
Univerzita Karlova v Praze
Matematicko-fyzikálńı fakulta

Diplomová práce

Martin Mrázik

Scripting of Common Information Model

Katedra softwarového inženýrstv́ı

Vedoućı diplomové práce: RNDr. Stanislav Vǐsňovský, Ph.D.

Studijńı program: Informatika

I would like to thank my supervisor, RNDr. Stanislav Vǐsňovský, Ph.D., who
made this thesis possible.

Prohlašuji, že jsem svou diplomovou práci napsal samostatně a výhradně s
použit́ım citovaných pramen̊u. Souhlaśım se zap̊ujčováńım práce.

V Praze dne 10. 8. 2007 Martin Mrázik

1

Contents

1 Introduction 5
1.1 Common Information Model . 5

1.1.1 CIM Specification . 7
1.1.2 CIM Schema . 10

1.2 Web Based Enterprise Management 12
1.3 Goals . 14
1.4 Structure of This Work . 15

2 Scripting of CIM 17
2.1 Related Works . 17

2.1.1 Windows Management Instrumentation 17
2.1.2 pywbem . 19
2.1.3 SBLIM . 20
2.1.4 Other Projects . 23

2.2 Scripting Language . 24
2.3 Selected Python Features . 25

3 Mapping CIM to Python 30
3.1 Classes . 30
3.2 Properties . 34
3.3 Methods . 35
3.4 Qualifiers . 38

3.4.1 Generic Qualifiers . 41
3.4.2 Qualifiers Specific for Classes 43
3.4.3 Property, Parameter and Method Qualifiers 45

3.5 Intrinsic Data Types . 51

4 Implementation 52
4.1 High-level Overview . 52

4.1.1 WBEMConnection and its Subclasses 53
4.1.2 CIMClass and ResultContainer 55
4.1.3 WBEMFactory and ClassFactory 57
4.1.4 Qualifier and Property . 61

2

4.1.5 SelfReprType and EncapsulateCIMErrorType 61
4.2 Extrinsic Methods . 62
4.3 Logging and Debugging . 63
4.4 API Documentation . 64
4.5 Unit Tests . 64
4.6 Integration With IPython . 65

5 Summary 67
5.1 Open Issues and Future Work . 69

A PowerCIM Examples 71
A.1 Start/Stop Services – Thick Client 71
A.2 AppArmor Security Event Notification 74

B Default Logging Configuration 78

C IPython configuration 80
C.1 ipythonrc . 80
C.2 powerCIM-magic.py . 81

D PowerCIM DVD 82

3

Title: Scripting of Common Information Model

Author: Martin Mrázik

Department: Department of Software Engineering

Supervisor: RNDr. Stanislav Vǐsňovský, Ph.D.

Supervisor’s e-mail address: visnov@suse.cz

Abstract: This work investigates how system management applications could be rapidly de-
veloped with management protocols defined by Distributed Management Task Force
(DMTF) and open-source programming languages. The focus is on Common Information
Model (CIM), Web Based Enterprise Management (WBEM) and scripting languages.
CIM and WBEM are briefly described and the basic terminology of these standards
and their infrastructure is introduced. Goals such as object-oriented mapping, shell
enablement or generating documentation for CIM classes are discussed.
Similar work in this area with their strengths and weaknesses are covered. Requirements
for a scripting language are stated and Python is selected for this work with a discussion
of some of its more interesting features. Later, Python mapping of Common Information
Model is defined with the focus on Python features and conventions.
As a proof of concept a prototype mapping (called powerCIM) is implemented and a
few examples of management scripts are provided demonstrating the synergy with other
open-source projects and libraries such as IPython or PyQt.

Keywords: System Management, WBEM, CIM, Python.

Název práce: Scripting of Common Information Model

Autor: Martin Mrázik

Katedra (ústav): Katedra softwarového inženýrstv́ı

Vedoućı diplomové práce: RNDr. Stanislav Vǐsňovský, Ph.D.

e-mail vedoućıho: visnov@suse.cz

Abstrakt: Tato práce zkoumá možnosti rychlého vývoje aplikaćı použit́ım protokol̊u defino-
vaných sdružeńım “Distributed Management Task Force” a použit́ım programovaćıch
jazyk̊u ze světa otevřeného software. Je zaměřena hlavně na protokoly “Common In-
formation Model” (CIM), “Web Based Enterprise Management” (WBEM) a skriptovaćı
programovaćı jazyky.
Standardy CIM a WBEM jsou stručně popsány a čtenář je seznámen se základńı termi-
nologíı těchto standard̊u a s jejich infrastrukturou. Jsou definovány ćıle jako objektově-
orientované mapováńı, generováńı dokumentace nebo podpora pro interaktivńı konzoli.
Probrány jsou souvisej́ıćı práce v dané oblasti s rozborem jejich silných a slabých stránek.
Jsou definovány požadavky na skriptovaćı jazyk. Je vybrán jazyk Python a jsou uvedeny
některé jeho zaj́ımavé vlastnosti. Později je definováno mapováńı standardu “Common
Information Model” do jazyka Python se zaměřeńım na jeho vlastnosti a konvence.
V jazyku Python je naimplementováno prototypové řešeńı (nazvané powerCIM) spolu
s několika ukázkami skript̊u, ktoré zároveň demonstruj́ı synergický efekt této práce a
daľśıch projekt̊u ze světa otevřeného software jako např́ıklad IPython nebo PyQt.

Kĺıčová slova: System Management, WBEM, CIM, Python.

4

Chapter 1

Introduction

The complexity of large, geographically distributed, heterogeneous network (dif-
ferent architectures and operating systems, wide range of peripherals) poses many
challenges for businesses relying on this infrastructure. In such computing envi-
ronment a lot of resources are required for maintenance, upgrades, patching, sys-
tem monitoring and similar tasks. To make these tasks easier industry standards
such as Simple Network Management Protocol (SNMP) or Common Information
Model (CIM) has arisen, addressing this specific problem.

In the late 1990s Distributed Management Task Force1 defined two closely
related standards – Common Information Model (CIM) and Web Based Enter-
prise Management (WBEM). CIM/WBEM is currently being adopted by many
enterprises and its importance is growing. This work is focused on this set of
standards.

1.1 Common Information Model

Common Information Model provides object oriented tool-set to model entities
being managed (e.g. network services, applications, servers etc). This tool-set
is based on Unified Modeling Language2 (UML) and thus the basic constructs
will be familiar to many developers (according to Methods & Tools around 50%
of software development organizations has totally or partially adopted the UML
techniques [37]). CIM also provides a modeling language based on Interface
Definition Language (IDL) called Managed Object Format (MOF) which will be
discussed in Section 1.1.1.

Suppose we have two physical servers (A, B) both running different operating
systems. These operating systems provide virtualization services and both are
running several virtual machines on top of them. CIM enables us to model

1http://www.dmtf.org
2http://www.uml.org

5

these entities (also called managed elements), their services and relationships in
a hierarchical fashion.

In this example we want to model the following managed elements:

• generic operating system

• hosting operating system with virtualization capabilities (running on server
A and B)

In CIM, managed elements are modeled as classes and it is possible to use
standard OOP constructs such as inheritance, for modeling the systems. In this
example “generic operating system” will serve as a base-class for more specific
operating system – an operating system that provides virtualization services.

Operating systems may provide the following services in our model:

• restart the system

• shutdown the system

• get some statistics such as memory/disk space usage, CPU utilization, etc

Hosting operating system could be able to do also the following:

• enumerate all virtual systems running on top of this system

• start a virtual system (this includes configuration of the virtual system, i.e.
which virtual devices I need, how much memory, how many virtual CPUs
etc)

• stop a virtual system

• make a snapshot of virtual system

Using the tools provided by CIM it is possible to express classes (operating
system), instances (operating system A), methods (restart system), associations
between them (virtual system X is running on top of operating system A) and
so on.

CIM is comprised of two parts – the specification (defining basic modeling
constructs) and the schema (set of classes which were identified as most common
building blocks for other classes).

CIM is focused only on the modeling of managed elements and their relation-
ships. It does not provide a protocol how to access this management functionality.
The communication problem is solved by another DMTF’s standard – Web Based
Enterprise Management3 (WBEM), which will be discussed later in Section 1.2.

3http://www.dmtf.org/standards/wbem

6

Figure 1.1: Meta Schema Structure [4]

1.1.1 CIM Specification

CIM Specification provides Meta Schema which is a formal definition of the
model. Meta Schema defines basic building blocks (such as class) that can
be used to describe the model and its usage and semantics. Figure 1.1 provides
an overview of the Meta Schema structure using Unified Modeling Language.
The elements of a model are4:

Schema is a group of classes with single owner. It could be understood as a
namespace. Each class must have an unique name within the schema it is
defined in.

Class, Method and Property have their traditional meaning from object ori-
ented modeling. Classes may participate in Associations.

Trigger is recognition of a state change (such as create, delete, update or access)
of Class instance and update or access of a Property [4].

Indication is an object created as a result of trigger. Indication object is a
representation of an event.

Association is a representation of a relationship between two classes. Since
associations are not an integral part of a class, the relationship does not

4Please note that this description is just an introduction. Full specification can be found
in [4].

7

affect the interface of a class. Only association classes can have references
to other classes.

Reference is a pointer to other class instance.

Qualifier is used to characterize named elements. Qualifiers also provide a mech-
anism how to make the meta schema extensible. For example using a qual-
ifier it is possible to define that a given class is abstract or a given property
has some min/max constraints (e.g. an integer property must be greater
than 100 but less than 200).

The Meta Schema defines also basic data types (such as uint8, boolean,
real32, datetime, etc) and a set of common qualifiers (e.g. Description –
textual description of a class, property or method; Maxvalue – maximal value of
a property, parameter or return value of a method, etc).

To express both the Meta Schema and custom schemas, CIM Specification
defines a language based on Interface Definition Language (IDL) called Managed
Object Format (MOF). This language, together with UML, is the primary tool
for describing custom models. Formal definition of MOF grammar and meta
schema can be found in [4].

CIM Specification defines also a naming mechanism for classes. A fully qual-
ified class name is in the form <schema name> <class name>.

With CIM Specification we can formally model our example with operating
systems and virtualization services.

In Figure 1.2 and Figure 1.3 you can see an example how different meta schema
constructs could be used to describe custom classes (managed elements) in MOF
and UML language respectively. Both figures are modeling the same example
– an operating system and operating system with virtualization capabilities as
discussed in Section 1.1.

In this example ACME OperatingSystem (OperatingSystem class in an ACME

schema) is a subclass of ACME ManagedElement. The class has several properties
(e.g. Name – string property; FreePhysicalMemory – unsigned 64bit integer) and
two methods (Shutdown and Reboot).

Each property has a Description qualifier with a string value – it contains a
textual description of the property. An important property qualifier is Key (line
4 in Figure 1.2). Set of Key properties uniquely identifies an instance of a given
class (a good analogy to key/class in CIM specification is a primary key/table in
relational databases).

The Shutdown method (Figure 1.2, lines 17-26) has one input (IN qualifier is
set to True) parameter – TimeInterval. It defines how many seconds should the
system wait before performing the actual shutdown. Units is a string qualifier
defining the units of the input parameter (in this case it is seconds).

ACME HostingOperatingSystem is an OperatingSystem that provides virtu-
alization services. In this example only StartVirtualSystem method is defined

8

1 class ACME_OperatingSystem : ACME_ManagedElement {
2 [Description (
3 "Fully Qualified Domain name identifying this operating system"),
4 Key(True)]
5 string Name;
6

7 [Description ("A string indicating the type of operating system.")]
8 string OSType;
9

10 [Description ("Number of Kbytes of physical memory currently unused."),
11 Units("KiloBytes")]
12 uint64 FreePhysicalMemory;
13

14 [Description ("Reboot the operating system.")]
15 uint32 Reboot();
16

17 [Description ("Shutdown the operating system.")]
18 uint32 Shutdown(
19

20 [IN(True),
21 Units("Seconds"),
22 Description (
23 "Wait TimeInterval seconds before starting the shutdown "
24 "process. A value of 0 indicates that the system "
25 "should be shutdown immediately.")]
26 uint32 TimeInterval);
27 };
28

29 class ACME_HostingOperatingSystem : ACME_OperatingSystem {
30 [Description("Define and start a virtual system.")]
31 uint32 StartVirtualSystem(
32 [IN, Description("Number of virtual CPUs for this system.")]
33 uint32 NumberOfCPUs,
34 [IN, Description("Hard-disk size of this virtual system."),
35 Units("Bytes")]
36 uint32 DiskSize,
37 [IN, Description("Size of RAM."), Units("Bytes")]
38 uint32 RAMSize,
39 [IN, Description(
40 "Boot device. Can be either path to a device or iso image.")]
41 string BootDevice)
42 /* ... */
43 };

Figure 1.2: Operating System Example (MOF)

9

ACME_ManagedElement

ACME_OperatingSystem

+Name: string {key}

+OSType: string

+FreePhysicalMemory: uint64 {Units=KiloBytes}

+Reboot(): uint32

+ShutDown([IN] TimeInterval:uint32 {Units=Seconds}): uint32

ACME_HostingOperatingSystem

+StartVirtualSystem([IN] NumberOfCPUs:uint32,
 [IN] DiskSize:uint32 {Units=Bytes},
 [IN] RAMSize:uint32 {Units=bytes},
 [IN] BootDevice:string): uint32

Figure 1.3: Operating System Example (UML)

for simplicity. Other methods (such as stop system, make a snapshot) could be
added in similar way. StartVirtualSystem starts a virtual system with given
number of CPUs, given disk/RAM size and a defined boot device.

This example is supposed to give an overview how a CIM model looks and
how meta schema constructs could be used. It is far from being useful for real
management of virtual systems. To make it little bit more useful an association
could be defined to capture the relationship between different operating systems
(hosting and virtualized).

1.1.2 CIM Schema

Having an object-oriented modeling framework forces the designer to create a
hierarchical model where most simple classes are at the top of the inheritance
tree. This is one of the basic concepts of object-oriented modeling which makes
modeling of complex structures easier.

CIM Schema defines a basic set of classes divided into three categories that
could be extended to meet specific needs of a designer. These categories are Core
Model, Common Model and Extension Schema.

Core Model

The Core model is the smallest set of classes, associations and properties pro-
viding basic elements for building managed systems. This is the starting point
for designer who is designing any managed system. Although some classes might
be added to Core Model in the future, any major changes in existing classes are
very unlikely [4]. The Core Model includes classes like CIM LogicalDevice or

10

CIM PhysicalElement, i.e. abstract5 elements.

Common Model

The Common Model is basic set of classes that define various technology indepen-
dent areas [4]. Classes (methods, associations, ...) provided in Common Model
are supposed to be detailed enough to serve as a basis for program design and,
in same cases, implementation.

The common models for CIM Schema are divided into following categories:

Application models provide abstractions needed for deployment, monitoring
and maintenance of software products. For example CIM J2eeEJB and
CIM InstalledProduct classes are defined here.

Event models represent events (e.g. change in the state of environment) and
alarms. Different classes are provided such as CIM ClassIndication or
CIM InstCreation.

Network models describe various network devices, protocols and services (e.g.
CIM SwitchPort).

Support models describes “object and transaction models for the exchange of
knowledge related to support activities (Solutions) and the processing of
Service Incidents“ [7]. Example classes are PRS Solution and PRS Activity.

Database defines models for database environment such as CIM DatabaseService

or CIM SqlTable.

Interop model describes the WBEM infrastructure and how other components
(CIM Clients, Managed Elements, ...) interact with this infrastructure. It
defines classes such as CIM WBEMService or CIM Error.

Physical model defines inventory and asset management related classes such as
CIM Magazine or CIM Container.

Systems models describe computer-system related abstractions. They abstract
aggregation of “parts” that form a single, manageable entity. Classes pro-
vided here are for example CIM ComputerSystem or CIM FileStorage.

Devices models describe hardware functionality, their configuration and state
information (e.g.CIM Printer, CIM TapeDrive).

Metrics model defines “the management components that allow the dynamic
definition and retrieval of metric information” [15]. It defines classes such
as CIM UnitOfWork.

5In this context abstract means “existing as an idea, feeling or quality, not as a material
object” [3].

11

Policy model provides rules and associated actions such as CIM Authorization-
Rule or CIM BiometricAuthentication.

User provides abstraction for location, identity and authority of a user (e.g.
CIM User, CIM OrgUnit).

Extension Schema

The extensions schemas are technology-specific extensions to the Common model.
It is a place where vendor specific schemas belongs. It is also expected that some
models from Extension Schema might be “promoted” to Common model as they
become widely adopted.

Xen_VirtualSystemManagementService is an example of a model in Extension
Schema. It models a service manipulating XEN6 virtual systems and their com-
ponents.

1.2 Web Based Enterprise Management

Another standard closely related to CIM is Web Based Enterprise Management
(WBEM)7. While CIM is focused on the modeling part, WBEM provides a set of
standards defining how to access the entities modeled in CIM and what operations
are available. WBEM addresses the problem of communication between operators
(those who are operating the modeled environment) and managed elements.

WBEM defines xmlCIM [6] – an encoding specification. It defines a DTD8

grammar which can be used not only to represent CIM entities (classes, proper-
ties, etc) in XML9 but also to express CIM messages (e.g. calling a method of a
class, getting a class instance, etc). By mapping CIM constructs and messages
into XML document it is possible to transport them using a standard protocol
such as HTTP.

Although it is possible to map CIM to XML using xmlCIM, the operations
with a model and/or schema are still not defined. To fill this gap two standards
exists at the moment – CIM-XML and WS-Management. In the future other
standard could be added (currently WSDM is under discussion).

CIM-XML (defined in [5]) is a protocol that uses XML (xmlCIM) over HTTP
to exchange CIM information. It defines a CIM operation requests which are
invocations of one or more methods. Method could be either intrinsic (oper-
ation that enables to work with CIM object model) or extrinsic (defined as a

6 Xen is a software virtual machine monitor. It allows to run several guest operating systems
on the same hardware at the same time. It is available from http://www.xensource.com/ [14].

7http://www.dmtf.org/standards/wbem
8Document Type Definition (DTD) is discussed in http://www.w3.org/TR/2000/REC-xml-

20001006#dt-doctype
9Extensible Markup Language (http://www.w3.org/XML/)

12

 WBEM

CIM
Data Component

HTTP
Access

cmlXIM
Transport
Encoding

Figure 1.4: WBEM Components [1]

method on a CIM class or schema – e.g. Reboot in ACME OperatingSystem

class). Intrinsic methods are for example GetInstance, EnumerateClasses and
ModifyInstance. Figure 1.4 displays how all these WBEM components fit to-
gether.

WS-Management (Web Services for Management [9]) is an alternative stan-
dard to CIM-XML. It uses Simple Object Access Protocol (SOAP) to achieve the
same as CIM-XML. However, this standard is still in its preliminary release.

The overall architecture of CIM/WBEM enabled infrastructure is illustrated
in Figure 1.5. In this figure, operator is represented by WBEM Client and WBEM

Listener10.
The managed elements in Figure 1.5 are Services, Hardware and Software.

These elements provide management functionality that should accessible via
WBEM (e.g. start or stop a service).

WBEM Server closes the “management gap” between operators and the man-
aged elements (hardware and/or software components). It stores the model (CIM
classes) in a Repository.

To separate specific knowledge of managed elements (e.g. how to find out
free disk space on a given file system) from WBEM Server, so called providers
exists. Providers know the internals of a managed element and they implement
the model using this knowledge. The functionality is then provided to WBEM
server (providers can be thought as a drivers for the managed element) and thus
the primary role of a WBEM server is to act as a broker between CIM clients
and providers.

10WBEM Listener (“Event Operator’s Workstation”) is the place where indications (see
Section 1.1.1) are sent from WBEM Server.

13

Figure 1.5: WBEM Server, Clients and Providers [1]

1.3 Goals

This work is focused only on the client’s part of Common Information Model. It
should provide a mapping of Common Information Model to a selected scripting
language (choosing a suitable language is part of this work) and a prototype
implementation of the mapping. The prototype should allow the developers to
write applications or helper scripts that can access the WBEM server and perform
management operations.

The mapping is supposed to hide as much technical information about CIM
as possible and provide an environment which programmers are familiar with.
Writing CIM clients quickly and efficiently is the common denominator for most
of the goals discussed in this section.

Specifically these areas will be addressed:

Object-Oriented Programming. At places where it makes sense, object ori-
ented practices should be applied. Common Information Model itself is
object oriented, therefore this is the most natural approach. Most of the
programmers are familiar with OOP and therefore it will be easier to use
the library for them.

Probably the most important is mapping from the CIM Model to the se-
lected programming language. There should be a clear relationship between
CIM constructs (classes, methods, instances, qualifiers, etc) and constructs
natively used in the selected programming language (e.g. in C++, CIM
classes would be mapped directly to C++ classes as opposed to mapping to
Document Object Model11 structure obtained directly from xmlCIM which
would be also possible).

11http://www.w3.org/DOM/

14

All other constructs (inheritance, virtual methods, etc) should be naturally
presented to the programmer where it makes sense (e.g. most scripting
languages will not be able to express “Units” qualifier for a class property12).

Concepts widely used in the selected scripting language should be adopted
in the library not to confuse programmers already familiar with them (e.g.
in Python each CIM class/method should have the “ doc ” docstring with
documentation string [29]) and to make integrating with other standard
libraries easier.

Documentation. The library itself must be well documented so the program-
mers can start writing CIM clients as fast as possible. It should also pro-
vide ways how to generate documentation for the CIM model (i.e. for
CIM classes, methods, etc) in a way natural for the selected programming
language (e.g. in Java it should be possible to generate Javadoc13 docu-
mentation for the CIM classes).

Debugging. No software is bug-free, thus making debugging of the client code
as easy as possible will make the development faster. Because remote ob-
jects will be accessed (managed elements are most likely to be located at
different place than the operator/CIM Client), debugging support is even
more important.

Use of Scripting Language. This is closely related with the “Shell Enable-
ment” goal (see below). The selected scripting language should be widely
used by the community of developers. According to some views, develop-
ment in scripting languages is also more productive [23].

“Openness”. The solution should be available on different platforms (Linux,
Windows, ...) to reach a broad audience of developers. Proprietary solution
would be a disadvantage. This work was inspired by a lack of suitable tools
on Linux platform.

“Shell Enablement”. Optionally it would be good to have an easy-to-use shell
environment which could be used as a generic console for accessing a WBEM
Server. This is similar to Windows PowerShell (codename Monad)14.

1.4 Structure of This Work

Chapter 2 discusses related work, why it is important to choose the scripting
language early in the design stage and the choice of a suitable scripting language.

12“Units” is a string qualifier which indicates the units of the associated data item (e.g.
“KiloBytes”).

13http://java.sun.com/j2se/javadoc/
14http://www.microsoft.com/windowsserver2003/technologies/management/powershell/default.mspx

15

It also introduces some of the features of the selected language and how these
features can be used.

Chapter 3 discusses the mapping of CIM and its constructs to Python so the
goals of this work are fulfilled. If there are more options how to map the same
construct, they are discussed with their advantages and disadvantages.

Chapter 4 describes how the prototype solution is implemented providing a
high-level UML overview. Some of the technical nuances are discussed in this
chapter. It also provides an overview of the API available to the CIM client
developer and details about integration with other tools (namely with IPython).

Chapter 5 provides overview of what was achieved, how this work compares
to related work in this field and what are the open issues and future work.

Appendix A provides a few examples how the prototype implementation could
be used to write management applications. These examples are accompanied with
a short discussion.

Appendix B contains the default configuration of logging used by the pro-
totype implementation. This configuration file is specific for logging module
provided by the standard Python library.

Appendix C provides details and configuration files for integrating this work
with IPython.

Appendix D describes how to use the live DVD that comes with this work.
The prototype implementation of CIM to Python mapping is preinstalled and it
is possible to use this DVD as a demonstration of powerCIM capabilities. This
DVD also contains source code of this prototype and a PDF version of this work.

16

Chapter 2

Scripting of CIM

2.1 Related Works

This work is definitely not the first one trying to solve the problem of developing
CIM clients. However, most of the existing projects do not fulfill all the goals
defined in Section 1.3. In many cases they are very difficult to use without a
deeper knowledge of Common Information Model and all related standards.

This section summarizes some publicly available CIM scripting projects and
for each project a simple example demonstrating its capabilities is implemented.
This example will print all running services, their status and will stop each service
on localhost. It will demonstrate the most common usage of CIM/WBEM –
getting an instance, accessing properties and calling instance methods.

2.1.1 Windows Management Instrumentation

Windows Management Instrumentation (WMI) is implementation of the WBEM
and CIM standards by Microsoft. Not only comes WMI pre-installed on different
versions of Windows operating systems (such as Windows Me, Windows XP, etc
[13]) but it is also possible to manage them using scripting tools provided by
Microsoft.

Microsoft provides three options for WMI scripting – VBScript, Windows
PowerShell and WMIC (Windows Management Instrumentation Command-line).

WMIC is a command-line tool and its main purpose is to ease WMI informa-
tion retrieval. WMIC is not supposed to be used for development of sophisticated
scripts.

On the other hand, VBScript and Windows PowerShell are multi-purpose
scripting projects with the ability to directly operate on WMI. In some concepts
they are very similar – both are object-oriented and both can be used for devel-
opment of complex scripts. While VBScript (Visual Basic Scripting Edition) is
based on Visual Basic, Windows PowerShell uses some of the C# syntax.

17

1 Set objWMIService = GetObject("winmgmts:\\localhost\root\cimv2")
2 Set colItems = objWMIService.ExecQuery("Select * From CIM_Service")
3

4 For Each objItem in colItems
5 Wscript.Echo objItem.Name, objItem.Started
6 Return = objItem.StopService()
7 Next

Figure 2.1: Example – List Services Using Microsoft VBScript [27]

1 $colItems = get-wmiobject -class "CIM_Service" ‘
2 -namespace "root\cimv2" -computername "localhost"
3

4 foreach ($objItem in $colItems) {
5 write-host $objItem.Name, $objItem.Started
6 $Return = $objItem.StopService()
7 }

Figure 2.2: Example – List Services Using Windows PowerShell [27]

You can find the “list and stop all services” example for VBScript and Win-
dows PowerShell in Figure 2.1 and Figure 2.2 respectively. In both examples
code on lines 1-2 enumerates all instances of CIM Service class running on server
“localhost”. The rest of the code is straightforward in both cases – lines 4-7
iterates over all services. For each service its name and state is printed and even-
tually the service is stopped. Return value of “StopService” method is stored in
“Return” variable. As you can see although the syntax is different, the structure
of the code is very similar.

These projects are well documented on Microsoft web sites. Many articles, ex-
amples and blogs discussing them exists, what creates an outstanding knowledge-
base for further development. However, the biggest disadvantage is that all these
tools are Windows centric. For example, it is not possible to deploy scripts writ-
ten in Windows PowerShell to operator running thin-client terminal based on
Linux. It is impossible to develop CIM clients that will run on different operat-
ing systems as well.

Another products exists for Windows as well (e.g. WMI for Python1) but
they do not provide any major advantage comparing with the products shipped
by Microsoft.

1This module requires pywin32 extension and thus it is only relevant for Windows although
Python itself is a multi-platform scripting language. WMI extension for Python could be
downloaded from http://cheeseshop.Python.org/pypi/WMI/1.3

18

1 import pywbem
2

3 conn = pywbem.WBEMConnection(’http://localhost’, (’’, ’’), ’root/cimv2’)
4 instanceNames = conn.EnumerateInstanceNames(’CIM_Service’)
5

6 for instanceName in instanceNames:
7 instance = conn.GetInstance(instanceName, LocalOnly=False)
8 name = instance.properties[’Name’].value
9 started = instance.properties[’Started’].value

10 print name, started
11 Return = conn.methodcall(’StopService’, instanceName)

Figure 2.3: Example – List Services Using pywbem

2.1.2 pywbem

Pywbem2 is a Python module implementing the CIM-XML standard and provid-
ing simple mapping of CIM elements (classes, qualifiers, etc) to Python objects.
It enables the developer to write Python scripts that can access a WBEM server
via CIM-XML and execute CIM operations defined in [5].

Although pywbem provides mapping between Python and CIM constructs it
is not very straightforward. For example it provides CIMInstance object that
maps CIM instances to Python. However all properties and methods are stored
in a special dictionary (associative array) attribute. This makes developing CIM
scripts more difficult, time consuming and less intuitive.

In Figure 2.3 you can see a code snippet that lists all services, their status
and stops them. Line 3 defines a connection to WBEM server in “root/cimv2”
namespace. Next line enumerates all instance names (instance name is a class
name and values of key properties – instance name uniquely identifies an in-
stance). In this case the example does not enumerate instances directly, because
calling a method requires instance name as a parameter3.

Line 7 gets the CIM Service instance (LocalOnly=False parameter specifies
that attributes inherited from base class should be fetched from the server as
well) while line 10 prints the name and status of this service. Finally, line 11
calls the StopService method which will stop the service.

This code is much more difficult to write and understand than the example
written in VBScript or Windows PowerShell. It requires non-trivial distinction
between instance and instance name and access to special dictionary properties
(lines 8 and 9).

2http://pywbem.sourceforge.net/
3Although it would be possible to get instance name from instance it would require to process

all properties and find out which of them are “key”.

19

1 wbemcli ein http://localhost:5988/root/cimv2:CIM_Service |
2 while read instanceName; do
3

4 instance=‘wbemcli gi http://$instanceName‘
5 Name=‘echo $instance | sed -n ’s/^.*,Name="\([^"]*\)",.*$/\1/p’‘
6 Started=‘echo $instance | sed -n ’s/^.*,Started=\([^,]*\),.*$/\1/p’‘
7 echo "$Name $Started"
8

9 Return=‘wbemcli cm http://$instanceName StopService‘
10 done

Figure 2.4: Example – List Services Using wbemcli/bash

The last problem of pywbem is its documentation. The whole documentation
consists only of few examples. This implies some reading of pywbem code during
development of custom CIM clients. Although the structure of pywbem is clean
and simple it makes the development little bit more demanding.

Unfortunately pywbem does not provide support for WS-Management as ad-
ditional WBEM protocol.

2.1.3 SBLIM

Standards Based Linux Instrumentation for Manageability (SBLIM)4 is a
project that provides open source implementation of WBEM-based solutions for
Linux. It provides projects such as Small Footprint CIM Client (library that
enables the developer to write CIM clients in C), CIM Client for Java (library for
writing CIM clients in Java), tools for creating CIM models in UML (ECUTE
– Extensible CIM & UML Tooling Environment) and many others. SBLIM is
driven by WBEMSource – an initiative promoting the widespread use of man-
agement technologies defined by DMTF.

This section will discuss only CIM Client for Java and SBLIM wbemcli5.

SBLIM wbemcli

SBLIM wbemcli is a command line utility which could be used directly from
command line or together with some unix shell (e.g. bash) to write simple man-
agement scripts.

4http://sblim.wiki.sourceforge.net/
5Although Small Footprint CIM Client also enables the developers to write CIM clients, it

is using an approach very similar to CIM Client for Java and therefore will not be discussed
in this section.

20

king:~ # wbemcli ein http://localhost:5988/root/cimv2:CIM_Service

localhost:5988/root/cimv2:OMC_ServiceFromXML.SystemCreationClassNa ←↩
me="OMC_UnitaryComputerSystem",SystemName="king.suse.cz",CreationC ←↩
lassName="OMC_ServiceFromXML",Name="apache2"

localhost:5988/root/cimv2:OMC_ServiceFromXML.SystemCreationClassNa ←↩
me="OMC_UnitaryComputerSystem",SystemName="king.suse.cz",CreationC ←↩
lassName="OMC_ServiceFromXML",Name="postfix"

localhost:5988/root/cimv2:OMC_ServiceFromXML.SystemCreationClassNa ←↩
me="OMC_UnitaryComputerSystem",SystemName="king.suse.cz",CreationC ←↩
lassName="OMC_ServiceFromXML",Name="dhcpd"

Figure 2.5: Wbemcli – Enumerate Instance Names

From the command-line nature and the fact that bash has no native support
for objects it is clear that using wbemcli for more sophisticated scripting would
be very difficult.

In Figure 2.4 wbemcli is used to enumerate all instance names (ein) of
CIM Service class on line 1. The same problem discussed in pywbem example
(Section 2.1.2) with instances and instance names applies for wbemcli as well. It
is not possible to enumerate instances directly, because calling a method requires
an instance name.

“wbemcli ein” command prints each instance to standard output on a single
line. Properties of an instance are delimited by a comma (“,”) character (you
can see an example of ein command output in Figure 2.5). Each line with an
instance is read and processed further with standard unix tools such as sed or
read. StopService method is called (cm) on line 8, storing the result in Return

variable.
Code like this is very difficult both to develop and maintain (and this snippet

is not even bug-free – consider the fact that the Name attribute might contain
double quotes (”) character).

CIM Client for Java

The SBLIM CIM Client for Java is an implementation of WBEM services
client. It is a java library that allows the users to develop CIM clients (manage-
ment applications) in java.

Figure 2.6 shows the “list services” example implemented in java using this
library. Lines 9-11 define a connection to the WBEM server (localhost). Line
14 enumerates all instances of the CIM_Service class. For each instance (line 15)
its name and status is printed (lines 19-21). Finally the StopService method is
called on lines 24 and 25.

21

1 import org.sblim.wbem.client.*;
2 import org.sblim.wbem.cim.*;
3 import java.util.Vector;
4 import java.util.Enumeration;
5

6 class ListServices {
7 public static void main(String[] args) {
8

9 CIMClient cimClient = new CIMClient(
10 new CIMNameSpace("http://localhost", "root/cimv2"),
11 new UserPrincipal(""), new PasswordCredential(""));
12

13 CIMObjectPath op = new CIMObjectPath("CIM_Service");
14 Enumeration instances = cimClient.enumerateInstances(op);
15

16 while (instances.hasMoreElements()) {
17 CIMInstance service = (CIMInstance) instances.nextElement();
18 CIMProperty started = service.getProperty("Started");
19 System.out.print(service.getProperty("Name").getValue().toString()
20 + " " +
21 service.getProperty("Started").getValue().toString()
22);
23

24 CIMValue Return = cimClient.invokeMethod(service.getObjectPath(),
25 "StopService", new Vector(), new Vector());
26 }
27 }
28 }

Figure 2.6: Example – List Services Using CIM Client for Java

22

2.1.4 Other Projects

Besides the projects mentioned in previous sections there are others that are
trying to make the development of WBEM/CIM components easier, or they can
help with fulfilling the goals as defined in Section 1.3. However, they are either
beyond the scope of this work or have similar problems as projects discussed
earlier.

rubywbem is a port of pywbem to Ruby programming language6 with all the
disadvantages discussed in Section 2.1.2 (actually there are more – there
is no documentation for rubywbem at all and it seems this project is not
actively developed).

IPython is a project that provides enhanced shell for Python7. It has many nice
features for object introspection (e.g. it is possible to access docstrings of
Python objects using a special, very terse, syntax), it provides extensible
“magic” commands (used e.g. to execute shell commands), complete shell
access and many, many others.

It can be used for Python development (it provides enhanced debugging
support) and as a generic purpose system shell. Please consult [21] for
more information about IPython and its features.

pydoc, epydoc are two different tools for generating API documentation from
Python source code. While pydoc is part of standard Python library, epy-
doc8 is an independent project trying to create a sophisticated tool with
more features than pydoc and output that resembles what doxygen9 or
javadoc10 produces.

WBEM Services is an open-source project developing Java implementation of
WBEM/CIM. It provides WBEM server, Java APIs, MOF to JavaBeans
generator and other sub-projects.

openWBEM/openPegasus are open-source implementations of CIM/WBEM
standards. Both projects are focused mainly on the server side of the prob-
lem – i.e. they solve how to write providers (using different languages such
as C++ or Perl) and both are implementing WBEM server (CIM opera-
tions over HTTP as defined in [5]). OpenPegasus provides a command line
utility for accessing the WBEM server but this utility is even more difficult
to use than wbemcli, because the user is forced to encode their operations
manually to xmlCIM.

6http://www.ruby-lang.org/en/
7http://ipython.scipy.org/
8http://epydoc.sourceforge.net/
9http://www.stack.nl/˜dimitri/doxygen/

10http://java.sun.com/j2se/javadoc/

23

Openwsman is an open-source implementation of the Web Services Manage-
ment (WS-Management) specification. It provides WS-Management server,
command line utility (wsmancli), ruby binding for WS-Management (rws-
man) and some other sub-projects.

2.2 Scripting Language

One of the first decisions to be made is the selection of an appropriate scripting
language. This decision must be made early in the design stage of the library, be-
cause of the “Object-Oriented Programming” goal. Binding of CIM objects must
be natural for the selected language and there are some CIM/WBEM specifics
that might be solved differently in different programming languages (e.g. some
languages are unable to directly express abstract class – i.e. class which can be
used only as a base class and not for creating instances). By selecting the script-
ing language first, it will be possible to create mapping that “looks and feels”
natural to the developers.

CIM is object-oriented thus the scripting language must natively support
Object Oriented Programming paradigm (classes, inheritance, polymorphism,
etc). Being “popular”11 in community of developers is another very important
feature as the language must be easy to program in and it should provide a wide
range of libraries and modules to make the development fast. Basically there are
only three widely adopted, open source (see the “Openness” goal in Section 1.3)
scripting languages satisfying these prerequisites. These are Perl12, Python13 and
Ruby14.

There are lots of (often very emotional) debates in different on-line discussion
groups covering all advantages and disadvantages of different languages and still
there is no simple answer. In Figure 2.7 you can see the result of Google Trends15

for the query “perl, python, ruby”. Although this result might be interpreted in
many different ways it says that none of these languages is searched more often
than the other. At least to some extent it means they are approximately equally
popular.

There are also many essays discussing which programming language is the
most suitable for a given project. Their conclusion is usually that “the only real

11Popular in this context means the language is often discussed in internet groups, there are
many applications written in this language, a lot of supplementary libraries exists, major Linux
distributions have an interpreter/compiler for this language installed by default, etc

12http://www.perl.org
13http://www.python.org
14http://www.ruby-lang.org
15“Google Trends analyzes a portion of Google web searches to compute how many searches

have been done for the terms you enter relative to the total number of searches done on Google
over time. We then show you a graph with the results – our search-volume graph – plotted on
a linear scale.” [26]; Google Trends is available on http://trends.google.com

24

Figure 2.7: Google Trends - Perl, Python, Ruby [26]

difference is which one you know better” [24] or “there is no silver bullet in the
world of programming languages” [25]. This is the main reason why Python is
chosen as the scripting language for this work.

Another reason why to use Python (and not perl for example) is the fact
Python interpreter comes with a very good interactive mode, which will make
satisfying the “Shell Enablement” goal easier. IPython provides even better in-
teractive support (more about this project can be found in Section 2.1.4).

2.3 Selected Python Features

Python is a high-level, interpreted language first released in the early 1990s by
Guido van Rossum. It provides object-oriented paradigm together with high-level
data structures (such as associative arrays) and dynamic features like introspec-
tion or reflection [31]. It has some interesting features and conventions that will
make mapping CIM to Python easier and natural16.

In Python 2.2 (at the time of writing this work the latest stable Python release
is 2.5) so called new-style classes were introduced. The difference between old
and new-style classes is beyond the scope of this work but it should be noted that
not all features discussed here are available for old-style classes (which are still
the default for compatibility reasons).

Another constructs were introduced to Python even later (e.g. decorators
as defined in [33] were added to Python in version 2.4) and therefore Python
version 2.5 is implicitly assumed in context of this work.

More about Python syntax and semantics can be found in [28] and [29].

16Please consult [29] for a Python introduction. This work expects that the reader is familiar
at least with some basic Python constructs. It is beyond the scope of this work to provide an
introduction to Python and at the same time [29] provides very nice tutorial.

25

The following features are of interest for this work:

Cross-platform. As long as a given platform has a Python implementation (i.e.
the interpreter and the standard library) it can run Python code. Currently
Python is available for all major operating systems – Windows, Linux/Unix,
Mac OS etc. There are even versions that run on top of .Net or Java Virtual
Machine environments.

Interactive mode. The most widespread implementation of Python (CPython)
comes with an interpreter that supports interactive mode. This mode is of-
ten used by developers for quick experiments. It supports tab completion17

what makes it ideal for fast explorations of libraries (see also “Docstrings”).
Usually the primary prompt looks like the following example:

1 king:~ # Python
2 Python 2.4.2 (#1, Apr 13 2007, 15:45:45)
3 [GCC 4.1.0 (SUSE Linux)] on linux2
4 Type "help", "copyright", "credits" or "license" for more information.
5 >>>

Compound data structures. Python comes with a number of compound data
structures. Most versatile types are list (dynamic array/sequence), tuple
(an immutable sequence) and dictionary (also called associative arrays in
other programming languages).

Docstrings. A convention heavily used by most (if not all) Python code ever
written are so called docstrings. Each object (where object in this case
might be any Python object – class, instance, method, etc) has a special
string attribute called doc where documentation string is stored. This
can be used either to generate documentation (HTML, PDF, etc) or to
interactively read the documentation in interactive shell.

For example if a developer needs to find out how to use append method of
a List, they can do the following in interactive mode:

1 >>> list = [1,2,3]
2 >>> list.append.__doc__
3 ’L.append(object) -- append object to end’

Introspection. Introspection is a feature that allows a programmer to determine
the type of an object at run-time. In Python it is used at different places –
e.g. pydoc module is using introspection to generate html documentation

17Tab completion refers to a feature when a program automatically fills in partially typed
commands [11].

26

1 def MyDecorator(fn):
2 def new(*args):
3 print "calling method"
4 result = fn(*args)
5 print "method returned"
6 return result
7 return new
8

9 @MyDecorator
10 def plus(a,b):
11 return a+b

Figure 2.8: Decorator Example

of Python code from the docstrings. More about this feature can be found
in [19].

Duck typing. Also called “latent typing” is a dynamic typing principle that
determines the type of an object by introspection at run-time rather than
by explicit relationship to some other object. As a consequence it is not
important what is the type of an object, but what interface the object has.

This feature makes object-oriented programming in Python little bit differ-
ent from programming in languages like C++ or Java. For example Python
does not force the developer to upcast18 their classes in case they need to
use them as a parameter of a function and at the same time they are of
different types. Bruce Eckel is discussing this feature more in depth in his
essay “Strong Typing vs. Strong Testing” [22].

Decorators. Decorator is a function and a special syntax that will modify an-
other function or method. In Figure 2.8 you can see a definition of a deco-
rator called “MyDecorator” and how this decorator can be used to modify
the “plus” function. In this case MyDecorator prints a message before and
after calling the actual function. Therefore, calling the “plus” function will
produce the following output:

1 >>> ten = plus(7,3)
2 calling method
3 method returned
4 >>> print ten
5 10

More about Python decorators can be found in [18].

18By upcasting it is understood going from a specific class/type to a more generic one.

27

Customized attribute access. It is possible to define how class attributes are
accessed (i.e. set-ing, get-ing and delet-ing attributes). If a class has the
following methods defined, they are used for accessing the attributes:

getattr (self, name) – In case the standard lookup did not find the
attribute this method is called. It is supposed to return value of “name”
attribute.

setattr (self, name, value) – set value of “name” attribute. “value”
is the value being assigned.

delattr (self, name) – used for deleting an attribute.

getattribute (self, name) is called unconditionally (i.e. not after
the standard lookup mechanism had failed as the __getattr__ method)
to implement attribute access.

Descriptors. A different way how to customize attribute access are so called
descriptors. If a class property is an instance of a class with get ,
set , delete methods defined, these methods are used for comput-

ing/accessing the property (classes with such methods are also called de-
scriptor classes).

Comparing with methods defined directly in the class (e.g. getattr),
this has the advantage that property (or descriptor) classes might encapsu-
late some other logic specific just for a single property.

Class namespace implementation. Namespace of a Python class is imple-
mented using a dictionary (associative array) accessible via dict at-
tribute of the class. All attribute references are thus translated as a lookups
to this dictionary – e.g. calling C.x is the same as calling C. dict [’x’]

(where C is a class object)19. If the attribute is not found here the attribute
search continues in the base classes.

This gives the developer more flexibility. For example it is possible to
implement custom attribute access which will fall-back to the standard
behavior under some conditions. The developer can also easily introspect
the class for its methods and attributes by examining this dictionary.

Reflection and meta-classes. Reflection is a process that allows Python to
modify the code being executed at run-time. For example it is possible to

19These two expressions are equivalent only if x is not a descriptor class instance and at
the same time x is not an attribute of a parent class. If x is a descriptor class instance
C.x will result in calling the get ,method of the descriptor class (i.e. it is equivalent to
C. dict. [’x’]. get ()). C. dict [’x’] returns the descriptor class itself.

If x is defined in a parent class of C, it is stored in a dict attribute of the parent class.

28

add new classes or add/change methods and attributes of the class during
the code execution.

Reflection is closely related to the concept of meta-classes. In Python,
classes are objects too and as such they are also created by instantiating
another objects – meta-classes.

In linguistic terminology, if classes are nouns and methods are verbs, meta-
classes will be adjectives [2]. With meta-classes it is possible not only to
create new classes at runtime (i.e. instantiate the meta-class) but also to
define behavior of classes and their instances. Since classes are created from
meta-classes, the respective meta-class controls how the class is created and
it can even change the resulting class in a desired way.

The concept of meta-classes also allows the developers to use aspect oriented
programming (AOP) to enhance classes with different capabilities.

More about meta-class programming can be found in [2], [16] and [17].

29

Chapter 3

Mapping CIM to Python

As discussed in Section 1.1, CIM consists of two parts – CIM Specification and
CIM Schema. While CIM Specification defines the modeling language (meta
schema), CIM Schema specifies a generic set of objects that are modeled in lan-
guage defined in the CIM Specification. Expressing objects defined in the meta
schema in Python (class, methods, ...) is the crucial part of this work.

As this work is focused solely on developing the client side of Common In-
formation Model not all Named Elements (see Figure 1.1) must be mapped to
Python. Specifically these Named Elements will not be discussed:

Trigger exists only on the server side (the client is working with Indications,
which are objects created as a result of trigger).

Schema is used only for administration and class naming.

Named Element is the root of inheritance hierarchy. The developer works only
with specialized Named Elements hence it is sufficient to discuss only the
specialized elements1.

In case a specific Named Element is defined by specialization (e.g. Indication
is a specialized Class) everything discussed in the parent element applies also to
the specialized elements unless otherwise stated.

3.1 Classes

Classes are the basic building and modeling blocks of CIM and thus their Python
mapping is naturally the first step. Although it might seem that this mapping is
straightforward there are still at least three ways how to do it:

1Named Element is the root of the inheritance hierarchy (i.e. each CIM object such as class
or method is a named element) and thus it could be natural to map Named Element and its
properties to Python and then enhance this mapping for the specialized elements. However,
Named Element itself does not provide any features common for all objects and therefore this
approach would not bring any benefits.

30

1. Create a generic class and store its properties (methods, qualifiers, ...) in
well defined class attributes such as “properties” or “qualifiers”. This
is the option pywbem implements (see Section 2.1.2).

With this approach the following construct would be possible:

1 >>> print instance.properties[’MyProperty’]
2 MyProperty Value

In this case instance is an instance of some CIM class and MyProperty is
a string property of this class. The value of MyProperty is “MyProperty
Value”.

2. Map each CIM class to a single Python class and customize attribute
and method access (i.e. upon attribute access, internal structure will be
searched and the correct value will be returned). In fact, this is just slightly
enhanced to what pywbem does.

Using this approach this construct would be possible:

1 >>> print instance.MyProperty
2 MyProperty Value

In this case MyProperty is internally not a Python class attribute. The value
of MyProperty is stored in the same internal structure as in the previous case
(i.e. in the properties attribute). When the standard Python attribute
look up fails, the customized attributed access returns the correct value.

3. For each CIM class, create a specific Python class with the same inheritance
hierarchy, properties, methods, etc.

In this case CIM properties will be mapped to Python class attributes and
thus the following construct would be possible:

1 >>> print instance.MyProperty
2 MyProperty Value

Note that in this case the standard attribute access provided by Python
will be used.

Option number one is the simplest to implement but has most disadvantages.
The developer needs to access special data structures with special names what
makes them less productive and the development more demanding.

31

Figure 3.1: Get-Compile-Store-Load-Develop Cycle

It would be possible to implement the second alternative just by introducing
methods for customized attribute access (see Section 2.3). When attribute is ac-
cessed a getter/setter method would check its internal data structure and either
return or set the correct value. Comparing to the first option it will make pro-
gramming easier but introspection of such objects would be still difficult because
the developer would still need to know the format of the internal structure. As
a result it would not be possible to use tab completion in interactive mode what
makes the usage much more difficult.

Although the third option does not have the problems of former ones and at
the same time it is the most intuitive, it is much more difficult to implement. It
requires creating Python classes for every single CIM class (including the inher-
itance hierarchy) a programmer might want to use. There are several problems
that make it difficult to implement.

First issue is that the CIM classes must be compiled into Python classes.
A straightforward approach would be to compile them (from MOF format) to
Python and store them in a module a CIM client developer can import and use.
In context of this work this approach is referred as “static” compiling.

However, the client developer might not have access to the CIM classes be-
forehand. A possible CIM/WBEM usage is to get an instance object from a
WBEM server at run-time and work with it. Such approach is very likely when
accessing WBEM server from an interactive shell.

In Figure 3.1 you can see a possible activity diagram of development, in
situation the developer does not have access to CIM class representation before
implementing the client logic. It would require a few steps more for them – they
would need to get, compile and store the classes in a module before they actually
can write any application code.

32

Approach depicted in this figure would be required in statically typed lan-
guages such as C++2. However, Python is dynamically typed and “duck-typing”
(see Section 2.3) is heavily used among Python programmers. It supports meta-
classes thus it is possible to create classes at run-time (i.e. to instantiate a suitable
meta-class).

Thanks to these dynamic features, it would be sufficient to compile CIM
classes at run-time. With such approach it is possible for the programmer to skip
the get/compile/store/load cycle completely and start developing the application
logic immediately3. Compilation would be done at run-time and the developer
does not need to know about it. This reduces the activity diagram from Figure 3.1
to a single “write application logic” state what makes development easier and
faster. In context of this work this approach is called “dynamic” compiling.

Unfortunately compiling CIM classes at run-time is not possible when the
WBEM server is unable to return a CIM class representation at run-time (e.g.
the current proposal of WS-Management protocol does not yet define “get class”
operation, hence this functionality is not implemented). In such case “static”
compiling would be required. Although it would be possible to make some as-
sumption about the class from its instance4 this approach would be very limiting
(e.g. it would not be possible to get the inheritance hierarchy, method names,
qualifiers, etc). For these reasons both “static” and “dynamic” compiling of CIM
classes is needed.

Although one-to-one mapping of CIM and Python classes is the most difficult
to implement, it is possible and it is the only way how to satisfy goals defined in
Section 1.3.

Associations

As you can see in Figure 1.1, Association is a specialized Class. Therefore, the
same discussion as before applies for associations as well. Association classes have
an extra qualifier (which is inherited by subclasses) indicating that this specific
class is an Association. Unlike generic classes, associations may contain two or
more references to other classes or class instances. Hence there are three use-cases
how to access associations:

1. Enumerate instances of a given association class (e.g. CIM Dependency)
possibly with some filtering constraints.

2Unless some more sophisticated approaches are used.
3The developer will be heavily using “duck-typing” in this particular case. At the time of

writing the application code, none of the CIM objects will exists and therefore it will not be
(even theoretically) possible to perform any compilation time checks to make sure the developer
is calling the correct methods or attributes.

4Instance in this case is a set of (PropertyName, PropertyValue) pairs

33

2. Given an instance, the user might want to get all or a subset of classes
(instances) associated with this instance.

3. Given a class, the user might want to get all or a subset of classes (instances)
associated with this class.

To cover these use cases a few methods will be introduced. CIM classes
mapped to Python will have a static method called “_GetClassAssociators”
and method called “_GetAssociators” to access class and instance associations
respectively (note that the underscore at the beginning is there to distinguish
these methods from methods modeled in CIM).

Enumerating instances of a given association class will be possible by using
WBEM server operations – either by executing a custom query or by enumerating
instances (see Section 4.1.3 for more details).

Indications

Like Association, Indication is also a specialized Class. Hence the rules that
apply to generic class can be applied to Indication as well (i.e. Indication can
have methods, properties, etc). There are no additional features of Indications
that should be mapped to Python.

In order to support indications at the CIM client side, an HTTP listener (i.e.
a program and/or function that will listen on a given TCP/IP port) must be
implemented. This listener will receive WBEM messages with the indications
and will dispatch them to the subscribed listeners. Listeners will implement a
IndicationOccured method that will be called upon indication retrieval.

3.2 Properties

Although CIM properties can be directly mapped to Python class attributes (the
terminology is different but properties and attributes represent the very same
concept), there are some issues which should be solved.

As discussed in Section 2.3, each Python class has its namespace implemented
as a dictionary object called “ dict ”. This makes adding new attributes to
class as easy as creating new element in the dictionary. However, CIM proper-
ties are complex objects with many different qualifiers. The simplest solution
would be to create dictionary elements holding the value of the property. More
sophisticated approach would be to create a descriptor class representing the
property (more about descriptors in Section 2.3). Such class could easily hold
other meta-data such as different qualifiers as well (more about property qualifiers
in Section 3.4.3).

Descriptor class will provide a simple interface for the developer (i.e. accessing
property values easily) and at the same time, the property will be represented

34

by a class storing additional information. Developers can still access directly the
descriptor class using a special syntax (see Figure 3.4) when additional property
attributes are needed.

3.3 Methods

Similarly to Properties, CIM methods can be directly mapped to Python methods
with few modifications.

The first problem with CIM methods are their arguments because Python
does not support calling by reference (i.e. function has access to argument values
only)5. This makes implementation of output parameters as defined in CIM more
difficult.

Using output parameters for returning more values from a function call is a
common case for many CIM classes. However, Python is not the only language
with this problem and similar works (such as CIM Client for Java or pywbem
discussed in Section 2.1) must solve this problem as well. This is usually solved
either by returning a special structure (as in the case of pywbem) or by passing
a reference to a special “output” object which is altered inside the method call
(this is implemented in CIM Client for Java).

Passing a reference to a special “output” object is not very convenient solu-
tion. The developer would be forced to instantiate this object before calling the
method and to pass a reference of this object to the method call. The following
construct would be therefore enforced:

1 >>> output = OutputVector()
2 >>> retValue = instance.MyMethod(1, 2, output)

The first line instantiates a special OutputVector structure. Line 2 calls
MyMethod with two input arguments (1, 2) and an output argument (output).
The return value is stored in retValue.

On the contrary, method-call would be able to create and return a special
structure automatically (it can be implemented in the mapping). The following
construct will be possible:

1 >>> retValue,output = instance.MethodCall(1, 2)

Therefore this mapping will return output arguments in a special structure
as a return value.

5Python is similar to Java in this case. All variables in Python are object references and
thus a Python method has an access to the value of the reference.

35

In Python we have three possibilities, how to return output arguments from a
function call in a special structure [20]. To demonstrate the concept and possible
solutions a function which takes three arguments will be defined. Each argument
should be increased by one and returned in an “output” argument. At the same
time the function is supposed to always return 0 as an indication the calculation
was executed without problems6.

There are following ways how to return the output arguments:

Tuple. Returning a tuple (see Section 2.3) is the simplest way how to return
more than one value. This method is simple and convenient way to return
small and fixed number of values. In that case it is possible to use constructs
like:

1 >>> def IncreaseByOne(a,b,c):
2 ... return 0, a+1,b+1,c+1
3 ...
4 >>> a,b,c = (1,2,3)
5 >>> retValue,a,b,c = IncreaseByOne(a,b,c)
6 >>> print retValue,a,b,c
7 0 2 3 4

Unfortunately this will be little bit awkward in case the method needs to
return a lot of values. The developer also needs to know the exact number
of return values in order to “unpack” them correctly unless they want to
introspect the tuple. It is not possible to give names to the return values
and the developer needs to know the exact order if they want to interpret
them correctly.

Dictionary. Another option is to return a dictionary with all output parameters.
With this approach it is not needed to unpack a specific number of return
values like in tuple. Instead, the function will return a constant number of
return values:

1 >>> def IncreaseByOne(a,b,c):
2 ... return 0,dict(a=a+1,b=b+1,c=c+1)
3 ...
4 >>> a,b,c = (1,2,3)
5 >>> retValue,values = IncreaseByOne(a,b,c)
6 >>> print retValue, values["a"], values["b"], values["c"]
7 0 2 3 4

6In this particular case it does not make much sense but in general, functions both return
value and have output parameters.

36

This way, it is possible to return unlimited and variable number of named
arguments easily.

Dictionaries are easy to create but at the caller side they are not the most
convenient. For example if the developer wants to use an interactive shell,
they would not be able to use tab-completion to auto-complete the names
of the output parameters.

Custom Class Container. Using a custom class is very similar to using a dic-
tionary to return the values (it has even more similarities internally, because
the class namespace is implemented by a dictionary).

It requires a custom class definition, but it can be defined once and reused
many times. Hence it is barely a disadvantage.

With a custom class container it is possible to use the following constructs:

1 >>> class ResultContainer:
2 ... def __init__(self, **kwargs):
3 ... self.__dict__.update(kwargs) # copy arguments to attributes
4 ...
5 >>> def IncreaseByOne(a,b,c):
6 ... return ResultContainer(_ReturnValue=0, a=a+1,
7 ... b=b+1 ,c=c+1)
8 ...
9 >>> a,b,c = (1,2,3)

10 >>> retValue = IncreaseByOne(a,b,c)
11 >>> print retValue._ReturnValue, retValue.a,
12 ... retValue.b, retValue.c
13 0 2 3 4

Although this example looks most complicated, it solves the issues of the
previous ones. It is possible to return unlimited, variable number of named
arguments and the developer can use this container interactively (i.e. tab
completion in an interactive shell will work as well).

CIM models can be very complex and therefore it is not possible to make
any assumptions how the methods will be modeled. Return output parameters
in tuple is not convenient, because it is not possible to associate return values
with their names. Hence the developer is forced to know the exact ordering.
Dictionary solves this problem but it is difficult to introspect this structure from
interactive shell. Custom class container solves also this issue and thus the output
parameters will be mapped to a custom class container.

Additionally, Python allows the developer to name function arguments and
therefore the mapping should support this as well.

The “IncreaseByOne” example would be modeled in CIM the following way:

37

1 [Description("Increase each argument by one.")]
2 uint32 IncreaseByOne([IN(true), OUT(true)] a,
3 [IN(true), OUT(true)] b,
4 [IN(true), OUT(true)] c)

It will be natural to Python developers if the mapping will support the fol-
lowing constructs:

1 >>> a,b,c = (1,2,3)
2 >>> result = someObject.IncreaseByone(a,c=c,b=b)
3 >>> print result._ReturnValue, result.a, result.b, result.c
4 0 2 3 4

In case the parameter is output only (i.e. the IN qualifier is set to false) it
should be omitted from the function call. It does not make sense to explicitly call
a function with an argument that will be ignored. The actual output argument
will be returned in the custom class container upon return from the function.

3.4 Qualifiers

In Common Information Model, qualifiers are used to characterize Named Ele-
ments (classes, methods, attributes, etc). Although some of the qualifiers can be
easily expressed in Python most of them can be not. This section will discuss
how qualifiers could be mapped and what to do with qualifiers that can not be
directly expressed.

CIM Specification defines a set of standard qualifiers. However, this set can
be extended by the user by defining custom qualifiers. Not knowing the semantics
of these qualifiers beforehand, it is impossible to map them to Python. However,
they still should be stored and programmatically accessed as any other qualifier.

Most of the qualifiers can be used to describe concrete Named Elements (e.g.
it is possible to make aliases of properties, references and methods using the
“Alias” qualifier). Qualifiers in this section are divided to groups according to
Named Elements they are usually used with.

Nevertheless of the mapping, qualifiers must be stored so the CIM developer
can access them at the programming (API) level. The “storage” method will also
define how to access qualifiers that are not directly mapped to Python.

Looking at Figure 1.1, qualifiers must be stored for Classes, Properties and
Methods. Associations and Indications are specialized Classes thus it is pos-
sible to store their qualifiers the same way as for classes. The same applies for
Reference which is a specialized Property. Although theoretically it is possible
to use Qualifiers also to describe Qualifiers, it does not have any practical

38

use and therefore this option will be ignored7. Triggers, Schemas and Named

Elements will not be discussed for reasons mentioned earlier (see introduction to
Chapter 3).

Class Qualifiers are the easiest to store, although there are at least two ap-
proaches. The first and most straightforward solution would be to store
qualifiers as a (Python) class attributes with a special naming convention
(e.g. “ qualifier <NAME>”).

On the other hand, if there are a lot of different qualifiers (note that quali-
fiers might be inherited from base classes) this approach defines a lot of new
properties in the class namespace. This might be slightly annoying while
using tab-completion in an interactive shell.

This approach can be modified and a new class property QUALIFIERS can
be introduced, grouping all the class qualifiers in a single structure. In this
case QUALIFIERS will be a class, so the developer can use tab-completion
to get values of qualifiers in the interactive shell.

A typical direct access to qualifiers (i.e. not via special mapping) in Python
will be:

1 >>> print wbemManager._QUALIFIERS.Description
2 This class represents the OpenWBEM CIM object manager.
3 >>>

Property Qualifiers are not as straightforward as class qualifiers. At the same
time it is desired to see properties as a simple, value-holding objects (to
make the development easier) and to see them as more complex objects
with their qualifiers and maybe some other characteristics (to make the
scripts more sophisticated when needed).

As already discussed in Section 3.2, Python comes with the concept of
descriptors making both “goals” achievable.

Descriptor is a custom class representing a single property. As such, it can
provide any functionality a generic Python class provides. However, access-
ing the descriptor class (and not the value it represents) requires a special
syntax (see Figure 3.2, line 5), which is not very convenient. For this pur-
pose it is needed to define a convenience method GetPropertyQualifier

in the class the property belongs to. In that case construct as shown in
Figure 3.2 (line 3) will be possible.

The first print statement (line 1) prints the value of the “Name” property.
The second print statement (line 3) prints the “Description” qualifier of

7Even the MOF language syntax does not have any way how to express qualifier’s qualifiers.

39

1 >>> print wbemManager.Name
2 OpenWBEM:74513e6b-0860-11dc-8000-fb6e6048eec7
3 >>> print wbemManager._GetPropertyQualifier(’Name’,’Description’)
4 The Name property is used to uniquely identify a CIM Server.
5 >>> print wbemManager.__class__.__dict__[’Name’].Description
6 The Name property is used to uniquely identify a CIM Server.

Figure 3.2: Accessing Property Qualifiers

“Name” property. The last print (line 5) shows the direct access to descriptor
class properties (call at line 3 is a shorthand for call at line 5)8.

Method Qualifiers can be stored similarly to class qualifiers, directly in the
method object as attributes (methods in Python are “instancemethod”
objects)9. As in classes, there are exactly the same two options how to
store these qualifiers. Each qualifier can be stored as a property of the
method object with a special naming convention or a single property will
exists, grouping all qualifiers for the given method.

To make the development easier it will be best to store the qualifiers consis-
tently10 and therefore the same concept of a special QUALIFIER attribute
will be used for methods as well. Following the convention this construct
will be possible:

1 >>> print wbemManager.StopService._QUALIFIERS.Description
2 The StopService method places the Service in the stopped state.
3 >>> wbemManager.StopService()
4 0
5 >>>

The first statement (line 1) prints the description of StopService method.
The second statement (line 3) executes the method and successfully stops
the service (return value is 0 – line 4).

All class, property and method qualifiers will be encapsulated in special class
as discussed above. This will allow the developers to use the same syntax as in
the examples and at the same time it will be possible to access some additional
meta-data about the qualifier (such as its type).

8Note that if Name attribute would be defined in the parent class of wbemManager instance,
this syntax would not work.

9The only difference is that attributes of method objects are read-only. However, qualifiers
can not be modified anyway thus this is not a limitation for the mapping.

10That is, to store them the same way as the classes and properties store their qualifiers – in
a special class.

40

Nevertheless of the Python to CIM mapping, all qualifiers defined in Common
Information Model will be stored as described in this section. Additionally, some
qualifiers might be stored at other places (e.g. a copy of Description will be also
available in the doc property) or provide additional constraints (e.g. Abstract
qualifier might prevent the developer from instantiating the class).

3.4.1 Generic Qualifiers

Qualifiers discussed in this section can be used to describe any Named Element
defined in the CIM meta schema (Figure 1.1).

Description. This qualifier provides description of the named element.

Classes and methods in Python have a special convention of a “ doc ”
attribute which can be used for storing the documentation strings (see
Section 2.3 for more details about this feature). Hence the mapping is
straightforward in this particular case.

Situation with the Property element is more complicated. Although “doc-
strings” for properties were discussed in the past by the Python community
(see [32]), there is no way how to express them at the moment.

Some tools (e.g. epydoc) provide their own convention to document at-
tributes. However, this convention can be used only when parsing the
source-code file and it is not possible to access such documentation in inter-
active shell. However, the advantage is that the generated documentation
is nicely structured and the developer can find the information they need
fast and very easily. There are overview sections for “Instance Methods”,
“Class Variables” and sections with detailed method and property docu-
mentation. Unfortunately these conventions are not standardized by the
Python community and therefore it is not possible to use standard tools to
generate the API documentation.

Another solution is to append the “Description” of a property to the cor-
responding class docstring. This would be the most “portable” solution.
It will work both in the interactive shell (the developer could simply use
the class docstring to get the documentation of all properties available) and
with different tools generating API documentation (such as epydoc or py-
doc). Unfortunately the disadvantage is that it makes the documentation
less structured (e.g. it is not be possible to get the documentation of a
single, concrete attribute – just one huge string with all the documentation
for the class and all its attributes).

The last option how to map Description qualifier to docstring, is to use
descriptor classes (see Section 2.3 for more information). As discussed in
Section 3.2, properties will be represented by descriptor classes anyway.

41

1 >>> print service.Started.__doc__
2 bool(x) -> bool
3

4 Returns True when the argument x is true, False otherwise.
5 The built-in True and False are the only two instances of the class bool.
6 The class bool is a subclass of the class int, and cannot be sub-classed.

Figure 3.3: Incorrect Access to Descriptor Class Docstring

Since descriptors are regular Python classes it is possible to attach the
property docstring directly to the corresponding descriptor instance. Un-
fortunately storing docstrings directly in descriptor class has some issues as
well.

The first problem is that this documentation is not processed correctly by
all API documentation tools11 although this can be considered as a bug of
these tools.

Second problem is that it is not easy to access descriptor docstrings and
special syntax is needed. The code snippet in Figure 3.3 does not print the
documentation of Started property of a CIM Service class as one might
expect. It prints documentation of a bool data type instead. The correct
way how to access the documentation is shown in Figure 3.4.

The first and natural approach does not work, because of the way how
descriptors work. They are hiding the fact a property is a complex object
and they return only the value of such property. Therefore in Figure 3.3 a
boolean value is returned and only later the doc attribute is accessed.

On the contrary, when the developer knows an attribute is hidden in a
descriptor class, they can use the approach shown in Figure 3.4.

To make accessing these docstrings easier, it is possible to provide con-
venience method such as GetPropertyDocumentation(propertyName) in
the class namespace. In IPython it is possible to introduce custom, so-
called “magic”, functions, to make the access even more convenient from
interactive shell environment (for more information see Section 4.6).

Despite the drawbacks (mainly the portability among API documentation
tools), implementing the property docstrings via doc attribute of a de-
scriptor seems to be the best alternative.

Deprecated, Experimental, Expensive are qualifiers which are notifying the

11Pydoc which comes with standard Python library can process such documentation without
any problems. Epydoc does not process descriptor class docstrings correctly.

42

1 >>> print service.__dict__[’Started’].__doc__
2 Type: boolean
3

4 Started is a Boolean that indicates whether the Service has been
5 started (TRUE), or stopped (FALSE).

Figure 3.4: Accessing Docstring of Descriptor Class

developer something strange might happen when accessing such objects12.
As they are only notifying it does not make much sense to create any special
constraints for them. However, it will be useful to see the access to such
elements in the log files during the debugging phase (e.g. entries such as
“calling expensive method ”ExpensiveMethod”” or “getting an instance of
deprecated class ”CIM Deprecated””).

The standard ([4]) defines also other qualifiers that can be used for any named
element. These are Displayname, Mappingstrings, Modelcorrespondence and
Provider. These will not be mapped to any Python construct, but they can
be accessed by the developer as described in Section 3.4. For more information
about these qualifiers see [4].

3.4.2 Qualifiers Specific for Classes

With some exceptions, this section summarizes qualifiers which are specific only
for Classes. If a qualifier can be applied to another Named Elements (e.g. meth-
ods), mapping to the specific element is discussed as well.

Abstract, Exception, Terminal. These three qualifiers13 define constraints
on inheritance and instantiation of classes. There is no way, how to ex-
press them in Python natively, because Python does not support these
constructs.

Although it would be possible to simulate the correct behavior by custom
meta-classes (see also Section 2.3) there are few reasons why this is not
needed or even desired in some cases.

These constraints are checked by the CIM providers at the server side any-
way. In case a developer tries e.g. to instantiate an abstract class, the

12Although the names of these qualifiers should be self-explanatory, it is possible to find their
exact definition in [4].

13Abstract class is a common construct in object oriented languages. In CIM, Exception class
is defined the same way as abstract class with some additional constraints (e.g. the Exception
qualifier is inherited). Terminal class is a class that can have no subclasses. More information
can be found in [4].

43

corresponding provider should throw an exception14 which will be delivered
to the developer. Hence the developer will be notified no matter what the
mapping is. Implementation of these qualifiers will be therefore redundant.
Extra code also means extra bugs.

In one particular case this implementation even might not be desired. This
Python mapping could be used to easily write testsuites (unit tests) for the
CIM providers. In such case it is desired to try forbidden constructs at
the script level to check the correct behavior and exception handling of the
CIM provider.

As a result these qualifiers will be just appended to the documentation
string of the corresponding class. The developer can find these constraints
in documentation and no extra checks at runtime will be performed.

OCL. Object Constraint Language (OCL) is a formal language used to express
constraints on UML models [10]. These constraints are usually invariants
that must be true for the modeled entity. In CIM, OCL expressions can be
used for classes and methods.

Although it would be possible to implement the OCL support for Python
objects, it is far beyond the scope of this work. In some cases it would not
even be possible to check the constraints at the Python level and only the
CIM provider level is able to perform them. At the same time, arguments
used for not implementing the Abstract, Exception and Terminal qualifiers
can be used. Therefore OCL expressions can be accessed via standard
means but no additional Python mapping and checking will be done.

This qualifier will be mentioned in the docstring of the corresponding class
or method, though.

Invisible. Classes, properties and methods with the invisible qualifier are defined
only for internal purposes. As such they should not be displayed to the user
nor relied upon.

Invisible qualifier will be mentioned in the docstring of the corresponding
object (class, property or method).

Large. This qualifier indicates that a class or a property requires a large amount
of storage space.

14Please note that there are two different types of exceptions discussed at this place. CIM
classes with Exception qualifier are custom exceptions specific for the model. At the same time,
provider (or WBEM server) can throw run-time exceptions defined in [5]. For example in this
particular case (i.e. trying to instantiate an abstract class) a “CIM ERR FAILED: Abstract
methods can not be instantiated by the provider” exception might be raised. WBEM server
exceptions are discussed in Section 4.1.5.

44

The developer should be aware of this fact and therefore it should be men-
tioned in the docstring of the object. On the other hand it is not desired
to create additional runtime constraints (such as generating a confirmation
message before actually accessing the affected class or property).

However, during the development the developer might want to log accesses
to such objects. A message will be written to the logs (such as “Accessing
large property ”LargeProperty” of the ”CIM MyClass” instance”).

Class qualifiers Revision, Version and TriggerType can be accessed as de-
scribed in Section 3.4. They will not be mapped specifically to Python.

Association Specific Qualifiers

The following qualifiers are specific for association classes:

Delete, Ifdeleted. These qualifiers indicate what must be done with objects
in the given association in case some of them are deleted. Since this is
implemented on server side it does not need to be mapped to Python.

Aggregation, Composition. These qualifiers indicates that an association is
aggregation or composition as defined in UML Specification from OMG. It
does not need to be mapped to Python, because the object associations are
always fetched from WBEM Server and thus they should work as imple-
mented at the server side.

3.4.3 Property, Parameter and Method Qualifiers

Many qualifiers can be used for properties, method parameters and methods
(their return values) at the same time. Therefore, they are discussed together in
this section. In case the qualifier can not be used for a specific Named Element,
it is clearly stated in the text. Please also note that some of the attributes were
discussed in previous sections.

Constraints Qualifiers

All qualifiers discussed here are limiting what can be done and what values are
valid for a given property, parameter or method. Hence they will be mapped
similarly.

One way how to map these qualifiers would be to use extra Python code
performing the constraints checking at runtime. However, as discussed in Sec-
tion 3.4.2, these checks would be just redundant to what the CIM provider is
doing. The developer will be notified by an exception anyway thus the only
difference is when and by which component will it be generated.

45

This leads to conclusion that adding these qualifiers to the docstring of a
corresponding object to notify the developer will be enough.

Specifically these qualifiers will be mentioned in the API documentation of
the CIM classes:

Maxlen, Minlen. These qualifiers specify the maximum and minimum length,
in characters, of a string element.

Maxvalue, Minvalue. Maximum and minimum value of an (integer) element.

Read, Write. Indicates that a property can be read or written. This qualifier
can be used only for properties.

Required. Indicates that a non-NULL (i.e. valid) value is required. Required

can be used only for properties and references.

Qualifiers Specifying the Data Type

There are several qualifiers that specify in more detail what values can the de-
veloper expect in the given element. At least some of these should be mapped to
Python.

Arraytype. For an array, Arraytype specifies the characteristics of the array
(e.g. “bag” means that the same index to the array may return different
values, while “indexed” means the same index always returns the same
value no matter what operations are performed).

In Python, a list will be used to map CIM arrays. This type corresponds to
“indexed” Arraytype. Indexed arraytype is the most restrictive and thus
it trivially includes all other arraytypes making them useless in Python.

However, the developer should be aware of the fact, that CIM provider im-
plementation may behave differently than what they can see in the Python
binding. This is not a problem because the developer should be aware
of the arraytype, when using arrays (and there is no way how to hide this
information to make the development easier – for more information see [4]).

Arraytype can not be used for methods.

Valuemap, Values. These two qualifiers are a concept similar to enumerations
(the enum keyword) or static constants in C++ and Java.

Valuemap defines a set of valid values while Values provides translation
between integer values and strings. Although these two qualifiers can be
used independently, they will be usually used together to both define the
set and the corresponding strings.

In case the developer wants to define a set of constants for a class property,
method parameter or a return value, it is a common practice to define static

46

constants in the corresponding class. Therefore static constants are the best
fit for mapping Valuemap and Values qualifiers.

Properties, methods and their parameters are always defined in a class
and therefore it is clear where the static constants should be introduced
– in the namespace of the corresponding class. Creating a static constant
for each valuemap element would result in a class with a lot of properties
(there can be hundreds of constants defined for a class and these constants
are inherited). This would make interactive shell (and specifically tab-
completion) very difficult to use.

These reasons lead to a solution that will group all constants in a sin-
gle attribute visible in the class namespace – CONSTANTS (similarly as
_QUALIFIERS discussed in Section 3.4). This attribute will group all con-
stants for all properties and methods defined in the class (the same applies
for method parameters, but the constants will be defined in the method
object namespace – this concept was already used to store qualifiers as
discussed in Section 3.4).

As a convention the following naming scheme will be used for the constants
(all names will be capitalized to highlight the fact they are constants):
<NAME OF THE ELEMENT> <VALUE NAME>. NAME OF THE ELEMENT is the name
of a property or a method for which Values qualifier exists. VALUE NAME

is the string name of the property defined in Values. In case the Values

element does not exists but the Valuemap is defined (i.e. a set of valid
values is defined, but no string mapping exists) the numerical value will be
used instead (e.g. MYPROPERTY 10). Note that the opposite situation (when
Values is defined but Valuemap is not) is not a problem – the CIM Speci-
fication defines that an index of the Values array (zero-indexed) should be
implicitly used as the integer value otherwise being defined in Valuemap.

Using this schema the following constructs will be possible:

1 >>> if wbemManager.OperationalStatus == \
2 ... wbemManager._CONSTANTS.OPERATIONALSTATUS_STARTING:
3 ... print "Service is starting..."

In this example, the OperationalStatus property of a CIM Service class
is used to check the status of the CIM Service instance. This property
defines different statuses using the Valuemap and Values qualifiers.

Nullvalue. Nullvalue defines a value that indicates the item to be NULL (i.e.
not having meaningful value). This is similar to defining custom con-
stants using the Values qualifier. Hence this qualifier can be mapped to
a class property using the following schema in the CONSTANTS namespace:
NULL <PROPERTY NAME>.

47

This construct can be used to check for NULL:

1 >>> if wbemManager.OperationalStatus == \
2 ... wbemManager._CONSTANTS.NULL_OPERATIONALSTATUS
3 ... print "Operational status is not defined"

Nullvalue qualifier can be used only for properties.

Bitmap, Bitvalues. Bitmap indicates which bits are significant in a bitmap.
Bitvalues provides translation between bit position and associated string
(similar concept as Values qualifier).

It is difficult to create a mapping for this qualifier without knowing a typical
use-case. The developer may want to use this qualifier to perform some
bitwise operation (such as AND or OR) – in such case they will probably
need to have this mapping in the format of pre-calculated numbers (i.e. if
bit 10 is significant they may want to have “1024” pre-calculated).

At the same time they may want to know the bit positions (i.e. the format
provided by CIM).

Therefore, these qualifiers will be mapped to a special class property called
BITVALUES the same way as CONSTANTS or QUALIFIERS are. They will
store the number of significant bit using the following naming schema:
<PROPERTY NAME> <BITVALUE>. PROPERTY NAME indicates the name of a
property and BITVALUE is the string representation from Bitvalues quali-
fier.

According to standard these two qualifiers must be always used together15.

DN. DN qualifier can be used only with string types and it specifies that the
value must be a distinguished name as defined in a given standard16. This
qualifier will not be mapped to Python.

Octetstring. Octetstring signalizes that a given property, method or parameter
is an octet string (i.e. data whose length is a multiple of eight). Similarly to
the DN qualifier, this qualifier will not be mapped to any Python construct.

Embeddedobject, Embeddedinstance. These two qualifiers were added to
the standard quite lately as a workaround for not being able to express
objects (classes, instances) in properties, parameters or methods. In the
next major version of CIM specification it is expected that a new data type
for embedded objects will be introduced [4].

15The standard says: “The number of entries in the BitValues and BitMap arrays MUST
match.” [4]. This leads to a conclusion that if one of these qualifiers is non-empty, the other
must be non-empty as well.

16For more details please consult [4], page 16 – the DN qualifier definition.

48

Currently it is possible to encode objects and instances to strings. Unfor-
tunately, it is not precisely defined which encoding should be used and the
standard allows both MOF and CIM-XML encodings to be used depending
on the usage. It means, that the developer must be aware they are working
with an embedded object. Hence the Python mapping can not be too so-
phisticated and it should not translate string to and from Python objects
automatically. Otherwise it could choose the wrong encoding and the code
may not work.

Therefore these objects will be stored as they are – in a string. Python
objects will provide convenience methods to easily express them in both of
these formats (toMof, toCimXML).

Unknown values, Unsupported values. These qualifiers are specific for prop-
erties and in concept similar to nullvalue qualifier. There are two semantic
differences, though.

First, these qualifiers define set of values instead of one single value as in
the nullvalue case.

Second, they define values which are unknown and unsupported respec-
tively. In both cases it means that the property can not be considered to
have meaningful value.

These sets will be mapped the same way nullvalue is, in the CONSTANTS

namespace of the corresponding class. The following convention will be fol-
lowed: UNKNOWNVALUES <PROPERTY NAME> and UNSUPPORTEDVALUES <PROP-
ERTY NAME> for unknown and unsupported values respectively. This prop-
erty will hold a list of values. Hence the following construct will be possible
in Python:

1 >>> if wbemManager.OperationalStatus in
2 ... wbemManager._CONSTANTS.UNKNOWNVALUES_OPERATIONALSTATUS
3 ... print "Operational status is not known"

Semantic Qualifiers

Some of the qualifiers define how a given property, method or a parameter are
(or can be) used:

Gauge. Represents an integer that may increase or decrease in any order of
magnitude.

Counter. Represents a non-negative integer that monotonically increases.

Units. Defines the units of the associated data item. A complete list of standard
units can be found in [4], Appendix C.

49

Semantics of this qualifiers is not enforced by any means by the CIM/WBEM
infrastructure (i.e. it is up to the CIM provider implementation to do some
additional checks). On the other hand, the developer should be aware of modified
semantics and thus this should mentioned in the API documentation (i.e. Python
docstrings).

Qualifiers Specific for Methods

There are no qualifiers specific only for methods. Qualifiers that can be used
with methods are discussed in this Section, in Section 3.4.1 (Generic Qualifiers)
and in Section 3.4.2 (Qualifiers Specific for Classes).

Qualifiers Specific for Parameters

The only two qualifiers specific for parameters are In and Out. In specifies that
the parameter is used as an input value. Out parameters are used for returning
values back to the caller. Since these two qualifiers are very closely related to
calling the methods, they are discussed in Section 3.3 in more depth.

Other Qualifiers

Key. Qualifier specific for properties and references only. It specifies that a
property is needed to uniquely identify instance of the given class (think of
primary key in relational databases).

It is important to explicitly state this in the programmers documentation,
so the developer can easily find all key properties. No other mapping is
needed.

Propagated. Property specific qualifier. It defines a name of a propagated key
(if a property is propagated it must be a key). This qualifier is important
when designing the class and similarly to key, no specific mapping is needed.
More information about this qualifier can be found in [4].

Static. Static methods and properties can be accessed without having an in-
stance object (i.e. class object is enough). Mapping of this qualifier is
straightforward.

In Python, all properties can be thought as static (this is a consequence
of Python’s data/object model). For static methods the staticmethod

decorator can be used.

Alias. Alias provides another name under which an item (property, method or
reference) can be accessed. In Python, the item will be duplicated so the
developer can use both names the same way.

50

Schema. This qualifier only states the name of the schema. It can be accessed
the same way all other qualifiers and no further mapping is needed.

Propertyusage. Propertyusage is another, property specific qualifier. It (op-
tionally) allows to classify, how properties should be interpreted and used.
It is sufficient to store the value of this qualifier in the property descriptor.

Override. This qualifier specifies that a given property, method or reference
overrides a similar construct in the ancestor class. In python this is done
automatically when the class defines the same property/method, with the
same signature as its ancestor class. Hence no specific mapping is needed.

Syntax, Syntaxtype. According to [4], syntaxtype defines a format of the syn-
tax qualifier. Syntax defines a specific type assigned to a data item. Unfor-
tunately the standard is very brief and it is not clear how are these qualifiers
used and how to map them to Python. No classes defined in CIM Schema
are using them at the moment of writing this work.

Qualifiers Specific for References

The following qualifiers are specific for references: Max, Min, Delete, Ifdeleted
Weak, Aggregate.

Only the weak qualifier will be mentioned in the docstring of the corresponding
reference (property). The other qualifiers are either informational or provide
some additional constraints and thus they will not be mapped to Python. Please
consult [4] for more information.

3.5 Intrinsic Data Types

CIM Schema ([4]) defines also a basic set of intrinsic data types that can be used
for class properties, method parameters, qualifiers and so on.

Python provides the following data types: integer (32 bits), long (arbitrar-
ily large integer), float (64 bit, double precision), boolean, complex and string
(ASCII/EBCDIC or unicode). Character in Python is represented by a string of
one character.

Data types defined in [4] are similar to what Python provides. CIM is also able
to express integers, floats, boolean, strings, characters or datetime data types.
Although Python does not have directly datetime type, the standard library
(“datetime” module) provides objects that can be used for this purpose. Other
data types can be directly mapped to a corresponding Python type. However, the
precision in Python might be different from the precision in CIM (e.g. Python
does not support 8 bit integers). In such cases always the higher precision is used
(e.g. 8 bit integers from CIM will be mapped to 32 bit integers in Python).

51

Chapter 4

Implementation

Chapter 3 provides all information needed to implement the mapping of Common
Information Model to CIM. However, it still must be decided, how the code will
be structured, which technologies should be used (e.g. which XML libraries to
use to implement CIM-XML protocol) and some other technical details. The
prototype implementation is called powerCIM.

As already discussed in Section 3.1, mapping from CIM to Python can be
performed either during the execution of the CIM client code (referred as “dy-
namic” compiling) or before the client code is executed (i.e. compiling from MOF
to Python). Both approaches have their advantages and there are cases when one
or the other will be preferred. However, the compilation itself is just a techni-
cal problem once the mapping (as discussed in Chapter 3) is defined. For the
purpose of this work the “dynamic” compiling (i.e. at runtime from xmlCIM to
Python) is implemented as there are some interesting concepts that can be used
(for example reflection and meta-programming).

On the other hand, MOF language can be expressed as LL(1) parseable gram-
mar (see [4], Appendix A) and therefore it should not be difficult to implement
the “static” compiler as well.

4.1 High-level Overview

In Figure 4.1, you can see an UML diagram of the powerCIM Python package.
Classes depicted on this diagram and their usage will be discussed in this section.

These classes are split into several Python modules and init .py1 file is
provided for importing the whole powerCIM package easily.

The code is structured in the following way:

init .py – initialization of the package. All powerCIM modules are imported
and the logging subsystem is initialized.

1 init .py is required when a package is stored in a directory. Python is looking for this
file to initialize the whole package (usually there are just imports of all important modules).

52

factory.py – implementation of a WBEMFactory and ClassFactory (internal
class implementing the mapping from CIM to Python) classes.

cim.py – implementation of different mapping constructs. This modules imple-
ments CIMClass, different descriptor classes (Property, Qualifier) etc.

meta.py – implementation of meta classes.

wbemconnection.py – implementation of the WBEMConnection class and its
subclasses (i.e. the communication with WBEM server via TCP/IP net-
work).

testing/ is a directory which contains unit tests developed for powerCIM. More
about these tests in Section 4.5.

examples/ is a directory with some sample scripts developed using powerCIM.
Some of these examples are discussed in Appendix A.

IPython/ contains configuration files for IPython integration. More about them
in Section 4.6.

4.1.1 WBEMConnection and its Subclasses

Besides the CIM to Python mapping, the communication with WBEM server is
one of the first problems that must be solved. Web-Based Enterprise Management
defines more communication standards. Currently these are CIM-XML and WS-
Management (although this standard is in a preliminary status for about a year).
However, the developer should not be bothered with connection details and all
they need to know is the protocol they want to use.

For communicating with WBEM server WBEMConnection class is defined.
This class serves as a base class for different communication protocols and it de-
fines a set of basic operations such as GetClass, GetInstance or ExecuteQuery.
Each method defined in this class raises NotImplementedError exception. Each
subclass must therefore implement this functionality, otherwise the developer us-
ing powerCIM will get an exception.

For the purpose of powerCIM only the CIM-XML protocol is implemented in
CIMXMLConnection class using the pywbem project (see also Section 2.1.2)2. This
makes implementation of the communication part very easy. CIMXMLConnection
class will delegate the methods to pywbem, returning the internal structures
to WBEMFactory (discussed later). WBEMFactory takes care of the mapping as
discussed in Chapter 3.

2As discussed in Section 2.1.2, pywbem provides both the CIM-XML implementation and
some very basic mapping of CIM constructs to Python structures. The format of these struc-
tures is also used in powerCIM. PowerCIM is using pywbem as its back-end both for operations
and its internal structures.

53

WBEMFactory

+connection: WBEMConnection

+GetClass(className,namespace): SelfReprType

+GetInstance(className,keys,namespace): CIMClass

+GenerateAllClasses()

+GenerateDocumentation(directory,namespace)

+GenerateModuleCode(module)

+ExecuteQuery(query,queryLanguage,namespace): CIMClass[]

+EnumerateInstances(className,namespace): CIMClass[]

+EnumerateInstanceNames(classname,namespace): list

+EnumerateClasses(className): list

CIMClass

+factory: WBEMFactory

+namespace: string

+_CONSTANTS: Constants

+_QUALIFIERS: Qualifiers

+_BITVALUES

+_GetInstanceKeys()

+_GetPropertyQualifier(propertyName,qualifier)

+_GetPropertyDocumentation(property)

+_Refresh()

+_GetClassAssociators()

+_GetAssociators()

WBEMConnection
Abstract class defining basic operations

to communicate with WBEM server.

+GetClass()

+GetInstance()

+ModifyInstance()

+EnumerateClasses()

+EnumerateClassNames()

+EnumerateInstances()

+EnumerateInstanceNames()

+MethodCall()

+Associators()

+ExecuteQuery()

+...()

1

1

CIMXMLConnection WSMANConnection

CIM_Component CIM_Dependency ...

CIM_SystemComponent CIM_ConcreteComponent

1

*

ClassFactory

+ConstructClass(cimClass,superClass): CIMClass

-_ConstructClassProperties()

-_ConstructClassMethod()

-_ConstructMethodQualifiers()

-_ConstructClassQualifiers()

Constants

Qualifiers

ResultContainer

+__init__(kwargs)()

CIMException

+errorCode

+message

+__str__()

Qualifier

+__get__()

+__set__()

Property

+__get__()

+__set__()

<<metaclass>>

SelfReprType

+__new__()

+__repr__()

<<metaclass>>

EncapsulateCIMErrorType

+__new__()

Bitvalues

Figure 4.1: PowerCIM Overview

54

4.1.2 CIMClass and ResultContainer

CIM Specification does not require CIM classes to have an inheritance predeces-
sor. However, having a common interface for all CIM Classes mapped to Python
will make it possible to introduce several convenience methods common for all
mapped classes (such as method for accessing property qualifiers as discussed in
Section 3.4). In powerCIM, CIMClass is the root of inheritance hierarchy of all
CIM classes mapped to Python.

CIMClass also defines how values of class properties will be fetched from
WBEM server. There are two ways, how to access them:

1. At each access, get the value of a property directly from WBEM Server.

This has the advantage, that the values are up to date at the time they are
accessed (on the other hand there is still a possibility that value was changed
while transferring it to the developer or while the developer actually uses
it for some computations).

2. Get the whole instance at once at the time the Python class instance is
created and provide interface for refreshing the whole instance at once.

This approach is less network intensive (each WBEM message has a lot
overhead as the communication is usually in XML) comparing to the pre-
vious and thus the user experience may be better. On the other hand it
may happen that the developer needs just a single property and they will
still need to get the whole instance via network.

Both of these options are reasonable and depending on the usage they may be
useful. However, for the purpose of this prototype implementation, the second
option is implemented (i.e. getting all properties at once). It would be easy
to improve this implementation and provide a special flag, that will switch the
behavior (i.e. getting properties each at once).

Similar question arises when a value is assigned to a class property3. In this
case property can be either assigned and the instance directly modified at WBEM
server side, or a special “commit” method call will modify all instance changes
at once.

Unlike read, assignment may have side effects. For example changing an
IsEnabled property of a CIM class to True might start a service and change an-
other properties of this instance. Therefore this prototype implements a solution
which modifies the instance after each property assignment. An automatic refresh
of the instance at the client side is performed upon successful modification.

This implementation has the advantage that the developer can use instances
in read-only mode also during the time the network connection is broken.

3Properties in CIM can be marked as writable using the write qualifier discussed in Sec-
tion 3.4.3.

55

In powerCIM, CIMClass is the single interface common for all CIM classes
mapped to Python. The developer is always able to call the following methods
(note that names of these methods are prepended by underscore character (“ ”)
to differentiate them from methods defined in the modeled CIM class):

Refresh() will get an up to date version of the current instance. That is, it
will re-read all property values.

GetPropertyQualifier(propertyName, qualifier) returns a value of a given
qualifier for the given propretyName. This is a convenience method as
discussed in Section 3.4.

GetPropertyDocumentation(propertyName) is a convenience method for
getting the docstring of a property.

Note that although the Description qualifier is mapped to the docstring
(i.e. the doc attribute), it is not the same as the docstring. The doc-
strings are comprised from other qualifiers as well (e.g. there may be a note
that a given property is key).

GetClassAssociators(factory, namespace, assocClass, resultClass, role, resultRole)
is a static method that returns a list of classes associated to this class (not to
this instance). For this purpose a reference to a WBEMFactory instance (the
“factory” argument) and optionally a namespace (“namespace”) is needed.

The remaining arguments are optional and they serve as filters for the set
of classes being returned. Semantics of these arguments is as follows:

assocClass must be a valid CIM association class name. Each returned
class (instance) will be associated to the source class (instance) via
this class or one of its sub-classes.

resultClass must be a valid CIM class name. Each returned class (in-
stance) will be this class or one of its sub-classes (instance or instance
of one of its subclasses).

role must be a valid property name. Each returned class (instance) will be
associated to the source class (instance) via an association in which the
source plays the specified role (i.e. the property name must match).

resultRole must be a valid property name. Each returned class (instance)
will be associated to the source class (instance) via an association in
which the returned class (instance) plays the specified role.

GetAssociators(namespace, assocClass, resultClass, role, resultRole) returns
a list of instances associated with this instance.

56

All arguments of this method are optional. namespace is a namespace of
the associated instances. Other arguments can be used for filtering the
resulting set. They are discussed in the _GetClassAssociation method.

GetInstanceKeys() returns a dictionary with (key, value) pairs of the cur-
rent instance. This dictionary uniquely identifies this instances in a given
namespace and WBEM Server.

GetModelPath() returns a model path of this instance as defined in [4]. E.g.
it may return the following string:
“Xen VirtualSystemManagementService.CreationClassName=Xen Virtual-
SystemManagementService,SystemName=king.suse.cz”

GetObjectName() returns object name of this instance as defined in [4]. E.g.
it may return the following string:
“king.suse.cz/root/cimv2:Xen VirtualSystemManagementService.CreationClass-
Name=Xen VirtualSystem-ManagementService,SystemName=king.suse.cz”

Each CIMClass instance has a reference to the WBEMFactory (factory at-
tribute) by which it was created. Therefore all instances can live on their own
and they do not need any special parameters when used (such as URL or lo-
gin and password when calling a method). Although factory itself is associated
with a namespace, each CIMClass instance must know their own (implemented in
the namespace attribute), as WBEMFactory methods can be called with arbitrary
namespace.

CIM instance is stored in internal structure in the “instance” attribute.
Constants, Qualifiers and Bitvalues are another three important classes

related to CIMClass. They are used to store values and nullvalues (as discussed
in Section 3.4.3), qualifiers (Section 3.4) and bitmaps (Section 3.4.3) respectively.
However, they are used only as inner classes and get never instantiated. In this
case class is used as a structure to store static constants. Inheritance hierarchy of
these classes copy the same structure as the class in which they are included (i.e. if
a CIM Component is a superclass of CIM SystemComponent, the CONSTANTS class
of CIM SystemComponent is a subclass of CIM Component’s CONSTANTS class).

As discussed in Section 3.3, output parameters of methods will be mapped to
a container class. This container is provided by the ResultContainer class. It is
a simple class with custom constructor that can take a dictionary as an argument.
Elements of this dictionary will be translated to class attributes at the time of
instantiating the container (i.e. for each key in the dictionary an attribute with
the same name will be created holding the dictionary value).

4.1.3 WBEMFactory and ClassFactory

WBEMFactory is the most important class for the CIM client developer. It is an
interface which enables them to communicate with a WBEM Server. It provides

57

methods for getting instances, enumerating instances, executing queries etc.
Although internally powerCIM uses internal structures to store CIM ob-

jects, WBEMFactory is creating objects as defined in Chapter 3 (Mapping CIM
to Python). For mapping CIM to Python, WBEMFactory uses an internal fac-
tory class – ClassFactory. This class implements the mapping as defined in
Chapter 3.

The developer will instantiate the factory with a WBEM Server URL and
credentials (login and password) and optionally with a namespace (if namespace is
not specified, root/cimv2 will be used) and a communication protocol (currently
only CIM-XML is supported). Once the WBEMFactory is instantiated they can
use the methods to access WBEM Server functionality.

Although most of the methods provided by WBEMFactory can be called with an
explicitly stated namespace, by default, the namespace specified at instantiation
of the factory is used. This makes the factory very convenient to use, because
once an instance is available, the developer does not need to care about URLs,
credentials or namespaces.

The connection to a WBEM Server is stateless (HTTP is used as a back-
end protocol both for CIM-XML and WS-Management). As a consequence,
WBEMFactory instance will be able to operate even if the WBEM Server was
restarted meanwhile.

WBEMFactory provides the following methods:

init (url, login, password, namespace, module, protocol) is construc-
tor of WBEMFactory.

url is the URL4 of WBEM server the developer wants to connect to (e.g.
https://localhost:5989).

login and password are used to authenticate the client at WBEM server.

namespace is the default namespace which should be used for all operations
(such as EnumerateInstances). If not specified, root/cimv2 is used.

module is a name of module which contains “pre-compiled” mappings of
CIM classes (see also the GenerateModuleCode method). This module must
be already imported.

protocol is the protocol that should be used to connect to WBEM server.
At the moment this argument is ignored and CIM-XML is used because no
other protocols are implemented.

GetClass(classname, namespace) returns a Python mapping of the given
CIM class (classname). If the class is accessed for the first time, it is
fetched from WBEM server and it is mapped to a Python class. Once the

4Uniform Resource Locator

58

mapping is finished, the Python class is stored in an internal caching dic-
tionary. Next time the same class is being accessed, the mapped class is
fetched from this internal structure.

Optionally a namespace can be specified. If namespace is not specified, the
value given at factory instantiation is used.

GetInstance(classname, keys, namespace) returns an instance of the spec-
ified classname identified by the keys (keys is a dictionary where the
dictionary key is name of the key and the dictionary value is the respective
value of the key). Optionally a namespace can be defined. This method
returns always an instance of CIMClass sub-class. The developer can di-
rectly call methods or access properties of such an instance as specified in
Chapter 3.

GenerateAllClasses(namespace) does not return anything. This method
fetches all available classes from WBEM server, maps them to Python
classes and stores them in an internal cache. If a class is being accessed next
time, the mapping does not need to be performed and thus the GetClass

method is faster.

GenerateDocumentation(directory, namespace) generates a pydoc docu-
mentation in the given directory (the default value is “./html/”) for all
available classes in the given namespace (GenerateAllClasses method is
called within this call).

GenerateModuleCode(moduleName, namespace) generates a python mod-
ule of the given name (moduleName). The generated module will contain the
mappings for all available classes within the given namespace. The mod-
ule can be imported so the mapping is not performed always at runtime
(making the code little bit faster). It can be also used for generating docu-
mentation by different API documentation tools (i.e. not only pydoc, which
is used by GenerateDocumentation method, but also tools like epydoc).

Please note, that this code is generated and it is supposed to be neither
readable nor comprehensive.

ExecuteQuery(query, queryLanguage, namespace) will execute a query

expressed in the given query language (queryLanguage) and namespace.
Return value is a list of instances of CIMClass sub-classes (i.e. a list of
CIM classes mapped to Python).

Unfortunately it is not very easy to determine what query languages are
supported by the WBEM server. Although [5] defines ways how to de-
termine the server capabilities5, even one of the major open-source server

5See [5], Section 4.5: Determining CIM Server Capabilities

59

implementation, openWBEM, is unable to give the developer a list of sup-
ported query languages.

Therefore, selecting the correct6 query language is responsibility of the de-
veloper.

EnumerateInstances(className, namespace) returns a list of instances of
the given className. Although it would be possible to implement this
method by executing a query of the form “SELECT * FROM className”,
this is not desirable as executing queries may be not supported by the
WBEM server (while intrinsic method EnumerateInstances usually is sup-
ported). However, semantically these two approaches are identical.

EnumerateInstanceNames(className, namespace) returns a list of dic-
tionaries. Each dictionary consists of three keys – classname, keys and
namespace. Since these keys and their format (classname is string, keys
is a dictionary with keys and namespace is a string) is the same as the
GetInstance method expects, they can be directly used for getting the
instance using the following Python construct:

1 >>> serviceName = factory.EnumerateInstanceNames(’CIM_Service’)[0]
2 >>> service = factory.GetInstance(**serviceName)
3 >>> print service.Name
4 OpenWBEM:74513e6b-0860-11dc-8000-fb6e6048eec7

EnumerateClasses(className, namespace, ...) returns a class of the given
classname and all their subclasses in a list (i.e. the return value is a list of
CIMClass descendants). Each class in this list is the Python representation
(mapping) of the corresponding CIM class. The mapped classes are stored
in the same cache as classes created by GetClass method and the same
rules apply for them – if the mapping is already in cache, it is not computed
again.

This method accepts some other parameters (the corresponding WBEM
method accepts them – see [5], Section 2.3.2.9 – EnumerateClasses) but
in most cases the developer does not to care about them and the default
values should work fine.

GetConnection(), GetNameSpace(), GetURL() are three getter methods
for accessing the connection class (WBEMConnection instance), namespace
and URL of this factory respectively.

6Correct in this case means supported by the WBEM server.

60

4.1.4 Qualifier and Property

Qualifier and Property are descriptor classes as discussed in Section 2.3.
Qualifier is an descriptor class for storing and encapsulating qualifiers (see

Section 3.4). Internally, this class contains a pywbem structure for storing the
qualifier. Qualifiers are read only and thus it is not possible to change them and
the descriptor class does not implement the __set__ method (in matter of fact,
this method is implemented and it raises a “QualifierWriteError” exception
when the value is assigned).

Property is a descriptor class as discussed in Section 3.2. Similarly to
Qualifier, it also stores the property and all its meta-data in an internal struc-
ture. However, properties may be also writable (write qualifier) and thus there
must be a mechanism for setting the property.

Descriptor classes are always bound to a CIMClass instance and therefore
they have access to the WBEM connection. Upon write they can easily call the
ModifyInstance method to change the property of the managed element at the
server side.

After the instance is modified an implicit Refresh is called, because assign-
ing a property might have side-effects and the instance may change. Thus the
instance is up to date after the assignment.

There is a question what to do with read-only properties (by default properties
are read-only). It will be very easy to provide an additional check before calling
the ModifyInstance method and raise an exception when the property can not
be written. On the other hand, the exception will be risen anyway by the WBEM
server little bit later. As discussed in Section 3.4.2 (the discussion about Abstract,
Exception and Terminal qualifiers) checking this at the powerCIM level might
prevent developers to create testsuites for CIM providers. Therefore the check
will not be implemented (see also Section 5.1).

4.1.5 SelfReprType and EncapsulateCIMErrorType

SelfReprType and EncapsulateCIMErrorType are the only two meta-classes de-
fined in powerCIM7.

SelfReprType is used as a meta-class for CIMClass and all descendant classes.
It is also used to create new CIM classes at runtime (i.e. the new CIM classes
are instances of SelfReprType meta-class).

SelfReprType adds an important characteristic for each of these classes –
they can represent themselves using the __repr__ method. This method returns
a string with a Python code8. Execution of this Python code will create a class

7For more about meta-classes see Section 2.3, [2], [16] and [17].
8However, the generated code still relies on the fact that powerCIM library exists and is

imported.

61

with the same properties and methods. This feature is heavily used when gen-
erating Python module with mapped classes (GenereateModuleCode method of
WBEMFactory class).

Another interesting methods defined in this meta-class are _tomof() and
_toxml() used to express CIM classes either in mof or xml format (i.e. they
return a MOF or XML string). These methods are defined both in SelfReprType

and in CIMClass. This makes it possible to have the same methods (the same
names) defined both in class (as “static” methods9) and instance (as a “regular”
methods).

EncapsulateCIMErrorType is a meta-class used only for CIMXMLConnection

class. It is used to implement a construct found in aspect oriented program-
ming – each CIMXMLConnection method is encapsulated in a try/except block
catching the CIM exceptions generated by pywbem. Unfortunately pywbem ex-
ceptions are not very explanatory (although they return error code and additional
description it is usually not enough and the developer needs to know what the
error code represent). Therefore they are mapped to custom exception class –
CIMException. This class provides more explanatory exceptions and developers
should catch these exceptions in the client code.

4.2 Extrinsic Methods

As discussed in Section 3.3, CIM Class methods will be mapped directly to
Python methods in the namespace of the corresponding class. However, there
are still some technical difficulties that must be solved.

When the developer wants to call a method on a CIMClass instance, they
want to call it like any other method on any other instance (i.e. with some
parameters and they expect a return value). As already discussed in Section 3.3,
the method signature in Python must be different from what can be found in the
MOF declaration of the same class and method. The reason for this are output
parameters which will be returned together with return value in a tuple.

Extrinsic method is constructed using an ExtrinsicMethodCall method de-
fined in ClassFactory. This method will return a function that can be directly
stored in the corresponding class namespace. The method itself will check the
input parameters (whether all input parameters are specified) and in case of an
error a standard TypeError exception will be raised (i.e. the standard Python
behavior is simulated).

If the input parameters are correct, the extrinsic method call will be per-
formed and the instance will be refreshed using the Refresh method (by calling
a method the instance might change and thus an up to update instance is needed).

9Although in this case, these methods can be called without having a class instance, they
are not exactly the same as static methods. A class instance of the SelfReprType meta-class
is needed.

62

Once the method call finished it is time to encapsulate the output parameters
in the ResultContainer class and return them with the return value in a tuple.
In case the method has no output parameters, only the return value is returned
(so the developer does not need to care about unpacking the tuple).

The method will also contain a special __repr__ method that will be used by
the method to represent itself in a Python code.

All other qualifiers, constants and similar constructs as discussed in Sec-
tions 3.3 and 3.4.3 will be added to the constructed method by the ClassFactory.

4.3 Logging and Debugging

Python standard library includes a module called logging which provides all
logging functionality powerCIM needs. Therefore it is used as logging subsystem
for powerCIM.

This module is extremely configurable and the developer is able to choose
from a wide range of logging handlers (such as FileHandler for logging to files or
SMTPHandler for sending the log messages to a chosen e-mail address). It also
provides a few predefined log levels (such as DEBUG, INFO or CRITICAL). For
more information about this module, please consult [30], Section 14.5 – “logging
– Logging facility for Python”.

Since most of the operations are performed using network it would be use-
ful for the developers to log all network accesses for debugging purposes. For
these reasons all WBEMFactory methods are logging DEBUG level messages when
accessing a remote functionality (e.g. getting an instance, enumerating instance
names, etc).

Additionally operations on an CIMClass are logged as well – setting a property,
calling a method and getting associated classes and/or instances are operations
that are logged.

As defined in Chapter 3, some qualifiers (such as Expensive) will generate log
messages as well.

The logging subsystem is initialized in the __init__.py file. The configura-
tion is stored in “~/.powerCIM/logging.conf”, where “~” represents the home
directory of the user currently using the powerCIM library. If this file does not
exists it will be created. The default configuration is shown in Appendix B.

By default, WBEMFactory (logger_factory) and CIMClass

(logger CIMClass) are writing their INFO log level messages to a file
(/var/log/powerCIM.log). At the same time these messages are written to
console (logger_root) as well.

63

4.4 API Documentation

As discussed in Chapter 3, a lot of information, including some of the qualifiers,
are stored in Python docstrings for classes, methods and properties.

This makes the Python mapping a great source of documentation and the
developers have this documentation in a form they are used to.

There are several ways, the developer can access the documentation:

Directly from interactive shell. It is possible to access directly the __doc__

property of the object to access the docstrings or use a special syntax pro-
vided by IPython (putting a question mark after a class or method name will
print the documentation string; it is also possible to use a “magic” method
for accessing property docstrings – this will be discussed in Section 4.6).

Using an API documentation generation tool. It is possible to generate
the documentation both at runtime (using pydoc from the standard python
library) or store the classes in a module file. In that case is is possible to use
any tool available for generating Python code documentation (e.g. epydoc).

4.5 Unit Tests

During the development a few unit tests were developed (they can be found in
the “testing” directory). These tests are based on unittest module provided
by Python standard library. They are trying to exercise most of the mapping
functionality provided by powerCIM.

During the development they proved to be a useful way, how to find bugs in
powerCIM code especially after refactoring.

All tests share the same configuration (WBEM server URL, credentials and
namespace) and they are divided into the following groups:

Factory tests are testing the basic functionality of WBEMFactory. Specifically
creation of the (mapped) classes, enumerating instances and classes, etc.

Class tests are performing class specific tests. In this case getting classes asso-
ciated with a given class (i.e. stressing the _GetClassAssociators function).

Instance tests are performing tests on real CIM instances to check the map-
ping.

Query tests perform some execute query tests.

Linux OpertingSystem tests are testing Linux_OperatingSystem class func-
tionality.

64

4.6 Integration With IPython

1 conn:~$ ipython
2 powerCIM.factory:INFO: WBEMFactory created, url=http://localhost, login=, ←↩
3 password=*****, namespace=root/cimv2
4 Python 2.5 (r25:51908, May 25 2007, 16:14:04)
5 Type "copyright", "credits" or "license" for more information.
6

7 IPython 0.7.2 -- An enhanced Interactive Python.
8 ? -> Introduction to IPython’s features.
9 %magic -> Information about IPython’s ’magic’ % functions.

10 help -> Python’s own help system.
11 object? -> Details about ’object’. ?object also works, ?? prints more.
12

13 In [1]: s = factory.ExecuteQuery(’SELECT * FROM CIM_Service WHERE Name="sshd←↩
14 "’)[0]
15

16 In [2]: s.Started
17 Out[2]: True
18

19 In [3]: docu s.Started
20 Type: boolean
21

22 Started is a Boolean that indicates whether the Service has been
23 started (TRUE), or stopped (FALSE).
24

25 In [4]:

Figure 4.2: IPython as CIM Enabled Management Console

As already mentioned in Section 2.3, IPython is an interactive, object-oriented
shell based on Python. Although the standard Python implementation comes
with an interactive shell, IPython is more powerful and provides many features
the standard interactive mode does not have. It can be used both to develop and
debug applications and as a system management console.

If somebody wants to use the interactive shell that comes with Python by
default, they can use powerCIM as any other Python module (by executing the
“import powerCIM” or “from powerCIM import *” command).

IPython provides some extra options how to integrate powerCIM functionality
better.

If powerCIM should be used as a CIM enabled system management console,
it would be nice to have a configuration which will import powerCIM and set up
other properties of IPython upon start.

65

This can be easily achieved by a custom ipythonrc file in the ~/.ipython/ di-
rectory. Example shown in Appendix C, Section C.1 shows an ipythonrc file that
imports powerCIM and creates a WBEMFactory instance connected to localhost

with no login and no password. It also executes powercim-magic.py (see below).
Using this configuration the developer or system administrator can directly

access WBEM server as shown in Figure 4.2. In this example a CQL query is
executed (line 13) to get a sshd service instance. Line 16 shows that the sshd
service is currently started. With no extra typing, the system administrator was
able to find out the current status of ssh daemon.

In IPython it is possible to create so called “magic” commands to extend the
basic set. These functions allows the user to control IPython itself and also to
call many system related commands (such as ls to get a list of files in the current
directory in unix systems).

In Section C.2, you can see a definition of magic function called “docu”. This
function calls _GetPropertyDocumentation method for the given object (it works
both for methods and class attributes). Usage of this magic function is shown in
Figure 4.2 on line 19.

66

Chapter 5

Summary

This work defined a mapping of Common Information Model to Python and
successfully implemented a prototype in Python called powerCIM. The prototype
implementation is capable of fetching classes from WBEM Server and map them
dynamically (i.e. at run-time) to Python objects. At the same time, many
convenient methods are provided (e.g. to work with associations or for accessing
qualifiers of different objects) making the development in Python and CIM very
easy.

Choosing Python as a scripting language proved to be an important decision
for several reasons. Python’s philosophy is “batteries included” [34] and therefore
it comes with a powerful standard library covering a wide area of tasks (such
as XML parsing, e-mail handling, multimedia services, etc). Python is also a
modern language implementing many interesting dynamic features (as discussed
in Section 2.3) making the mapping of Common Information Model to Python
possible or at least easier and more convenient.

Synergy with Python standard library and other open-source projects is also
very important. Additional and standard libraries provide an extremely powerful
framework for the developers. It is possible to develop graphical applications
using the Python Qt1 binding, create web application using mod python Apache2

module or create command line applications.
CIM enablement of Python provided by powerCIM puts these synergies into

even broader context. With powerCIM it is possible to create management ap-
plications with different user interfaces very rapidly. They can be anything from
command line driven, web based (thin client) up to sophisticated graphical in-
terface (thick client).

Comparing with other projects (see also Section 2.1), powerCIM delivers an
easy to use, intuitive API for developing CIM clients. Although powerCIM is

1Qt is a cross platform GUI toolkit for application development written in C++. Python
Qt binding (PyQT) can be downloaded from http://www.riverbankcomputing.co.uk/pyqt/.

2An open-source HTTP server implementation. mod python can be downloaded from
http://www.modpython.org/.

67

based on pywbem, it enhances it and solves all problems discussed in Section 2.1.
Considering CIM Client for Java, powerCIM delivers a solution that can be

used for experimenting with new ideas without the usual edit-compile cycle. With
powerCIM it is also much easier to access class properties and call methods
because CIM classes are mapped directly to Python classes with their attributes
and methods3.

Although SBLIM wbemcli could be considered as a project suitable for CIM
scripting it is much more difficult to use than powerCIM as demonstrated in
Figure 2.4.

VBScript and Windows PowerShell provide the same features as powerCIM.
Both of these projects are mapping CIM classes to native classes and they can
be used similarly as the mapping provided by this work.

On the other hand, powerCIM comes with some features that are not available
in VBScript or Windows PowerShell. For example, it is possible to create CIM
API documentation using epydoc, or to trace the network calls (such as getting
class, enumerating instances, etc) using the logging subsystem.

Major advantage of powerCIM when comparing to tools from Microsoft, is
the fact that it is an open-source project (powerCIM is released under LGPL4

license). If needed, it is possible to enhance it very easily. Improving tools from
Microsoft is impossible due their proprietary nature.

The goals defined in Section 1.3 were addressed as follows:

Object-Oriented Programming. This goal was one of the most important
and the whole Chapter 3 deals with it. PowerCIM provides an object-
oriented framework that can be used to develop CIM clients in Python using
the OOP paradigm. At the same time Python conventions were followed
whenever it was possible.

Documentation. The API documentation of powerCIM is provided by this
work (Chapter 4) and, at the same time, it is possible to use Python doc-
strings to get the documentation in an interactive shell.

Docstrings are provided both for classes defined by powerCIM and classes
mapped to Python from CIM. It is also possible to use tools like pydoc or
epydoc to generate documentation which can be stored in different formats
(such as html).

Debugging. As discussed in Section 4.3, all network operations can be logged.
PowerCIM provides a very sophisticated way how to configure the logging
subsystem and the developers are able to configure how much information
they want (different log levels) and how they want to store these logs (in a
file, sending them via e-mail, etc).

3Calling a method in Java requires code shown on lines 24 and 25 in Figure 2.6. Calling a
method in powerCIM requires much simpler code shown on line 50 in Section A.1.

4http://www.gnu.org/licenses/lgpl.html

68

Use of Scripting Language. Python was selected as a scripting language
keeping (not only) this goal in mind. For more information see Section 2.2.

“Openness”. PowerCIM is released under LGPL license. Although it was not
tested extensively on different platforms it should be portable without
bigger problems. The open-source natures makes it possible to fix any
platform-dependent issues.

Anyone with Internet access can download the latest source code from
http://en.opensuse.org/PowerCIM. The source code is also available on a
DVD which is part of this work.

“Shell Enablement”. The standard Python interactive shell can be used as a
basic system management console. The mapping defined in Chapter 3 kept
this goal in mind and features like “tab-completion” or Python docstrings
were enabled. It is possible to get more sophisticated management console
by using IPython as discussed in Section 4.6.

Goals of this work as defined in Section 1.3 were addressed and powerCIM
should be an easy to use, object-oriented extension of Python with debugging
and documentation support. With other open-source tools it is also possible to
use it as a system management console.

5.1 Open Issues and Future Work

Each work can be extended and this one is not an exception. There are few open
issues that were either not addressed or they are beyond the scope of this work.

First challenge are the tools for generating API documentation. Both main-
stream tools – pydoc and epydoc have some issues. While pydoc can create
documentation even when the developer is using more sophisticated constructs
(such as descriptor class), the generated documentation is not structured nicely
and not very easy to read.

On the other hand, epydoc creates very nice documentation but it does not
handle all constructs correctly (e.g. descriptor class docstrings as discussed in
Section 3.4.1).

Another open issue are embedded objects and instances. Unfortunately, this
was added to CIM only lately and the usage is not very clear. It is expected that
next major revision of the standard will define a new data type for embedded
objects making this concept easier to understand and implement [4]. This is
something that needs to be addressed in the future.

Besides these topics there are few other improvements that can be made:

WS-Management Support. The only supported protocol at the moment is
CIM-XML (XML over HTTP). Having support for WS-Management ser-

69

vices would improve powerCIM significantly. As web services and specifi-
cally SOAP are very common these days it should not be difficult to imple-
ment WS-Management support.

Better Code Generation. Although powerCIM is able to save the CIM classes
mapped to Python into a reusable module this functionality could be im-
proved. Currently, the generated module is one huge file with all available
class definitions. One approach could be to divide the classes according to
their namespace and save one namespace per file.

MOF to Python Compiler. PowerCIM implements “dynamic” (for more in-
formation see Section 3.1) compilation of CIM classes at runtime. However,
this approach can not be used in every circumstance. In some cases, it is
needed to get Python definition of CIM class before connecting the CIM
client to the WBEM Server. In such cases, a MOF to Python compiler
would be needed.

Constraint Checking. As discussed in Section 3.4.3, there are few qualifiers
that are putting some constraints on the objects they describe (e.g. maxlen,
minlen, read, write, etc). There are several reasons why this checking should
not be performed at powerCIM level in general. However, some developers
might appreciate such feature under specific circumstances. In that case it
would be nice to have this checking implemented with a special flag turning
it on or off for a given Python module.

Creating Classes and Instances. CIM/WBEM defines a way how to create
new classes and instances in a given namespace. Being able to sub-class
CIMClass (see Section 4.1.2) and give this class to powerCIM might be useful
in some cases (although it is probably not a typical use-case).

Similarly it might be useful to create instances from the CIM classes mapped
to Python and let powerCIM to create such instances at WBEM server side.

Indications Support. PowerCIM is currently unable to receive Indications. To
enable Indications it would be needed to implement a simple “server” that
will listen to indications at a specified (TCP/IP) port.

Service Location Protocol Support. One of the standard defined by DMTF
is “WBEM Discovery Using the Service Location Protocol” [8]. Support
for SLP discovery would be especially useful when using powerCIM as a
system management console.

70

Appendix A

PowerCIM Examples

Source code of examples discussed in this Appendix can be found on the DVD
which is part of this work (see also Appendix D) in the MFF/powerCIM/examples/

directory1.

A.1 Start/Stop Services – Thick Client

This thick client example2 demonstrates how CIM clients with graphical user
interface could be developed using powerCIM and PyQt projects. This simple
application can be used to easily start or stop services on a given operating
system.

This example also demonstrates that powerCIM is easy to use because only
very limited code is related to Common Information model and most of the
programming deals with the user interface.

Lines 9-12 in the code listed below define the URL and credentials of WBEM
server being used.

1If you are using the live system, the source code can be found in
/̃linux/powerCIM/examples. For more information see Appendix D.

2The source code can be found in guiServices.py file.

Figure A.1: guiServices.py Screenshot

71

Code on lines 71-73 connects to WBEM server and enumerates all instances
of the CIM_Service class. For each instance of this class, one line in a grid
(QGridLayout – line 77) with its name (line 85) and a start/stop button (line
86) is created. StartStopButton (line 14) is a custom button which is aware
about the service it represents. Each StartStopButton contains a reference to
a CIM_Service instance. If the button is clicked, the service is either started
or stopped (depending on its previous state) and the button label is changed
accordingly.

You can see a screenshot of this application in Figure A.1.
The rest of the code is Qt specific and is not directly related to powerCIM or

Common Information Model.

1 #!/usr/bin/env python
2

3 import sys
4 from qt import *
5 from qttable import *
6 import powerCIM
7

8

9 host = ’http://localhost’
10 login = ’’
11 password = ’’
12 namespace = ’root/cimv2’
13

14 class StartStopButton(QPushButton):
15 """Custom push button aware of the fact that it represents a CIM_Service
16 status.
17

18 Each StartStopButton has a reference to a corresponding CIM_Service
19 instance.
20

21 It defines a public slot which can be used to change the status of the
22 service.
23 """
24

25 def __init__(self, service, parent):
26 """__init__(self, service, parent) -> Initialize the StartStop button.
27

28 Arguments:
29 service -- CIM_Service instance (its powerCIM mapping)
30 parent -- parent widget of this button.
31 """
32

72

33 if service.Started:
34 apply(QPushButton.__init__,
35 (self,"Stop",parent))
36 else:
37 apply(QPushButton.__init__,
38 (self,"Start",parent))
39 self.service = service
40

41

42 def slotChangeStatus(self):
43 """slotChangeStatus(self) -> change the status of the current service.
44

45 If service is started, it stops the service.
46 If service is stopped, it starts the service.
47 """
48 try:
49 if self.service.Started:
50 self.service.StopService()
51 if not self.service.Started:
52 self.setText("Start")
53 else:
54 self.service.StartService()
55 if self.service.Started:
56 self.setText("Stop")
57 except powerCIM.CIMException,e:
58 QMessageBox.critical(self,"guiServices.py",e.__str__())
59

60

61 class MainWindow(QMainWindow):
62 """ The main widget of the application.
63 It is a grid with two columns -- first column is the name of the service
64 and the second column is a push button which can be used to start/stop the
65 service.
66 """
67 def __init__(self, *args):
68 #call the super class constructor
69 apply(QMainWindow.__init__, (self,)+args)
70

71 #connect to WBEM Server and enumerate all CIM_Service instances
72 factory = powerCIM.WBEMFactory(host, login, password, namespace)
73 services = factory.EnumerateInstances(’CIM_Service’)
74

75 #create the grid
76 self.main = QWidget(self)
77 self.layout = QGridLayout(self.main,services.__len__(),2,10)

73

78 i = 0
79

80 #for each service in services create a new label with its name and a
81 #new StartStopButton. Add this button to the grid and connect the
82 #clicked() signal and changeStatus slot. This will change the status
83 #of the service each time the button is clicked.
84 for service in services:
85 self.layout.addWidget(QLabel(service.Name,self.main),i,0)
86 button = StartStopButton(service,self.main)
87 self.layout.addWidget(button,i,1)
88

89 self.connect(button, SIGNAL("clicked()"),
90 button.slotChangeStatus)
91 i+=1
92

93 self.setCentralWidget(self.main)
94

95

96

97 def main(args):
98 #Qt related logic
99 app = QApplication(args)

100 win = MainWindow()
101 win.show()
102 app.connect(app, SIGNAL("lastWindowClosed()"), app, SLOT("quit()"))
103 app.exec_loop()
104

105

106 if __name__=="__main__":
107 main(sys.argv)

A.2 AppArmor Security Event Notification

This example deals with Novell AppArmor technology3.
AppArmor is capable of sending e-mails when security access violations have

been detected. Three types of notifications exists (Terse, Summary and Verbose)
and each one can be configured separately. More about AppArmor notifications
can be found in [36] in Section 4.2 – “Setting Up Event Notification”.

AppArmor comes with CIM providers enabling system administrator to set-
up these notifications using CIM and WBEM protocols. Example listed in
this section defines two methods – printNotificationSettings (line 12) and

3Novell AppArmor is a Linux application security framework included in SUSE Linux prod-
ucts. More about AppArmor can be found in [35] and [36].

74

Figure A.2: An Example of apparmor report.py Output

changeNotificationsEmail (line 46).
Both methods take an instance of Novell_AppArmorNotificationSettingData

class as their first argument. Given this argument, printNotificationSettings
prints the current configuration of notification settings (you can see an example
of the output in Figure A.2).

changeNotificationsEmail takes an additional argument – a string containing
e-mail address. This method configures AppArmor to send all notifications (i.e.
Terse, Summary and Verbose) to the given e-mail address.

The code snippet listed below calls printNotificationSettings to print the
current notification configuration. Then it changes the e-mail to root@localhost

and finally prints the configuration again to demonstrate the e-mail addresses
were really changed. Output of this script is shown in Figure A.2.

1 #!/usr/bin/env python
2 import powerCIM

75

3

4 # define WBEMServer
5 WBEMServer = ’http://localhost’
6 login = ’’
7 password = ’’
8

9 #get factory
10 factory = powerCIM.WBEMFactory(WBEMServer, login, password)
11

12 def printNotificationSettings(notify):
13 """printNotificationSettings(notify) -> print current settings of Apparmor
14 notification settings.
15

16 Arguments:
17 notify - Novell_AppArmorNotificationSettingData instance
18 """
19

20 print "=== AppArmor Security Event Notification ==="
21 enabled="disabled."
22 if notify.IsEnabled:
23 enabled="enabled."
24

25 print "\tNotification is "+enabled
26

27 print "\n\tTerse Notification:"
28 print "\t\tFrequency: "+notify.TerseFrequency.__str__()
29 print "\t\tEmail Address: "+notify.TerseEmail.__str__()
30 print "\t\tSeverity: "+notify.TerseLevel.__str__()
31 print "\t\tInclude Unknown Severity Events: "+notify.TerseUnknown.__str__()
32

33 print "\n\tSummary Notification:"
34 print "\t\tFrequency: "+notify.SummaryFrequency.__str__()
35 print "\t\tEmail Address: "+notify.SummaryEmail.__str__()
36 print "\t\tSeverity: "+notify.SummaryLevel.__str__()
37 print "\t\tInclude Unknown Severity Events: "+notify.SummaryUnknown.__str__()
38

39 print "\n\tVerbose Notification:"
40 print "\t\tFrequency: "+notify.VerboseFrequency.__str__()
41 print "\t\tEmail Address: "+notify.VerboseEmail.__str__()
42 print "\t\tSeverity: "+notify.VerboseLevel.__str__()
43 print "\t\tInclude Unknown Severity Events: "+notify.VerboseUnknown.__str__()
44

45

46 def changeNotificationsEmail(notify, email):
47 """ changeNotificationsEmail(notify, email) -> Change all notification

76

48 emails to a given address.
49

50 Arguments:
51 notify - Novell_AppArmorNotificationSettingData instance
52 email - email address
53 """
54 notify.TerseEmail=email
55 notify.SummaryEmail=email
56 notify.VerboseEmail=email
57

58

59

60 notificationSettings = \
61 factory.EnumerateInstances(’Novell_AppArmorNotificationSettingData’)[0]
62

63 printNotificationSettings(notificationSettings)
64 changeNotificationsEmail(notificationSettings, ’root@localhost’)
65 printNotificationSettings(notificationSettings)

77

Appendix B

Default Logging Configuration

1 [formatters]
2 keys: detailed,simple
3

4 [handlers]
5 keys: console,file
6

7 [loggers]
8 keys: root,factory,CIMClass
9

10 [formatter_simple]
11 format: %(name)s:%(levelname)s: %(message)s
12

13 [formatter_detailed]
14 format: %(name)s:%(levelname)s %(module)s:%(lineno)d: %(message)s
15

16 [handler_console]
17 class: StreamHandler
18 args: []
19 formatter: simple
20

21 [handler_file]
22 class: handlers.RotatingFileHandler
23 args: [’/var/log/powerCIM.log’,’a’]
24 formatter: detailed
25

26 [logger_factory]
27 level: INFO
28 handlers: file
29 qualname=powerCIM.factory
30

31 [logger_CIMClass]

78

32 level: INFO
33 handlers: file
34 qualname=powerCIM.CIMClass
35

36 [logger_root]
37 level: INFO
38 handlers: console
39 qualname=root

79

Appendix C

IPython configuration

C.1 ipythonrc

1 # -*- Mode: Shell-Script -*- Not really, but shows comments correctly
2 #***
3 #
4 # Configuration file for ipython -- ipythonrc format
5 #
6 # The format of this file is one of ’key value’ lines.
7 # Lines containing only whitespace at the beginning and then a # are ignored
8 # as comments. But comments can NOT be put on lines with data.
9 #***

10

11 # If this file is found in the user’s ~/.ipython directory as
12 # ipythonrc-powerCIM, it can be loaded by calling passing the ’-profile
13 # powerCIM’ (or ’-p powerCIM’) option to IPython.
14

15 # First load basic user configuration
16 include ipythonrc
17

18 # from ... import *
19 import_all powerCIM
20

21 # from ... import ...
22 import_some
23

24 # code
25 execute factory = WBEMFactory(’http://localhost’,’’,’’)
26

27 # Files to execute
28 execfile powerCIM-magic.py

80

C.2 powerCIM-magic.py

1 import IPython.ipapi
2

3 ip = IPython.ipapi.get()
4

5 def GetPropertyDocumentation(self, arg):
6

7 ip = self.api
8

9 partition = arg.rpartition(’.’)
10 object = partition[0]
11 property = partition[2]
12

13 ip.ex("print %s._GetPropertyDocumentation(’%s’)" % (object,property))
14

15

16 ip.expose_magic(’docu’, GetPropertyDocumentation)

81

Appendix D

PowerCIM DVD

A DVD which comes with this work contains a PDF version of this text and
source code of the prototype implementation as discussed in Chapter 4. It can
be also used as a bootable live DVD to try the prototype capabilities on a running
system.

If you want to access the source code and do not want to boot the system,
the following directories and files are available on the DVD:

MFF/ is a directory with source code and PDF version of this text. Other
directories on this DVD are internal and they are used to make the DVD
bootable. They can be safely ignored.

MFF/powerCIM/ contains powerCIM source code as described in Chap-
ter 4.1.

MFF/RPMS/ contains RPM and source RPM of powerCIM packaged for
openSUSE Linux distribution1.

MFF/ScriptingOfCIM.pdf is a pdf version of this work.

This DVD is bootable and you can use it for testing powerCIM capabilities
on any x86-based computer2.

If you want to try this linux distribution follow these steps:

1. Insert the DVD into your DVD drive

2. Boot your computer from your DVD drive

1It should be possible to use the source RPM to build powerCIM on other RPM based linux
distributions. This was not tested, though.

2Please note that although this DVD is based on openSUSE Linux which is tested on many
different computers, this DVD was not tested extensively and therefore it is quite likely that it
will not run on a given hardware configuration. If this is the case, it is a bug of the distribution
and it is not in the scope of this work to fix such issues.

82

3. Once the system is up and running, you will see a KDE desktop. To run a
terminal program, you can press ALT+F2 and type konsole.

4. In a terminal you have several options. For example, you can type
“ipython” to get a system management console based on IPython and pow-
erCIM that can be used to manage the live system.

You can also use the terminal to examine the directory structure discussed
below.

In the home directory, (type “cd ~” in konsole) the following directories might
be of your interest:

powerCIM/examples is a directory with powerCIM usage examples. You can
try to run the guiServices example discussed in Appendix A.1 using the
following commands:

1 cd ~/powerCIM/examples
2 ./guiServices.py

A window similar to Figure A.1 should appear3. Other examples can be
executed similarly.

powerCIM/rpms contains rpm (source rpm) used to install (build) powerCIM
for this live DVD.

powerCIM/testing contains powerCIM testsuite.

powerCIM/IPython contains files used for IPython integration as discussed
in Section 4.6.

3Unfortunately some of the start/stop button does not work as one would expect. This is
problem of the corresponding CIM providers on the WBEM server side.

83

List of Figures

1.1 Meta Schema Structure [4] . 7
1.2 Operating System Example (MOF) 9
1.3 Operating System Example (UML) 10
1.4 WBEM Components [1] . 13
1.5 WBEM Server, Clients and Providers [1] 14

2.1 Example – List Services Using Microsoft VBScript [27] 18
2.2 Example – List Services Using Windows PowerShell [27] 18
2.3 Example – List Services Using pywbem 19
2.4 Example – List Services Using wbemcli/bash 20
2.5 Wbemcli – Enumerate Instance Names 21
2.6 Example – List Services Using CIM Client for Java 22
2.7 Google Trends - Perl, Python, Ruby [26] 25
2.8 Decorator Example . 27

3.1 Get-Compile-Store-Load-Develop Cycle 32
3.2 Accessing Property Qualifiers . 40
3.3 Incorrect Access to Descriptor Class Docstring 42
3.4 Accessing Docstring of Descriptor Class 43

4.1 PowerCIM Overview . 54
4.2 IPython as CIM Enabled Management Console 65

A.1 guiServices.py Screenshot . 71
A.2 An Example of apparmor report.py Output 75

84

Bibliography

[1] C. Hobbs. A Practical Approach to WBEM/CIM Management. Auerbach
Publications, 2004.

[2] Forman, Ira R., and Scott Danforth. Putting Metaclasses to Work. Addison-
Wesley, 1999.

[3] Cambridge Advanced Learner’s Dictionary. Cambridge University Press,
2005.

[4] Distributed Management Task Force, Inc. Common Information Model (CIM)
Infrastructure Specification. DSP0004, Version 2.3 Final. 07 August 2007
<http://www.dmtf.org/standards/published documents/DSP0004V2.3 final.pdf>.

[5] Distributed Management Task Force, Inc. Specification for CIM
Operations over HTTP. DSP0200, Version 1.2. 07 August 2007
<http://www.dmtf.org/standards/published documents/DSP200.html>.

[6] Distributed Management Task Force, Inc. Specification for the Repre-
sentation of CIM in XML. DSP0201, Version 2.2. 07 August 2007
<http://www.dmtf.org/standards/published documents/DSP201.html>.

[7] Distributed Management Task Force, Inc. Solution Exchange and Ser-
vice Incident Specification. DSP0132, Status: Preliminary. 07 August 2007
<http://www.dmtf.org/standards/documents/CIM/DSP0132.pdf>.

[8] Distributed Management Task Force, Inc. WBEM Discovery Using the Ser-
vice Location Protocol. DSP0205, Status: Preliminary. 07 August 2007
<http://www.dmtf.org/standards/documents/CIM/DSP0132.pdf>.

[9] Distributed Management Task Force, Inc. Web Services for Manage-
ment (WS-Management). DSP0226, Status: Preliminary. 07 August 2007
<http://www.dmtf.org/standards/published documents/DSP0226.pdf>.

[10] OMG Available Specification. Object Constraint Language, Version
2.0. 03 August 2007 <http://www.omg.org/cgi-bin/apps/doc?formal/06-05-
01.pdf>.

85

[11] “Command line completion.” Wikipedia: The Free Encyclopedia. 25 July
2007 <http://en.wikipedia.org/wiki/Tab completion>.

[12] “Simple Network Management Protocol.”
Wikipedia: The Free Encyclopedia. 05 May 2007
<http://en.wikipedia.org/wiki/Simple Network Management Protocol>.

[13] “Windows Management Instrumentation.”
Wikipedia: The Free Encyclopedia. 08 May 2007
<http://en.wikipedia.org/wiki/Windows Management Instrumentation>.

[14] “Xen.” Wikipedia: The Free Encyclopedia. 06 August 2007
<http://en.wikipedia.org/wiki/Xen>.

[15] “CIM Tutorial.” Distributed Management Task Force and WBEM Solutions,
Inc. 05 May 2007 <http://www.wbemsolutions.com/tutorials/CIM/>.

[16] Mertz, David and Michele Simionato. “Metaclass programming
in Python.” IBM developerWorks. 18 April 2007 <http://www-
128.ibm.com/developerworks/linux/library/l-pymeta.html>.

[17] Mertz, David and Michele Simionato. “Metaclass programming in
Python, Part 2.” IBM developerWorks. 18 April 2007 <http://www-
128.ibm.com/developerworks/library/l-pymeta2/>.

[18] Mertz, David. “Charming Python: Decorators make magic
easy.” IBM developerWorks. 30 April 2007 <http://www-
128.ibm.com/developerworks/linux/library/l-cpdecor.html>.

[19] O’Brien, Patrick. “Guide to Python introspection.” IBM developerWorks. 28
May 2007 <http://www.ibm.com/developerworks/library/l-pyint.html>.

[20] Python Software Foundation. “How do I write a function with
output parameters (call by reference)?.” effbot.org!. 03 August
2007 <http://effbot.org/pyfaq/how-do-i-write-a-function-with-output-
parameters-call-by-reference.htm>.

[21] Pérez, Fernando. “IPython – An enhanced Interactive
Python – User Manual, v. 0.8.1”. IPython. 9 May 2007
<http://ipython.scipy.org/doc/manual/>.

[22] Eckel, Bruce. “5-2-03 Strong Typing vs. Strong Testing.” Bruce Eckel’s
MindView, Inc. 29 May 2007 <http://www.mindview.net/WebLog/log-
0025>.

[23] Eckel, Bruce. “3-31-04 I’m Over It.” Bruce Eckel’s MindView, Inc. 07 August
2007 <http://www.mindview.net/WebLog/log-0053>.

86

[24] Spolsky, Joel. “Language Wars.” Joel on Software. 20 May 2007
<http://www.joelonsoftware.com/items/2006/09/01.html>.

[25] Ascher, David. “Dynamic Languages – ready for the next
challenges, by design.” ActiveState Software, Inc. 10 June
2007 <http://www.activestate.com/Corporate/Publications/Acti-
veState Dynamic Languages.pdf>.

[26] “About Google Trends.” Google Trends. 20 May 2007
<http://www.google.com/intl/en/trends/about.html>.

[27] “Accessing WMI From Windows PowerShell.” Mi-
crosoft TechNet Script Center. 08 May 2007
<http://www.microsoft.com/technet/scriptcenter/topics/msh/mshandwmi.mspx>.

[28] Rossum, Guido van. “Python Reference Manual, Release 2.5.” Python Doc-
umentation. 19 September 2006 <http://docs.python.org/ref/ref.html>.

[29] Rossum, Guido van. “Python Tutorial, Release 2.5.” Python Documentation.
19 September 2006 <http://docs.python.org/tut/>.

[30] Rossum, Guido van. “Python Library Reference, Release 2.5.” Python Doc-
umentation. 19 September 2006 <http://docs.python.org/lib/>.

[31] Rossum, Guido van. “What is Python? Executive Summary.” Python Doc-
umentation. 27 May 2007 <http://www.python.org/doc/essays/blurb/>.

[32] Lemburg, Marc-André. “Attribute Docstrings”. Python Developers Guide.
23 August 2000 <http://www.python.org/dev/peps/pep-0224/>.

[33] Smith, Kevin D., Jim J. Jewett, Skip Montanaro, and Anthony Baxter.
“Decorators for Functions and Methods.” Python Developers Guide. 05 Jun
2003 <http://www.python.org/dev/peps/pep-0318/>.

[34] Kuchling, A. M. “Python Advanced Library.” Python Developers Guide. 19
Jun 2007 <http://www.python.org/dev/peps/pep-0206/>.

[35] “AppArmor Application Security for Linux.” NOVELL: Worldwide. 03 Au-
gust 2007 <http://www.novell.com/linux/security/apparmor/>.

[36] Campbell, Leona Beatrice and Jana Jaeger. “Novell AppArmor
2.0 Administration Guide.” NOVELL: Worldwide. 04 July 2006
<http://www.novell.com/documentation/suse101/pdfdoc/apparmor-admin-
guide en/apparmor-admin-guide en.pdf>.

[37] “Wide Adoption for UML Techniques.” Methods & Tools. 03 August 2007
<http://www.methodsandtools.com/dynpoll/oldpoll.php?UMLPoll>.

87

	Introduction
	Common Information Model
	CIM Specification
	CIM Schema

	Web Based Enterprise Management
	Goals
	Structure of This Work

	Scripting of CIM
	Related Works
	Windows Management Instrumentation
	pywbem
	SBLIM
	Other Projects

	Scripting Language
	Selected Python Features

	Mapping CIM to Python
	Classes
	Properties
	Methods
	Qualifiers
	Generic Qualifiers
	Qualifiers Specific for Classes
	Property, Parameter and Method Qualifiers

	Intrinsic Data Types

	Implementation
	High-level Overview
	WBEMConnection and its Subclasses
	CIMClass and ResultContainer
	WBEMFactory and ClassFactory
	Qualifier and Property
	SelfReprType and EncapsulateCIMErrorType

	Extrinsic Methods
	Logging and Debugging
	API Documentation
	Unit Tests
	Integration With IPython

	Summary
	Open Issues and Future Work

	PowerCIM Examples
	Start/Stop Services -- Thick Client
	AppArmor Security Event Notification

	Default Logging Configuration
	IPython configuration
	ipythonrc
	powerCIM-magic.py

	PowerCIM DVD

