
BACHELOR THESIS

Petr Sedláček

Limitations of incompressible encodings

Computer Science Institute of Charles University

Supervisor of the bachelor thesis: Mgr. Pavel Hubáček, Ph.D.

Study programme: Mathematics

Study branch: General Mathematics

Prague 2021

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature, and other professional sources. It has not been used to
obtain another or the same degree.

I understand that my work relates to the rights and obligations under the Act No.
121/2000 Sb., the Copyright Act, as amended, in particular, the fact that the Charles
University has the right to conclude a license agreement on the use of this work as a
school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .

Author’s signature

i

I dedicate this work to my bigger half.

ii

Title: Limitations of incompressible encodings

Author: Petr Sedláček

Department: Computer Science Institute of Charles University

Supervisor: Mgr. Pavel Hubáček, Ph.D., Computer Science Institute of Charles
University

Abstract: This thesis studies the limitations of incompressible encodings with
information-theoretic security. We demonstrate a flaw in the existing proof of the
impossibility of constructing incompressible encodings information-theoretically.
Our main contribution is a full proof of impossibility of existence of non-trivial
information-theoretically secure incompressible encoding schemes. In the first part
of the thesis, we introduce the basics of incompressible encodings and provide the
necessary definitions. Next, we present the flaws in the existing argument and
provide explicit counterexamples to them. Throughout the rest of the thesis, we
gradually construct a complete proof. We start by showing the impossibility under
a few additional restrictions on the correctness and structure of the schemes that we
subsequently remove one by one. Finally, we present an adversary able to break any
non-trivial incompressible encoding scheme.

Keywords: incompressible encodings, plain model, information-theoretic security

iii

Contents

1 Introduction 1
1.1 Our contributions . 1

2 Incompressible encodings 3

3 Issues in the proof-sketch in [MW20] 6
3.1 Counterexample . 6

4 Impossibility of information-theoretic security 8
4.1 Schemes with perfect correctness and deterministic decoding 8
4.2 Schemes with imperfect correctness and deterministic decoding . . . 10
4.3 Schemes with imperfect correctness and probabilistic decoding . . . 10

5 Conclusions 16

1

1 Introduction

The focus of this work is a primitive called incompressible encoding scheme, recently
introduced by Moran and Wichs [MW20].

An incompressible encoding scheme gets some data as input message and en-
codes it into an effectively incompressible code word. The original data can be
easily decoded from the code word by anyone. However, it is not possible for any
probabilistic polynomial-time adversary to compress the code word so that they can
later decompress it to the code word, even knowing the original message.

In their article, Moran and Wichs provided constructions of incompressible
encodings under various computational hardness assumptions as well as negative
results regarding their security. They also studied various other properties of
incompressible encodings, such as their composability.

Even though the incompressibility property of the incompressible encodings may
seem pointless, Moran and Wichs demonstrated that they have interesting practical
applications.

Proofs of replicated storage without timing assumptions. Incompressible
encodings can be used as replica encodings. Replica encodings are important
building block for proofs of replicated storage without timing assumptions, which
were presented by Damg̊ard, Ganesh, and Orlandi [DGO19]. It is a new technique
that allows to check whether a server stores multiple copies of the same file and does
not store only one copy. Other types of proofs of replicated storage are currently
used in Filecoin [Lab17] - a decentralized storage network.

Big-key cryptography with useful keys. Big-key cryptography in the bounded-
retrieval model [Dzi06] uses large keys (gigabytes or terabytes in size) that are hard
to exfiltrate. That means that any attacker cannot obtain the key without a massive
(internet) traffic that can be easily detected and aborted. Big-key encryption schemes
remain secure even if part of the secret key was exfiltrated. The incompressibility
property of any incompressible encoding scheme allows to use an encoding of arbitrary
data (e.g. collection of family videos) as the key and, thus, saving up gigabytes of
space that would be occupied by a regular key without any additional purpose.

1.1 Our contributions

In this work, we deepen our knowledge about the limitations of the incompressible
encodings constructions. Moran and Wichs conjectured that it is not possible to
create a non-trivial information-theoretically secure incompressible encoding, i.e.,
without any computational restrictions on the adversary. In this work, we show that
the sketch of a proof given in [MW20] has a few significant issues, which we describe
in detail in Section 3. We present our own full proof of the impossibility of existence
of information-theoretically secure incompressible encodings in the plain model in
Section 4.

Our results are somewhat analogous to the limitation of perfectly secure symmet-
ric encryption. The one time pad scheme is secure against unbounded attackers, but
the key must be as long as the message. It was proven by Shannon [Sha49] that this
cannot be improved - every symmetric encryption scheme resilient to unbounded

1

attackers cannot have the key shorter than the message. That gives solid ground to
the studies of “weaker” encryption schemes that rely on computational hardness
assumptions and are secure only against computationally bounded adversaries.

Our full proof of the impossibility of non-trivial incompressible encoding scheme
resilient against computationally unbounded adversaries substantiates focused re-
search of incompressible encodings relying on computational hardness assumptions.

2

2 Incompressible encodings

We use λ ∈ N to denote the security parameter.

Definition 2.1. An Encoding scheme Π = (Enc,Dec) for a message space M = {m;

m ∈ {0, 1}k} consist of a pair of Probabilistic Polynomial Time (PPT) algorithms

Encode (Enc) and Decode (Dec).

Definition 2.2 (p-correctness). Let p : N→ [0, 1] be a function. An encoding scheme

Π = (Enc,Dec) is p-correct if: ∀λ ∈ N,∀m ∈M,Pr[Dec(Enc(1λ,m)) = m] ≥ p(λ).

Definition 2.3. We define a negligible function as a function f : N→ R satisfying

that for every n ∈ N there exists Kn ∈ N such that for every λ ∈ N, λ ≥ Kn it holds

that λ−n > |f(λ)|. We denote the set of all negligible functions as negl(λ).

Definition 2.4 ((α, β)-incompressibility). Let α, β : N×N→ N be functions. Then

encoding scheme Π = (Enc,Dec) is (α, β)-incompressible if the following holds:

1. α-Bounding: ∀m ∈ {0, 1}k,∀λ ∈ N : Pr[|Enc(1λ,m)| ≤ α(λ, k)] = 1

2. β-Incompressibility: For each adversary A = (A .Select, A .Compress,

A .Expand), it holds that Pr[CompExpΠ
A,β

(︁
1λ
)︁
= 1] ∈ negl(λ), where the

CompExpΠ
A,β denotes a compression experiment defined in Figure 2.1 and

visualized in Figure 2.2.

Consider the following construction. We can append a random string of length r
to any message m of length k. The random part cannot be compressed and, thus,
α(k) = k+ r and β(k) = r. Therefore, encoding schemes satisfying β ≤ α(k)− k are
easy to obtain. From now on, we will focus solely on non-trivial encoding schemes
satisfying β(k) > α(k)− k.

Definition 2.5. A non-trivial (α, β)-incompressible encoding scheme is a p-correct

(α, β)-incompressible encoding scheme with β(λ, k) > α(λ, k)− k, and (1− p(λ)) ∈
negl(λ).

In the rest of the work we rely on the following notation.

Notation 2.6.

For k, λ ∈ N :

• M := {0, 1}k is a set of all possible messages with length equal to k.

• W :=
⋃︁α(λ,k)−k

i=0 {0, 1}i is a set of all bit strings with a length less than or equal

to α(λ, k)− k.

• C := {c ∈
⋃︁α(λ,k)

i=0 {0, 1}i; ∃m ∈ {0, 1}k, Pr[Enc(1λ,m) = c] > 0} is the set of

all possible code words for messages of a length k with respect to the security

parameter λ.

3

Figure 2.1: Compression experiment CompExpΠ
A, β(1

λ)

For all encoding schemes Π = (Enc, Dec), and adversaries A = (A .Select(1λ),

A .Compress(aux, c), A .Expand(aux, w)), and β = β(λ, k), the compression

experiment CompExpΠ
A, β(1

λ) is defined as follows:

CompExpΠ
A, β(1

λ)

1. (m, aux)← A .Select(1λ).

2. c← Enc(1λ,m).

3. w ← A .Compress(aux, c).

4. c′ ← A .Expand(aux, w).

5. Output 1 if and only if c = c′ and |w| ≤ β(λ, |m|).

Figure 2.2: Compression experiment flow

For m ∈ {0, 1}k, λ ∈ N :

• Cm :=
{︁
c ∈ C; Pr[Enc(1λ,m) = c] > 0

}︁
is the set of all possible code words

of the message m with respect to the security parameter λ.

• Dm := {c ∈ C; Dec(c) = m} is the set of all code words that are decoded to

the message m.

The use of the notation is depicted in Figure 2.3. The message m1 can be encoded
to any code word c from Cm1 , which is a subset of the set of all code words C. Every
code word from the set Dm2 is decoded to the message m2.

4

Figure 2.3: Encoding and decoding sketch

5

3 Issues in the proof-sketch in [MW20]

Statement 3.1 (Original sketch of proof by Moran andWichs). “It is easy to see that

non-trivial incompressible encodings cannot be constructed information theoretically.

This is because, there are at most 2α(k)−k possible codewords per message on average,

and therefore also certainly for the worst-case message m. A pair of inefficient

compression/ decompression procedures can enumerate the list of all such codewords

(e.g., in lexiographic order) and compress/decompress any codeword in the list just

by writing down its index using β(k) = α(k)− k bits.”

Statement 3.2 (Decomposition). In their article, Moran and Wichs presented a

broad definition of incompressible encodings and provided two possible constructions.

The statement above holds for those constructions, but it does not hold for every

construction possible that the definition allows. We identified two main issues.

The problematic part of the sketch is this sentence: “This is because, there are at

most 2α(k)−k possible code words per message on average, and therefore also certainly

for the worst-case message m”. The first issue is that with probabilistic encoding

each message can be encoded to any number of code words with non-zero probability,

although to satisfy the p-correctness some of those probabilities must be negligible.

We provide a counterexample in the next section.

The second issue is that the notation of α(k) allows different lengths of code

words. Therefore, there are more than 2α(k) possible code words. This issue is a

technical one and can be solved in the following way. The adversary A is allowed

to use the length of a bit sequence as an additional information, i.e., A is able to

distinguish between “101” and “00101”. Then the effects of the variable code word

length cancel out (with slight technical difficulties). However, both of those issues

show that the sentence is unsubstantiated because there could be more than 2α(k)−k

possible code words per message on average.

3.1 Counterexample

Idea. We leverage an arbitrary encoding scheme and “weaken” its encoding algo-

rithm in a way that allows every message to be encoded into any possible code word.

Clearly, this scheme is of no practical interest but it is an explicit counterexample

to the assumptions of [MW20]

Lemma 3.3. For all p-correct (α, β)-incompressible encoding scheme Π there exists

a ˆ︁p-correct (α, β)-incompressible encoding scheme ˆ︁Π, such that (p − ˆ︁p) ∈ negl(λ)

and for all λ ∈ N, m ∈ {0, 1}k, Cm = C, i.e., each message can be encoded into any

possible code word with a non-zero probability.

Proof. Let Π = (Enc,Dec) be a p-correct, (α, β)-incompressible encoding scheme.

For this example, we need an arbitrary negligible function, which we denote as q(λ).

6

We define the encoding algorithm ˆ︃Enc in the following way. Before encoding a

message m, ˆ︃Enc generates a uniformly random number p ∈ [0, 1]. Then it encodes

the message m in the following way:

ˆ︃Enc(m) =

{︄
Enc(m) if p ∈ (q(λ), 1],ˆ︁c, if p ∈ [0, q(λ)],

where ˆ︁c is a uniformly chosen random code word satisfying |ˆ︁c | ≤ α(λ, k) generated

“on the fly”.ˆ︃Enc(m) is correctly defined, because ∀λ > 1, q(λ) ∈ [0, 1). Next, we discuss the

properties of ˆ︁Π = (ˆ︃Enc, Dec).
First, we verify that ˆ︁Π is indeed an (α, β)-incompressible encoding scheme.

The α-bounding property holds by the definition of ˆ︃Enc. Next, we focus on β-

incompressibility. We know from the definition of Π that an arbitrary adversary A
wins the compression experiment against the Enc algorithm with at most negligible

probability. In the ˆ︁Π scheme, the probability of the message being encoded as a

randomly chosen code word is negligible. In all other cases, the message is encoded

via the Enc algorithm. Therefore, the chance of success of the adversary A against

the ˆ︃Enc algorithm is also negligible.

The ˆ︁Π scheme is ˆ︁p-correct, where ˆ︁p(λ) ≥ (1−q(λ))p(λ) = p(λ)−p(λ)q(λ) because
the Dec algorithm correctly decodes a code word encoded by Enc with the probability

p(λ) and the Enc algorithm is used for encoding with the probability (1− q(λ)). It

follows from the definition of negligible function that p(λ)q(λ) is negligible. Thus,

the ˆ︁Π scheme satisfies the definition of a ˆ︁p-correct (α, β)-incompressible encoding

scheme.

Let us denote C the set of all possible code words. From the definition of ˆ︃Enc
follows that

∀c ∈ C, ∀m ∈M : Pr[ˆ︃Enc(m) = c] ≥ q(λ)

|C|
.

That means that every message could be encoded to any possible code word

with a non-zero probability, thus the proof is complete.

7

4 Impossibility of information-theoretic security

Theorem 4.1. Let Π be a p-correct, α-bounded encoding scheme. Then

∀β(λ, k) > α(λ, k)− k ∃A : Pr[CompExpΠ
A,β(1

λ)] ≥ p(λ).

If an α-bounded encoding scheme Π satisfies that (1 − p(λ)) ∈ negl(λ), then
from Theorem 4.1 it follows that β(λ, k) ≤ α(λ, k)− k. Hence, Π does not satisfy
the definition of non-trivial incompressible encoding scheme. Thus, the following
corollary holds.

Corollary 4.2. It is not possible to construct a non-trivial incompressible encoding

scheme information-theoretically.

In the followings sections, we prove Theorem 4.1. For clarity, we start with some
additional assumptions on the encoding scheme. First, we assume perfect correctness
and deterministic decoding.

4.1 Schemes with perfect correctness and deterministic de-

coding

Definition 4.3. An encoding scheme Π = (Enc, Dec) has perfect correctness, if it

is p-correct scheme with p(λ) = 1 ∀λ ∈ N.

Definition 4.4. An encoding scheme Π = (Enc, Dec) has deterministic decoding

if the algorithm Dec is deterministic, i.e., for each code word c ∈ C there exists a

unique message m ∈M such that Dec(c) = m with probability one.

In Lemma 4.5, we show that when the decoding is deterministic there exists a
message m such that the set of code words Dm is small enough that all its members
can be indexed using at most α(λ, k)− k bits.

Lemma 4.5. Let Π = (Enc,Dec) be an encoding scheme with deterministic decoding

and message space M = {0, 1}k. If |C| ≤ 2α(λ,k)+1 − 1, then minm∈M |Dm| ≤
2α(λ,k)−k+1 − 1.

Proof. Suppose to the contrary that minm∈M |Dm| > 2α(λ,k)−k+1 − 1. Therefore,

minm∈M |Dm| ≥ 2α(λ,k)−k+1. Subsequently,

|C| =
∑︂
m∈M

|Dm| ≥
∑︂
m∈M

min
m∈M

|Dm| = 2k min
m∈M

|Dm| ≥ 2k
(︁
2α(λ,k)−k+1

)︁
> 2α(λ,k)+1 − 1,

where the first equality follows from Dec being deterministic and the second equality

follows from |M | = 2k. We derived that |C| > 2α(λ,k)+1 − 1, a contradiction to the

assumption about the cardinality of C. Hence, the Lemma holds.

Using Lemma 4.5, we construct an adversary that wins the compression experi-
ment CompExp using the index of a codeword c in Dm as a form of compression.

8

Theorem 4.6. Let Π = (Enc,Dec) be an α-bounded encoding scheme with deter-

ministic decoding and perfect correctness. Then

∀β(λ, k) > α(λ, k)− k ∃A : Pr[CompExpΠ
A,β(1

λ)] = 1,

i.e., it is not a non-trivial (α, β)-incompressible encoding scheme.

Proof. Our construction of the adversary A = (A .Select,A .Compress,A .Expand)

is given in Figure 4.4. The A .Select algorithm chooses a message m such that every

member of Dm can be uniquely represented using an index (bit string) with a length

less than or equal to β bits. Then the algorithm chooses an injective function f

from Dm to the set of indices. The A .Compress gets a codeword c from the Enc

algorithm and returns its index w = f(c). Finally, the A .Expand returns f−1(w),

which is equal to c.

All messages are k bits long, therefore |M | = 2k. On the other hand, the

code words are α bits long at most. Hence, all code word lengths from 1 to α

bits are possible. The set of all possible code words is C ⊆
⋃︁α(λ,k)

i=0 {0, 1}i. Thus,

|C| ≤
⃓⃓⃓⋃︁α(λ,k)

i=0 {0, 1}i
⃓⃓⃓
= 20 + 21 + · · ·+ 2α(λ,k) = 2α(λ,k)+1− 1. By perfect correctness

of the scheme, for all c ∈ C there exists a unique m ∈ {0, 1}k such that c ∈ Dm.

Equivalently, C =
⋃︁

m∈M Dm while for all mi, mj ∈ M satisfying (i ̸= j) it holds

that Di ∩Dj = ∅.
Let W =

⋃︁α(λ,k)−k
i=0 {0, 1}i be the set of bit strings defined in Notation 2.6. Then

|W | = 2α(λ,k)−k+1 − 1. We choose m∗ = argminm∈M |Dm| and let f : Dm∗ → W

be an injective function satisfying that for all c1, c2 ∈ Dm∗ such that (c1 ̸= c2) it

holds that f(c1) ̸= f(c2). This function is possible to construct, because we have

|Dm∗| ≤ |W | from Lemma 4.5. Consequently, we construct f−1 : f (Dm∗) → Dm∗ ,

such that f−1 (f(c)) = c. Then, the CompExpΠ
A,β follows:

• (m∗, aux = (f, f−1))← A .Select(1λ)

• c← Enc(1λ, m∗)

• w ← A .Compress(aux, c)

• c′ = A .Expand(aux, w)

• if (c′ = c) ∧ |w| ≤ β(λ, k) output 1, else output 0

The |w| ≤ β(λ, k) holds, because w ∈ W =
⋃︁α(λ,k)−k

i=0 {0, 1}i. The c = c′ follows

from f being injective, which implies that the inverse f−1 is defined for all f(c) ∈ W

and f−1
(︁
f(c)

)︁
= c. Therefore, the compression experiment always outputs one.

9

Figure 4.4: Adversary A

Adversary A = (A .Select(1λ),A .Compress(aux, c),A .Expand(aux, w))

A .Select(1λ):

• Choose m∗ = argminm∈M |Dm|.

• Choose an injective f : Dm∗ → W .

• Compute f−1 : f(Dm∗)→ Dm∗ from f .

• Output (m∗, aux = (f, f−1)).

A .Compress(aux, c):

• Parse aux as aux = (f, f−1).

• Output w = f(c)

A .Expand(aux, w):

• Parse aux as aux = (f, f−1).

• Output c′ = f−1(w)

4.2 Schemes with imperfect correctness and deterministic

decoding

In this section, we consider incompressible encodings schemes with imperfect cor-
rectness, i.e., where decoding succedes only with some probability p(λ) < 1. We
show that the adversary A defined in Figure 4.4 wins the compression experiment
with probability equal to or greater than the correctness p(λ) of the scheme.

Lemma 4.7. Let Π be a p-correct, α-bounded encoding scheme with deterministic

decoding. Then

∀β(λ, k) > α(λ, k)− k, ∃A : Pr[CompExpΠ
A,β(1

λ)] ≥ p(λ),

where A is the adversary defined in the Figure 4.4.

Proof. Recall A from Figure 4.4. A .Select chooses the message m∗ = argminm∈M

|Dm|. The algorithm Enc outputs a code word cm∗ ∈ Cm∗ . If cm∗ ∈ Dm∗ ,

A .Compress will output the w = f(cm∗) and, consequently, A .Expand will expand w

to the original code word cm∗ . Therefore, if cm∗ ∈ Dm∗ , then the adversary A will cor-

rectly compress and expand the code word cm∗ . Out of the definition of p-correctness

follows Pr[cm∗ ∈ Dm∗] ≥ p(λ). Hence, we get Pr[CompExpΠ
A,β(m

∗) = 1] ≥ p(λ).

4.3 Schemes with imperfect correctness and probabilistic

decoding

In this section, we present the complete proof of the Theorem 4.1 without any
additional assumptions.

10

Because of the decoding being probabilistic, we cannot use the argument
minm∈M |Dm| ≤ 2α(λ,k)−k+1 − 1 from Lemma 4.5. Instead, we show that there
exists a message m∗ and a set S ⊂ C, such that the S can be indexed using
α(λ, k)− k bits at most and the probability of Enc(m∗) ∈ S is greater than or equal
to the correctness p(λ) of the scheme. Using Lemma 4.9 we construct an adversary
that succeeds when the message m∗ is encoded into any codeword in S, therefore
Pr[CompExpΠ

A,β(m
∗) = 1] ≥ p(λ).

Notation 4.8. We denote the pENC(m, c) = Pr[ENC(m) = c] and the pDEC(c,m) =

Pr[DEC(c) = m].

Lemma 4.9. Let m∗ = argminm∈M
∑︁

c∈C pDEC(c,m
∗), then there exists a set S ⊂ C

such that |S| = 2α(λ,k)−k+1 − 1 and
∑︁

c∈S pENC(m
∗, c) ≥ p(λ).

The proof of Lemma 4.9 uses the two following auxiliary lemmata.

Lemma 4.10. There exists m∗ ∈M such that
∑︁

c∈C pDEC(c,m
∗) ≤ 2α(λ,k)−k+1 − 1.

Proof. The |C| = 2α(λ,k)+1 − 1 and the |M | = 2k. We suppose for the contrary, that

∀m ∈M :
∑︂
c∈C

pDEC(c,m
∗) > 2α(λ,k)−k+1 − 1,

that implies that

min
m∈M

∑︂
c∈C

pDEC(c,m
∗) > 2α(λ,k)−k+1 − 1.

Thence minm∈M
∑︁

c∈C pDEC(c,m
∗) ≥ 2α(λ,k)−k+1.

|C| =
∑︂
c∈C

1 =
∑︂
c∈C

(︄∑︂
m∈M

pDEC(c,m)

)︄
=
∑︂
m∈M

(︄∑︂
c∈C

pDEC(c,m)

)︄

≥
∑︂
m∈M

(︄
min
m∈M

∑︂
c∈C

pDEC(c,m
∗)

)︄
= |M | min

m∈M

∑︂
c∈C

pDEC(c,m
∗)

≥ 2k2α(λ,k)−k+1 = 2α(λ,k)+1

> |C|.

We have a contradiction, thence the lemma holds.

Lemma 4.11. Let n ∈ N, K ∈ [0, n], y = (y1, . . . , yn), such that for all

i, j ∈ {0, . . . , n} yi ≥ 0 and (i > j) ⇒ (yi < yj). X = {x = (x1, . . . , xn) | ∀k ∈
{0, . . . , n} xk ∈ [0, 1],

∑︁n
k=1 xk = K}.

Let us define z =

⎧⎪⎨⎪⎩
1 if i ≤ ⌊K⌋,
K − ⌊K⌋ if ⌊K⌋ < i ≤ ⌊K⌋+ 1,

0 if i > ⌊K⌋+ 1.
Then

z = argmax
x∈X

n∑︂
k=1

xiyi.

11

Proof. First, we verify that z ∈ X .

• zk ∈ [0, 1] for all k ∈ {0, . . . , n}, because 1 ∈ [0, 1], 0 ∈ [0, 1] and

K − ⌊K⌋ ∈ [0, 1].

•
∑︁n

k=1 zk = 1 + · · ·+ 1⏞ ⏟⏟ ⏞
⌊K⌋−times

+(K − ⌊K⌋) = ⌊K⌋+ (K − ⌊K⌋) = K.

Let us suppose to the contrary that there exists z̄ ∈ X , such that

z̄ = argmax
x∈X

n∑︂
k=1

xkyk,
n∑︂

k=1

zkyk >
n∑︂

k=1

zkyk.

We denote i = argmink∈{0, ··· , n} zi ̸= zi. We distinguish the following cases:

• If i ≤ ⌊K⌋. Then zi = 1, zi ∈ [0, 1] and zi ̸= zi. That implies zi < zi.

• If ⌊K⌋ < i ≤ ⌊K⌋ + 1. Then zi = K − ⌊K⌋. From the definiton of i we get

zk = zk∀k ∈ N, k < i. Thus
∑︁i−1

k=1 zk =
∑︁i−1

k=1 zk = ⌊K⌋ and we know that∑︁n
k=1 zk = K. That implies that zi ≤ K − ⌊K⌋ = zi. Then zi ̸= zi implies

zi < zi.

• If i > ⌊K⌋+1, then from the definition of i we obtain that for all k ∈ N, k < i :

zk = zk. That implies
∑︁i−1

k=1 zk =
∑︁i−1

k=1 zk = K. However, z̄ ∈ X . Thus for all
k ≥ i : zk = 0 = zk, which contradicts the definition of i. Hence i ≤ ⌊K⌋+ 1.

We notice that
∑︁i

k=1 zk <
∑︁i

k=1 zk ≤ K and z̄ ∈ X ⇒
∑︁n

k=1 zk = K. Therefore,

there exists an index l > i, such that zl > 0. We define j = argmaxk∈{0,...,n} zk ̸= 0.

We choose arbitrary ε ∈ (0, min{zj, 1− zi}). We define ẑ = (z1, . . . , zi−1, zi +

ε, zi+1, . . . , zj−1, zj − ε, zj+1, . . . , zn). Then

n∑︂
k=1

ˆ︁zkyk = n∑︂
k=1

zkyk + ε (yi − yj)⏞ ⏟⏟ ⏞
≥0

≥
n∑︂

k=1

zkyk.

If yi > yj, then
∑︁n

k=1 ˆ︁zkyk >
∑︁n

k=1 zkyk. Thus z̄ ≠ argmaxx∈X
∑︁n

k=1 xkyk. On the

other hand, if yi = yj, then from the definition of y we obtain that

∀k ∈ {i, . . . , j}, yi = yk = yj. (1)

We show that j ≥ ⌊K⌋ + 1. Suppose to the contrary that j ≤ ⌊K⌋. K =∑︁j
k=1 zk ≤

∑︁j
k=1 1 = j ≤ ⌊K⌋. If K /∈ N, then ⌊K⌋ < K, thus we have a

contradiction. If K ∈ N, then K = ⌊K⌋ = j and for all k ∈ {1, . . . , j} zk = 1.

Nevertheless,

zk =

{︄
1 if k ∈ {0, . . . , ⌊K⌋ = j},
0 if k ∈ {j + 1, . . . , n}.

12

Thence z̄ = z, which contradicts the definition of z̄. Now we proof that if the eq. (1)

holds, than
∑︁n

k=1 zkyk =
∑︁n

k=1 zkyk.

n∑︂
k=1

zkyk =
i−1∑︂
k=1

zkyk +

j∑︂
k=i

zkyk +

⌊K⌋+1∑︂
k=j+1

zkyk +
n∑︂

k=⌊K⌋+2

zkyk

=
i−1∑︂
k=1

zkyk + yi

j∑︂
k=i

zk

=
i−1∑︂
k=1

zkyk + yi

j∑︂
k=i

zk

=
n∑︂

k=1

zkyk

Where the second equation follows from eq. (1), the fact that j ≥ ⌊K⌋ + 1 and

the definition of z. The third equation holds because K =
∑︁i−1

k=1 zk +
∑︁n

k=i zk =∑︁i−1
k=1 zk +

∑︁n
k=i zk, thus

∑︁n
k=i zk =

∑︁n
k=i zk. Therefore, we have a contradiction to

the supposal that
∑︁n

k=1 zkyk >
∑︁n

k=1 zkyk. Hence, the lemma holds.

Next, we proceed with the proof of Lemma 4.9.

Proof of Lemma 4.9. Suppose to the contrary that ∀S ⊂ C satisfying

|S| = 2α(λ,k)−k+1 − 1 it holds that
∑︁

c∈S pENC(m
∗, c) < p(λ). We denote K =∑︁

c∈C pDEC(c,m
∗) ≤ 2α(λ,k)−k+1−1, where the last inequality comes from Lemma 4.10.

That implies K ≤ |S|.
The p-correctness can be expressed in the following ways:

∀λ ∈ N, ∀m ∈M,
(︂
Pr[Dec(Enc(1λ,m)) = m]

)︂
≥ p(λ),

∀λ ∈ N,∀m ∈M,

(︄∑︂
c∈C

pENC(m, c)pDEC(c,m)

)︄
≥ p(λ).

Next, we sort the C in a way that ∀i, j ∈ {1, · · · , |C|}, (i ≤ j) ⇒ pENC(m, ci) ≤
pENC(m, cj). Let S = {c1, · · · , c|S|}, where |S| = 2α(λ,k)−k+1 − 1. We assume that

the distribution of pDEC(m
∗, ci) is as follows

pDEC(m
∗, ci) =

⎧⎪⎨⎪⎩
1 if i ≤ ⌊K⌋,
K − ⌊K⌋ if ⌊K⌋ < i ≤ ⌊K⌋+ 1,

0 if i > ⌊K⌋+ 1.

The proof that the sum
∑︁

c∈C pENC(m
∗, c)pDEC(c,m

∗) is maximized for the pDEC

distribution defined above follows from Lemma 4.11, where n = |C|, y = pENC(m
∗, c),

13

and z = pDEC(c,m
∗). Then

∑︂
c∈C

pENC(m
∗, c)pDEC(c,m

∗) =

|C|∑︂
i=1

pENC(m
∗, ci)pDEC(ci,m

∗)

=

|S|∑︂
i=1

pENC(m
∗, ci)pDEC(ci,m

∗)

≤
∑︂
c∈S

pENC(m
∗, c)

< p(λ),

where the last inequality comes from our supposal. This contradicts the p-correctness

definition, thus the proof is complete.

We can now proceed with the proof of Theorem 4.1.

Proof of Theorem 4.1. Our construction of the adversary A = (A .Select,

A .Compress,A .Expand) is given in Figure 4.5. The A .Select algorithm chooses a

message m∗ such that there exists a set S ⊂ C such that every member of S can be

uniquely represented using an index (bit string) with a length less than or equal

to β bits and Pr[c ∈ S] =
∑︁

c∈S pENC(m
∗, c) ≥ p(λ). Then the algorithm chooses a

bijection g from S to the set of indices W =
⋃︁α(λ,k)

i=0 {0, 1}i. The A .Compress gets

a code word c from the Enc algorithm and returns its index w = f(c), if c ∈ S. If

c /∈ S, it returns an arbitrary element of W . Finally, the A .Expand returns f−1(w),

which is equal to c if the c is in S.

The set S can be obtained by sorting the code words with respect to pENC(m
∗, c)

and taking the first 2α(λ,k)−k+1 − 1 code words with the highest value (pENC(m
∗, c)).

The bijection g is possible to construct, because |S| = 2α(λ,k)−k+1 − 1 = |W |.
Then, the CompExpΠ

A,β follows:

• (m∗, aux = (g, g−1))← A .Select(1λ)

• c← Enc(1λ,m∗)

• w ← A .Compress(aux, c)

• c′ = A .Expand(aux, w)

• if(c′ = c) ∧ |w| ≤ β(λ, k) output 1, else output 0

The bound |w| ≤ β(λ, k) holds, because w ∈ W, W =
⋃︁α(λ,k)−k

i=0 {0, 1}i. The

equality c = c′ holds if and only if c ∈ S. We know that Pr[c ∈ S] =
∑︁

c∈S pENC(m
∗, c) ≥

p(λ) from the Lemma 4.9. Therefore the proof is complete.

14

Figure 4.5: Adversary A

Adversary A = (A .Select(1λ),A .Compress(aux, c),A .Expand(aux, w))

A .Select(1λ):

• Choose m∗ = argminm∈M
∑︁

c∈C pDEC(c,m
∗).

• Choose a bijection g : S → W .

• Compute g−1 : W → S from g.

• Output (m∗, aux = (g, g−1)).

A .Compress(aux, c):

• Parse aux as aux = (g, g−1).

• Output w = g(c)

A .Expand(aux, w):

• Parse aux as aux = (g, g−1).

• Output c′ = g−1(w)

15

5 Conclusions

We proved that there cannot exist any non-trivial incompressible encoding schemes
in the plain model secure against computationally unbounded adversaries. Our work
leaves some open questions:

• In the current version of the compression experiment the adversary A is allowed
to choose the message. Our impossibility results depend on it. Will anything
change if the message in the compression experiment is chosen randomly?

• Does the impossibility hold also in the random oracle model? (Random oracle
model is a model, where all algorithms have access to a truly random function
RO, also known as random oracle.)

16

References

[DGO19] Ivan Damg̊ard, Chaya Ganesh, and Claudio Orlandi. Proofs of replicated
storage without timing assumptions. In Alexandra Boldyreva and Daniele
Micciancio, editors, Advances in Cryptology - CRYPTO 2019 - 39th
Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2019, Proceedings, Part I, volume 11692 of Lecture Notes
in Computer Science, pages 355–380. Springer, 2019.

[Dzi06] Stefan Dziembowski. Intrusion-resilience via the bounded-storage model.
In Shai Halevi and Tal Rabin, editors, Theory of Cryptography, Third
Theory of Cryptography Conference, TCC 2006, New York, NY, USA,
March 4-7, 2006, Proceedings, volume 3876 of Lecture Notes in Computer
Science, pages 207–224. Springer, 2006.

[Lab17] Protocol Labs. Filecoin: A decentralized storage network. 2017. Available
at https://filecoin.io/filecoin.pdf.

[MW20] Tal Moran and Daniel Wichs. Incompressible encodings. In Daniele
Micciancio and Thomas Ristenpart, editors, Advances in Cryptology
- CRYPTO 2020 - 40th Annual International Cryptology Conference,
CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceed-
ings, Part I, volume 12170 of Lecture Notes in Computer Science, pages
494–523. Springer, 2020.

[Sha49] Claude E. Shannon. Communication theory of secrecy systems. Bell Syst.
Tech. J., 28(4):656–715, 1949.

17

https://filecoin.io/filecoin.pdf

	Introduction
	Our contributions

	Incompressible encodings
	Issues in the proof-sketch in [MW20]
	Counterexample

	Impossibility of information-theoretic security
	Schemes with perfect correctness and deterministic decoding
	Schemes with imperfect correctness and deterministic decoding
	Schemes with imperfect correctness and probabilistic decoding

	Conclusions

