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Introduction

Ever since ancient times, mathematicians have been intrigued by Latin squares. A
Latin square can be interpreted as a multiplication table of an algebraic structure
called quasigroup, which resembles a group, but differs from it mainly in that it
does not need to be associative. Quasigroups may be used in cryptography, where
their non-associative properties are essential for hash functions to be attack-
resistant. Finding quasigroups with a small number of associative triples, and
even determining the number triples that a quasigroup of a given order must
contain, is, therefore, an important problem.

A. Drápal and I. M. Wanless have analyzed the existence of a maximally
non-associative quasigroup of order n in Maximally non-associative quasi-groups
via quadratic orthomorphisms (Drápal and Wanless (2020)), but there remain
orders n for which the question stays open. Other partial results regarding the
count of associative triples have been achieved; however, due to the computational
complexity of these problems, the topic is yet to be explored completely.

This thesis aims to start investigations of the topic through combinatorial
topology.
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Chapter 1

Quasigroups

1.1 Terminology
The terminology notes in this section are according to Valent (2016).

Definition 1. A quasigroup (Q, ·) is a set Q closed under · such that equations
a · x = b and y · a = b have unique solutions for every a, b ∈ Q.
The order of Q (i.e., the number of elements of Q) is denoted by |Q|. Unless
stated otherwise, Q will mean a finite quasigroup of order n.

Note. Throughout this thesis, we shall write ax instead of more formal a ·x when
the binary operation is ·. Similarly, we may write a(bc) or a ·bc instead of a ·(b ·c).
Also, when the quasigroup operation is not stated, it is assumed to be ·.

Definition 2. A loop is a quasigroup with a unit; that is, an element e ∈ Q such
that x · e = x and e · x = x for every x ∈ Q.

Definition 3. A Latin square is an n × n array filled with n different symbols,
each occurring exactly once in each column and exactly once in each row.

Note. Every multiplication table of a finite quasigroup is a Latin square. Con-
versely, every Latin square can be taken as the table of a quasigroup in many
ways: both the border row (containing the column headers) and the border col-
umn (containing the row headers) can carry any permutation of elements of Q.

1.2 Associativity
Definition 4. For a quasigroup (Q, ·), a triple (a, b, c), a, b, c ∈ Q, is called
associative if (a · b) · c = a · (b · c). The total number of associative triples in Q is
denoted a(Q). This number is also called the associativity index of Q.
Set a(n) = min{a(Q); Q is a quasigroup of order n}.
A quasigroup Q of order n is called maximally non-associative if a(Q) = n.

Proposition 1 (Ježek and Kepka (1990), p. 15). Let Q be a quasigroup of order
n. Then n ≤ a(Q) ≤ n3.
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Proof. For every x ∈ Q we can define two elements f(x), e(x) ∈ Q by
f(x) · x = x = x · e(x). Since (f(x) · x) · e(x) = x = f(x) · (x · e(x)), the
set {(f(x), x, e(x)); x ∈ Q} is contained in the set of all associative triples of Q.

□

Definition 5. An element q ∈ Q is called idempotent if qq = q. The quasigroup
Q is called idempotent if every q ∈ Q is an idempotent element.

We list two of the most recent results regarding the associativity index.

Theorem 2 (Grošek and Horák (2012), Theorem 1.1.). Denote by I(Q) the set
of all idempotent elements of Q and set i(Q) = |I(Q)|. Let Q be a quasigroup of
order n. Then a(Q) ≥ 2n − i(Q).

Proof. See Grošek and Horák (2012).

□

Corollary. If a(Q) = n, then Q is idempotent.

Proof. By Theorem 2, we get n = a(Q) ≥ 2n − i(Q), equivalently i(Q) ≥ n.
However, by its definition, i(Q) ≤ n, therefore i(Q) = n.

□

Note. The fact, that a(Q) = |Q| implies idempotency of Q was already shown in
Kepka (1980).
Note. The lower bound from Theorem 2 was significantly improved by Drápal and
Valent (2020), Theorem 2.5.. The improvement meant a new possible approach
to search for maximally non-associative quasigroups (which had been, previously,
impossible for orders nine and higher due to the computational complexity of the
problem). Using this approach, the authors discovered the first known maximally
non-associative quasigroup (of order 9) by computer search.

Theorem 3 (Drápal and Wanless (2020), Theorem 1.1.). A maximally non-
associative quasigroup of order n exists for all n > 9, with the possible exception
of n ∈ {11, 12, 15, 40, 42, 44, 56, 66, 77, 88, 90, 110} and orders of the form n = 2p1
or n = 2p1p2 for odd primes p1, p2 with p1 ≤ p2 < 2p1.

Proof. See Drápal and Wanless (2020).

□

1.3 Possible application in cryptography - hash
functions

Quasigroups find many applications in cryptography. A broad range of such appli-
cations - spanning substitution boxes, block and stream ciphers, pseudo-random
number generators, and hash functions - is listed and profoundly analyzed in
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Markovski (2015). In this section, we describe an application of quasigroups in
hash functions as presented by Valent (2016) and discuss the particular impor-
tance of quasigroups with a small associativity index.

A cryptographic hash function is a function that maps data of arbitrary size
to data of fixed size. It is intended to be a one-way function, that being a
function, which is infeasible to invert. A cryptographic hash function must have
the following properties:

• Pre-image resistance: Given a hash value h, it should be difficult to find
any message m such that h = hash(m).

• Second pre-image resistance: Given a message m1, it should be difficult
to find a message m2 ̸= m1 such that hash(m2) = hash(m1).

• Collision resistance: It should be difficult to come up with a pair m1 ̸=
m2 such that hash(m1) = hash(m2).

As an example, we propose the hash function as mentioned in Slaminková and
Vojvoda (2010) and Vojvoda (2004).

Definition 6. Let (Q, ·) be a quasigroup of order n. Let (m1, m2, ..., mk),
mi ∈ Q, 1 ≤ i ≤ k be the message to be hashed. Further let Q* be the set of all
finite strings over Q. The hash function Ha : Q × Q* → Q, a ∈ Q is defined by
following relation:

Ha(m1, m2, ..., mk) = (((...(am1)m2)...)mk−1)mk,

where a plays the role of an initialization vector.

The usage of general quasigroup is often impossible due to high memory re-
quirements. For the hash length 256 bits, the multiplication table of its 2256

elements would require over 4 × 10143 TB of data. The use of the quasigroup of
modular subtraction was proposed in Dvorský et al. (2001) to overcome this prob-
lem. The operation ⊖, defined on {0, ..., n−1}, is given as a⊖b = a−b ( mod n).
However, the usage of quasigroup of modular subtraction as the only operation
for the hash function is insecure, as was shown in Vojvoda (2004). That is why it
was recommended in Dvorský et al. (2001) to use the quasigroups isotopic with
the quasigroup of modular subtraction.

For other examples of hash function constructions, we refer to Markovski
(2015).

Second pre-image is one of the basic requirements for a cryptographic hash
function. We show, similarly to Grošek and Horák (2012), that hash function
as described above is not second pre-image resistant if Q has many associative
triples. Let m = (m1, m2, m3) be a message to hash. Let Ha be constructed from
Q as proposed in Definition 6. Find x, y ∈ Q so that (a, x, y) is an associative
triple. Set m1 = xy. Then

Ha(m1, m2, m3) = ((am1)m2)m3

= ((a(xy))m2)m3

= (((ax)y)m2)m3

= Ha(x, y, m2, m3).
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Thus, the magnitude of the second pre-image resistance of Ha is inversely
proportional to a(Q). However, in practice, such hash functions can only be used
if |Q| is very large; otherwise, it would not be resistant to brute force attacks. As
discussed earlier in this chapter, such a hash function could require an impossi-
ble amount of storage, so a practical use case, where a small associativity index
would prove vital, is not immediately apparent. Any practical usage would re-
quire finding sufficiently large quasigroups with small associativity index, or even
sufficiently large maximally non-associative quasigroups (existence of which have
been proved in Drápal and Wanless (2020)), but at the same time necessarily
requiring a method to store the quasigroup efficiently. Finding examples of such
efficient large quasigroups with a small associativity index may, therefore, be a
problem worth addressing in the future. Finding methods utilizing this property,
however, would likely prove vital for applied cryptography of the future.
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Chapter 2

Combinatorial geometry

The purpose of this chapter is to introduce basic notions of combinatorial geom-
etry and topology. The chapter is divided into three sections. The first section
summarizes the basic terminology of graph theory (we refer to Matoušek and
Nešetřil (2019)). The second section introduces key objects of computational
topology - abstract simplicial complexes. The third section introduces funda-
mental concepts of topology and two-dimensional surfaces and then generalizes
the theory into different dimensions and transforms it to form a connection with
abstract simplicial complexes.

2.1 Graphs
Definition 7. For a set S and k ∈ N0, the set

(︂
S
k

)︂
is the collection of all X ⊆ S

such that |X| = k.

Definition 8. A (simple undirected) graph is a pair G = (V, E), where V is a
set, and E ⊆

(︂
V
2

)︂
. Elements of V are called vertices or nodes and elements of E

are called edges.

Note. Unless stated otherwise, we always assume graphs to be finite. The follow-
ing terminology and theorems may be adjusted for infinite graphs as well.

Definition 9. A vertex is incident to an edge of a graph if the vertex is one of
the two vertices the edge connects.
The degree or valency of a vertex of a graph (denoted deg(v)) is the number of
edges that the vertex is incident to.
A graph is regular if all of its vertices have the same degree. A regular graph with
vertices of degree k is called a k-regular graph or regular graph of degree k.

Definition 10. Graphs G = (V, E), G′ = (V ′, E ′) are isomorphic if there exists
a bijection f : V → V ′ for which {x, y} ∈ E ⇐⇒ {f(x), f(y)} ∈ E ′.
The mapping f is called an isomorphism.

Definition 11. A graph H = (VH , EH) is called a subgraph of a graph G =
(VG, EG), if VH ⊆ VG and EH ⊆ EG. H is called an induced subgraph of G, if
VH ⊆ VG and EH = EG ∩

(︂
VH

2

)︂
.
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Definition 12. A (finite) walk is a sequence of vertices and edges
(v0, e1, v1, e2, ..., en, vn) such that ei = {vi−1, vi} for i = 1, 2, ..., n. The sequence
(v0, v1, ..., vn) is called the vertex sequence of the walk.
A (finite) trail is a walk in which all edges are distinct.
A (finite) path is a trail in which all vertices (and therefore also all edges) are
distinct.

Definition 13. Two vertices u and v of a graph G are called connected if G
contains a path from u to v. Otherwise, they are called disconnected.
A graph is said to be connected if every pair of vertices in the graph is connected.
A connected component is a maximal connected subgraph of a graph.

Definition 14. A vertex cut or separating set of a connected graph G is a set
of vertices whose removal renders G disconnected.

Definition 15. A graph G is said to be k-vertex-connected or k-connected if it
contains at least k + 1 vertices, but does not contain a vertex cut of size k − 1
or less. The vertex connectivity κ(G) is defined as the largest k such that G is
k-connected.

Example. A complete graph (sometimes called a clique) with n vertices, denoted
Kn, has no vertex cuts at all, but κ(Kn) = n − 1.

Definition 16. An edge cut of a connected graph G is a set of edges whose
removal renders the graph disconnected.

Definition 17. A graph G is said to be k-edge-connected if it does not contain
an edge cut of size k − 1 or less. The edge-connectivity λ(G) is the size of a
smallest edge cut.

Definition 18. A graph is said to be maximally (vertex-)connected if its (vertex)
connectivity equals its minimum degree.
A graph is said to be maximally edge-connected if its edge-connectivity equals its
minimum degree.

Definition 19. An n-partite graph is a graph G = (V, E) whose set of vertices
can be partitioned into n subsets V1, ..., Vn in a such way that for each i ∈ {1, ..., n}
no edge belongs to the induced subgraph of G given by Vi (equivalently, no edge of
G has both endpoints from the same Vi).

Definition 20. For a graph G = (V, E) with vertex set V = {v1, ..., vn}, the
adjacency matrix is a square n × n matrix A = (aij) such that

aij =
⎧⎨⎩1, {vi, vj} ∈ E

0, {vi, vj} /∈ E.
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2.2 Abstract simplicial complexes

2.2.1 Basic terminology
Definition 21. Let V be a countable set. A collection X of finite subsets of V
is called an abstract simplicial complex with vertices in V , if

1. ∀v ∈ V : {v} ∈ X

2. ∀x ∈ X : y ⊆ x =⇒ y ∈ X.
An element x ∈ X is called a simplex X or a face of X. When x ⊆ y holds, x
is a face of y and y is a coface of x. A face x is a maximal face of X if there is
no face y such that x ⊊ y.
Note. The definition of a (general topological) simplicial complex expects vertices
of each simplex to be affinely independent (the exact definition is omitted). A
simplicial complex is, therefore, strictly speaking, a different structure than an
abstract simplicial complex. However, because this text only deals with abstract
simplicial complexes, the terms complex/simplicial complex will be used instead
of the more formal abstract simplicial complex.
Definition 22. Y ⊆ X is called a subcomplex, if Y is a complex.
Definition 23. The dimension of a simplex x ∈ X is defined as dim(x) := |x|−1.
The dimension of a complex X is defined as dim(X) := maxx∈X dim(x).

Note. When dim(x) = k ∈ N, x is called a k-simplex. Similarly, if dim(X) = k,
X is a k-complex. (see Figure 2.1)
The empty set is a (−1)-simplex. The vertices are 0-simplices.
Definition 24. The 1-dimensional faces of X are called edges. A simplicial
complex of dimension at most 1 is a (simple and loopless) graph.
Definition 25. A subcomplex of all faces of X of dimension at most d is called
a d-skeleton.
Note. Formally, the vertex set and the 0-skeleton of X are not the same - while
the former is the set of all vertices, the latter is the set containing a 1-element
set for each vertex of X. However, since an apparent bijection between the two
exists, we may use the terms interchangeably. Similarly, the terms 1-skeleton
of X and the underlying graph of X will often be used to describe the graph
G = (V, E), where V is the vertex set of X, and E is the set of 1-simplices of X
(the obvious bijection maps {a} ∈ X to a ∈ V ).

Figure 2.1: A simplicial 3-complex.
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Definition 26. A k-complex X is pure or homogeneous, if every maximal face
of X is of dimension k.

Note. The rest of this paper assumes the set of vertices V of any given complex
X to be finite. All of the definitions and theorems listed for finite cases can (with
occasional minor adjustments) be formulated for the countable cases.

Proposition 4. Let X be a complex, x ∈ X be a k-simplex.
The number of faces in x of dimension l is equal to

(︂
k+1
l+1

)︂
.

The number of faces in x is equal to ∑︁k
l=−1

(︂
k+1
l+1

)︂
= 2k+1.

Proof. By definition, the number of faces of dimension l is the number of subsets
of x of size l + 1, which is

(︂
k+1
l+1

)︂
. The second part follows from the binomial

theorem.

□

2.2.2 Notable subcomplexes
Throughout this subsection, let X be a simplicial complex and let S be a collection
of simplices in X. We refer to Wikipedia contributors (2021).

Definition 27. The closure of S (denoted Cl S) is the smallest subcomplex of X
that contains each simplex in S.

Note. Cl S is obtained by repeatedly adding to S each face of every simplex in
S (see Figure 2.2).

Definition 28. For a simplex x in S, the star of x is the set of all cofaces of x
(see Figure 2.3).
The star of S (denoted st S) is the union of the stars of each simplex in S.

Note. The star of S is generally not a simplicial complex itself, so some authors
define the closed star of S (denoted St S) as Cl st S, i.e. the closure of the star
of S.

Definition 29. The link of S (denoted Lk S) is defined as Cl st S \ st Cl S.

Note. The link of S is the closed star of S minus the stars of all faces of S (see
Figure 2.4).

Figure 2.2: Two simplices and their closure.
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Figure 2.3: A vertex and its star.

Figure 2.4: A vertex and its link.

2.2.3 Orientation
Definition 30. Let x be a k-simplex. We denote Ox the set of all orderings of
the vertex set of x. On Ox, set relation ∼→ by ∀o1, o2 ∈ Ox : o1 ∼→ o2 iff they
differ by an even permutation.

Lemma 5. ∼→ is an equivalence relation.

Proof. The identity permutation is even, which implies reflexivity of the relation.
Symmetry follows from the fact that the inverse of an even permutation is even.
The composition of a pair of even permutations (in either order) is even, implying
transitivity of the relation.

□

Definition 31. An orientation of a k-simplex x is an equivalence class of Ox by
∼→. An oriented k-simplex is a k-simplex x together with an orientation of x.

Note. Let x = {v0, ..., vk} be a k-simplex. We will denote an orientation of
x (the oriented simplex x with a given orientation) by (v0, ..., vk). By previous
definition, two orientations (vi0 , ..., vik

), (vj0 , ..., vjk
) of x are equivalent if and only

if they differ by an even permutation.
Note. Let x be a k-simplex. Then

|Ox/ ∼→ | =
⎧⎨⎩1, k = −1, 0;

2, k ≥ 1.

Vertices have only a single possible orientation. A simplex consisting of at least
two vertices has two possible orientations.

Definition 32. An oriented k-simplex (v0, ..., vk) determines ( induces) an orien-
tation of each of its (k − 1)-faces, called the induced orientation, by the following
rule: the induced orientation on the face {v0, ..., vi−1, vi+1, ..., vk} is defined to be
(−1)i(v0, ..., vi−1, vi+1, ..., vk).
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Note. Let x = (v0, ..., vk) be an oriented k-simplex.

1. if k ≥ 1, then the orientations of (−1)ix and x are

(a) equivalent, if i is even;
(b) different, if i is odd;

2. if k < 1, then the orientations of (−1)ix and x are equivalent for all i.

2.3 Combinatorial (hyper)surfaces
A surface is, informally, an object similar to a plane but that need not be flat. We
can not only define the term rigorously through topology, but also extrapolate
the meaning of surfaces in higher dimension - hypersurfaces. For purposes of this
thesis, most of the terminology will be formulated in an abstract combinatorial
sense. An obvious disadvantage of this approach is the lack of visual intuition of
combinatorial surfaces. However, this can be (at least to some extent) solved by
envisioning a combinatorial surface as a triangulation (i.e., a ”finite approxima-
tion”) of a topological surface (the rigorous definition of triangulation is omitted).
Understanding the connection between combinatorial and topological surfaces is
important; however, for our purposes, it mainly provides us with examples and
visual insight of the key structures of the thesis - pseudomanifolds (the exact
definition will be presented in Definition 34).

2.3.1 Manifolds
We begin by presenting the basic notion of (hyper)surface in topology - a manifold
and several related results.

Definition 33. An n-dimensional manifold, or n-manifold, is a topological space
with the property that each point has a neighborhood that is homeomorphic to the
Euclidean space of dimension n.

Higher-dimensional manifolds are very difficult to visualize, but in dimension
2, we can imagine them as surfaces of 3-dimensional objects (though with possible
self-intersections). The classification of 2-manifolds, listed here for illustrative
purposes in a simplified version and without proof, is a classical topology result.
The original proof for open 2-manifolds by Kerékjártó (1923) has been generalized
for all 2-manifolds and improved over the years, notably by Brown and Messer
(1979). However, the classification of 3-manifolds is currently a significant open
problem, and since recognizing whether two triangulated manifolds of dimension 4
are homeomorphic is undecidable according to Markov (1958), the generalization
of the theorem to higher dimensions is impossible.

Theorem 6 (Classification Theorem for Compact 2-manifolds, Edelsbrunner and
Harer (2010), p. 35). The two infinite families S2,T2,T2#T2, ... and P2,P2#P2, ...
exhaust the family of compact 2-manifolds without boundary.

13



The first family of orientable, compact 2-manifolds consists of the sphere,
the torus, the double torus, and so on. The second family of non-orientable,
compact 2-manifolds consists of the projective plane, the Klein bottle, the triple
projective plane, and so on. Every 2-manifold can be obtained by repeatedly
”gluing” handles and cross-caps to a sphere (exact definitions are omitted, but
illustrative examples are provided in Figure 2.5).

In the above examples, we have mentioned orientability, a fundamental prop-
erty of topological manifolds, without a proper introduction. In layman’s terms,
orientability is closely related to the ability to embed the manifold in space. The
definition of orientability used in a general topological context typically deals with
continuous deformations of closed curves to establish a sense of ”clockwise” and
”counter-clockwise” direction (the exact definition is omitted). This approach
seemingly introduces ambiguity to the term, as the term of orientation has been
rigorously defined for k-simplices in Definition 32, and the term of orientability
will be defined for particular types of k-complexes in Definition 37 using the ter-
minology laid out in Definition 32. However, the topological and combinatorial
versions of these definitions can be unified thanks to a fundamental result of
topology, which grants the existence of isomorphic refinements of triangulations
of two homeomorphic manifolds (exact details are omitted). The idea behind the
unification of the topological and combinatorial versions is then to find a triangu-
lation of a given topological manifold, view the triangulation as a complex, and
determine its orientability in the means of Definition 37.

Orientability in dimension 2 has a straightforward idea. Informally, a 2-
manifold is orientable if we can consistently assign what is ”inside” and what
is ”outside”. Orientability turns out to be equivalent to whether the surface con-
tains no subset that is homeomorphic to the Möbius strip. Thus, for 2-manifolds,
the Möbius strip may be considered the source of all non-orientability.

Furthermore, the number of handles (cross-caps) attached to a sphere is an
invariant property of the orientable (non-orientable) 2-manifold. This number is
called the genus. Informally speaking, the genus of a 2-manifold is the number
of ”holes” in an orientable case and the number of ”self-intersections” in a non-
orientable case. As we will see in a moment, the genus of a surface is closely
related to another essential invariant - the Euler characteristic of a surface. Euler
characteristic extends the definition of genus for manifolds in higher dimensions.

Figure 2.5: Left: a sphere with three handles attached = a triple torus = a
pretzel. Right: a sphere with a cross-cap = a projective plane.
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To get a classification of the connected, compact 2-manifolds with boundary,
we can take one without boundary and make h holes by removing the same
number of open disks. Each starting compact 2-manifold and each h ≥ 1 give a
different surface, and they exhaust all possibilities.

More information on the subject can be found in Chapter 2 of Edelsbrunner
and Harer (2010).

2.3.2 Pseudomanifolds
Having presented the general notion of topological surface and its orientation, we
may formally build the theory of (hyper)surfaces in a combinatorial sense. This
approach has several advantages:

• it can be extrapolated to higher dimensions,

• it generalizes the notions by enabling singularities, and

• it is suitable for working with abstract simplicial complexes, as it naturally
enables combinatorial computations.

Definition 34. A finite simplicial k-complex is called a k-dimensional pseudo-
manifold, if it satisfies the following properties:

1. it is non-branching: Each (k − 1)-dimensional simplex is a face of precisely
one or two k-dimensional simplices;

2. it is strongly connected: Any two k-dimensional simplices can be joined
by a ”chain” of k-dimensional simplices in which each pair of neighboring
simplices have a common (k − 1)-dimensional face;

3. it has dimensional homogeneity: Each simplex is a face of some k-dimen-
sional simplex.

A pseudomanifold is called normal or a combinatorial manifold if the link of each
simplex with codimension ≥ 2 is a pseudomanifold.

Note. The non-branching property can be made more restrictive by requiring each
(k −1)-dimensional simplex to be a face of precisely two k-dimensional simplices.
A k-dimensional pseudomanifold satisfying this more restrictive non-branching
property is closed.
Note. A pseudomanifold is a combinatorial generalization of the general idea of a
manifold with singularities. It can be regarded as a particular type of topological
space (because given a topological pseudomanifold, one can obtain its combina-
torial counterpart via triangulation).

Definition 35. Let X be a k-pseudomanifold. A pair of oriented k-simplices
x, y ∈ X is consistently oriented, if |x ∩ y| ≠ k, or x and y induce different
orientations on x ∩ y.
A k-dimensional pseudomanifold X is orientable if there exists a mapping f that
assigns an orientation to every k-simplex in X in such way that each pair of
k-simplices in X is oriented consistently.
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The pseudomanifold encompasses essential structural properties of the corre-
sponding topological structure. A notable example of such property is orientabil-
ity, defined rigorously in this subsection for pseudomanifolds and hinted in the
previous subsection in the context of (topological) manifolds. As mentioned ear-
lier, it is possible to equivalently define the orientation and orientability in the
topological sense by assigning orientations to refined triangulations according to
Definition 35. For purposes of this thesis, it is only necessary to understand that
this justifies informally mixing the terms of combinatorial and topological pseu-
domanifolds, which enables us to list visual examples for otherwise very abstract
combinatorial structures.
Example. A manifold is a normal pseudomanifold. Therefore, a sphere and a
torus, shown in Figure 2.6 (a projective plane and a Klein bottle) are examples
of normal, orientable (non-orientable), compact 2-dimensional pseudomanifold.
Example. A pinched torus, shown in Figure 2.6 is an example of an orientable,
closed 2-pseudomanifold. It is not a normal pseudomanifold because the link of
the ”pinched” vertex is not connected (hence not a pseudomanifold).

In a 2-pseudomanifold, every singularity is obtained by ”gluing” together sev-
eral points. However, nothing more complicated (e.g., ”gluing” two edges to-
gether) is permitted (see Figure 2.7). We formulate and prove a theorem and a
proposition that expand on this statement, and describe a method to normalize
a particular type of union of 2-pseudomanifolds, where no singularity is more
complicated than a vertex.

Figure 2.6: Left: a triangulated torus. Right: a pinched torus.

Figure 2.7: The only acceptable case of singularity in a 2-pseudomanifold. Higher
dimensional pseudomanifolds allow for far more complicated cases of singularities.
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Theorem 7. Let A be a vertex in a closed 2-pseudomanifold S. Then Lk A is a
union of disjoint cycles.

Proof. The closed star of A is a 2-complex containing every face of every 2-
simplex that contains A as its vertex. To obtain Lk A, we remove any face that
contains A as its vertex. We may observe that Lk A has the following properties:

• It is a 1-complex (a graph), because it contains vertices from Cl st A other
than A and exactly one edge for every 2-face in Cl st A - the edge opposite
the vertex A. Lk A contains no 2-simplex, as every 2-face in Cl st A contains
A as its vertex.

• It is closed and non-branching: a vertex C in Lk A is a neighbor of vertex B
if and only if {A, B, C} ∈ Cl st A. Because S is closed and non-branching,
there exist precisely two 2-faces of S that contain the edge {A, B}, namely
{A, B, C} and {A, B, D}, and since both of them are included in Cl st A,
the vertex B has precisely two neighbors in Lk A.

It follows that Lk A is a union of disjoint cycles.

□

Proposition 8. Let S be a union of closed 2-pseudomanifolds such that for every
vertex V ∈ S is Lk V a union of disjoint cycles. Let X be a vertex in S. Choose
a cycle C in Lk X and suppose Lk X \ C ̸= ∅. Modify S using the following two
steps:

1. create a new 1-skeleton by connecting a new vertex X̃ with every vertex in
C and disconnecting X from every vertex in C

2. perform an operation of closure on the new 1-skeleton

This process creates a modified version of S by ”cutting at singularity X” once.
Repeating this process a finite number of times transforms S into a union of
disjoint closed 2-manifold.

Proof. Because S is finite, there are only finitely many singularities. Every step
disconnects one cyclic part of the link of a singularity, and therefore after finitely
many steps, the link is a cycle for every vertex. It remains to be shown that after
any number of iterations, the link of any vertex in the current modified version
of S is a union of disjoint cycles. We prove this using induction and only have to
prove the induction step, as the first step is the same.

The process does not connect already disconnected cycles in links of vertices
by cutting ”somewhere else”. To elaborate, if K, L are vertices in the link of some
vertex M and they had belonged to two different cycles before performing a cut
at singularity Z and are now connected via a new copy Z̃, then K and L had to
have belonged to the same cycle in the link of Z. Therefore, they had to have
been connected even before performing a cut at Z, a contradiction.
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Finally, the process does not disconnect the cycles: if a cycle in the link of
vertex M gets disconnected by performing a cut at Z, by definition of ”cutting”
at singularity Z we get that M had to have belonged to two different cycles in
the link of Z as it is now connected to both Z and Z̃, a contradiction.

□
Theorem 7 and Proposition 8 grant resolvability of singularities in closed 2-

pseudomanifolds by showing that it can be done by simply ”cutting” at vertices.
Because of this, it was possible to derive one of the most important results of
combinatorial topology, the classification theorem for 2-pseudomanifolds, first
given by Dehn and Heegaard (1910). We formulate and prove the classification
theorem by replicating the steps proposed in Stillwell (1993).

We introduce terminology that enables us to formulate and prove the classi-
fication theorem intelligibly.

As defined in Dehn and Heegaard (1910), a closed surface (or just surface)
is a closed 2-pseudomanifold (Definition 34 for k = 2). It will be convenient to
build surfaces from polygons other than triangles, so we now go to an alternative
definition.

A (finite) closed surface is a (finite) set of polygons with oriented edges identi-
fied in pairs (meaning that there exist precisely two identical copies of an edge in
the entire system; the pair of identified edges may or may not be on a single poly-
gon). Such a system is called a schema. Both definitions of surface are equivalent.
Suppose the polygons are given sufficiently fine simplicial decompositions, which
are compatible on identified edges (i.e., an edge from an identified pair is decom-
posed exactly the same way as its identified counterpart). In that case, each edge
in the decomposition will be either an interior edge of a polygon, hence incident
with two triangles, or else a pair of subedges identified by the schema, hence also
incident with two triangles. This reasoning justifies transforming polygons into
complexes and vice versa by adding and removing interior points and edges. We
denote the edges of polygons in a schema using letters, assigning the same letter
to identified edges. A polygon in a schema is represented by a word made of
edges, for example aba−1b or a−1bc (see Figure 2.8). A portion of a boundary
of a polygon with the form in Figure 2.9a will be called a handle and denoted
symbolically by aba−1b−1 (reading labels and orientations clockwise). Similarly,
a portion like that in Figure 2.9b, will be called a cross-cap and denoted by aa
or a2.

We formulate the classification using the notions of words, handles and cross-
caps as follows:

Theorem 9 (Classification of closed 2–pseudomanifolds). Every closed
2-pseudomanifold is represented by a polygon of one of the following three types:

• a sphere (aa−1)

• a sphere with n handles (a1a2a
−1
1 a−1

2 ...a2n−1a2na−1
2n−1a

−1
2n )

• a sphere with n cross-caps (a1a1a2a2...anan)
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Figure 2.8: Left: polygon aba−1b. Right: polygon a−1bc.

(a) A handle. (b) A cross-cap.

Figure 2.9: Notable portions of a boundary of a polygon

Proof. (by Stillwell (1993), p. 69-74) Assume the polygons in the schema
define a connected surface. Then, it is possible to amalgamate all of them into
a single polygon by repeatedly gluing them together along identified edges of
separate polygons. The resulting polygon has an even number of edges divided
into pairs of identified edges, which follows from the fact that by performing a
triangulation on the polygonal schema, we increase the total number of edges by
an even number. A closed 2-pseudomanifold obtained from the polygonal schema
via triangulation is a schema whose polygons have an even number of edges in
total because every edge in a closed 2-pseudomanifold is a face of precisely two
triangles.

The schema of a sphere (Figure 2.10) has 2 distinct vertices A, B and is
exceptional in having only a ”canceling pair” of edges, aa−1. We show that any
other polygon with more than one pair of identified edges and more than one
vertex can be transformed to one of the above types by performing the following
steps:

1. In the first step, we reduce the number of unique vertices of the polygon
until we are either left with a schema of a sphere or with a single unique
vertex. The step consists of repeatedly performing two moves:

(a) Anytime the polygon consists of at least three vertices and a ”cancel-
ing pair” of edges, we collapse one such pair. This move reduces the
number of unique vertices by one.
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Figure 2.10: A sphere aa−1.

(b) Divide the apparent vertices of the polygon into equivalence classes of
vertices identified with each other, then, assuming there are at least
two equivalence classes, consider an edge a whose endpoints A, B be-
long to different classes. We choose one of them, for example, B. If
there are at least two vertices in the equivalence class of B, by repeat-
ing the step (*) described in Figure 2.11, we reduce the number of
vertices in the equivalence class containing the vertex B until we are
left with a single vertex of class B. Then, it means that edges leading
to (or from) it make a ”canceling pair”, and so we are either left with
a sphere (and then we are done), or we collapse them, removing the
last vertex of equivalence class B.

Figure 2.11: Reducing one vertex of class B. The step denoted (*) cuts along b
and pastes the cut triangle along edge a.

When we can no longer perform these steps, we are either left with a sphere
(and then we are done) or with a polygon, whose all vertices are in the same
equivalence class (that is, a polygon with only a single vertex). Any time
we cut and paste the polygon from now on, its vertices remain in the same
equivalence class.

2. The second step consists of repeatedly performing the move described in
Figure 2.12 in order to group together all the pairs of identified edges of the
polygon with the same orientation. This will form a cross-cap from every
pair of like-oriented identified edges.
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Figure 2.12: Forming a cross-cap from identified edges with the same orientation.
The step denoted (*) cuts the polygon along b and pastes the cut polygon along
edge a.

Note that the move does not affect the ordering of other edges; notably, it
does not disrupt the pairs already ordered. This process will be repeated
until we have turned every pair of identified edges with the same orientation
into cross-caps.

3. If any pairs of oppositely oriented identified edges remain after the previous
step, they must occur as ”crossed pairs” ...a...b...a−1...b−1... in the boundary,
because if, for example, the pair ...a...a−1... is not separated by any other
pair of oppositely oriented identified edges, then the situation is the one
depicted in Figure 2.13.

Figure 2.13: A non-separated pair.

In this situation, each edge in α is identified with another edge in α, and
analogously for edges in β because all like-oriented edges were made adja-
cent in the previous step. Then, however, the corresponding pairs of ends
of a cannot be identified, which contradicts the first step.
Therefore, in the third step, we perform the process described in Figure 2.14
a finite number of times, each time replacing a crossed pair by a handle.
The process will exhaust all such crossed pairs after a finite number of
repetitions.
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Figure 2.14: Creating a handle from two crossed pairs. The move (1) cuts
along c and pastes along b. The move (2) cuts along d and pastes along a.

4. Having completed the previous steps, we are left with a polygon consisting
either only of handles, or of both cross-caps and handles. If it consists only
of handles, we are finished. Else, the boundary must contain a sequence
..aabcb−1c−1..., which we convert to three cross-caps by performing a step
shown in Figure 2.15, then replacing the three like-oriented pairs with ad-
jacent pairs as in the second step.

Figure 2.15: Creating three cross-caps from a cross-cap and a handle. The step
denoted (*) cuts along d and pastes along a.

This step does not disturb the dashed part of the boundary, and the handle
will not reappear if we normalize the cross-caps in the right order (one such
order is b, c, d). Repeating this step a finite number of times yields a word
from one of the categories from the Theorem.

□
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In recent years, the classification of compact two-dimensional topological pseu-
domanifolds has been finalized (see Banagl and Friedman (2004), p. 527-528.).

In dimension 3, a valid singularity is obtained, for example, by ”gluing” two
tetrahedra (3-simplices) together by an edge and then ”gluing” the two vertices
of the edge together. Generally speaking, a singularity in a k-pseudomanifold
is obtained by ”gluing” together some combination of up to (k − 2)-simplices in
some order. With an increasing dimension, the number of possibilities (even their
cardinality) becomes incredibly high, resulting in far too complicated and far too
many possible pseudomanifold structures.

Classification of 3-pseudomanifold is an open problem that requires the clas-
sification of 3-manifolds to be solved first. Classification of pseudomanifolds of
dimension 4 or higher cannot exist (again, according to Markov (1958)).

There exist relatively easily accessible properties, enabling us to divide pseu-
domanifolds into larger categories. These properties provide basic insight into
otherwise very complicated structures. Euler Characteristic is an important ex-
ample of such invariant:

Definition 36. Let X be a complex of dimension k. For i ∈ {0, ..., k} set
si = |{x ∈ X; dim(x) = i}|. The number χ(X) := ∑︁k

i=0(−1)isi is called Euler
characteristic of X.

Note. As mentioned earlier, Euler characteristic extends the definition of the
genus to higher dimensions. The following proposition describes their relation in
dimension 2.

Proposition 10 (Euler Characteristic and genus of Compact 2-manifolds). A
sphere with g tubes (an orientable compact 2-manifold of genus g) has χ = 2−2g.
A sphere with g cross-caps (a non-orientable compact 2-manifold of genus g) has
χ = 2 − g.

Proof. See Edelsbrunner and Harer (2010), p. 30.

□

Note. Euler characteristic can be generalized for pseudomanifolds by taking into
account the multiplicities of singularities.

2.3.3 Colorability
Definition 37. Let X be a simplicial k-complex, V be its vertex set, and F be
the set of all k-simplices in X.
X is n-vertex-colorable, if there exists a mapping g : V → {1, 2, ..., n} such that
{v1, v2} ∈ X =⇒ g(v1) ̸= g(v2) (vertices connected by an edge must be assigned
different colors), equivalently if the underlying graph of X is n-partite.
X is n-face-colorable, if there exists a mapping g : F → {1, 2, ..., n} such that
f1, f2 ∈ F, |f1∩f2| = k =⇒ g(f1) ̸= g(f2) (if two k-simplices share a (k−1)-face,
they must be assigned different colors).

Proposition 11. The minimal n, for which a given k-complex is n-vertex-colorable,
is at least k + 1.
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Proof. The vertices and edges in any k-simplex form Kk+1. It follows that any
k-simplex must be colored using k + 1 colors, thus requiring at least k + 1 colors
for the entire k-complex.

□
The following theorem describes a connection between colorability and ori-

entability for pseudomanifolds.

Theorem 12. A closed k-dimensional pseudomanifold X is 2-face-colorable if
and only if it is orientable.

Proof. =⇒ : Let X be a closed 2-face-colorable k-pseudomanifold, whose 3-
simplices are colored using colors 0 and 1. For a k-simplex {v0, v1, ..., vk} in X,
we define its orientation as follows:⎧⎨⎩(v0, v1, ..., vk), if {v0, v1, ..., vk} is colored 0;

(v0, v1, ...vk−2, vk, vk−1), if {v0, v1, ..., vk} is colored 1.

By Definition 34 and the following note, X is non-branching, and therefore, every
(k − 1)-face of X is a face of exactly two k-simplices. These two k-simplices have
different colors (because X is 2-face-colorable), and therefore, by construction,
induce different orientations on the common (k − 1)-face. It follows that the
orientation mapping defined above assigns orientations in a way that each pair
of k-simplices is oriented consistently. X is orientable by Definition 35.
⇐= : X is orientable and non-branching, so every (k − 1)-face of X is a face

of precisely two consistently oriented k-simplices. We may, therefore, choose a
k-simplex and assign color 0 to it and every other k-simplex in X with the same
orientation, and assign color 1 to the remaining k-simplices. This mapping sat-
isfies the requirements set in Definition 37 because neighboring k-simplices have
different orientations, and therefore X is 2-face-colorable.

□

2.3.4 Dual graphs
Definition 38. The dual graph of a k-pseudomanifold X is a graph GX =
(VX , EX), where VX is the set of all k-simplices of X, and for all x, y ∈ VX :
{x, y} ∈ EX ⇐⇒ |x ∩ y| = k.

Proposition 13. The dual graph of a closed k-pseudomanifold is (k +1)-regular.

Proof. By Proposition 4, every k-simplex in a k-pseudomanifold has exactly(︂
k+1

(k−1)+1

)︂
= k + 1 (k − 1)-faces. By definition of closed pseudomanifold (34, more

precisely its non-branching property, and the following note), every (k − 1)-face
is a face of exactly 2 k-simplices, implying that every k-simplex has exactly k + 1
neighbors. Therefore, by definition, each vertex of the dual graph has degree
k + 1.

□
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Chapter 3

Complex of non-associativity

This chapter presents two constructions of abstract simplicial complexes that
describe the property of non-associativity of a given quasigroup. We then show
that one of the constructions is a simplification of the other and that the simpler
simplicial complex possesses some nice combinatorial and topological properties,
enabling us to transform the problem of studying (non)-associative properties
of a quasigroup to studying the topological and combinatorial properties of the
generated complex.

We will always assume the given quasigroup to be finite. Given a quasigroup
(Q, ·) of order n ∈ N, we will without loss of generality presume Q to be the set
{0, ..., n − 1}.

3.1 Requirements
Strictly speaking, there are many different complexes to be obtained from a given
structure because we can choose which faces to include or not. When building an
abstract simplicial complex from an algebraic structure to describe the desired
property of the structure, one needs to consider several factors that determine
the properties of the resulting complex. We shall discuss our reasoning behind
the choices we made:

• Existence and uniqueness: The ultimate goal of this paper is to deter-
mine whether the associative property of a given quasigroup can be inter-
preted in a language of computational topology. To get information about
a quasigroup and to be able to compare that information with information
about other quasigroups of the same size, we must first and foremost be able
to construct a complex from any given quasigroup. We must always build
these complexes in the same way (i.e., using the same algorithm), meaning
the algorithm must be deterministic and must output only a single complex
for every input.

• Maximality: We want the complexes to encompass the maximum amount
of information about the quasigroups. Therefore, every complex we build
should ”span” the whole structure of the given quasigroup.
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• Specifics of the problem: The associative property of a given quasigroup
is uniquely determined by values of a(bc) and (ab)c for all triples a, b, c ∈ Q.
We shall, therefore, create a complex in such way, that it encapsulates
information on whether a(bc) = (ab)c or not for each triple.

3.2 Construction
The associative property of Q can be described by constructing a 3-complex by
taking 3-simplices, whose first three vertices are elements a, b, c of Q in a fixed
order and the fourth vertex is either (ab)c or a(bc). Given a quasigroup Q, we
will construct its associativity 3-complex as follows:

Start with four identical copies of Q; we will denote these copies Q1 through
Q4. The union of these sets will form the vertex set of the complex.

Next, we define the structure of the 3-complex by building all possible 3-
simplices. Take all triplets a ∈ Q1, b ∈ Q2, c ∈ Q3, and for each of them construct
either a set {[a, 1], [b, 2], [c, 3], [(ab)c, 4]} if (ab)c = a(bc), where (ab)c, a(bc) ∈ Q4,
or a pair of sets {[a, 1], [b, 2], [c, 3], [(ab)c, 4]} and {[a, 1], [b, 2], [c, 3], [a(bc), 4]} if
(ab)c ̸= a(bc) (again, (ab)c, a(bc) ∈ Q4). The union of the power sets of these
sets forms the simplicial 3-complex. We will call it the associativity complex of
Q and denote it AC(Q).

By modifying this construction, we obtain a 3-complex that ignores the asso-
ciative triples but still encompasses the non-associative properties.

Again, the union of Q1 through Q4 forms the vertex set, but now, we ig-
nore the sets {[a, 1], [b, 2], [c, 3], [(ab)c, 4]} if (ab)c = a(bc), and only take sets
{[a, 1], [b, 2], [c, 3], [(ab)c, 4]} and {[a, 1], [b, 2], [c, 3], [a(bc), 4]} if (ab)c ̸= a(bc). The
union of the power sets of these sets again forms a simplicial 3-complex. We will
call this the non-associativity complex of Q and denote it NAC(Q).
Note. In our data structure, AC(Q) will be represented by an array of ordered lists.
In each step, the algorithm of construction of AC(Q) will append to the array either
a pair of ordered lists [a, b, c, (ab)c], [a, b, c, a(bc)] if (ab)c ̸= a(bc), or an ordered
list [a, b, c, (ab)c] if (ab)c = a(bc). These ordered lists store the information about
the 3-simplices of our complex, because the index in ordered list corresponds to
the index of the copy of Q, from which the given vertex comes. Because of this,
a simplified notation [a, b, c, d] for a 3-simplex {[a, 1], [b, 2], [c, 3], [d, 4]} is justified
and will be used through this thesis.
Similarly, NAC(Q) will also be represented by an array of ordered lists, with the
only difference being in the construction, where the algorithm will only append
a pair of ordered lists [a, b, c, (ab)c], [a, b, c, a(bc)] if (ab)c ̸= a(bc), skipping the
ordered lists generated from associative triples.
Note. For a pair of 3-simplices A = [a1, a2, a3, a4], B = [b1, b2, b3, b4], we will say
”B is a k-neighbor of A”, or ”B is a neighbor of A opposite the kth vertex”, if
aj = bj ∀j ∈ {1, ..., 4} \ {k} and ak ̸= bk. If we imagine A and B as tetrahedrons,
this means that A and B are connected by a face opposite the kth vertex.
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3.3 Trivial properties
This section lists several observations about the created complexes. Proper-
ties listed here mostly follow immediately from the constructions, but they are,
nonetheless, important to realize in order for us to understand the more compli-
cated structural properties of the complexes.

3.3.1 Satisfaction of requirements
The presented constructions accomplish every requirement formulated in Section
3.1:

• Existence: It is clear that for every quasigroup Q, both of the constructions
output a 3-complex.

• Uniqueness and maximality: The construction of AC(Q) generates all or-
dered quadruplets that represent an instance of multiplication of a triple (in
one of two possible orders) in Q, therefore spanning all possible 3-simplices
and creating, in a sense, a maximally connected complex (meaning that
every relevant face is included). It follows that this construction yields the
same complex every time we input the same quasigroup.
The same is true for the construction of NAC(Q), with the only difference
being that this time NAC(Q) spans all 3-simplices corresponding to non-
associative triples. In this construction, the relevant faces all correspond to
these 3-simplices.

• Specifics of the problem: The resulting complexes represent the asso-
ciative properties in the quasigroup well: there exists a 4-neighbor to a
3-simplex [a, b, c, d] if and only if the triple a, b, c is not associative. The fol-
lowing section shows that both complexes encompass even more information
about the (non-)associative properties.

3.3.2 Associative property in the complexes
We now proceed by showing that both AC(Q) and NAC(Q) provide us with infor-
mation about the count of associative and non-associative triples in Q.

It follows from the construction of AC(Q) that for a quasigroup Q of order n

|AC| = |A| + 2|N |, (3.1)

where |AC| is the number of 3-simplices in AC(Q), |A| is the number of associative
triples and |N | is the number of non-associative triples. Furthermore, because

|A| + |N | = n3 (3.2)

is the number of all triples in Q, we have proved the following proposition:

Proposition 14. Let Q be a quasigroup of order n. Then

|A| = 2n3 − |AC|, (3.3)

where |A| is the number of associative triples in Q and |AC| is the number of
3-simplices in AC(Q).
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Furthermore, it follows from the construction of NAC(Q) that

|AC| = |A| + |NAC|, (3.4)

where |NAC| is the number of 3-simplices in NAC(Q). It immediately follows that

|NAC| = 2|N |, (3.5)
and by combining the formulas 3.2 and 3.5, we obtain a link between the number
of associative triples of Q and the number of 3-simplices in NAC(Q):

Proposition 15. Let Q be a quasigroup of order n. Then

|NAC| = 2(n3 − |A|) (3.6)

where |A| is the number of associative triples in Q and |NAC| is the number of
3-simplices in NAC(Q).

We have shown that both AC(Q) and NAC(Q) have an elegant link to the
number of associative triples in Q, because |A| is uniquely defined by the number
of 3-simplices in them.

3.3.3 Maximal faces and dimensional homogenity
It follows from the constructions that every maximal face of both AC(Q) and
NAC(Q) is a 3-simplex. By definition, this means that both complexes are pure.

Furthermore, it follows from the constructions that every face of a 3-simplex
(either in AC(Q), or in NAC(Q)) is included in the respective complex. Therefore,
both complexes have dimensional homogenity (see Definition 34).

3.3.4 Number of neighbors
The logical next step in our study of structural properties of the complexes is to
understand how the 3-simplices in them connect. Our goal in this subsection is,
given a quasigroup, to express the number of neighboring 3-simplexes (meaning
sharing a common 2-face, see 3.2) of each 3-simplex in the (non-)associativity
complex of the quasigroup.

Let Q be a quasigroup of order n. We start by counting the number of
neighbors of 3-simplices in AC(Q) and NAC(Q).

In NAC(Q), no 3-simplex corresponds to an associative triple of Q.
Let [a, b, c, (ab)c] be a 3-simplex in AC(Q) corresponding to an associative triple
of Q. It follows from the construction that no of [a, b, c, (ab)c] 4-neighbor exists.
Next, we analyze cases for neighbors opposite the remaining vertices:

1. (a) If (xb)c = (ab)c, then it follows from the definition of quasigroup, that
xb = ab, and finally x = a.

(b) If x(bc) = (ab)c, then from (ab)c = a(bc) and from the definition of
quasigroup it follows x = a.
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2. (a) If (ay)c = (ab)c, then analogously to the case 1.(a) we get y = b.
(b) If a(yc) = (ab)c, then analogously to the case 1.(b) we get y = b.

3. (a) If (ab)z = (ab)c, we get z = c from the definition.
(b) If a(bz) = (ab)c, the case is once again similar to e.g. 1.(b) and we get

z = c.

We have shown that a 3-simplex in AC(Q) corresponding to an associative triple
has no neighbors.

Now, let [a, b, c, d] be a 3-simplex (either in AC(Q), or in NAC(Q)) corresponding
to a non-associative triple and let us assume d = (ab)c without loss of generality
(we could analogously derive everything for d = a(bc)). It follows from the
constructions that there exists exactly one 4-neighbor of [a, b, c, (ab)c], namely
[a, b, c, a(bc)]. We now analyze cases for neighbors opposite the remaining vertices:

1. (a) If (xb)c = (ab)c, we get the same case as 1.(a) of the associative case,
which implies x = a.

(b) If x(bc) = (ab)c ̸= a(bc), by definition of quasigroup there exists a
unique solution for x and x ̸= a.

2. (a) If (ay)c = (ab)c, we get the same case as 2.(a) of the associative case,
which implies y = b.

(b) If a(yc) = (ab)c ̸= a(bc), by definition of quasigroup there exists a
unique solution for y and y ̸= b.

3. (a) If (ab)z = (ab)c, we get the same case as 3.(a) of the associative case,
which implies z = c.

(b) If a(bz) = (ab)c ̸= a(bc), by definition of quasigroup there exists a
unique solution for z and z ̸= c.

We have shown that every 3-simplex (either in AC(Q), or in NAC(Q)) corresponding
to a non-associative triple has precisely four neighbors, one opposite every vertex.
Furthermore, every two neighbors of [a, b, c, d] are necessarily different because
they share precisely three vertices with [a, b, c, d] and these triples of vertices are
different. It follows that the two neighbors have exactly two vertices in common
(they share an edge, but nothing more).

We have derived and proved the following proposition.

Proposition 16. Let Q be a quasigroup. The number of neighbors of a 3-simplex
[a, b, c, d] in AC(Q) is

• 0, if (ab)c = a(bc), or

• 4, if (ab)c ̸= a(bc).

The number of neighbors of a 3-simplex [a, b, c, d] in NAC(Q) is 4.
If (ab)c ̸= a(bc), [a, b, c, d] has exactly one neighbor opposite each vertex, and all
its neighbors are different.

Proposition 16 explains, why NAC(Q) is a simplification of AC(Q) with better
topological properties, while still encompassing all the important properties about
the associative properties of Q that AC(Q) describes. To elaborate:
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• by its construction, NAC(Q) is a subcomplex of AC(Q),

• by Propositions 14 and 15, both AC(Q) and NAC(Q) possess the information
about the number of associative and non-associative triples in Q,

• and by Proposition 16, every 3-simplex in AC(Q) corresponding to an as-
sociative triple in Q is disconnected from the rest of the complex. On the
other hand, every 3-simplex (either in AC(Q), or in NAC(Q)) corresponding
to a non-associative triple in Q is neighbored by at least 4 other 3-simplices.
Therefore, NAC(Q) is a simplification of AC(Q) that ignores 3-simplices with-
out neighbor. These 3-simplices are disconnected from the rest of the com-
plex and, as shown in Subsection 3.3.2, possess no additional information
about Q.

From this point on, we will only study the properties of NAC(Q). We have already
justified its use, as it simplifies AC(Q) while preserving its important properties.
Furthermore, because Proposition 16 states that every 3-simplex in NAC(Q) has
exactly one neighbor opposite each of its vertices, we obtain the following propo-
sition:

Proposition 17. NAC(Q) is a non-branching complex for every quasigroup Q.

3.3.5 Dual graph and strongly connected components
For a k-complex to be a pseudomanifold, it has to be strongly connected. To
reiterate, this means that any two k-simplices can be joined by a sequence of
k-simplices in such a way that each pair of neighboring simplices share a (k − 1)-
dimensional face.

It is important to realize a significant difference between connectivity and
strong connectivity of a k-complex - a connected k-complex need not necessarily
be strongly connected, even if it is closed and pure. For a simple example, take
two spheres joined at a single vertex. This is an example of a closed, pure 2-
complex that is connected, but not strongly connected, as for any given pair of
2-faces of this complex such that the first 2-face lies in the first sphere and the
second 2-face of the pair lies in the second sphere, there exists no sequence of
2-faces with the property that each pair of consecutive 2-faces in the sequence
share an edge. Therefore, determining whether a complex is strongly connected
is not equivalent to analyzing the connectivity of the complex.

To address the question of strong connectivity for a pure k-complex X, we
can generalize the Definition 38 and instead of analyzing whether a k-complex is
strongly connected, analyze the connectivity of its dual graph.

We have shown in Subsection 3.3.3 that NAC(Q) is a pure 3-complex. We build
its dual graph according to Definition 38: The 3-simplices of NAC(Q) will form the
vertex set of the dual graph, and the edges set of the dual graph will consist of
every pair of 3-simplices {A, B}, that for which |A ∩ B| = 3, that is, we connect
the 3-simplices by their common 2-faces.

We can picture a 3-simplex as a tetrahedron with vertices a, b, c, d (from the
ordered list [a, b, c, d]). Connecting two tetrahedra together then means choosing
a face on each of them and then identifying the two faces (i.e. ”gluing” the two
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faces together). Formally, the way we connect two 3-simplices together will be
similar to this: we will attach together all pairs of different 3-simplices
A = [a1, a2, a3, a4], B = [b1, b2, b3, b4], for which there exists i ∈ {1, .., 4} so that
aj = bj ∀j ∈ {1, ..., 4} \ {i} and ai ̸= bi. In our implementation, the structure
of the dual graph will be represented by pointers to the neighboring 3-simplices.
The above condition will be used to determine which vertices of the dual graph
will be connected.

The above construction uniquely determines the dual graph of NAC(Q). We
will denote the dual graph of NAC(Q) by G(Q).

The following proposition follows from the reasoning in this section.

Proposition 18. Let K be a connected component in G(Q). The 3-simplices
corresponding to the vertices in K then form a strongly connected pure subcomplex
in NAC(Q). This subcomplex is maximal in NAC(Q) in a sense that by appending
an additional 3-simplex to it, the subcomplex will no longer be strongly connected.

Note. Later in this work, by analyzing the connectedness of G(Q) for small quasi-
groups Q, we will show that there exist quasigroups, for which G(Q) is discon-
nected. It remains to be determined whether or not the maximal strongly con-
nected subcomplexes in NAC(Q) can be disjoint.

3.3.6 Vertex colorability and cliques
The 3-complex NAC(Q) is constructed in such a way that every edge is a proper
face of some 3-simplex, whose vertices all lie in different copies of Q: the first
vertex in Q1, the second in Q2 etcetera. Therefore, the underlying graph of
NAC(Q), its 1-skeleton, is 4-partite. Equivalently, NAC(Q) is 4-vertex-colorable. It
follows that K5 is not a subgraph of the 1-skeleton of NAC(Q) for any Q.

At the same time, since NAC(Q) is a pure 3-complex, the existence of K4 in
every component of the 1-skeleton of NAC(Q) is guaranteed. It follows that NAC(Q)
is not 3-vertex-colorable.

3.3.7 Face colorability
We show that NAC(Q) is 2-face colorable (by face, we mean a maximal face, i.e.
a 3-simplex in NAC(Q)).

For a 3-simplex [a, b, c, d] in NAC(Q), we assign its color to be:

• 0, if d = (ab)c,

• 1, if d = a(bc).

In Subsection 3.3.4, by analyzing the number of neighbors of 3-simplices corre-
sponding to a non-associative triple a, b, c, we have simultaneously shown, that the
neighbors of [a, b, c, (ab)c] are exactly [x, b, c, x(bc)], [a, y, c, a(yc)], [a, b, z, a(bz)],
and the neighbors of [a, b, c, a(bc)] are [x, b, c, (xb)c], [a, y, c, (ay)c], [a, b, z, (ab)z].
Therefore, if two different 3-simplices in NAC(Q) share a 2-face, they are assigned
different colors by the face coloring proposed above (i.e. all neighbors of a 3-
simplex of color 0 are assigned color 1, and vice versa). By Definition 37, NAC(Q)
is 2-face-colorable.
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3.4 Topological structure of NAC(Q)
The following theorem is the resulting theorem of this chapter. It summarizes
the observations made in Section 3.3 and describes the topological structure of
NAC(Q).

Theorem 19. Let Q be a quasigroup. NAC(Q) is a union of closed orientable
3-pseudomanifolds. Each of these 3-pseudomanifolds consists of at least 5 differ-
ent 3-simplices that together consist of at least 8 vertices.

Proof. By Subsection 3.3.3, the 3-complex NAC(Q) is pure and has dimensional
homogenity, by Proposition 17 it is non-branching, and by Proposition 18 it is
a union of strongly connected subcomplexes. As a result, NAC(Q) is a union
of 3-pseudomanifolds. Moreover, it follows from Proposition 16 that these 3-
pseudomanifolds are closed.

Subsection 3.3.6 states that NAC(Q) is 4-vertex-colorable and subsection 3.3.7
states that NAC(Q) is 2-face-colorable. Therefore, it follows from Theorem 12 that
each of the 3-pseudomanifolds is orientable.

The part about 5 different 3-simplices follows from the fact that all neighbors
of a 3-simplex in NAC(Q) are different (see Proposition 16), and the reasoning in
the same section proves the part about 8 vertices.

□

3.5 Implementation
We present a possible implementation of the construction of the non-associati-
vity complex NAC(Q) of a quasigroup Q and its dual graph G(Q) as mentioned
earlier.
Note. The input Latin square consists of numbers 0 through n − 1. All arrays in
this work are indexed from 0.
Note. In this implementation, the structure of the complex is stored in an array
of objects of data type Simplex. An instance of Simplex represents a 3-simplex
of the non-associativity complex, and at the same time, the corresponding vertex
of its dual graph and has the following attributes:

• name: integer, describing the position = index of object in the array Com-
plex

• values: array of 4 integers, to save vertices of the 3-simplex

• neighbors: array of 4 arrays of integers (in the variant with self-connections,
neighbors would also consist of 4 arrays of integer, but each of them would
be one element longer than in the version without self-connections). neigh-
bors[i] consists of integers describing the positions of (i + 1)-neighbors of
the object in the array Complex.
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Algorithm 1: Build NAC(Q) and G(Q)
Input : L = Latin square in a form of 2-dimensional array
Output: Complex = array of Simplex
begin

n := order of L;
Complex := [ ];
for i := 0 to n - 1 do

for j := 0 to n - 1 do
for k := 0 to n - 1 do

if L[i][L[j][k]] ̸= L[L[i][j]][k] then
initialize new simplex S;
S.name := length(Complex);
S.values := [i, j, k, L[L[i][j]][k] ];
S.neighbors := [[ ], [ ], [ ], [length(Complex) + 1]];
append S to Complex;
initialize new simplex S;
S.name := length(Complex);
S.values := [i, j, k, L[i][L[j][k]] ];
S.neighbors := [[ ], [ ], [ ], [length(Complex) - 1]];
append S to Complex;

end
end

end
end
for i := 0 to length(Complex) - 1 do

for j := 0 to length(Complex) - 1 do
if i ̸= j then

if Complex[i].values[k] = Complex[j].values[k] ∀k = 1, 2, 3
then

append j to Complex[i].neighbors[0];
end
if Complex[i].values[k] = Complex[j].values[k] ∀k = 0, 2, 3
then

append j to Complex[i].neighbors[1];
end
if Complex[i].values[k] = Complex[j].values[k] ∀k = 0, 1, 3
then

append j to Complex[i].neighbors[2];
end

end
end

end
end

Note. In the construction of the dual graph, we could allow the connection of a
3-simplex to itself. In that case, every 3-simplex A would be its neighbor opposite
every vertex. Both constructions are equivalent, as we can easily traverse between
them by allowing/disallowing the self-neighboring property, and it is evident that
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this difference does not change any relevant properties of the dual graph. The
difference between them would require, for example, different implementations of
search algorithms, possibly making one construction favorable over the other for
implementation in the desired programming language.

We end this section with a quick analysis of the algorithm. The algorithm
consists of two parts.

1. The first part initializes the non-associativity complex in the form of all
the 3-simplices and connects pairs of 3-simplices corresponding to the same
non-associative triple to create the first edges of the dual graph. It cycles
through all possible triples of elements of the quasigroup, therefore having
time complexity T1 = O(n3), where n is the order of the quasigroup.

2. The second part connects the remaining 3-simplices to its neighbors, final-
izing the construction of the dual graph. It requires all the 3-simplices to be
already initialized. Therefore, it cannot be run in parallel with the first part.
The time complexity of this part is T2 = O((length(Complex))2) because it
requires checking each pair of 3-simplices for whether they have a common
face. To specify this even more, it follows from the first part of the algo-
rithm that n3 ≤ length(Complex) ≤ 2n3, thus giving us an approximate
time complexity of the second part as a function of n: O(n6) ≤ T2 ≤ O(4n6)

In total, the algorithm has a worst-case time complexity O(4n6 + n3), which
is acceptable for our purposes, where n is relatively small.
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Chapter 4

Global and local properties of
NAC(Q)

This chapter analyzes structural properties on NAC(Q). The first section de-
scribes the relation between G(Q) and the associativity index of Q and answers
the question, whether NAC(Q) is a 3-pseudomanifold, or merely a union of several
3-pseudomanifolds. The question is answered by analyzing the dual graph G(Q)
of the complex for small order quasigroups. The second section describes local
properties of NAC(Q) by studying the properties of links of vertices in NAC(Q).
The findings of this section are the first steps to determining whether singulari-
ties in NAC(Q) can be resolved. The third section calculates Euler characteristic
of links of vertices in NAC(Q) in order to classify neighborhoods of vertices by
their genus.

4.1 Properties of G(Q)

4.1.1 Size of G(Q) and its relation to associativity index
Having constructed NAC(Q) and subsequently its dual graph G(Q) by Algorithm 1,
we extract the number of nodes in G(Q) using the following elementary algorithm.

Algorithm 2: Count number of nodes in G(Q)
Input : Complex = array of Simplex
Output: m = number of 3-simplices
begin

m = length(Complex);
end

Because the nodes of G(Q) (represented by 3-simplices of NAC(Q)) are stored
in an array, their count is returned in constant time O(1). However, despite
its simplicity, the algorithm provides us with valuable information about the
quasigroup.

To get first information about the structure of non-associativity complexes of
small quasigroups, we start by building the complexes for every quasigroup of
order up to 6 and counting nodes in their dual graphs.

The most challenging part - generating representatives for all possible quasi-
groups - was accomplished by generating Latin squares isomorphic to Latin
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squares of loops using brute force. We started with Latin square representatives
of loops parsed from data by McKay, and for each representative of a loop and
each possible permutation of rows and columns that fixates the first row and the
first column, a Latin square representing a quasigroup was formed. This method
provides us with a list of representatives of each quasigroup (though with numer-
ous duplicities). By permuting rows and columns, we can transform the Caley
table of a quasigroup to have element 0 in the top left corner. Our algorithm,
therefore, returns a representative for every quasigroup of the given order.

The algorithm is much faster than backtracking since it does not require check-
ing whether the obtained Latin squares are valid because every table generated
from a multiplication table of a loop by permuting its rows and columns is nec-
essarily a Latin square.

Table 4.1 lists all possible counts of nodes of which G(Q) can consist for Q of
order n.

n 1 2 3 4 5

|G(Q)|

0 0 0 0 0 140 160 180 200 220
36 64 72 142 162 182 202

80 90 144 164 184 204
96 92 146 166 186 206

102 148 168 188 208
124 150 170 190 210
126 152 172 192 212
132 154 174 194 214
136 156 176 196 216
138 158 178 198 218

n 6

|G(Q)|

0 160 190 220 246 272 298 324 350 376
54 162 192 222 248 274 300 326 352 378
64 164 196 224 250 276 302 328 354 380
88 166 198 226 252 278 304 330 356 382
96 168 200 228 254 280 306 332 358 384

108 170 204 230 256 282 308 334 360 386
112 172 206 232 258 284 310 336 362 388
128 176 208 234 260 286 312 338 364 390
136 178 210 236 262 288 314 340 366 392
144 180 212 238 264 290 316 342 368 394
148 182 214 240 266 292 318 344 370 400
150 184 216 242 268 294 320 346 372
158 188 218 244 270 296 322 348 374

Table 4.1: Possible counts of nodes in G(Q) for quasigroups Q of size n.
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The numbers in 4.1 may appear seemingly complicated and random, but
Proposition 15 explains, that |G(Q)| corresponds to a(Q) by the following re-
lation:

a(Q) = n3 − |G(Q)|
2 . (4.1)

The values in Table 4.1, therefore, uniquely describe all possible values of a(Q) for
Q of order n. The set of all such values for n is called the associativity spectrum
of n and denoted assspec(n). We have:

assspec(1) = {1}
assspec(2) = {8}
assspec(3) = {9, 27}
assspec(4) = {16, 24, 32, 64}
assspec(5) = {15, ..., 57, 59, 62, 63, 74, 79, 80, 89, 125}
assspec(6) = {16, 19, ..., 114, 116, ..., 118, 120, ..., 122, 124, ..., 128, 130, ...

..., 137, 141, 142, 144, 148, 152, 160, 162, 168, 172, 184, 189, 216}

(4.2)

Our calculations independently verify the findings of Ježek and Kepka (1990).

4.1.2 Connected components of G(Q) and strong connec-
tivity of NAC(Q)

This subsection aims to answer the question of the strong connectivity of NAC(Q).
It accomplishes this by analyzing the connectivity of G(Q) for small order quasi-
groups. First, we formulate a corollary of Theorem 19 in context of G(Q).
Corollary. (a) G(Q) is a 4-regular graph.

(b) Every component K of G(Q) consists of at least 5 vertices.

Proof. Follows immediately from Theorem 19 by translating the relevant parts
according to the correspondence between 3-simplices of NAC(Q) and nodes of G(Q)
(see Subsection 3.3.5).

□
The following proposition describes the relation between the order of Q, a(Q),

the number of edges of G(Q) and components of G(Q).

Proposition 20. Let G(Q) = (V, E) be the dual graph of NAC(Q) for a quasigroup
Q of order n. Then

|E| = 2|V | =
∑︂

X component of G(Q)
2|X| = 4(n3 − a(Q)). (4.3)

Proof. Follows from the previous Corollary and Proposition 15.

□
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We will now describe an algorithm, that for a given complex NAC(Q) returns
an array of integers containing the sizes of all components of the dual graph G(Q).
To do this, we first need to expand the data type Simplex from Section 3.5 to
also include a boolean attribute visited (with initial value = False). With this
adjustment, we present a Depth-First Search (DFS) version of the algorithm:

Algorithm 3: DFS visit every vertex in a component
Input : Complex = array of Simplex, simplex, temp = array of Simplex
Output: temp
begin

simplex.visited := True;
append simplex to temp;
for i := 0 to 3 do

for j := 0 to length(simplex.neighbors[i]) do
if Complex[simplex.neighbors[i][j]].visited = False then

temp := DFS(Complex, Complex[simplex.neighbors[i][j]],
temp);

end
end

end
end

Algorithm 4: Return component sizes
Input : Complex = array of Simplex
Output: ComponentSizes = array of integers
begin

ComponentSizes := [ ];
for i := 0 to length(Complex) - 1 do

if Complex[i].visited = False then
temp := [ ];
append length(DFS(Complex, Complex[i], temp)) to
ComponentSizes;

end
end

end

If needed, Algorithm 4 can be easily modified to save entire components of
G(Q) instead of their sizes.

The time complexity of DFS is well known, O(|V | + |E|). More interestingly,
thanks to Proposition 20, we may also describe the time complexity in terms of
the number of vertices of G(Q) = (V, E) (or equivalently in terms of number of 3-
simplices of NAC(Q)) as O(3|V |). From Proposition 19 we also get time complexity
in terms of |Q| = n and a(Q): O(3|V |) = O(6(n3 − a(Q))). Finally, because
a(Q) ≥ n, we obtain an upper bound for the time complexity O(6n3 − 6n) =
O(6n(n2 − 1)).

Algorithm 4 was run on the same data set as Algorithm 2. Appendix A extends
the data from Table 4.1 by enlisting every possible configuration of component
sizes in G(Q) for Q of order up to 6 (orders up to 5 are discussed separately
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because of their simplicity, and possibilities for order 6 are listed in Table 8). For
every unique configuration with more than one component, a single representing
Latin square was saved in order to be studied later.

In our implementation, we first generated Latin square representatives of all
quasigroups and then ran Algorithm 4 in a single thread Python 3.9 applica-
tion. This approach is suboptimal for several reasons - parallelization is possible
when generating Latin square representatives of quasigroups, and the data set of
the Latin squares needed for further calculations will be impossibly large from n
around 9. Therefore, a much better implementation would be one that sequen-
tially generates a Latin square and then calculates component sizes for the dual
graph of its complex.

The calculations proved the following theorem about the structure of NAC(Q):
Theorem 21. G(Q) is not necessarily connected. Generally, NAC(Q) is not
strongly connected. It is, therefore, merely a union of 3-pseudomanifolds.

Proof. Computationally using Algorithm 4. The smallest order of Q, for which
G(Q) can be disconnected, is n = 4. Several examples of Q, for which NAC(Q) is
not strongly connected, are listed in Appendix B.

□

4.2 Local properties of NAC(Q)
Understanding the global structural properties of NAC(Q) is complicated. NAC(Q)
cannot be embedded in 3D, making it very difficult to visualize it as the union
of 3-pseudomanifolds. No classification of 3-pseudomanifolds is known (see Sub-
section 2.3.2), therefore making it difficult to categorize the non-associativity
complexes of different Q by common structural properties. Finally, as discussed
in Subsection 2.3.2, singularities in 3-pseudomanifolds can be very complicated
and are not always resolvable.

We believe that being able to address these problems for NAC(Q) and solving
them could lead to finding invariant properties of the complex and form criteria
that would grant or deny the existence of maximally non-associative quasigroups
for some orders n.

The main result of this thesis is presented in the following two sections and
addresses the aforementioned problems locally. In this section, we derive the-
oretical observations about links of vertices in NAC(Q). These observations are
used in the following section to develop an algorithm to resolve singularities in
vertex neighborhoods (links) and calculate the Euler characteristic and genus of
the links.

We begin by describing the structure of links of vertices in NAC(Q).
Proposition 22. Let A be a vertex in NAC(Q). Lk A is a union of closed ori-
entable 3-vertex-colorable 2-pseudomanifolds.

Proof. Follows from the fact that Lk A is induced from NAC(Q), and the fact that
NAC(Q) is a union of closed orientable 3-pseudomanifolds according to Theorem
19:
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• It is a union of closed and non-branching 2-complexes with dimensional
homogenity. This follows from the definition of link (Definition 29), because
two 2-faces in Lk A share an edge if and only if the 3-simplexes in NAC(Q)
from which they are induced share a 2-face. This also implies orientability
because if two 3-simplices with a common vertex A are consistently oriented,
then the induced 2-faces in Lk A are consistently oriented.

• 3-vertex-colorability follows from the fact, that Lk A is (in case of NAC(Q)) a
subcomplex of st A, because st A is 4-vertex-colorable and A is the common
vertex of all 3-simplices of st A.

□
The previous proposition naturally raises the question of whether Lk A is

strongly connected. As it turns out, not necessarily.

Proposition 23. Let A be a vertex in NAC(Q). Lk A is not necessarily strongly
connected, therefore, generally not a 2-pseudomanifold, but merely a union of
2-pseudomanifolds.

Proof. Computationally, using an algorithm similar to Algorithm 4 for the
dual graphs of links of vertices in NAC(Q). The links and their dual graphs can
be easily obtained from data exported from 1 (from all 3-simplices containing
the fixed vertex, we generate an array of 2-faces to form the link and then con-
nect them to form the dual graph of the link by including relevant connections
from G(Q)). Table 11 provides an example of quasigroup with links of vertices
not strongly connected. It was found using this method by searching the repre-
sentatives of quasigroups with disconnected G(Q) created in the previous section.

□
To end this section, we formulate a critical theorem and a proposition about

the structures of neighborhoods of vertices in Lk A. They are, for the most
part, direct applications of Theorem 7 and Proposition 8 for the case of NAC(Q)
and they enable us to formulate an algorithm to normalize Lk A by cutting at
singularities. This normalization algorithm will turn a union of 2-pseudomanifolds
into several disjoint 2-manifolds, which we can classify by calculating their genus
and identifying intersection points of these components in Lk A. This process
will yield us with the description of links and is the first step toward resolving
singularities in the entirety of NAC(Q).

Theorem 24. Let A be a vertex in NAC(Q) and B be a vertex in Lk A. Then link
of B in Lk A (denoted LkA B) is a union of disjoint cycles of even length.

Proof. By Proposition 22, Lk A is a union of closed orientable 3-vertex-colorable
2-pseudomanifolds.

If B belongs to only one of these 2-pseudomanifold parts of Lk A, then by
Theorem 7 LkA B is a union of disjoint cycles. However, Theorem 7 does not
hold for a union of closed 2-pseudomanifolds (the link of a vertex in a union of
closed 2-pseudomanifolds forms cycles that need not be disjoint), as can be easily
observed. Proving that LkA B is a union of disjoint cycles must, therefore, be
done using a different method.
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Without loss of generality assume LkA B is induced from all 3-simplices of
form [A, B, y, z], because LkA B is a neighborhood of a fixed vertex in Lk A.
Choose a pair of cycles C1, C2 in LkA B. Assume C1, C2 have a common vertex
C (without loss of generality assume the 3-simplices in NAC(Q) containing the
point A, B, C are of form [A, B, C, z]). Let P1, Q1 be the neighbors of C in C1
and P2, Q2 be the neighbors of C in C2, as shown in Figure 4.1.

Figure 4.1: Cycles C1, C2 in LkA B with a common vertex C.

In the illustration, an edge between B and a vertex in one of the cycles rep-
resents a 2-face of the 3-simplices [A, B, C, z] in NAC(Q) given by vertices A, B, C
and a triangle represents a 3-simplex in NAC(Q). For example, BC actually rep-
resents the 2-face ABC, and similarly, for example, the triangle BCP1 represents
the 3-simplex [A, B, C, P1].

It follows from Proposition 16 that a vertex in LkA B has exactly two different
neighbors, because every 2-face in NAC(Q) is shared by exactly two 3-simplices.
This holds in our situation, where we fix two of the vertices of the 2-face and then
search for neighbors of the third vertex in LkA B. To formalize this idea, F and
G are neighbors of C in LkA B if and only if [A, B, C, F ] and [A, B, C, G] share a
2-face in NAC(Q), and by Proposition 16 and reasoning earlier in this paragraph
we get that F and G are the only neighbors of C in LkA B.

Because of this, components in LkA B are non-branching. Therefore, if C1 and
C2 share vertex C, they belong to the same component of LkA B and are therefore
identical (if they were not, a branching would have to occur in a common point
of C1 and C2, but that cannot happen).

Finally, LkA B is orientable because its orientability is induced from the ori-
entability of Lk A (analogous reasoning was performed in the first part of the
proof of Proposition 22). The even length of the cycles follows from their ori-
entability.

□
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Proposition 25. Let A be a vertex in NAC(Q) and B be a vertex in Lk A. Choose
a cycle C in LkA B and suppose LkA B \ C ̸= ∅. Modify Lk A using the following
two steps:

1. create a new 1-skeleton by connecting a new vertex B̃ with every vertex in
C and disconnecting B from every vertex in C,

2. perform an operation of closure on the new 1-skeleton.

This process creates a modified version of Lk A by ”cutting at singularity B” once.
Repeating this process a finite number of times transforms Lk A into a union of
disjoint closed 2-manifolds.

Proof. The proposition is a special case of Proposition 8 for S = Lk A, because
Lk A satisfies the requirements of Proposition 8.

□

4.3 Euler characteristic of links

4.3.1 Algorithm
Propositions 22 and 23, Theorem 24 and Proposition 25 allow us to describe and
classify links of vertices in NAC(Q) in three steps:

1. determine singularities in the given link, i.e. vertices with links consisting
of several cycles,

2. normalize the link, i.e. transform it into a union of disjoint 2-manifolds
using a sequence of cuts, as described in Proposition 25,

3. calculate the genus of each of them.

Every 2-manifold in this union is orientable, because the process described in
Proposition 25 does not change orientability. According to Proposition 10 we
can, therefore, calculate the genus of the 2-manifold from its Euler characteristic
as

g = 1 − χ

2 , (4.4)

where χ is the Euler characteristic of the 2-manifold.
To calculate Euler characteristic and genus of each component in the link of

vertex A in NAC(Q) and their identified vertices, only the 1-skeleton of Lk A is
needed. Theorem 24 and Proposition 25 explain, why this important observation
holds.

To transform the link of a vertex in NAC(Q), a union of 2-pseudomanifolds, into
a union of 2-manifolds, we need to cut at singularities until there are no singu-
larities left. Cutting at a singularity, a step described in Proposition 25 increases
the number of vertices by one (by creating a copy of vertex in the singularity)
but does not alter the edge count, nor the face count of the link complex, and
neither its orientability. Because of this invariant-preserving property of the step,
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the fact that the link of a vertex in 2-manifold is a cycle, and Theorem 24, the
edge count in each component 2-manifold can be expressed as

e = 1
2

∑︂
v

deg v, (4.5)

where v are vertices in the component because deg v is equal to the length of
the link cycle of v and every edge consists of exactly 2 vertices, The face count
can be always be expressed as a function of edge count, because of the properties
of 2-pseudomanifolds - every edge belongs to precisely two faces, and each face
has precisely three edges, leading to the relation between the counts of edges and
faces

f = 2
3 · e. (4.6)

The last issue remaining to address is the after-cut singularity identification. To
fully understand the properties of the link, it is necessary to be able to glue
the 2-pseudomanifold back together from the normalized parts, i.e., identify the
vertices in the union of 2-manifolds in a way that forms the original union of
2-pseudomanifolds. To see how this can be encapsulated in the 1-skeleton and
preserved throughout the cut steps, it is only important to realize that the copy
created by the cut will have the same position (i.e., the same y in the pair [x, y]
describing the vertex) as the original, and we have to preserve the information
about the value (i.e., the x in [x, y]). Because the values of x are from the range
{0, ..., |Q| − 1}, by naming the copy [x̃, y] of the vertex [x, y] in such way that
x̃ ≡ x (mod |Q|), the new vertex will keep the information about its origin.
Conversely, when reconstructing the link from the 2-manifold components, we
will identify vertices [x, y] with the same value of y and values of x congruent
modulo the order of the quasigroup.

The following algorithm utilizes the reasoning from this section:

Algorithm 5: Normalize Lk A

Input : S = 1-skeleton of Lk A, |Q|
Output: S ′ = 1-skeleton of normalized Lk A
begin

k := 0;
S ′ := S;
n := |Q|;
for node v = [v1, v2] in S do

if neighbors of v in S ′ form ≥ 2 cycles then
for each cycle do

k += 1;
append a copy vk = [v1 + n · k, v2] of v = [v1, v2] to S ′;
for vertex w in cycle do

disconnect v and w;
connect vk and w;

end
end

end
end

end
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The output from Algorithm 5 can be easily analyzed to reveal the structural
type of Lk A:

• The output consists of several disjoint graphs. Therefore the count of ver-
tices and edges in the output can be determined using graph search al-
gorithms such as DFS. As mentioned earlier in this section, the counts of
vertices and edges uniquely determine the genus of the component.

• The information about resolved singularities is stored in the names of the
vertices, making it convenient to glue the components back together.

4.3.2 Examplary calculations
For the quasigroup given by Table 4.2 (also listed in Appendix B as Table 9) (the
order of this quasigroup is 4), we describe the structure of Lk [1, 1] and Lk [1, 2].

0 1 2 3
0 0 3 2 1
1 1 2 3 0
2 2 1 0 3
3 3 0 1 2

Table 4.2: A quasigroup of order 4 with G(Q) consisting of four 16-vertex com-
ponents.

Note. [1, 1] means value 1 at position 1. [a, b, c, d] is a shortened notation for the
3-simplex {[a, 1], [b, 2], [c, 3], [d, 4]}.

Structure of Lk [1, 1]

The non-associativity complex contains the following 3-simplices with fixed vertex
[1, 1]: [0, 1, 1, 0], [0, 1, 1, 2], [0, 1, 3, 0], [0, 1, 3, 2], [1, 1, 1, 1], [1, 1, 1, 3],
[1, 1, 3, 1], [1, 1, 3, 3], [2, 1, 1, 0], [2, 1, 1, 2], [2, 1, 3, 0], [2, 1, 3, 2], [3, 1, 1, 1], [3, 1, 1, 3],
[3, 1, 3, 1], [3, 1, 3, 3]. Lk [1, 1] is induced from these 3-simplices.

The vertex set of Lk[1, 1] can be obtained by taking every vertex at positions
0, 2, 3 in these 3-simplices. Lk [1, 1] contains 10 different vertices: [0, 0], ..., [3, 0],
[1, 2], [3, 2], [0, 3], ..., [3, 3].

To normalize the link, we look at links of each of the vertices in Lk [1, 1]
and more specifically at the cycles of 3-simplices in the non-associativity complex
from which they are induced. For every vertex in Lk [1, 1], we obtain several
cycles of 3-simplices where every two neighboring 3-simplices share a 2-face and
all of these 3-simplices have a fixed vertex [1, 1]:
Lk[1,1] [0, 0]: [0, 1, 1, 2] ↔ [0, 1, 1, 0] ↔ [0, 1, 3, 0] ↔ [0, 1, 3, 2] ↔ [0, 1, 1, 2]
Lk[1,1] [1, 0]: [1, 1, 1, 1] ↔ [1, 1, 1, 3] ↔ [1, 1, 3, 3] ↔ [1, 1, 3, 1] ↔ [1, 1, 1, 1]
Lk[1,1] [2, 0]: [2, 1, 1, 0] ↔ [2, 1, 1, 2] ↔ [2, 1, 3, 2] ↔ [2, 1, 3, 0] ↔ [2, 1, 1, 0]
Lk[1,1] [3, 0]: [3, 1, 1, 1] ↔ [3, 1, 1, 3] ↔ [3, 1, 3, 3] ↔ [3, 1, 3, 1] ↔ [3, 1, 1, 1]
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Lk[1,1] [1, 2]:

1. [0, 1, 1, 0] ↔ [0, 1, 1, 2] ↔ [2, 1, 1, 2] ↔ [2, 1, 1, 0] ↔ [0, 1, 1, 0]

2. [1, 1, 1, 1] ↔ [1, 1, 1, 3] ↔ [3, 1, 1, 3] ↔ [3, 1, 1, 1] ↔ [1, 1, 1, 1]

Lk[1,1] [3, 2]:

1. [0, 1, 3, 0] ↔ [0, 1, 3, 2] ↔ [2, 1, 3, 2] ↔ [2, 1, 3, 0] ↔ [0, 1, 3, 0]

2. [1, 1, 3, 1] ↔ [1, 1, 3, 3] ↔ [3, 1, 3, 3] ↔ [3, 1, 3, 1] ↔ [1, 1, 3, 1]

Lk[1,1] [0, 3]: [0, 1, 1, 0] ↔ [0, 1, 3, 0] ↔ [2, 1, 3, 0] ↔ [2, 1, 1, 0] ↔ [0, 1, 1, 0]
Lk[1,1] [1, 3]: [1, 1, 1, 1] ↔ [1, 1, 3, 1] ↔ [3, 1, 3, 1] ↔ [3, 1, 1, 1] ↔ [1, 1, 1, 1]
Lk[1,1] [2, 3]: [0, 1, 1, 2] ↔ [0, 1, 3, 2] ↔ [2, 1, 3, 2] ↔ [2, 1, 1, 2] ↔ [0, 1, 1, 2]
Lk[1,1] [3, 3]: [1, 1, 1, 3] ↔ [1, 1, 3, 3] ↔ [3, 1, 3, 3] ↔ [3, 1, 1, 3] ↔ [1, 1, 1, 3]

There are two singularities, namely vertices [1, 2] and [3, 2], which have to
be normalized. Algorithm 5 performed on Lk [1, 1] cuts at [1, 2] and [3, 2] and
changes the 3-simplices [1, 1, 1, 1], [1, 1, 1, 3], [3, 1, 1, 3], [3, 1, 1, 1] for
[1, 1, 5, 1], [1, 1, 5, 3], [3, 1, 5, 3], [3, 1, 5, 1], and the 3-simplices [1, 1, 3, 1], [1, 1, 3, 3],
[3, 1, 3, 3], [3, 1, 3, 1] for [1, 1, 11, 1], [1, 1, 11, 3], [3, 1, 11, 3], [3, 1, 11, 1].

The modified link induced from the updated 3-simplices consists of two dis-
joint components of 6 vertices:

1. [0, 0], [2, 0], [1, 2], [3, 2], [0, 3], [2, 3]

2. [1, 0], [3, 0], [5, 2], [11, 2], [1, 3], [3, 3].

The two components can be glued back together by identifying pairs of vertices
with identical positions (y in [x, y]) and values at the position (x in [x, y]) con-
gruent modulo order of the quasigroup. In our case, this means identifying the
pairs [1, 2] − [5, 2] and [3, 2] − [11, 2].

Finally, we calculate the Euler characteristic of each of the components and
their genera. Each of the components is orientable because the algorithm does
not change orientability. We get v = 6 vertices in each of the components and
each of these vertices has 4 neighbors (because the number of neighbors of a
vertex in the modified link is equal to the length of the link cycle of the vertex
in the modified link). Every edge has two vertices, giving us e = 4×6

2 = 12
edges in each component. Lastly, every face consists of 3 edges and every edge
belongs to exactly two faces. This yields us f = 2×12

3 = 8 faces in each component.
Therefore, each component has Euler characteristic χ = v−e+f = 6−12+8 = 2.
By Proposition 10, because the components are orientable, we get χ = 2 − 2g,
from which we obtain g = 2.

To summarize, Lk [1, 1] is a union of two spheres identified at points [1, 2] and
[3, 2] (illustrated in Figure 4.2).
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Figure 4.2: Visualization of Lk [1, 1] in the non-associativity complex of the
quasigroup given by Table 9.

Structure of Lk [1, 2]

Lk [1, 2] contains 12 vertices: [0, 0]...[3, 0], [0, 1]...[3, 1], [0, 3]...[3, 3]. By analyzing
links of these vertices in Lk [1, 2], we see that the link of each vertex consists of
two cycles of length 4, therefore every vertex is a singularity obtained by gluing
two vertices. Using Algorithm 5, we cut at each of the singularities to obtain a
modified link of [1, 2]. The modified link consists of 24 vertices divided into four
disjoint components of 6 vertices:

1. [0, 0], [2, 0], [0, 1], [2, 1], [1, 3], [3, 3]

2. [4, 0], [14, 0], [1, 1], [3, 1], [0, 3], [2, 3]

3. [1, 0], [3, 0], [20, 1], [30, 1], [36, 3], [46, 3]

4. [9, 0], [19, 0], [25, 1], [35, 1], [41, 3], [51, 3]

The disjoint components can be glued together by identifying the following pairs:

• 1. and 2.: [0, 0] − [4, 0] and [2, 0] − [14, 0]
• 1. and 3.: [0, 1] − [20, 1] and [2, 1] − [30, 1]
• 1. and 4.: [1, 3] − [41, 3] and [3, 3] − [51, 3]
• 2. and 3.: [0, 3] − [36, 3] and [2, 3] − [46, 3]
• 2. and 4.: [1, 1] − [25, 1] and [3, 1] − [35, 1]
• 3. and 4.: [1, 0] − [9, 0] and [3, 0] − [19, 0]
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Euler characteristic and genera are the same for all of the components: Every
components consists of v = 6 vertices connected by e = 12 edges and forming
f = 8 triangles, therefore χ = 2 and g = 0 for each component.

To summarize, Lk [1, 2] is a union of four spheres such that every vertex of
Lk [1, 2] connects exactly 2 spheres and each pair of spheres is connected via
exactly 2 vertices. A visualization could be obtained in a way similar to the case
of Lk [1, 1], though the increased number of components and singularities would
render the visualization very cluttered.

4.3.3 Computational results
Using the methodology of Subsection 4.3.1, a Python 3.9 script was developed
to automate the calculations of structural properties of the links of vertices in
NAC(Q). Given a Latin square representing a quasigroup Q, the algorithm returns
the following information about every component of the normalized link of each
vertex in NAC(Q):

• names of vertices in the component,

• the number of vertices, edges, and faces in the component,

• Euler characteristic of the component
and

• genus of the component.
As the last result of this thesis, we present data about interesting examples of
small order quasigroups listed in Appendix B obtained using the Python script.

Example of order 4

0 1 2 3
0 0 3 2 1
1 1 2 3 0
2 2 1 0 3
3 3 0 1 2

Table 4.3: A quasigroup of order 4 with G(Q) consisting of four 16-vertex com-
ponents (also listed as Table 9).

The links of vertices in the non-associativity complex of this quasigroup are one
of the following three types:

1. The empty complex (in case of vertices [0, 2] and [2, 2]). This means that
all triples of forms a, b, 0 and a, b, 2 are associative.

2. A union of four spheres (in case of vertices [1, 2] and [3, 2]). These spheres
have 6 vertices, 12 edges, and 8 faces and are joined in a way that every
pair of spheres is glued in precisely 2 vertices of the same color (i.e., with
the same y in [x, y]) and every singularity is an intersection of exactly two
spheres. As it turns out, every vertex in the complex is a singularity.
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3. A union of two spheres. These spheres have vertex-edge-face configuration
6-12-8 and are joined in two vertices of the same color.

Examples of the types of links mentioned above have been shown in the previous
subsection.

Example of order 5

0 1 2 3 4
0 0 1 2 3 4
1 4 0 1 2 3
2 3 4 0 1 2
3 2 3 4 0 1
4 1 2 3 4 0

Table 4.4: A quasigroup of order 5 with G(Q) consisting of two 100-vertex com-
ponents (also listed as Table 10).

The links of vertices in the non-associativity complex of this quasigroup are one
of the following three types:

1. The empty complex (in case of vertex [0, 0]),

2. A 6-torus with vertex-edge-face configuration 15-75-50 (in case of vertices
[0, 1]...[0, 4]).

3. A union of two spheres with vertex-edge-face configurations 12-30-20 (in
case of vertices [0, 1], ...[4, 1], [0, 2], ..., [4, 2], [0, 3], ...[4, 3]). The two spheres
are joined in 10 vertices (all vertices of color other than 0).

Example of order 6

0 1 2 3 4 5
0 0 1 3 2 5 4
1 1 0 2 3 4 5
2 3 5 4 1 2 0
3 2 4 5 0 3 1
4 4 3 0 5 1 2
5 5 2 1 4 0 3

Table 4.5: A quasigroup of order 6 with G(Q) consisting of seven components of
sizes 16, 16, 16, 16, 16, 16, 200 (also listed as Table 11).

The following table lists the vertex-edge-face configurations and genera of com-
ponents of the normalized links of vertices in the non-associativity complex of
this quasigroup.
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Type #V #E #F Genus Surface #Comps Vertices with this Lk
1 6 12 8 0 sphere x4 [0, 0], [1, 0], [0, 2]

2 6 12 8 0 sphere x3 [3, 1]10 24 16 0 sphere x1

3 6 12 8 0 sphere x4 [4, 2]10 24 16 0 sphere x2

4 6 12 8 0 sphere x3 [5, 1], [3, 2]12 30 20 0 sphere x1

5 6 12 8 0 sphere x3 [2, 1]14 36 24 0 sphere x1

6 6 12 8 0 sphere x4 [1, 1]14 36 24 0 sphere x1

7 6 12 8 0 sphere x2 [4, 3], [5, 3]15 39 26 0 sphere x1

8 6 12 8 0 sphere x4 [0, 3], [1, 3]15 39 26 0 sphere x1

9 6 12 8 0 sphere x3 [4, 0], [5, 0]18 48 32 0 sphere x1

10 6 12 8 0 sphere x2 [5, 2]20 54 36 0 sphere x1

11 6 12 8 0 sphere x1 [2, 3], [3, 3]20 60 40 1 torus x1

12 6 12 8 0 sphere x2 [0, 1]20 60 40 1 torus x1

13 6 12 8 0 sphere x1 [4, 1]20 66 44 2 2-torus x1

14 6 12 8 0 sphere x2 [2, 2]24 72 48 1 torus x1

15 6 12 8 0 sphere x1 [2, 0], [3, 0]24 78 52 2 2-torus x1
16 12 30 20 0 sphere x2 [1, 2]

Table 4.6: Structural types of the links of vertices in the non-associativity com-
plex.
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Maximally non-associative quasigroup of order 9

0 1 2 3 4 5 6 7 8
0 0 3 6 2 7 4 1 8 5
1 7 1 4 5 0 8 3 2 6
2 5 8 2 6 3 1 7 4 0
3 4 2 8 3 6 0 5 1 7
4 6 5 0 1 4 7 8 3 2
5 1 7 3 8 2 5 0 6 4
6 8 4 1 7 5 2 6 0 3
7 2 6 5 0 8 3 4 7 1
8 3 0 7 4 1 6 2 5 8

Table 4.7: A maximally non-associative quasigroup of order 9 discovered by
Drápal and Valent (2020) (also listed as Table 12).

There exist only two types of links of vertices in the non-associativity complex of
this quasigroup:

1. Type [x, 0]: the normalized links of vertices of form [x, 0] and [x, 2] have
vertex-edge-face configuration 48-240-160. This means their genus is 17 -
the normalized links are 17-tori.
For every vertex of this form, the link includes all 27 vertices of the remain-
ing colors (for example, the link of vertex [4, 2] includes all vertices [x, y]
with y ̸= 2) and can be reconstructed from the normalized link by gluing
the cut singularities of the links back together.
For y = 0, 2, the singularities in Lk [x, y] can be described as follows:
vertices [x, 1] and [x, 3] are one-fold singularities, vertices [z, w], z ̸= x, w ∈
{0, 2} \ {y} are two-fold singularities and vertex [x, w], w ∈ {0, 2} \ {y} is a
three-fold singularity.
We illustrate the singularities in links of Type [x, 0] on an example of
Lk [4, 2]:

• vertices of form [z, 1], [z, 3] for z ̸= 4 are not singularities,
• vertices [4, 1] and [4, 3] are one-fold singularities,
• vertices of form [z, 0] for z ̸= 4 are two-fold singularities,
• vertex [4, 0] is a three-fold singularity.

2. Type [x, 1]: the normalized links of vertices of form [x, 1] and [x, 3] have
vertex-edge-face configuration 46-240-160. Therefore, their genus is 18 - the
normalized links are 18-tori.
As in the previous case, for every vertex of this form, the link includes all
vertices of the remaining colors and can be reconstructed from the normal-
ized link by gluing the cut singularities.
For y = 1, 3, the singularities in Lk [x, y] can be described as follows:
vertices [x, 0], [x, 2] and [x, w], w ∈ {1, 3}\{y} are one-fold singularities and
vertices [z, w], z ̸= x, w ∈ {1, 3} \ {y} are two-fold singularities.
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We illustrate the singularities in links of Type [x, 1] on an example of
Lk [6, 1]:

• vertices of form [z, 0], [z, 2] for z ̸= 6 are not singularities,
• vertices [6, 0], [6, 2] and [6, 3] are one-fold singularities,
• vertices of form [z, 3] for z ̸= 6 are two-fold singularities.

Unlike in the previous examples, the two types of links are very similar -
both types contain 27 vertices, the largest possible amount, both types consist
of a single strongly connected component, and they are structurally very similar,
differing only in a link of a single significant vertex. We believe these properties
are directly related to the (maximal) non-associativity of the quasigroup; however,
the precise nature of this relation is yet to be unveiled.
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Conclusion

The purpose of this thesis was to start investigations of associative properties of
quasigroups using methods of combinatorial topology.

We began the text by presenting the most recent results regarding the ex-
istence of maximally non-associative quasigroups and then hinted at a possible
cryptographic application of quasigroups with small associativity indexes.

Using the theory of abstract simplicial complexes and combinatorial surfaces
presented in Chapter 2, we proposed construction of a 3-dimensional abstract
simplicial complex NAC(Q) from non-associative triples of a finite quasigroup Q
in Chapter 3. We have shown in Proposition 15 that the size of NAC(Q) has a direct
link to the number of associative triples of Q and later, throughout the section,
we have shown that NAC(Q) is a union of closed orientable 3-pseudomanifolds.
This property of NAC(Q) has been summarized in the resulting theorem of the
chapter, Theorem 19.

The third chapter also presented an algorithm to build NAC(Q) and its dual
graph G(Q). By computationally analyzing the structure of G(Q) using a Python
3.9 program we have independently verified the findings of Ježek and Kepka
(1990) regarding the associativity spectrum of n for n ≤ 6 in Subsection 4.1.1 and
discovered a complete classification of size configurations of strongly connected
components in NAC(Q) for |Q| ≤ 6 in Subsection 4.1.2. This result, listed as
Theorem 21, is backed by computational data in Appendix A.

Understanding the global structural properties of NAC(Q) is complicated be-
cause of its almost impossible visualization, no known classification of 3-pseudo-
manifolds (see Subsection 2.3.2) and complex singularities. We believe that the
resolvability of singularities in NAC(Q) could be closely related to the existence
of maximally non-associative quasigroups for some orders n. The main result of
the thesis, presented in Sections 4.2 and 4.3, focuses on neighborhoods of vertices
in NAC(Q) to describe NAC(Q) locally and is the first step towards determining
whether the singularities in NAC(Q) can be resolved.

Theorem 24 discovers that links of vertices in NAC(Q) have only solvable sin-
gularities, which enables us to formulate Proposition 25, that describes a way
in which links of vertices in NAC(Q) can be normalized, i.e., transformed from a
union of closed orientable 2-pseudomanifolds into a union of disjoint closed ori-
entable 2-manifolds. The theoretical results of Section 4.2 are used in Section
4.3 to describe Algorithm 5 to normalize the link of a vertex in NAC(Q), from
which we can calculate Euler characteristic and genus for each of the disjoint
components of the normalized link.

The rest of the chapter performs exemplary calculations using this method on
examples of quasigroups of small order listed in Appendix B. The analyses show
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great diversity in types of possible links. However, the exemplary case of maxi-
mally non-associative quasigroup of order 9 shows a large amount of symmetry in
a relatively simple structure, which motivates further effort to address the topic
through methods similar to our thesis.

In future work, we aim to continue our efforts regarding the study of resolv-
ability of singularities in NAC(Q), which may require further investigation of the
structure of vertex links. An approach using means of simplicial homology may
also be used in the future to tackle the problem of the existence of maximally non-
associative quasigroups of the remaining orders. These approaches will require
a substantial amount of work; however, we believe they may lead to decisively
answering the question of the existence of maximally non-associative quasigroups
(at least for some orders) in the future.
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vyd. Karolinum, Praha, 2019. ISBN 978-80-246-1740-4.

54



B. McKay. Latin squares. URL https://users.cecs.anu.edu.au/˜bdm/data/
latin.html.
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Appendices

A Components of G(Q)
For |Q| = n ≤ 5, a non-empty G(Q) is always connected, except for two cases:

1. For n = 4, no connected G(Q) with 64 vertices exists, but there exists a
case of G(Q) consisting of 4 components of size 16.

2. For n = 5, there exists not only a connected G(Q) with 200 vertices, but
also one consisting of 2 components of size 100.

All possible configurations for order 6 are listed in Table 8.
A multiplication table of Q has been stored for every possible configuration

of component sizes of G(Q) for all orders up to 6.

Table 8: Possible configurations of sizes of components of G(Q) for Q of order 6.

|G(Q)| Possible configurations of component sizes

0 0
54 54
64 16 16 16 16
88 16 16 56

96 16 16 16 16 16 16
96

108 36 36 36

112 16 16 80
56 56

128 16 16 16 16 16 16 16 16
128

136 16 120
144 144
148 148
150 150
158 158

160 16 16 16 16 16 16 16 16 16 16
160

162 36 36 36 54
54 54 54

164 164
166 166
168 168
170 170
172 172
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|G(Q)| Possible configurations of component sizes

176

16 16 16 16 16 16 80
16 16 16 16 16 96
16 16 16 16 56 56
16 160

176
178 178

180 36 36 36 36 36
180

182 182
184 184
188 188
190 190

192

16 16 16 16 16 16 16 16 16 16 16 16
16 16 16 144
16 16 160

192
196 196
198 198

200

16 16 16 16 16 120
16 16 16 16 56 80
16 16 16 16 136

200
204 204
206 206

208

16 16 16 16 16 16 56 56
16 16 176
16 192

208
210 210

212
16 16 180
16 196

212
214 214

216

16 16 16 16 16 16 16 16 16 16 56
16 16 16 16 152
16 16 184
36 36 36 36 36 36
36 36 36 54 54
54 54 54 54

216
218 218

220 16 204
220

222 16 16 190
222

224

16 16 16 16 16 16 16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16 96
16 16 16 16 16 16 128
16 16 16 16 16 144
16 16 16 16 80 80
16 16 16 16 160

224
226 226
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|G(Q)| Possible configurations of component sizes

228 16 212
228

230 16 16 198
230

232

16 16 16 16 16 16 16 120
16 16 16 16 16 16 56 80
16 16 16 16 16 16 136
16 16 16 16 56 56 56
16 16 16 16 168
16 80 136
16 216

232

234
16 218
36 36 36 36 36 54

234
236 236

238 16 16 206
238

240

16 16 16 16 16 16 16 16 16 16 80
16 16 16 16 16 16 16 16 56 56
16 16 16 16 176
16 16 16 192
16 16 208
16 224
80 160

240

242 16 226
242

244 16 228
244

246
16 16 214
16 230

246

248

16 16 16 16 16 16 152
16 16 16 16 16 168
16 16 16 16 184
16 232
56 192

248

250 16 234
250

252

16 16 16 204
16 16 220
16 236
36 36 36 36 36 36 36

252

254 16 16 222
254
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|G(Q)| Possible configurations of component sizes

256

16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 144
16 16 16 16 16 16 160
16 16 16 16 16 56 120
16 16 16 16 192
16 16 16 208
16 16 80 144
16 16 224
16 240

256

258 16 242
258

260

16 16 16 212
16 16 228
16 244

260

262
16 16 230
16 246

262

264

16 16 16 16 16 184
16 16 16 16 200
16 16 16 216
16 16 232
16 248

264

266
16 16 234
16 250

266

268
16 16 236
16 252

268

270

16 16 16 16 206
16 16 238
16 254
36 36 36 36 36 36 54
36 36 36 54 54 54
54 54 54 54 54

270

272

16 16 16 16 16 16 16 16 144
16 16 16 16 16 16 176
16 16 16 16 16 80 112
16 16 16 16 16 192
16 16 16 16 208
16 16 240
16 256

272

274
16 16 242
16 258

274

276

16 16 16 228
16 16 244
16 260

276
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|G(Q)| Possible configurations of component sizes

278
16 16 16 16 214
16 16 246

278

280

16 16 16 16 16 16 184
16 16 16 16 16 200
16 16 16 16 216
16 16 248
16 264

280

282
16 16 250
16 266

282

284

16 16 16 16 220
16 16 16 236
16 16 252
16 268

284

286
16 16 254
16 270

286

288

16 16 16 16 16 16 16 16 80 80
16 16 16 16 16 208
16 16 16 16 56 168
16 16 16 16 224
16 16 16 240
16 16 256
16 272
36 36 36 36 36 36 36 36
36 36 36 36 36 54 54

144 144
288

290
16 16 258
16 274

290

292

16 16 16 16 228
16 16 16 244
16 16 260
16 276

292

294

16 16 16 16 230
16 16 262
16 278

294

296

16 16 16 16 16 16 200
16 16 16 16 16 216
16 16 16 16 232
16 16 16 248
16 16 264
16 280

296

298
16 16 266
16 282

298
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|G(Q)| Possible configurations of component sizes

300

16 16 16 16 236
16 16 16 252
16 16 268
16 284

300

302

16 16 16 16 238
16 16 270
16 286

302

304

16 16 16 16 16 16 208
16 16 16 16 16 224
16 16 16 16 240
16 16 16 256
16 16 272
16 288

304

306

16 16 16 258
16 16 274
16 290
36 36 36 36 36 36 36 54

306

308

16 16 16 16 244
16 16 16 260
16 16 276
16 292

308

310
16 16 278
16 294

310

312

16 16 16 16 248
16 16 16 264
16 16 280
16 296

312

314
16 16 282
16 298

314

316

16 16 16 268
16 16 284
16 300

316

318
16 16 286
16 302

318

320

16 16 16 16 128 128
16 16 16 16 256
16 16 16 272
16 16 288
16 304
56 264

320

322
16 16 290
16 306

322
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|G(Q)| Possible configurations of component sizes

324

16 16 292
16 308
54 54 54 54 54 54

324

326
16 16 294
16 310

326

328

16 16 16 16 264
16 16 16 280
16 16 296
16 312

328

330
16 16 298
16 314

330

332
16 16 300
16 316

332

334
16 16 302
16 318

334

336

16 16 16 16 272
16 16 304
16 320

336

338
16 16 306
16 322

338

340
16 16 308
16 324

340

342
16 16 310
16 326

342

344

16 16 16 16 280
16 16 312
16 328

344

346
16 16 314
16 330

346

348
16 16 316
16 332

348

350
16 16 318
16 334

350

352

16 16 16 16 288
16 16 320
16 336

352

354
16 16 322
16 338

354
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|G(Q)| Possible configurations of component sizes

356
16 16 324
16 340

356

358 16 342
358

360
16 16 328
16 344

360

362
16 16 330
16 346

362

364
16 16 332
16 348

364

366 16 350
366

368

16 16 16 16 304
16 16 336
16 352

368
370 370
372 372
374 374

376
16 16 344
16 360

376
378 378
380 380
382 382

384 16 16 352
384

386 386
388 388
390 390
392 392
394 394
400 400
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B Examples of small order quasigroups with in-
teresting properties

0 1 2 3
0 0 3 2 1
1 1 2 3 0
2 2 1 0 3
3 3 0 1 2

Table 9: A quasigroup of order 4 with G(Q) consisting of four 16-vertex compo-
nents.

0 1 2 3 4
0 0 1 2 3 4
1 4 0 1 2 3
2 3 4 0 1 2
3 2 3 4 0 1
4 1 2 3 4 0

Table 10: A quasigroup of order 5 with G(Q) consisting of two 100-vertex com-
ponents.

0 1 2 3 4 5
0 0 1 3 2 5 4
1 1 0 2 3 4 5
2 3 5 4 1 2 0
3 2 4 5 0 3 1
4 4 3 0 5 1 2
5 5 2 1 4 0 3

Table 11: A quasigroup of order 6 with G(Q) consisting of seven components of
sizes 16, 16, 16, 16, 16, 16, 200.

0 1 2 3 4 5 6 7 8
0 0 3 6 2 7 4 1 8 5
1 7 1 4 5 0 8 3 2 6
2 5 8 2 6 3 1 7 4 0
3 4 2 8 3 6 0 5 1 7
4 6 5 0 1 4 7 8 3 2
5 1 7 3 8 2 5 0 6 4
6 8 4 1 7 5 2 6 0 3
7 2 6 5 0 8 3 4 7 1
8 3 0 7 4 1 6 2 5 8

Table 12: A maximally non-associative quasigroup of order 9 discovered by Drápal
and Valent (2020).

66


	Introduction
	Quasigroups
	Terminology
	Associativity
	Possible application in cryptography - hash functions

	Combinatorial geometry
	Graphs
	Abstract simplicial complexes
	Basic terminology
	Notable subcomplexes
	Orientation

	Combinatorial (hyper)surfaces
	Manifolds
	Pseudomanifolds
	Colorability
	Dual graphs


	Complex of non-associativity
	Requirements
	Construction
	Trivial properties
	Satisfaction of requirements
	Associative property in the complexes
	Maximal faces and dimensional homogenity
	Number of neighbors
	Dual graph and strongly connected components
	Vertex colorability and cliques
	Face colorability

	Topological structure of NAC(Q)
	Implementation

	Global and local properties of NAC(Q)
	Properties of G(Q)
	Size of G(Q) and its relation to associativity index
	Connected components of G(Q) and strong connectivity of NAC(Q)

	Local properties of NAC(Q)
	Euler characteristic of links
	Algorithm
	Examplary calculations
	Computational results


	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Appendices
	Components of G(Q)
	Examples of small order quasigroups with interesting properties


