, and thus fit the model to actual

experimental data, is the following one.

Let us introduce two fitting parameters kA2M , kM2A ∈ R modifying the ξA2M(ϕ),

ξM2A(ϕ) functions and let points in ξ-ϕ plane be transformed due to prescriptions

κ̃A2M : R× I → R× I,

[ϕ, ξ(ϕ)] → [ϕ̃, ξ̃(ϕ̃)] := [ϕ + kA2Mξ(ϕ), ξ(ϕ)],
(5.28)

κ̄M2A : R× I → R× I,

[ϕ, ξ(ϕ)] → [ϕ̄, ξ̄(ϕ̄)] := [ϕ + kM2Aξ(ϕ), ξ(ϕ)].
(5.29)

Continuity and differentiability of transformed functions ξ̃A2M(ϕ̃) := κ̃A2M(ξA2M(ϕ))

and ξ̄M2A(ϕ̄) := κ̄A2M(ξM2A(ϕ)) are preserved by these transformations. For forward

transformation evolution equation (5.23a) is replaced by

ϕ̇ > 0 ⇒ if ξA2M(ϕ(tk)) = ξA2M(ϕ(tl)) then ξ(t) := ξ(ϕ(tk)) else (5.30a)

ξ(t) :=
ξ(tk)− ξ(tl)

ξ̃A2M(ϕ̃(tk))− ξ̃A2M(ϕ̃(tl))
[ξ̃A2M(ϕ̃(t))− ξ̃A2M(ϕ̃(tl))] + ξ(tl),

and for reverse transformation equation (5.23b) is replaced by

ϕ̇ < 0 ⇒ if ξM2A(ϕ(tk)) = ξM2A(ϕ(tl)) then ξ(t) := ξ(ϕ(tk)) else (5.30b)

ξ(t) :=
ξ(tk)− ξ(tl)

ξ̄M2A(ϕ̄(tk))− ξ̄M2A(ϕ̄(tl))
[ξ̄M2A(ϕ̄(t))− ξ̄M2A(ϕ̄(tl))] + ξ(tl).
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Modified thermodynamics based condition (5.24) takes the form

[ξ̄A2M(ϕ̄)− ξA2M(ϕ̄L)]
dξ̃M2A(ϕ̃)

dϕ̃
≤ [ξ̃M2A(ϕ̃)− ξ̃M2A(ϕ̃L)]

dξ̄A2M(ϕ)

dϕ̄
∀ϕ ∈ R, (5.31)

where L̃ := [ϕ̃L, ξ̃L] and L̄ := [ϕ̄L, ξ̄L] are projections of a return point L := [ϕL, ξL]

according to transformation functions κ̃A2M and κ̄M2A.

Next, for evolution of ξR (no hysteresis assumed), algorithm simply assigns

ξR(t) := ξA2R(ϕR(t)). (5.32)

To establish constitutive equation, we consider elastic and transformation strains

(thermal expansion neglected). The included processes are:

• linear deformation of austenite

• linear deformation of martensite

• non-linear hysteretic behavior representing forward and reverse transformations

of austenite (or R-phase) to martensite

• non-linear non-hysteretic behavior of austenite to R-phase transformation

For determination of transformation strain the usual type of general flow rule (4.12) is

used

εtrM(t) = Λξ(t), (5.33)

for R-phase transition we define

εtrR(t) = (1− ξ(t))ξR(t)eR(σ(t)). (5.34)

Hence, there are four terms contributing to the total strain (see also equation (4.20))

ε(t) = (1− ξ(t))
σ(t)

EA
+ ξ(t)

σ(t)

EM
+ Λ ξ(t) + (1− ξ(t))eR(σ(t))ξR(t) (5.35)

The last equation and following initial conditions reflecting (5.4) (and ”no history”)

complete the algorithm:

T (0) = Af ,

σ(0) = 0,

RP+f(0) = {[+∞, 1]},
RP+r(0) = {[−∞, 0]},

(5.36)

To be more explicit let us recall

ξ(t) = ξ(σ(t), T (t), history(t)),
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ξR(t) = ξR(σ(t), T (t)),

where parameter history(t) stands for thermomechanical history of material represented

by set of return points RP (t) and the actual value of martensite volume fraction ξ(t),

in the algorithm.

Next natural aim is to expand proposed algorithm upon the case of compression

loading, i.e. σ < 0, but still (5.6) holds. The extension of model should reflect the

experimentally observed difference between the superelastic responses in tension and

compression, i.e. tension-compression asymmetry. This means the different (negative)

maximum transformation strain Λ−, which (due to (3.113)) results in a different critical

transformation slope s−.

An important fact for extension of previous model is that tensile and compressive

martensite never occur simultaneously in considered part of σ-T space (σ > 0, T ≥ Ss),

thus their evolution is mutually independent and for compressive martensite the same

algorithm as for tensile one with different parameters is used. Furthermore, it is assumed

the R-phase is formed and reioriented at negative values of stress in a symmetric way

as at positive values, with critical transformation slope −sR.

The new tension-compression superelastic algorithm could be divided to three parts.

The first two are quite mutually independent subalgorithms, one for tensile and one

for compressive loading, describing the evolution of martensite volume fraction and

transformation strain. The last part algorithm computes evolution of volume fraction

and transformation strain of R-phase and evaluate total volume fraction of martensite

and total strain of material.

From now on, let us denote the original variables by superscript + (i.e. ξ+(t),

RP+(t)), whereas the new compression ones by superscript − (i.e. ξ−(t), RP−(t)).

Following procedure of previous section, we define driving force

ϕ−(t) :=
σ(t)

s−
− (T (t)− Af), (5.37)

we assume the same functions for completed compressive martensite transformation,

ξA2M, ξM2A, the evolution of ξ+ driven by (5.23a) and (5.23b) and obvious modification

for ξ−, the same RPM effect mechanism. Similarly, transformation strain

εtr−(t) = Λ−ξ−(t), (5.38)

where Λ− < 0 is the maximum transformation strain for compressive martensite. The

initial conditions (5.36) are appended with

RP−f(0) = {[+∞, 1]},
RP−r(0) = {[−∞, 0]}. (5.39)

We define R-phase driving force as follows

ϕR(t) :=
|σ(t)|
sR

− T (t). (5.40)
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R-phase transformation strain function was already introduced in (5.14). Function ξA2R

and equation (5.32) then fully determine the actual value of volume fraction of R-phase

in austenite.

Since there is no interaction between tensile and compressive martensite in consid-

ered part of σ-T space, at least one of variables ξ+, ξ− is equal to zero at any point of

it. We can define

ξ(t) := max(ξ+(t), ξ−(t)) (5.41)

and introduce constitutive equation for tension-compression superelastic algorithm

ε(t) = (1− ξ(t))
σ(t)

EA
+ ξ(t)

σ(t)

EM
+Λ+ ξ+(t)+Λ− ξ−(t)+(1− ξ(t))eR(σ(t))ξR(t), (5.42)

where the first two terms on the right are the elastic part, whereas the rest is the

transformation part.

5.2.3 Extended Duhem-Madelung Model of Hysteresis

As mentioned in (4.3), in their paper [23] Ivshin and Pence adapted the Duhem-

Madelung model of hysteresis for phase transitions. We will briefly summarize some

of their results, propose an extension of this model respecting RPM effect and find a

system of hysteresis envelope functions suitable for practical purposes.

Let us consider a hysteresis loop given by functions

ξmin(ϕ) : R→ I is non-decreasing continuously differentiable function,

∃! ϕmin s ∈ R : {ϕ ≤ ϕmin s ⇒ ξmin(ϕ) = 0} ∧ {ϕ > ϕmin s ⇒ ξmin(ϕ) > 0},
∃! ϕmin f ∈ R : {ϕ ≥ ϕmin f ⇒ ξmin(ϕ) = 1} ∧ {ϕ < ϕmin f ⇒ ξmin(ϕ) < 1}.

(5.43)

and

ξmax(ϕ) : R→ I is non-decreasing continuously differentiable function,

∃! ϕmax s ∈ R : {ϕ ≤ ϕmax s ⇒ ξmax(ϕ) = 0} ∧ {ϕ > ϕmax s ⇒ ξmax(ϕ) > 0},
∃! ϕmax f ∈ R : {ϕ ≥ ϕmax f ⇒ ξmax(ϕ) = 1} ∧ {ϕ < ϕmax f ⇒ ξmax(ϕ) < 1},

(5.44)

which satisfy

ξmin(ϕ) ≤ ξmax(ϕ) ∀ϕ ∈ R. (5.45)

There are two possible cases of relations between just defined points (compare with

(5.12)):

ϕmax f < ϕmax s ≤ ϕmin s < ϕmin f , ϕmax f ≤ ϕmin s < ϕmax s ≤ ϕmin f (5.46)

To describe the internal path algorithm, the given ϕ(t) evolution (t ≥ 0 is time) is di-

vided into subintervals 〈ϕ(tk), ϕ(tk+1)〉 upon which is non-decreasing or non-increasing.

This defines a sequence of return points at which the directionality of ϕ(t) changes. In

the event that ϕ(t) is held constant over a time interval that mediates a in direction-

ality, then the associated return point can be chosen arbitrarily within the interval. If
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〈tk, tk+1〉 is a time interval upon which ϕ(t) is non-increasing, then ξ(t) is to be given

by

ξ(ϕ(t)) =
ξ(tk)

ξmax(ϕ(tk))
ξmax(ϕ(t)), t ∈ 〈tk, tk+1〉, (5.47a)

Conversely, if 〈tk, tk+1〉 is a time interval upon which ϕ(t) is nondecreasing, then ξ(t)

is to be given by

ξ(ϕ(t)) = 1−
{

1− ξ(tk)

1− ξmin(ϕ(tk))

}
[1− ξmin(ϕ(t))], t ∈ 〈tk, tk+1〉. (5.47b)

Formula (5.47a) defines a family of trajectories for decreasing ξ(t) within the re-

gion enclosed by the two envelopes. These trajectories, as well as the corresponding

trajectories for increasing ξ(t) determined by (5.47b), fulfil

ξmin(ϕ(0)) ≤ ξ(0) ≤ ξmax(ϕ(0)) ⇒ ξmin(ϕ(t)) ≤ ξ(t) ≤ ξmax(ϕ(t)) ∀t > 0. (5.48)

The phase fraction evolution is rate-independent in the sense that a resealing of the

time variable t only alters the parametrization of the locus [ϕ(t), ξ(t)] but does not

change its graph in the ξ-ϕ space.

Invshin and Pence show how algorithm (5.47), for envelope functions given by (5.43)

and (5.44), follows from a Duhem-Madelung model for phase fraction evolution sub-

jected to the following physically motivated requirements:

(A1) Phase transitions take place on a temperature range ϕmax f ≤ ϕ ≤ ϕmin f , in the

sense that algorithm is required to ensure that

ξ(ϕ) = 0 ∀ϕ ≤ ϕmax f ; ξ(ϕ) = 1 ∀ϕ ≥ ϕmin f . (5.49)

(A2) The phase fraction variable respectively increases, remains stationary or decreases

as the driving variable respectively increases, remains stationary or decreases.

(A3) Phase transformations proceed at a pace that is proportional to the phase fraction

of the parent phase (the phase that is being depleted) and is independent of the

phase fraction of the daughter phase (the phase that the parent is transforming

into).

Indeed, these conditions are fulfilled by definitions (5.43), (5.44) and (5.47). Next

important physical condition is:

(A4) The maximum value of ξ compatible with a given driving force ϕ is attained

by any temperature history that begins with ϕ ≥ ϕmin f , (and therefore ξ = 1)

which then subsequently decreases to the given ϕ. Conversely, the minimum value

of ξ compatible with a given driving variable ϕ is attained by any temperature

history that begins with ϕ ≥ ϕmax f (and therefore ξ = 0) which then subsequently

increases to the given value ϕ.
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ϕmax f ϕmin s ϕmax s ϕmin f

ξmax ξmin

Figure 5.3: An example of internal trajectory (red line) piercing the envelope function

ξmin.

The interpretation of (A4) could be that any decreasing/increasing trajectory in ξ-ϕ

plane representing the time evolution of martensite (and given by (5.47)) do not pierce

function ξmin(ϕ)/ξmax(ϕ), i.e. the trajectory remains just in one part of ξ-ϕ plane,

which is divided into two parts parts by the function (see figure 5.3).

As described in section 3.5, area enclosed by a cycle in ξ-ϕ plane (i.e. area inside

the loop) is equal to energy dissipated during the process, thus, due to the second law

of thermodynamics, always non-negative (recall (4.26)):
∮

ϕ dξ ≥ 0. (5.50)

and each phase transformation cycle in ξ-ϕ plane can be contoured only in one sense,

not in the other. If the trajectory of a minor loop do pierce the major loop, then it

is possible to find a closed cycle with negative dissipation. Thus, the condition (A4)

could be also interpreted as an expression of the second law of thermodynamics.

However, as can be proven on examples (see figure 5.3), the form of evolution equa-

tions (5.47) is not sufficient to meet (A4), which means, there could be some possible

evolutions which break the second law of thermodynamics.

In [23] it has been further proven the necessary and sufficient conditions for the

algorithm (5.47) to satisfy the requirement (A4) are:

ξmin(ϕ)
dξmax(ϕ)

dϕ
≤ ξmax(ϕ)

dξmin(ϕ)

dϕ
. (5.51)

[1− ξmax(ϕ)]
dξmin(ϕ)

dϕ
≤ [1− ξmin(ϕ)]

dξmax(ϕ)

dϕ
. (5.52)

It is easy to realize equations (5.47) do not respect the RPM effect even though

(5.51), (5.52) are satisfied (consider ξmax and ξmin are mutually independent and equa-

tions (5.47) do not concern the previously formed return point). In order to include
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RPM effect in this hysteresis model (so it could be used in the iRLOOP model), the

equations are changed to have the form as introduced in previous subsection, i.e.

ϕ̇(t) > 0 ⇒ if ξmin(ϕ(tk)) = ξmin(ϕ(tl)) then ξ(t) := ξ(tl) else (5.53a)

ξ(t) :=
ξ(tk)− ξ(tl)

ξmin(ϕ(tk))− ξmin(ϕ(tl))
[ξmin(ϕ(t))− ξmin(ϕ(tl))] + ξ(tl),

ϕ̇(t) < 0 ⇒ if ξmax(ϕ(tk)) = ξmax(ϕ(tl)) then ξ(t) := ξ(tl) else (5.53b)

ξ(t) :=
ξ(tk)− ξ(tl)

ξmax(ϕ(tk))− ξmax(ϕ(tl))
[ξmax(ϕ(t))− ξmax(ϕ(tl))] + ξ(tl).

(Subscripts A2M and M2A correspond now to subscripts ’min’ and ’max’, respec-

tively.) The RP mechanism and return points K = [ϕ(tk), ξ(ϕ(tk))], L = [ϕ(tl), ξ(ϕ(tl))]

are introduced in previous subsection, i.e. by (5.15)–(5.17), (5.20), (5.21a)–(5.22b) and

(5.25)–(5.27). Let us call this extension ”Extended Duhem-Madelung Model of Hys-

teresis” (EDM). It is worth noting model of Ivshin and Pence is a special case of the

EDM, where the return point L is chosen

L := [−∞, 0] if ϕ̇ < 0,

L := [+∞, 1] if ϕ̇ > 0.
(5.54)

Now we would like the EDM to meet conditions (A1)–(A3) and the following gen-

eralization of (A4):

(A4+) Let B,C be two consecutively formed return points so that:

B := [ϕB, ξB] ∈ RP r, C := [ϕC , ξC ] ∈ RP f (⇒ ϕB < ϕC). (5.55)

The maximum value of martensite volume fraction ξ(ϕ) within this loop compat-

ible with a given driving force ϕB ≤ ϕ ≤ ϕC is attained by the ϕ history that

begins with ϕC which then subsequently decreases to the given ϕ. Conversely, the

minimum value of ξ(ϕ) within this loop compatible with a given driving variable

ϕB ≤ ϕ ≤ ϕC is attained by the ϕ evolution that begins with ϕB, which then

subsequently increases to the given value ϕ.

Let us realize the condition (A4) is a special case of (A4+) for major loop when

B = [−∞, 0], C = [+∞, 1]. From thermodynamic point of view, (A4+) is an expression

of the second law of thermodynamics, again.

It is easy to show EDM satisfies the conditions (A1), (A2) and (A3). For requirement

(A4+) let us realize

ξB ≤ ξC (5.56)

due to (5.27). In the degenerated case ξB = ξC the loop is just a segment and (A4+) is

obviously satisfied.

Now let us consider

ξB < ξC . (5.57)

To ensure (A4+) it is necessary and sufficient that both
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B

Figure 5.4: A system of trajectories inside a major loop, see text for notation.

(i) each trajectory starting at ϕB < ϕ ≤ ϕC and pointing to B generated by (5.53b)

with K = C, L = B do not pierce the lower branch of loop ξBC , let us denote it

by ξBC
min (see figure 5.4), and

(ii) each trajectory starting at ϕC > ϕ ≥ ϕB and pointing to C generated by (5.53a)

with K = B, L = C do not pierce the upper branch of loop ξBC , let us denote it

by ξBC
max.

(There is no need to care if the trajectory in (i)/(ii) can pierce the nearest established

”above”/”below” trajectory, since it is impossible due to RPM and ”self-similar” ξ-

evolution mechanisms.)

The first of the above requirements yields

dξ

dϕ
≤ dξBC

min

dϕ
(5.58)

where the left-hand side of (5.58) is to be calculated using the temperature decreasing

algorithm (5.53b) with the condition that ξ = ξBC
min at the instant that the derivative is

computed, i.e. at the arbitrary chosen point ϕ. Consequently one obtains

[ξmin(ϕ)− ξmin(ϕB)]
dξmax(ϕ)

dϕ
≤ [ξmax(ϕ)− ξmax(ϕB)]

dξmin(ϕ)

dϕ
∀ϕ > ϕB. (5.59)

In a similar fashion, requirement (ii) leads to

[ξmax(ϕC)− ξmax(ϕ)]
dξmin(ϕ)

dϕ
≤ [ξmin(ϕC)− ξmin(ϕ)]

dξmax(ϕ)

dϕ
∀ϕ < ϕC . (5.60)

(Note that due to definitions (5.53a), (5.53b) conditions (i) and (ii) are satisfied even

for ξmax(ϕB) = ξmax(ϕC) and ξmin(ϕB) = ξmin(ϕC).) For special choice (5.54) we get

(5.51) and (5.52).
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For practical purposes, we would like to find a system of hysteresis envelope functions

ξmin, ξmax to which experimentally obtained data could be fitted with respect to (A1)–

(A4+). Let (5.43),(5.44) and (5.45) hold and assume

∃ϕmin inf ∈ R :
dξmin(ϕ)

dϕ
is non-decreasing (continuous) function ∀ϕ < ϕmin inf

dξmin(ϕ)

dϕ
is non-increasing (continuous) function ∀ϕ ≥ ϕmin inf ,

(5.61)

∃ϕmax inf ∈ R :
dξmax(ϕ)

dϕ
is non-decreasing (continuous) function ∀ϕ < ϕmax inf

dξmin(ϕ)

dϕ
is non-increasing (continuous) function ∀ϕ ≥ ϕmax inf .

(5.62)

Experimentally obtained forms of envelope functions often well correspond to such type

of functions in SMAs. There can be more than one point satisfying condition (5.61) or

(5.62), but if so, then all such points form a line segment. Then we choose the greatest

number satisfying (5.61) and denote it by ϕmin inf and we choose the smallest number

satisfying (5.62) and denote it by ϕmax inf .

Not concerning possible internal relations between two return points establishing a

branch of hysteresis loop, we require conditions (5.60) and (5.59) would be satisfied for

each pair B, C:

ϕB, ϕC ∈ R, ξmin ≤ ξB ≤ ξC ≤ ξmax. (5.63)

In that case we will show it is sufficient to demand

ϕmax inf ≤ ϕmin s ∧ ϕmax s ≤ ϕmin inf . (5.64)

To prove that, we restrict ourselves to (5.60), the case (5.59) would be analogous.

Remember both sides in the inequality are non-negative according to definitions. First

let the left inequality in (5.46) hold. Then either

dξmin(ϕ)

dϕ
= 0, (5.65)

or

ξmax(ϕC)− ξmax(ϕ) = 0. (5.66)

But right-hand side of (5.60) is non-negative, which completes the proof. (Note we have

not even used (5.64).)

Now let us concern the right inequality in (5.46). If ϕ ≤ ϕmin s then (5.65) holds,

if ϕ ≥ ϕmax s then (5.66) holds (since ϕ < ϕC). For ϕ ∈ (ϕmin s, ϕmax s) let us convert

(5.60) to

ξmax(ϕC)− ξmax(ϕ)

ϕC − ϕ

dξmin(ϕ)

dϕ
≤ ξmin(ϕC)− ξmin(ϕ)

ϕC − ϕ

dξmax(ϕ)

dϕ
∀ϕ < ϕC (5.67)

and consider two possibilities
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(a) ϕC ≤ ϕmax s,

(b) ϕC > ϕmax s.

Let us arbitrary choose ϕ, denote ϕ∗. For the (a) case the mean value theorem may

be used. Since both ξmin, ξmax are assumed to be continuously differentiable functions

defined ∀ϕ ∈ R, there exist some mϕ,Mϕ so:

mϕ ∈ 〈ϕ∗, ϕC〉 ∧ dξmin(m
ϕ)

dϕ
=

ξmin(ϕC)− ξmin(ϕ
∗)

ϕC − ϕ∗
, (5.68)

Mϕ ∈ 〈ϕ∗, ϕC〉 ∧ dξmax(M
ϕ)

dϕ
=

ξmax(ϕC)− ξmax(ϕ
∗)

ϕC − ϕ∗
. (5.69)

Thus, we require

dξmax(M
ϕ)

dϕ

dξmin(ϕ
∗)

dϕ
≤ dξmin(m

ϕ)

dϕ

dξmax(ϕ
∗)

dϕ
(ϕ∗ < ϕC). (5.70)

Because ϕmax inf ≤ ϕmin s ≤ ϕ∗ < ϕC ≤ ϕmax s ≤ ϕmin inf and (5.61), (5.62), it holds

dξmin(ϕ
∗)

dϕ
≤ dξmin(m

ϕ)

dϕ
(5.71)

and
dξmax(M

ϕ)

dϕ
≤ dξmin(ϕ

∗)
dϕ

, (5.72)

which imply (5.70) (all terms non-negative) and therefore (5.60) are satisfied.

To finish the proof it remains to solve the (b) case. Let us find a point C ′ in ξ-ϕ

plane so that

ϕC′ = ϕmax s ∧ ξC′ = ξC (5.73)

(It is always a point inside the major loop.) Then

ξmin(ϕC′) ≥ ξmin(ϕC), ξmax(ϕC′) = ξmax(ϕC) (5.74)

Since minor loop with boundary points ϕ∗ and C ′ satisfies (5.60) due to previous in-

stance, it is possible to employ (5.74) and write

[ξmax(ϕC)− ξmax(ϕ
∗)]

dξmin(ϕ
∗)

dϕ
= [ξmax(ϕC′)− ξmax(ϕ

∗)]
dξmin(ϕ

∗)
dϕ

≤

≤ [ξmin(ϕC′)− ξmin(ϕ
∗)]

dξmax(ϕ
∗)

dϕ
≤ [ξmin(ϕC)− ξmin(ϕ

∗)]
dξmax(ϕ

∗)
dϕ

.
(5.75)

This concludes the whole proof.

To sum up, EDM introduced by (5.53a) and (5.53b) is a generalization of Duhem-

Madelung model introduced by Ivshin and Pence. EDM capture RPM effect, condition

[ξmin(ϕ)− ξmin(ϕL)]
dξmax(ϕ)

dϕ
≤ [ξmax(ϕ)− ξmax(ϕL)]

dξmin(ϕ)

dϕ
∀ϕ ∈ R (5.76)
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for any return point L (given by (5.21a), (5.21b)) and definitions (5.43)–(5.45) ensure

the physically based conditions (A1),(A2),(A3) and (A4+) are fulfilled. Note inequality

(5.76) includes both (5.59) and (5.60). We have also proven the condition (5.64) is

sufficient for a system of envelope functions (5.61), (5.62) to fulfil (5.76).

As an example lets consider the cosine function, which is usually regarded to best

fit the experimental data [5]. One of possible form of envelope functions is:

ξmin(ϕ) :=





0 ϕ ≤ ϕmin s,
1

2

[
cos

(
ϕ− ϕmin s

ϕmin f − ϕmin s

π + π

)
+ 1

]
ϕmin s < ϕ < ϕmin f ,

1 ϕ ≥ ϕmin f

(5.77)

ξmax(ϕ) :=





0 ϕ ≤ ϕmax f ,
1

2

[
cos

(
ϕ− ϕmax f

ϕmax s − ϕmax f

π + π

)
+ 1

]
ϕmax f < ϕ < ϕmax s,

1 ϕ ≥ ϕmax s

(5.78)

Both functions fulfil the requirements for ξmin, ξmax used in previous deliberations

provided (simple computation with respect to (5.64))

ϕmax s + ϕmax f

2
≤ ϕmin s ∧ ϕmin s + ϕmin f

2
≥ ϕmax s. (5.79)

So, that are the sufficient conditions for cosine envelope functions (5.77) and (5.78) to

respect (A1)–(A4+).

5.2.4 Inverse Problem Formulation; Existence and Uniqueness

of a Solution

Let us return to superelasticity model for non-negative stresses. Whereas the supere-

lasticity model computes time evolution of strain for prescribed stress and temperature

evolution, for implementation to finite element method code the formulation must be

converted to strain form, i.e. for input functions T (t), ε(t) we search for σ(t) in order

to satisfy (5.35). It leads to implicit relation

F (T (t), σ(t), ε(t)) = 0 (5.80)

with initial conditions

T (0) = Af ,

ε(0) = 0,

RP (0) = {[−∞, 0], [+∞, 1]}.
(5.81)

It is worth noting RPM mechanism depends on values of driving force ϕ(σ(τ), T (τ)) for

τ in the close neighborhood of the actual time t (see RPM mechanism (5.16), (5.17)).

Derivatives of volume fraction with respect to time (at actual time t) are

ξ̇ =
dξ

dϕ

(
σ̇

s
− Ṫ

)
, (5.82)
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ξ̇R =
dξA2R

dϕR

(
σ̇

sR
− Ṫ

)
. (5.83)

Employing (5.23a), (5.23b) one obtain either

ξ̇ = 0 if

(
σ̇

s
− Ṫ

)
= 0. (5.84)

or

ξ̇ =
ξ(tk)− ξ(tl)

ξA2M(ϕ(tk))− ξA2M(ϕ(tl))

dξA2M

dϕ︸ ︷︷ ︸
dξ
dϕ

(
σ̇

s
− Ṫ

)
if

(
σ̇

s
− Ṫ

)
> 0, (5.85)

ξ̇ =
ξ(tk)− ξ(tl)

ξM2A(ϕ(tk))− ξM2A(ϕ(tl))

dξM2A

dϕ︸ ︷︷ ︸
dξ
dϕ

(
σ̇

s
− Ṫ

)
if

(
σ̇

s
− Ṫ

)
< 0, (5.86)

Let us consider equation (5.35) and compute derivative of strain ε(t) with respect

to time. After some conversions we obtain:

ε̇ = σ̇

{
1

EA
+ ∆Sξ + ∆S

σ

s

dξ

dϕ
+ (1− ξ)

eR(σ)

sR

dξA2R

dϕR

+ (1− ξ)ξR deR(σ)

dσ
+

1

s

dξ

dϕ
[Λ− ξReR(σ)]

}

+Ṫ

[
∆Sσ

dξ

dϕ
+ (1− ξ)eR(σ)

dξA2R

dϕR
+

dξ

dϕ
[Λ− ξReR(σ)]

]
, (5.87)

where the sign of time-dependence, ”(t)”, was omitted for brief notation. We recall

definition (4.5)

∆S :=

(
1

EM
− 1

EA

)
. (5.88)

Let us show the value of the term in the curly brackets is always positive. Indeed,

one can employ previous definitions of functions and parameters to obtain:

EA, EM , s, sR, Λ, ΛR > 0, (5.89)

ξ(t), ξR(t) ∈ 〈0, 1〉, (5.90)

eR(σ(t)) ∈ 〈0, ΛR〉, (5.91)

deR

dσ
∈ 〈0, DeR〉 (5.92)

dξA2R

dϕR
∈ 〈0, DA2R〉, (5.93)

dξA2M

dϕ
∈ 〈0, DA2M〉, (5.94)
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dξM2A

dϕ
∈ 〈0, DM2A〉, (5.95)

where 0 < DeR, DA2R, DA2M , DM2A < +∞ are time-independent constants. Let us now

choose an arbitrary but fixed time θ ∈ R+ and consider time interval t ∈ 〈0, θ〉. Then

ε̇(t), Ṫ (t) ∈ C〈0, θ〉. (5.96)

And for time subinterval t ∈ 〈ti, tj〉, ti, tj ∈ R+, 0 < ti < tj < θ when no return point

is formed in (ti, tj) it is also
dξ

dϕ
∈ 〈0, DRP 〉, (5.97)

where constant 0 ≤ DRP < +∞ depends on values of martensite volume fraction at

RPs due to (5.84), (5.85), (5.86).

Next, following conditions on material parameters of SMA

EA ≥ EM ⇒ ∆S ≥ 0, (5.98)

Λ > ΛR ⇒ [Λ− ξReR(σ)] > 0. (5.99)

can be assumed to be satisfied due to physical properties of martensite, austenite and

R-phase (e.g. usually ΛR ≤ 1%, Λ ∼ 6-8%). Thus one can see in that case all the terms

in the curly brackets in (5.87) are always non-negative and the whole term is positive

(1/EA is positive) and it is possible to covert (5.87) to the form of first order ordinary

differential equation (ODE)

σ̇(t) = F̃ (t, σ(t)) :=
ε̇ + Ṫ f̃(t, σ(t))

g̃(t, σ(t))
, (5.100)

where f̃(t, σ(t)), g̃(t, σ(t)) are continuous functions (f̃ corresponds to the term in curly

brackets, g̃ to the term in large square brackets in (5.87)).

Since ε(t), T (t) ∈ C1〈0, +∞) we can find real constants bounding temperature and

strain derivatives, i.e. ∃C ε̇, C Ṫ < +∞ :

|ε̇(t)| ≤ C ε̇, |Ṫ (t)| ≤ C Ṫ , ∀t ∈ 〈0, θ〉 (5.101)

(This correspond to finite maximum driving speed in physical experiment.)

If we define auxiliary constant σm:

σm := − 1

2EA

s

∆S
(DRP )−1 if DRP > 0, (5.102)

σm := − 1

2EA

s

∆S
if DRP = 0. (5.103)

then σm < 0 and function (of one variable σ at fixed t) g̃(t, ·) is positive for every stress

σ ≥ σm.

Next, let us consider differential equation (5.100) at a time point t∗ ∈ (0, θ) with

initial condition σ(t∗) = σ∗, RP (t∗) given and fixed (no time evolution of RPs!) and
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prescribed ε(t∗), T (t∗). We further suppose the computational process is stopped when-

ever σ < 0 or σ = σpl ∈ R+, since then next evolution is not defined in the supere-

lasticity model (compression or plastic slip, see the yellow area in figure 5.1). Hence

0 ≤ σ∗ < σpl.

Collecting all mentioned properties of considered parameters and functions, it holds

• F̃ (t, σ) : Ω := 〈0, θ〉 × 〈σm, σpl〉 → R is continuous and bounded on a planar

domain Ω.

Indeed, ε̇(t), Ṫ (t), f̃(t, σ), g̃(t, σ) are defined and continuous on a closed set Ω and g̃(t, σ)

is positive there.

Employing Peano’s theorem in the form:

(PT) Let F̃ (t, y) be continuous function defined and bounded on a domain Ω of the

t-y-plane. Let initial condition [t0, y0] belong to the interior of Ω. Then there is

an h > 0 and a function y(t) continuously differentiable on |t− t0| < h such that

[t, y(t)] remains in Ω for |t− t0| < h and y(t) solves ordinary differential equation

ẏ = F̃ (t, y), with an initial condition y(t0) = y0.

one obtains existence of a solution of the problem with fixed set of return points (we

denote t0 = t∗, σ0 = σ∗).
Moreover, let us further assume

eR(σ) ∈ C2(R), ξA2R(ϕR), ξA2M(ϕ), ξM2A(ϕ) ∈ C2(R), (5.104)

where C2(R) denotes (space of) functions defined on real numbers with a continuous

second derivative. Then the first derivative of function F̃ is defined and continuous on

Ω and thus it holds

• F̃ (t, ·) is Lipschitz continuous function of variable σ on domain Ω.

(Recall differentiable functions on a closed set are Lipschitz continuous there.)

Now, let us recall Picard-Lindelöf theorem:

(PLT) Let F̃ (t, y) be bounded continuous function on a domain Ω of the t-y-plane and

satisfy a Lipschitz condition in variable y there. Let initial condition [t0, y0] belong

to the interior of Ω. Then there is an h > 0 and a unique function y(t) continuously

differentiable on |t − t0| < h such that [t, y(t)] remains in Ω for |t − t0| < h and

y(t) solves ODE ẏ = F̃ (t, y), y(t0) = y0.

Thus, (PLT) implies uniqueness of a solution of the problem with fixed RP set.

We can repeat all the arguments with a different set of return points RP fixed at

(0, θ) and prove the existence and uniqueness for such case. For t = 0 conditions of

(PLT) are not disrupted by expansion the domain Ω to a small time neighborhood of

t = 0, i.e. Ω = (−ε, θ〉 × 〈σm, σpl〉, ε > 0, if we define ε̇(t), Ṫ (t) ∀t ∈ (−ε, 0) to be

continuously differentiable (recall it holds ε̇(t), Ṫ (t) ∈ C1〈0, +∞〉, thus it is possible).
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If ϕ̇(t) = 0 at any time t ∈ (0, θ〉, process is stopped, conditions (5.16), (5.17) are

checked, return point set RP is upgraded if needed, and in that case computational

process starts with the same values of stress, temperature and strain, but with the new

RP set as initial conditions. It means solutions between return points are joined to

form the global solution at 〈0, θ〉. This global solution is continuous, but generally not

continuously differentiable in return points.

Finally, since time θ was chosen arbitrarily, we can expand the time interval to any

finite length and repeat the above procedures to obtain existence and uniqueness of

solution at that time interval (only constants C ε̇, C Ṫ are changing with θ in the proof).

Let us summarize. If conditions (5.98), (5.99) and (5.104) are satisfied, then there

exists one unique continuous solution of the problem (5.80) at 〈0, +∞〉 with initial

conditions (5.81).

5.2.5 Numerical Implementation and Comparison with Exper-

imental Results

In numerical implementation, we discretize prescribed time evolution of strain and

temperature to finite number of time points ti : 0 = t0 < t1 < . . . < ti < ti+1 < . . . <

tN = θ. At actual time point ti we suppose input parameters and solution are known,

i.e. ε(ti), T (ti), RP (ti), σ(ti)(⇒ ξ(ti)) are given, and strain and temperature increments

are prescribed, i.e. ε(ti+1), T (ti+1) are known. Then we search for a stress increment

∆σ in order to value σ(ti+1) = σi + ∆σ satisfies equation

ε(ti+1) = (1−ξ(ti+1))
σ(ti+1)

EA
+ξ(ti+1)

σ(ti+1)

EM
+Λ ξ(ti+1)+(1−ξ(ti+1))e

R(σ(ti+1))ξ
R(ti+1)

(5.105)

where ξ(ti+1) = ξ(σ(ti+1), T (ti+1), RP (ti), ξ(ti)). This implicit discrete relation is solved

iteratively by interior-reflective Newton method (minimization). After each step, the

algorithm checks if a change in driving force direction (sign ∆ϕ) has occurred. If so, a

new return point is formed provided the discretized form of above described conditions

(5.16), (5.17) for establishing a new RP are satisfied. If a hysteresis loop has been closed

in the step, then redundant RP are erased. Lastly, initial conditions are upgraded and

algorithm is prepared to compute a new step.

If time step is decreased, the discretization of input functions ε(t), T (t) and return

points localization are more precise, which leads to improvement of solution accuracy.

To formulate the total discretization error, the influence of ”wrong RP formation” must

be considered (”wrong formation” means a RP which is formed in discrete computation

is not formed in continuous computation process or vice versa). Generally, it can be

shown, the error depends on the actual number of RPs. If hysteretic loops are closed,

error of further stress evolution is lesser than before. Mathematical formulation and a

deeper numerical analysis is the subject of further research.

To fit the model to experimental data material parameters Af , E
A, EM , s, sR, Λ and

material functions eR(σ), ξA2M , ξM2A, ξA2R must be quantified. A possible way how to
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Figure 5.5: Comparison of results of an experiment and the model, internal loops.

Experimental data denoted by dashed line, modeled data denoted by red points.
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Figure 5.6: Comparison of results of an experiment and of the model, partial cycles.

Experimental data denoted by dashed line, modeled data denoted by red points.
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do so is described in the experimental part of section 5.3.

In figure 5.5 experimental results with computational model results are compared

for mechanical loading at constant temperature. The major loop of the model was fitted

to the major loop in the experiment and suitable values of coefficients kA2M , kM2A were

chosen in order to fit the internal loops. As can be seen, some experimental internal

loops slightly violate the return point memory, which is probably caused by difficulties

in evacuating or absorbing the transformation latent heat during the experiment. Some

variations of experimental data in the austenite elastic range (low stress) indicate the

wire undergoes process of training during cycling.

Based on the previous data fit, several partial cycles at constant temperature were

modeled. Comparison with experimental results is in figure 5.6. Evidently, modeled

partial cycles are in a very good agreement with experimental ones.

5.3 Pseudoplasticity Model

5.3.1 Physical Model

Now let us consider the part of σ-T plane, where σ ≥ 0, see figure 5.7. A new effect

that must be further implemented in the algorithm is martensite reorientation pro-

cesses (described in section 2.2). From a macroscopic point of view, reorientation is

demonstrated by the fact, the transformation strain of an element of martensite (until

it is transformed to austenite) depends on the value of the maximum stress to which it

was subjected. This leads to hysteretic behavior of transformation strain. The critical

stress required for full reorientation of martensite σre is assumed to be independent on

temperature.

5.3.2 Algorithm

Since following algorithm is an extension of the previous one, definitions of driving

force ϕ+(t), variables ξ+(t), RP+(t), material parameters, RPM mechanism and ξ+(t)

evolution mechanism do not differ from superelasticity model in tension and will not

be repeated here. (Just change ϕ to ϕ+, ξ to ξ+ and RP to RP+ in definitions and

equations.) A new internal variable representing transformation strain is defined in

order to include reorientation processes:

ε+(t, ζ) a real function of two variables representing the evolution of (non-

negative) transformation strain of tensile martensite,

ε+(t, ζ) : R+
0 × I → R+

0 .

We assume each infinitesimal amount of martensite ”remembers” the maximum

stress to which it has been subjected since it was formed. This stress determines the

transformation strain of this element, which is experimentally demonstrated by different

transformation strain for martensite formed at different stress. Whenever an element

of martensite is exposed to stress σ∗ grater than the maximum stress in its own history,

74



σ

0 TMsMf As AfRf Rs

σpl

−σpl

σre

−σre

M

M

A

A

M
←

A

M
→

A

M
←

A

M
→

A

R← A

R← A
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it is being ”oriented” and finally increases its transformation strain up to e+(σ∗). If

imposed stress is decreased afterwards, transformation strain of this element does not

change until it is transformed back to austenite.

Transformation strain of martensite formed at constant stress (i.e. at thermally

induced transition) σ is described by input function e+(σ), which can be obtained

experimentally. If σ > σre, martensite is fully oriented and transformation strain is

maximal, if σ = 0, self-accommodating (twinned) martensite is formed and macro-

scopical transformation strain equals zero, see section 2.2. (Let us note for materials

undergoing process of training, not considered in this work, described strains could

develop during training.) Thus function e+(σ) is assumed to fulfil following conditions:

e+(σ) : R→ R+
0 is a non-decreasing continuously differentiable function,

e+(σ) = 0 if σ ≤ 0,

e+(σ) = Λ+ if σ > σre,

(5.106)

where positive constant Λ+ represents already introduced maximum strain in tension.

We introduce RPM effect in reorientation processes due to ”last in, first out” rule.

Algorithm ”remembers” sequence in which the martensite increments has been formed
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and when driving force ϕ+ decreases, they are removed in the reverse order. (Detailed

description of algorithm in the next paragraph will make the mechanism clearer.)

The evolution of the function ε+(t, ζ) is determined by function e+(σ) and a reori-

entation mechanism. Next, the evolution of ε+(t, ζ) is described. Because this function

is discontinuous in variables t, ζ, we introduce an infinitesimal increment of time dt and

define infinitesimal time increment of real function x(t) at time t as

dx = dx(t) := x(t + dt)− x(t). (5.107)

This help us to clearly demonstrate the idea of the reorientation mechanism.

Time increment of ε+(t, ζ) depends on increments of volume fraction dξ and stress

dσ (driving force for reorientation), therefore we distinct four possibilities of evolution

depicted (in discretization case) in figure 5.8 and described in following list. Let us

note, we suppose the same initial conditions as in previous algorithm, i.e. relations

(5.36) and

ε+(0, ζ) = 0 ∀ ζ ∈ I. (5.108)

1. Martensite volume fraction is non-decreasing, stress is increasing

(dξ+ ≥ 0, dσ > 0):

Value of strain function of formed martensite is equal to e+(σ(t+dt)). Martensite

elements with lower transformation strain increase this strain up to e+(σ(t+dt)):

ε+(t + dt, ζ) =





max{ε+(t, ζ), e+(σ(t + dt))} ζ ∈ 〈0, ξ+(t)〉
e+(σ(t + dt)) ζ ∈ (ξ+(t), ξ+(t + dt)〉
0 ζ ∈ (ξ+(t + dt), 1〉

(5.109)

2. Martensite volume fraction is non-decreasing, stress is non-increasing

(dξ+ ≥ 0, dσ ≤ 0):

Since stress is non-increasing, previously formed martensite is not reoriented, its

strain remains unchanged and value of strain function of formed martensite is

uniquely determined by e+(σ). Thus:

ε+(t + dt, ζ) =





ε+(t, ζ) ζ ∈ 〈0, ξ+(t)〉
e+(σ(t + dt)) ζ ∈ (ξ+(t), ξ+(t + dt)〉
0 ζ ∈ (ξ+(t + dt), 1〉

(5.110)

3. Martensite volume fraction is decreasing, stress is non-increasing

(dξ+ < 0, dσ ≤ 0):

Stress is decreasing, no reorientation process occurs, thus:

ε+(t + dt, ζ) =

{
ε+(t, ζ) ζ ∈ 〈0, ξ+(t + dt)〉
0 ζ ∈ (ξ+(t + dt), 1〉 (5.111)
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Figure 5.8: Four possible cases of ε+ evolution before and after a time step, discrete

approach. ξi/ξf is the initial/final value of martensite volume fraction, e+(σf) denotes

value of function e+(σ) at the final value of stress σf . Function ε+(t, ζ) before/after

time step is marked with black/red line. Pictures correspond in turn to cases 1, 2, 3, 4.

4. Martensite volume fraction is decreasing, stress is increasing

(dξ+ < 0, dσ > 0):

Martensite elements with lower transformation strain (which have not transformed

to austenite) increase this strain up to e+(σ(t + dt)):

ε+(t + dt, ζ) =

{
max{ε+(t, ζ), e+(σ(t + dt))} ζ ∈ 〈0, ξ+(t + dt)〉
0 ζ ∈ (ξ+(t + dt), 1〉 (5.112)

All cases in a more compact notation:

ε+(t + dt, ζ) =





max{ε+(t, ζ), e+(σ(t + dt))} ζ ∈ 〈0, min{ξ+(t), ξ+(t + dt)}〉
e+(σ(t + dt)) ζ ∈ (ξ+(t), ξ+(t + dt)〉
0 ζ ∈ (ξ+(t + dt), 1〉

(5.113)

where we define

a, b ∈ R : a ≥ b ⇒ (a, b〉 = ∅.
It is worth noting if martensite is formed at σ > σre then it is never ”oriented” by the

algorithm and the mechanism is equivalent to superelasticity algorithm.
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Note also, for any fixed time t∗ the function of one variable ε+
t∗(ζ) := ε+(t∗, ·), ζ ∈ I

is non-increasing and discontinuous. (For proof of the first property use contradiction

and recall ∀ζ ∈ I : ε+(0, ζ) = 0 at the beginning of computational process.)

The total transformation strain is a sum of transformation strains determined for

each martensitic element by function ε+(t + dt, ζ). Mathematically expressed:

εtr+(t) =

1∫

0

ε+(t, ζ) dζ. (5.114)

From the physical point of view, it is important, that the function εtr+(t), representing

strain, is a continuous function, which is due to above described reorientation mecha-

nism.

The slightly changed constitutive equation (5.35) can be written now:

ε(t) = (1− ξ+(t))
σ(t)

EA
+ ξ+(t)

σ(t)

EM
+ (1− ξ+(t))eR(σ(t))ξR(t) + εtr+(t) (5.115)

Let us recall again ξ(t) = ξ(σ(t), T (t), history(t)) and ξR(t) = ξR(σ(t), T (t)), where the

parameter history(t) is represented by the set of RPs and the actual value of ξ+(t).

Following similar procedures as in subsection 5.2.4 we can obtain differential equa-

tion in the form

σ̇(t)2h̄(t, σ(t), sign ϕ̇(t))Θ(σ̇(t)) + σ̇(t)ḡ(t, σ(t))− Ṫ (t)f̄(t, σ(t))− ε̇(t) = 0, (5.116)

where f̄(t, σ(t)), ḡ(t, σ(t)) are stress dependent functions, h̄(t, σ(t), sign ϕ̇(t)) depends

also on signum of driving force time derivative and Heaviside step function Θ : R →
{0, 1} is defined as follows

Θ(x) :=

{
0 x < 0,

1 x ≥ 0.
(5.117)

The first term in the equation corresponds to reorientation process. Properties of this

differential equation, also existence and uniqueness of a solution of the inverse problem

are subjects of further research.

5.3.3 Numerical Implementation and Comparison with Exper-

imental Results

In numerical discretization we follow the procedure described in the superelasticity

model. Function ε+(t, ζ) must be discretized also in variable ζ.

Now let us briefly describe the procedure enabling us to determine material param-

eters Af , E
A, EM , s, sR and material functions eR(σ), e+(σ), ξA2M , ξM2A, ξA2R.

In described case, no R-phase transition has occurred during thermomechanical

loading, which makes analysis easier. Experimentally, several thermal tests at constant

load and mechanical (stress-strain) test at constant temperature were performed. As
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Figure 5.9: Experimental curves and interpolated strain surface.
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Figure 5.10: Fitted minimum strain surface.
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Figure 5.11: Isocurves of the minimum strain surface (values in percent). The criti-

cal transformation slope is tangent of the angle between dashed line (linear fit) and

temperature axis.

a result one obtains several pairs of curves, one in a pair for forward and one for

reverse martensitic transformation. For forward transition, each point in σ-T plane

can be assigned a value of the strain the material element has, if its initial strain at

T = Af , σ = 0 equals zero and the point is achieved by a thermomechanical loading

under monotonous driving force (so no RP has been formed during the loading). In

other words, it can be assigned the minimum strain of the material element at that

point. Values of minimum strain forms the ”minimum strain surface”, εmin(σ, T ). All

curves for the forward transition are ”slices” of the minimum strain surface in the

stress-strain-temperature space.

In the first approximation we can neglect the contribution of elasticity and R-phase

transition strain to the total strain with respect to martensite transformation strain

in equation (5.115) for points in superelasticity part of σ-T space near the critical

transformation stresses (then εel ∼ 0.5%, ΛR ∼ 1%, Λ ∼ 6-8%). In that case values

of total strain are approximately linearly proportional to martensite volume fraction,

since εmin = ε ∼ Λξ. The contour map of strain surface is thus a map of ϕ isocurves

due to ξ(ϕ) dependence at superelasticity area.

The experimental curves (”slices” of strain surfaces) were fitted to obtain the mini-

mum strain surface. In a fitting procedure values σ, T, ε are prescribed by experiment

and we search for the material parameters and functions in order to satisfy (5.115).
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Figure 5.12: Comparison of results of an experiment and of the model, pseudoplastic

cycle at 30 ◦C. Experimental data denoted by dashed line, modeled data denoted by

red line.
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Figure 5.13: Comparison of results of an experiment and of the model, pseudoplas-

tic cycle with internal subloop at 60 ◦C. Experimental data denoted by dashed line,

modeled data denoted by red line.
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Figure 5.14: Comparison of results of an experiment and of the model, pseudoplastic

cycle at 90 ◦C. Experimental data denoted by dashed line, modeled data denoted by

red line.

Hence, we obtain material parameters and functions of a specimen except ξM2A, Af .

Function ξM2A can be determined from unloading paths, after rescaling this function

also determines temperature Af .

The experimental curves (thick blue lines) and interpolated strains are depicted in

figure 5.9. The fitted minimum transformation surface is in figure 5.10. As can be seen

in figure 5.11, the ϕ isocurves of fitted surface approximately correspond to be parallel

lines with critical transformation slope supposed by Clausius-Clapeyron equation for

higher temperatures (superelasticity area), whereas they tend to be temperature inde-

pendent at lower temperatures which correspond to presence of martensite reorientation

process.

As mentioned above, R-phase is not present in studied type of NiTiNOL wire. For

evaluation of functions eR(σ), ξA2R it is important to strictly distinguish the area, where

R-phase is present. Resistivity measurements and neutron diffraction are very helpful

techniques [9]. Then the approach would be similar to the described one.

The obvious advantage of fitting approach compared to separate finding out the

parameters (literature, single specialized measurements) is that the values reflect the

real experimental data for concrete type of wire. A disadvantage is that more experi-

ments are needed. Results of experimental and modeled data of thermal cycles at some

temperatures are in figures 5.12, 5.13 and 5.14. Discrepancies occurring at reverse

transitions are probably due to inaccurate fit of ξM2A function.
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5.4 Thermomechanical Model

Next natural step is to expand pseudoplasticity-superelasticity model to negative values

of stress. But, in contrast to the case of superelasticity model, tensile and compressive

martensite may coexist and interact for σ ∈ (−σre, σre) and T < Af . The extension of

just described algorithm is thus not straightforward. A possible way is sketched in this

section, but the model is still under construction.

5.4.1 Physical Model

The phase diagram for this model is depicted in figure 5.15, main considered mech-

anisms are martensitic and R-phase transformations and reorientation process. σ-T

plane is divided into three main regions, where austenite phase (denoted by ’A’) or

tensile martensite phase (’M+’) or compressive martensite phase (’M−’) exists. The

critical transformation stress required for forward and reverse transformations depends

on temperature and thus strips separate these regions. The new physical phenomena

is transformation between tensile and compressive martensite. This transformation oc-
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curs in the stress interval 〈−σre, σre〉 and leads to existence of tensile martensite in

compression and compressive martensite in tension. In compression tensile marten-

site disappears at stress level −σre at low temperatures or at critical transformation

stress line prolonged from temperature Af to negative values of stress as drawn in figure

5.15. Similarly, in tension compressive martensite disappears at stress level σre or when

prolongation of critical transformation stress line from Af to positive σ half-space is

reached.

5.4.2 Algorithm

The algorithm can be divided to three parts similarly to tension-compression superelas-

ticity model. The first two are quite mutually independent subalgorithms describing the

evolution of transformation strain of tensional and compressive martensite, respectively.

In the last part algorithm computes evolution of volume fraction and transformation

strain of R-phase, analyzes results and evaluate total volume fraction of martensite and

total strain of material. To make the algorithm more lucid, all internal variables and

parameters are summarized.

Let us introduce new driving forces for martensitic transition

ϕ+(σ(t), T (t)) :=

[
σ(t)

s+
− (T (t)− Af)

]
f+(σ(t)), (5.118)

ϕ−(σ(t), T (t)) :=

[
σ(t)

s−
− (T (t)− Af)

]
f−(σ(t)), (5.119)

where real functions f+(σ), f−(σ) fulfil following conditions:

f+(σ) : R→ I is a non-decreasing continuously differentiable function,

f+(σ) = 0 if σ ≤ −σre,

f+(σ) = 1 if σ ≥ 0,

(5.120)

f−(σ) : R→ I is a non-increasing continuously differentiable function,

f−(σ) = 0 if σ ≥ σre,

f−(σ) = 1 if σ ≤ 0,

(5.121)

These additional functions were introduced in an effort to capture presence of ten-

sile martensite under compression (and compressive martensite under tension). Low

temperature stress induced formation of one type of martensite and simultaneous dis-

appearing of the other one could be considered as a transformation with no (negli-

gible) entropy change. With respect to this physical motivation, we define ∆s = 0

in (3.113) and obtain dσ/dT = 0, which confirms temperature independence of σre.

In summary, tensile/compressive martensite disappears when critical stresses given by

Clausius-Clapeyron equation or reorientation stresses −σre/σre are attained. Introduc-

tion of function f+/f− reflects both limiting cases.

An example of isocurves of driving forces ϕ+, ϕ− (curves linking the points with the

same value of driving force) in σ-T space is depicted in figure 5.16.
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Figure 5.16: An example of some possible isocurves of driving forces ϕ+ (red lines) and

ϕ− (blue lines) in σ-T space. Mt denotes tensile martensite, Mc denotes compressive

martensite.

Next, we summarize internal variables for the first subalgorithm:

ξ+(t) a real function representing tensile martensite,

ξ+(t) : R→ I

RP+(t) a set of ordered pair of real variables representing set of return points

in evolution of tensile martensite,

RP+(t) := {[ϕ+(t1), ξ
+(t1)], [ϕ

+(t2), ξ
+(t2)], .., [ϕ

+(tn), ξ+(tn)];

ϕ+(ti) ∈ R, ξ+(ti) ∈ I, 0 ≤ ti < t, ∀ i = 1, 2, .., n+(t) ∈ N, n+(t) ≥ 2}
ε+(t, ζ) a real function of two variables representing the evolution of (non-

negative) transformation strain of tensile martensite,

ε+(t, ζ) : R+
0 × I → R+

0 .

and in a similar way for the second subalgorithm:

ξ−(t) a real variable representing compressive martensite,

ξ− : R→ I

RP−(t) a set of real variables representing set of return points in evolution of

compressive martensite,

RP−(t) := {[ϕ−(t1), ξ
−(t1)], [ϕ

−(t2), ξ
−(t2)], .., [ϕ

−(tn), ξ−(tn)];

ϕ−(ti) ∈ R, ξ−(ti) ∈ I, 0 ≤ ti < t, ∀ i = 1, 2, .., n−(t) ∈ N, n−(t) ≥ 2}
ε−(t, ζ) a real function of two variables representing the evolution of (non-

positive) transformation strain of compressive martensite,

ε−(t, ζ) : R+
0 × I → R−0 .
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Transformation strain of martensite created at constant stress σ is described by two

input functions e+(σ) and e−(σ) in the model, for tensile and compressive martensite,

respectively. These functions are supposed to fulfil following conditions:

e+(σ) : R→ R+
0 is a non-decreasing continuously differentiable function,

e+(σ) = 0 if σ ≤ 0,

e+(σ) = Λ+ if σ > σre,

(5.122)

e−(σ) : R→ R−0 is a non-increasing continuously differentiable function,

e−(σ) = 0 if σ ≥ 0,

e−(σ) = Λ− if σ < −σre.

(5.123)

For R-phase transition it has already been introduced

eR(σ) : R→ R+
0 is a non-decreasing continuously differentiable function,

eR(σ) = −eR(−σ) ∀σ ∈ R,

eR(σ) = ΛR if σ > σRre.

(5.124)

Constants Λ+, Λ− and ΛR represent the maximum strain of martensite in tension, com-

pression and R-phase, respectively. Functions e+, e−, eR can be obtained experimentally

(thermal lading at constant stress).

Recapitulation of material parameters:

Af real constant, martensite to austenite transition finish temperature

EM real constant, Young’s elastic modulus of martensite

EA real constant, Young’s elastic modulus of austenite

s+ real constant, critical martensitic transformation slope (tension)

s− real constant, critical martensitic transformation slope (compression)

sR real constant, critical R-phase transformation slope

e+(σ) real function, transformation strain evolution for tensile martensite

e−(σ) real function, transformation strain evolution for compressive marten-

site

eR(σ) real function, transformation strain of R-phase transformation

f+(σ) real function, tensile to compressive martensite transformation

f−(σ) real function, compressive to tensile martensite transformation

ξM2A(ϕ) real function, completed martensite to austenite transition

ξA2M(ϕ) real function, completed austenite to martensite transition

ξA2R(ϕ) real function, completed austenite to R-phase transition

Functions are more specified above. Note transformation temperatures and maxi-

mum transformation strains are implicitly hidden in functions ξA2M(ϕ), ξM2A(ϕ), ξA2R(ϕ)

and e+, e−, eR.

Lastly, recapitulation of input functions

σ(t) : R+
0 → R, σ(t) ∈ C1(R+

0 ), (must satisfy σ(0) = 0),

T (t) : R+
0 → R+, T (t) ∈ C1(R+

0 ), (must satisfy T (0) = Af),
(5.125)
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and initial conditions:

T (0) = Af ,

σ(0) = 0,

RP+f(0) = {[+∞, 1]},
RP+r(0) = {[−∞, 0]},
RP−f(0) = {[+∞, 1]},
RP−r(0) = {[−∞, 0]},
ε+(0, ζ) = 0 ∀ζ ∈ I,

ε−(0, ζ) = 0 ∀ζ ∈ I.

(5.126)

The evolution of the functions ε+(t, ζ) was described in previous section, the evolu-

tion of ε−(t, ζ) is determined by function e−(σ) and ”reorientation mechanism” fairly

similarly to ε+(t, ζ). Time increment of ε−(t, ζ) depends on increments of functions

ξ−(t) and σ(t), therefore we distinct four possible cases (keep in mind the transforma-

tion strain is non-positive now):

1. Compressive martensite function is non-decreasing, stress is non-decreasing

(dξ− ≥ 0, dσ ≥ 0):

Since stress is non-decreasing, no reorientation process is involved and value of

strain function of formed martensite is uniquely determined by e−(σ). Thus:

ε−(t + dt, ζ) =





ε−(t, ζ) ζ ∈ 〈0, ξ−(t)〉
e−(σ(t + dt)) ζ ∈ (ξ−(t), ξ−t + dt〉
0 ζ ∈ (ξ−t + dt, 1〉

(5.127)

2. Compressive martensite function is non-decreasing, stress is decreasing

(dξ− ≥ 0, dσ < 0):

Value of strain function of formed martensite is equal to e−(σ(t+dt)). Martensite

elements with higher transformation strain decrease their transformation strain

up to e−(σ(t + dt)):

ε−(t + dt, ζ) =





min{ε−(t, ζ), e−(σ(t + dt))} ζ ∈ 〈0, ξ−(t)〉
e−(σ(t + dt)) ζ ∈ (ξ−(t), ξ−(t + dt)〉
0 ζ ∈ (ξ−(t + dt), 1〉

(5.128)

3. Compressive martensite function is decreasing, stress is decreasing

(dξ− < 0, dσ < 0):

Martensite elements with higher transformation strain (which have not trans-

formed to austenite) decrease their transformation strain down to e−(σ(t + dt)):

ε−(t + dt, ζ) =

{
min{ε−(t, ζ), e−(σ(t + dt))} ζ ∈ 〈0, ξ−(t + dt)〉
0 ζ ∈ (ξ−(t + dt), 1〉 (5.129)
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4. Compressive martensite function is decreasing, stress is non-decreasing

(dξ− < 0, dσ ≥ 0):

Stress is non-decreasing, no reorientation process occurs, thus:

ε−(t + dt, ζ) =

{
ε−(t, ζ) ζ ∈ 〈0, ξ−(t + dt)〉
0 ζ ∈ (ξ−(t + dt), 1〉 (5.130)

Recapitulation (in a more compact form):

ε−(t + dt, ζ) =





min{ε−(t, ζ), e−(σ(t + dt))} ζ ∈ 〈0, min{ξ−(t), ξ−(t + dt)}〉
e−(σ(t + dt)) ζ ∈ (ξ−(t), ξ−(t + dt)〉
0 ζ ∈ (ξ−(t + dt), 1〉

(5.131)

and

ε+(t + dt, ζ) =





max{ε+(t, ζ), e+(σ(t + dt))} ζ ∈ 〈0, min{ξ+(t), ξ+(t + dt)}〉
e+(σ(t + dt)) ζ ∈ (ξ+(t), ξ+(t + dt)〉
0 ζ ∈ (ξ+(t + dt), 1〉

(5.132)

Lastly, note again the evolution of variables representing tensile and compressive

martensite is mutually independent in this algorithm, since there is no interaction

between variables, driving forces or RPs of both subalgorithms.

Inspired by tension-compression superelastic model we define

ξ(t) = ξ(σ(t), T (t), history(t)) := max(ξ+(t), ξ−(t)) (5.133)

and

ε(t) = (1− ξ(t))
σ(t)

EA
+ ξ(t)

σ(t)

EM
+ εtr+(t) + εtr−(t) + (1− ξ(t))εtrR(t) (5.134)

where terms contributing to total strain are

εtrR(t) = ξR(|σ(t)|, T (t))eR(σ(t)), (5.135)

εtr+(t) =

1∫

0

ε+(t, ζ) dζ, (5.136)

εtr−(t) =

1∫

0

ε−(t, ζ) dζ. (5.137)

Since tensile and compressive martensite can coexist and interact, definition (5.133)

is useful but lack physical meaning in some possible thermodynamic states. However,

more precise determination of martensite volume fraction could be obtained in parallel

algorithm, which determines ”true” driving forces

ϕ+
true(t) =

σ(t)

s+
− T (t)
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ϕ−true(t) =
σ(t)

s−
− T (t)

and computes martensite volume fractions ξ+
true(t) and ξ−true(t) due to equations (5.23a)

and (5.23b) with ϕ(t) replaced by ϕ+
true(t) and ϕ+

true(t), respectively.

The ”true” martensite volume fraction representing the real volume fraction of

martensite present in the system may be then determined as:

ξtrue(t) := max{ξ+(t), ξ−(t)}. (5.138)

5.4.3 Numerical Implementation and Comparison with Exper-

imental Results

Since the complexity of considered processes requires deeper physical analysis, the pro-

posed model must be considered as a first attempt to fulfil requirements set in section

5.1. Also mathematical formulation and numerical analysis are to be further developed.
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Chapter 6

Conclusions

Let us summarize this thesis.

• The reversible martensitic phase transition was introduced, shape memory ef-

fects were extensively described and some specific properties of NiTiNOL were

mentioned.

• The basics of extended non-equilibrium thermodynamics were outlined. The sec-

ond law of thermodynamics was employed to obtain non-equilibrium entropy of

mixtures, which was then applied to find the constitutive relation for homogenous

isotropic thermo-visco-elastic material of Hookean type. Also, Clausius-Clapeyron

equation for a solid-to-solid martensitic phase transition was derived.

• Shape memory effects modelling approaches were summarized and some one-

dimensional SMEs models were discussed with respect to the general thermo-

dynamic framework.

• A new phenomenological model was introduced. The model, developed at the

AS CR and called iRLOOP, was mathematically formalized, each stage of devel-

opment was described in detail. The pseudoplasticity model is capable to simu-

late superelasticity, R-phase transition, cyclic isothermal loading with incomplete

martensitic phase transition, return point memory effect, pseudoplasticity, reori-

entation process and thus also one-way SME, all in the case of tensional loading

of a NiTiNOL wire.

• The Duhem-Madelung model of hysteresis was extended with respect to the re-

turn point memory effect and restrictions on functions forming the hysteresis

major loop (fitting functions of the model) were derived from the second law of

thermodynamics.

• Employing Picard-Lindelöf theorem the existence and uniqueness of the solution

of an initial problem were proven in the case of superelasticity model.
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• A possible fitting procedure for material parameters were described and experi-

mental results were compared with results of pseudoplasticity model implemented

to MATLAB programming language.

• A possible way how to involve the majority of shape memory effects and their in-

teractions in a complex thermomechanical tension-compression model was sketched

(plasticity, training and ageing not covered).
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[36] Šittner, P., Stalmans, R., Tokuda, M.: An Algorithm for Prediction of the Hys-

teretic Responses of Shape Memory Alloys, Smart Mater. Struct. 9 (2000), 452-465.
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