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Institute: Institute of Particle and Nuclear Physics
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Abstract: Jets, collimated sprays of particles, are considered to be a perfect probe
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ergy scale and its resolution for ATLAS experiment calorimeters, which are used
in the research of lead nucleus collisions. First, the current performance of jet
reconstruction quantified by mean response and energy resolution dependence on
the value of transverse momentum, pseudorapidity, and centrality of collisions
is shown. It is further discussed that the current calibration does not take into
account whether the jets are induced by a quark or gluon. Subsequently, four vari-
ables are selected, which might be used to distinguish between these two groups
of jets. The dependence of the response on those quantities and on centrality
is further studied. The last part describes the process of the preparation of a
training data set, set up of the neural network, and the analysis of it using tools
provided by the MultiLayerPerceptron library of the ROOT framework. The fi-
nal result of the work is a neural network that improves the resolution of the
response.
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Abstrakt: Jety, kolimované spršky částic, jsou považované za ideálńı nástroj
ke studiu hmoty, která vzniká v těžko-iontových srážkách. Práce se zabývá
možnostmi využit́ı technik strojové učeńı ke zlepšeńı celkové kalibrace odezvy jet̊u
na experimentu ATLAS v CERN v rámci výzkumu srážek jader olova. Prvně je
ukázána současná energetická škála a rozlǐseńı jet̊u v závislosti na hodnotě př́ıčné
hybnosti, pseudorapidity a centrality srážek. Dále je ukázano, že současná kali-
brace nezohledňuje, jsou-li jsou jety indukované kvarkem či gluonem. Následně
je vytipována čtveřice proměnných, pomoćı ńıž by mohlo být možné rozlǐsit mezi
sebou tyto dvě skupiny jet̊u. Pro danou čtveřici jsou provedeny studie mı́ry ko-
relace s středńı odezvou detektoru jakožto funkce centrality. V rámci posledńı
části je popsán proces př́ıpravy souboru trénovaćıch dat, nastaveńı a analýzy
neuronových śıt́ı pomoćı nástroj̊u, které nám poskytuje knihovna MultiLayer-
Perceptron frameworku ROOT. Finálńı výsledkem práce je nalezeńı śıtě, která
zlepšuje rozlǐseńı odezvy.
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Introduction
In the previous decade the existence of the quark-gluon plasma (QGP) under
extreme conditions was experimentally proved [1]. Quark-gluon plasma is the
unique state of matter predicted by quantum chromodynamics. The quark-gluon
plasma is expected to strongly affect particles with a colored charge traversing
through it, which gives us a way to investigate its properties. We are focused
on the suppression of collimated sprays of particles, so-called jets. In order to
accurately measure the properties of the quark-gluon plasma, it is, therefore,
necessary to accurately measure the properties of jets.

In general, the reconstructed momentum or energy based on measurement
in calorimeters differs from the momentum or the energy on a particle level.
Currently, a correction is applied to the measured data, which ensures that the
reconstructed energy corresponds on average to the particle level. However, the
finite jet energy resolution is affected by both, detector performance and prop-
erties of jets. This work aims to try to find a correction using machine learning
methods, which will improve the jet energy resolution using the additional infor-
mation about the jet origin and structure. The data from 5 TeV proton-proton
collisions will serve as the foundation of the training sample. We do not prac-
tice training on lead-lead data in order not to obtain calibration dependent on
centrality. Similarly, when identifying suitable variables for correction, we must
perform a correlation study to exclude variables correlated with centrality.

The inspiration for the work was the article [2], where the authors used a
neural network implemented within SciKit library, which corrected jet energy
in 13 TeV proton-proton collisions. As mentioned above, we try to generalize
their results for jets in heavy-ion collisions. Also, instead of the general-purpose
SciKit library, we worked with tools defined in the TMultiLayerPerceptron class
[3], which is integrated within the ROOT framework.
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1. Experimental setup

1.1 ATLAS coordinate system
The origin of the coordinate system used by the ATLAS experiment is chosen
as the nominal interaction point. The z-axis is taken along the beam direction.
Plane x-y is transversal to the beam direction, thus it is also referred to it as to
the transverse plane.

The direction of axes is defined as follows. The positive x-axis points from the
origin of the coordinate system towards the center of LHC. The positive y-axis
points upward to the surface level. The direction of the positive z-axis is therefore
determined from the requirement of right-handedness of the coordinate system.
The azimuthal angle ϕ is measured around the z-axis. A point located on the
positive x-axis has ϕ = 0 and ϕ increases clock-wise by definition. The polar
angle θ is measured around x-axis. A point located on the beam axis has θ = 0
and ϕ increases up to θ = π

2 , which belongs to a point located on the transverse
plane.

Coordinate system with example measurement of momentum p and its pro-
jection into transversal plane pT is shown in Fig 1.1.

1.2 Useful kinematic quantities at ATLAS
A common quantity [4] used to describe objects in relativistic physics is rapidity y.
The convenience of using rapidity in relativistic physics is the fact that rapidities
are additive in a one-dimensional case, unlike velocities or momenta. Rapidity
is used very often in particle physics, inasmuch as particle velocities are close to
the speed of light c.

At ATLAS, we are able to determine particle momentum components px, py

and pz from the particle track under the impact of magnetic field and energy E
from energy deposited in the calorimetric system. According to [4] a rapidity
could be determined as:

y = 1
2 ln

(︄
E + pz

E − pz

)︄
. (1.1)

However, there are problems with rapidity determination. The higher the
momentum is, the less accurately we can measure it. In addition to that, for
high values of the rapidity z-component of the momentum is especially large in
comparison to the other two components. Due to described problems in limit
case1 E ≈ p it is convenient to define new quantity named pseudorapidity η:

η = − ln
(︄

tan
(︄
θ

2

)︄)︄
. (1.2)

It is not obvious where formula 1.2 comes from. From figure 1.1 we can
see, that z-component of momentum is related to the size of momentum by the
following relation:

pz = p cos(θ). (1.3)
1The equivalent condition is m ≪ p.
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Figure 1.1: Coordinates system used at ATLAS experiment

Then formula 1.2 can be derived easily by using formulae 1.1 and 1.3 in assumed
limit2:

y ≈ 1
2 ln

(︄
p+ pz

p− pz

)︄
= 1

2 ln
(︄

1 + cos(θ)
1 − cos(θ)

)︄
= 1

2 ln
(︄

cos2( θ
2)

sin2( θ
2)

)︄
= − ln

(︄
tan

(︄
θ

2

)︄)︄
(1.4)

There are also the restrictions on the use of the pseudorapidity arising from
used assumptions. Apart from the rapidity, the pseudorapidity is no longer addi-
tive in one-dimensional case and it can not give us any piece of information about
the mass of particle.

Other useful quantities used in particle physics experiments are the transverse
momentum pT, the transverse energy ET, which are defined as a projection of
momentum p, respectively energy E into x-y plane. The transversal energy and
momentum are mutually convertible by invariant mass of particle m:

m =
√︂
E2

T − p2
T. (1.5)

The invariant mass of a particle provides crucial information for particle identifi-
cation. However, the invariant mass in HEP is not derived this way, inasmuch as
it would be inapplicable. The reason comes from the fact that transverse momen-
tum resolution σp2

T is directly proportional to its value p2
T, which follows from

the method of measurement from a sagitta curvature [5].
Last quantity often used as a veto in particle physics analyses or calibrations

is the ∆R, which is the distance in η − ϕ space defined as:

∆R =
√︂

(∆η)2 + (∆ϕ)2. (1.6)
2The penultimate equality can be obtained by using the common-known double-angle for-

mulae.
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1.3 Collider physics quantities
A fundamental quantity used in collider physics for description of the collision of
two particles is the centre of mass energy

√
s, which is prescribed by formula:

√
s =

√︂
(E1 + E2)2 − (p1⃗ + p2⃗)2, (1.7)

where lower indices denote a pertinence of quantity to a particle.
From 1.7 one can clearly see, why it is more advantageous to collide two beams

of particles directly than to used fixed target. At least, in the question of achieved
centre-of-mass energy

√
s. Nevertheless, other questions also come into play with

regard to the studied phenomenon. Hence, accelerators and detectors at CERN
differ strongly from each other.

The number of events per second generated in a collider is given by:

Nevents = Lσprocess, (1.8)

where σprocess is the cross-section of the studied process and L is the machine
luminosity. Luminosity is the quantity, which can be written for a Gaussian
beam distribution as:

L = N2n2fγF

4πσxσy

, (1.9)

where N quantifies the number of particles in a bunch 3 and n is the number
of colliding bunches. f describes revolution frequency, γ is Lorenz factor, and
F is the geometric luminosity reduction factor. However, the description of its
properties is beyond the scope of this work. More details can be found in [7].
Last two quantities requiring explanation are σx and σy, which represents physical
cross-section along axes x and y. Furthermore, it is useful to define integrated
luminosity:

L =
∫︂
Ldt, (1.10)

where the integration is done with respect to time t.

1.4 Large Hadron Collider
Large Hadron Collider [8] has been the largest and highest-energy particle collider
in the world since 2008. LHC was designed to be able to obtain center-of-mass
energy

√
s = 14 TeV for protons and

√
s = 5.5 TeV per nucleon for lead ions.

The collider was built and has been operated by the European Organization
for Nuclear Research (CERN). A high number of experiments are underway at
CERN. These experiments cover various topics in physics from dark matter and
antimatter to quark-gluon plasma. Eight of the experiments are located on Large
Hadron Collider. The group can be divided into a group of four big experiments
- ALICE, ATLAS, CMS, and LHCb and four smaller experiments - TOTEM,
LHCf, MoEDAL, and FASER. The rest of the experiments are associated with

3A bunch is a designation for a group of protons accelerated together in the accelerator, at
LHC there was around 1.1 ×1011 protons in the bunch in year 2018. Beam parameters over
time can be seen at [6]
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smaller colliders - Super proton synchrotron (SPS) and Proton synchrotron (PS).
The largest group of experiments associated with SPS and PS are fixed-target
experiments, these experiments are located in so-called North Area. SPS and PS
also gradually accelerate bunches before they are injected into the LHC.

LHC was built in the same tunnel, which was used by previous collider named
Large electron-positron collider (LEP). The major motivation for upgrading to
a hadron accelerator was lower energy losses through bremsstrahlung due to the
significantly heavier mass of protons in comparison to electrons. In LEP, antipar-
ticles circulated in the opposite directions due to the sign dependence of Lorentz
force. This property can not be preserved at LHC. Thus, the major needed change
in construction was adding a second tube for beam guidance.

All the colliders mentioned so far are called synchrotrons. The crucial issue
in accelerator physics of circular accelerators is to ensure synchronisation while
accelerating [9]. The trajectory of a particle is a path where the forces acting on
the particle are equal. In our case, the centrifugal force and the Lorenz force.
However, the centrifugal force increases with the energy of the particle. Further-
more, the circulation time is not constant. In order to ensure the same trajectory
of the particle, the synchrotron increases the bending magnetic field with the
energy of the particle. The energy limit delivered by synchrotron accelerator is
typically dependent on the maximum strength of the magnetic field. This limit
may be increased by using a synchrotron with a larger radius, which is why the
LHC is as large, as well as the use of superconducting magnets, as is also the case
of the LHC.

Let us describe LHC specifically [10]. There are 1232 dipole magnets for
bending a particle path and 392 quadrupole magnets for focusing a beam, there
are also used multipole magnets for squeezing bunches in order to obtain higher
luminosity. The acceleration must also be performed in an ultra-high vacuum
environment to prevent the interaction of ultra-relativistic particles with the sur-
rounding environment. Such an interaction would blur the beam, reduction of its
energy, and damage the accelerator system or detector. Acceleration itself takes
place in so-called electromagnetic cavities. The frequency in them is also tuned
to match the energy of the particles.

Since this work is dedicated to the topic, which belongs to heavy-ion physics,
the process of acceleration of heavy ions will be explained. Both protons and
ions are accelerated in LHC. However, the beginning of their journey is different.
Protons are generated from hydrogen source. Hydrogen is ionised and accelerated
firstly at linear collider LINAC 2 4 to the energy of 50 MeV. The second step
in the proton production chain is in PS Booster, where protons acquire kinetic
energy equal to 1.4 GeV. Moreover, Booster stabilizes the beam so that more
than 100 times more protons can be injected into the PS than without using it
[12]. Let us denote, that not all protons are sent into the PS. Their paths split
into several experimental sites, which is manifested in figure 1.2. However, we
are interested only in protons used at LHC.

The Proton Synchrotron is one of the oldest apparatus in CERN, because
it has been working since 1959. Protons and ions for LHC are using the same
infrastructure beyond this point. The protons are accelerated there up to 25 GeV

4LINAC 2 will be replaced in run 3 by new linear accelerator LINAC 4, which proposed
properties can be found in [11].
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Figure 1.2: Distribution of protons delivered by the accelerator chain to the
experiments. Taken from [13].

kinetic energy and injected to the SPS, which increases the energy of protons to
450 GeV [14]. For example, W and Z bosons were discovered in collisions provided
by SPS in 1983. Finally, the protons injected into LHC are able to obtain the
energy of 7 TeV 5. LHC is probably the best known for the discovery of the Higgs
boson in 2012 [15].

Until this point we mainly discussed protons. However, this work is dedicated
to heavy-ion physics, which has only a limited time to collect data from collisions.
In the longer term LHC schedule [16] heavy-ion physics has about a month every
year to measure. 6 To be precise, the granted time was 28 days in 2018, which
was the last run of lead-lead collisions. Four days are typically dedicated to set-up
the machines and the rest of the time is used to collect data.

The process of acceleration of lead ions is described in this paragraph. The
major source of information is [17], because the information from the original
design report of injector chain [18] is a bit outdated due to the steady upgrades.
On the other hand, the second source is more extensive, it is only necessary to

514 TeV is the energy of collision of two bodies
6Similar division of the measurement time in LHC for heavy-ion physics is expected to be

determined after the long shutdown 2.

7



carefully take into account the modifications made to the production chain. The
first step in accelerating the ions is the lead ions source. Solid pure isotope 208
of lead is vaporized, then the vapour is ionised and turned into the particle beam
in the radiofrequency cavity. The cavity is followed by LINAC 3, which has two
tasks to provide. Not only to accelerate the ions, apart from LINAC 2. Since
the Lorentz force is directly proportional to the atom charge, then in order to
achieve the highest center-of-mass energy in the collisions, it is reasonable to
try to get rid of the atom of all electrons and leave only the nucleus. That is
the second task from LINAC3. It accelerated the atoms of lead to 4.2 MeV per
nucleon 7. Moreover, during the journey inside the accelerator, the atoms of lead
are so-called stripped. Stripping is a process when an accelerated atom breaks
through a thin foil and loses electrons due to their interaction with the foil. At
LINAC3 the atom subsequently undergoes a change from state 208Pb27+ to state
208Pb54+. LINAC3 is followed by the Low Energy Ion Ring (LEIR), which has
the same tasks as PS Booster for protons. LEIR splits beam from LINAC3 into
bunches8 and accelerates each atom of lead up to the energy equal to 72.2 MeV
per nucleus and then inject the bunches into the PS. In Proton synchrotron the
energy per nucleus of lead atoms reaches 5.9 GeV. Then, during the transfer
to SPS, the final stripping changing an atom from 208Pb54+ state to a nucleus
with no electrons is applied. Stripping as well as other manipulations with the
bunches, is not lossless. However, the improvement of the properties of bunches
has been developed continuously. The last pre-accelerator for ions is the Super
proton synchrotron, where the ions obtain kinetic energy up to 176.4 GeV per
nucleon before they are injected into the LHC. In run 2 the achieved value of the
center of mass energy

√
s of two colliding ions has been 5.02 TeV per nucleon

[19].
To sum it up, LHC does not only provide collisions to experiments, but it also

serves as a prototype of a number of vacuum and low-temperature technologies.
The whole CERN experimental complex, which was presented above is shown
schematically in figure 1.3.

1.5 ATLAS detector at LHC
Detector ATLAS [21], whose name is an abbreviation for A Toroidal LHC Ap-
paratuS, is one of the four big experiments on LHC ring and along with CMS
one of the two general-purpose detectors. The ATLAS detector is symmetric
along the z-axis with respect to the interaction point (IP), it also covers the full
2π in azimuth angle. The ATLAS detector is composed of several various sub-
detectors, which are labelled in figure 1.4. The sub-detectors are typically divided
into three groups - the inner detector (ID), the calorimeter system, and the muon
spectrometer.

Inner detector (ID) measured the path of charged particles and their momenta.
ID is the closest detector to the interaction point. Inner detector is composed
of three independent subsystems - Pixel detector, Semiconductor Tracker, and
Transition Radiation Tracker. The first two detectors use very accurate silicon

7It is customary to use energy per nucleon rather than the energy of the whole projectile.
8Each bunch contains 2.2 · 108 ions.
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Figure 1.3: The schema of CERN site with labelled experiments and colliders.
Taken from [20].

Figure 1.4: Layout of ATLAS. Taken from [21].

detectors, pixel, respectively strip silicon detectors. The last part of ID uses
xenon-filled straws. A charged particle emits transition radiation as it passes
between the straws. The spatial resolution of this detector is not good in com-
parison to the silicon detectors. However, it is a suitable poor man solution, which
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provides us a lot of information about charged particle tracks. TRT is also very
radiation resistant. The cut-away view of the ATLAS ID is shown in figure 1.5.
The ID active area is placed into a solenoid magnetic field of intensity B = 2 T.
The curvature of the particle path is caused by the Lorentz force. It helps us to
determine the momentum of particles. The ID covers the pseudorapidity in range
η ∈ (-2.5,2.5). This value is significant for data selection used in this work, which
is mentioned in chapter 4.

Figure 1.5: The cut-away view of the ATLAS ID. Taken from [22].

The apparatus with a major impact on jet physics study is a calorimeter
detection system. The principle of energy measurement is divided into two steps.
Interaction of passing particle with the detector mass leads to energy deposition.
It is necessary to measure all the energy of the particle, hence the calorimeters
are vast instruments. The subsequent task is to measure the energy and convert
its amount to a signal. Unfortunately, it is not that easy. Various particles
passing through material behave very differently. Hence, the ATLAS detector has
two main sub-systems of calorimeters - electromagnetic calorimeter and hadronic
calorimeter.

Both calorimeters are sampled, which means that there are layers of an ab-
sorber, a passive material, which is cheap and within which the mean free path of
the passing particles is as short as possible. The absorber is interleaved with an
active material, which measures the energy deposited in active volume due to the
interactions in an absorber. The advantage of this approach is the price, but the
sampling method results in degradation of resolution. Therefore, for example, the
CMS detector has electromagnetic calorimeter made fully of scintillator wedges.

The calorimeter system covers the pseudorapidity range η ∈ (−4.9, 4.9). The
elmag. calorimeter gather information for pseudorapidity in range |η| < 1.475
in barrel part and in range 1.375 < |η| < 3.2 in two end-caps. The electromag-
netic calorimeter at ATLAS uses lead as the absorber and liquid Argon scintillator
(LAr) as an active material. The big advantage is the absence of an atomic lattice,

10



so there is no radiation damage of that type. Phenomena such as electron-positron
pair formation, bremsstrahlung, Compton scattering, and ionization occur in the
electromagnetic calorimeter. Overall, we can say that the number of electrons,
positrons, and photons increases, but their average energy decreases in the shower
that is developed when an electron or photon is passing through a material. Un-
til the so-called electromagnetic shower stops completely in the material. The
hadronic calorimeter covers the regions with pseudorapidity |η| < 1.0 with barrel
part, 0.8 < |η| < 1.7 with extended barrel part, and 1.5 < |η| < 3.2 with endcaps.
Barrel parts use steel as the absorber and the measurement is done by plastic
scintillator tiles. Endcaps use copper as the absorber and LAr as active material.
The coverage of the forward regions, where pseudorapidity meets the condition
3.1 < |η| < 4.9, is provided with forward electromagnetic calorimeter module
made of copper absorber and LAr as active material and hadronic calorimeter
module made of tungsten absorber and LAr as active material. Copper, same
as lead and steel or tungsten, is a suitable choice because it cannot be magne-
tized, otherwise we would interrupt the bending magnetic field. A hadron shower
occurs in a hadron calorimeter. The phenomena taking place here are hadron
production, nuclear deexcitation, and pion and muon decays. Moreover, neutral
pion almost immediately decays into a pair of photons, the energy of the neutral
pions creates a new electromagnetic shower, which propagates as stated above.
Hadronic calorimeters are bigger in general than electromagnetic ones, inasmuch
as the electromagnetic showers are absorbed over a shorter distance than the
hadron ones. Therefore, the hadron calorimeter is placed behind the electromag-
netic one. One can see that in the cut-away view of the ATLAS calorimeters is
displayed in figure 1.6

Figure 1.6: The cut-away view of the ATLAS calorimeters. Taken from [21].

The outermost part of the detector is the muon spectrometer (MS). Only the
muons have sufficient energy to reach the spectrometer 9 The whole detector is
exposed to a magnetic field by superconducting air-core toroids. The magnetic
induction of the field ranges between 2 and 6 T. The field is used to deflect
the trajectories of muons. Precise measurement is realised within the region of

9Neutrinos reach the spectrometer as well but are not detectable in the spectrometer.
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|η| < 2.7 with three layers of monitored drift tubes. Moreover, in the forward
region in order to suppress higher background signals cathode-strip chambers
are located. The last part of the muon trigger system serving as a fast trigger
are resistive plate chambers in the barrel, and thin-gap chambers in the endcap
regions within the region of |η| < 2.4.

Thanks to the small cross-section of the interaction with baryon matter 10,
muons reach the spectrometer quickly and the signal from them can be identified
easily compared to other particles in other sub-detectors. The overview of the
muon spectrometer is displayed in 1.7.

Figure 1.7: The cut-away view of the ATLAS muon spectrometer. Taken from
[21].

Figure 1.8 shows how various particles appear inside the ATLAS detector. The
shown particles are those that are stable enough to leave a detectable trace. Less
stable exotic particles can be identified by connecting the pathways to vertices.
It is also impossible to measure a neutrino in the data at ATLAS, as it interacts
only very weakly. Its presence is manifested by the lack of transverse energy and
momentum in data. The topic of particle detection and identification is discussed
in depth in [5].

Delivered integrated luminosity to ATLAS from accomplished runs, which
characterised both - the detector as well as the collider, are displayed for proton-
proton collisions annually as well as overall in figure 1.9. For lead-lead collisions
in figure 1.10.

The given graphs show the increasing amount of data taken from the LHC
machine over time, which allows us to study rarer processes.

10For given energies of muons in the order of tens and hundreds of GeV.
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Figure 1.8: Various particle signatures in ATLAS. Taken from [23].
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Figure 1.9: Integrated luminosity collected in proton-proton collisions at ATLAS
at center of mass energy

√
s. Annual values in the left picture, overall value in

the right picture. Taken from [24].
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2. Physics background
The Standard Model of particle physics (SM) is the set of theories 1, which
altogether provides the description of three fundamental interactions - electro-
magnetic, weak, and strong except for gravitational force. Any theory of gravity
has not been successfully implemented into the model yet. Considering energy
and mass scales in current experimental particle physics one can see that we
can without prejudice to generality omit phenomena associated with gravitation
force. Thus, the SM is a cardinal theory for every experimental particle physicist.

2.1 Quark gluon plasma in Standard model
At first, we need to outline a brief introduction to the principles, which follow
from the theory of strong interaction called Quantum Chromodynamics (QCD).
A correct derivation of QCD principles is far beyond the scope as well as the
intention of this work. The following paragraphs are based on [25], which does
not reflect the changes in the SM in last the thirty years, but it provides us a
sufficient theory of quarks and QGP.

Six quarks are one of the seventeen building blocks of the universe according
to the SM. These building stones called particles are indivisible. Each particle
has intrinsic quantities related to the interaction, which the particle undergoes.
Quarks interact via all four know interactions. Thus, they have quantities such
as mass related to gravitational force, electric charge related to electromagnetic
force and color charge related to strong force, and a few more, which describes
inner states of freedom such as spin.

The matter we encounter in everyday life, is composed of particles with an
inner structure called baryons and further indivisible electrons. There are only
two stable baryons, under some circumstances 2, proton and neutron. In general,
baryon is a particle made up of three quarks, each with different color charge.
Color charges are three - blue, green, and red. Quarks can also make up composite
particles called mesons, which consist of one quark with arbitrary color charge
and one antiquark3 with corresponding anti-color, an example of a meson is a
pion. There also exist extremely rare groups of particles made up of four or
five quarks, named tetraquarks [27] and pentaquarks [28], respectively. These
groups were discovered relatively recently. Overall, all these groups of particles
formed by quarks are called hadrons. Quarks inside hadrons are bound through
strong force carrier particles, gluons. There are eight types of different gluons,
in the language of quantum mechanics it is more accurate to say eight states -
octet state. Gluons number among bosons, which means that the wave function
of a multi-gluon system is symmetric. As a result, gluons are not subject to

1Various elements of this theory set has been verified and expanded for more than last fifty
year all over the world.

2A free neutron is unstable. However, the neutron bound in a nucleus is stable. Proton
stability is still an open problem. According to measurement done by [26] mean lifetime of
proton is more than 3.6·1029 years at 90% Bayesian credibility level

3Antiquark is an antiparticle to quark. In general, an antiparticle has the same mass, but
the rest quantities have the opposite values
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the Pauli exclusion principle. Thus, the occurrence of gluons in a region with
respect to other gluons is not limited in any way. Let us note that indifference to
the Pauli exclusion principle is the reason why bosons are carriers of interactions.
Altogether gluons and quarks, which are the only groups of particles participating
in strong interactions, are called partons.

The QCD theory has two main properties. The first one explains why we
are unable to observe bare quarks outside hadrons. This phenomenon is called
color confinement [29], which is explained later in section 2.3. It results in be-
havior such that further quarks are, the stronger they attract each other. The
second crucial QCD property is called asymptotic freedom. It is manifested that
strong interaction between particles becomes asymptotically weaker with increas-
ing energy scale or decreasing characteristic dimension scale of the system. The
dependence of a coupling constant on a characteristic scale comes from the action
of the field on virtual color-charged particles. Quarks screens the field, on the
other hand, gluons anti-screens the field. Thus, the existence of asymptotic free-
dom of QCD is a consequence of the fact that anti-screening caused the gluons
to overcome the screening caused by the quarks due to the number of existing
gluons and quark flavors. More details about the phenomenon of asymptotic
freedom are given in a relatively easy-to-understand way in [30]. As the result of
asymptotic freedom, when the matter is extremely squeezed, in other words, it
has high density and temperature, then quarks can be liberated. A new state of
matter called quark-gluon plasma is formed.

According to the current cosmological models and measurements done in ex-
isting heavy-ion experiments, the primeval state of matter in the universe was
QGP [31]. The more we understand the properties of the QGP, the more accu-
rate cosmological model we are able to obtain. QGP physical parameters might
also provide fundamental information for string theory and the theory of quantum
gravity [32].

2.2 Heavy-ion collisions
In the previous section we have noticed that there exists state of matter called
QGP, which occurs in extremely hot or dense hadronic matter. The phase tran-
sition between hadronic matter and quark-gluon plasma described in classical
terms of thermodynamics [33] is displayed in figure 2.1.

In figure 2.1 we can see both feasible approaches in producing QGP. The first
approach how to prepare QGP is to collide heavy-ions such as nuclei of gold,
lead, or xenon. This approach increases the temperature (energy) of hadrons so
much that they undergo a phase transition and turn into QGP. There is also an
area on the left from the critical point, where according to the theory smooth
transition between QGP and hadronic matter should be realized. The second
possible approach is to squeeze hadrons as happens in neutron stars. By squeezing
them we enlarge the value of chemical potential µB, which is a quantity describing
the internal energy per mole of substance 4. The detailed form of the phase
diagram is the subject of research.

When one takes arbitrary heavy-ion, at rest it has temperature T = 0 MeV
4It can be also interpreted as energy that can be absorbed due to the phase transition.
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Figure 2.1: The phase diagram of strongly interacting matter in temperature-
chemical potential T − µB space. Taken from [34].

and chemical potential close to nucleon mass. In simplified description, ion goes
through hotter and hotter equilibrium states even after it becomes QGP.

LHC apparatus described in the first chapter is used for accelerating heavy-
ions. Most of the time, experiments on LHC are done with bunches of protons
instead of heavy-ions. However, for studies of QGP it is preferable to use heavy-
ions since the multiplicity of parton collisions is typically greater by two orders
of magnitude. The high multiplicity allows us to study the collective behavior
of QGP. A truly not negligible volume of QGP is created for a moment. On
the other hand, requirements for simultaneous detection are significantly higher.
Historically, the first observation of QGP was achieved with detectors STAR and
PHOENIX at collider RHIC in 2003 [1].

Apart from protons one must also take into account that nuclei can no longer
be considered as points in collision geometry. Final state properties 5 in an ion
collision strongly depend on collision impact parameter b. The impact parameter
is a quantity, which quantifies the distance between centers of projectiles in the
transversal plane and it is directly related to the number of participating nucle-
ons, Npart, the number of spectators, and the number of single nucleon-nucleon
collisions, Ncoll. Unfortunately, these quantities can not be measured experimen-
tally. The fundamental quantity used in this study is called centrality and it is
generally defined as [35]:

c =
∫︁ b

0
dσ
db′db

′∫︁∞
0

dσ
db′db′ , (2.1)

where dσ
db′ is differential cross-section with respect to impact parameter. Experi-

mentally, centrality is measured at ATLAS using the total ET deposited in for-
ward calorimeters. Its distribution is divided into intervals to include given frac-
tions of the total cross-section. This is further parametrised using simulations
and model to extract Npart and Ncoll if needed. Numerical values of centrality,

5This dependence is many times highlighted in the discussion of results in chapter 4.
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Npart, Ncoll for certain values of b are typically determined in Monte Carlo simu-
lations based on the used physical model of collision. The leading model used in
heavy-ion physics is probably the Glauber model, whose approaches and results
are briefly summarized in [36]. The centrality interval 0–10%6 refers to the 10%
of the most central collisions while the 80–100% to the most peripheral collisions.
Centrality, impact parameter b, and their relation in heavy-ion collision are shown
in figure 2.2.

Figure 2.2: A schema of hadronic projectiles collision with impact parameter b
and nucleons divided into groups of so called participants (involved in collisions)
and spectators (not involved in collisions). Taken from [37].

2.3 Jet physics, jets as probe of QGP
In section 2.1 it was mentioned that one of the two crucial QCD theory phenom-
ena is called color confinement. The phenomenon is named with respect to the
finding that partons can not exist as bare particles due to their non-zero color
charge. In the first section of this chapter, there were given examples of hadron
types. Altogether these types have a total color charge equal to zero. In a macro-
scopic world, we can imagine a situation where we overcome the attractive force
by moving the attracted particles away from each other with sufficient energy.
The sufficient energy must exceed the potential associated with attractive force.
However, the strange nature of color confinement does not allow this approach.
Let us describe the action of the strong interaction on the analogy with a spring.
As the imaginary spring between quarks stretches, the stored energy in the spring
increases until a certain level of energy. The critical energy level is the energy
sufficient to form a quark-antiquark pair. The newly born partons from vacuum
together with previously existing ones form hadrons. This phenomenon is called
hadronisation. The described behavior is shown in the figure 2.3.

Consequently, after a hard scattering process and following hadronisation, in
the first approximation there are two collimated sets of hadrons moving back-
to-back. These sets of hadrons are called jets. As a jet evolves, the paths of
the jet hadrons form a cone. If one identifies the hadrons that make up the jet
and measures their properties, one can reconstruct the properties of the original

6It is customary to give the value of the centrality as a percentage, not as a decimal number.
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Figure 2.3: Confined quarks cooled below the deconfinement phase transition
temperature undergoing hadronization. Taken from [38].

parton. However, in heavy-ion physics, there is another use of jets. The jets can
serve as a useful probe into the properties of the QGP.

The jets, which form in heavy-ion collisions interact during propagating
through surrounding QGP. Depending on the properties of the QGP along the
jet path, the jet suffers differential energy loss. The jet may even disappear
completely. This phenomenon is called jet quenching. Naturally, we are unable
to measure the initial properties of the jet and study its change over the path.
However, we can for example compare the asymmetry in the properties of a pair
of jets initiated at the same collision. The jet quenching process is schematically
shown in figure 2.4.

The jet quenching mechanism and its use to study QGP properties was first
predicted, calculated, and published in [40]. In the paper, it is derived that the
differential energy loss dE

dx
is roughly proportional to the square of the plasma

temperature. There is also made an assumption of the type of events, which
could be easily observed. The type is called mono jet signature and it represents
the category of events when the hard scattering takes place near the edge of
QGP. One jet escapes the area through hadronic gas with negligible energy loss.
The other one is fully absorbed in the plasma. One can imagine the event as an
even more extreme case of the situation shown in the figure 2.4. Indeed, such
events were observed in 2010 at ATLAS [41]. ATLAS also was the first to directly
observe jet quenching in the measurement of dijet balance [41]. An event display
from the paper showing the Inner Detector and calorimeter systems is shown in
figure 2.5. One can notice that in the Inner Detector, there are two back-to-back
collimated particle showers. However, only one of that two back-to-back sets of
particles deposited a significantly stronger signal in hadronic calorimeter. This
event can be interpreted as an imbalanced dijet event where one jet was quenched.

2.4 Jet reconstruction at ATLAS
In the previous section, we presented arguments for the importance of jet recon-
struction in high-energy physics, especially in ultra-relativistic heavy-ion physics.
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Figure 2.4: Schematic view of two partons created in hard scattering process
propagating through QGP. Taken from [39].

Figure 2.5: Event display of an asymmetric dijet event, recorded by ATLAS in
2010 in lead-lead collisions. Taken from [41].

In this section, we describe how specifically the reconstruction is done.
At first, let us introduce what the signal from jets looks like in the ATLAS

detector. The smallest unit of the calorimeter is called a cell. In general, cells do
not have the same spatial resolution. Each cell is defined by η, ϕ, and the layer
to which it belongs. If one sums the signal from cells overall layers such that
∆η x ∆ϕ = 0.1 x 0.1, one obtains an object called a calorimeter tower.

Subsequently, we provide the explanation of the reconstruction algorithm,
which reconstructs jets from calorimetric tower signals. Algorithms responsible
for jet clustering are important tool for analysing data from hadron collisions.
There is a plenty of algorithms. A specific choice of an algorithm is based on
studied phenomenon. The most commonly used algorithms are sequential recom-
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bination and cone jet algorithm. The group of sequential algorithms includes the
widely used anti-kt algorithm, which was used for reconstruction of jets in our
training data set. Anti-kt algorithm [42] is a soft-resilient jet algorithm, which
means that a jet shape and a jet area is not influenced by soft radiation. In
order to explain algorithm itself, let us define distance between particles dij and
distance between particle and the beam diB by following relations:

dij = min

(︄
1
k2

ti

,
1
k2

tj

)︄(︄
∆Rij

R

)︄2

, (2.2)

diB = 1
k2

ti

, (2.3)

where ∆ Rij, R, and kti are the distance between the i-th and the j-th particle in
η−ϕ space defined by (1.6), radial parameter and momentum of the i-th particle
respectively.

In each iteration, the algorithm calculates the distances and identifies the
smallest distance. If the smallest distance is dij, then the algorithm recombines
entities i and j into one. While if the smallest distance is diB, the algorithm tag
i as a jet and removes it from the list of entities. After that, the distances are
recalculated and the process repeats until there are no remaining entities to be
clustered.

Other commonly used reconstruction algorithms may be obtained just by
using different value of the power of momentum kti/j in definitions (2.2) and
(2.3). In kt algorithm quantities dij and diB are functions of k2

ti/j instead of 1
k2

ti
.

Cambridge/Aachen algorithm works independently to momenta, i. e. with power
index of zero.

The performance of the anti-kt algorithm with given radial parameter R can be
compared to the other algorithms with other choices of the value of the power of
momentum kti/j under considering of an event, which contains a few well spatially
separated hard particles and many soft particles. Transverse momenta of the i-th
hard particle is kit.

Let us analyse the behaviour of the anti-kt algorithm. The distance d1i, where
1 represents a hard particle, is significantly suppressed by the high value of the
transverse momentum compared to the momenta of the soft particles despite
similar spatial distribution. Thus, soft particles are likely to cluster with hard
ones rather than with other soft particles. If there is no other hard particle in
the distance of 2R from the hard particle, all the soft particles within a radius R
from the hard particle are clustered with it.

If there are two hard particles 7 closer than 2R, there are two options. If
∆R12 ∈ (R,2R), there are reconstructed two jets. However, apart from the pre-
vious case, reconstructed jets cannot be perfect cones. If the momentum of the
first hard particle significantly exceeds the momentum of the second hard parti-
cle, then the jet associated with the first hard particle is a cone and the second
jet is just partly conical. Such situational will be performed graphically below. 8

7Second hard particle is represented with number 2.
8One can see such jet in figure 2.6 in graph for anti-kt algorithm in area around coordinates

y = 2, ϕ = 5.
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If momenta of both hard particles are approximately the same, then both cones
are cut off by common boundary b, which is determined by condition 9:

∆R1b

kt1
= ∆R2b

kt2
. (2.4)

Remaining case to study is the situation for a pair of hard particles with
∆R12 < R. Logically, only a single jet is reconstructed. If the momentum of the
first hard particle significantly exceeds the momentum of the second hard particle,
then the conical jet is centred on the place, where the first hard particle occurs.
In case the momenta of both hard particles are approximately the same, then the
shape of the reconstructed cone is a more complex union of conical shapes.

The described behavior of anti-kt algorithm for a pair of hard particles can
be naturally generalized on a higher number of hard particles.

Jets reconstructed by different jet algorithms from a particle-level event with
a high count of random soft noise particles are illustrated in figure 2.6. It is clear
that the clusters delivered by anti-kt algorithm are resilient to a specific occur-
rence of random soft particles, apart from kt and Cambridge/Aachen algorithms.

Figure 2.6: A comparison of results provided by four different jets algorithms pro-
cessing a parton-level event containing many random noise soft particles. Taken
from [42].

In figure 2.6 one can notice important behavior of anti-kt algorithm. Hard
jets clustered by anti-kt algorithm are represented by circles in η − ϕ space with
strictly given radius R. On the other hand, softer jets could be more variable in
the representation of their shape.

The collisions of two Pb nuclei has a significantly higher level of the under-
lying event in comparison to proton-proton collisions. Hence, specific algorithms

9The condition follows from (2.2) providing a set of points j with the same distance from
both hard particles
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[43] have to be used event-by-event to correct underlying event background en-
ergy deposited in the jet region. Underlying event energy is subtracted from all
calorimeter towers.

Additional corrections are also applied. If an algorithm that has already
finished the subtraction procedure cannot decide which jets have an origin in a
realised hard process and which are fake signals, the decision is made according to
the ratio of maximum and average transverse energy in the towers of the jet. The
described procedure might be improved with data from tracking jets or smaller
jets with R = 0.2. The second correction is called a η − ϕ correction, which fixes
non-uniformities of the reconstructed jet in the ϕ direction due to the presence
of dead modules and non-uniformities in the calorimeters.
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3. Jet calibration

3.1 Data sets
The data sets utilised in this study are MC16 Pythia 8 Event Generator jet events
at

√
s = 5.02 TeV with the A14 ATLAS tune 1 and parton distribution function 2

NNPDF23LO grids [44]. The definitions of used proton-proton MC samples can
be found in tables 3.1 and 3.2.

JZ Dataset name
2 mc16 5TeV.420012.Pythia8EvtGen A14NNPDF23LO jetjet JZ2R04.recon.AOD.e* s3238 r11199

3 mc16 5TeV.420013.Pythia8EvtGen A14NNPDF23LO jetjet JZ3R04.recon.AOD.e* s3238 r11199

4 mc16 5TeV.420014.Pythia8EvtGen A14NNPDF23LO jetjet JZ4R04.recon.AOD.e* s3238 r11199

5 mc16 5TeV.420015.Pythia8EvtGen A14NNPDF23LO jetjet JZ5R04.recon.AOD.e* s3238 r11199

Table 3.1: A list of 5.02 TeV Pythia 8 proton-proton MC samples.

JZ pT |R=0.4 [GeV] σ · ϵ [nb] Number of events
2 60–160 (6.4 · 105) · (4.29 · 10−3) 8 M
3 160–400 (4.7 · 103) · (5.30 · 10−3) 8 M
4 400–800 (2.7 · 101) · (4.59 · 10−3) 8 M
5 800–1600 (2.2· 10−1) · (2.18 · 10−3) 8 M

Table 3.2: 5.02 TeV Pythia 8 proton-proton MC samples with cross-setions and
filtering efficiency.

The lead-lead MC sample uses the same event generator, tune, and particle
distribution functions as in proton-proton case. The lead-lead MC sample is
created by overlaying Pythia8 dijet MC events on top of Pb+Pb minimal bias
events. The corresponding samples are recorded in the tables 3.3 and 3.4.

Many subsystems of ATLAS have a sensitivity window longer than the time
interval between arrival of two bunches, which is approximately 25 ns. Hence,
the following or the previous collision may affect the studied one. Moreover, in
each bunch collision, there occur many parton interactions within the detector
sensitivity window. Thus, each event is affected by background signal from other
interactions. Such a phenomenon is called a pile-up. Necessarily, the proton-
proton MC is generated with the pile-up contamination in accordance with the
one in the measured data.

3.2 Current approach to calibration
Due to the difference of elmag. and strong interactions, calorimeters measure
different signals for hadronic and electromagnetic components of jets of the same

1Each MC generator is specially tuned in order to provide the best performance for used
apparatus.

2Parton distribution function is a relation giving the probability to find a parton with given
flavor in a hadron based on the fraction of the hadron total momentum carried by the parton.
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JZ Dataset name
2 mc16 5TeV.420012.Pythia8EvtGen A14NNPDF23LO jetjet JZ2R04.merge.AOD.e4108 d1516 r11439 r11217

3 mc16 5TeV.420013.Pythia8EvtGen A14NNPDF23LO jetjet JZ3R04.merge.AOD.e4108 d1516 r11439 r11217

4 mc16 5TeV.420014.Pythia8EvtGen A14NNPDF23LO jetjet JZ4R04.merge.AOD.e4108 d1516 r11439 r11217

5 mc16 5TeV.420015.Pythia8EvtGen A14NNPDF23LO jetjet JZ5R04.merge.AOD.e4108 d1516 r11439 r11217

Table 3.3: A list of 5.02 TeV Pythia 8 lead-lead MC samples.

JZ pT |R=0.4 [GeV] σ · ϵ [nb] Number of events
2 60–160 (6.4 · 105) · (4.29 · 10−3) 7.7 M
3 160–400 (4.7 · 103) · (5.30 · 10−3) 7.7 M
4 400–800 (2.7 · 101) · (4.59 · 10−3) 7.5 M
5 800–1600 (2.2· 10−1) · (2.18 · 10−3) 7.7 M

Table 3.4: 5.02 TeV Pythia 8 lead-lead MC samples with cross-setions and filtering
efficiency.

energy. The quality of calorimeter calibration is quantified by response ℜ, which
is defined as:

ℜ =
pEM

T,reco

pT
, (3.1)

where pT is transverse momentum generated by Monte Carlo simulation on the
particle level. Transverse momentum of the reconstructed particle is pEM

T,reco. In a
dedicated model, we simulate the interaction of generated particles with a model
of ATLAS detector and obtain an output signal with the same structure as the
signal from the real data. Such a signal is processed in order to reconstruct an
initial particle state. In general, the response of a fully calibrated jet approaches
unity. The calibration for jets reconstructed with the heavy-ion algorithm is
derived in proton-proton MC collisions using numerical inversion method [43].

Jet reconstruction performance can be characterized by two quantities, jet
energy scale (JES) and its resolution (JER) defined as

JES = ⟨p
reco
T
pT

⟩, (3.2)

JER = σ

(︄
preco

T
pT

)︄
. (3.3)

The jet energy resolution can be described by empirical formula [45]:

σ(ℜ) = a
√
pT

⊕ b

pT
⊕ c, (3.4)

where parameters a and c depends on the response of detector. Contrariwise,
parameter b has two components - the centrality dependent based on fluctua-
tions of underlying event (or a contribution from the pile-up decays in case of
proton-proton collisions), and the second one independent of centrality caused by
electronic noise. Therefore, in an effort to improve calibration, we vary parame-
ters a and c, not b.

25



3.3 Neural networks - multi layer perceptron
We would like to remark that we do not try to replace the calibration mentioned
in the previous section. We attempt to improve the properties of that calibra-
tion even more so that we can get more reliable physical data from heavy ions
experiments running on ATLAS.

At first, let us introduce briefly the fundamental principles of machine learning
[46] used in this study. TMultiLayerPerceptron class [3], which is implemented in
the ROOT framework, was used. The class provides the user with tools for the
development, training, testing, and analysis of a multi layer perceptron (MLP)
neural network (NN). Artificial neural networks (ANN) are programs that process
and categorize inspirations according to the pattern of structures in the human
brain. The main utilization of multi layer perceptrons is classification and regres-
sion.

The fundamental building block of a neural network is a mathematical func-
tion called a neuron, which is displayed in figure 3.1. A neuron has a number
I of input values and one output value y. Each input xi is weighted by corre-
sponding weight wi. There also may be an additional parameter w0. A weighted
average, called activity a, is computed from inputs. A significant parameter of
each neuron network is the so-called activation function. This is a function f such
that f(a) = y. Typical choices are the one-sided linear function or the Heaviside
function. Activation functions may be also a sigmoid - hyperbolic tangent or
logistic function, which is the approach implemented in TMultiLayerPerceptron
class. Choosing the suitable activation function is a theoretical matter beyond
the scope of this work.

Figure 3.1: A neuron diagram. Taken from [46]

The multi layer perceptron is a neural network in which neurons are arranged
in layers as one can see in figure 3.2. The input quantities are represented by
the input layer. The output layer represents the variables to be corrected. The
values of output quantities are called, in the theory of neural network, targets ti.
The number of targets can generally be different than the number of inputs. The
layers between the input and output layers are called hidden layers.

We try to find a map between the input and output quantities. The approach
of finding the map is called error back-propagation. First, we define the error
function:

E(w⃗) = 1
2(

n∑︂
i=1

(yi − ti)2), (3.5)
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Figure 3.2: A diagram of multi layer perceptron neural network. Taken from [46]

where yi denotes the outputs of the last hidden layer. The multiplicative constant
before the expression makes it easier to work with derivatives.

Finding the map represented by weights wi is equivalent to the task of min-
imizing error function E(w⃗). Each event is represented by the pair of vectors
x⃗, t⃗, from them we calculate the error function E(w⃗). The gradient of the error
function is calculated. The calculation proceeds backward from the output layer
to the input layer. The chain rule is used to find the derivatives. The weights in
the network are changed as in the gradient descent method. There of course exist
problems related to such an approach, for example, we can find only the local
minimum of E(w⃗). Hence, the used error function is a bit more sophisticated.
However, the principle is the same. The second possible approach is stochastic
learning, where the neural network is built by introducing random variations into
the network. This approach allows the random fluctuations to help the neural
network escape from the local minima of the error function. This type of learning
is suitable for tasks that are described by a complex dependency.

The second possible use of MLP is classification. The network used for classi-
fication is very similar to the one used for regression. In the case of classification,
we choose ti to be equal to one, which represents the correct class, in our case
quark/gluon induced jet. The rest of the elements tj are set to zero. If we normal-
ize the output from the last layers yi, then these coefficients can be interpreted
as the probability that the object characterized by the given inputs x⃗ belongs to
the class represented by ti. Back-propagation is the same as for a neural network
used for regression. However, in the case of classification the error function is
replaced by the negative natural logarithm of the likelihood function:

G(w⃗) = −
n∑︂

i=1
(ti · ln yi) (3.6)

It is also worth mentioning a few words about the training sample. The train-
ing data set should be as balanced and broad as possible from the phenomenon
it represents. For example, events with a given pseudorapidity and its negative
value are the same, because the physical processes and the detector are symmetric
with respect to the z-axis. Let ϵ be a small change of pseudorapidity. However,
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when varying values of w⃗ with respect to ϵ, a neural network does not have the
information that η + ϵ and −η are close to each other. For this reason, it is
necessary to know the physical background of the studied processes and prepare
the training data which are not ambiguous to the neural network.
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4. Results

4.1 Study of current calibration
Currently used calibration was described in section 3.2. Accordingly, we deter-
mine the response ℜ between the reconstructed and the truth jets. Determina-
tion was done separately for various intervals of centrality and pseudorapidity
since detector response and performance varies with pseudorapidity and the best
performance is expected for peripheral collision due to low underlying event con-
tribution. Inside each interval of pT, η, and centrality, we fitted response ℜ
distribution by Gaussian function to extract mean and sigma in order to evaluate
JES and JER. Let us remark that pT binning is logarithmic, since the yield of
jets strongly decreases with pT.

Histograms with fewer than twenty entries are disqualified for further evalua-
tion, due to potential low quality of fits. Response histograms containing enough
entries are processed in the following way. At first, the mean µ and the root square
mean σ are calculated for the distribution of the values stored in a histogram.
Then, the values are fitted with Gaussian within boundaries µ± 2σ.

Figures 4.1 and 4.2 are given as a representative example of performed fitting
process with respect to the truth jet transverse momentum pT, pseudorapidity η,
and the centrality of collision.

The value of the mean and the root mean square of each response fit represent
the jet energy scale and its resolution, respectively. Yielded graphs for two diverse
values of pseudorapidity are shown in figure 4.3. The rest of the graphs describing
the jet energy scale and its resolution are attached in appendix A.1 and A.2.

Jets shown in figure 4.3 seems to be well-calibrated as response is close to
unity. From the bottom graphs placed in 4.3, we can see that JER gets better
as collisions are more peripheral or the jet carries higher momentum. Specially,
for the low pT jets in the most central collisions the resolution of response ℜ
overcomes the value of 30 % of the mean response. However, there is still a place
for a better performance. We can sort jets based on the leading parton type.
In figures 4.4 and 4.5 there is a comparison of jet energy scale and jet energy
resolution in Pb+Pb collisions for lower values of η between jets induced by a
gluon or a quark hadronisation.

One may notice that response to gluon-induced jets is underrated after current
calibration. Similarly, the response to quark-induced jets is overrated. Motivation
for the following section is to identify the foundations of shown discrepancies and
later to correct them in order to get better overall calibration that would lead to
better JER.
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Figure 4.1: Response fits for various values of pseudorapidity η and transverse
momentum pT for centrality ∈ (0 − 10)%.
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Figure 4.2: Response fits for various values of pseudorapidity η and transverse
momentum pT for centrality ∈ (70 − 80)%.
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Figure 4.3: Jet energy scale and jet energy resolution in Pb+Pb collisions for
central pseudorapidity η.
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Figure 4.4: Comparison between jet energy scale and jet energy resolution in
Pb+Pb collisions for quarks and gluons, η ∈ (0.0,0.3).
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Figure 4.5: Comparison between jet energy scale and jet energy resolution in
Pb+Pb collisions for quarks and gluons, η ∈ (0.3,0.8).

4.2 Comparison of current approach with neu-
ral network calibration

4.2.1 Correlation study – sensitivity of jet properties to
response

In the previous section, we have discussed the necessity of being able to distinguish
quark and gluon-induced jets in order to obtain more precisely jet energy scale
and its resolution. At first, we need to identify jet properties correlated with
response. However, these properties must not be correlated with centrality. One
may wonder why. The reason is that centrality truly affects response through the
underlying event, as we can see for example in fig. 4.3. Nevertheless, centrality
describes the collision itself, it is not a jet property.

We have put to the correlation test four following properties:

• ntrk := the number of tracks in a jet.

• rtrk :=
∑︁

trk∈jet ptrk
T

pT
, where ptrk

T represents the transverse momentum of a
particle measured in the tracking subdetector. Since, pT represents the
transverse momentum measured in the calorimeters, it also contains the
momentum of neutral particles apart from ptrk

T .

• C := pTreco |R=0.2
pTreco |R=0.4

, where pTreco |R=0.2 is a pT of R = 0.2 jet and pTreco |R=0.2 is
a pT of R = 0.4 jet.
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Figure 4.6: Dependence of response on ntrk in two centrality and pT intervals.

• W := 1
ntrk+1

∑︁
trk∈jet ptrk

T ∆Rtrk, jet∑︁
trk′∈jet ptrk′

T
; W is in our analysis defined only for jets

with more then one track. The choice of W was based on [2].

.
As mentioned in section 1.5, the ID covers the pseudorapidity in range

η ∈ (−2.5, 2.5). Therefore, if we construct jets with a radial parameter R = 0.4,
we must select jets with the pseudorapidity in range η ∈ (-2.1,2.1). We also
excluded reconstructed jets without corresponding truth jet and vice versa. The
results of performed correlation study are presented in figures 4.6, 4.8, 4.10, and
4.12 in form of 2-D histogram of response ℜ versus the studied variable. The
mean response ℜ as a function of a given variable is shown in figures 4.7, 4.9,
4.11, and 4.13.

From fig. 4.6 and fig. 4.7 we can see that response ℜ depends on ntrk.
Moreover, the dependence of response ℜ on ntrk varies only weakly with collision
centrality and pT. Hence, ntrk is interesting for our exploration of new calibration.

Similarly, from fig. 4.8 and fig. 4.9 we can see that response ℜ depends on
rtrk. Moreover, the dependence of response ℜ also on rtrk varies only weakly
with collision centrality and pT. Hence, rtrk is as well as ntrk interesting for our
exploration of new calibration.

From fig. 4.10 and fig. 4.11 we can see that C is strongly correlated with
centrality. Thus, we have to exclude C from neural network training.

From fig. 4.12 and fig. 4.13 we can see that response ℜ depends on the
variable W . Moreover, the dependence of response ℜ on W varies only weakly
with collision centrality and pT.

One may notice, in correlation studies for all four jet properties, that the
distribution of response for centrality 0-10% is wider than for centrality 70-80%.
These results are in agreement with our study of inclusive jet energy resolution
because of higher underlying event contribution in more central events.
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Figure 4.7: Dependence of response on ntrk in two centrality and pT intervals as
profile.
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Figure 4.8: Dependence of response on rtrk in two centrality and pT intervals.
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Figure 4.9: Dependence of response on rtrk in two centrality and pT intervals as
profile.
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Figure 4.10: Dependence of response on C in two centrality and pT intervals.
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Figure 4.11: Dependence of response on C in two centrality and pT intervals as
profile.
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Figure 4.12: Dependence of response on W in two centrality and pT intervals.
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Figure 4.13: Dependence of response on W in two centrality and pT intervals as
profile.

4.2.2 The study of neural network
The studies of the behavior of neural networks were performed in The Regional
Computing Center for Particle Physics in Prague - the Golias farm. Details about
the machines used at Golias farm properties can be found in [47]. During a power
outage at the Golias farm it ran on the IPNP twelve i7-980 cores server.

Root MLP class provides six different back-propagation algorithms, which
definitions can be found in [3]. The first task was to test them and decide which
one is the most suitable for our research goals. For the purpose of choosing
an appropriate algorithm, we have prepared three types of samples containing
50 thousand events, 250 thousand events, and 2.5 million events. For each sample,
we studied the performance of error E(w) as the number of so-called epochs
increases. An epoch is a period when an entire dataset passes once through
the neural network. The initial value of the error function varies according to
the geometry of the network. Therefore, it makes sense to compare individual
networks in different setups at first only qualitatively. We have found out that the
time of convergence rises with the number of neurons and the amount of training
data. However, as the amount of data increased, the resulting value of the error
function decreased. All these observations met our expectations and the general
characteristics of neural networks.

The six teaching methods in the studied library can be divided into two groups,
stochastic and steepest descent algorithms. Both groups were introduced in sec-
tion 3.3. Used algorithms may be further tuned by a change of internal param-
eters. However, a few tests performed with a different parameters setup did not
show significant changes of error function convergence. Thus, we kept the default
parameters as they were initialised in the library definition. It would certainly be
possible to achieve even better results by changing these parameters, but detailed
research of their influence would require considerable computational power and
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time.
Significantly better results were given by gradient descent methods compared

to stochastic ones. For example, the region where pT ∈ 180-360 GeV for training
1.1 million events, as well as 1.1 million testing events. Inputs were preco

T ,W ,
the target was pT. The first hidden layer contained 40 neurons, the second one
80 neurons. All variables were normalised. After 20 hours of real-time run,
gradient descent algorithms gave about 15 % lower value of error function in
comparison to stochastic algorithms.

In accordance with the previous paragraph the fastest convergence for given
training time and the lowest error function value was provided by
Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS). BFGS, like many other
algorithms, improves the gradient descent method by replacing equidistant steps
with steps affected by the information of curvature obtained from a Hessian ma-
trix. Moreover, it replaces the Hessian matrix with gradual approximation using
secants instead of matrix equations. More details about the BFGS algorithm can
be found in [48]. The computational complexity of matrix equations is O(n3),
contrary to the approximations used in BFGS, which require only complexity
O(n2). Thus, in such case the computational complexity played an extremely
important role.

Let us also mention the importance of normalization as a last general note
on the neural network setup optimisation. During the network testing, we con-
firmed that normalization of data is necessary. Without it, stochastic methods
did not work, and those associated with the gradient descent method converged
much more slowly and to a higher value of the error function. No modification
has improved the behavior of the network more than the introduction of the
normalization.

In this paragraph we present the properties of the used training sample. The
training sample was created from simulated proton-proton collisions. We were
limited by computing power, thus we explored and provided proof of concept for
preco

T ∈ (0, 422.5) GeV, which is the region used in heavy-ion analyses. The limita-
tions of the training sample are the same as those applied in the correlation study.
Furthermore, the restriction on pT to be less than 360 GeV. A slightly different
setup in the parameters was used for the ntrk study, which will be pointed out at
the appropriate place. Originally, the selection was applied on preco

T , because that
is the only information available in the experimental data. However, the outputs
from the neural network had a strongly biased mean response as shown in figure
4.14.

Such a selection would devalue the training sample. So another approach
was used where a threshold on pT and subsequent two times higher threshold on
preco

T are applied to remove outliers and keep the ability to perform normalisation.
This selection criterion is justified because the fitting of uncorrected data in order
to obtain JES and JER does not take place in a region exceeding the value of
response approximately 1.8. We also divide both variables preco

T and pT by the
value of this second threshold in order to normalize the data. Then, we obtain a
response with a mean close to unity, which is exactly what we demand from the
training sample.

Even if we had enough computation power, we would not be able to train the
network over the entire range of momentum pT. In general, it can be assumed that
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Figure 4.14: Response ℜ as function of preco
T . The mean of the response is visu-

alised by points with a corresponding error.

different physical processes are dominant on different sections of the pT spectrum.
If we divide the pT scale in the right way, we might get a more accurate calibration.

Once the error function was only decreasing negligibly we stopped the training
and plotted the graphs characterising the performance of the NN. It is good to
realize that we are not even trying to squeeze the error function to zero as there
are free parameters, which we do not study. There exist two potential issues with
machine learning: 1) The NN can be undertrained. This case is demonstrated
in the right panel of figure 4.15; 2) The NN can be overtrained. This case is
demonstrated in the left panel of figure 4.15.

Figure 4.15: A demonstration of pathological phenomena in neural network train-
ing on the problem of simple fit. Taken from [49].

In order to avoid described issues with training the NN, we analysed the
performance of each trained network. The MLPAnalyzer class [50] provides a set
of graphs after the training process that allows to characterise the performance
of the NN. An example of graphs to analyse the performance of the NN is given
in figure 4.16.

The upper left panel shows how much the neural network changes when one
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Figure 4.16: Analysis chart, taken from |η| based neural network study.

of the neural network inputs is varied around its nominal value. Such an opera-
tion is done for each entry, as a result, distribution is produced. The produced
distribution approximates the derivative of the NN distribution with respect to
each input. The upper right panel shows the structure of a trained neural net-
work and the found connections with appropriate weights. It can be used for
a simple diagnosis. For example, it is suspicious if the network has only a few
connections. Then, probably a sufficient degree of convergence was not reached
or the training data set is not suitable. The network shown in the picture does
not exhibit any obvious pathologies. The bottom left panel displays the average
change of the target after the use of the neural network. The bottom right panel
shows the change of the target as the function of each input. The same analysis
was performed for each neural network investigated. The most of the setups of
the trained network were rejected as inapplicable at this point of research.

The graphs on the figure 4.16 can be used to discuss, whether pseudorapidity
is a suitable variable for correcting the response. The response dependence on
pseudorapidity due to the design of the detector is significant and non-trivial for
uncalibrated jets. However, the default calibrations were used before testing the
neural network. Thus, the results can be also interpreted as the check, whether
the response dependence on pseudorapidity is corrected sufficiently in default
calibration. From the top left and the bottom right picture in 4.16 we can see
that ηreco affects response ℜ negligibly.

If the neural network passed the analysis successfully, we used the network to
correct the lead ion collision data. To be precise, we ran the correction obtained
from the neural network on a subset of jets that met the same criteria as those
in the proton-proton training set. Initially, we trained networks with only two
inputs. Then we moved on to the networks with three input variables. We
obtained two neural networks worth mentioning. The first one was trained on
8.06 million proton-proton events for training as well as for testing such that
pT < 360 GeV and preco

T < 720 GeV and |ηreco| < 2.1. Jets where W = -1
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Figure 4.17: The comparison of JES for uncorrected jets (left) and jets corrected
(right) by neural network, which depends on rtrk and W . The jets are restricted
to |η| < 0.3.
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Figure 4.18: The comparison of JER scaled by JES for uncorrected jets (left) and
jets corrected (right) by neural network, which depends on rtrk and W . The jets
are restricted to |η| < 0.3.

were also excluded from the training sample. Inputs were preco
T , rtrk, and W . The

target was pT. The training was performed by the BFGS algorithm for 20 epochs.
Uncorrected JES is placed on the left, corrected JES on the right in figure 4.17.

As one can see from figure 4.17 the used NN changes the average response
and additional a numerical inversion need to be applied after the correction. The
numerical inversion transforms the preco

T in the way such that the response to be
equal to one. It is beyond the scope of this work to prepare such a numerical in-
version. However, in order to create a clear comparison between the uncorrected
data and data on which the correction obtained from a neural network was ap-
plied, the value of resolution was scaled by the value of mean response in each
pT bin. Obtained results of JER are displayed in figure 4.18. JER with original
calibration is placed on the left, corrected JER on the right side of fig. 4.18.

Obtained JES and JER for the absolute intervals of pseudorapidity in range
of 0.3 to 2.1 can be found in the appendix A.3 and A.4, respectively.

Fig. 4.19 presents examples of the response distribution for completeness.
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Three pT slices representing low, medium, and higher pT jets with |η| < 0.3 in
centrality 0-10 % interval are shown. The jets with default calibration are placed
on the right, the corrected jets on the left.

Quantitative comparison between jets with and without NN-based calibration
with |η| < 0.3 in centrality 0-10 % interval is given in table 4.1.

pT [GeV] default JER cor. JER cor./default JER [%]
42.5-47.5 0.3671±0.008 0.311±0.006 84.7±1.5
47.5-53.0 0.3188±0.008 0.293±0.007 91.9±1.7
53.0-59.5 0.2912±0.007 0.269±0.006 92.3±1.7
59.5-67.0 0.257±0.002 0.239±0.001 93.1±0.4
67.0-75.0 0.231±0.001 0.216±0.001 93.5±0.3
75.0-84.0 0.217±0.001 0.199±0.001 93.9±0.4
84.0-94.5 0.188±0.001 0.178±0.001 94.9±0.4
94.5-106.0 0.168±0.002 0.160±0.001 95.2±0.5
106.0-119.0 0.161±0.002 0.152±0.002 94.7±0.7
119.0-133.5 0.139±0.002 0.132±0.002 94.9±0.7
133.5-149.5 0.134±0.003 0.128±0.002 95.4±0.9
149.5-168.0 0.120±0.002 0.115±0.002 95.8±0.8
168.0-189.0 0.1126±0.0003 0.1081±0.0003 96.1±0.1
189.0-212.0 0.1055±0.0004 0.1013±0.0003 96.0±0.2
212.0-237.5 0.0986±0.0005 0.0956±0.0005 97.0±0.2
237.5-266.5 0.0914±0.0006 0.0885±0.0005 96.8±0.3
266.5-299.0 0.0863±0.0007 0.0841±0.0007 97.5±0.3
299.0-335.5 0.083±0.001 0.0801±0.0009 96.3±0.5
335.5-376.5 0.075±0.001 0.074±0.001 98.9±0.6
376.5-422.5 0.073±0.001 0.0703±0.0009 96.5±0.6

Table 4.1: JER (scaled by JES) comparison in various pT slices between default
jets and jets corrected by the NN using W and rtrk. The jets are restricted to
|η| < 0.3 and centrality 0-10 %.

The second analysed neural network was trained on 5.46 million proton-proton
events for training as well as for testing such that pT < 400 GeV, ℜ < 2 and
|ηreco| < 2.1. Inputs were preco

T , rtrk, and ntrk. The target was pT.The training was
performed by BFGS algorithm for 30 epochs. This second approach differs in the
input and in the jet selection. Training and validation samples are now contain
data where ntrk = 0. Contrary, such a case had to be excluded for neural network
training using W , inasmuch as it behaves nonlinearly in the studied region.

Uncorrected data are placed on the left panel, corrected on the right panel of
figure 4.20.

One can see that JES in figure 4.20 is similar to the JES resulting from the
first neural network. Thus, a numerical inversion would need to be applied after
the correction as well. Obtained results of JER scaled by JES are displayed in
figure 4.21 The jets with the default calibration are placed on the left panel, the
jets corrected by the NN are placed on the right panel of fig. 4.21.

Obtained JES and JER for the absolute intervals of pseudorapidity in the
range of 0.3 to 2.1 for the second neural network can be found in the appendix
A.5, and A.6, respectively.
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Figure 4.19: The comparison of the response ℜ distributions for the jets with de-
fault calibration (right) and jets corrected (left) by neural network, which depends
on rtrk and W . The jets are restricted to |η| < 0.3 and centrality 0-10 %.
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Figure 4.20: The comparison of JES for uncorrected jets (left) and jets corrected
(right) by neural network, which depends on rtrk and ntrk. The jets are restricted
to |η| < 0.3.
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Figure 4.21: The comparison of JER scaled by JES for uncorrected jets (left) and
jets corrected (right) by neural network, which depends on rtrk and ntrk. The jets
are restricted to |η| < 0.3.
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Fig. 4.22 presents examples of the response distribution for completeness.
Three pT slices representing low, medium, and higher pT jets with |η| < 0.3 in
centrality 0-10 % interval are shown. The jets with default calibration are placed
on the right, the corrected jets on the left.

Table 4.2 presents qualitative comparison of improved resolution for centrality
0-10 % and pseudorapidity up to 0.3.

pT [GeV] default JER cor. JER cor./default JER [%]
42.5-47.5 0.366±0.007 0.299±0.005 81.9±1.3
47.5-53.0 0.319±0.007 0.281±0.006 88.0±1.6
53.0-59.5 0.289±0.007 0.258±0.006 89.5±1.6
59.5-67.0 0.256±0.002 0.232±0.001 90.3±0.4
67.0-75.0 0.231±0.001 0.2093±0.0009 90.8±0.3
75.0-84.0 0.212±0.001 0.192±0.001 90.9±0.4
84.0-94.5 0.188±0.001 0.173±0.001 92.0±0.4
94.5-106.0 0.168±0.002 0.155±0.001 92.5±0.5
106.0-119.0 0.161±0.002 0.148±0.002 92.1±0.6
119.0-133.5 0.139±0.002 0.127±0.002 91.5±0.7
133.5-149.5 0.134±0.003 0.121±0.002 90.8±0.9
149.5-168.0 0.120±0.002 0.110±0.002 91.5±0.8
168.0-189.0 0.1126±0.0003 0.1036±0.0003 92.0±0.1
189.0-212.0 0.1056±0.0004 0.0965±0.0003 91.4±0.2
212.0-237.5 0.0987±0.0005 0.0908±0.0004 92.0±0.2
237.5-266.5 0.0915±0.0006 0.0840±0.0005 91.8±0.2
266.5-299.0 0.0865±0.0007 0.0790±0.0006 91.4±0.3
299.0-335.5 0.083±0.001 0.0757±0.0008 90.9±0.4
335.5-376.5 0.075±0.001 0.0702±0.0009 93.3±0.6
376.5-422.5 0.073±0.001 0.0662±0.0009 90.9±0.5

Table 4.2: JER (scaled by JES) comparison in various pT slices between default
jets and jets corrected by the NN using ntrk and rtrk. The jets are restricted to
|η| < 0.3 and centrality 0-10 %.

If one compares data in table 4.1 and 4.2, then one can see that response ℜ
is sensitive to W at low pT, while response ℜ sensitivity to ntrk holds over all
pT scale. The dependencies of response ℜ can be also seen in figure 4.23, which
compares the parts of an analysis of both neural networks. One can there note
also that W ranges only from 0.0 to 0.2, better normalization in future research of
this variable could also improve the overall behavior of the first presented neural
network.

Let us also point out the general validity of obtained correction as the neural
network was trained on proton-proton collisions data, but used to correct lead-
lead collision data. Therefore, there is a low risk of bias resulting from excessive
similarity of the training data set and verification data. However, it is clear that
it is necessary to verify the found calibration through as much lead-lead data as
possible.
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Figure 4.22: The comparison of the response ℜ distributions for the jets with de-
fault calibration (right) and jets corrected (left) by neural network, which depends
on rtrk and ntrk. The jets are restricted to |η| < 0.3 and centrality 0-10 %.
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Conclusion
The jets used in physics analysis, both in proton-proton and in Pb+Pb collisions
at the ATLAS experiment, utilised numerical inversion as the default calibration
method to account for the different response of particle showers of various types
and for the detector non-uniformities. We confirmed that the currently used
calibration leads to the mean response of the detector being approximately equal
to unity. Furthermore, we proved that currently used calibration sufficiently
compensates the dependence of response ℜ on pseudorapidity η. We also showed
that the mean response is different for quark-induced and gluon-induced jets. This
information opens up space for finding a better correction if we can distinguish
these groups of physical states. This work tries to identify jet properties for
training the neural network which is sensitive to calorimeter response.

The major result of the study was a pair of neural networks that significantly
improve the calibration leading to overall improvement of the performance of jet
reconstruction. The first neural network depends on preco

T , W and rtrk. This
network improved the resolution by approximately 10 % for low values of pT and
by 5 % for higher values of pT. The second neural network depends on preco

T , ntrk
and rtrk. It improved the resolution by approximately 10 % on the whole pT scale,
with even higher improvement for the lower values of pT.

We succeeded in the search for a correction that can significantly improve
the current calibration. We did not exclude some problematic regions from our
training data, which leaves unnecessary degrees of freedom in problem-free areas.
For example, there is no lower threshold on preco

T nor pT. The jet properties using
tracking information in this low pT region are more affected by the presence of
fake tracks. Removing these jets from the training sample could lead to further
improvements in neural network calibration.

Another direction of the future research offers the opportunity to explore the
possibility of jet classification, which should be implemented very similarly. We
believe that ntrk and W could be suitable quantities for this purpose with regard
to the physical properties of jets and the ability to improve the response resolution
over the entire studied range of momentum preco

T ∈ (0, 422.5) GeV.
The next logical step in the study of the usage of neural networks in search

for improved jet calibration is using SciKit Python library instead of ROOT
MLP class as SciKit provided better documentation, variability in the setup of
the neural network as well as a vast developer community. This library also
provides networks with the ReLU activation function, which has been used more
often in recent years than sigmoid, because its derivatives are either 0 or 1,
which facilitates calculations. Another important step will be to get in touch
with neural network training using GPUs provided by the cluster LXPLUS at
CERN or tensor processing units (TPU), which are integrated circuits developed
specifically for neural network machine learning. This improvement in hardware
utilization could speed up the learning process by 2-3 orders of magnitude. It
can also be perceived that we could take a significantly larger training data set
at the same time.

49



Bibliography
[1] Miklos Gyulassy and Larry McLerran. New forms of QCD matter discovered

at RHIC. Nucl. Phys. A, 750:30–63, 2005.

[2] ATLAS collaboration. Generalized Numerical Inversion: A Neural Network
Approach to Jet Calibration. Technical report, CERN, Geneva, Jul 2018.

[3] Rene Brun and Fons Rademakers. ROOT - An Object Oriented Data Anal-
ysis Framework: TMultiLayerPerceptron Class Reference. https://root.
cern.ch/doc/master/classTMultiLayerPerceptron.html. 25.04.2021.

[4] P.A. Zyla et al. Review of Particle Physics. PTEP, 2020(8):083C01, 2020.

[5] Claus Grupen and Boris Shwartz. Particle Detectors. Cambridge Mono-
graphs on Particle Physics, Nuclear Physics and Cosmology. Cambridge Uni-
versity Press, 2 edition, 2008.

[6] R. Bruce, N. Fuster-Martinez, A. Mereghetti, D. Mirarchi, and S. Redaelli.
Review of LHC Run 2 Machine Configurations. In 9th LHC Operations Evian
Workshop, Geneva, Switzerland, 2019.

[7] Werner Herr and B Muratori. Concept of luminosity. 2006.

[8] LHC Machine. JINST, 3:S08001, 2008.

[9] Edmund J N Wilson. An introduction to particle accelerators. https:
//cds.cern.ch/record/513326, 2001.

[10] CERN. The large hadron collider. https://home.cern/science/
accelerators/large-hadron-collider. 25.04.2021.

[11] Maurizio Vretenar, J Vollaire, R Scrivens, C Rossi, F Roncarolo, S Ram-
berger, U Raich, B Puccio, D Nisbet, R Mompo, S Mathot, C Martin, L A
Lopez-Hernandez, A Lombardi, J Lettry, J B Lallement, I Kozsar, J Hansen,
F Gerigk, A Funken, J F Fuchs, N Dos Santos, M Calviani, M Buzio, O Brun-
ner, Y Body, P Baudrenghien, J Bauche, and T Zickler. Linac4 design report,
volume 6 of CERN Yellow Reports: Monographs. CERN, Geneva, 2020.

[12] CERN. The Proton Synchrotron Booster. https://home.cern/science/
accelerators/proton-synchrotron-booster. 25.04.2021.

[13] CERN Annual report 2016. Technical report, CERN, Geneva, 2017.

[14] CERN. The super proton synchrotron. https://home.cern/science/
accelerators/super-proton-synchrotron. 25.04.2021.

[15] CERN. The higgs boson: A landmark discovery. https://atlas.cern/
higgs-boson-landmark-discovery. 26.04.2021.

[16] CERN. Longer term lhc schedule. https://lhc-commissioning.web.
cern.ch/schedule/LHC-long-term.htm. 26.04.2021.

50

https://root.cern.ch/doc/master/classTMultiLayerPerceptron.html
https://root.cern.ch/doc/master/classTMultiLayerPerceptron.html
https://cds.cern.ch/record/513326
https://cds.cern.ch/record/513326
https://home.cern/science/accelerators/large-hadron-collider
https://home.cern/science/accelerators/large-hadron-collider
https://home.cern/science/accelerators/proton-synchrotron-booster
https://home.cern/science/accelerators/proton-synchrotron-booster
https://home.cern/science/accelerators/super-proton-synchrotron
https://home.cern/science/accelerators/super-proton-synchrotron
https://atlas.cern/higgs-boson-landmark-discovery
https://atlas.cern/higgs-boson-landmark-discovery
https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm
https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm


[17] John Jowett. Colliding Heavy Ions in the LHC. page TUXGBD2. 6 p, 2018.

[18] Michael Benedikt, Paul Collier, V Mertens, John Poole, and Karlheinz
Schindl. LHC Design Report. CERN Yellow Reports: Monographs. CERN,
Geneva, 2004.

[19] CERN. Time for lead collisions in the lhc. https://home.cern/news/news/
accelerators/time-lead-collisions-lhc. 26.04.2021.

[20] CERN. Facts and figures about the lhc. https://home.cern/resources/
faqs/facts-and-figures-about-lhc. 25.04.2021.

[21] ATLAS collaboration. The ATLAS Experiment at the CERN Large Hadron
Collider. JINST, 3:S08003, 2008.

[22] ATLAS Collarboration. Alignment of the ATLAS Inner Detector in Run-2.
Eur. Phys. J. C, 80:1194. 41 p, Jul 2020.

[23] Christian Lippmann. Particle identification. Nucl. Instrum. Meth. A,
666:148–172, 2012.

[24] ATLAS Collaboration. Luminosity public results run2. https://twiki.
cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2.
23.04.2021.

[25] F. Halzen and Alan D. Martin. Quarks and leptons: An introductory course
in modern particle physics, 1984.

[26] M. Anderson et al. Search for invisible modes of nucleon decay in water with
the SNO+ detector. Phys. Rev. D, 99(3):032008, 2019.

[27] Kazuo Abe et al. Observation of a new narrow charmonium state in exclusive
B+- —> K+- pi+ pi- J / psi decays. In 21st International Symposium on
Lepton and Photon Interactions at High Energies (LP 03), 8 2003.

[28] Roel Aaij et al. Observation of J/ψp Resonances Consistent with Pentaquark
States in Λ0

b → J/ψK−p Decays. Phys. Rev. Lett., 115:072001, 2015.

[29] Guido Altarelli and G. Parisi. Asymptotic Freedom in Parton Language.
Nucl. Phys. B, 126:298–318, 1977.

[30] David J. Gross. Twenty five years of asymptotic freedom. Nucl. Phys. B
Proc. Suppl., 74:426–446, 1999.

[31] S. Acharya et al. Anisotropic flow in Xe-Xe collisions at √sNN = 5.44 TeV.
Phys. Lett. B, 784:82–95, 2018.

[32] Oliver DeWolfe, Steven S. Gubser, Christopher Rosen, and Derek Teaney.
Heavy ions and string theory. Prog. Part. Nucl. Phys., 75:86–132, 2014.

[33] Herbert B Callen. Thermodynamics and an introduction to thermostatistics;
2nd ed. Wiley, New York, NY, 1985.

51

https://home.cern/news/news/accelerators/time-lead-collisions-lhc
https://home.cern/news/news/accelerators/time-lead-collisions-lhc
https://home.cern/resources/faqs/facts-and-figures-about-lhc
https://home.cern/resources/faqs/facts-and-figures-about-lhc
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2


[34] Terry Awes. Status of the quark gluon plasma search. Pramana, 67:915–925,
11 2006.

[35] Betty Abelev et al. Centrality determination of Pb-Pb collisions at √
sNN =

2.76 TeV with ALICE. Phys. Rev. C, 88(4):044909, 2013.

[36] Michael L. Miller, Klaus Reygers, Stephen J. Sanders, and Peter Steinberg.
Glauber modeling in high energy nuclear collisions. Ann. Rev. Nucl. Part.
Sci., 57:205–243, 2007.

[37] Raimond Snellings. Elliptic Flow: A Brief Review. New J. Phys., 13:055008,
2011.

[38] Brett Joseph Teeple. Deconfinement and Duality of (super) Yang-Mills on
Toroidially-compactified Spacetimes for all Gauge Groups. PhD dissertation,
Toronto U., 2015.
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A. Attachments

A.1 Additional graphs - Jet energy scale, jet en-
ergy resolution
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Figure A.1: Jet energy scale and jet energy resolution in Pb+Pb collisions for
pseudorapidity η ∈ (0.0, 1.2)
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Figure A.2: Jet energy scale and jet energy resolution in Pb+Pb collisions for
pseudorapidity η ∈ (1.2, 4.5)
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Figure A.3: The comparison of JES for uncorrected jets (left) and jets corrected
(right) by neural network, which depends on rtrk and W . The jets are restricted
to 0.3 < |η| < 2.1.
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Figure A.4: The comparison of JER scaled by JES for uncorrected jets (left) and
jets corrected (right) by neural network, which depends on rtrk and W . The jets
are restricted to 0.3 < |η| < 2.1.

61



210
 [GeV]

T
p

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05>
T

/p
re

co
T

<
p

Centrality = 0-10%
Centrality = 10-20%
Centrality = 20-30%
Centrality = 30-40%
Centrality = 40-50%
Centrality = 50-60%
Centrality = 60-70%
Centrality = 70-80%

Eta=(0.3-0.8)

210
 [GeV]

T
p

0.86

0.88

0.9

0.92

0.94

0.96

0.98

>
T

/p
re

co
T

<
p

Centrality = 0-10%
Centrality = 10-20%
Centrality = 20-30%
Centrality = 30-40%
Centrality = 40-50%
Centrality = 50-60%
Centrality = 60-70%
Centrality = 70-80%

Eta=(0.3-0.8)

210
 [GeV]

T
p

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05>
T

/p
re

co
T

<
p

Centrality = 0-10%
Centrality = 10-20%
Centrality = 20-30%
Centrality = 30-40%
Centrality = 40-50%
Centrality = 50-60%
Centrality = 60-70%
Centrality = 70-80%

Eta=(0.8-1.2)

210
 [GeV]

T
p

0.86

0.88

0.9

0.92

0.94

0.96

0.98
>

T
/p

re
co

T
<

p
Centrality = 0-10%
Centrality = 10-20%
Centrality = 20-30%
Centrality = 30-40%
Centrality = 40-50%
Centrality = 50-60%
Centrality = 60-70%
Centrality = 70-80%

Eta=(0.8-1.2)

210
 [GeV]

T
p

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05>
T

/p
re

co
T

<
p

Centrality = 0-10%
Centrality = 10-20%
Centrality = 20-30%
Centrality = 30-40%
Centrality = 40-50%
Centrality = 50-60%
Centrality = 60-70%
Centrality = 70-80%

Eta=(1.2-2.1)

210
 [GeV]

T
p

0.86

0.88

0.9

0.92

0.94

0.96

0.98

>
T

/p
re

co
T

<
p

Centrality = 0-10%
Centrality = 10-20%
Centrality = 20-30%
Centrality = 30-40%
Centrality = 40-50%
Centrality = 50-60%
Centrality = 60-70%
Centrality = 70-80%

Eta=(1.2-2.1)

Figure A.5: The comparison of JES for uncorrected jets (left) and jets corrected
(right) by neural network, which depends on rtrk and ntrk. The jets are restricted
to 0.3 < |η| < 2.1.
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Figure A.6: The comparison of JER scaled by JES for uncorrected jets (left) and
jets corrected (right) by neural network, which depends on rtrk and ntrk. The jets
are restricted to 0.3 < |η| < 2.1.
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