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Introduction
The main question I study in my bachelor thesis is which finite algebras admit only
polynomially many homomorphisms into them. More precisely, for which finite algebras
A is there a polynomial p such that the number of homomorphisms from any algebra
X (in the same signature as A) is bounded from above by p(|X|). It turns out that
all such “polynomial” algebras on a two-element domain surprisingly come from some
basic observations and from the fact that two-element semilattices, two-element majority
algebras and two-element minority algebras admit polynomially many homomorphisms
into them. This fact is studied and proven in the first version of the article Constraint
Satisfaction Problems over Finite Structures [1].

In this work we will explore algebras beyond the two-element domain. We will gener-
alize the case of a two-element semilattice to a general finite semilattice, then we will look
at a specific three-element algebra with a majority operation and a specific three-element
2-semilattice, the rock-paper-scissors algebra. Then we will study groups.

All the algebras mentioned in the previous paragraph are examples of algebras with
polynomially many homomorphisms. On the other hand, in the end of this work we will
consider unary algebras and it will turn out that the number of homomorphisms into
them is exponential.

The results presented in this work are original (with the help of my supervisor). Most
of the results presented here have already been superseded in the second version of the
paper Constraint Satisfaction Problems over Finite Structures [2], which uses a more
advanced theory in Universal Algebra – the Tame Congruence Theory [3]. In a follow up
work, which has not been published yet, the class of all “polynomial” algebras was fully
characterized.
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1. Preliminaries

1.1 Algebras and homomorphisms
We will start by defining some basic terms connected with this topic: an operation, an
algebra and a homomorphism. At the end of this section we will look at terms and term
operations, and we will also describe how homomorphisms affect them.

Most of the definitions in this chapter and further in this work are taken from Clif-
ford Bergman’s book Universal Algebra: Fundamentals and Selected Topics [4] and are
standard in universal algebra.
Definition 1.1.1. Let A be a set and n a positive integer. We define An to be the set
of all n-tuples of elements of A. We call a function An → A an n-ary operation on A.
The natural number n is called the arity of the operation. Operations of arity 1 and 2
are usually called unary and binary operations, respectively.

A signature is a set of operation symbols Σ together with a mapping ar : Σ → N0
assigning to each operation symbol its arity. An algebra in signature Σ is a pair A =
⟨A, (fA)f∈Σ⟩, where fA is an operation on A of arity ar(f). The set A is called a domain
of A and the fA are called basic operations of A.

From now on we will denote the domain of an algebra by the same letter as the algebra
itself if not stated otherwise.
Definition 1.1.2. Let A = ⟨A, (fA)f∈Σ⟩ be an algebra and B be a subset of A such that
for each n−ary operation f ∈ Σ and for all elements b1, . . . , bn ∈ B, fA(b1, . . . , bn) is the
element of B. Then the algebra B = ⟨B, (fB)f∈Σ⟩, where each fB is a restriction of fA,
is called a subalgebra of A.
Definition 1.1.3. Let A = ⟨A, ∧A⟩ be an algebra and A′ be a subset of A. We say that
A′ is a generating set of A if A is the smallest subalgebra of A such that A′ ⊂ A. In this
case we also say that the algebra A is generated by the set A′.

When we have two algebras of the same signature we can define a mapping between
them which preserves the operations of these algebras. We call such a mapping a homo-
morphism. Now we define this concept formally.
Definition 1.1.4. Let A = ⟨A, (fA)f∈Σ⟩ and B = ⟨B, (fB)f∈Σ⟩ be two algebras of the
same signature Σ. A function h : B → A is called a homomorphism from B to A if for each
f ∈ Σ such that ar(f) = k and each b1, ..., bk ∈ B, h(fB(b1, ..., bk)) = fA(h(b1), ..., h(bk)).
We write h : B → A to indicate that h is a homomorphism from B to A.

If h : B → A and g : C → B are homomorphisms, then we will denote their
composition by symbol ◦, i.e. h ◦ g : C → A is the composition of homomorphisms g
and h. Note that h ◦ g is also a homomorphism: if fC is a n-ary operation on C and
c1, ..., cn ∈ C, then

h ◦ g(fC(c1, ..., cn)) = h ◦ fB(g(c1), ..., g(cn)) = h(fB(g(c1), ..., g(cn))) =
= fA(h(g(c1), ..., h(g(cn)))) = fA(h ◦ g(c1), ..., h ◦ g(cn)))

In this calculation we used the facts that both h and g are homomorphisms.
Let us look at an important property of homomorphisms that we will use in the future,

namely the fact that they preserve term operations on algebras. But at first we need to
say what terms and term operations are.
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Definition 1.1.5. Let V be a set of variable symbols and Σ be a signature. The set of
terms over the set of variables V over Σ is recursively defined to be the smallest set with
the following properties:

• every variable symbol is a term: V ⊂ T ,

• if n is a natural number or zero, then from every n terms t1, ..., tn and every n-ary
operation symbol f ∈ Σ a larger term f(t1, ..., tn) can be built.

Now when we have defined terms we can define term operations.

Definition 1.1.6. Let t ∈ T be a term over the set of variables V = {v1, v2, . . . , vk}
and signature Σ. Let A = ⟨A, (fA)f∈Σ⟩ be an algebra. Then we define term operation
tA : Ak → A in the natural way, i.e. tA(a1, . . . , ak) is obtained by replacing each variable
xi by ai, replacing each operation symbol f by the corresponding operation fA and
evaluating the obtained expression.

For example, let V = {v1, v2, v3} be a set of variable symbols and Σ be a signa-
ture containing a binary operation symbol f ∈ Σ. Then t(v1, v2, v3) = f(f(v1, v3), v2)
is a term over the set V . If, additionally, A = ⟨A, (fA)f∈Σ⟩ is an algebra in the signa-
ture Σ, then the corresponing term operation tA : A3 → A is given by tA(a1, a2, a3) =
fA(fA(a1, a3), a2) for all a1, a2, a3 ∈ A.

We are ready to prove a useful fact that homomorphisms preserve term operations.

Lemma 1.1.1. Let A = ⟨A, (fA)f∈Σ⟩ and X = ⟨X, (fX)f∈Σ⟩ be two algebras of the same
signature Σ, let h be a homomorphism from X to A, and let t be a term in the signature Σ
over V = {v1, . . . , vk}. Then h(tX(x1, ..., xk)) = tA(h(x1), ..., h(xk)) for all x1, ..., xk ∈ X.

Proof. We prove the claim by induction on the number n of operation symbols appearing
in the term t.

If n = 1, then t = f for some f ∈ Σ, so h(tX(x1, ..., xk)) = h(fX(x1, ..., xk)) =
fA(h(x1), ..., h(xk)) = tA(h(x1), ..., h(xk)) according to Definition 1.1.4.

If n ≥ 2, then t = f(t1, ..., tl) for some terms t1, ..., tl, l ∈ N and for some f ∈ Σ. Then
again, we can rewrite the image of tX(x1, ..., xk) under h according to Definition 1.1.4.

h(tX(x1, ..., xk)) = h(fX(tX
1 (x1, ..., xk), ..., tX

l (x1, ..., xk))) =

= fA(h(tX
1 (x1, ..., xk)), ..., h(tX

l (x1, ..., xk))) =
= fA(tA

1 (h(x1), ..., h(xk)), ..., tA
l (h(x1), ..., h(xk)) = tA(h(x1), ...h(xk))

We have used the inductive assumption for the term operations tX
1 , ..., tX

l .

1.2 Polynomially many homomorphisms
Now we will start describing “polynomial” algebras introduced in the beginning of this
work. We will begin with the definition of a function CA(n). If A is an algebra and n
is a natural number, then this function will give us an upper estimate for the number of
homomorphisms to A from all algebras with the cardinality of their domain at most n.
Then using this function we will define what exactly a “polynomial” algebra means.
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Definition 1.2.1. Let A = ⟨A, (fA)f∈Σ⟩ be an algebra, n be a positive integer. Then
we define function CA : N → N by

CA(n) = max{|{f : X → A; f is a homomomorphism}|; X = ⟨X, (fX)f∈Σ⟩, |X| ≤ n},

where |.| stands for the cardinality of the set.

So CA(n) is the maximal number of homomorphisms from algebras of the same sig-
nature as A and with domain of cardinality at most n to the algebra A. And we are
looking for algebras A such that the function CA(n) is a polynomial of n.

Definition 1.2.2. We say that A admits polynomially many homomorphisms if there
exists a polynomial p such that, for all positive integers n, CA(n) ≤ p(n).

Remark 1.2.1. Equivalently we can define that A admits polynomially many homomor-
phisms if there exist a real number c > 0 and a positive integer k such that, for all positive
integers n, CA(n) ≤ cnk. This definition is indeed equivalent: if there exists a polynomial
p such that for all positive integers n: CA(n) ≤ p(n), then there always exists an integer
k such that p(n) ≤ cnk: we can the degree of p as k and the sum of the absolute values of
all coefficients as c. For example, if p(n) = 5n3 − 2n2 + 1 then we can take a polynomial
5n3 + 2n3 + n3 = 6n3. Clearly p(n) ≤ 6n3, so c = 6 and k = 3 in this case.

Remark 1.2.2. In order to prove that A admits polynomially many homomorphisms it
is enough to show that CA(n) ≤ cnk for n ≥ M for some constant M . If we have shown
this, then we can multiply cnk by some large constant d such that CA(n) ≤ dcnk is true
also for n < M . Then clearly CA(n) ≤ dcnk is true for all positive integers n.

We have described “polynomial” algebras. But we will also study algebras which are
somehow opposite to polynomial. That is to say, the number of homomorphisms to them
is exponential. We need to define these algebras as well.

Definition 1.2.3. We say that A admits exponentially many homomorphisms if there
exist real numbers c, d such that c > 0, d > 1 and for all positive integers n: CA(n) ≥ cdn.

Remark 1.2.3. In order to prove that A admits exponentially many homomorphisms it
is enough to show that CA(n) ≥ cdn for n ≥ M for some constant M . If we have shown
this, then we can multiply cdn by some small positive constant e such that the inequality
CA(n) ≥ ecdn is true also for n < M . Then clearly CA(n) ≥ ecdn is true for all positive
integers n.

1.3 Basic facts
We will start with the discussion of two basic facts about the number of homomorphisms.
They have already been proven in [2]. The first one is the fact that the operations on
algebra somehow “connect” its elements, so when we “throw away” some operations, the
number of homomorphisms naturally increases. We will formalize this observation using
the term reduct of an algebra.

Definition 1.3.1. We say that an algebra B is reduct of A if they have the same domain
and each basic operation of B is a term operation of A.
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Now we will show that the number of homomorphisms to the reduct of an algebra is
greater than or equal to the number of homomorphisms to the original algebra.

Lemma 1.3.1. Let A be an algebra and B be its reduct. Then CA(n) ≤ CB(n).

Proof. Let n be a natural number and X be an algebra such that the number of homo-
morphisms from X to A is CA(n) and |X| ≤ n.

Now we define an algebra X′ = ⟨X, (fX′)f∈Σ⟩ (where Σ is the signature of B) as
follows. Since B is a reduct of A, there exists a term t (in the signature of A) such that
fB = tA. We define fX′ = tX.

Let h be a homomorphism from X to A. We will show that h is also a homomorphism
from X′ to B. Take an arbitrary l−ary operation symbol f ∈ Σ, take t as above, and
take x1, . . . , xl ∈ X. As h is the homomorphism, then according to Lemma 1.1.1 it also
preserves term operations. Using these facts we obtain the following calculation.

h(fX′(x1, . . . , xl)) = h(tX(x1, . . . , xl)) Lemma 1.1.1= tA(h(x1), . . . , h(xl)) =
= fB(h(x1), . . . , h(xl))

So h is indeed the homomorphism from X′ to B. We have shown that each homomor-
phism from X to A is a homomorphism from X′ to B. Therefore CA(n) ≤ CB(n).

Now we will look at the second fact about the number of homomorphisms. It turns
out that if there’s a homomorphism from X to A, where X is a general algebra and A is
an algebra satisfying some special identities, for example a group or a semilattice, then
without the loss of generality we can assume X satisfies the same identities as A. But
at first we will define the term identity and some other terms which we will use in our
proof.

Definition 1.3.2. Let Σ be a signature and V = {v1, . . . , vk} be a set of variables. An
identity is an ordered pair of terms over the set V and signature Σ, written p ≈ q. If A
is an algebra of signature Σ we say that A satisfies p ≈ q if pA = qA.

Definition 1.3.3. Let A = ⟨A, (fA)f∈Σ⟩ and θ be an equivalence relation on the set A.
We say that θ is a congruence relation if for each fA, f ∈ Σ of arity n ∈ N and for each
a1, ..., an, b1, ..., bn ∈ A the following implication is true:

whenever a1θb1, ..., anθbn, then fA(a1, ..., an)θfA(b1, ..., bn)

Definition 1.3.4. Let θ be an equivalence relation on the set A. For a ∈ A we write

a/θ = {x ∈ A : aθx},

the equivalence class of a modulo θ. The set of equivalence classes modulo θ is denoted
A/θ and is called the quotient of A by θ.

Let A = ⟨A, (fA)f∈Σ⟩ be an algebra and θ a congruence relation on A. The quotient
algebra A/θ is the algebra A/θ = ⟨A/θ, (fA/θ)f∈Σ⟩ with basic operations defined by
equation:

fA/θ(a1/θ, ..., an/θ) = fA(a1, ..., an)/θ

The basic operations on the quotient algebra are well-defined: if ai/θ = bi/θ for all
i ≤ n, then aiθbi for all i ≤ n. According to the definition of a congruence relation this
implies that fA(a1, ..., an)θfA(b1, ..., bn), therefore fA(a1, ..., an)/θ = fA(b1, ..., bn)/θ.
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Definition 1.3.5. Let f : A → B be any function. We define

Kerf = { (x, y) ∈ A × A | f(x) = f(y) }

called the kernel of f.

The kernel of a homomomorphism is an equivalence relation due to the reflexivity,
transitivity and antisymmetry of the relation =. Moreover, the kernel of a homomo-
morphism is a congruence relation. Take algebras X, A and let h : X → A be a
homomorphism. Assume that (x1, y1), ..., (xn, yn) ∈ Kerh. This means that h(xi) =
h(yi) for i ≤ n, then h(fA(x1, ..., xn)) = fA(h(x1), ..., h(xn)) = fA(h(y1), ..., h(yn)) =
h(fA(y1, ..., yn)) according to Definition 1.1.4 of a homomorphism. This exactly means
that (fA(x1, ..., xn), fA(y1, ..., yn) ∈ Kerh, therefore Kerh is indeed a congruence rela-
tion.

Theorem 1.3.2. (The Fundamental Homomorphism Theorem)
Let A and B be two algebras of the same signature Σ, θ be a congruence on A and let

h : A → B be a homomorphism such that θ ⊂ Kerh. Let π be a natural homomorphism
π : A → A/θ, i.e. the homomorphism such that π(a) = a/θ for all a ∈ A. Then there is
a unique homomorphism g : A/θ → B such that g ◦ π = h.

Finally we are ready to prove the fact which we will often use later in our proofs:
if A is an algebra satisfying some special identies and X is some general algebra, then
there exists an algebra Y satisfying the same identities as A with the same number of
homomorphisms to A as X.

Lemma 1.3.3. Let A = ⟨A, (fA)f∈Σ⟩ and X = ⟨X, (fX)f∈Σ⟩ be two algebras of the same
signature Σ. Let S be a finite set of identities satisfied in A. Then there exists an algebra
Y such that:

• |Y | ≤ |X|

• the number of homomorphisms from Y to A is equal to the number of homomor-
phisms from X to A

• each identity in S is satisfied in Y

Proof. At first we notice that if each identity in S is satisfied in X, then we can take an
algebra X as the algebra Y. It satisfies all the conditions and the proof is complete.

Now assume that there are identities in S which are not satisfied in X and let p ≈ q
be such an identity in S. If k ∈ N is the arity of pX and qX, then there are elements
x1, ..., xk ∈ X such that pX(x1, ..., xk) ̸= qX(x1, ..., xk). Now let θ be the smallest con-
gruence containining all elements (pX(x1, ..., xk), qX(x1, ..., xk)) for all x1, ..., xk ∈ X such
that pX(x1, ..., xk) ̸= qX(x1, ..., xk). The smallest congruence always exists, it is an inter-
section of all congruences which contain (pX(x1, ..., xk), qX(x1, ..., xk)). It can be written
formally as follows.

θ = ∩φ, φ is a congrunce such that pX(x1, ..., xk)φqX(x1, ..., xk)
for all x1, ..., xk ∈ X such that pX(x1, ..., xk) ̸= qX(x1, ..., xk)

Take Y1 = X/θ and note that |Y1| < |X|.
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Now let h be a homomorphism from Y1 to A. Consider a natural homomorphism
π : X → Y1, i.e. the homomorphism such that π(x) = x/θ. Then the composition h ◦ π
is a homomorphism from X to A.

On the other hand, let f be a homomorphism from X to A. Consider two arbitrary
elements pX(x1, ..., xk) and qX(x1, ..., xk), where x1, ..., xk ∈ X, such that
pX(x1, ..., xk)θqX(x1, ..., xk). Now look at their images under f :

f(pX(x1, ..., xk)) = pA(f(x1), ..., f(xk))

and
f(qX(x1, ..., xk)) = qA(f(x1), ..., f(xk))

by Definition 1.1.4 of a homomorphism. But p ≈ q is an identity in S, so it is satisfied in
A. This implies that

pA(f(x1), ..., f(xk)) = qA(f(x1), ..., f(xk)) as f(x1), ..., f(xk) ∈ A.

Therefore we have shown that

f(pX(x1, ..., xk)) = f(qX(x1, ..., xk)) for each (pX(x1, ..., xk), qX(x1, ..., xk)) ∈ θ.

Therefore all the pairs (pX(x1, ..., xk), qX(x1, ..., xk)) are in Kerf and, since θ is the small-
est congruence of X containing these pairs and Kerf is a congruence of X, we get that
θ ⊆ Kerf . Then according to Theorem 1.3.2 (The Fundamental Homomorphism The-
orem) there exists a unique homomorphism g : X/θ → A such that f = g ◦ π, where
π is the homomorphism such that π(x) = x/θ for all x ∈ X. Therefore for each homo-
morphism f from X to A there exists a unique homomorphism g : Y1 → A such that
f = g ◦ π.

In the last two paragraphs we have shown that g ↦→ g ◦ π is a bijection between the
set of homomorphisms from Y1 to A and the set of homomorphisms from X to A.

Now we iterate this process on all the identities in S. More precisely, denote S =
{p1 ≈ q1, ..., pt ≈ qt} for some t ∈ N and let θi be the smallest congruence contain-
ing all the elements (pYi−1

i (y1, ..., ys), q
Yi−1
i (y1, ..., ys)) for all y1, ..., ys ∈ Yi−1 such that

p
Yi−1
i (y1, ..., ys) ̸= q

Yi−1
i (y1, ..., ys). Then in each step we take Yi = Yi−1/θi. Note that

Yi automatically satisfies all the “previous” identities p1 ≈ q1, . . . , pi−1 ≈ qi−1.
The algebra Yt is the algebra Y we are looking for.

1.4 Two-element classification
In this section we discuss one of the main result of [1] that essentially classifies two-
element algebras admitting polynomially many homomorphisms. We start by introducing
terminology for some types of operations.
Definition 1.4.1. An n-ary operation f : An → A is essentially unary if there exists
g : A → A and i ∈ {1, ..., n} such that for all a ∈ An, the equality f(a1, ..., an) = g(ai)
holds. We say than an algebra is essentially unary if each operation in its signature is
essentially unary.
Definition 1.4.2. A semilattice is an algebra ⟨S, ∧⟩ with a binary semilattice operation
∧ (pronounced “meet”) satisfying the following identities.

(a∧) x ∧ (y ∧ z) ≈ (x ∧ y) ∧ z (associativity)
(i∧) x ∧ x ≈ x (idempotency)
(c∧) x ∧ y ≈ y ∧ x (commutativity)
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Note that there are exactly two semilattices on the domain S = {0, 1}, the meet can
be the (binary) minimum or maximum on S.

Definition 1.4.3. A majority algebra is an algebra ⟨A, M⟩ with a ternary majority
operation M : A3 → A satisfying the identities

M(x, x, y) ≈ M(x, y, x) ≈ M(y, x, x) ≈ x.

A minority algebra is an algebra ⟨A, m⟩ with a ternary minority operation m : A3 → A
satisfying the identities

m(x, x, y) ≈ m(x, y, x) ≈ m(y, x, x) ≈ y.

Note that there is a unique majority algebra on the domain A = {0, 1}, the majority
operation maps (x, y, z) to the value that appears at least twice among x, y, z. Similarly,
there is a unique minority algebra on {0, 1}, the minority operation is equal to (x, y, z) ↦→
x + y + z, where addition is modulo 2.

Surprisingly, all two-element algebras which are not essentially unary contain at least
one of these operations (semilattice, majority, minority) as a term operation. This follows
from a full classification of two-element algebras up to term equivalence [5].

Theorem 1.4.1. Let A = ⟨{0, 1}, (fA)f∈Σ⟩ be an algebra. If A contains an operation
that is not essentially unary, then A has a term operation that is a semilattice operation,
a majority operation, or a minority operation.

In [1] it is proven that a two-element semilattice, the two-element majority algebra,
and the two-element minority algebra all admit polynomially many homomorphisms. We
will explore generalizations and similar algebras in Sections 2.1 – 2.4. If, on the other
hand, A contains only essentially unary operations, we show in Subsection 2.5 that A
admits exponentially many homomorphisms (this hasn’t appeared in [1] in this form, a
more general result appears in [2]). Theorem 1.4.1 together with Lemma 1.3.1 thus gives
us the following dichotomy for a two-element A: either A is essentially unary and then
it admits exponentially many homomorphisms, or it is not essentially unary and then it
admits polynomially many homomorphisms.
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2. Results

2.1 Semilattices
In this section we generalize the result that two-element semilattices admit polynomially
many homomorphisms [1] to arbitary finite semilattices.

At first we recall a well-known fact (see e.g. [4]) that a semilattice operation on a set
S induces a partial ordering on S by setting

x ≤ y if and only if x ∧ y = x. (2.1)
It can be easily checked that this relation is reflexive, transitive and antisymmetric, so it
defines a partial ordering on the set S.

It is also easily seen that s1 ∧ · · · ∧ sm is the infimum of {s1, . . . , sm} with respect to
≤. In particular, if S is finite, say, S = {s1, ..., sm}, then S has the least element with
respect to ≤ and it is equal to min S = s1 ∧ s2 ∧ ... ∧ sm.

For a semilattice S = ⟨S, ∧S⟩ we denote the induced partial ordering by ≤S.
Let us consider finite semilattices X = ⟨X, ∧X⟩ and S = ⟨S, ∧S⟩. Let f : X → S be

a homomorphism. In the following statements we will prove that preimages of elements
of S under f contain the least element (with respect to ≤X) and we will show that f is
“defined” by these least elements (this will be made precise in Theorem 2.1.2).

Lemma 2.1.1. Let X = ⟨X, ∧X⟩, S = ⟨S, ∧S⟩ be finite semilattices. Let f : X → S be a
homomorphism. Then each set f−1(a) for a ∈ f(X) has the least element.

Proof. Let us take an arbitrary element a ∈ S. At first let us observe that the set f−1(a)
is not empty, because a ∈ f(X). Let x1, ..., xm be the elements of f−1(a). Now we define
an element x as x = x1 ∧X ... ∧X xm. According to Definition 1.1.4 of a homomorphism
f(x) = f(x1 ∧X ... ∧X xm) = f(x1) ∧S .... ∧S f(xm) = a ∧S ... ∧S a = a, so x is the element
of f−1(a). Since x ≤S xi for every i and x ∈ f−1(a), then x is the least element of f−1(a),
as required.

Now what does it exactly mean that the homomorphism is “defined” by the least
element in each class? We will say that in the statement of the following theorem and
then we will prove it.

Theorem 2.1.2. Let X = ⟨X, ∧X⟩, S = ⟨S, ∧S⟩ be finite semilattices. Let f, g : X → S be
two homomorphisms from X to S such that f(X) = g(X). Then the following implication
is true:

If ∀y ∈ f(X) : min f−1(y) = min g−1(y), then f = g.

Proof. We assume that homomorphisms f, g : X → S are such that min f−1(y) =
min g−1(y) for all y ∈ f(X).

We want to prove that for all x ∈ X: f(x) = y1, g(x) = y2 implies that y1 = y2.
We can rewrite f(x) = y1 and g(x) = y2 as x ∈ f−1(y1), x ∈ g−1(y2) respectively.
Both f−1(y1) and g−1(y2) have the least element as we have shown in Lemma 2.1.1. We
denote these elements by z1 and z2 respectively, i.e., z1 = min f−1(y1), z2 = min g−1(y2).
Due to our assumption z1 = min f−1(y1) = min g−1(y1), so g(z1) = y1. Similarly z2 =
min g−1(y2) = min f−1(y2), so f(z2) = y2.

10



The element z1 is the least element in f−1(y1), so z1 ≤X x and according to (2.1)
z1 ∧X x = z1. Because g is a homomorphism, it preserves the operation ∧, this means
that g(z1 ∧X x) = g(z1) ∧S g(x) = y1 ∧S y2. At the same time g(z1 ∧X x) = g(z1) = y1.
Therefore we have shown that y1 ∧S y2 = y1, or equivalently y1 ≤S y2.

We can use a similar argument as in the previous paragraph for z2: f(z2 ∧X x) =
f(z2) ∧S f(x) = y2 ∧S y1 and at the same time f(z2 ∧X x) = f(z2) = y2. Therefore
y2 ∧S y1 = y2, i.e. y2 ≤S y1. Finally the inequalities y1 ≤S y2 and y2 ≤S y1 imply that
y1 = y2, and the proof is concluded.
Corollary 2.1.3. Every finite semilattice S admits polynomially many homomorphisms.

Proof. Let X be an algebra of the same signature as S. We have proven in Lemma 1.3.3
that there exists an algebra Y such that |Y | ≤ |X|, the numbers of homomorphisms from
Y to S and from X to S are equal and each identity for semilattice operation on S is
satisfied in Y. Therefore without the loss of generality we can assume that Y = X is a
semilattice.

As we have shown in Theorem 2.1.2, the homomorphism is “defined” by the least
elements in the preimages of the elements in the set S. So the choice and the order
of these elements uniquely determine the whole homomorphism. The number of these
elements is the same as the cardinality of f(X) and can range from one (if f(X) contains
just one element) to |S|. Of course not all of these possibilities may happen, but a rough
estimate is enough for us. If we denote the cardinality of f(X) by k, then there are

(︂
|X|
k

)︂
ways to choose the set of the least elements and also k! ways to order them.

Let us denote the cardinality of X by n, the cardinality of S by m, then the number of
homomorphisms is not greater than

(︂
n
1

)︂
+

(︂
n
2

)︂
·2!+

(︂
n
3

)︂
·3!+...+

(︂
n

m−1

)︂
·(m−1)!+

(︂
n
m

)︂
·m! =

n + n · (n − 1) + ... + n · (n − 1) · ... · (n − m + 2) + n · (n − 1) · ... · (n − m + 1), which is a
polynomial of degree m.

2.2 Majority algebras
The argument in [1] to show that the two-element majority algebra admits polynomi-
ally many homomorphisms applies the corresponding result for two-element semilattices.
Corollary 2.1.3 enables us to extend the result and prove that some other majority alge-
bras admit polynomially many homomorphisms. We illustrate the technique on a specific
3-element majority algebra.
Theorem 2.2.1. Let A = ⟨{0, 1, 2}, MA⟩ be the three-element majority algebra such that
MA(x, y, z) = x whenever x, y, and z are pairwise different. Then A admits polynomially
many homomorphisms.

Proof. Let X be an algebra in the same signature as A. Similarly as in the proof of
Corollary 2.1.3, we can assume that X is a majority algebra by applying Lemma 1.3.3.

Fix an arbitrary element p in A. We will find a polynomial upper bound q(|X|) for
the number of homomorphisms f : X → A such that f(p) = 0. Since the structure of A
is symmetric with respect to its elements, the same upper bound will hold for the number
of homomorphisms f with f(p) = 1 and f(p) = 2. The total number of homomorphisms
from X to A will thus be upper bounded by 3q(|X|), which is still a polynomial.

Let us consider a binary operation ∧A on A defined by a ∧A b = MX(0, a, b) for
a, b ∈ A and a binary operation ∧X on X defined by x ∧X y = MX(p, x, y) for x, y ∈ X.

We now show that A′ = ⟨A, ∧A⟩ is a semilattice.

11



• Idempotency:
a ∧A a = MA(0, a, a) = a.

• Commutativity:
a ∧A b = MA(0, a, b) = 0 if a ̸= b

and
a ∧A b = MA(0, a, b) = a if a = b.

Similarly,
b ∧A a = MA(0, b, a) = 0 if a ̸= b

and
b ∧A a = MA(0, b, a) = a if a = b.

Therefore a ∧A b = b ∧A a.

• Associativity:
(a ∧A b) ∧A c = MA(0, MA(0, a, b), c)

and
a ∧A (b ∧A c) = MA(0, a, MA(0, b, c).

There are several possibilities:

1. If a = b = c, then because of the idempotency

(a ∧A a) ∧A a = a ∧A a = a,

similarly
a ∧A (a ∧A a) = a ∧A a = a.

2. If a = b ̸= c, then
(a ∧A b) ∧A c = a ∧A c = 0,

a ∧A (b ∧A c) = MA(0, a, MA(0, b, c)) = MA(0, a, 0) = 0.

3. If a = c ̸= b, then

(a ∧A b) ∧A c = MA(0, MA(0, a, b), a) = MA(0, 0, a) = 0,

a ∧A (b ∧A c) = MA(0, a, MA(0, b, a)) = MA(0, a, 0) = 0.

4. If b = c ̸= a, then

(a ∧A b) ∧A c = MA(0, MA(0, a, b), b) = MA(0, 0, b) = 0,

a ∧A (b ∧A c) = a ∧A (b ∧A b) = a ∧A b = 0.

5. If a ̸= b, b ̸= c, c ̸= a, then

(a ∧A b) ∧A c = MA(0, MA(0, a, b), c) = MA(0, 0, c) = 0,

a ∧A (b ∧A c) = MA(0, a, MA(0, b, c)) = MA(0, a, 0) = 0.
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Let g be a majority algebra homomorphism g : X → A. Then according to Def-
inition 1.1.4 of a homomorphism for each two elements x, y and element p in X we
get: f(MX(p, x, y)) = MA(f(p), f(x), f(y)). We can rewrite this equality: f(x ∧X y) =
f(x) ∧A f(y), therefore g is the semilattice homomorphism g : X′ = ⟨X, ∧X⟩ → A′ =
⟨A′, ∧A′⟩.

We have proven that each homomorphism f from X to A such that f(p) = 0 is
also a homomorphism from X′ to A′. Using the same argument we can prove the similar
statements for homomorphisms from X to A such that the image of p is 1 or 2. According
to Corollary 2.1.3 the number of homomorphisms to the semilattice A′ is polynomial,
therefore the number of homomorphisms to the majority algebra A is also polynomial.

2.3 2-semilattices
An important generalization of semilattices is the class of 2-semilattices. Those are
algebras with a binary operation which is idempotent, commutative, and satisfies the
associative law for x, y, z with |{x, y, z}| ≤ 2. In this section we consider the smallest
2-semilattice which is not a semilattice – the three-element rock-paper-scissors algebra
introduced in Definition 2.3.2. It turns out this algebra also admits polynomially many
homomorphisms. We will prove this fact with the help of the result for semilattices we
obtained in Corollary 2.1.3. At first in Theorem 2.3.1 we will look at homomorphisms
from conservative algebras to rock-paper-scissors algebras. Then we will consider homo-
morphisms from general algebras to the rock-paper-scissor algebra in Theorem 2.3.2. But
at first we need to define the types of algebras mentioned above.

Definition 2.3.1. An n−ary operation f on a set A is called conservative if, for all
elements a1, ..., an in A, we have f(a1, ..., an) ∈ {a1, ..., an}. We say than an algebra is
conservative, if all the operations in its signature are conservative.

Definition 2.3.2. Let A = ⟨{0, 1, 2}, ∧A⟩ be the algebra whose binary operation ∧A is
defined as follows.

• ∧A is idempotent, i.e. for all x ∈ {0, 1, 2} : x ∧A x = x

• ∧A is commutative, i.e. for all x, y ∈ {0, 1, 2} : x ∧A y = y ∧A x

• 0 ∧A 1 = 0, 0 ∧A 2 = 2, 2 ∧A 1 = 2

We will call this algebra A the rock-paper-scissors algebra.

Now we are ready to estimate the number homomorphisms from a conservative algebra
to the rock-paper-scissors algebra. Although a more general theorem will be proved
afterwards, the presented proof gives additional information about homomorphisms in
this special case.

Theorem 2.3.1. Let A = ⟨A, ∧A⟩ be the rock-paper-scissors algebra. Then there ex-
ists a polynomial p such that for each conservative algebra X = ⟨X, ∧X⟩ the number of
homomorphisms from X to A is not greater than p(|X|).
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Proof. Take an arbitrary conservative algebra X. Assume that there exists at least one
homomorphism from X to A, otherwise the proof would be trivial. Let g and f be
homomorphisms from X to A and assume that g is surjective. Let’s take two arbitrary
elements x1, x2 from the set g−1(0). We will prove that the images of x1 and x2 under f
are equal.

Let’s define a relation ≤X on the set X in the following way:

u ≤X v ⇐⇒ u ∧X v = u.

Define a relation ≤A on the set A in a similar way:

d ≤A e ⇐⇒ d ∧A e = d.

Note that from definition of A we obtain:

0 ≤A 1 ≤A 2 ≤A 0.

Then as f(u ∧X v) = f(u) ∧A f(v) we can conclude that if u ≤X v in X, then
f(u) ≤A f(v) in A.

Take an element y from g−1(1) and an element z from g−1(2). As g(x1) = 0, g(y) = 1,
then

g(x1 ∧X y) = g(x1) ∧A g(y) = 0 ∧A 1 = 0.

Since the algebra X is conservative, then either x1∧Xy = x1 or x1∧Xy = y. But g(y) = 1,
therefore x1 ∧X y = x1, or equivalently x1 ≤X y.

Similar calculation can be made for the element z:

g(z ∧X x1) = g(z) ∧A g(x1) = 2 ∧A 0 = 2.

Conservativity of X then yields that z ∧X x1 = z, therefore z ≤X x1.
Using the same argument we can also show that y ≤X z (as 1 ≤A 2).
We can rewrite the statements we obtained for x1, y, z as a chain:

x1 ≤X y ≤X z ≤X x1.

This implies that
f(x1) ≤A f(y) ≤A f(z) ≤A f(x1) (2.2)

What are the possibilities for the images of y and z under f in this case?

• If f(y) = f(z), then we can shorten the chain (2.2) for f(y): f(x1) ≤A f(y) ≤A

f(x1). Then the images of x1 and y must be equal, otherwise one of the inequalities
would not be true. Therefore in this case the images of all these elements are equal:
f(y) = f(z) = f(x1).

• If f(y) ̸= f(z), then also f(y) ̸= f(x1) and f(z) ̸= f(x1), otherwise if f(y) = f(x1),
we can rewrite the chain (2.2) as f(y) ≤A f(z) ≤A f(y) and this is a contradiction,
similarly if f(z) = f(x1), we get a contradiction as well. So f(y) ̸= f(z) ̸= f(x1) ̸=
f(y), i.e. the images of all these elements are not equal.
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Analogically we get the same chain of inequalities for x2:

x2 ≤X y ≤X z ≤X x2

as the images of x1 and x2 under g are equal. Again this implies that

f(x2) ≤ f(y) ≤ f(z) ≤ f(x2) (2.3)

Now let’s look at the image of x2 under f in these two cases:

• If f(y) = f(z) = f(x1), then (2.3) gives us that f(x2) ≤ f(y) ≤ f(x2). Then
f(x2) = f(y), otherwise one of the inequalities would not be true. So the images of
all these four elements are equal in this case, i.e. f(y) = f(z) = f(x1) = f(x2).

• If f(y) ̸= f(z) ̸= f(x1) ̸= f(y) and using the chain (2.2) we can see that if f(y) = 0,
f(z) = 1, then f(x1) = 2. The chain (2.3) then gives us that f(x2) = 2, otherwise
one of the inequalities would be false. The same argument leads us to a conclusion
the if f(y) = 1, f(z) = 2, then f(x1) = f(x2) = 0 and if f(y) = 2, f(z) = 0, then
f(x1) = f(x2) = 1. So in this case we also get that f(x1) = f(x2).

Therefore we can conclude that f(x1) = f(x2) for all elements x1, x2 in g−1(0).
This means that all the elements from g−1(0) have the same image under the homo-
morphism f . Using the same argument as before it can be proven that the similar
statements are true for the elements in g−1(1) and g−1(2). Altogether, all the sets
f(g−1(0)), f(g−1(1)), f(g−1(2)) contain just one element: 0, 1 or 2. We assumed that
the homomorphism g was surjective, so f is determined by the choice of these elements.
There are 3 · 3 · 3 = 27 ways to choose the images of g−1(0), g−1(1), g−1(2) under f , so
there are at most 27 homomorphisms f from X to A.

In the previous case we assumed that g was surjective. Now let g be a homomorphism
from X to A which is not surjective, i.e. at least one of the sets g−1(0), g−1(1), g−1(2)
is empty. Take g−1(2) = ∅. Then the image of each element in X is either 0 or 1.
It can be easily checked that ∧A is a semilattice operation on the set {0, 1}. This
means that homomorphisms from X to A are homomorphisms from X to the two-element
subalgebra ⟨{0, 1}, ∧A⟩, which is also a semilattice. We have proven in Corollary 2.1.3 that
a semilattice admits polynomially many homomorphisms. Using the equivalent definition
from Remark 1.2.1 we can conclude that there exist a real number c and a positive integer
k such that for each algebra X the number of homomorphisms to ⟨{0, 1}, ∧A⟩ is not greater
than c|X|k.

So far we have considered only homomorphisms such that g−1(2) = ∅. Using the
same argument we obtain that the numbers of homomorphisms such that g−1(0) = ∅ and
g−1(1) = ∅ are not greater than c|X|k.

Altogether, we have computed that if there exists at least one surjective homomor-
phism from X to A, then there are at most 27 homomorphisms from X to A. The number
of homomorphisms which are not surjective is not greater than 3c|X|k. Therefore a total
number of homomorphisms from X to A is not greater than 3c|X|k + 27, which proves
the theorem.

Now let’s look at a more general case: what if the algebra A remains the same, but
the algebra X is some general algebra, not necessary conservative? We will show that
the number of homomorphisms is also polynomial in this case.
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In this proof we will use the equivalent definition of an algebra which admits polyno-
mially many homomorphisms mentioned in Remark 1.2.1.

Theorem 2.3.2. Let A be the rock-paper-scissors algebra. Then A admits polynomially
many homomorphisms.

Proof. We will show that the number of homomorphisms to A is polynomial in a few
steps. We will look at an arbitrary algebra X. At first we will consider homomorphisms
from a specific subalgebra C of X and show that their number is polynomial. Then we
will notice that there only polynomially many ways to extend homomorphisms from C
to A to homomorphisms from the whole algebra X to A. Combining these two facts we
obtain that the number of homomorphisms from X to A is polynomial. Now let us prove
this in detail.

Let X = ⟨X, ∧X⟩ be an algebra and let n be the cardinality of X. We also fix an
arbitrary element b in X. We concentrate on homomorphisms f from X to A such that
f(b) = 0. Since the mapping 0 ↦→ 1 ↦→ 2 ↦→ 0 is a homomorphism from A to A, the upper
bound will hold for the number of homomorphisms with f(b) = 1 and with f(b) = 2.

Consider the set C ′ = {b ∧X c, c ∈ X}. At first notice that the image of all the
elements in C ′ under f is either 0 or 2:

f(b ∧X c) = f(b) ∧A f(c) = 0 ∧A f(c)

If f(c) = 0 or f(c) = 1, then f(b ∧X c) = 0 ∧A f(c) = 0. If f(c) = 2, then f(b ∧X c) =
2 ∧A f(c) = 2.

Let C be the subalgebra of X generated by C ′. Since S = ⟨{0, 2}, ∧A⟩ is a subalgebra
of A and the preimage of a subalgebra (of the target algebra) under a homomorphism
is a subalgebra (of the source algebra), the preimage of a {0, 2} under f contains C. In
other words, f maps C into {0, 2}.

Moreover, S is a two-element semilattice. We have proven in Corollary 2.1.3, that
the number of homomorphisms to the two-element semilattice is polynomial. Since the
restriction of f to C is a homomorphism from C to S, the number of such restrictions is
less than or equal to the number of homomorphisms from C to S which is bounded from
above by some specific polynomial d|C|k, where d is a real number and k is a positive
integer that do not depend on X. As C is a subalgebra of X, then certainly |C| ≤ n,
therefore d|C|k ≤ dnk. If we summarize the last estimations, we obtain that the number
of homomorphisms f ′ from C to S is bounded from above by dnk (and the same bound
applies to the number of restrictions to C of homomorphisms f : X → A with f(b) = 0).

Now we consider homomorphisms f from X to A such that f(b) = 0 that extend
a fixed restriction f ′ : C → S. We have shown in the previous paragraph that either
f ′(b ∧X x) = 0 or f ′(b ∧X x) = 2. If we denote these sets of elements by D′ and E ′

respectively, i.e. D′ = {x ∈ X; f ′(b ∧X x) = 0} and E ′ = {x ∈ X; f ′(b ∧X x) = 2}, then
X = D′ ∪ E ′. We will consider possible restrictions of f to D′ and E ′ separately.

Let’s begin with D′. Let D be the subalgebra of X generated by D′ = {x ∈ X; f ′(b∧X

x) = 0}. If f ′(b ∧X x) = 0, then f(b) ∧A f(x) = 0 ∧A f(x) = 0. Therefore f(x) is either
0 or 1, i.e. the image of an element from D′ under f is either 0 or 1. It follows as
above that the restriction of f to D is a homomorphism from D to the two element
semilattice ⟨{0, 1}, ∧A⟩. The number of such homomorphisms from D is polynomial as
we have shown in Corollary 2.1.3, it is bounded from above by the same polynomial
as the number of homomorphisms C to S above. We can conclude that the number of
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restrictions to the set D′ of homomorphisms f : X → A with f(b) = 0 that extend f ′ is
bounded from above by dnk.

Now let’s take a look at the set E ′ = {x ∈ X; f ′(b ∧X x) = 2}. If f ′(b ∧X x) = 2, then
f(b) ∧ f(x) = 0 ∧ f(x) = 2, so f(x) is necessarily 2 in this case. In other words, the value
of f ′(b ∧X x) uniquely determines the value of f(x): f(x) = 2.

If we summarize the last two paragraphs, we have shown that for each fixed f ′:
C → S there are only polynomially many possibilities for the images of the elements in
D′, this number is bounded above by dnk. The images of the elements in E ′ are uniquely
determined by the restriction f ′. As X = D′ ∪E ′, this means that there are no more than
dnk possibilities to extend f ′: C → S to a homomorphism f : X → A such that f(b) = 0.
In the first part of our proof we have shown that the restriction to C of a homomorphism
f : X → A such that f(b) = 0 is a homomorphism from C → S and the number of
such restrictions is at most dnk. This means that the number of homomorphisms from
X to A with b ↦→ 0 is not greater than dnk · dnk = d2n2k. Altogether the number of
homomorphisms from X to A is not greater than 3d2n2k and we conclude that A admits
polynomially many homomorphisms.

2.4 Groups
Now let A be a group. Is the number of homomorphisms polynomial in this case? The
answer is positive and we will prove this later. But first we need a lemma about the
number of generators in a minimal generating set of a group. We show that this number
cannot be large.

In the following ⟨b1, . . . ⟩ denotes the subgroup generated by b1, . . . .

Lemma 2.4.1. Let B be a finite group, |B| = n > 1, B′ = {b1, b2, ..., bk} be a minimal
generating set of this group, i.e. bi+1 ̸∈ ⟨b1, ....bi⟩. Then k ≤ log2(n).

Proof. Let’s prove this by induction on the number k.
If k = 1, then B′ contains just one element b. The order of this element is at least

2, otherwise |B| = 1. So the set B contains at least 2 elements, log2(n) ≥ 1 and the
inequality k ≤ log2(n) holds.

Let’s look at the case when k > 1. Then the group B contains the subgroup C =
⟨b1, b2, ..., bk−1⟩ and the set bkC. These sets are disjoint: if bkc1 = c2 for some elements
c1, c2 ∈ C, this means that bk = c2c

−1
1 , so bk ∈ C. But B′ is a minimal generating set, so

this cannot be true. So bkc1 ̸= c2 for all c1, c2 ∈ C. This means that n ≥ |C| + |bkC| =
2|C|. The group C has a minimal generating set of size k−1, so according to the inductive
assumption |C| ≥ 2k−1. Combining the last two inequalities we obtain n ≥ 2|C| ≥ 2k, so
k ≤ log2(n).

Theorem 2.4.2. Let A be a finite group. Then A admits polynomially many homomor-
phisms.

Proof. Let X be an algebra. As in the previous proofs, due to Lemma 1.3.3 without the
loss of generality we can assume that X is a group.

Let us denote the cardinalities of X and A by n and m respectively. Let k be the least
cardinality of the generating set X ′ = {x1, x2, ..., xk} of X and f be a homomorphism
from X to A. In this proof we will use the notation CA(n) introduced in Definition 1.2.1.
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At first we can observe that each homomorphism is determined by the images of the
elements in the generating set X ′. There are at most m possibilities for the image of each
element and there are k elements in X ′. This means that the number of homomorphisms
from X to A is not greater than mk, i.e. CA(n) ≤ mk.

We have proven in Lemma 2.4.1 that the cardinality k of a minimal generating set is
not greater than log2(n). Giving these two inequalities together we get CA(n) ≤ mk ≤
mlog2(n) = (2log2(m))log2(n) = 2log2(n) log2(m) = nlog2(m). nlog2(m) is less than or equal to a
polynomial of degree ⌈log2(m)⌉, so A admits polynomially many homomorphisms.

The two-element group and the two-element minority algebra are closely related in
that the minority operation can be written in terms of the group operation as m(x, y, z) =
xy−1z. Similarly, for every group A we can consider its reduct A′ = ⟨A; m⟩, where
m(x, y, z) = xy−1z. It can be shown by refining the argument above that such algebras
also admit polynomially many homomorphisms [2], but we do not give the details here.

2.5 Unary algebras
In this section we consider unary algebras.

Definition 2.5.1. Algebras in which every basic operation is unary are called unary
algebras.

At first we will look at algebras with only one unary operation, and then we will
generalize this case for algebras with more operations. We will prove that the number of
homomorphisms is exponential in both cases.

Theorem 2.5.1. Let A = ⟨{0, 1}, fA⟩ be a two-element algebra with a unary operation
fA. Then A admits exponentially many homomorphisms.

Proof. Let’s look at the algebra A. There are four possibilities for the results of operation
fA on the elements of A = {0, 1}:

(a) fA(0) = 0, fA(1) = 1

(b) fA(0) = 1, fA(1) = 0

(c) fA(0) = 0, fA(1) = 0

(d) fA(0) = 1, fA(1) = 1

We will consider all the possibilities and show that in each case, for every even n,
there exists an algebra X of size n such that the number of homomorphisms from X to
A is at least (

√
2)n. It follows that X admits exponentially many homomorphisms (see

the end of the proof of Theorem 2.5.2 for details).
We notice that in each case there are at least two different homomorphisms from A

to A. The cases (c) and (d) are symmetric, so without the loss of generality we can look
just on of them.

(a) fA(0) = 0, fA(1) = 1
The image of 0 under homomorphism from A to A can be either 0 or 1 independently,

the same statement is true for the image of 1. Therefore there are 22 = 4 homomorphisms
from A to A.
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(b) fA(0) = 1, fA(1) = 0
There are two possibilities for the images of 0 and 1 under homomorphism h from A

to A: either h(0) = 1, and then h(1) = h(fA(0)) = fA(1) = 0, or h(1) = 0, and then
h(0) = h(fA(1)) = fA(0) = 1. Clearly, both of these mappings h are homomorphisms.
Therefore there are two homomorphisms from A to A in this case.

(c) fA(0) = 0, fA(1) = 0
As in the previous case, there are two possibilities for the images of 0 and 1 under

h : A → A: either h(1) = 1, then h(0) = h(fA(1)) = fA(1) = 0, or h(1) = 0, then
h(0) = h(fA(1)) = fA(0) = 0. Again, there are two homomorphisms from A to A.

Now we fix a number n ∈ N and define the set X as X = A × {1, 2, ..., n}. So we can
look at the set X as n copies of A. We define the operation fX on X in the following
way:

fX(a, i) = (fA(a), i) for each a ∈ {0, 1}, i ≤ n.

Therefore X = ⟨X, fX⟩. For each copy A × {i} of A , where i ≤ n, there are at
least two ways to define a partial homomorphism from this copy to A. Moreover, h
can be chosen independently on each of these copies. Therefore there are at least 2n

homomorphisms from X to A. We will define these homomorphisms formally in the next
proof of Theorem 2.5.2.

Notice that we have considered only algebras X which have an even number of ele-
ments. This problem will be also solved in the proof of Theorem 2.5.2, where we will
generalize the idea used in this proof.

Theorem 2.5.2. Let A = ⟨A, (fA
i )i∈I⟩ be a finite unary algebra and the cardinality of A

is at least 2. Then A admits exponentially many homomorphisms.

Proof. Let us denote the cardinality of A by m. According to our assumption m ≥ 2, so
A contains at least two elements, denote any of them by 0 and 1.

As in the previous proof we will construct a family of algebras with large number of
homomorphisms into A.

We fix a number n ∈ N and define the set X as X = A × A × {1, 2, ..., n}. So we can
look at the set X as n copies of A × A. Now we take the same signature Σ and define
the corresponding operations fX

i on the algebra X in the following way: for all i ∈ I and
for all x = (x1, x2, k) ∈ X we set fX

i (x1, x2, k) = (fA
i (x1), fA

i (x2), k).
Now we can define 2n different homomorphisms gl1,...,ln , where lj ∈ {1, 2}, j ∈

{1, 2, ..., n}, from X to A in the following way: gl1,...,ln(x1, x2, k) = xlk for all x =
(x1, x2, k) ∈ X.

These functions gl1,...,ln are indeed homomorphisms, because for all j ∈ {1, ..., n}, for
all i ∈ I, and for all x = (x1, x2, k) ∈ X,

gl1,...,ln(fX
i ((x1, x2, k)) = gl1,...,ln(fA

i (x1), fA
i (x2), k) = fA

i (xlk) = fA
i (gl1,...,ln((x1, x2, k))).

Next we observe that these homomorphisms gl1,...,ln are different. Consider two homo-
morphisms gl1,...,ln , gs1,...,sn whose indices are different, say li = 1 and si = 2, and also con-
sider the element x = (0, 1, 1). The value of gl1,...,ln on x is gl1,...,ln((0, 1, 1)) = xli = x1 = 0,
while the value of gs1,...,sn is gs1,...,sn((0, 1, 1)) = xsi

= x2 = 1, and we are done.
We have found 2n different homomorphisms from X to A, this means that there are

at least 2n homomorphisms from X to A.
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Finally, we show that CA(N) bounded from below by an exponential function. We
fix N > m2.

Note that if N = m2n for some positive integer n, then we have proven that there are
at least 2n = 2

N
m2 = (2

1
m2 )N homomorphisms from X to A.

In general, we take the maximal positive integer n′ such that N ≥ m2n′. We already
know that there exists an algebra X′ such that the cardinality of X′ is N ′ = m2n′ and
there are at least (2

1
m2 )N ′ homomorphisms from X′ to A. According to Definition 1.2.1

of CA(N) as N ′ ≤ N , then CA(N) ≥ (2
1

m2 )N ′ . At the same time we have taken n′

as the maximal positive integer such that N ≥ m2n′, therefore we have an inequality
m2n′ < N < m2(n′ + 1). If we rewrite the second inequality using N ′ = m2n′, we obtain
N < N ′ + m2, therefore N ′ > N − m2. Finally using this we can rewrite the estimation
of CA(N) as follows.

CA(N) ≥ (2
1

m2 )N ′
> (2

1
m2 )N−m2 = 1

2(2
1

m2 )N

Thus according to Definition 1.2.3 A admits exponentially many homomorphisms.

Corollary 2.5.3. Every finite essentially unary algebra admits exponentially many ho-
momorphisms.

Proof. As essentially unary algebra is a reduct of a unary algebra, the claim follows from
Theorem 2.5.2 and Lemma 1.3.1.
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Conclusion
We have proven that finite unary algebras admit exponentially many homomorphisms,
whereas finite semilattices, groups and two specific algebras - three-element majority
algebra and three-element 2-semilattice - admit polynomially many homomorphisms. As
we have mentioned before, these results have already been superseded in the article
[2] with the help of Tame Congruence Theory [3]. Moreover, all algebras which admit
polynomially many homomorphisms were recently fully characterized by Barto, Mottet,
and DeMeo (unpublished): A finite algebra admits polynomially many homomorphisms
if and only if it does not have a nontrivial strongly solvable congruence (see [3] for the
definition of strong solvability). The result for the rock-paper-scissors algebra was an
important step towards this characterization.

Lemma 2.4.1 in Section 2.4 shows a stronger property of finite groups than admitting
polynomially many homomorphisms: each finite group has a generating set of logarthmic
cardinality (with respect to the cardinality of the group). This phenomenon can be an
interesting topic for further study. One specific question in this direction is, for which
sets of identities there exists a real number k such that each finite algebra A satisfying
these identities has the least generating set of cardinality not greater than k log(|X|).
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