
MASTER THESIS

Mahran Emeiri

A tool for configuring knowledge graph
visual browser

Department of Software and Data Engineering

Supervisor of the master thesis: Mgr. Martin Nečaský, Ph.D.

Study programme: Software and Data Engineering

Specialization: Software Engineering

Prague 2021

I declare that I carried out this master thesis independently, and only with the

cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act

No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that

the Charles University has the right to conclude a license agreement on the use of

this work as a school work pursuant to Section 60 paragraph 1 of the Copyright

Act.

In date Mahran Emeiri

This thesis is without a doubt the result of the hard work and support of many

people that have been by my side through this journey.

It has been a tough two years and I could not have made it without my family

who believed in me and kept supporting despite the long distances.

I would also like to express my gratitude to my supervisor Mgr. Martin Nečaský,

Ph.D. for his guidance and patience over the last few months.

Title: A tool for configuring knowledge graph visual browser

Author: Mahran Emeiri

Department: Department of Software Engineering

Supervisor: Mgr. Martin Nečaský, Ph.D, Department of Software Engineering

Abstract: The main aim of this research is to provide a tool that helps users

in creating, managing and validating configuration files visually, then compiles

the user input into a valid RDF representation of the configuration that can be

published as a linked open data resource, these configurations then can be used

as an input to a Knowledge Graph Browser to be visualized as an interactive

Knowledge Graph.

Keywords: knowledge graphs, visual browser, configuration, linked data

Contents

1 Introduction 3

1.1 Related work . 3

1.1.1 Linked data visualization 4

1.1.2 Knowledge graph management 6

1.1.3 Knowledge Graph Visual Browser 7

1.2 Comparison with other tools . 7

1.3 Motivation . 11

1.4 Thesis structure . 12

2 Defining requirements 13

2.1 Configuration file structure . 13

2.2 Analysing the configuration file 15

2.3 Requirements gathering . 21

2.4 The initial requirements . 22

2.5 Data persistence . 23

2.6 User experience . 25

3 System analysis and architecture 27

3.1 The system design . 27

3.2 UI design . 30

3.2.1 Managing configuration files 31

3.2.2 Validating the user input 34

3.2.3 Visualizing the queries . 35

3.2.4 Fetching configuration represented as an LOD resource . . 37

3.2.5 Using meta configurations 39

4 Implementation overview 42

4.1 Front-end module . 43

4.2 KGserver . 46

4.3 Database module . 47

4.4 Back-end module . 48

1

5 Testing 51

5.1 Automated tests . 53

Conclusion 56

Bibliography 58

List of Abbreviations 64

Annex - developer handbook 65

2

1. Introduction

The basic principle of the knowledge graph visual browser is enabling users to

discover different knowledge graphs through different views defined by various

browsing configurations. Real knowledge graphs are often too complex for human

users, at the same time generic tools for knowledge graph visualisation and visual

exploration are quite hard to use, and setting up the configuration for exploring

these graphs could be very tedious and time consuming.

The basic idea was to allow knowledge graph experts to configure a set of sim-

pler views, styles, data sets and vocabulary, so then it can be consumed by the

knowledge graph visual browser, which will use these configuration to generate

an interactive visualized knowledge graph.

This thesis presents the implementation of a tool called Knowledge Graph Brows-

er Configuration Tool which helps to manage and create Knowledge Graph Brows-

er configurations. This tool allows users to create new configuration files, store

them locally on the user’s device or remotely on the hosting server, and visualize

some components.

At the moment of writing of the thesis, the majority of the stated tool features

were developed but given the aim to primarily fulfill the needs of knowledge

graph experts, there is a room for improvements and integrating new features as

required.

1.1 Related work

This thesis combines several research topics in the current software engineering

landscape including linked data visualization, knowledge graph management and

knowledge Graph Visual Browser. The following sections provide an overview of

recent work on these concepts.

3

1.1.1 Linked data visualization

As the Web becomes ever more enmeshed with our daily lives, there is a growing

desire for direct access to raw data not currently available on the Web or bound

up in hypertext documents. [1] Linked data provide the basis for knowledge to be

distributed, networked, and shared. The term Linked Open Data (LOD) refers

to a set of best practices for publishing and interlinking structured data on the

Web. Creating a connection between data and its contexts could lead to the

development of intelligent search engines which could explore the Web, moving

from a keyword-based approach to a meaning-based approach. [2]

The term Linked Data was coined in 2006 from one of the creators of the Web,

Sir Tim BernersLee. At the same time, he published a note1 listing four rules for

publishing LOD.

1. Use URIs as names for things.

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the stan-

dards (RDF2, SPARQL3)

4. Include links to other URIs. so that they can discover more things.

Given the wide availability of LOD sources, it is crucial to provide intuitive

tools enabling users without a technological background to explore, analyze, and

interact with increasingly large data sets. LOD visualization aims to provide

graphical representations of data sets with the aim to facilitate their analysis and

the generation of insights out of complex interconnected information. [3]

1https://www.w3.org/DesignIssues/LinkedData.html
2https://www.w3.org/RDF/
3https://www.w3.org/TR/sparql11-query/

4

https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/RDF/
https://www.w3.org/TR/sparql11-query/

Figure 1.1: Query for listing the Wikipathways dataset

As shown in (Figure 1.1) 4, visualization of complex LOD structures is a bit

difficult. The authors [3] demonstrate this on Wikipathways 5. Assuming that

the user wants to know the contents of the data set, he/she could formulate a

SPARQL query to extract the classes and relations and then analyze the results,

as shown in (Figure 1.2).

Figure 1.2: The results of the listing query

Adopting a graphical visualization, instead, can simplify a lot the analysis of

the results. For example, the previous information can be obtained through a

visualization tool (Figure 1.3). As it can be seen, displaying the same information

as a graph, makes it easier to understand the connections and paths among the

classes.

4http://www.linkeddatavisualization.com/resources/book sample.pdf
5https://www.wikipathways.org/index.php/Portal:Semantic Web

5

Figure 1.3: Visualizing the results with a visualization tool

1.1.2 Knowledge graph management

Knowledge graph is a visual representation of interlinked entities of a given do-

main , which captures the information about these entities and forges connections

between them. That is why using a knowledge graph is a good method of repre-

senting entities that are published as LOD resources, and it might give an easier

solution for tracing the connection between different entities.

The idea of browsing LOD has been taken up in several research works and

resulted in the development of several browser applications for LOD such as the

research prototypes Tabulator [4] and LENA [5].

Users can explore interlinked data with these browsers, however, most of these

browsers do not support the users deciding which paths to follow during their

exploration of the available data. Users are required to investigate displayed

information manually and virtually scanning presented information from top to

bottom, in order to spot links that are most relevant, meaningful, and interest-

ing. [6]

In the recent years, knowledge graph technologies established a solid position

in the enterprise world, serving as a central element in the organizational data

management infrastructure. Knowledge graphs are becoming both the reposi-

6

tory for organization-wide master data (ontological schema and static reference

knowledge) as well as the integration hub for various legacy data sources: e.g.,

relational databases or data streams. [7] The authors of metaphactory created a

platform which covers the whole life cycle of knowledge graph applications from

data extraction and integration, storage, and querying to visualization and data

authoring.

1.1.3 Knowledge Graph Visual Browser

Knowledge graphs are a popular term to denote structured data represented in

a form of graphs [8][9][11],They can be represented in different data models[11].

RDF [10]is a popular data model for sharing, publishing and integration of knowl-

edge graphs.

Based on these facts an experimental tool called Knowledge Graph Visual Browser

(KGBrowser)6 was created by the department of Software and Data Engineering

at Faculty of Math and Physics, it consumes a configuration which is expressed

in RDF and published as Linked Open Data resource, and interprets visual con-

figurations, provides a defined behaviour and enables users to visually explore

knowledge graphs using the defined views.7

The configuration is a group of components expressed in a machine readable

format and written in RDF, which is also an instance of an ontology that was

defined for the Knowledge Graph Browser input.

1.2 Comparison with other tools

Two surveys of linked data visualization tools [12, 13] and a survey of linked

data consumption tools [14] have been published. These surveys categorise the

tools in the fields of visualizing LOD and LOD consumption into groups, the

6https://kgbrowser.opendata.cz
7https://dspace.cuni.cz/handle/20.500.11956/121022

7

first group is the generic graph-based knowledge graph visualization tools such as

Ontodia8, LodLive9, RDF4U10, RelFinder11, RDFshape12 and VisGraph13. The

second group contains the tools which do not visualize knowledge graphs as nodes

and edges but present nodes to users as interlinked web pages. There is also a

group for the tools that provide an overview of a knowledge graph content in a

form of statistics, classes used in the knowledge graph and navigation to individual

instances.

Each on of these tools accepts a set of different configurations, some of them

allow the users to customize these configurations, while others have specific set of

configurations. in this section we will have a look at some of the generic graph-

based knowledge graph visualization tools and their configurations and the level

of customization they allow.

Figure 1.4: Sample of style customization of ontodia

8https://github.com/metaphacts/ontodia
9http://en.lodlive.it/

10http://rathachai.github.io/rdf4u/
11http://www.visualdataweb.org/relfinder.php
12https://rdfshape.weso.es/
13https://visgraph3.github.io/

8

Starting with Ontodia, Ontodia is a JavaScript library that allows to visualize,

navigate and explore data in the form of an interactive graph based on underlying

data sources built using reactjs14, this library allows users to change the visual

style of any element. Not only color or icon can be changed, but also any style

or template of any element 15. These styles and templates are defined as reactjs

components, it requires users to manually write the configurations (Figure 1.4).

Tools such as LodLive, RDF4U and VisGraph do not allow custom configurations,

while LodLive gives some sort of interactivity when building the graph, there is

no method for customizing the visual styles of the components. As for RDF4U, it

gives the ability to show and hide some visual components, and there is no such

support in VisGraph.

On the other hand, both RelFinder and RDFshape accept user configurations,

while RelFinder uses XML16 for its configurations , RDFshape accepts RDF con-

figurations (Figure 1.5), but both of them do not allow a high level of customiza-

tion.

Figure 1.5: Sample configuration for both RelFinder and RDFshape

(Table 1.1) shows the comparison of KGBrowser with other Knowledge Graph

14https://reactjs.org/
15https://github.com/metaphacts/ontodia/wiki/Style-customization
16https://www.w3.org/XML/

9

browsing tools, form the point of the supported custom configurations where ◦

denotes that this configuration is not supported, • denotes that this configuration

is supported and denotes that this configuration is partially supported.

Ontodia LodLive RDF4U VisGraph RelFinder RDFshape KGbrowser

Visualization • • • • • • •
Views ◦ ◦ ◦ ◦ ◦ •
Styles • ◦ ◦ ◦ ◦ •

SPARQL endpoint • ◦ • •

Table 1.1: Comparison of supported configuration between different knowledge
graph browsers

From the table, we can notice that all of the mentioned tools help visualizing

different entities, but they vary in the level of customization. According to the

developer documentation of Ontodia17, this browser supports customizing both

entities styles and the source of entities through a custom SPARQL endpoint, but

there is no visible methods for customizing the view of an entity and the graph

behaviour when interacting with an entity.

While on LodLive there is a partial support for a custom SPARQL endpoint as

the tool gives the users a list of predefined SPARQL endpoint to select from,

also there is a predefined set of interactions that can be used to interact with an

entity, but there is no visible options for changing the styles of the entities.

RDF4U has a partial support for views as it contains a predefined set of features

that can be turned off or on, and it also has a predefined set of entity behaviours,

even thought there is no actual support of custom SPARQL endpoints, users can

still form a json feed 18 and submit it to the tool to be visualized, but the users

can not customize the visual representation of each entity.

In VisGraph users can not specify a SPARQL end point but they can specify an

RDF file in one of two different ways, either by entering a URL or by uploading

17https://github.com/metaphacts/ontodia/wiki
18http://rathachai.github.io/rdf4u/data/lodac bubo.json

10

it directly to the tool server, but these is no mention of a way for customizing

the styles or the views and behaviour of an entity.

According to RelFinder documnetation19, the tool can easily be configured to

work with different RDF data sets, but we could not find a way to configure the

views and behaviour of the graph or visual styles of the entities.

RDFshape allows a couple of methods for providing an input, either by providing

a url or by entering an RDF text or by submitting a file of the configurations to

the tool, and even though there is no visible methods for customizing the visual

styles, the tool provides a set to predefined options for visualization.

Finally the KGBrowser, supports a user custom configurations represented in

RDF format, it supports custom entity visual styles, custom views and behaviour

and it accepts a custom SPARQL endpoint for each set of views.

1.3 Motivation

The main goal of this thesis is to provide a tool that helps users in creating, man-

aging and validating configuration files visually, then compiles the user input into

a valid RDF configuration that can be published as an LOD resource, and after

that this customized configuration will be used as an input for the KGBrowser

to be visualized as interactive Knowledge Graph.

The idea is to save time and efforts while creating these configurations, since a

configuration file could contain hundreds of lines of RDF, with too many relations

between individual components that could be easy to miss and hard to track

manually, another motivation behind the tool is to reuse some of the published

components.

19http://www.visualdataweb.org/relfinder.php

11

1.4 Thesis structure

To describe the development process that shows how the configuration tool was

designed, built and tested over time, this thesis is split into the following chapters.

Chapter two: Defining requirements

In this chapter there is an overview of the initial requirements and the analysis and

gathering processes, and the changes to those requirements after a few iterations.

Chapter three: System design

This chapter describes system design and incremental process of improvements,

after collecting the requirements, and the design of the user interface based on

the functionality.

Chapter four: Implementation overview

Here we go into the details of the implementation overview starting with the

system architecture and its modules and the interaction between these modules.

Chapter five: Testing

In this chapter we highlight some usability testing scenarios and testing coverage

for the source code.

Chapter six: Conclusions and future plans

In the final chapter, we shed the light on possible ways to improve this tool, with

a conclusions drawn from the work done.

12

2. Defining requirements

The KGBrowser expects a configuration file in a specific format and structure,

this configuration file may contain hundreds of lines and many interlinked sec-

tions, and that would increase the possibility of having errors and mistakes while

creating this file manually.

The initial idea behind creating the tool is saving time and effort, plus providing

a validation and visualization layer for some components while creating the con-

figuration file. this tool should provide a template for creating this configuration

file, automatically generate the interlinked sections, alert the users if they have

any missing sections or incorrect linking between sections and provide the users

with ability to preview their input.

2.1 Configuration file structure

Before going into the details of the requirements gathering, it is very important

to understand the structure and the different sections the of configuration file,

because it will have a huge impact on how the system was analysed, designed and

built.

To support re-usability, an ontology was introduced based on a formal model

which enables to express configurations in a machine readable form. It is called

Knowledge Graph Visual Browser ontology. A configuration is expressed in RDF

as an instance of the ontology (KGVB) .

The configuration and each one of its component are represented as RDF re-

sources identified by their Internationalized Resource Identifiers (IRIs). This

allows defining visual configurations by reusing components from other configu-

rations. (Figure 2.1) shows the ontology as a Unified Modeling Language (UML)

class diagram.

13

Figure 2.1: Ontology for defining visual configurations

We can break down the file into nine visible and interlinked components, each

component contains a definitions of an RDF tuples. these components are listed

as:

1. Configuration.

2. View sets.

3. Views.

4. Expansion queries.

5. Preview queries.

6. Details queries.

14

7. Data sets.

8. Visual style sheets.

9. Visual styles.

We can identify two more components in the file, they are used to provide some

context to the configuration file, these components are:

1. Prefixes.

2. Vocabulary.

2.2 Analysing the configuration file

The configuration file consists of configuration components and each component

is an RDF tuple which has some attributes.

Prefixes

This section of the configuration file includes the user defined prefixes which

will be used in other configuration parts. Each prefix is annotated with ”@pre-

fix” 1 keyword then a prefix label followed by an IRI2. After analyzing a couple

of files we noticed that there are some shared prefixes while other prefixes are

domain specific. (Figure 2.2) Prefix section of configuration file.

Figure 2.2: Prefix section of configuration file

1https://www.w3.org/TR/turtle
2https://www.w3.org/TR/rdf11-concepts/

15

Configuration

A configuration is expressed as an instance of the browser:Configuration3 class.

it serves as the entry point to the configuration file and it has the following

properties: (Figure 2.3) Sample of configuration section.

1. dct:title4: serves as human readable representation of the configuration.

2. dct:description: a human readable text that explains the purpose of the

configuration.

3. browser:hasVisualStyleSheet: IRIs of the visual style sheets that are con-

nected to this configuration.

4. browser:startingNode: IRIs of the actual entities that will serve as starting

nodes of the interactive graph.

5. browser:resourceIriPattern: a regular expression that matches the IRIs of

the graph entities.

6. browser:hasViewSet: IRIs of the view sets that are linked to this configu-

ration.

Figure 2.3: Sample of configuration section

View sets

View sets are defined as parts of visual configurations. each view set is an instance

of the browser:ViewSet class and it has the following properties: (Figure 2.4)

Sample of view set section.

3browser: is defined in the prefixes as https://linked.opendata.cz/ontology/knowledge-
graph-browser/

4dct: is defined in the prefixed as http://purl.org/dc/terms/

16

1. dct:title: a human readable representation of the view set.

2. browser:hasView: IRIs of the visual views that are connected to this view

set.

3. browser:hasDefaultView: IRI of the default view of this view set, it must

be one of the IRIs defined in browser:hasView

4. browser:hasCondition: a condition query that will apply to all the views in

this view set.

5. browser:hasDataset: IRIs of the data sets that are linked to this view set.

Figure 2.4: Sample of view set section

Views

Views are visual representations of the graph nodes. each view is an instance

of the browser:View class and it has the following properties: (Figure 2.5) Sam-

ple of view section.

1. dct:title: a human readable representation of the view.

2. browser:hasExpansion: An IRI of an expansion query, which will define how

to navigate to the neighbors of the current node.

3. browser:hasPreview: An IRI of a preview query, which fetches the properties

and the visual classes of a certain node.

4. browser:hasDetail: An IRI of a detail query, which fetches the properties of

a certain node.

17

Figure 2.5: Sample of view section

Queries

There are three types of queries which are linked to a view, these queries are:

1. Expansion queries as an instance of browser:ExpansionQuery class: defines

how to navigate to the neighbors of the current node.

2. Preview queries as an instance of browser:PreviewQuery class: fetches prop-

erties and visual classes of a certain node.

3. Detail queries as an instance of browser:DetailQuery class: fetches proper-

ties of a certain node

They share the same properties but the differ in the execution behaviour, each

section contains the following properties: (Figure 2.6) Sample of detail query

section.

1. dct:title: a human readable representation of the query.

2. browser:hasDataset: An IRI of the data set which the query will run against.

3. browser:query: a SPARQL query that defines the results of the query.

Data sets

This defines a SPARQL endpoint on which queries are executed. each data set is

an instance of browser:Dataset class, it has the following properties: (Figure 2.7)

Sample of data set section.

1. dct:title: a human readable representation of the data set.

18

Figure 2.6: Sample of detail query section

2. void:sparqlEndpoint5: The IRI of the actual SPARQL endpoint that will

execute the queries.

3. accept:query: defines the content type that will be used to communicate

with the endpoint.

Figure 2.7: Sample of data set section

Vocabularies

This defines the vocabulary that are used in the view, each vocabulary can

be an instance of one of the following classes owl:Class, owl:ObjectProperty,

owl:DataProperty 6. (Figure 2.8) Sample of vocabularies section.

5void: is defined in the prefixed as http://rdfs.org/ns/void#
6owl: is defined in the prefixed as http://www.w3.org/2002/07/owl#

19

Figure 2.8: Sample of vocabularies section

Style sheets

This defines a group of visual styles that will be used in the configuration, each

style sheet is an instance of browser:VisualStyleSheet class and it has one property

browser:hasVisualStyle which is the IRIs of the visual styles of this configuration.

(Figure 2.9) Sample of style sheet section.

Figure 2.9: Sample of style sheet section

Styles

This defines a the visual properties of a given entity, each style is an instance

of browser:VisualStyle class and it has wide range of proprieties, some proprieties

are shared among all of the styles e.g. browser:hasSelector which is the Cascad-

ing Style Sheets (CSS) selector7 of the graph nodes on which this style will be

applied, other properties are dynamically added with different values, such as

width, color and other user interface (UI) properties that are defined by the cy-

toscapejs8, since the KGBrowser is using the cytoscapejs library for visualization.

(Figure 2.10) Sample of style section.

7https://www.w3.org/Style/CSS/Overview.en.html
8https://js.cytoscape.org/#style/property-types

20

Figure 2.10: Sample of style section

2.3 Requirements gathering

The requirements gathering process was done in multiple steps using agile meth-

ods [15], started with the initial requirements and the basic functionality needed

from the tool then incrementally adding more complex and advanced features in

each meeting with the stakeholder. This process can be divided into three major

milestones.

Each one of these milestones added a new set of requirements, and of course

each one had its impact on the software behaviour and the system design and

architecture, these milestones are:

1. The initial requirements.

2. Data persistence.

3. User experience.

During the these iterations we identified two types of users who might be inter-

ested in using the tool based on their technical experience:

1. Normal user: users with no technical background but still interested in

using the KGBrowser, or users who just need to experiment with existing

configuration or do some adjustments on a predefined configuration file.

21

2. Expert user: users with good knowledge of how LOD works and how

KGBrowser is configured, and they are able to use the tool to either modify

existing an configuration file or create new configurations from scratch.

2.4 The initial requirements

After the first look on a couple of samples of the KGBrowser configuration files, we

agreed on a couple of key requirements and functionalities that should be available

in the tool, starting from the idea that it should user friendly and usable by none

expert users, but at the same time it should provide some advanced features

that can be used by expert users. and that lead us to defining the following

requirements and use cases (Figure 2.11).

1. The user should be able to create a new configuration.

2. The user should be able to download the generated representation of con-

figuration file.

3. The user should be able to modify configuration files.

22

Figure 2.11: Use case diagram of the initial requirements

Some use case scenarios

Use case Download a configuration as a file
Summary A .ttl file should be generated by the system and saved to the user’s device upon the user request
Normal flow • The user starts a new blank configuration.

• The user clicks on the download button.
• The system validates the user input for missing components
• The system generates an RDF turtle representation of the configuration
• The system saves the generated configuration as file to the user’s device

Pre-condition The user must fill in the configuration components.
Exceptions The system alerts the user for missing components.

Table 2.1: A use case scenario for downloading an RDF representation of the
configuration.

2.5 Data persistence

In the second iteration we noticed that the configuration file takes too much time

to be generated, and might be difficult to finalize the whole file at once, so based

on that a new set of requirements was added (Figure 2.12).

23

1. The user should be able to save the configuration files remotely.

2. The user should be able to continue working on a configuration file at any

specific point.

3. The user should be able to see a list of available configuration files.

Figure 2.12: Use case diagram of the second iteration

Some use case scenarios

Use case Load and edit a saved configuration
Summary A user shall be able to continue working on a saved configuration
Normal flow • The system loads a list of saved configurations

• The user clicks on the selected configuration.
• The system fetches the configuration from the database
• The system populates the configuration component into the user interface

Pre-condition The system must have saved configurations
Exceptions The system could not load the selected configuration.

Table 2.2: A use case scenario for loading a saved configuration

24

2.6 User experience

In the third iteration we focused on improving the users experience while using the

tool, in a way that can give them an estimate on how the KGBrowser will behave

when using the written configuration file, another improvement was introduced,

which is to give the users the ability to reuse or alter some parts of a configuration

file that was published as an LOD resource, another thing was noticed from the

analysis that most components are using the same base URI so it would make

more sense if we define this URI once, and taking this in consideration we defined

the following requirements (Figure 2.13).

1. The user should be able to load configurations from an LOD resource.

2. The user should be able to choose which sections to include from the loaded

configuration.

3. The user should be able to run and preview the queries.

4. The user should be able to define the base uri for components.

5. The user should be able to use meta configuration as templates.

6. The user should be able to attach components from meta configuration.

7. The user should be able to assign the current configuration to a meta con-

figuration group.

Some use case scenarios

25

Figure 2.13: Use case diagram of the third iteration

Use case Reuse components from a meta configuration
Summary A user shall be able reuse some components from meta configuration group.
Normal flow • The user starts a new blank configuration.

• The user starts filling the configuration components.
• The system suggests some components to reuse.
• The user selects the needed component.
• The system populate the selected component into the user interface.

Pre-condition The user must use a meta configuration as a template.
Exceptions The system could not load the selected meta configuration.

Table 2.3: A use case scenario for reusing components

Use case Preview a query
Summary A user shall be able see the visualization of a query results
Normal flow • The user selects a query.

• The user clicks the preview button.
• The user selects a data set and a starting node.
• The system executes the query and visualize the results.

Pre-condition The user must fill in a query and data set information.
Exceptions The query results are empty.

Table 2.4: A use case scenario for previewing a query

26

3. System analysis and

architecture

After gathering the initial requirements and the analysis of the configuration file

and its components, we started with a proof of concept of the tool, taking in

consideration that the tool should be scalable and easily extendable since we are

following an incremental development process.

3.1 The system design

The system architecture went through a couple of changes during the process due

to the added requirements in each iteration, it was important from the beginning

to keep that in mind so we can add to the system rather than redesigning it with

every iteration.

At the early stages and after the gathering the initial requirements of the system

and after a careful analysis we decided to use a web based application for the so-

lution software, we also decided to encapsulate our software modules with dock-

er1, because basically docker containers encapsulate everything an application

needs to run, they allow applications to be shuttled easily between environments,

whether it’s a development or a production environment.

The next step was choosing the front-end framework which will be used for cre-

ating the front-end application, and since we are using a web based application

we had a variety of modern frameworks to choose from, we chose to use vuejs 2

as a framework for the front-end module of the system, also we integrated this

framework with a couple of helper libraries and plugins such as vuex3 for man-

1https://www.docker.com/
2https://vuejs.org/
3https://vuex.vuejs.org/

27

aging the app state, vue-router 4 for managing the url changes and vuetify5 that

provides reusable UI components. Based on those decisions we created the first

Proof of concept (POC) of the application.

After the second iteration of the requirements, and based on the need of storing

the configurations files remotely at any point during the creation process, so the

users would be able to modify them later on, we needed to extend the system

by adding two modules, the first module is a database service, and the second

module will handle the communication between the front-end module and the

database module and it would be called the back-end module.

We deiced to use nestjs 6 for the back-end module, which is an open-source Node.js

7 framework for creating and compelling back-end systems and follows the restful

web service 8 principles .

As for database module we chose to use Mysql 9 database for storing the configu-

ration files status, the database design is very straightforward, we have one table

which contains the following columns:

1. name: which is human readable name of the configuration file, if not pro-

vided, the system will generate a name based on the current timestamp.

2. baseLink: the base URI for the configuration file components, if defined by

the user.

3. metaGroup: the meta group that was chosen by the user (if needed) to

assign this configuration file to.

4. body: the current state of the configuration file serialized as a string.

5. created at: A time stamp that is inserted when file first stored in the

database.

4https://router.vuejs.org/
5https://vuetifyjs.com/
6https://nestjs.com/
7https://nodejs.org/
8https://www.w3schools.in/restful-web-services/intro/
9https://www.mysql.com/

28

6. updated at: A time stamp that is inserted when file last edited.

We had to extend the system one more time after third patch of requirements,

as we needed the software solution to execute queries against a given data set

or load a configuration file represented as an LOD resource using an HTTP call,

and hence this feature was already developed inside the KGBrowser as separate

module called kgserver10, we deiced to get an instance of the kgserver and en-

capsulate it within a docker container, but since the endpoints that are provided

by kgserver were expecting a certain input structure, we needed to modify these

endpoints to serve our needs.

Another obstacle we faced is how connect the front-end module to the kgserver, we

could configure the front-end app to communicate directly with the kgserver, but

that would mean that the front-end will be aware of that module, plus it is already

communicating with the back-end module, so the solution was to configure the

back-end module to serve as a proxy for the kgserver, so it will listing to the front-

end module then upon request it will forward this request to the kgserver, once

it gets a response from the kgserver it will reply to the client with the response.

In this case the front-end module will not be aware of the existence of the kgserver,

it will communicate with it thought the back-end module, which acts as abstrac-

tion layer, this architecture is shown in the Figure 3.1.

10https://github.com/martinnec/knowledge-graph-browser

29

Figure 3.1: System modules and interactions with third party services

3.2 UI design

Based on the provided requirements, the UI was designed based on the following

functionality categories:

1. Managing configuration files

2. Validating the user input

3. Visualizing the queries

4. Fetching configuration from LOD

5. Using meta configurations

30

3.2.1 Managing configuration files

The main functionality of the software is to create and manage configuration files

for KGBrowser, in this case the application will provide a template for generating

such a configuration. According to the analysis of a multiple configuration files,

we noticed a hierarchical patterns between the the components of each config-

uration file, starting with the configuration components to view sets and style

sheets, so we decided to use a top-bottom generating module, which mean that

the user input in each section will impact how to generate the next level sections.

As an example, each view sets should have a couple of views, so whenever the

user assign these views to the view set, the software will automatically generate

a placeholder in the views section.

However, there was an exception to this formula, which is the vocabulary section,

after analysing a couple of files, we could not find a direct link between this section

and another component, that we can used to automatically generate this part,

so the ideal solution was to keep this part available for the user as a free input,

yet that might not be entirely true, we prepared some predefined templates that

represent three main vocabulary classes, class, objectProprty and dataProperty,

then we left the freedom of using these templates to the user according to their

needs, keeping in mind that the application will notify users if they try to export

the configuration file without adding any vocabulary.

One of the interesting sections in the configuration file is the visual style com-

ponent, all of the other components are subjected to a fixed template, let us

take the view component as an example, the view component has four predefined

properties, a title, an expansion query, a preview query and finally a detail query,

on the other hand the style component can have a dynamic number of properties

based on the user input, and each style component represents the visual styles of

an entity or a group of entities (nodes or edges) in the knowledge graph.

Since the KGBrowser depends heavily on the Cytoscapejs library to visualize the

graph, it was very important to analyse the visual proprieties that are accepted

31

Figure 3.2: How the system is generating the style component

by this library. Basically the library accepts two types style groups, nodes style

group and edge style group, each one of these group has a set of visual styles

attribute that can apply to respective graph entity. The software will provide the

users with a list of these attribute, based on their choice of entity type, in addition

to that, the application will guide the users regarding the expected input type for

each attribute. (Figure 3.2) How the system is generating the style component

Beside supporting the functionality of generating a configuration file, the software

includes some extra enhancements that improve the user experience while creating

the configuration file, one of these functionalities is the ability to save the file

remotely at any given point of time so the user can resume the work on the file

at any time, beside that, the user should be able to generate a turtle11 preview

of the configuration file and download it to the local machine (Figure 3.3).

.

Another thing worth mentioning here is the usage of base URI 12, we noticed that

11https://www.w3.org/TR/turtle/
12https://www.w3.org/TR/turtle/#relative-iri

32

Figure 3.3: Turtle of the generated configuration

most of the componets share the same base URI so it would make sense that the

users can define this base URI and then reuse it again, keeping the ability to use

absolute URIs when needed. so the UI has an input field where the user can enter

this shared base URI (Figure 3.4).

Figure 3.4: Defining a base uri

After defining the base URI, the users can use relative URIs based on RDF

standards to achieve the correct behaviour (Figure 3.4), this will be reflected in

the generated file as ”@base <base uri> .” and the relative uri will be generated

as ”<#relative uri> a class ;”.

Figure 3.5: Using relative uri

33

3.2.2 Validating the user input

The configuration file may contain hundreds of lines, and that would make it

very difficult to trace manually any missing sections or invalid values, thus we

introduced the user input validation functionality.

The application is validating the user input on multiple levels, starting with

the prefixes section, first we need to highlight that the application is providing

the users with predefined prefixes, that were inferred from analysing a couple of

configuration files, then the application is applying two types of validation, the

first type of validation is that the user can not define a prefix with the same name

of an already defined prefix (Figure 3.6), the second type of validation is that the

prefix should have a valid IRI.

Figure 3.6: Validating duplicate prefix

Another level of validation is the validation of user input for each one of proprieties

in the configuration file components, after analysing the configuration components

we noticed that the proprieties could either a text literal or an IRI, but from UI

point of view, that was a bit different, we were able to identify four types of user

input, a text input, an IRI input, a drop down where the value of a property

depends on another property, a SRARQL query and for that we used a SPARQL

editor called yasgui13. the software is applying a couple of validation steps on the

user input, such as an IRI input must have a valid structure (Figure 3.7), Text

input must have a the language indicator if has multiple values, or any property

can not have duplicate values of an input (Figure 3.7).

13https://triply.cc/docs/yasgui-api

34

Figure 3.7: Validating duplicate value of an input and invalid IRI structure

3.2.3 Visualizing the queries

The queries are actually what give the KGBrowser its interactive properties, they

define the graph behaviour as a response to a specific action, writing these queries

might be a bit complicated especially for none expert users, it had been noted

by a previous study 14 that these queries usually have a standard code structure,

taking this point into consideration, we decided to include the sample structure as

a placeholder for each query with instructions how to fill each section (Figure 3.8),

which might be handy for both expert and none expert users .

There are three types of queries, expansion, preview and details queries, which

can by split into two groups, queries that will fetch the properties of an entity and

that include preview and detail queries, and queries that fetch the information

about the neighbours of an entity and relations between them, and that includes

14https://dspace.cuni.cz/handle/20.500.11956/121022

35

Figure 3.8: A sample of an expansion query template

the expansion query.

The deference between preview and detail query is that a preview query will get

a summary of the entity information and its visual attributes, while the detail

query will get the properties of an entity such as label, description and image if

available, the software solution gives the users the ability to run the queries that

they write against a data set they choose, with one of the configuration starting

nodes considered as seed for query (Figure 3.9).

Figure 3.9: Visualizing a detail query against a selected data set

Visualizing the expansion query is a bit more complex, as the query gives infor-

mation about the closest entities starting from a given node, and that requires

36

piloting the results as a graph, the idea here is not to replicate the KGBrowser

functionality, but to give the users the ability to validate their queries and to

make sure that they will get the intended results when these queries are executed

in the KGBrowser as a part of the configuration (Figure 3.10).

Figure 3.10: Visualizing a expansion query against a selected data set

3.2.4 Fetching configuration represented as an LOD re-

source

As we established, some none expert users might be interested in using the KG-

Browser to visualize some data set, but they might not have the enough experience

to write a configuration file from scratch, on the other hand expert users might

also be interested in reusing a published configuration to examine how it behave,

and it would be a bit absurd to re-write the whole configuration file from scratch

just to change a couple of lines.

The solution was to give the users the possibility of loading a configuration file

that was already published as an LOD resource, whenever the users initiate the

37

configuration creation process, they will be given an option to load this configu-

ration from an LOD resource if it exists or from a predefined list of grouped and

categorized meta configurations that were already published (Figure 3.11).

Figure 3.11: The option to fetch the configuration from LOD

If the resource does not exist or it is missing some information the user will alert-

ed, otherwise the system will load all components of this configuration, then it

will present the user a modal that contains the separate components of the config-

uration, so they can choose what to include and what to ignore, after clicking the

save button the system will populate the template with the selected parts, and

will give the users the ability to add and modify the needed sections (Figure 3.12).

38

Figure 3.12: Choosing which components to include from a loaded configuration

3.2.5 Using meta configurations

The main purpose of this feature is to establish the re-usability of the configura-

tion components. so the whole process of creating a new configuration is faster

and more efficient, this feature is split into two main functionalities.

The first functionality is to give the users the ability to assign the configuration

that they are working on into a meta configuration group, we have the meta

configuration groups published as LOD resources and the tool will fetch them

with an HTTP call and list them for the users to choose from, and this is an

optional step. Users will click on Assign to a meta config group button, then

choose a group from the list (Figure 3.13).

39

Figure 3.13: Choosing a meta group of be assigned to

Once a group is selected, the system will display this group to the users and they

can remove or modify it at any time (Figure 3.13), if there is a group selected, the

system will add ”<meta configuration group uri> a browser:MetaConfiguration ;

browser:hasMetaConficuration <configuration file uri>.” to the generated config-

uration file.

Figure 3.14: Managing the selected meta group

The second part of this feature is actually giving the users the ability to relay

on published configurations as templates, as they might be interested in reusing

some of the published components as an optional functionality. The user needs

to click on Use Meta Config as a template button, this will list to the user all

the available meta configurations groups with their assigned configurations files

(Figure 3.15), users can select as many configurations as they need, then click

the save button, then the system will load the list components for the selected

configurations.

40

Figure 3.15: List meta groups and configurations

If the users provided the intended meta configurations and the system was able

to load groups, then the users will be able to select components from a list of

suggestions, for example if the user is adding a new view set he/she will have

two options, either provide a new URI or choose the URI of a view set that was

loaded from the selected meta group (Figure 3.16).

Figure 3.16: Suggestions of view sets

The list of suggestions consists of two main parts, the human readable title and

the URI of the component, in some case such as style sheets where there is not

title, we are providing only the URI (Figure 3.17).

Figure 3.17: Suggestions of style sheets

Upon selecting one of the suggestions, the system will load its properties and

modify the needed parts of the current configurations file.

41

4. Implementation overview

We established that the system is split into four different modules encapsulated

within docker containers for more efficient development and deployment, these

modules are defined as follows: (Figure 4.1) System modules and interactions

1. Front-end module

2. KGserver

3. Database module

4. Back-end module

Figure 4.1: The system modules and interactions

42

4.1 Front-end module

The front end app is the user friendly interface, with visualization and input

components, it is built using vuejs, which is a JavaScript1 framework, it was very

important to choose a modern tool for creating such an app, because that would

save time and effort, vuejs offers the ability of creating reusable components,

that would be good not only for code management and maintenance, but also for

reusing the same components in places where that is feasible.

Vue component

The vue component is a reusable Vue instance with a name, it could be very

simple and straight forward such as a button or an input field, or it could be very

complex as a group of components with complex logic and features, each vue

application has an entry point that serves as a parent for all other components.

(Figure 4.2) Shows the vue application and components hierarchy 2

Figure 4.2: Vue application and components hierarchy

Each component contains three main parts, the first part is the template, which

is the HTML 3 that will be rendered in the browser, then the script part, which

contains the javascript code that is responsible for the logic of rendering the

component and its functionality, and finally the style part where UI features are

1https://www.javascript.com/
2https://vuejs.org/v2/guide/components.html
3https://www.w3.org/html/

43

applied. (Figure 4.3) Shows the component structure

Figure 4.3: Vue component structure

Keeping that in mind, we started designing the components that are going to be

used in the software solution, using a bottom up structure, beginning with shared

components, in the case the user input, we called it a node, each node represents

a property and it has its own attributes and features, such as the type of node

(free text, a SPARQL editor, an IRI input or a drop down box), also each node

can either accept one input value such as the queries or multiple values such as

visual styles, all these configuration are stored in a template file, so in case we

needed to add a new node type or modify an existing node type we just need to

modify two places, the node component and node template.

The next component is the NodesSection component, each nodes section contains

a group of nodes and it represents a configuration component of the configuration

file, in the (Figure 4.4) you can see that each NodesSection represents a view

component, and finally a we have a group of NodesSections that represents section

of the configuration file.

44

Figure 4.4: How the configuration file structure was represented as UI components

Communicating between vue components

As the configuration file contains multiple sections and these sections are inter-

linked and connected, their UI representation is also linked, for example when

adding a view to a view set, it should be represented in the views section and

if it does not exist it should be added, this type of communication between the

nested vue components is a bit complex to achieve straightforward, that is why

we needed a more efficient method of communication between the components

using vuex.

Vuex is the central store for the application. this ”store” is basically a container

that holds the application state. its mission is to create a global state for the

application, then components can listen to the changes in the state or parts of it

by subscribing to the store, or they can dispatch an action to modify the state

45

of parts of it, and the store will handle notifying the subscribed components.

(Figure 4.4) shows how to handle communication between vue components using

vuex.

Figure 4.5: How to handle communication between components using vuex

Communicating with back-end module

The communication between the front-end the back-end modules is carried by

asynchronous request/response pattern, using axios 4. Axios is a promise 5 based

HTTP client for the browser, which means whenever the request is sent to the

back-end, it will run asynchronously without blocking the main thread that is

responsible of handling the UI rendering.

After we get a response we have two cases, we either get a response with success

code, then we update the application state which in return updates the compo-

nents state, or we get an error code then we show an error message.

4.2 KGserver

KGserver is an open source application written in expressjs 6, it provides the main

logic and functionality in the KGBrowser. The main idea behind the integration

4https://github.com/axios/axios
5https://javascript.info/promise-basics
6https://expressjs.com/

46

with the KGserver is that we needed two main functionalities provided by it.

The first thing, we needed to load meta configurations components that repre-

sented as a remote LOD resources, secondly we needed to run expansion, preview

and detail queries against a specific data set. To achieve this level of integration

we had two options, we either move the code from KGserver to the back-end

module, or integrate the KGserver as a part of the system, we went with latter

option as it seems to be a more logical choice, since we have a modular dockerized

infrastructure.

After integrating this module in the system we faced a couple of obstacle, the

endpoints that are responsible for running the queries will not work out of the

box, the first issue we noticed, that these endpoints were expecting an IRI for

a view that is is a part of a configuration file and published as LOD and from

this view it will extract the data set information and intended query (expansion,

preview or detail), along with view the endpoint is expecting to get the actual

node that will be used as a seed for the query, so the solution was to modify

these endpoints to accept the needed query as a text written by the user, plus

the actual node that will be used as a seed for the query along side the data set

information.

4.3 Database module

This module serves as a storage for the application, we are using mysql database

to store the configuration file information and status, so the users can view or

modify at any point of time, we are storing the file content, and to be more specific

we are sorting the state of the front-end module, the application is serializing the

state as string, sending it to the back-end to store in the database

While fetching the file information form the database, we reverse the previous

information fetching the string content then parsing it as JSON7 object so the

7https://www.json.org/json-en.html

47

front-end module will be able to understand it.

4.4 Back-end module

The back-end module serves as the skeleton of the system, it works as a bridge

between the front-end module and the rest of the system, the front-end module

can still provide some functionality without the need to connect to other modules,

while a couple of features are being delivered by the back-end module.

We used nestjs for building the module, which is a nodejs framework for building

server side application, the frameworks uses expressjs as an engine, and it uses

typescript8.

This module works on two different levels, the first level is a bridge between front-

end module and the database module, and to achieve that we needed to integrate

TypeOrm9 with nestjs to be able to connect to the database, in typeorm each

table in the database is represented by an entity class with the column names

as properties, then typeomr will provide needed functionality for managing the

table, for example adding an new property to the entity class will trigger typeorm

sync operation and it will alter the table by adding a new column.

The second group of operations in the back-end module is that it servers as a

proxy and reverse proxy between the front-end module and the KGserver, so

instead of exposing the KGserver directly to the front-end module, in this way

we keep the front-end module aware only of a single point of communication

which is the back-end module.

At some point when the user needs to fetch the full information of a configuration

which is published as an LOD resource, we needed to add some extra functional-

ity to the back-end module. We can call each component URI using the HTTP

protocol and specifying the HTTP header Accept as ‘application/json’, and this

8https://www.typescriptlang.org/
9https://typeorm.io/

48

will return a json formatted configuration. Using this fact, the back-end module

will call each component URI to fetch the full information of a published configu-

ration file, starting by the configuration IRI then we fetch the view sets and style

sheets, after that for each view set we fetch its view and so on, once the whole

structure is fetched we return the information to the front-end module.

(Figure 4.6) shows how to fetch configuration file components using the back-end

module.

Figure 4.6: How to fetch configuration file components using the back-end module

A similar approach was used to load the meta configurations groups and details

from the KGserver, the KGserver has an endpoint for fetching and parsing a meta

configuration group and its meta configurations list, the back-end module will

receive the meta group URI and it will call and parse recursively the configuration

49

uris until it fetches all their meta components. (Figure 4.7).

Figure 4.7: How to fetch meta configuration components from KGserver using
back-end module

50

5. Testing

In order to test this tool, and to verify if it fulfills the desired requirements of

the stakeholder, we performed couple of testing scenarios on the tool. the main

idea behind the tool is to give the users a seamless experience while creating

configuration files, with an advanced visualization.

And since this tool is an experimental tool and due to the situation during the

last couple of months while writing this thesis, it was not easy to find users with a

good level of experience in knowledge graphs who can help in testing, so I created

a couple of testing scenarios and validated with my supervisor on our meetings.

First set

This testing set was conducted after the initial prototype, we went through a

couple of scenarios, and here is a sample.

1. Start a new configuration file.

2. Create configuration section.

3. Fill in the generated components.

4. Generate an RDF turtle preview.

5. Download the generated file.

As an outcome of this test, we noticed that creating the configuration file might

take a longer time than expected and that might require the user to keep the

application running to return later and resume their work, so as solution we

introduced the ability to save the progress and retrieve the saved work at any

point.

Second set

51

The second round of testing was held after the gathering the second set of re-

quirements, it pointed out some issues with the general user experience, as an

example.

1. Start a new configuration file.

2. Fill in the components.

3. Download the generated file.

4. Publish it as an LOD resource.

5. Edit the file again.

6. Republish it as a LOD resource.

The main issue that we faced during this process was the idea that with every

small change which is done on the configuration file, there was no way to know

how it would perform on the KGBrowser, unless we publish it first, and that did

not provide a good user experience, keeping that in mind we decided to give the

users the ability get an estimated preview on how the KGBrowser will respond

to the written queries, by visualizing the queries in the tool, without the need to

publish as an LOD resource.

Third set

The final set of tests happened not far ago from the time when this thesis was

written, it included a couple of testes to see the validity of the solution.

1. Start a new configuration file.

2. Click FETCH FROM REMOTE RESOURCE button.

3. A dialog should appear.

4. Enter the IRI of an already published configuration or select form the pre-

defined list.

52

5. Select the required components.

6. The tool should populate the configuration template with the selected com-

ponents.

the previous test will show the tool ability to fetch the configuration component

from an LOD resource, while the following test will present how to visualize a

query in the tool directly without the need to use the KGBrowser.

1. Start a new configuration file.

2. Enter values for configuration properties (view sets, starting nodes) in par-

ticular.

3. Add a view to the generated view set.

4. In the generated view fill in the IRIs of the expansion, detail and preview

queries.

5. In each of the queries fill in the data set the query values.

6. Populate the data sets information.

7. Go to expansion query and click on the RUN QUERY button.

8. Choose a data set and seeding node.

9. Click on the RUN button.

10. The tool should show a preview of the query.

5.1 Automated tests

We used two types of tests in both the front-end module and the back-end module.

In the front-end module we covered the shared components with unit testing

using jest 1, as an example we tested the SuggestionPanel.vue component, which

1https://jestjs.io/

53

is responsible for showing a list of suggested components when the users select a

meta configuration as template.

When a user selects suggestion from the list, this suggestion should not be present

to the user again to avoid duplicate input, so in the following test (Figure 5.1) we

are passing a list of three items and assuming that the user has already selected

one item, so the component must render only two items.

Figure 5.1: Unit testing example

In the back-end module we have applied another type of testing which is end to

end testing, we covered all back-end endpoints with end to end tests for the main

functionality scenarios, we are also using jest testing framework to preform these

test.

In the following example (Figure 5.2), we are testing the endpoint that is re-

sponsible for visualizing the expansion query, we are preparing the input for the

endpoint which consists of the SPARQL query, the starting node as the resource

54

and the data set information. The expected response code is 200 which means

that the query was executed correctly, and we are matching the response structure

as well.

Figure 5.2: End to end testing example

55

Conclusions and future plans

This thesis describes the work on building a KGBrowser configuration tool from

scratch, The main purpose is to improve the user experience while generating

these configurations, and reduce the user struggle while doing so.

The process starts with analyzing the initial requirements and the samples of

configuration files, then building a prototype based on the outcome, to see if we

can put the idea into actual development. Furthermore, these requirements were

modified and adapted in iterations and went through a few stages of testing in

order to enhance the user experience.

After the first iteration the system grew by adding new modules to fit the needs

and to adapt to the new requirements, which reflected on the system architecture,

each module of this architecture was encapsulated in a separate unit using docker.

The main focus of this thesis is the implementation of the tool, and it dives as

well into details of all the system modules such as KGserver, and how it was used

to achieve the main goal.

The work on this tool was done during the preparation of this thesis, however it

is just a small step in a very long journey, which needs to be followed by future

improvements, and here are some features that can be integrated with the tool.

1. At the moment the tool only provides the user with the ability to download

the generated configurations, then users will have to publish the configura-

tions manually as LOD resources, but it would be a good idea to enhance

the tool by adding a feature that publishes the configurations automatically

into an LOD repository of the users choice.

2. Another good to have feature is the ability to edit components that were

loaded from an LOD resource, the current implementation allows the users

to reuse components from an already published configurations without the

ability to fully edit these components, so it would a good idea to allow users

56

to modify some parts of these components.

57

Bibliography

[1] Bizer, C.; and Heath, T. 2011. Linked Data: Evolving the Web into a

Global Data Space.

[2] Bizer, C.; Heath, T.; and Berners-Lee, T. 2009.. Linked data - the

story so far.

[3] Po, L.; Bikakis ,N.; Desimoni , F.; and Papastefanatos, G. 2020.

Linked Data Visualization: Techniques, Tools, and Big Data.

[4] Berners-Lee, T.; Hollenbach, J.; Lu, K.; Presbrey, J.;

Prud’hommeaux, E.; and Schraefel, M. 2007.. Tabulator redux:

Writing into the semantic web.

[5] Koch, J.; Franz, T.; and Staab, S. 2008. Lena - browsing rdf data

more complex than foaf.

[6] Koch, J.; Franz, T.; Staab, S.; Dividino, R. 2010. LENA-TR :

Browsing Linked Open Data Along Knowledge-Aspects.

[7] Haase, P.; Herzig, D.; Kozlov, A.; Nikolov, A.; and Trame, J.

2019. metaphactory: A Platform for Knowledge Graph Management.

[8] Ji, S.; Pan, S.; Cambria, E.; Marttinen, P.; and Yu, P. S. 2020. A

survey on knowledge graphs: Representation, acquisition and applications.

[9] Wang, Q.; Mao, Z.; Wang, B. and Guo, L. 2017. Knowledge graph

embedding: A survey of approaches and applications. IEEE trans. Knowl.

Data Eng.

[10] Wood, D.; Lanthaler, M. and Cyganiak, R. 2014. RDF 1.1 concepts

and abstract syntax.

[11] Yan, J.; Wang, C.; Cheng, W.; Gao, M. and Zhou, A. 2018. A

retrospective of knowledge graphs. Frontiers Comput. Sci.

58

[12] Desimoni, F.; Bikakis, N.; Po, L. and Papastefanatos, G. 2020.

A comparative study of state-of-the-art linked data visualization tools. In V.

Ivanova, P. Lambrix, C. Pesquita, and V. Wiens, editors, Proceedings of the

Fifth International Workshop on Visualization and Interaction for Ontolo-

gies and Linked Data co-located with the 19th International Semantic Web

Conference (ISWC 2020), Virtual Conference (originally planned in Athens,

Greece), November 02, 2020, volume 2778 of CEUR Workshop Proceedings.

[13] Desimoni, F. and Po, L. 2020. Empirical evaluation of linked data visu-

alization tools. Future Generation Computer Systems.

[14] Kĺımek, J.; Nečaský, M. and Škoda, P. 2019. Survey of tools for

linked data consumption. Semantic Web.

[15] C.R, K.and Thomas, S. 2011. Requirement Gathering for small Projects

using Agile Methods .

59

List of Figures

1.1 Query for listing the Wikipathways dataset 5

1.2 The results of the listing query . 5

1.3 Visualizing the results with a visualization tool 6

1.4 Sample of style customization of ontodia 8

1.5 Sample configuration for both RelFinder and RDFshape 9

2.1 Ontology for defining visual configurations 14

2.2 Prefix section of configuration file 15

2.3 Sample of configuration section 16

2.4 Sample of view set section . 17

2.5 Sample of view section . 18

2.6 Sample of detail query section . 19

2.7 Sample of data set section . 19

2.8 Sample of vocabularies section . 20

2.9 Sample of style sheet section . 20

2.10 Sample of style section . 21

2.11 Use case diagram of the initial requirements 23

2.12 Use case diagram of the second iteration 24

2.13 Use case diagram of the third iteration 26

60

3.1 System modules and interactions with third party services 30

3.2 How the system is generating the style component 32

3.3 Turtle of the generated configuration 33

3.4 Defining a base uri . 33

3.5 Using relative uri . 33

3.6 Validating duplicate prefix . 34

3.7 Validating duplicate value of an input and invalid IRI structure . 35

3.8 A sample of an expansion query template 36

3.9 Visualizing a detail query against a selected data set 36

3.10 Visualizing a expansion query against a selected data set 37

3.11 The option to fetch the configuration from LOD 38

3.12 Choosing which components to include from a loaded configuration 39

3.13 Choosing a meta group of be assigned to 40

3.14 Managing the selected meta group 40

3.15 List meta groups and configurations 41

3.16 Suggestions of view sets . 41

3.17 Suggestions of style sheets . 41

4.1 The system modules and interactions 42

4.2 Vue application and components hierarchy 43

61

4.3 Vue component structure . 44

4.4 How the configuration file structure was represented as UI compo-

nents . 45

4.5 How to handle communication between components using vuex . 46

4.6 How to fetch configuration file components using the back-end

module . 49

4.7 How to fetch meta configuration components from KGserver using

back-end module . 50

5.1 Unit testing example . 54

5.2 End to end testing example . 55

62

List of Tables

1.1 Comparison of supported configuration between different knowl-

edge graph browsers . 10

2.1 A use case scenario for downloading an RDF representation of the

configuration. 23

2.2 A use case scenario for loading a saved configuration 24

2.3 A use case scenario for reusing components 26

2.4 A use case scenario for previewing a query 26

63

List of Abbreviations

LOD Linked Open Data

KGBrowser Knowledge Graph Browser

RDF Resource Description Framework

SPARQL SPARQL Protocol and RDF Query Language

KGVB Knowledge Graph Visual Browser

IRI Internationalized Resource Identifier

UML Unified Modeling Language

CSS Cascading Style Sheets

UI User Interface

POC Proof Of Concept

KGserver Knowledge Graph Server

64

Annex - developer handbook

The source code of this tool is available publicly on https://gitlab.com/mahran-

omairy/thesis-project/-/tree/master, where you can clone it an run it locally, and

a live demo is published on https://kgbrowser-config.me/.

The repository contains two main branches the master branch which contains

latest version of the code, and the production branch which has the latest version

of the code plus an apache server2 container which is being used for deploying

the application on a production environment. The steps needed for running the

tool on a production environment are as follows:

1. Get the remote server ready by installing docker3 and make sure that you

have ports 80 and 443 exposed.

2. Clone the gitlab repository and checkout to the production branch.

3. In the docker-compose.yml file you need to modify the following variables.

• MYSQL USER and LOCAL DB USER should be assigned the same

value for database user name (Optional).

• MYSQL PASSWORD and LOCAL DB PASS should be assigned the

same value for database user password (Optional).

• MYSQL DATABASE and LOCAL DB NAME should be assigned the

same value for database name (Optional).

• MYSQL USER and LOCAL DB USER should be assigned the same

value for database user name (Optional).

• MYSQL ROOT PASSWORD for mysql root user passowrd (Option-

al).

• LETS ENCRYPT EMAIL a valid email for letsencrypt ssl certificate

(Required).

2https://httpd.apache.org/
3https://www.docker.com/

65

• HOST NAME FROM the domain where the app will be served, the

domain should be pointed to the server before deployment (Required).

• HOST NAME FROM API the api domain for the back-end module,

the domain should be pointed to the server before deployment (Re-

quired).

4. In vue/src/services/api.js file modify baseUrl variable to be as follows https://your-

api-domain/api/v1, similar to the value of HOST NAME FROM API (Re-

quired).

5. Once ready run the command docker-compose up -d −−build and the

apache container will download the ssl certificate and the other container

will build and run the modules.

To run the automated test for the front-end module, navigate to /vue folder and

run npm install then npm run test and the system will execute the defined

set of tests, and to add a new test set navigate to the folder vue/tests/unit and

add your test in a new file that matches the tested component name.

To run the automated test for the back-end module, first make sure that you are

on master branch, and run the command docker-compose up -d −−build to

make sure that the database module is running, then navigate to /nestjs folder

and run npm install then npm run test and the system will execute the defined

set of tests, and to add a new test set navigate to the folder nestjs/test and add

your test in a new file that matches the tested component name.

The back-end module is also integrated with a swagger4 interface that can be help-

ful for manually testing an endpoint or reading more about the expected requests

and responses from each endpoint, this swagger instance can be accessed locally on

http://localhost:5001/docs/ or on the current live domain https://api.kgbrowser-

config.me/docs/, and if you deploy on a custom domain, swagger can be accessed

on https://your-api-domain/docs.

4https://swagger.io/

66

	Introduction
	Related work
	Linked data visualization
	Knowledge graph management
	Knowledge Graph Visual Browser

	Comparison with other tools
	Motivation
	Thesis structure

	Defining requirements
	Configuration file structure
	Analysing the configuration file
	Requirements gathering
	The initial requirements
	Data persistence
	User experience

	System analysis and architecture
	The system design
	UI design
	Managing configuration files
	Validating the user input
	Visualizing the queries
	Fetching configuration represented as an LOD resource
	Using meta configurations

	Implementation overview
	Front-end module
	KGserver
	Database module
	Back-end module

	Testing
	Automated tests

	Conclusion
	Bibliography
	List of Abbreviations
	Annex - developer handbook

