
BACHELOR THESIS

Peter Grajcar

Generating a drawing according to a
textual description

Institute of Formal and Applied Linguistics

Supervisor of the bachelor thesis: Mgr. Rudolf Rosa, Ph.D.
Study programme: Computer Science

Study branch: Programming and Software Systems

Prague 2021

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to thank my supervisor Mgr. Rudolf Rosa, Ph.D., for his advice
and help. Furthermore, I would like to thank my colleagues and friends Katarína
Dančejová and Jakub Čatloš for reviewing the text of this thesis and others who
helped me throughout the course of my studies.

ii

Title: Generating a drawing according to a textual description

Author: Peter Grajcar

Institute: Institute of Formal and Applied Linguistics

Supervisor: Mgr. Rudolf Rosa, Ph.D., Institute of Formal and Applied Linguistics

Abstract: Text-to-image generators have improved significantly with the recent
development of deep neural networks. However, generating complex scenes with
multiple objects and relations still remains a difficult problem. In this thesis,
we implement a text-to-drawing generator using scene graphs as an intermedi-
ate structure. We focus on determining object size and position given a scene
graph. We propose a rule-based and classifier-based approach to determine the
object position and multiple approaches for size extraction from the scene graph
dataset. We provide details of our implementation. We compare and evaluate
our approaches and present the results. Finally, we propose potential future use
in photorealistic text-to-image generation.

Keywords: natural language processing image generation scene graphs

iii

Contents

Introduction 3

1 Related Work 4
1.1 Text-to-Image Generation . 4
1.2 Scene Graphs . 4
1.3 Drawing Datasets . 5

2 Our Approach 6
2.1 Overview . 6
2.2 Description Processing . 6

2.2.1 Limitations . 6
2.2.2 Dependency Tree Parsing 6

2.3 Composing a Scene . 9
2.3.1 Scene Graph Notation . 9
2.3.2 Determining the Object’s Position 9
2.3.3 Positional Constraints . 9
2.3.4 Rule-Based Constraints . 10
2.3.5 Classifier-Based Constraints 10
2.3.6 Determining the Object’s Size 12

2.4 Image Generation . 13

3 Implementation Details 14
3.1 Overview . 14
3.2 Description Processor . 14
3.3 Scene Composer . 15

3.3.1 Constraints . 16
3.3.2 Object Factory . 16
3.3.3 Object Scaler . 17

3.4 Renderer . 18

4 User Manual 19
4.1 Prerequisites . 19
4.2 Installation . 19
4.3 Command-Line Interface . 19
4.4 Web Interface . 20

4.4.1 Server . 20
4.4.2 Client . 21

5 Results 23
5.1 Extracting Object Sizes . 23

5.1.1 Evaluation . 23
5.1.2 Quantitative and Qualitative Results 23

5.2 Positional Constraints . 24

6 Discussion 28

1

Conclusion 30

Bibliography 31

List of Figures 33

List of Tables 34

A Attachments 35
A.1 Source Code . 35

2

Introduction
This thesis aims to implement a drawing generator capable of generating com-
plex scenes for given textual descriptions of the scenes. Generating drawings
is substantially less ambitious than generating photorealistic images. However,
the problem still poses multiple challenges whose solutions may also be useful in
photorealistic image generation.

Despite the significant progress in the field of text-to-image generation, these
generators still struggle with more complex scenes. Many approaches only work
on limited domains [1]. While promising achievement in a zero-shot text-to-
image generation has recently been made [2], generating complex images remains
a challenge. One fairly recent approach [3] uses a scene graph representation of
the scene in an attempt to address the challenges of complex image generation
with many objects and relations. The scene graph is a structure that represents
the relations and objects in the form of a directed graph. The scene graph is used
as an intermediate structure. However, generating a scene graph from a natural
language and generating images from the scene graphs are still complex tasks.

Our work focuses on determining the spatial properties (the position and the
size) of the objects within the scene. We propose multiple approaches and com-
pare them. Our approaches may serve as an alternative to box regression methods
used in existing scene graph based text-to-image generation [3, 4]. Limiting our-
selves to generating drawings allows us to use an existing dataset of hand-drawn
images of common objects such as Quick, Draw! [5]. We also implement a rule-
based description processing that converts text to a scene graph based on the
syntactic analysis.

While we are limited to drawings in this thesis, the proposed approaches for
determining the positions and sizes could be used for layout generation. The
layout is a bounding box corresponding to an object in the scene, which may also
be used for image generation [6].

This thesis is structured into six chapters. The first chapter provides an
overview of recent text-to-image generators, work related to scene graphs, and
drawing datasets. The second chapter introduces our approach for drawing gen-
eration. In the third chapter, we provide details of the implementation of our
approach presented in the second chapter. The next chapter contains brief in-
structions for users of our implementation. The fifth chapter presents the results
of our approaches for determining spatial properties of objects. The chapter is
followed by a discussion of the results and a general conclusion.

3

1. Related Work
1.1 Text-to-Image Generation
Most of the recent research on text-to-image generators has focused on generating
photorealistic images [1, 2, 3, 6, 7, 8, 9, 10] using machine learning approaches
such as Generative Adversarial Networks – GANs [1, 6], Cascaded Refinement
Networks – CRNs [3] or autoregressive models [2, 8, 9]. However, these models
are limited to generating low-resolution images, e.g., 32 × 32 [7, 8, 9], 64 × 64
[3, 9], 128 × 128 [10], 256 × 256 [1, 2]. Some approaches do not generate images
directly from the text but use intermediate structures such as scene graphs [3, 4]
or layouts [6].

Figure 1.1: Examples of generated photorealistic images. Top row: Johnson et
al. [3], bottom row: Zhao et al. [6].

1.2 Scene Graphs
A scene graph is a graph-based representation of a scene, where vertices of the
graph are objects and edges are relations between objects. Scene graphs have
been used for image retrieval [11, 12], image generation [3], improving [13] or
evaluating [14] image captions. Schuster et al. [11], proposed rule-based and
classifier-based approaches for converting sentences to scene graphs with no sig-
nificant performance difference between the two. We use our own yet similar
rule-based approach for text-to-scene graph conversion.

Figure 1.2: Examples of scene graphs from the Scene Graph dataset.1 [15]

4

Most work on scene graphs is based on Visual Genome [16] dataset, which
contains scene graphs annotated by humans. This thesis uses Scene Graph [15]
dataset based on the Visual Genome. Unlike the original dataset, this dataset is
deprived of ambiguous object names and poor quality bounding boxes.

1.3 Drawing Datasets
Google’s Quick, Draw! [5] dataset is the largest hand-drawn sketch dataset at
the time. It contains 50 million individual drawings classified into 345 categories.
The Quick, Draw! dataset provides the broadest range of categories compared
to other widely used datasets such as TU-Berlin [17] dataset with 250 categories
and Sketchy [18] dataset with 125 categories.

The Quick, Draw! [5] dataset contains sketches of common objects represented
as sets of pen strokes. Figure 1.3 shows a sample of sketches present in the dataset.

Figure 1.3: Sample of drawings from the Quick, Draw! dataset.

1Image taken from the Scene Graph dataset webpage https://cs.stanford.edu/~danfei/
scene-graph/.

5

https://cs.stanford.edu/~danfei/scene-graph/
https://cs.stanford.edu/~danfei/scene-graph/

2. Our Approach
2.1 Overview
This chapter describes the taken approach for generating images from a natural
language description. In this approach, we split the task into two by generating
a scene graph from the description and subsequently using the scene graph to
generate the image. The image generation pipeline is depicted in Figure 2.1
below.

“A duck is swimming in a
pond. A tree is next to the
pond.”

group

IN

NEXT TO

duck pond

tree

Figure 2.1: Drawing generation pipeline.

2.2 Description Processing
The scene graph is a structure that represents the mutual relations between ob-
jects in the scene. Our approach uses syntactic analysis as a shallow seman-
tics parser. Using syntactic analysis, we can extract relations between individ-
ual words in the sentences and use these relations to build a scene graph. In
the following sections, we discuss the limitations of this approach and present a
rule-based algorithm for transforming the syntactic dependency tree into a scene
graph.

2.2.1 Limitations
In some cases, the syntactic structure of a sentence does not contain all the
necessary semantic information to construct a corresponding scene graph. For
instance, consider the two sentences “A man in a car is on the seat” and “A man
in a car is on the road”. These two sentences have the same syntactic structure
(Figure 2.2). In the first sentence, semantically, the preposition “on” describes
the relation between the man and the seat. However, in the second sentence, the
same preposition puts into relation the whole car (including the man) and the
road. We do not attempt to address this problem in our thesis and accept it as
a limitation of our approach.

2.2.2 Dependency Tree Parsing
Our approach uses a tree traversal algorithm to extract the objects and relations
from the description. This algorithm is applied to a syntactic dependency tree

6

<root>

A
det
DET

man
nsubj
NOUN

in
case
ADP

a
det
DET

car
nmod
NOUN

is
cop
AUX

on
case
ADP

the
det
DET

road
root
NOUN

<root>

A
det
DET

man
nsubj
NOUN

in
case
ADP

a
det
DET

car
nmod
NOUN

is
cop
AUX

on
case
ADP

the
det
DET

seat
root
NOUN

Figure 2.2: Sentences with the same syntactic structure but different semantics.1

of the description. In our implementation, we use UDPipe [19] to obtain the
dependency trees in Universal Dependencies version 2 [20] CoNLL-U format.
The algorithm uses some properties of this format. The implementation is further
discussed in Chapter 3 Implementation Details.

The goal of the algorithm is to identify the relations between objects in the
dependency tree as semantic subject-predicate-object triples. Note that, unless
stated otherwise, whenever we refer to subject-predicate-object triples, we refer
to the semantic meaning, not syntactic. The algorithm searches for paths in
the dependency tree that contain two nouns — representing the subject and the
object — and an adposition representing the predicate. The algorithm can be
extended to support verb predicates as well; However, we decided to restrict
ourselves to position adpositions. The algorithm traverses the dependency tree
in a depth-first manner, processing the nodes from left to right. While it traverses
the tree, it maintains a stack of created objects. These objects are created when
the algorithm opens a node with a noun. When a node with an adposition is
opened, we create a new relation by taking two objects from the object stack.

To allow relations between groups of objects, we replace the object stack with
an entity stack. An entity is an abstraction of objects and groups of objects. We
keep track of how many objects were created in each subtree. If it is more than
one, these objects are removed from the stack to form a group that is added to
the top of the stack. Therefore, we can create a relation including a group of
objects.

Complex adpositions — adpositions that consist of two or more words — are
concatenated into the rightmost dependency tree node. The algorithm distin-
guishes three complex adposition types of form:

1. adposition-adposition – e.g. inside of
2. adposition-noun-adposition – e.g. in front of
3. adverb/adjective-adposition – e.g. next to

A relation corresponding to the complex adposition is created in the last node;
i.e., in the case of in front of adposition, dependency tree nodes corresponding
to the first two words, in and front, are skipped.

7

Similarly, compound nouns such as paper clip, light bulb, pickup truck, and
others need to be joined to create only one object. The compound nouns are
identified by the Universal Dependency [20] relation – compound.

<root>

A
det
DET

dog
nsubj
NOUN

and
cc
CCONJ

a
det
DET

cat
conj
NOUN

are
aux
AUX

sitting
root
VERB

in
case
ADP

front
obl
NOUN

of
case
ADP

a
det
DET

house
nmod
NOUN

.
punct
PUNCT

Figure 2.3: Dependency tree of the example descripton.1

To illustrate the algorithm, consider the following description: “A dog and
a cat are sitting in front of a house.” Figure 2.3 shows the syntactic tree cor-
responding to the description. The nodes of interest are those corresponding to
words dog, cat, in, front, of, and house. The nodes are opened and closed by the
depth-first algorithm in this order:

1. open dog
2. open cat
3. close cat
4. close dog
5. open front
6. open in
7. close in
8. open house
9. open of

10. close of
11. close house
12. close front

The first two steps create new objects and put them on top of the entity stack.
In the third step, the node corresponding to the cat is closed, but there are no
other entities above the cat on the stack; therefore, the stack remains intact.

1Dependency tree illustrations were generated using UDPipe LINDAT service https://
lindat.mff.cuni.cz/services/udpipe/.

8

https://lindat.mff.cuni.cz/services/udpipe/
https://lindat.mff.cuni.cz/services/udpipe/

However, when the dog node is closed, there is one object on the stack above –
the cat. The two objects are therefore taken from the stack merged into a group.
Next, the front node is opened, which is skipped because it is a part of a complex
adposition. The same applies for the in node. Opening the house node adds a
new object to the entity stack. The stack now contains two entities – The group
and the house on top. In the next step, the node of is opened. This word is the
last part of the complex adposition in front of which means that a new relation
is created. A relation between the house and the group of two objects – the dog
and the cat.

2.3 Composing a Scene
The next step in our approach is composing a scene from the scene graph. The
scene graph can be viewed as a set of constraints on objects and their positions
in the scene. We will use the term scene composition as a process of determining
the size and position of each object in the scene. Methods used for composing a
scene that satisfies the constraints are presented later in this section.

2.3.1 Scene Graph Notation
A scene graph is a directed graph with labelled edges which describes a particular
scene. Each vertex corresponds to an object in the scene. Edges and their labels
represent relations between the objects. Throughout this chapter, we will use the
following notation for the relation "object a is in relation p with object b":

a
p−→ b (2.1)

For instance, dog
under−−−→ tree or book

on−→ table. We will also refer to a, b, and p
as subject, object, and predicate, respectively.

2.3.2 Determining the Object’s Position
To compose a scene, we need to determine where to put each object. Object
positions have to satisfy the constraints given by the scene graph. In this section,
we attempt to formally define the constraints and propose methods for creating
and satisfying these constraints.

2.3.3 Positional Constraints
We can think of the object positions as x and y coordinates on a canvas. Thus, we
can define the positional constraints as a function of points in the two-dimensional
plane with two possible outcomes: 1 if the constraint is satisfied and 0 if it is not
satisfied. We will denote a constraint function corresponding to a relation a

p−→ b
as Cp

a,b. The constraint function is then defined as:

Cp
a,b : R2 → {0, 1} (2.2)

9

Suppose we have a constraint function for each relation in the scene graph.
Placing an object a within a scene means finding point (xa, ya) such that Equa-
tion (2.3) holds for every object bi which is in relation a

pi−→ bi.

Cpi
a,bi

(xa, ya) = 1 (2.3)

However, such a point may not exist. Its existence depends on the constraint
functions. Therefore, we may accept positions that satisfy a certain portion of
the constraints, not necessarily all of them. The approach described in this thesis
uses a Monte Carlo algorithm to find a point that satisfies the most constraints
on an object.

The Monte Carlo algorithm generates N random normally distributed points
(x0, y0), . . . , (xN , yN); xi ∼ N (xb, wb), yi ∼ N (yb, hb) where (xb, yb) and (wb, hb)
denote the centre of the object and size of object b respectively. Each of the
points is tested using all constraint functions associated with objects a and b.
The first point that satisfies the largest number of constraints is designated as
the position of object a. This algorithm requires prior knowledge of the position of
object b, which requires the existence of topological ordering of the scene graph.

2.3.4 Rule-Based Constraints
In the first approach, we define 5 elementary constraint functions and combine
these functions to define constraints for selected adpositions. The five constraint
functions are:

1. On constraint – Tests whether a point is near the top of the object to which
the constraint relates.

2. Side constraint – Defines a half-plane; all points in the half-plane satisfy
the constraint.

3. Box constraint – Tests whether a point lies within a box.
4. Inside constraint – Treats the object it relates to as a polygon. A point

satisfies this constraint if it lies inside the polygon.
5. Disjunction constraint – A composite constraint that encapsulates two or

more other constraints. The constraint is satisfied if at least one of the
encapsulated constraints is satisfied.

Using these elementary constraints we define constraint functions for a small
set of adpositions – in, inside, inside of, on, under, below, above, behind, in front
of, and next to. Table 2.1 shows which elementary constraints are used to define
the constraints for the listed adpositions. Section 3.3.1 describes how each of
the elementary constraints is implemented and provides details on how are these
constraints combined.

2.3.5 Classifier-Based Constraints
The other approach uses a binary classifier trained on the Scene Graph [15]
dataset. The classifier matches the constraint function definition 2.2. Given coor-
dinates (x, y), subject a, object b, and predicate p, the classifier decides whether
the coordinates (x, y) satisfy the constraint given by a

p−→ b.

10

Adposition Elementary constraint
in Inside constraint
inside Inside constraint
inside of Inside constraint
on On constraint
under Side constraint
below Side constraint
above Side constraint
behind Box constraint
in front of Box constraint
next to Disjuction constraint (containing two side constraints)

Table 2.1: Rule-based constraints.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Figure 2.4: Monte Carlo algorithm finds points that satisfy given constraints.
Inside constraint on the left, side constraint on the right.

The classifier has four inputs – subject, predicate, x coordinate, and y coordi-
nate. The subject is encoded as a 100-dimensional vector using word embedding.
The Scene Graph dataset [15] contains a limited number of predicates. We use the
50 most frequent ones; therefore, the predicate is encoded using a 50-dimensional
one-hot vector. Each of the x and y coordinates is encoded as a single float
number. Note that we use normalised coordinates relative to the centre of the
subject – the absolute x and y coordinates are converted to relative ones and
divided by subjects’ width and height, respectively. In total, the classifier takes
a 152-dimensional input. In Section 5.2, we also show results obtained with a
classifier that only takes the predicates and the coordinates as inputs.

The classifier itself is a multilayer perceptron with three hidden layers and
a total of 600 hidden units with ReLU activations. We use Stochastic Gradient
Descent (SGD) as an optimiser and a cross-entropy loss.

The source of the training data is the Scene Graph dataset [15]. The dataset
contains the semantic subject-predicate-object triples as well as sizes and positions
of the subjects and objects. The positions are absolute. We convert them to the
relative position format described in the preceding sections. However, this dataset
only contains correctly placed objects. To be able to train the classifier, we need
to synthesise data that contains incorrectly placed objects. We do so by replacing
the relative position of a subject-object-predicate triple with a position of another
triple with a different predicate.

11

−2 −1 0 1 2

−2

−1

0

1

2

under tree

−2 −1 0 1 2

−2

−1

0

1

2

next to dog

Figure 2.5: Visualisation of the classifier’s decision boundaries.

2.3.6 Determining the Object’s Size
Besides the object positions within a scene, we also need to determine their
sizes. The Quick, Draw! [5] dataset contains 345 categories. The relatively
small number of categories makes it possible to define the absolute size for each
category by hand. This is, in fact, our first approach for determining the object
sizes. The objects in the scene can be scaled accordingly to the ratio between the
defined sizes. In addition to the process being tedious, this approach also has one
apparent flaw. The size ratio of objects often depends on context. For instance,
the size ratio of a television and a car is different in the following sentences: “A
car is on the television” and “The television is near the car.”.

The mentioned problem of absolute sizes suggests a different approach. In-
stead of defining the absolute size for each category, we can define a relative size
between a pair of categories. However, defining relative sizes for 119 025 pairs of
categories by hand is infeasible. Instead, we once again use the Scene Graph [15]
dataset to extract the relative sizes. The following list summarizes three methods
used to determine the objects’ sizes:

1. Absolute – For each Quick, Draw! category, we extract absolute sizes of
matching objects’ bounding boxes from the dataset and use their average
as a size.

2. Relative – If both subject and object are valid Quick, Draw! categories,
we compute the ratio of their widths and heights. We average these ratios
across the whole dataset.

3. Relative + word embedding – Modification of the previous method where
we do not require an exact match with a Quick, Draw! category. Instead,
we add the ratios to the most similar categories. The most similar categories
are determined by the cosine similarity of their word embeddings. We also
set different similarity thresholds.

Not all the Quick, Draw! category pairs are present in the Scene Graph
dataset. To address this problem, the data obtained using the methods mentioned
above can be completed by transitive closure. We estimate the unknown ratio
a : b between objects a and b as

a

b
= 1

n

n∑︂
i=0

a

ki

· ki

b

12

where a : ki and ki : b are known ratios.

2.4 Image Generation
With a composed scene, the image generation itself is a straightforward process.
Both position and size are known for all objects in the scene. The only thing left
to do is to select a drawing of the object and draw it onto a drawing canvas. The
drawings are randomly selected from the Quick, Draw! [5] dataset. We do not
use the entire dataset as it also contains irrelevant and inappropriate data. Only
a manually selected portion of the dataset is used.

13

3. Implementation Details
This chapter provides details about the implementation of the approach proposed
in Chapter 2. The implementation is written in Python 3. Its source code can
be found in Attachment A.1.

3.1 Overview
The implementation consists of three main components: a description processor,
a scene composer, and a renderer. These components are depicted in Figure 3.1.
The components and transitions between the components correspond to the draw-
ing generation pipeline presented in Chapter 2.

Description Processor

Scene Composer

Renderer

Object Factory

Object Scaler

Description

Scene Graph

Drawing Representation

Figure 3.1: Implementation diagram.

Besides the three main components, the diagram in Figure 3.1 also contains
two other components: an object factory and an object scaler. Together with
the scene composer component, these two components implement the algorithms
proposed in Section 2.3 Composing a Scene. Each of the components is discussed
in more detail in the following sections.

3.2 Description Processor
The description processor is a component responsible for converting the input
text into a scene graph. Description processor has one public method process.
The method has the following Python signature:

process(self, text: str) -> Scene

14

Attachment A.1 contains one implementation of the description processor -
UDPipeDescriptionProcessor. This implementation uses UDPipe [19] for syn-
tactic analysis. The dependency tree traversal algorithm was described in the
Section 2.2 Description Processing. The resources/predicates file contains a
list of allowed predicates which can be processed by the processor.

The Scene class represents a scene graph. It contains two types of entities:
Object and Group entities (subclasses of Entity). Each entity has a list of
relations represented by Relation.

The Group entity is just a convenience class which encapsulates other entities.
Every group’s relation is redirected to each entity within the group. We can
extend the notation introduced in Section 2.3.1 Scene Graph Notation, such that
[a, b] will denote a group of objects a and b. Then [a, b] p−→ c will effectively
become a

p−→ c and b
p−→ c. Similarly a

p−→ [b, c] will become a
p−→ c and a

p−→ c.
Apart from the relations, the Object class also contains the attribute word.

This attribute holds a noun that describes the object. Note that in the case of
composite nouns, this attribute may contain multiple words.

3.3 Scene Composer
The scene composer determines the position of every object in the scene. The
scene composer is a class with the following method:

compose(self, scene: Scene) -> List[PhysicalObject]

ConstraintComposer is an implementation of the algorithm described in Sec-
tion 2.3.3 Positional Constraints. The ConstraintComposer associates each ob-
ject in the scene with a corresponding Constraint object. Then it uses these
constraints to determine the positions using the described Monte Carlo algorithm.

The Constraint is an abstract callable class. As opposed to the constraint
function defined in Section 2.3.3 Positional Constraints, the Constraint object
operates on a batch of coordinates. It returns a Boolean array that masks the
coordinates which satisfy the constraint. Using the notation from Section 2.3.1,
we can describe the Python Constraint call method:

__call__(self, xs: np.ndarray, ys: np.ndarray) -> np.ndarray

As a mapping between two vectors:

[(x0, y0), . . . , (xn, yn)] ↦→ [Cp
a,b(x0, y0), . . . , Cp

a,b(xn, yn)] (3.1)

The scene composer generates a single set of random coordinates for one
object. These coordinates are applied to every constraint associated with the
object. The resulting boolean arrays are summed as integer arrays. By applying
argmax to this array, we find an index of coordinates that satisfy most of the
constraints. These coordinates are used as the object’s position. In other words,
for a fixed object a, we set its position to be (xi, yi), where:

i = argmax
∑︂
(b,p)

[Cp
a,b(x0, y0), . . . , Cp

a,b(xn, yn)] (3.2)

15

3.3.1 Constraints
Section 2.3.4 lists a set of elementary constraints. In this section, we take a
closer look at these constraints, describe how they are implemented and how
they are combined to define constraints for specific adpositions. All constraints
are implemented as subclasses of Constraint which was described in the previous
section. The constraints are initialised with an object and predicate that relates
to the object. Information about the object and predicate are used to determine
whether a point in plane satisfies the constraint.

The OnConstraint takes the upper 25% of the object’s drawing strokes. The
constraint tests if a point is within a certain distance from these strokes. The
distance is specified by attribute limit.

The SideConstraint defines a half-plane. All points in this half-plane satisfy
the constraint. The constraint has two attributes – direction and offset. The
direction attribute is a vector normal to the half-plane boundary. The offset
attribute moves the boundary further away from the object.

The BoxConstraint is satisfied whenever a point lies inside a bounding box
of the object to which the constraint relates. In addition, the implementation
also contains an attribute scale that can scale the bounding box up or down.

The InsideConstraint tests whether a point lies within an area spanned by
the object it relates to. The area is given by strokes of drawing associated with
the object. We consider each stroke to be a polygon. We test whether a point
lies inside a polygon defined by one of the strokes. Some strokes contain many
line segments, which could lead to a slow evaluation of the constraint. Hence,
we apply the Ramer-Douglas-Peucker [21] algorithm to the drawing to reduce its
number of line segments.

The primary purpose of DisjunctionConstraint is to combine other non-
overlapping constraints. The constraint is satisfied when any of the constraints it
encapsulates is satisfied. Since we assume the encapsulated constraints are non-
overlapping, only one of the constraints can be satisfied at a time. The same could
be achieved by specifying more constraints for a single predicate. However, using
the disjunction constraint does not require evaluating all the constraints – the
evaluation ends after the first satisfied constraint. The non-overlapping regions
can be seen in the right image of Figure 2.4.

Table 3.1 below shows how the elementary constraints are used in the rule-
based approach to form constraint functions for adpositions listed in Section 2.3.4.

ClassifierConstraint implements the classfier-based approach described
in Section 2.3.5 Classifier-Based Constraints. The classifier uses scikit-learn’s
[22] multi-layered perceptron classifier trained on the Scene Graph dataset. The
trained model is loaded from resources/sklearn/constraints.model file. All
relevant details about the model are discussed in Section 2.3.5.

3.3.2 Object Factory
The object factory is a class with a method with the following Python signature:

get_physical_object(self, obj: Object) -> PhysicalObject

16

Adposition Elementary constraint
in InsideConstraint()
inside InsideConstraint()
inside of InsideConstraint()
on OnConstraint()
under SideConstraint(direction=(0, 1))
below SideConstraint(direction=(0, 1))
above SideConstraint(direction=(0, -1))
behind BoxConstraint()
in front of BoxConstraint()
next to DisjunctionConstraint([

SideConstraint(direction=(-1, 0)),
SideConstraint(direction=(1, 0))

])
unknown DisjunctionConstraint([

SideConstraint(direction=(-1, 0)),
SideConstraint(direction=(1, 0)),
SideConstraint(direction=(0, 1)),
SideConstraint(direction=(0, -1)),

])

Some constructor arguments are omitted for brevity.

Table 3.1: Rule-based constraints implementation.

QuickDrawObjectFactory instantiates a PhysicalObject using Quick, Draw!
[5] Data. It uses a WordEmbedding class for resolving objects which are not present
in the Quick, Draw! categories.

WordEmbedding class is a wrapper around a fasttext [23] model. It has a
single method most_similar_word(self, word: ’str’) -> ’str’ which finds
the most similar word from a list of words based on the cosine similarity. The
list of words is, in this case, a list of Quick, Draw! categories.

3.3.3 Object Scaler
The object scaler determines the object sizes. The object scaler class has the
following Python signature:

scale(self, sub: PhysicalObject, obj: PhysicalObject,
pred: str) -> float

This method scales the subject sub. The size estimation may use the context
given by the object obj or the predicate pred. The size estimation strategy
depends on the implementation. We provide two object scaler implementations –
AbsoluteObjectScaler and RelativeObjectScaler. These clases implement
the object scaling methods described in Section 2.3.6 Determining the Object’s
Size.

The AbsoluteObjectScaler scales the sub object according to a table of
absolute (hand crafted) sizes located in resources/quickdraw/attributes.csv.
The file contains a width and/or height for the given Quick, Draw! category.

17

The RelativeObjectScaler takes into account both subject and object (sub
and obj). The subject is scaled according to a table of relative sizes located in
resources/quickdraw/attributes_relative.csv file. The file contains width
and height ratios for the given pair of Quick, Draw! categories. The size of obj
has to be known before calling the scale method. Its size is multiplied by the
ratio specified in the file to determine the subject’s size.

3.4 Renderer
The renderer is the last component in the system. The only purpose of the
renderer is to render a final drawing from a PhysicalObject list. Two different
renderers are provided. The first one, SimpleRenderer, renders a PNG image.
This renderer is used in the command-line interface. The other renderer has a
form of a web application written in JavaScript. The composed scene served over
HTTP is rendered onto an HTML canvas. The web interface is discussed in more
detail in Section 4.4 Web Interface.

18

4. User Manual
4.1 Prerequisites
Make sure that the following are installed on your system before proceeding to
the installation:

• GNU Make
• Python 3

4.2 Installation
All Python dependencies and required pre-trained models can be downloaded and
installed by running the following command in drawtomat/ directory:

make install

4.3 Command-Line Interface
The command-line interface can be started by

make run

or alternatively:

export PYTHONPATH=src
python3 -m drawtomat [-h] [--help]

[--description DRAWING_DESCRIPTION]
[--graph_output GRAPH_OUTPUT_PATH]
[--image_output IMAGE_OUTPUT_PATH]
[--sizes {absolute,relative}]
[--constraints {rule,classifier}]
[--show]

If the --description flag is not set, the program takes the description from
the standard input. A path to a generated drawing can be set by image_output.
The default is ./drawing.png. If the --show flag is set, the image is opened
immediately after it is generated. If the --graph_output flag is set, a scene
graph will be saved to the specified file in the Graphviz DOT language. Note
that when running the program without Make, one needs to activate the Python
virtual environment beforehand. Options sizes and constraints allows user to
choose the approach for determining object size and position.

19

4.4 Web Interface

4.4.1 Server
The implementation contains a Flask web server, which provides a simple HTTP
API. The server can be started by running the following command:

make run-api

The API has a single endpoint POST /drawtomat. The format of request and
response bodies are described by tables 4.1 and 4.2. Both tables specify JSON
formats accepted and provided by the API.

Key Type Description
description string A description of a drawing (limited to 1000

characters).
options object Drawing generation options.
options.constraints string Allowed values are absolute or relative.

If the value is equal to "classifier", po-
sitions of objects in the scene will be deter-
mined using the classifier-based approach.

options.sizes string Allowed values are "rule" or
"classifier". If the value is equal
to "relative", sizes of objects in the scene
will be determined based on size ratios
extracted from Scene Graph dataset.

Table 4.1: Request JSON format.

Key Type Description
description string A description of a drawing.
bounds object Defines a bounding box of the drawing.
bounds.top number The maximum of all y coordinates.
bounds.bottom number The mininum of all y coordinates.
bounds.right number The maximum of all x coordinates.
bounds.left number The minimum of all x coordinates.
drawing array Drawing representation similar to Quick, Draw! for-

mat. The drawing is represented as an array of ob-
jects in the scene. Objects are arrays of strokes.
Each stroke is an array itself containing three se-
quences - x coordinates, y coordinates and time in
milliseconds.

Table 4.2: Response JSON format.

Sample Request

POST /drawtomat HTTP/1.1
Host: localhost:5000

20

Content-Type: application/json

{
"description": "A dog is sitting under a tree.",
"options": {

"constraints": "classifier",
"sizes": "relative"

}
}

Sample Response

HTTP/1.1 200 OK
Content-Type: application/json
Server: Werkzeug/1.0.1 Python/3.8.6
Date: Thu, 11 Mar 2021 09:37:29 GMT

{
"bounds": {

"bottom": 197.13186109372901,
"left": -187.71175260273606,
"right": -10.021259329191409,
"top": 442.4159101648598

},
"description": "A dog is sitting under a tree.",
"drawing": [

[
[

[-84.61983725860478, ..., -69.03160196448714],
[268.89656697608194, ..., 345.9553905054937],
[0, ..., 553]

],
...

]
]

}

4.4.2 Client
The web client can be found in web/ directory, which contains a single HTML
page index.html. The webpage contains a text field for the drawing description
and a canvas where the drawing is drawn. A collapsible menu is under the text
field and can be toggled by clicking on “Advanced”. In the menu, the user can
set the drawing speed and strategies for position and size determination. The
server address can be configured in config.js file. The web client is depicted in
Figure 4.1.

21

Figure 4.1: The web client.

22

5. Results
5.1 Extracting Object Sizes
In Section 2.3.6 Determining the Object’s Size, we proposed three methods for
determining object size by extracting data from the Scene Graph [15] dataset. In
this section, we compare and evaluate the three methods.

5.1.1 Evaluation
The size data extracted from the Scene Graph [15] dataset using the above method
are compared against the hand-written sizes. The extracted absolute sizes can
be directly compared to the hand-written data. The relative sizes are compared
against size ratios between the absolute hand-written sizes.

We use the Root-Mean-Square Error (RMSE) as a metric. For N predictions
y0, . . . , yn and target values t0, . . . , tn, RMSE is defined as:

RMSE =
⌜⃓⃓⎷ 1

n

n∑︂
i=0

(yi − ti)2

The second metric we are interested in is the percentage of covered pairs, i.e.,
for how many pairs, out of the total of 119 025 pairs, we were able to extract the
size data.

5.1.2 Quantitative and Qualitative Results
The RMSEs of the proposed size extraction methods are reported in Tables 5.1
and 5.2. Table 5.1 compares variants of the proposed methods with transitive
closures.

Method Width RMSE Height RMSE Pairs Covered
Absolute 51.93 43.17 91.49%
Relative 12.97 16.46 7.50%

Relative + word embedding 43.93 42.46 63.60%
Relative + word embedding (0.85) 19.78 24.87 10.34%
Relative + word embedding (0.95) 13.13 16.12 7.92%

Table 5.1: Comparison of the size extraction methods.

All relative size methods outperformed the absolute size method in terms of
RMSE. However, these methods cover significantly fewer pairs. The transitive
closure partially solves the small pair coverage problem, but it also introduces
larger errors. Similarly, the word embeddings helped to increase both the pair
coverage and errors.

Figure 5.1 compares the absolute size and relative size methods on the exam-
ple given in Section 2.3.6. In this particular example, the relative size method
addresses the problem stated in the mentioned section. However, the rightmost

23

Method Width RMSE Height RMSE Pairs Covered
Absolute∗ 51.93 43.17 91.49%
Relative 43.65 41.04 79.70%

Relative + word embedding 55.53 47.92 100%
Relative + word embedding (0.85) 53.35 45.65 86.57%
Relative + word embedding (0.95) 49.39 42.03 82.30%

∗ Transitive closure cannot be applied to the absolute sizes. The results are the same as in
Table 5.2. For the sake of comparison, they are also included in this table.

Table 5.2: Comparison of the size extraction methods with transitive closure.

Figure 5.1: Drawings generated from description “A car is on the television.”
using absolute (right) and relative (left) sizes.

drawing in Figure 5.2 shows that the method fails the other way around. Pre-
sumably, the dataset captures certain pairs of objects only in a narrow variety of
contexts, leading to biased estimations. Furthermore, the relative size approach
is oblivious to the predicates associated with the relation. We have chosen not
to include the predicate as it would vastly decrease the pair coverage.

5.2 Positional Constraints
In Section 2.3.4 and Section 2.3.5, we introduced a rule-based and a classifier-
based approach for determining the objects’ positions. In this section, we compare
those two approaches.

The first version of the classifier-based approach considers only the predicate
and the relative position described in Section 2.3.5. As shown in Figure 5.3,
constraints implemented using this classifier closely resemble the rule-based al-
ternatives. It shows that the Scene Graph [15] dataset is a viable source of
semantic information about the connection of predicates and mutual positions of
objects. The figure also suggests that this classifier is a sufficient replacement for
the simple rule-based approach.

The second version of the classifier takes into account the semantic subject.
Figure 5.4 shows that this classifier can capture different semantics of a predicate
with respect to the subject. More examples are shown in Figure 5.5.

The major drawback of the classifier-based approach is the lack of information
about the shape of the object. This problem is partially illustrated by Figure 5.6.

24

“A television is behind a cat.” “A cat is sitting on a television.”

“A truck is behind a car.” “A car is next to a truck.”

“A car is on the television.” “A television is in front of a car.”

Figure 5.2: Drawings generated using the relative size method.

In some cases, the rule-based approach provides more precise boundaries than
the classifier-based alternative.

25

−2 −1 0 1 2

−2

−1

0

1

2

next to

−2 −1 0 1 2

−2

−1

0

1

2

next to

−2 −1 0 1 2

−2

−1

0

1

2

on

−2 −1 0 1 2

−2

−1

0

1

2

on

−2 −1 0 1 2

−2

−1

0

1

2

in

−2 −1 0 1 2

−2

−1

0

1

2

in

−2 −1 0 1 2

−2

−1

0

1

2

under

−2 −1 0 1 2

−2

−1

0

1

2

under

Figure 5.3: Rule-based constraints (on the left) compared to the classifier-based
constraints (on the right). The classifier used in these examples was trained using
only predicates and the x, y coordinates.

26

−2 −1 0 1 2

−2

−1

0

1

2

on table

−2 −1 0 1 2

−2

−1

0

1

2

on beach

Figure 5.4: Different decision boundaries capture semantic difference of the same
predicate in different contexts.

−2 −1 0 1 2

−2

−1

0

1

2

next to tree

−2 −1 0 1 2

−2

−1

0

1

2

on piano

−2 −1 0 1 2

−2

−1

0

1

2

in truck

−2 −1 0 1 2

−2

−1

0

1

2

under bridge

Figure 5.5: More examples of the classifier-based constraints.

−2 −1 0 1 2

−2

−1

0

1

2

in house

−2 −1 0 1 2

−2

−1

0

1

2

in house

Figure 5.6: The rule-based inside constraint (on the left) can be more precise
than the classifier-based one (on the right).

27

6. Discussion
None of the approaches compared in the preceding chapter is flawless, and each
works better under certain circumstances. Our implementation gives the user an
option to choose the approach and experiment with the results. Figure 6.1 shows
that in many cases, the results are similar across different selected approaches.
The random nature of the Monte Carlo algorithm allows generating multiple
different drawings for one description. This randomness increases the chances
that the generated image will eventually correspond with the input description.
Future research might focus on automatic scoring and cherry-picking of the gen-
erated scenes. Other possible improvements may be achieved by employing more
advanced machine-learning models used for constraints and size prediction. Our
implementation relies on a simple rule-based description processing which is suf-
ficient for simple sentences; However, finding a better approach may also be a
subject of future research.

28

(1) “A dog and a cat are sitting on a couch. The couch is in a house and there is a tree
next to the house.”

rule-based constraints, absolute sizes classifier-based constraints, absolute
sizes

(2) “Two ducks are swimming in a pond which is next to a tree. a bench is under the
tree.”

classifier-based constraints, absolute
sizes

classifier-based constraints, relative
sizes

(3) “There is a house, and mountains behind it. The sun is rising above the mountains.”

rule-based constraints, relative sizes classifier-based constraints, relative
sizes

Figure 6.1: Examples of generated drawings. Each example is labelled with the
used approach for determining the position and size. The absolute sizes refer to
the hand crafted absolute size table.

29

Conclusion
In this thesis, we have developed a command-line and a web-based application
that generates drawings from a textual description using scene graphs as an in-
termediate structure. We have proposed various approaches for determining the
sizes and positions of objects in a scene based on their relations in the scene
graph. We have shown that our proposed approach, in many cases, can generate
drawings that correspond to the description.

Our approach may find their use in layout generation, used by some photore-
alistic image generators [6]. Photorealistic image generators that generate images
using the scene graphs currently use box regression networks for this task [3, 4].
Our approach could be an alternative to the box regression method. However,
comparison with the box regression networks is beyond the scope of this thesis,
and it may be a subject of future work.

30

Bibliography
[1] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei

Huang, and Dimitris N Metaxas. Stackgan: Text to photo-realistic image
synthesis with stacked generative adversarial networks. In Proceedings of the
IEEE international conference on computer vision, pages 5907–5915, 2017.

[2] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss,
Alec Radford, Mark Chen, and Ilya Sutskever. Zero-Shot Text-to-Image
Generation, 2021.

[3] Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image generation from scene
graphs. In Proceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 1219–1228, 2018.

[4] Subarna Tripathi, Anahita Bhiwandiwalla, Alexei Bastidas, and Hanlin
Tang. Using scene graph context to improve image generation. arXiv preprint
arXiv:1901.03762, 2019.

[5] David Ha and Douglas Eck. A neural representation of sketch drawings.
arXiv preprint arXiv:1704.03477, 2017.

[6] Bo Zhao, Lili Meng, Weidong Yin, and Leonid Sigal. Image generation from
layout. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8584–8593, 2019.

[7] Elman Mansimov, Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhut-
dinov. Generating images from captions with attention. arXiv preprint
arXiv:1511.02793, 2015.

[8] Aaron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex
Graves, and Koray Kavukcuoglu. Conditional image generation with pixel-
cnn decoders. arXiv preprint arXiv:1606.05328, 2016.

[9] Aaron Van Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent
neural networks. In International Conference on Machine Learning, pages
1747–1756. PMLR, 2016.

[10] Scott Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele,
and Honglak Lee. Learning what and where to draw. arXiv preprint
arXiv:1610.02454, 2016.

[11] Sebastian Schuster, Ranjay Krishna, Angel Chang, Li Fei-Fei, and Christo-
pher D Manning. Generating semantically precise scene graphs from textual
descriptions for improved image retrieval. In Proceedings of the fourth work-
shop on vision and language, pages 70–80, 2015.

[12] Justin Johnson, Ranjay Krishna, Michael Stark, Li-Jia Li, David Shamma,
Michael Bernstein, and Li Fei-Fei. Image retrieval using scene graphs. In
Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 3668–3678, 2015.

31

[13] Siqi Liu, Zhenhai Zhu, Ning Ye, Sergio Guadarrama, and Kevin Murphy.
Improved Image Captioning via Policy Gradient optimization of SPIDEr.
2017 IEEE International Conference on Computer Vision (ICCV), Oct 2017.

[14] Peter Anderson, Basura Fernando, Mark Johnson, and Stephen Gould. Spice:
Semantic propositional image caption evaluation. In European conference on
computer vision, pages 382–398. Springer, 2016.

[15] Danfei Xu, Yuke Zhu, Christopher Choy, and Li Fei-Fei. Scene Graph Gener-
ation by Iterative Message Passing. In Computer Vision and Pattern Recog-
nition (CVPR), 2017.

[16] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata,
Joshua Kravitz, Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A
Shamma, Michael Bernstein, and Li Fei-Fei. Visual Genome: Connecting
Language and Vision Using Crowdsourced Dense Image Annotations. 2016.

[17] Mathias Eitz, James Hays, and Marc Alexa. How Do Humans Sketch Ob-
jects? ACM Trans. Graph. (Proc. SIGGRAPH), 31(4):44:1–44:10, 2012.

[18] Patsorn Sangkloy, Nathan Burnell, Cusuh Ham, and James Hays. The
Sketchy Database: Learning to Retrieve Badly Drawn Bunnies. ACM Trans-
actions on Graphics (proceedings of SIGGRAPH), 2016.

[19] Milan Straka. UDPipe 2.0 prototype at CoNLL 2018 UD shared task. In
Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies, pages 197–207, Brussels, Belgium, October
2018. Association for Computational Linguistics.

[20] Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Jan Hajič, Christo-
pher D Manning, Sampo Pyysalo, Sebastian Schuster, Francis Tyers, and
Daniel Zeman. Universal dependencies v2: An evergrowing multilingual
treebank collection. arXiv preprint arXiv:2004.10643, 2020.

[21] David H Douglas and Thomas K Peucker. Algorithms for the reduction of
the number of points required to represent a digitized line or its caricature.
Cartographica: the international journal for geographic information and geo-
visualization, 10(2):112–122, 1973.

[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine Learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[23] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. En-
riching Word Vectors with Subword Information. Transactions of the Asso-
ciation for Computational Linguistics, 5:135–146, 2017.

32

List of Figures

1.1 Generated photorealistic images 4
1.2 Examples of scene graphs . 4
1.3 Sample of drawings from the Quick, Draw! dataset 5

2.1 Drawing generation pipeline . 6
2.2 Sentences with the same syntactic structure but different semantics 7
2.3 Dependency tree of the example descripton 8
2.4 Monte Carlo algorithm with rule-based constraints 11
2.5 Visualisation of the classifier’s decision boundaries 12

3.1 Implementation diagram . 14

4.1 The web client . 22

5.1 Comparison of absolute and relative size method 24
5.2 Drawings generated using the relative size method 25
5.3 Rule-based constraints compared to classifier-based constraints . . 26
5.4 Different decision boundaries for the same predicate 27
5.5 More examples of the classifier-based constraints 27
5.6 Inside constraint comparison . 27

6.1 Examples of generated drawings 29

33

List of Tables

2.1 Rule-based constraints . 11

3.1 Rule-based constraints implementation 17

4.1 Request JSON format . 20
4.2 Response JSON format . 20

5.1 Comparison of the size extraction methods 23
5.2 Comparison of the size extraction methods with transitive closure 24

34

A. Attachments
A.1 Source Code
Zipped source code that contains:

• implementation of the command-line interface, web server in the drawtomat
directory;

• implementation of the web client in the web directory;
• various experiments and scripts used for training the used models in the

experiments directory.

The source code is also available as a GitHub repository https://github.com/
peter-grajcar/drawtomat.

35

https://github.com/peter-grajcar/ drawtomat
https://github.com/peter-grajcar/ drawtomat

	Introduction
	Related Work
	Text-to-Image Generation
	Scene Graphs
	Drawing Datasets

	Our Approach
	Overview
	Description Processing
	Limitations
	Dependency Tree Parsing

	Composing a Scene
	Scene Graph Notation
	Determining the Object's Position
	Positional Constraints
	Rule-Based Constraints
	Classifier-Based Constraints
	Determining the Object's Size

	Image Generation

	Implementation Details
	Overview
	Description Processor
	Scene Composer
	Constraints
	Object Factory
	Object Scaler

	Renderer

	User Manual
	Prerequisites
	Installation
	Command-Line Interface
	Web Interface
	Server
	Client

	Results
	Extracting Object Sizes
	Evaluation
	Quantitative and Qualitative Results

	Positional Constraints

	Discussion
	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Attachments
	Source Code

