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Abstract: In this thesis, we study the viscous relaxation of an impact-deformed
icy shell of a dwarf planet Pluto. Motivation for this work is the position of
Sputnik Planitia, a 1000 km wide, nitrogen-filled elliptic basin, which is located
very close to Pluto-Charon tidal axis. Given this unlikely position on Pluto’s sur-
face, it was suggested that the basin was formed elsewhere and the whole body
reoriented afterwards. For the reorientation to occur, the basin has to generate
a positive gravity anomaly for which a combination of impact-related subsurface
ocean uplift, ejecta blanket and accumulation of nitrogen ice was suggested. How-
ever, to maintain the orientation towards the minimum principal axis of inertia
until today, the ocean uplift must be present on timescales of billions of years,
which may be achieved due to an insulating layer of high viscosity clathrates at
the ice/ocean interface. We solve Pluto’s ice shell evolution by the finite element
method in 2D spherical axisymmetric geometry with an evolving free surface and
assuming a viscous rheology. Our results show that the thermal effect of the im-
pact and nonlinear rheology can substantially decrease the relaxation timescale.
It thus seems unlikely that the uplift would be stable long enough, even if the
clathrates are present.
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Abstrakt: V této práci studujeme viskózńı relaxaci impaktem deformované ledové
slupky trpaslič́ı planety Pluto. Motivaćı je poloha eliptické, 1000 km široké pánve
Sputnik Planitia, která se nacháźı v těsné bĺızkosti slapové osy. Vzhledem k jej́ı
neobvyklé poloze se usuzuje, že pánev vznikla jinde a k přibĺıžeńı ke slapové
ose došlo reorientaćı celého tělesa. Aby k reorientaci t́ımto směrem mohlo doj́ıt,
muśı mı́t gravitačńı anomálie oblasti pánve kladné znaménko. Jedná-li se o im-
paktńı pánev, lze jej doćılit izostatickým výzdvihem podpovrchového oceánu,
impaktńımi ejekty a naakumulovaným volatilńım duśıkem. Aby si pánev novou
polohu ve směru nejmenš́ıho hlavńıho momentu setrvačnosti zachovala dodnes,
výzdvih oceánu muśı být př́ıtomen řádově miliardy let. Tomu by mohla pomoci
izolačńı vrstva vysokoviskózńıch klatrát̊u na rozhrańı oceánu a ledu. Deformaci
ledové slupky řeš́ıme metodou konečných prvk̊u ve 2D sférické axisymetrické ge-
ometrii s volným povrchem a viskózńı reologíı. Naše výsledky ukazuj́ı, že termálńı
účinek impaktu a nelineárńı reologie dokáž́ı výrazně urychlit charakteristický čas
relaxace. Zdá se tedy, že navzdory př́ıtomnosti klatrát̊u výzdvih oceánu nebude
stabilńı dostatečně dlouho.

Kĺıčová slova: Pluto, viskózńı deformace, relaxace kráter̊u, axisymetrická geome-
trie
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Introduction
Impact craters were present, at least for some period of time, on all solid surfaces
in the Solar System. If not destroyed by tectonic processes, they can now be found
on all terrestrial planets, satellites and on other, mostly airless, bodies. Since
impact cratering is for most of these bodies the dominant geological process, we
can obtain valuable information about the body geological history from impact
crater morphology [Melosh, 2011]. However, the impact does not affect the surface
only. Numerical simulations suggest that a collision with another body can bring
significant changes also to the target body interior. If a fluid or low viscosity
mantle is present beneath a rigid lithosphere, isostatic uplift of the mantle may
occur below the place of the impact. The resulting gravity anomaly may even lead
to whole body reorientation (true polar wander) [Johnson et al., 2016, Nimmo
et al., 2016a].

Nimmo et al. [2016a] proposed that this might be the case of a dwarf planet
Pluto. Sputnik Planitia, a 1000 km wide, nitrogen-filled elliptic basin on its
surface, is situated only 400 km from the tidal axis. Since a position this close
to the tidal axis is very unlikely, Nimmo et al. [2016a] proposed that the whole
body was reoriented. To reorient towards the tidal axis, which is the minimum
principal axis of inertia, Sputnik Planitia should be a positive gravity anomaly.
Based on its possible impact origin, isostatic uplift of the water mantle might have
compensated the basin’s negative topography. Ejecta blanket and accumulated
nitrogen would then provide an additional positive mass which would reorient
the whole body [Keane et al., 2016]. Due to the basin’s likely age of ∼ 4 Gyr
[Greenstreet et al., 2015], the gravity anomaly has to be positive up to the present,
i.e.. the uplift should relax extremely slowly. Since the warm ice close to the
melting point is expected to relax quickly, Kamata et al. [2019] proposed the
presence of an insulating layer of high viscosity clathrates, which should prolong
the relaxation time of the uplift.

In this thesis, we will investigate the viscous relaxation of Sputnik Planitia
basin and its uplift. In Chapter 1, we summarize the basic knowledge about the
dwarf planet Pluto and discuss the hypotheses of Sputnik Planitia’s origin and
possible reorientation. Chapter 2 provides a brief description of crater formation,
its morphology and the parametrization of the thermal and topographic effects
of an impact. In Chapter 3, we develop the mathematical description of a vis-
cous flow in an icy shell with free boundary. We solve the problem by the finite
element method and we present several numerical tests to verify our implemen-
tation. In Chapter 4, the material properties of ice are discussed and results for
surface crater and uplift relaxation are presented. Finally, the results and further
objectives are discussed.

The potential presence of a liquid ocean beneath the outer shells of icy bodies
is currently on the front burner of planetary research, since liquid water is one
of the necessary conditions for the emergence of life as we know it. There is
already a serious evidence for several icy moons: induced magnetic field in case
of Europa and Ganymede, geysers at Enceladus or Titan’s obliquity [Nimmo and
Pappalardo, 2016]. Due to Pluto’s likely origin in the Kuiper belt, there are
probably many other bodies with a similar interior structure. For this reason,
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answering the question of subsurface ocean presence is crucial for further research.
Unfortunately, future exploration of Pluto remains unclear. Pluto orbiter or

lander is considered as a possible mission, however, it will not be launched before
2030. Until then, numerical modelling of geological processes may bring new
knowledge about this beautiful and enigmatic world.
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1. Pluto and Sputnik Planitia
At the beginning of the 20th century, American astronomer Percival Lowell, later
director of Lowell Observatory, searched for Planet X that caused an anomaly in
Uranus’s orbit. Based on his calculations, astronomer Clyde Tombaugh in 1930
at the same observatory discovered Pluto. Although it was not the Planet X
that he searched for1, it was the last member of family of planets (at that time)
of Solar System. It orbits the Sun at an average distance of 40 AU with great
eccentricity e = 0.246 and great inclination to ecliptics i = 17.16◦.

1.1 Pluto as an icy body
With an orbital period of 248 years, Pluto did not have enough time to com-
plete a single orbit since its discovery. Nevertheless, thanks to Hubble Space
Telescope, we were able to observe its surface. Figure 1.1 shows surface changes
between years 1994 and 2002/2003 [Stern et al., 2010]. At the latter photography,
a hemispherical pattern, probably caused by summer approaching at the northern
hemisphere, is clearly visible. Possible volatiles might sublime and refreeze in the
colder southern region of Pluto.

Figure 1.1: Pluto’s surface as viewed by Hubble Space Telescope in 1994 (left)
and 2002/2003 (right). Visible surface changes are probably a consequence of
volatiles sublimation [Stern et al., 2010].

In 2015 New Horizons Spacecraft performed a flyby of Pluto and Charon and
gave us valuable information about these two bodies including high-resolution
images of their surfaces (see Figure 1.2) or surface chemical composition. The
surface of Pluto is made up of water ice, nitrogen, carbon oxide and methane
[Grundy et al., 2016]. Due to extremely low temperature (≈ 40 K), all these
components are in solid state. Despite that, Pluto is geologically active. Owing
to high tilt and eccentricity, there are seasonal variations of surface temperature
which lead to (de)sublimation of volatile compounds. There are also regions of
glacier flow of solid nitrogen similar to that of water ice observed on Earth. From
geological point of view, there is a high number of impact craters (indicating old
age of the surface), extensional fractures and normal faults (indicating despinning
and expansion [Matsuyama and Nimmo, 2013]), or bladed terrains formed by
sublimation, so far unique in the Solar System [Moore et al., 2016].

1In 1992, Neptune’s mass was recalculated from flyby data of Voyager 2 spacecraft. The
mass difference 0.5 % from the previous estimate showed that there was no perturbation of
Uranus’s orbit and therefore no need for Planet X [Standish, 1993]. However, this topic has
been revived recently by Batygin and Brown [2016].
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The dominant feature on Pluto’s surface is a large elliptical basin informally
named Sputnik Planitia. It is 1200× 900 km wide and covered by a layer of
convecting nitrogen ice, which makes it impossible to observe its depth directly.
However, it is possible to estimate the nitrogen ice thickness from dimensions of
the convecting cells. It is now argued that its thickness varies from 3 to 10 km
[Trowbridge et al., 2016]. Absence of impact craters indicates that the surface
of Sputnik Planitia is not older than 10 Myr. Based on the sublimation pits
in the convection cells, Buhler and Ingersoll [2017] suggested that the surface is
approximately 140 - 270 kyr.

Figure 1.2: Pluto with Sputnik Planitia in the middle imaged by New Horizons
spacecraft in 2015 [NASA, 2018].

Pluto is in a synchronous rotation with its biggest satellite Charon. Since
Charon weights 12 % of Pluto’s mass, their barycentre lays outside Pluto. Sputnik
Planitia basin lays interestingly almost at the anti-Charon point (its centre is only
400 km from the tidal axis, see Figure 1.3). Nimmo et al. [2016a] and Keane et al.
[2016] argue that the crater center has a 5 − 9 % chance to be this close to the
tidal axis. Nimmo et al. [2016a] proposed that Sputnik Planitia is an impact
basin which was formed somewhere else and that it was subsequently reoriented.
In the next section, we will discuss the different theories for the reorientation of
Sputnik Planitia basin and their requirements and consequences.

1.2 Origin and current position of the basin
If Pluto was reoriented, Sputnik Planitia basin has to be a positive gravity
anomaly. So far two main theories explaining possibles source of this anomaly
were proposed.

Nitrogen glacier theory

Hamilton et al. [2016] showed that nitrogen ice caps can be rapidly accumulated
near lattitudes of ≤ 30◦. These areas are, averaged over orbital period, the cold-
est ones. Since nitrogen ice has a high albedo, these areas reflect the majority

5



Figure 1.3: Position of Sputnik Planitia basin with respect to Pluto-Charon tidal
axis [Keane et al., 2016].

of sunlight and remain cold, while other darker areas absorb it and warm up
(this principle is also called runaway albedo effect). However, for only one cap to
survive, many processes have to be involved (e.g. eccentricity of Pluto’s orbit or
continuous illumination of only one hemisphere of Pluto by Charon). Accumula-
tion of nitrogen ice in one cap leads to a positive gravity anomaly which reorients
this cap to anti-Charon point. Over geological timescales, the nitrogen cap sub-
sides, creating the Sputnik Planitia basin. Meanwhile, on timescales of hundreds
Myr, Pluto and Charon become tidally locked, raising a permanent tidal bulge
[Robuchon and Nimmo, 2011]. This tidal bulge prevents further reorientation
even if the glacier, already subsided, does not generate positive gravity.

However, this scenario is not likely, because Nimmo et al. [2016b] shows that
there is no tidal bulge on both Pluto or Charon. Absence of these features suggests
that at the moment when the despinning was finished, the bodies were still too
warm and deformable. Without the proposed tidal bulge, Pluto would reorient
to another minimum energy configuration at the moment of ice cap subsidence.

Impact basin theory

Nimmo et al. [2016a] proposed that Sputnik Planitia basin is a result of an impact.
The impact basin itself, however, produces a negative gravity anomaly, unless it is
compensated. If the surface basin was compensated by mantle (ocean) uplift, the
accumulated nitrogen would contribute to the positive gravity anomaly required
for reorientation.

Numerical simulations of the impact suggest that the ocean uplift would not
be sufficient to compensate the crater negative anomaly completely [Johnson
et al., 2016, Denton et al., 2020], unless the ocean has higher density (at least
1100 kg · m3). This might be achieved e.g. by dissolved MgSO4, see Section
4.2.1. However, Keane et al. [2016] show that ejecta blanket can also contribute
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to positive gravity anomaly, therefore the uplift does not have to be fully isostatic
to cause reorientation.

Assumption of the ocean uplift requires a liquid ocean beneath the ice shell
at the time of an impact. There are already several indications for the presence
of a liquid ocean at the time of an impact:

1. Energy balance of radioactive decay, accretion energy, despinning and differ-
entiation suggest that Pluto might have developed a subsurface ocean only
if the ice at melting temperature is sufficiently viscous (reference viscosity
≥ 4 · 1015 Pa · s). Convection then becomes sluggish or entirely absent, thus
the ocean looses heat sufficiently slowly to remain liquid up to the present.
[Robuchon and Nimmo, 2011].

2. Extensional faults observed on Pluto’s surface suggesting volume increase
are best explained by freezing of a liquid ocean [Keane et al., 2016, Bierson
et al., 2020].

3. Existence of an ocean is in agreement with the absence of a fossil bulge
[Nimmo et al., 2016b].

4. On the opposite side of Sputnik Planitia (i.e. sub-Charon point), the an-
tipodal terrain resembles the weird terrains on the Moon or Mercury (see
Section 2). They are believed to be caused by elastic waves generated by an
impact on the opposite side of the body (Sputnik Planitia basin on Pluto,
Imbrium or Orientale basins on the Moon). Simulations for Pluto show
that antipodal deformation is sensitive to ocean thickness. Best results
were obtained for a 150 km thick ocean [Denton et al., 2020].

Since there is no fossil bulge, the gravity anomaly has to be positive up to
the present. This is nearly impossible to satisfy because the low ice viscosity
at melting temperature causes the uplift to relax very quickly. Nimmo et al.
[2016a] thus proposed an extremely cold ocean, whose freezing point (190 K)
would have been lowered by dissolved ammonia. Even though ammonia lowers
the freezing point, it also reduces water density, which makes the uplift gravity
contribution insufficient for reorientation. Kamata et al. [2019] proposed presence
of a clathrate hydrate layer at the bottom of the ice shell to prolong the relaxation
time of an ocean uplift. Clathrates have higher viscosity than water ice and low
thermal conductivity which makes the shell cooler and more rigid [Durham et al.,
2003]. This thermal and mechanical effect will be discussed in Section 4.2.
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2. Impact cratering
Although impact craters have accompanied Solar System bodies since the first
solid surface was formed, they were discovered only 400 years ago, when Galileo
Galilei pointed his telescope at the Moon. Still, the origin of circular-shaped
features remained unknown until 1930. Before impact physics was developed,
impact craters on the Moon were believed to be extinct volcanoes. However,
impact character of Moon’s features was not proved until high-resolution images
and Apollo missions in the 1970s. Since then, impact craters were discovered on
most of the bodies of Solar System.

2.1 Impact mechanism
Impact craters can provide us with useful information about both surface and
inner processes. From crater counting we can decide about relative age of surface
regions. On the one hand, there are bodies with almost no impact craters (e.g.
icy moon Europa or the south pole of Enceladus), whose smooth surface is a sign
of ongoing or recent resurfacing processes implying rich sources of internal energy.
On the other hand, heavily cratered bodies like planet Mercury, the Moon or icy
moon Callisto are likely inactive for a very long time [Melosh, 2011].

The birth of a crater is a very complex process. It starts with contact and
compression, when an impactor (typically an icy or rocky body) compresses the
target’s surface. This stage lasts only on short timescales of the order of d/vimp,
where d is impactor diameter and vimp impact velocity (usually few - tens km·s−1).
Depending on the impact velocity and elastic velocities of the impactor and the
target, a shock wave may travel through both objects. At the end of this stage, the
impactor/target interface is less than one impactor diameter below the original
target surface and both impactor and surrounding target can be already melted
or vaporized. Amount of vaporized material can be even sufficient to form an
upwelling plume that can reach escape velocity and leave the target, removing
part of the original atmosphere.

After the material is compressed, it gets ejected and the crater is opening.
This stage is called an excavation and the resulting crater a transient crater. The
opening timescale is given by

√︂
D/g, where D is the crater diameter and g the

target’s surface gravity. Furthermore, shock wave slows down and propagates
further as an elastic wave. It might even travel to the body antipode to meet
with the wave from the opposite direction and form so-called weird terrains. This
was confirmed for the antipodal terrains of Imbrium and Orientale craters on the
Moon or Caloris Basin on Mercury (see Figure 2.1). It might be also the case of
antipodal terrains of Pluto’s vast basin Sputnik Planitia [Denton et al., 2020].

The last stage of crater formation is modification. Transient crater walls are
collapsing and floor establishes its final depth and shape. At this moment, we
distinguish between bowl-shaped simple craters and more complicated complex
craters, that might form a central peak or a peak ring. Transition radius between
simple and complex craters depends on the body material and scales as g−1.
Typical transition radii are 3 km for Earth while 20 km for Moon. Special category
of complex craters are multiring craters (found e.g. on the Moon, Ganymede
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(a) Caloris basin on Mercury. (b) Antipode of Caloris basin.

(c) Sputnik Planitia basin on Pluto. (d) Antipode of Sputnik Planitia basin.

Figure 2.1: (a) Caloris basin (diameter 1350 km) on Mercury
[NASA/JPL/Northwestern University, 2015], (b) its antipodal terrain
(800 × 800 km window). (c,d) Sputnik Planitia basin (diameter 1000 km) on
Pluto and its antipodal terrain [NASA/JHUAPL/SwRI, 2015].

or Calisto), which are one of the very largest impact features in Solar System.
After the modification is over, slower processes such as isostatic adjustment or
relaxation, commence [Melosh, 2011].

2.2 Thermal and topographic effects
When the impactor hits the target, part of its kinetic energy is transformed into
inner energy (local increase of temperature of target). If the impact velocity is
larger than the elastic velocities of the target, a shock wave develops. Shock
pressure, associated with shock wave, is nearly uniform in a spherical region
beneath the impact (the isobaric core) and strongly decays away from it (see
Figure 2.2).

Based on energy balance calculations and shock simulations, the radius of an
isobaric core Ric is slightly larger than the radius of the impactor Rimp [Monteux
et al., 2014]

Ric = 3
√

3Rimp. (2.1)
Inside the isobaric core (r < Ric), the thermal increase ∆T is uniform,

T (r) = T0 + ∆T, (2.2)
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where T0 is the pre-impact temperature, r is the distance from the centre of the
isobaric core, while for distances r larger than isobaric core radius Ric, it decays
as

T (r) = T0 + ∆T
(︃

Ric

r

)︃m

, (2.3)

where m is an attenuation exponent with approximate value m ≈ 3.4 [Monteux
et al., 2007].

Figure 2.2: Temperature anomaly. For r ≤ Ric the temperature anomaly is
constant, for r > Ric it decreases with increasing r. D denotes the final crater
diameter.

Denoting γ a fraction of an impactor kinetic energy Ek dissipated as a heat,
we can estimate the temperature increase as

∆T = γ
Ek

ρcpVeff
, (2.4)

where ρ and cp are density and specific heat capacity of target, respectively, and
Veff is the effective volume which is considered to be heated. It can be related to
the volume of the isobaric core

Veff = hmVic, (2.5)

with hm = 5.8 [Monteux et al., 2007].
Using Equations (2.1) and (2.5), we can express the effective volume in terms

of the impactor volume
Veff = 3hmVimp, (2.6)

and thus for temperature anomaly we have

∆T = γ
1
2

ρimpVimpv2
imp

ρcp3hmVimp
= 1

6
ρimpv2

imp

ρcphm

γ. (2.7)

It is also possible to formulate a scaling law for the final crater diameter

D = a0

(︃
vimp

vesc

)︃2a1
(︄

ρimp

ρ

)︄a2

Ra3da4
imp cosa5(θ), (2.8)

where vesc is escape velocity, R is the target radius, dimp is the impactor diameter
and θ is impact angle. The values of parameters ai are as follows: a0 = 1.1,
a1 = 0.217, a2 = 0.333, a3 = 0.217, a4 = 0.783, and a5 = 0.44 [Zahnle et al.,
2003].
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3. Viscous flow in an ice shell
with free surface
In this chapter, we will mathematically describe the problem of viscous flow
in an ice shell with free surface. In Section 3.1, we formulate the strong form
of relaxation-convection problem based on balance laws (for mass, momentum
and energy), their boundary conditions and kinematic condition for free surface.
ALE method and its consequence is briefly described. Finally, the weak form,
implementation and numerical tests of the problem in Cartesian and cylindric
geometry are discussed in Sections 3.2 and 3.3, respectively.

3.1 Problem formulation

3.1.1 Governing equations
The problem of viscous flow will be described by following balance laws in Boussi-
nesq approximation [Matyska, 2005].

Mass balance for an incompressible fluid gives

0 = ∇ · v, (3.1)

where v denotes velocity of the flow.
Momentum balance at geological timescale expresses an equilibrium between

hydrostatic pressure, viscous forces and volume forces

0 = −∇pI + ∇ · η(∇v + ∇T v) + ρi(1 − α(T − Tref))g, (3.2)

where p denotes pressure, η viscosity of ice (in general function of temperature,
grain size and stress), ρi density of ice at reference temperature Tref , α thermal
conductivity and g gravity.

Energy balance describes the evolution of temperature caused by conduction
of heat and convection of heat

ρicp
∂T

∂t
= ∇ · (k∇T ) − ρicp(v · ∇T ), (3.3)

where cp denotes isobaric specific heat, T temperature, t time, k thermal conduc-
tivity (in general function of temperature).

Free surface kinematic condition describes evolution of free surface resulting
from velocity field

∂h

∂t
= (∇h · t)(v · t) − v · n, (3.4)

where h denotes the height of a free surface, n and t are normal and tangent
vectors to the surface, respectively.
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3.1.2 Boundary conditions
Let Ω be a domain and Γ its boundary. This boundary can be divided in three
disjoint subdomains Γ = Γtop ∪ Γbottom ∪ Γ⊥. Subdomains Γtop and Γbottom repre-
sent top and bottom surfaces, respectively, while Γ⊥ represents vertical surfaces
(left/right side for Cartesian geometry, axis of symmetry for spherical geometry).

For temperature, we use Dirichlet boundary condition (fixed temperature) at
the top and bottom boundaries and Neumann condition (zero heat flux) elsewhere

T = Ttop at Γtop,
T = Tbottom at Γbottom,

∇T · n = 0 at Γ⊥.
(3.5)

For velocity, we will use three types of boundary conditions. The first of them
is free-slip, which allows the material to move freely along the boundary

v · n = 0 at Γ,
(σ · n)t = 0 at Γ,

(3.6)

where σ denotes deviatoric part of stress tensor τ

τ = −pI + σ (3.7)

This condition can be prescribed at the solid/fluid (e.g. ice/ocean) interface.
Another possibility is no-slip, which restricts movement at the boundary

v = 0 at Γ, (3.8)
which is the case of solid/solid (e.g. ice/rock) interface.

The last boundary condition used is the free boundary, which will be pre-
scribed in case of free surface evolution

τ · n = 0 at Γ. (3.9)

3.1.3 ALE method
Equations summarized in the previous sections are formulated in Eulerian refer-
ence frame. This approach is commonly used in fluid mechanics, because physical
quantities are associated with fixed spatial points. By contrast, Lagrangian ref-
erence frame associates physical quantities with material particles. Therefore,
the material points coincide with the same grid points during the whole mo-
tion. However, while solving the free surface evolution, we need to deform the
computational mesh and describe the fluid motion at the same time.

To achieve this, we will use Arbitrary Lagrangian-Eulerian (ALE) method
which is based on an introduction of a mesh (or computational) referential frame,
different from both Eulerian and Lagrangian frames [Scovazzi and Hughes, 2007,
Donea et al., 2004]. The main advantage of this approach is that the mesh refer-
ence frame is not fixed to material or spatial points, but takes into consideration
convective effects.

Let us consider Lagrangian ΩX , Eulerian Ωx and mesh Ωχ references frame
with position vectors X, x and χ, respectively (see Figure 3.1).
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Figure 3.1: Mappings and velocities between the Lagrangian (left bottom), Eu-
lerian (left top) and the mesh reference frame (right).

Let α(x, t) be an arbitrary scalar function in Eulerian reference frame. Veloc-
ities v and v̂ denote velocity of material particle X and velocity of a mesh node
χ in the spatial (Eulerian) reference frame, respectively. We want to relate the
material and mesh time derivatives of α(x, t) with spatial gradient of α(x, t). It
will hold

∂α(x, t)
∂t

⃓⃓⃓⃓
⃓
X

= ∂α

∂t

⃓⃓⃓⃓
⃓
χ

+ v · ∇xα − v̂ · ∇xα, (3.10)

where ∇x = ∂/∂x denotes the gradient with respect to spatial coordinate (spatial
gradient). Detailed derivation can be found in Scovazzi and Hughes [2007] or
Donea et al. [2004]. We can denote the relative velocity between the material
and the mesh as the convective velocity c

c = v − v̂. (3.11)

Since material time derivative is present only in the energy balance equation, we
will rewrite it

ρicp
∂T

∂t
= ∇ · (k∇T ) − ρicp(c · ∇T ). (3.12)

3.2 Cartesian geometry
In order to solve the sets of equations and boundary conditions given in Sections
3.1.1 and 3.1.2 by finite element method (FEM), we have to transform them into
a weak form [Logg et al., 2012, Alnæs et al., 2015].

In this section, the weak form will be derived in Cartesian coordinates. This
will be useful for locally scaled problems and geometries where curvature of the
shell can be neglected (i.e. if (Ri/Ro)2 ≈ 1, where Ri and Ro are the inner and
the outer radii of the shell, respectively).
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3.2.1 Governing equations and boundary conditions
Mass balance

We multiply the Equation (3.1) by a scalar test function ν and integrate over the
domain Ω

0 =
∫︂

Ω
(∇ · v)ν dx. (3.13)

Momentum balance

We multiply Equation (3.2) by a vector test function µ and integrate over the
domain Ω. By applying Green’s first identity on the viscous term∫︂

Ω
[∇ · η(∇v + ∇T v)] · µ dx =

∫︂
Γ

n · η(∇v + ∇T v) · µ dS

−
∫︂

Ω
η(∇v + ∇T v) : ∇T µ dx,

(3.14)

and on the pressure term

−
∫︂

Ω
∇p · µ dx = −

∫︂
Γ

p(µ · n) dS +
∫︂

Ω
p(∇ · µ) dx, (3.15)

we get two surface integrals which will be zero for all boundary conditions (3.6,
3.8 and 3.9). In case of the free-slip boundary condition, it is provided by

µ · n = 0,
(σ · n)t = 0.

(3.16)

Expanding the boundary integral of (3.14) as∫︂
Γ
[(n · σ)nn + (n · σ)tt] · (µnn + µtt) dS,

the normal component will be equal to zero due to the former condition in (3.16),
the tangent component (and boundary integral in (3.15)) due to the latter con-
dition. In case of the no slip condition, both boundary integrals in (3.14) and
(3.15) are individually equal to zero due to

µ = 0,

and in case of the free surface condition, their sum is equal to zero due to

[−pI + η(∇v + ∇T v)] · n = 0.

Then it holds

0 =
∫︂

Ω
p(∇ · µ) − ρi(1 − α(T − Tref))g(ez · µ) − η(∇v + ∇T v) : ∇T µ dx, (3.17)

where we replaced g by −gez.
In the case of free surface it is necessary to implement a stabilisation term,

which prevents the free surface from oscillations due to diverging velocity [Kaus
et al., 2010]. Although a sufficiently small timestep could ensure that as well, the
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stabilisation term works well with CFL timestep criterion (discussed later). For
the top free surface the term is:

−
∫︂

Γtop
λg∆tρi[1 − α(Ttop − Tref)](v · n)(µ · ez) dS, (3.18)

and for the bottom free surface

+
∫︂

Γbottom
λg∆t{ρw − ρi[1 − α(Tbot − Tref)]}(v · n)(µ · ez) dS, (3.19)

with λ a constant, ∆t a timestep and ρw is the ocean density beneath the ice
shell.

If the free surface is an ice/ocean interface, there is a force due to density
contrast acting on the boundary. This force is prescribed in the following form

+
∫︂

Γbottom
g(zρw − Hρi)(n · µ) dS, (3.20)

where z is the vertical coordinate of the bottom surface and H is thickness of
the shell. The term −gHρi represents a hydrostatic pressure that acts in the
boundary. The term gzρw enhances or reduces the hydrostatic pressure reflecting
the topography of the bottom boundary. Figure 3.2 shows the ice/ocean interface
in detail.

Figure 3.2: Detail of the ice/ocean interface.

Energy balance

We multiply Equation (3.12) by a scalar test function ϑ and integrate over the
domain Ω. By applying Green’s first identity to the conductive term we get∫︂

Ω
∇ · (k∇T )ϑ dx =

∫︂
Γ

kϑ(∇T · n) dS −
∫︂

Ω
k∇T · ∇ϑ dx.

The surface integral is equal to zero along the vertical boundaries because of Neu-
mann boundary condition and along horizontal boundaries because of Dirichlet
boundary condition (ϑ = 0).

Then we can write the energy balance as

0 =
∫︂

Ω
ρicp

∂T

∂t
ϑ + k(∇T · ∇ϑ) + ρicp(c · ∇T )ϑ dx. (3.21)
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Free surface

Let Γfree denote a free horizontal boundary and Γfix the fixed one. In Cartesian
case, Equation (3.4) takes a form

∂h

∂t
+ ∂h

∂x
vx = vz. (3.22)

Since it would be complicated to solve Equation (3.22) on the boundary, we
prefer to solve the Laplace equation in the domain and prescribe Equation (3.22)
as a boundary condition. We will demand the function h to be constant in
z-direction, thus only z-component of the Laplace equation will be solved. The
complete problem is described using the following equations:

∂2h

∂z2 = 0 in Ω,

∂h

∂t
+ ∂h

∂x
vx = vz at Γfree,

∂h

∂z
= 0 at Γfix,

∂h

∂x
= 0 at Γside.

(3.23)

Because there is a derivative of h inthe boundary condition at Γfree it is not
possible to prescribe the boundary condition in a standard way. For this kind of
conditions the Nitsche method is used [Juntunen and Stenberg, 2009]. Complete
derivation of weak formulation can be found in Kihoulou [2019]. The weak form
of problem (3.23) is then

0 =
∫︂

Ω

∂h

∂z

∂ϕ

∂z
dx −

∫︂
Γfree

∂h

∂z
ϕ dS

−
∫︂

Γfree

[︄
(h − hk) + ∆t

(︄
∂h

∂x
vx − vz

)︄]︄(︄
∂ϕ

∂z
− ϕ

γhE

)︄
dS.

(3.24)

where h denotes an elevation of a surface, hk denotes its value in the previous
timestep, ∆t is a length of a timestep (see Equation 3.29), ϕ is a test function,
γ > 0 is a stabilisation parameter and hE is the element size on a free boundary.
After solving this equation, the new boundary elevation is known and we can
move the mesh by a mesh displacement vector dh defined as

dh(x, z) = z

H
(0, h − hk) (3.25)

for top free surface and

dh(x, z) =
(︃

1 − z

H

)︃
(0, h − hk) (3.26)

for bottom free surface. The prefactor z/H and (1 − z/H) for the top and the
bottom free surface, respectively, distributes the mesh displacement in z-direction
so that the free boundary moves with the maximum displacement given by Equa-
tion (3.24), while the opposite boundary is fixed.
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The mesh velocity is then computed as

w =
(︄

0,
h − hk

∆t

)︄
(3.27)

and enters the energy balance through the convective velocity defined by (3.11).

3.2.2 Implementation (FEniCS, COMSOL 3.5a)
We have developed a computational program using a freely available software
FEniCS designed for solving PDEs by finite element method (FEM)[Logg et al.,
2012, Alnæs et al., 2015]. The FEniCS program was tested against another FEM
software COMSOL 3.5a [Multiphysics, 1998], which is partly automatized. It
is only necessary to choose geometry and material parameters. However, the
geometry and material parameters have to be sufficiently simple.

FEniCS implementation

Element types

Because of stability, the most widely used elements for Stokes equations are the
Taylor-Hood elements [Taylor and Hood, 1973], which consist of a continuous
Lagrange element of order q ≥ 2 (q = 2 in our case) for velocity and the same
type but one order lower for pressure (see Figure 3.3). For temperature we use
quadratic elements, while for mesh displacement linear elements. The classical
Galerkin finite element method is used [Quarteroni and Valli, 1994].

Figure 3.3: P2 element for velocity and temperature (left), P1 element for pressure
and boundary elevation (right). Red dots represent computational nodes.

Time discretization

Since there are time derivatives in the energy balance and in the free surface
equation, it is necessary to discretize them.

For energy balance we use Crank-Nicolson method

∂T

∂t
= f(T )

T − T k

∆t
= 1

2[f(T ) + fk(T )], (3.28)
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where index k denotes previous timestep. For the free surface equation we use
implicit (backward) Euler method

∂h

∂t
= f(h, vx, vz)

h − hk

∆t
= f(h, vx, vz). (3.29)

The timestep is chosen to be the smaller one from the conductive and convec-
tive timestep

∆t = min{∆tcond, ∆tconv}

where ∆tcond and ∆tconv are given by the CFL criterion

∆tconv = cCFL · xmin

vmax
,

∆tcond = cCFL · x2
minρicp

kmax
,

(3.30)

where xmin is the size of the smallest mesh element, vmax is the maximum veloc-
ity in the domain and kmax is the maximum value of thermal conductivity and
cCFL < 1 is a positive constant, usually cCFL = 0.5.

If the maximum temperature difference ∆Tmax before and after solving energy
balance exceeds a threshold value ∆Tthres, we solve the energy balance again with
a new, smaller timestep ∆tnew given by

∆tnew = 0.9∆Tthres

∆Tmax
∆tk, (3.31)

where ∆tk is the previous timestep. This iteration reduces ∆Tmax approximately
to the value of ∆Tthres.

COMSOL 3.5a implementation

COMSOL is mostly automatized software. User then has only to choose geom-
etry, material parameters, which makes the problem implementation easy and
straightforward.

Scheme in Figure 3.4 shows the structure of COMSOL 3.5a implementation.
It consists of Incompressible Navier-Stokes, Convection and conduction
and Moving mesh modules.

Element types

Taylor-Hood elements for Stokes problem are the default choice in Comsol, so
are P2 elements for energy balance. However, for moving mesh, P2 elements are
used, instead of P1 which were used in FEniCS implementation.

Hierarchy of modules

If we solve thermo-mechanical problem, Convection and conduction has to be
the rulling application module, since it solves evolution of temperature in time
(the choice Analysis type: Transient). However, if we solve only mechanical
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problem, rulling application mode is then Moving mesh module (again Analysis
type: Transient).

Module Moving mesh also defines the reference frame which must be used by
all other modules (Defines frame: ALE). Unfortunately, user cannot see the
strong form of the equation which moves the mesh. We set Mesh displacement:
Free, zero velocity at the fixed surface and prescribe velocity computed by
Navier-Stokes module at the free surface. Time discretization and time stepping
is fully governed by the software.

Incompressible
Navier-Stokes
Element type: P2P1
Analysis: Stat.
Corner smooth.: Off
Frame: ALE
Weak constr.: Off
Constr. type: Ideal

Subsection Settings
ρ = ρi, η = η(T ),
F = (0, −ρig)

Boundary Settings

Γfree: fo = fo(z)
Γfix ∪ Γsides: Wall, slip

Conv. and Cond.
(Ruling app. mode)

Element type: P2
Analysis: Transient
Frame: ALE
Weak constr.: Off
Constr. type: Ideal

Subsection Settings
ρ = ρi, k = ki, Cp = cp,
Y =1, Q=0, u⃗ = (u, v)

Boundary Settings

Γfree: T = Tbot
Γfix: T = Ttop
Γsides: Thermal insulation

Moving mesh (ALE)

Element type: P2
Smoothing: Laplace
Analysis: Transient
Remeshing: Off
Defines frame: ALE
Motion rel. to: ref
Weak constr.: On
Constr. type: Non-ideal

Subsection Settings

Mesh displacement: Free

Boundary Settings

Vel. at Γfree: (u, v)
Vel. at Γfix: (0, 0)
Vel. at Γsides: (0, undef.)

Figure 3.4: COMSOL 3.5a implementation diagram.
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3.2.3 Numerical tests
The implementation of relaxation-advection problem was tested against a FEM
software COMSOL 3.5a [Multiphysics, 1998].

Relaxation-advection with η = const.

The initial shape of the domain is a square with side of length H and a subtracted
circle of radius R = 5L/6 (see Figure 3.5), so that the boundary (bottom case)
is prescribed by

g(x) = (
√

L2 − 3x2 − L/2)/
√

3
In order to satisfy boundary conditions, temperature profile has to be adapted

to curved boundary. We used following relation

T (x, z) = Tbot + (Ttop − Tbot)
z − g(x)
L − g(x) , (3.32)

where g(x) is bottom boundary shape. In case of top boundary, g(x) and T (x, z)
are analogical.

Figure 3.5: Geometry of test problem. Bottom free surface (left), top free surface
(right). Tracked points are represented by red circle.

Table 3.1 summarizes parameters used for isoviscous test. Free slip boundary
condition was applied everywhere but top/bottom boundary.

The relaxation part of the problem was tested by comparing the z-coordinate
in the middle of a relaxing boundary with respect to time. Advection of the
temperature field was tested by comparing the temperature along five straight
lines with z coordinate given by

zn = 50 + n · 25 km, n ∈ [0, 4] (3.33)

and at 11 different times given by

tk = 3k · 1011 s, k ∈ [0, 10]. (3.34)
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Height H 150 km
Radius R 125 km
Viscosity η 1018 Pa · s
Ice density ρi 920 kg · m−3

Water density ρw 1000 kg · m−3

Gravity g 0.617 m · s−2

Top temperature Ttop 50 K
Bottom temperature Tbot 273 K
Conductivity ki 2.3 W · m−1 · K−1

Heat capacity cp 2100 J · kg−1 · K−1

Table 3.1: Test parameters.

Results

FEniCS code was tested both with and without the stabilisation term (Equations
3.19 and 3.18). Figure 3.6 shows the result of the relaxation part, Figure 3.7 shows
the comparison for all five lines and chosen given by Equations (3.33) and (3.34).
We observe that curves agree very well for both cases.

Figure 3.6: Relaxation curves for isoviscous case for bottom boundary, point 1
(left) and top boundary, point 2 (right).

Figure 3.7 shows the results of advective part. Temperature field is compared
along the lines represented by (3.33). With increasing time (resp. k, times of
screenshots are given by (3.34)) we observe, that curves get flatter, which is in
agreement with expectation how the bottom boundary relaxes. Both FEniCS
and Comsol results agree very well.

Relaxation-advection with η = η(T )

The relaxation part (for bottom boundary only) was also tested for temperature-
dependent viscosity.

Because of non-uniform viscosity, we found more convenient to use smoothed
boundary. As the bottom boundary, we used following Gaussian curve

g(x) = a · exp
[︄
−(x − b)2

2(c/6)2

]︄
, (3.35)
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Figure 3.7: Advection part of the isoviscous test.

where a = 30 km, b = 0 km and c = 150 km. Hence the temperature was given
by

T (x, z) = Tbot + (Ttop − Tbot)
z − g(x)
L − g(x) . (3.36)

For viscosity we use the following formula [Tobie et al., 2005]

η(T ) = η0 · exp
[︃
Q

R
·
(︃ 1

T
− 1

Tm

)︃]︃
, (3.37)

where η0 is a viscosity at melting temperature Tm, Q is an activation energy
and R is the molar gas constant. Since COMSOL was able to solve relaxation
with maximum viscosity contrast of 3 orders, we chose sufficiently small Q that
satisfies this condition. Parameter values are listed in Table 3.2.

Figure 3.8 summarizes the initial temperature and viscosity field and the
smoothed geometry. In Figure 3.9, relaxation curves for Points 1 and 2 are
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compared for FEniCS and Comsol calculations. Results of the test agree very
well.

Figure 3.8: The initial viscosity (left) and temperature (right) fields with Points
1 and 2 for relaxation curve.

Height H 150 km
Ice density ρi 920 kg · m−3

Water density ρw 1000 kg · m−3

Gravity g 0.617 m · s−2

Top temperature Ttop 100 K
Bottom temperature Tbot 270 K
Reference viscosity η0 1014 Pa · s
Activation energy Q 104 J
Conductivity ki 2.3 W · m−1 · K−1

Heat capacity cp 2100 J · kg−1 · K−1

Table 3.2: Test parameters for temperature-dependent viscosity.

Figure 3.9: Relaxation curves for temperature dependent viscosity for bottom
boundary, point 1 (left) and point 2 (right).

3.3 Cylindric geometry
When we are interested in processes whose dimensions are comparable to or larger
than the shell thickness, its curvature starts to affect the problem. Since we will
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be interested in relaxation of a ∼1000 km crater on a 100 – 200 km thick shell,
it is necessary to take the curvature into consideration. Since three-dimensional
problem would be extremely computationally expensive, we will solve it as two-
dimensional axisymmetric problem, which is, regarding crater morphology, rea-
sonable.

Since FEniCS software operates only in Cartesian coordinate system, we will
reformulate differential operators in cylindrical coordinates. In this section, we
derive the form of differential operators in cylindrical coordinates.

3.3.1 ∇ and ∇· in cylindrical coordinates
We define cylindrical coordinates (r, φ, z) in a following way

x = r cos φ,

y = r sin φ,

z = z,

(3.38)

where r is distance from symmetry axis, φ is longitude and z is vertical coordinate
with the same meaning as the Cartesian one (see Figure 3.10).

Figure 3.10: Cartesian (black) and cylindrical (red) coordinate system.

For transition between Cartesian and generally curvilinear coordinates, it is
necessary to introduce Lamé parameters [Martinec, 2011]

hi =

⌜⃓⃓⎷∑︂
k

(︄
∂yk

∂xi

)︄2

, (3.39)

where yk denotes Cartesian coordinate and xi curvilinear coordinate. Uniqueness
of this map is conditioned by non-zero Jacobian and differentiability of xk. For
cylindric coordinates we get

hr = 1,

hφ = r,

hz = 1.

(3.40)
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Inverse Jacobian of this transformation is given by

J−1 =
⃓⃓⃓⃓
⃓∂xk

∂yl

⃓⃓⃓⃓
⃓ =

⃓⃓⃓⃓
⃓⃓⃓ cos φ r sin φ 0
−r sin φ r cos φ 0

0 0 1

⃓⃓⃓⃓
⃓⃓⃓ = r (3.41)

We will need formulas for gradient of a scalar, divergence of a vector and
gradient of a vector. The generalized formulas are (following Martinec [2011]):

∇s =
∑︂

k

ek⃗

hk

∂s

∂xk

, (3.42)

∇ · v = 1
h1h2h3

[︄
∂

∂x1
(h2h3v1) + ∂

∂x2
(h1h3v2) + ∂

∂x3
(h1h2v3)

]︄
, (3.43)

(∇v)lk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
hk

(︄
∂vk

∂xk

+ ∑︁
m,m ̸=k

1
hm

∂hk

∂xm

vm

)︄
for l = k

1
hk

(︄
∂vl

∂xk

− 1
hl

∂hk

∂xl

vk

)︄
for l ̸= k.

(3.44)

In the following text, rows are denoted by an index k, columns by an index l.

Gradient of a scalar

Substituting (3.40) into (3.42) we get

∇s = er
∂s

∂r
+ eφ

r

∂s

∂φ
+ ez

∂s

∂z

s=s(r,z)= er
∂s

∂r
+ ez

∂s

∂z
.

(3.45)

In the last step we used the assumption of axisymmetry (functions are constant
in longitude φ), meaning that any derivative with respect to φ is equal to zero.
Used further, it will be always denoted by · = ·(r,z)= sign with the name of the
axisymmetric quantity. We observe that a gradient of a scalar in cylindrical
coordinates stays the same as in Cartesian coordinates.

Divergence of a vector

Substituting (3.40) into (3.43) we get

∇ · v = 1
r

[︄
∂

∂r
(rvr) + ∂

∂φ
(vφ) + ∂

∂z
(rvz)

]︄

= ∂vr

∂r
+ vr

r
+ 1

r

∂vφ

∂φ
+ ∂vz

∂z

v=v(r,z)= ∂vr

∂r
+ vr

r
+ ∂vz

∂z
.

(3.46)

Compared to Cartesian divergence, there is an extra term vr/r.
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Gradient of a vector

For cylindrical coordinates, the derivatives ∂hk

∂xl
in 3.44 are equal to zero for all

combinations of l and k but l, k = 1, 2 and 2, 2, where it is equal to 1 (because the
only nonzero Lamé parameter derivative is that of hφ = r). Substituting (3.40)
into (3.44) we get

(∇v)12 = 1
r

(︄
∂vr

∂φ
− 1

1
∂r

∂r
vφ

)︄
= 1

r

(︄
∂vφ

∂φ
+ vφ

)︄

(∇v)22 = 1
r

(︄
∂vφ

∂φ
+ 1

1
∂r

∂r
vr

)︄
= 1

r

(︄
∂vφ

∂φ
+ vr

)︄

∇v =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∂vr

∂r

1
r

∂vr

∂φ
− vφ

r

∂vr

∂z
∂vφ

∂r

1
r

∂vφ

∂φ
+ vr

r

∂vφ

∂z
∂vz

∂r

1
r

∂vz

∂φ

∂vz

∂z

⎞⎟⎟⎟⎟⎟⎟⎟⎠
v=v(r,z)=

⎛⎜⎜⎜⎜⎜⎝
∂vr

∂r
0 ∂vr

∂z
0 vr

r
0

∂vz

∂r
0 ∂vz

∂z

⎞⎟⎟⎟⎟⎟⎠ (3.47)

We can thus write (in terms of velocity v and its test function µ used later)

(∇v + ∇Tv) : ∇Tµ =

⎛⎜⎜⎜⎜⎜⎝
2∂vr

∂r
0 ∂vr

∂z
+ ∂vz

∂r
0 2vr

r
0

∂vz

∂r
+ ∂vr

∂z
0 2∂vz

∂z

⎞⎟⎟⎟⎟⎟⎠ :

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∂µr

∂r
0 ∂µz

∂r

0 µr

r
0

∂µr

∂z
0 ∂µz

∂z

⎞⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎝ 2∂vr

∂r

∂vr

∂z
+ ∂vz

∂r
∂vz

∂r
+ ∂vr

∂z
2∂vz

∂z

⎞⎟⎟⎠ :

⎛⎜⎜⎜⎜⎝
∂µr

∂r

∂µz

∂r

∂µr

∂z

∂µz

∂z

⎞⎟⎟⎟⎟⎠+ 2vr

r

µr

r

(3.48)

There is a part identical to Cartesian case and an extra term 2vr

r

µr

r
.

3.3.2 Spherical geometry
Equations were chosen to be expressed in cylindrical coordinates because we
needed to identify axes x and z (which form a right angle) with axes r and z.

Even though the coordinate system is cylindrical, the geometry of the problem
will be spherical (see Figure 3.11). It is thus advantageous to define scalar
radius R, radial unit vector R = R(r, z) and its tangent unit vector T = T (r, z)

R =
√

r2 + z2,

R =
(︄

r√
r2 + z2

,
z√

r2 + z2

)︄
,

T = (−Rz, Rr).

(3.49)
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We will use them later to describe the direction of gravity and they will appear
in momentum balance and free surface equation.

Figure 3.11: Auxilliary spherical coordinates. Lattitude ϑ, radial unit vector R
and tangent unit vector T .

3.3.3 Governing equations and boundary conditions
Writing the weak form we proceed similarly as in the Cartesian case. However, we
will employ one simplification which will be demonstrated on the mass balance.

Mass balance

Denoting (3.46) as ∇cyl· (cylindric divergence), we can write the equation of
continuity as

0 =
∫︂

Ω
(∇cyl · v)νr dΩrφz,

where ν is a scalar test function and r is a Jacobian resulting from coordinate
transformation. Since our problem will be axisymmetric, none of the integrands
will depend on φ coordinate. We can then integrate with respect to φ, which
gives 2π

0 = 2π
∫︂

Ω
(∇cyl · v)νr dΩrz.

Since this term will result from every integral, we can divide the whole equation
by 2π

0 =
∫︂

Ω
(∇cyl · v)νr dΩrz. (3.50)

Momentum balance

Denoting D(v) as a symmetric gradient of the velocity and ∇µ gradient of its
test function

D(v) = 1
2

⎛⎜⎜⎜⎜⎝
2∂vr

∂r

∂vz

∂r
+ ∂vr

∂z

∂vz

∂r
+ ∂vr

∂z
2∂vz

∂z

⎞⎟⎟⎟⎟⎠ , ∇µ =

⎛⎜⎜⎜⎜⎝
∂µr

∂r

∂µz

∂r

∂µr

∂z

∂µz

∂z

⎞⎟⎟⎟⎟⎠ ,
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we can write momentum equation as

0 =
∫︂

Ω

[︄
p∇cyl · µ − ρi(1 − α(T − Tref))g(R · µ)

− 2ηD(v) : ∇T µ − 2η
vrµr

r2

]︄
r dΩrz.

(3.51)

Again we, use the stabilization term for bottom free surface

+
∫︂

Γfree
[λ(ρw − ρi(1 − α(T − Tref)))∆t(v · n)(R · µ)] r dSrz

and for top free surface

−
∫︂

Γfree
[λρi(1 − α(T − Tref))∆t(v · n)(R · µ)] r dSrz.

In case of an ice/ocean interface, the force due to the density contrast acting
on the bottom boundary will read

+
∫︂

Γbottom
g[(R − Ri)ρw − (Ro − Ri)ρi](n · µ)r dSrz, (3.52)

where Ri and Ro are inner and outer radius of the shell respectively.

Energy balance

Energy balance contains only a gradient of a scalar, which was shown to have the
same form as in Cartesian coordinates. It thus reads

0 =
∫︂

Ω

[︄
ρicp

∂T

∂t
ϑ + k(∇T · ∇ϑ) + ρicp(c · ∇T )ϑ

]︄
r dΩrz. (3.53)

Nitsche method for Stokes problem

In FEniCS software, it is possible to prescribe free slip only on a boundary parallel
with coordinate axes by fixing one component of the velocity equal to zero. For
the other boundaries (oblique or curved), normal component of the velocity is
dependent on both x, y or r, z coordinates.

Nitsche method allows us to prescribe this condition on such boundaries [Jun-
tunen and Stenberg, 2009]. Following Freund and Stenberg [1995], for Stokes
problem we can write momentum equation as (3.51) with two additional terms
to impose free slip condition weakly

+
∫︂

Γ
[(−νI + 2ηD(µ)) · v] · n dS,

±
∫︂

Γ
[(−pI + 2ηD(v)) · µ] · n dS,

(3.54)

where the second term can be symmetric (+ sign) or antisymmetric (- sign), and
a stabilisation term

− ηβ

hmax

∫︂
Γ
(v · n)(µ · n) dS,

where β > 0 is a parameter large enough and hmax maximum element size. We
also have the liberty while choosing between symmetric and antisymmetric form of
a term in (3.54), which weakly enforces the slip condition. However, we concluded
that symmetric term gives better results.
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Free surface

Since we are describing spherical surface, we will use spherical vectors introduced
in Figure 3.11. In analogy to the Cartesian case we write

∂2h

∂R2 = 0 in Ω,

∂h

∂t
+ ∂h

∂T
vT = vR at Γfree,

∂h

∂R
= 0 at Γfix,

∂h

∂T
= 0 at Γside,

(3.55)

where vR and vT is radial and tangential velocity component, respectively.
Applying Nitsche method, we get the weak form

0 =
∫︂

Ω
(∇h · R)(∇ϕ · R) dx −

∫︂
Γfree

∂h

∂n
ϕ ds

−
∫︂

Γfree
[(h − hk) + ∆t ((∇h · T )(v · T ) − v · n)]

(︄
∂ϕ

∂n
− ϕ

γhE

)︄
ds.

(3.56)

In analogy to Cartesian geometry, we distribute the mesh displacement by

dh(R, ϑ) = R − Rin

H
(h − hk, 0)

in terms of spherical coordinates R, ϑ. However, we need to express the displace-
ment in cylindrical coordinates r, z. We can achieve that by projecting unit radial
vector in vertical and horizontal coordinate (see Equation 3.49). Then we can
write

dh(r, z) =
√

r2 + z2 − Rin

H
(h − hk)

(︄
r√

r2 + z2
,

z√
r2 + z2

)︄
(3.57)

for the top surface. For the bottom surface we use a prefactor 1 −
√

r2 + z2 − Rin

H
.

3.3.4 Implementation
(COMSOL 3.5a, FEniCS, FORTRAN90)

COMSOL 3.5a implementation

The implementation of a convection in axisymmetric spherical geometry is anal-
ogous to the scheme described in Figure 3.4. We only have to choose space
dimension Axial symmetry (2D). Since we only solve temperature evolution, we
omit the Moving mesh module.

FORTRAN90 implementation

For solving relaxation by spectral method, we use program developed in author’s
bachelor thesis [Kihoulou, 2019].
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FEniCS implementation

The ice shell has in many cases high aspect ratio (ratio of horizontal dimension
to vertical one): If we consider uniform mesh dense enough with element aspect
ratio 1:1, the problem becomes computationally expensive. Time consumption
can be reduced in at least three ways: by the choice of element diagonal type, by
non-uniform meshing (fine only where necessary) and by parallelization.

Element diagonal type

While creating a mesh in FEniCS, one can choose between right (default) diag-
onal, left diagonal and both of them (crossed), see Figure 3.12. Although mesh
with only one diagonal contains less computational nodes and thus provides faster
computation, it gave inaccurate results in our tests. When using crossed elements,
this inaccuracy did not occur.

(a) P1 element (b) P2 element

Figure 3.12: A fragment of mesh composed of P1 and P2 elements respectively
with choice right and crossed diagonal.

(Non)uniform mesh

When creating mesh it is also important to keep aspect ratio of elements as small
as possible. In our test cases, we chose uniform mesh with 50 elements in radial
and 361 in latitudinal direction. For 150 km thick shell this gives resolution 3×10
km, thus aspect ratio ≈ 3, which is still acceptable.

For relaxation of craters we created non-uniform mesh denser in the proximity
of crater-shaped boundary and coarser in the rest of the domain. Refinement of
the mesh is done directly in FEniCS code, so there is no need to create mesh
externally. Figure 3.13 shows the example of such refinement. For the relaxation
simulations both refinement and paralellization were necessary.

Program paralellization

Because of high number of computational nodes and thus large stiffness matrices
to be solved and stored, we use MPI (Message Passing Interface) paralellization
[Dalćın et al., 2005].

3.3.5 Numerical tests
The great advantage of COMSOL software is that it offers 2D axisymmetric geom-
etry. Therefore formulation of this problem in COMSOL was equally straightfor-
ward as of the Cartesian one. Unfortunately, in 3.5a version we were not succesful
to use Moving mesh module in axisymmetric setting. We thus divided the test
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Figure 3.13: Mesh refinement example for crater of diameter of 100 km on a shell
of outer radius 1188 km.

of axisymmetric spherical geometry into two parts: convective part (COMSOL
3.5a) and relaxation part (FORTRAN).

Convective test

The convective part of the problem was tested by comparing radial temperature
profile and RMS velocity for a radially ascending temperature anomaly.

As a domain we chose only a segment of a shell and placed in the middle
a positive Gaussian shaped temperature anomaly given by

∆T = 200 · exp
[︄

−(ϑ − ϑA)2

1

]︄
· exp

[︄
−(R − RA)2

5 · 108

]︄
, (3.58)

where ϑ and R are spherical latitude and radius, respectively, ϑA and RA are
latitude and radial distance of temperature anomaly, respectively, see Figure
3.14. The line where the temperature was compared is given by ϑ = ϑA. RMS
velocity can be computed as

vRMS =
∫︂

Ω

√
v · v r dΩrz. (3.59)

As a boundary condition, we used fixed temperature (∆T = 0 K) and free slip
everywhere. Parameters for convection test are summarized in Table 3.3.

Results

Figure 3.15 shows the ascending temperature anomaly (these are only fragments,
the real geometry is shown in Figure 3.14). We can see outward radial motion
which transforms to tangent at the boundary. The anomaly is getting flatter as
it approches the boundary because of the free slip condition.

Radial temperature profile at ϑ = 24◦ is shown in Figure 3.16. Because of the
steep temperature gradient near the boundary, there are oscillations in COMSOL
profiles. Nevertheless, we observe that the result is satisfactory. The agreement
for RMS velocity is perfect (Figure 3.17).
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Figure 3.14: Geometry for the convection test.

Inner radius Ri 1038 km
Outer radius Ro 1188 km
Radial distance of anomaly RA 1113 km
Latitude of anomaly ϑA 24 ◦

Ice density ρi 920 kg · m−3

Viscosity η 1018 Pa · s
Gravity g 0.617 m · s−2

Boundary ∆T ∆T 0 K
Conductivity ki 2.3 W · m−1 · K−1

Heat capacity cp 2100 J · kg−1 · K−1

Table 3.3: Test parameters for the convection test.

Figure 3.15: Ascending temperature anomaly at 0 s, 3 × 109 s and 6 × 109 s.

Relaxation test

To test relaxation part of the problem a spectral code (spherical harmonics in
lateral direction and finite differences in radial direction) was employed [Kihoulou,
2019]. We compare viscous relaxation of the surface topography of particular
zonal harmonic degrees. The varied parameters are topography degree, boundary
condition on bottom boundary (free slip or no slip) and viscosity (constant or
temperature-dependent). All models were considered without ocean beneath the
ice shell. Since we are only interested in relaxation, we solve Stokes problem
only and energy balance is omitted. However, we prescribe temperature profile
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Figure 3.16: Radial temperature profile. From left: 0 s, 3 × 109 s, 6 × 109 s and
9 × 109 s.

Figure 3.17: RMS velocity for convective test.

in order to define temperature-dependent viscosity

T (r) = Tbot − (Tbot − Ttop) r − Ri

Ro − Ri

. (3.60)

We tested top topography relaxation for degrees j = 2, 5 and 10 (see Figure
3.18), free or no slip bottom boundary condition and viscosity 1014, 1017, 1020 or
temperature-dependent one given by Goldsby and Kohlstedt [2001]

η(T ) = Td2

2A
· exp

(︃
E

RT

)︃
, (3.61)

where T is temperature, d is grain size, A is a parameter, E is activation energy
and R is molar gas constant. For numerical reasons, cut-off viscosity 1024 is used.

Used models are summarized in Tables 3.4 and 3.5 and their parameters in
Table 3.6.

Results

As a first type of results we will present relaxation curves, e.g. radial coordinate
of a point at top boundary at symmetry axis with respect to time (denoted by
blue point in Figure 3.18). This type of comparison will allows us to compare the
effect of viscosity and topography degree.
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Figure 3.18: Geometry for the relaxation test. Surface topography of degree 2
(red), 5 (green) and 10 (orange) of spherical harmonics. Dashed line represents
the axis of symmetry, blue point position will be used for the relaxation curve.

Model number j bottom BC η [Pa · s]
1 2 free slip 1014

2 2 no slip 1014

3 5 free slip 1014

4 5 no slip 1014

5 10 free slip 1014

6 10 no slip 1014

7 2 free slip 1017

8 2 no slip 1017

9 2 free slip 1020

10 2 no slip 1020

Table 3.4: Models with η = const. used for relaxation test.

Model number j bottom BC η(T ) [Pa · s]
11 2 free slip 1014 − 1024

12 5 free slip 1014 − 1024

13 10 free slip 1014 − 1024

14 2 no slip 1014 − 1024

15 5 no slip 1014 − 1024

16 10 no slip 1014 − 1024

Table 3.5: Models with η = η(T ) used for relaxation test.

Figure 3.19 shows the relaxation curves for constant viscosity η = 1014 Pa · s
for free slip (left) and no slip (right) boundary condition. Relaxation curves
for other constant viscosities have the same shape, but they are shifted in time
(Figure 3.20).

We observe that for constant viscosities and free slip condition there is no
significant difference between relaxation timescales for different degrees j. In a
zoomed window, we can see that relaxation time is increasing with increasing
degree. However, if no slip condition prescribed, relaxation time increases with
decreasing degree significantly.
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Outer radius Ro 1188 km
Ice shell thickness H 327 km
Ice density ρi 920 kg · m−3

Parameter A A 9 · 10−8 Pa−1 · s−1 · m2 · K
Activation energy E 59 kJ · mol−1

Grain size d 1 mm
Cut-off viscosity ηmax 1024 Pa · s
Gravity g 0.617 m · s−2

Elements in r rdiv 50 -
Elements in ϑ ϑdiv 361 -

Table 3.6: Parameters for benchmark models

(a) Free slip condition. (b) No slip condition.

Figure 3.19: Relaxation curves for η = 1014 Pa · s. Fortran result is shown by a
solid coloured line, FEniCS result by dashed line.

In case of temperature-dependent viscosity, the difference in relaxation time
due to boundary condition is mostly suppressed by the viscous contrast, although
the relaxation time for free slip is slightly shorter than for no slip (see Figure 3.21).
The results of the test are very satisfactory.

Figure 3.20: Relaxation curves for j = 2 and different viscosities. Fortran result
is shown by a solid coloured line, FEniCS result by dashed line.
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(a) Free slip condition. (b) No slip condition

Figure 3.21: Relaxation curves for η = η(T ). Fortran result is shown by a solid
coloured line, FEniCS result by dashed line.

(a) j = 2

(b) j = 5

(c) j = 10

Figure 3.22: Relaxation of spherical harmonic degrees j by spectral method (red)
and FEM (blue) for constant viscosity η = 1014 Pa · s. Left column shows the
initial condition and two timesteps of relaxation. Right column shows the end of
the relaxation. Note different y axis range.

Figures 3.22 and 3.23 show relaxation of spherical harmonics on degrees 2, 5
and 10 for viscosity of 1014 Pa · s and temperature-dependent viscosity, respec-
tively. Left pannels show initial condition and two other timesteps, while right
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(a) j = 2

(b) j = 5

(c) j = 10

Figure 3.23: Relaxation of spherical harmonic degrees j by spectral method (red)
and FEM (blue) for temperature dependent viscosity η = η(T ).

pannels show the values at the end of the relaxation curves. We see that the
difference between the finite element and spherical harmonics solution is ≪ 1 m.

Choosing crater shape for FEM

The aim of this test was to choose acceptable shape of a crater which would be
described by an analytic function on a sphere. Figure 3.24 shows four functions
used for crater description: cosine, gaussian, hyperbolic tangent and arctangent.

Figure 3.24: Different considered crater shapes.

However, in order to maintaining smoothness of the shape during the relax-
ation, it turned out to be necessary to describe the crater by only one smooth
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function (i.e. not multiple functions with continuous derivatives, which is the
case of cos prolonged by constant functions, see Fig 3.25).

Figure 3.25: Discontinuity in cos-shaped crater.

We concluded that the best shape for crater is the hyperbolic tangent

h = −1000 ·
1.0 + tanh

(︂
θ−60

10

)︂
2 , (3.62)

where θ is lattitude, meaning that the crater is situated at the north pole and
has a radius of 30◦. Although other proposed functions are also smooth, gaussian
crater is not steep enough and arctangent decreases too slowly.

Crater relaxation test

The crater shape given by Equation (3.62) was decomposed in spherical harmonics
in order to obtain its coefficients up to degree 20. Figure 3.26 compares crater
shape evolution obtained by FEM and spectral method during relaxation at four
instants. Note different ranges on y-axis.

(a) t = 0 s (b) t = 800 yr

(c) t = 1100 yr (d) t = 3800 yr

Figure 3.26: Detail of crater relaxation. Note different scales at y axes.

We can clearly see that FEM solution maintains its smoothness over the re-
laxation process. The diffrence between FEM and SH method in the last frame
is ≪ 1 m, which is satisfactory result.
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4. Crater relaxation modelling
This chapter is devoted to modelling of the viscous relaxation of Sputnik Planitia
basin and its uplift with the spherical axisymmetric numerical model described
in Chapter 3 and the impact parametrisation described in Chapter 2. First, we
specify the material properties of ice, which, in Chapter 3, were simplified for the
purpose of numerical tests, then we describe model settings. Finally, we present
results for the uplift and surface crater relaxation.

4.1 Material properties of ice
So far, we have considered the ice viscosity to be dependent only temperature
and grain size dependent, and ice thermal conductivity to be constant. However,
in reality viscosity is also stress-dependent and thermal conductivity was found
to be proportional to inverse temperature. In the following paragraphs, we will
describe these dependences and discuss their numerical implementation.

Composite ice viscosity

Experiments show that there are several deformation mechanisms of ice flow,
namely dislocation creep, basal slip (BS) and grain boundary sliding (GBS)
[Goldsby and Kohlstedt, 2001]. Although diffusional flow was not observed, it is
usually estimated using diffusion creep equations [Raj and Ashby, 1971]. These
mechanisms are generally functions of temperature, grain size and stress and
each mechanism is dominant in a different range of these parameters [Goldsby
and Kohlstedt, 2001]. To describe the dislocation, GBS and BS regimes, following
formula is used

ε̇ = A
σn

dp
exp

(︃
− Q

RT

)︃
, (4.1)

where A is a preexponential factor, d is grain size and p its exponent, σ is a dif-
ferential stress and n its exponent, R the molar gas constant, Q the activation
energy and T the temperature.

Since strain rate is a tensor quantity, we use its second invariant to evaluate
its magnitude

ε̇II =
√︂

ε̇ : ε̇/2. (4.2)
In terms of the velocity, in Cartesian coordinates we get

ε̇II =
√︄

1
8(∇v + ∇T v) : (∇v + ∇T v), (4.3)

and in axisymmetric cylindrical coordinates

ε̇II =

⌜⃓⃓⎷1
8

[︄
(∇v + ∇T v) : (∇v + ∇T v) + 4v2

r

r2

]︄
. (4.4)

The strain rate and stress invariants are then related through viscosity

η = σII

2ε̇II
. (4.5)
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Substituting this relation into (4.1), we can express viscosity as

ηi = 1
2A−1/nidpi/ni ε̇

(1−ni)/ni

II exp
(︃

Q

niRT

)︃
, (4.6)

where i denotes the particular creep mechanism, i ∈ {disl, GBS, BS}. At high
temperatures (T > 258 K for dislocation creep, T > 255 K for GBS), large
increase in strain rate is caused by premelting.

Diffusion creep is described by a relation that combines volume and grain
boundary diffusion

ηdiff = RTd2

84Vm

(︄
Dv + πδ

d
Db

)︄−1

, (4.7)

Dv = D0,v exp
(︃

− Qv

RT

)︃
,

Db = D0,b exp
(︃

− Qb

RT

)︃
,

(4.8)

where Vm is molar volume, δ is grain boundary width and D0,v and D0,b along
with Qv and Qb denote preexponential factor and activation energy for volume
diffusion and grain boundary diffusion, respectively. Diffusion creep is the only
stress-independent mechanism. Parameters for these mechanisms are summarized
in Tables 4.1 and 4.2.

Creep regime A (Pa−n · mp · s−1) n p Q (kJ · mol−1)

Dislocation (T < 258 K) 4.0 · 10−19 4.0 0.0 60
Dislocation (T > 258 K) 6.0 · 104 4.0 0.0 180
GBS (T < 255 K) 6.2 · 10−14 1.8 1.4 49
GBS (T > 255 K) 5.6 · 1015 1.8 1.4 192
BS 2.2 · 10−7 2.4 0.0 60

Table 4.1: Parameters for dislocation creep, grain boundary sliding and basal slip
[Goldsby and Kohlstedt, 2001].

Viscosities obtained by Equations (4.6) and (4.7) are then combined by the
following formula, e.g. [Goldsby and Kohlstedt, 2001]

1
ηeff

= 1
ηdiff

+ 1
ηdisl

+ 1
ηGBS + ηBS

+ 1
ηmax

, (4.9)

where ηeff is called effective viscosity and we introduced the cut-off viscosity ηmax
which bounds the viscosity from above for numerical reasons. Ice viscosity at
ice/ocean interface is approximately 1014−1015 Pa·s while at surface of icy bodies,
because of low temperatures, deformation mechanisms give enormous viscosity
(e.g. > 1030 Pa · s). Such high viscosities cause problems with numerical solution
and also stresses much higher than yield stress of ice. It is thus convenient to
bound viscosity from above to reduce the viscous contrast. Values of cut-off
viscosity are usually in the range of 1022 − 1030 Pa · s.
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Parameter Value Unit

Molar volume Vm 1.97 · 10−5 m3

Volume diffusion
Prefactor Dv,0 9.1 · 10−4 m2 · s−1

Activation energy Qv 59.4 kJ · mol−1

Grain boundary diffusion
Prefactor Db,0 6.4 · 10−4 m2 · s−1

Activation energy Qb 49 kJ · mol−1

Grain boundary width δ 9.04 · 10−10 m

Table 4.2: Parameters for diffusion creep [Goldsby and Kohlstedt, 2001].

The choice of this value of course must not affect the result. For typical shell
temperatures of icy bodies, cut-off viscosity is reached tens of kilometres below
surface. Relaxation of surface topography (impact crater) is then determined
by our choice of the cut-off, thus a purely viscous approach is not appropriate.
Plasticity should be introduced due of high stresses and elasticity for long-term
support of the topography.

Thermal conductivity

We will use temperature-dependent conductivity given by Hobbs [2010]

k(T ) = 488.12
T

+ 0.4685. (4.10)

Because thermal conductivity is proportional to the inverse of temperature, the
highest conductivity will be at cold surface, while the lowest at the bottom of the
shell.

Numerical implementation

Since the ice viscosity is now strain-rate dependent (i.e. velocity dependent), the
momentum balance (3.2) becomes nonlinear in velocity. We deal with this by
employing Picard iterations [Logg et al., 2012, Alnæs et al., 2015].

We linearise the momentum equation by using known velocity vk from the
previous timestep. Then we iterate the solution. We are evaluating velocity
norm ||v|| for all nodes in the domain and check how the solution is converging
(e.g. if the ratio ||v||/||vk|| converges to 1). Iterations end when the solution is
sufficiently improved or when the maximum number of iterations is reached.

For temperature-dependent thermal conductivity given by Equation (4.10),
energy balance becomes nonlinear in temperature. Since we do not expect any
high temperature changes, we use a value of T k from the previous time step,
however, without any iterations.
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4.2 Uplift relaxation
In this section we will investigate the relaxation of the isostatic uplift beneath
Sputnik Planitia basin. Since it compensates the negative gravity topography, its
relaxation timescale is crucial for the reorientation theory.

4.2.1 Model settings
Clathrate hydrate layer

Clathrate layer was introduced in Chapter 1 as a possible mechanism to prolong
the relaxation time of the ice shell. Here we will discuss its properties and effects
in more detail.

Clathrate hydrates are water-based solids which have gas molecules trapped
in the ice crystal lattice. Typical gas molecules are methane, ethane, nitrogen
or carbon oxide. These compounds might form in a subsurface ocean, where
volatile gasses are dissolved and, as they rise, they subsequently form a layer at
the base of the ice shell [Choukroun et al., 2013]. The most promising option
for the trapped gas is methane1, whose traces were discovered at Pluto’s surface
[Grundy et al., 2016]. Based on laboratory experiments, they are believed to
prevent the ocean from freezing and to slow down uplift relaxation substantially
[Waite et al., 2006, Durham et al., 2003]. Below we will describe their thermal
and mechanical properties and the resulting implications to shell dynamics.

To describe the position of clathrates at the bottom of the shell, we will use
by the following function ϕ

ϕ(R) = − 1
π

arctan[0.002(R − (Rin + hc + h))] + 0.5, (4.11)

where R is radial distance, Rin inner shell radius, tcl clathrate layer thickness and
h bottom free surface height. See also Figure 4.1.

(a) Outwards: core, ocean,
clathrates, ice shell. (b) Function ϕ.

Figure 4.1: Left: clathrate layer of uniform thickness. Right: clathrate concen-
tration function ϕ for h = 0 and hc = 5 km.

1Methane based clathrate is then methane-hydrate CH4 · nH2O.
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Thermal effect

Methane-clathrate has significantly lower thermal conductivity than water ice
(kclathr = 0.5 W · m−1 · K−1) [Waite et al., 2006]. It implies that the clathrate
layer position can affect the thermal state and dynamics of the ice shell. If the
layer is present at the base of the shell, it reduces the heat flux from the ocean
and the shell cools down. In this case, thermal conductivity in the shell will be
described by function ϕ in the following way

k(T, h) = kice + ϕ(kclathr − kice) (4.12)

where kice is ice thermal conductivity given by Equation (4.10).
Kamata et al. [2019] argue that if this was the case of Pluto, the shell would

be rigid and the uplift would relax slowly. Later we will show how the clathrate
layer will affect the relaxation.

Pre-impact thermal state

Sputnik Planitia is expected to be 4 Gyr old [Greenstreet et al., 2015]. To simulate
the uplift relaxation, we need to estimate thermal profile in the ice shell before
the impact. Since methane clathrates cause the shell to cool down, we will be
interested in cooling timescales. As an initial condition for cooling we will use
conductive profile given by ice conductivity (Equation (4.10)). Then we solve
the thermal evolution given by Equations (3.1) - (3.3) with conductivity given
by Equation (4.12). To determine the cooling timescale, we evaluate the average
shell temperature in every timestep. Cooling simulations were performed for
a combination of 100 km or 200 km thick shell and 5 km or 10 km thick clathrate
layer.

Figure 4.2 shows the evolution of average shell temperature with time. We
observe that the shell of thickness 100 km is cooled down in 100 Myr, while the
one of thickness 200 km in 300 Myr. Regarding the timescales of clathrate layer
formation considered by Kamata et al. [2019] which are shorter than 100 Myr,
these values are low enough to assume that the shell was cooled down before the
impact.

Figure 4.2: Ice shell cooling timescales. Key: ice shell thickness (km) / clathrate
layer thickness (km).

Figure 4.3 shows steady-state temperature profiles without, with 5 km and
with 10 km of clathrate layer and two ice shell thicknesses. We observe that
cooling effect is stronger for the thinner shell.
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(a) Shell thickness 100 km. (b) Shell thickness 200 km.

Figure 4.3: Conductive temperature profiles for clathrates layer thicknesses 0 km,
5 km and 10 km.

Mechanical effect

Clathrates deform by basal slip and have higher viscosity than water ice [Durham
et al., 2003]. Viscosity spatial dependence will be again described by the function
ϕ, however, since viscosity variations are of several orders of magnitude, we will
use the following formula

η(T, vk, ϕ) = η1−ϕ
eff ηϕ

clath, (4.13)

where the ice viscosity ηeff is given by Equation (4.9) and clathrates viscosity ηclathr
by Equation (4.6) with the following parameters: A = 2.24 · 10−5 Pa−2.2 · s−1,
n = 2.2, p = 0.0 and Q = 90 kJ · mol−1.

However, instead of Equation (4.6), Kamata et al. [2019] use viscosity of ice
given by the following formula

η(T ) = η0 exp
[︃
Q

R

(︃ 1
T

− 1
273.0

)︃]︃
, (4.14)

where η0 = 1014 Pa · s is the viscosity at melting temperature, Q is the activation
energy Q = 60 kJ · mol−1 and R is the gas constant. This formula, since it
is stress-independent, gives slightly higher viscosity than Equation (4.6), which
implies slower relaxation. Clathrates viscosity is also given by equation Equation
(4.14) with parameters η0 = 2.0 · 1014 Pa · s and Q = 90 kJ · mol−1. This gives the
viscosity of clathrates approximately one order of magnitude higher than that of
water ice.

Ocean density and isostatic uplift

As Johnson et al. [2016] show, it is not possible to obtain positive gravity anomaly
unless the ocean is denser than approximately 1100 kg · m−3. Its density can be
increased, e.g. by presence of 5 − 10% of MgSO4 [Hogenboom et al., 1995]. This
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salt was found in both CI and CM chondrites, suggesting that it might be present
in icy bodies cores and, thanks to its solubility, also in their oceans.

Based on an estimate of Nimmo et al. [2016a], we assume that the final basin
was 10 km deep. Assuming Airy isostasy, the uplift topography is then given by
a formula

hbot = −htop
ρi

ρw − ρi

R2
o

R2
i

, (4.15)

where htop is surface topography, ρi and ρw ice and ocean densities, respectively,
and Ro and Ri outer and inner radii of the ice shell, respectively [Airy, 1855]. We
assume that the change in gravity through the ice shell is negligible.

Impact parameters

We will estimate the impactor diameter using Equation (2.8) thanks to known di-
mensions of Sputnik Planitia basin, assuming escape velocity vesc = 1.2 km · s−1,
target (Pluto’s ice shell) density ρ = 920 kg · m−3, radius 1188 km and vertical
impact cos(θ) = 0. Although Sputnik Planitia has an elliptical shape (probably
caused by an oblique impact), we have to satisfy the axisymmetry, therefore we
will assume a vertical impact and consider average radius of the basin.

Zahnle et al. [2003] estimated average impact velocity on Pluto of 1.9 km ·s−1.
However, impact heating theory presented in Section 2.2 is valid only for impact
velocities greater than elastic velocities of the target material. According to
Kohnen [1974], P-wave velocity in ice is given by

vP = −(2.3 ± 0.17)T + 3795 m · s−1, (4.16)

where T denotes temperature in degrees of Celsius. This result was obtained
by fitting the data in temperature range (-10, - 60) ◦C. Extrapolating to Pluto’s
surface temperature 40 K, we get approximately 4300 m·s−1, however, as the shell
is getting warmer towards body interior, vP is decreasing to the value 3795 m ·s−1

at the ice/ocean interface.
Figure 4.4 shows the dependence of the final crater diameter on the impactor

diameter, its velocity and density. By assuming icy (ρimp = 920 kg ·m−3) or rocky
(ρimp = 3300 kg · m−3) impactor and impact velocities 2, 3 or 4 m · s−1, we try to
find parameters consistent with Sputnik Planitia minimal diameter 900 km.

Although several combinations of impactor parameters satisfy final crater
diameter, we choose an icy impactor of diameter 400 km and impact velocity
4 km · s−1. To fulfil the assumption for shock wave development, we prefer higher
impact velocity. Rocky impactor of such velocity would create too large crater,
so we choose an icy impactor with lower density. Since Denton et al. [2020]
used impactors of 350 - 450 km in diameter, our choice of 400 km is reason-
able. Temperature anomaly resulting from Equation (2.7), assuming γ = 0.4, is
approximately 86 K.

Computed models

Figure 3 in Kamata et al. [2019] shows how the thickness of the clathrate hydrate
layer prolongs the relaxation time. We observe that the maximum efficiency lies
in the range from 5 to 10 km, depending on the shell thickness. We thus decided
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Figure 4.4: Dependence of final crater diameter D on impactor diameter dimp,
velocity and density. Dashed lines indicate the minimal and the maximal diame-
ters of Sputnik Planitia basin.

to combine these two clathrate thicknesses and shell thicknesses 100, 150 and
200 km.

At first, we investigate the effect of ice shell thickness H (models 1, 2 and 3)
assuming that there is no clathrate layer. Then, for thickness H = 150 km we
study the effect of clathrate hydrate layer (hc = 5 and 10 km, models 4 and 5).
Finally, we compute the longest-lasting relaxations of Kamata et al. [2019], which
are combinations H/hc = 100/5km and H/hc = 200/10km. Models 6 and 7 (with
Newtonian rheology, without both impact heating and thermal evolution2) should
reproduce the results of Kamata et al. [2019]. Then we add thermal evolution
(models 8, 9) and impact heating with composite rheology (models 10, 11). All
initial conditions are conductive states, disregarding whether convection can or
cannot develop (particularly for Models 1-3). Table 4.3 summarizes all param-
eters for Sputnik Planitia uplift relaxation problem and Table 4.4 summarizes
computed models.

4.2.2 Results
We are assuming that the ocean uplift isostatically compensates the surface basin
Sputnik Planitia and that the positive gravity required for reorientation is pro-
vided by ejecta blanket and the nitrogen layer. Since it takes only a few kilometres
of uplift subsidence for gravity to change its sign, the crucial moment is rather
the start than the end of the relaxation process. We try to find the model for
which the shell can be maintained unrelaxed in the order of billions of years.

Effect of ice shell thickness

First, we investigated the effect of ice shell thickness. Table 4.5 summarizes the
varied parameters and the results. By relaxation start we mean the moment when

2Viscosity profile in Kamata et al. [2019] is evaluated only from the pre-impact thermal state
and does not evolve in time.
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Outer radius Ro 1188 km
Gravity g 0.617 m · s−2

Ice shell thickness H 100, 150, 200 km
Clathrate layer thickness hc 0, 5, 10 km
Ice density ρi 917 kg · m−3

Water density ρw 1100 kg · m−3

Surface temperature Ttop 40 K
Ice/ocean interface temperature Tbot 265 K
Grain size d 1 mm
Cut-off viscosity ηcut 1024 Pa · s
Impactor velocity vimp 4 km · s−1

Impactor diameter dimp 400 km
Impactor density ρimp 920 kg · m−3

Impact heating efficiency γ 0.4 −

Table 4.3: Parameters for Sputnik Planitia uplift relaxation.

Model number H [km] hc [km] rheology Imp. heating Thermal evol.
Shell thickness effect

1 100 0 comp. yes yes
2 150 0 comp. yes yes
3 200 0 comp. yes yes

Clathrate layer thickness effect
4 150 5 comp. yes yes
5 150 10 comp. yes yes

Setting of Kamata et al. [2019]
6 100 5 newt. no no
7 200 10 newt. no no
8 100 5 newt. no yes
9 200 10 newt. no yes
10 100 5 comp. yes yes
11 200 10 comp. yes yes

newt. = Newtonian, Equation (4.14)
comp. = composite, Equation (4.6)

Table 4.4: Computed models.

the uplift centre visibly starts to descend (i.e. when the relaxation curve starts
to point down).

As we can see from the initial conditions, the shell of thickness 100 km
(Figure 4.5a) has the highest uplift/shell thickness ratio3. This implies that the
uplift is close to the cold surface, and thus the impact thermal anomaly cools
quickly, resulting in weaker effect on viscosity decrease. This might be the reason

3This is caused by the ∼ (Ro/Ri)2 dependence of uplift height in Equation (4.15).
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why this model shows the slowest relaxation.
Since viscosity is strongly temperature dependent, the lowest viscosity is where

the shell is the warmest - at the base of the shell. This implies that the uplift
will be filled by warm ice flowing along the shell base. Figure 4.5b shows the very
moment when the crater becomes relaxed (i.e. when the relaxation curve reaches
its minimum). At this moment, the warm ice is convecting.

Figure 4.5c shows that when the relaxation is over, shell cools down and
convection declines.

H [km] hbot/H [km] Relaxation start [Myr] Convection
100 0.61 10−3 local, declining
150 0.45 10−4 global
200 0.38 10−5 global

Table 4.5: Effect of shell thickness H on relaxation timescale and thermal evolu-
tion.

Figure 4.6 shows similar sets of snapshots for ice thicknesses 150 and 200 km,
respectively. Compared to Model 1, these models have lower uplift/shell thickness
ratio implying that there is thicker shell above the uplift to be heated by the
postimpact thermal anomaly. Since there is more warm ice and another warm ice
flows along the shell’s base from lower lattitudes, the resulting convection is more
vigorous. However, these shells are thick enough to develop convection even in
regions outside the initial temperature anomaly as we can see in Figure 4.6c.

Relaxation curves (Figure 4.7) show that in all three cases the uplift relaxation
is complete before 10 Myr, which makes it impossible to compensate the surface
crater negative anomaly up to the present. Moreover, convection in the ice shell
(Models 2 and 3) would probably cause ocean to freeze since it makes heat transfer
more efficient than conduction only. Therefore, these models are not in agreement
with the reorientation theory. For this reason, Kamata et al. [2019] proposed the
presence of insulating, high viscosity clathrate layer at the ice/ocean interface to
slow down the relaxation process.

Effect of clathrate layer thickness

As we showed in Figure 4.3, the layer of clathrate hydrates cools down the shell,
thus increases ice viscosity. In addition, the viscosity of the clathrate layer itself
is higher than the ice viscosity. Combination of these two effects results in slower
relaxation.

Figure 4.8 shows initial viscosity fields (left column) and viscosity fields when
the relaxation starts (right column). In Figure 4.8a we can see that if clathrate
layer is not present (i.e. Model 2), the ice shell is warm and at the bottom there
is a thick layer of warm ice of low viscosity. As we saw in Figure 4.6, this case
leads to quick relaxation.

Figure 4.8b shows the case with 5 km of clathrates. It is clearly visible that
viscosity at the very bottom of the shell is at least one order of magnitude higher
than in the previous case. We observe that at the time of relaxation start, impact
temperature anomaly is still present, decreasing the viscosity in the isobaric core.
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(a) Initial condition

(b) t = 5 Myr

(c) t = 1500 Myr

Figure 4.5: Temperature (left) and viscosity (right) fields for Model 1 (H = 100
km). Convection in (b) is caused by infilling the uplift by warm ice. Later,
convection declines (c).

Therefore, the shell is still warm enough to relax quickly (see relaxation curves
in Figure 4.9).

However, with 10 kilometers of clathrates, the situation is different. Due to low
initial temperature in the shell, impact temperature anomaly cools down faster
(since the thermal conductivity is proportional to the inverse of temperature,
see Equation (4.10)). Therefore, when the relaxation starts, the temperature
anomaly is already cooled down and rigid (see Figure 4.8c) and the relaxation
proceeds much more slowly than in the previous cases. Relaxation curves for
all three cases are shown in Figure 4.9. We see that for 5 km of clathrates the
relaxation start is only delayed, however, for 10 km relaxation start is gradual
and much more delayed than in the previous cases. Still, the relaxation starts at
∼ 1 Gyr and it is therefore likely that even in this case, the reorientation towards
the tidal axis would not be stable for long enough time.
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(a) Initial condition

(b) End of the relaxation

(c) Ongoing convection

Figure 4.6: Temperature profiles for Model 2 (left, H = 150 km) and Model 3
(right, H = 200 km). Due to increased shell thickness, isobaric core heats the
shell more efficiently and relaxations start earlier. Both cases develop convection.

Figure 4.7: Relaxation curves for Models 1, 2 and 3 (shell thicknesses H = 100,
150 and 200 km). The thinner the ice shell is, the slower is the relaxation.

Setting of Kamata et al. [2019]

Here we investigate models with parameters H/hc = 100/5 km (even model num-
bers) and H/hc = 200/10 km (odd model numbers). Viscosity used in Kamata
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(a) hc = 0 km

(b) hc = 5 km

(c) hc = 10 km

Figure 4.8: Viscosity profiles for Models 2, 4 and 5, top to bottom. Left column:
initial condition, right column: relaxation start.

Figure 4.9: Relaxation curves for Models 2, 4 and 5 (H = 150 km, hc = 0, 5 and
10 km).

et al. [2019] is only temperature dependent (for both ice and clathrates), also
there is no impact thermal anomaly which would locally decrease viscosity (see
viscosity profiles in Figure 4.10). To estimate the effect of these neglects, we
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compare solutions with the same H and hc, but different settings (viscosity, ther-
mal evolution, temperature anomaly), see Table 4.4. We observe that there is
no significant difference between Models 6, 7 (without thermal evolution) and 8,
9 (with thermal evolution). Because of high viscosity (and thus low velocities),
heat is transfered only by conduction, resulting in stable thermal profile during
the relaxation.

Figure 4.10: Initial viscosity profiles for Models 6,8 (left) and 7, 9 (right).

Figure 4.11 shows viscosity profiles for Models 10 and 11. The difference with
respect to previous models is the inclusion of postimpact temperature anomaly
and the stress dependence of viscosity. Thanks to these differences, the initial
viscosity in the uplift region is substantially lower. Model 10 with a thin shell,
however, relaxes slowly and the impact anomaly cools down quickly. This ressem-
bles Figure 4.8c, however in this case the effect is even stronger thanks to the
thinner shell. In Figure 4.11b (left) we can see how the area of locally decreased
viscosity is proceeding towards the symmetry axis.

(a) Initial condition for Models 10 (left) and 11 (right).

(b) Relaxation start for Models 10 (left) and 11 (right).

Figure 4.11: Viscosity profiles for Models 10 and 11. Top row: initial condition,
bottom row: relaxation start.
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Due to a thicker shell, Model 11 starts relaxing before the temperature anomaly
is cooled down (Figure 4.11b). Although it cools down later and relaxation slows
down, it is substantially faster than the models of Kamata et al. [2019] without
temperature anomaly and nonlinear rheology.

Even though the thinner shell (Model 10) is cooled down in the moment of
the relaxation start, stress-dependent viscosity speeds up the relaxation. Figure
4.12 shows that about 1 Gyr, the relaxation started, therefore long-term stability
of the uplift is very unlikely even in the case of cold, thin shell.

Figure 4.12: Relaxation curves for Models 6 – 11. Models with impact tempera-
ture anomaly and stress-dependent viscosity (Models 10 and 11) relax faster than
models of Kamata et al. [2019] without these properties.

4.3 Surface crater relaxation
Throughout the Solar System, impact craters are in various stages of degradation.
In general, degradation is caused by a combination of relaxational and erosional
processes, such as volcanic outflows, sublimation deposits or tectonics, even on
airless bodies. Viscous relaxation, which is investigated in this section, is therefore
only an estimate of the crater’s shape evolution.

Here, we do not simulate any particular crater, hence the results have rather
qualitative character and should be regarded as a parametric study. We will
investigate the effect of impactor size, which determines both the final crater
diameter and the size of the isobaric core, and the effect of shell thickness.

4.3.1 Model settings
Impactor radius and shell thickness

If we consider fixed impactor density and velocity, the impactor radius determines
the radius of the isobaric core and the radius of the final crater. We will assume
a single final crater depth of 10 km for all models. The temperature anomaly, if
sufficiently large, can speed up the relaxation. Since the volume of the surface
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crater is proportional to r∼1.5
imp (see Equation (2.8)), while the volume of the iso-

baric core is proportional to 3r3
imp, we can expect the influence of the temperature

anomaly increases with crater radius.
In this setting (surface crater), there is no thin warm layer, where the ice

would fill the crater by lateral flow, as was the case for most of the models in
Section 4.2. Almost whole shell has uniform value of viscosity, which changes the
style of crater infilling.

Effect of cut-off viscosity

In the previous chapter, we introduced the use of the cut-off viscosity. Its value
was not crucial, because the relaxation was governed by viscosity at the ice/ocean
interface, usually many orders of magnitude lower than the cut-off value. How-
ever, in the case of a surface crater, the relaxation is actually governed by the
cut-off viscosity. This is the pitfall of using viscous rheology only. Real materi-
als undergo also elastic and plastic deformation. Elastic deformation represents
reversible, immediate reaction to applied stress, while plasticity describes irre-
versible material behaviour if the yield strength is exceeded. Both these mecha-
nisms are essential in the case of planetary surfaces.

By choosing the value of cut-off viscosity, we deliberately determine the re-
laxation velocity. However, we will still be able to recognize major differences
between the computed models.

Computed models

Table 4.6 summarizes the parameters used for crater relaxation on Pluto’s surface.
Note that, unlike in Section 4.2, we assume a completely frozen hydrosphere of
thickness 327 km and bottom temperature 150 K, based on estimates of Robuchon
and Nimmo [2011]. This choice is motivated by the attempt to estimate the
maximum relaxation time of Pluto’s surface crater. Since we assume that the ice
shell lays on the rocky core, no slip condition will be used for the ice/core interface.
Ice viscosity is given by Equation (4.14), thus it is temperature-dependent only.
Also note that we used a different impactor parameters (vimp, ρimp)

Models varying the impactor size are listed in Table 4.7. We vary the impactor
size in order to get final crater diameters from 10 to 1000 km. For these models,
we use postimpact heating and solve thermal evolution.

The last set of models focuses on shell thickness in order to show how it af-
fects the crater relaxation (Table 4.8). We will use crater diameter D = 500 km
and three hypothetical shell thicknesses H = 150, 300 and 450 km. In these
cases, thermal evolution is solved, however, without the initial impact tempera-
ture anomaly.

4.3.2 Results
Effect of impactor size

Figures 4.13 and 4.14 show the effect of the impactor size. Left columns show
initial temperature condition. Right columns show surface topography at four
moments of relaxation: initial condition, 100 Myr, 1 Gyr and 5 Gyr.
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Outer radius Ro 1188 km
Gravity g 0.617 m · s−2

Icy shell thickness H 327 km
Ice density ρi 917 kg · m−3

Surface temperature Ttop 40 K
Ice/core interface temperature Tbot 150 K
Grain size d 1 mm
Cut-off viscosity ηcut 1024 Pa · s
Impactor velocity vimp 2 km · s−1

Impactor diameter dimp 400 km
Impactor density ρimp 3300 kg · m−3

Impact heating efficiency γ 0.4 −
Initial basin depth hini 10 km

Table 4.6: Parameters for surface craters relaxation.

Model number D [km] rimp [km] ric [km]
1 10 0.5 0.7
2 50 4 6
3 100 10 14
4 500 77 110
5 1000 185 267

Table 4.7: Model parameters for the effect of impactor size.

Model number D [km] H [km]
6 500 150
7 500 300
8 500 450

Table 4.8: Model parameters for the effect of shell thickness.

We can clearly observe that the smaller crater (10 km, Figure 4.13a) does
not relax within 5 Gyr of evolution, while the two largest craters are already
relaxed after 5 Gyr. In Figures 4.13d and 4.14, 100 Myr snapshot show that
the relaxation is fastest at the axis of symmetry, right above the temperature
anomaly. In these two cases (500 and 1000 km crater), temperature anomaly
cooled down in 400 and 700 Myr, respectively, thus at 100 Myr it still forces the
boundary to relax due to thermal buoyancy. Also, for these craters, a feature
resembling a crater rim emerges at the crater edge. This should not be mistaken
for actual crater rim. Rims are created during the excavation and modification
phase of an impact, when the material in the contact zone is pushed downwards
and away. From its nature, rim topography is strictly positive.

Relaxation curves for these models are shown in Figure 4.15. Obviously, the
relaxation time decreases with increasing crater size, however, crater of diameter
500 km relaxes faster than crater of diameter 1000 km.
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(a) D = 10 km

(b) D = 50 km

(c) D = 100 km

(d) D = 500 km

Figure 4.13: Initial temperature conditions (left) and snapshots of relaxation
(right) for Models 1 – 4 (D = 10 – 500 km). Left boxes show D × D window,
except of (a), which shows a 15 × 15 km window. Note a different temperature
range in (d)
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Figure 4.14: Initial temperature condition (left) and snapshots of relaxation
(right) for Model 5 (D = 1000 km). Left box shows D × D window. Note
that temperature range is different from the previous figure.

Figure 4.15: Relation curves for Models 1 – 5. Although relaxation time decreases
with increasing crater site, the fastest relaxation does not surprisingly correspond
to the largest crater.

Effect of shell thickness

Figure 4.16 shows velocity fields of two extreme cases (Models 6 and 8) at the
beginning of the relaxation. The main difference lies in the radial component of
the velocity vr (left column). The former model, with a 150 km thick shell, has
a maximum of the radial velocity near the crater edge, while the latter model,
with a 450 km thick shell, has a maximum at the axis of symmetry.

We may explain this difference on the basis of the ratio of crater radius to
shell thickness. Right panel of Figure 4.16 shows that the lateral flow is most
pronounced around the crater edge in a domain comparable to shell thickness.
If the crater radius is comparable with shell thickness, relaxation is fastest at
the axis of symmetry. However, if the crater is larger (or shell thinner), the
maximum of radial velocity will be reached closer to the crater edge and it will
slightly decrease to the axis of symmetry. Note that initial rate of relaxation vr

(left panel of Figure 4.16) differs significantly for different thicknesses. See Figure
4.15 for relaxation curves for Models 6 – 8. We observe that for the same crater
radii, the crater in the thickest shell relaxes the fastest.
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(a) H = 150 km.

(b) H = 450 km.

Figure 4.16: Velocity profiles for Models 6 and 8. Left: radial component, right:
lateral component. Note a significant difference in the radial velocity maximum.

Figure 4.17: Relation curves for models 6 – 8.

This explains the situation in Figure 4.15. Crater with a diameter of 1000 km
(Model 5) is noticeably wider than the shell thickness 327 km, therefore the fastest
relaxation will not be at the axis of symmetry. We can see that Model 5 relaxes
initially faster than Model 4 (crater diameter 500 km), however this is an effect
of the temperature anomaly. Once the anomaly is cooled down (∼ 700 Myr), the
fastest region of relaxation moves from the axis of symmetry and the relaxation
slows down.
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5. Discussion and implications
Viscous relaxation of impact-deformed ice shell was shown to be a complex prob-
lem dependent on many parameters of the target ice body and the impactor.
Here we discuss our results from Sections 4.2 and 4.3, and suggest possible ways
for further research.

As we have expected, if Pluto’s shell is made of ice only, the uplift relaxation
would be rapid and the positive gravity anomaly cannot be maintained. There-
fore, the shell reorientation would not be stable in long term. If the clathrate layer
is present, stability can be substantially extended. Even though, by introducing
impact heating and nonlinear ice and clathrates rheology, the stability does not
exceed 1 Gyr, which differs from the conclusions of Kamata et al. [2019]

We have found out that ice shell and clathrate layer thickness are the cru-
cial parameters determining the timescale of the relaxation. On the one hand,
a thicker shell implies faster relaxation because of the (Ro/Ri)2 dependence of
the uplift height. Moreover, impact heating is more effective since the volume
of warm ice increases with shell thickness. On the other hand, the thicker is the
layer of clathrates, the cooler is the shell and the slower is the relaxation.

Models 10 and 11 (i.e. H/hc = 100/5 km and 200/10 km, respectively) show
how these parameters combine. Model 10 relaxes extremely slowly, even with only
5 km of clathrates. Because of the thin shell, the anomaly cools down quickly
and the shell becomes cold and rigid. On the contrary, model 11 relaxes quickly,
despite of double thickness of clathrates. Temperature anomaly is more stable in
thick shell, which overpowers the former effect.

Still, there is one mechanism, which may speed up the relaxation even in
the case of thin shell. The solid nitrogen layer, which accumulated in Sputnik
Planitia basin, has thermal conductivity similar to clathrates (0.7 W · m−1 · K−1)
[Cook and Davey, 1976]. Once the nitrogen starts to accumulate, the shell will
warm up, since the area of the basin will be cooled less effectively. Due to high
ice thermal conductivity at surface temperature (∼ 13 W · m−1 · K−1), this effect
should be important. Unfortunately, the timescale of nitrogen accumulation is
not known. So far, Hamilton et al. [2016] estimated millions or even billions of
years based on Pluto’s obliquity cycle.

Another questionable parameter is stability of the clathrate layer after the
impact. The recent simulations of basin forming impact by Denton et al. [2020]
showed that both the ice shell and the ocean beneath were ejected and the tran-
sient crater was filled by a mixture of crushed ice and water. It is therefore highly
unlikely that the initial condition for uplift relaxation is a uniform undisrupted
layer of clathrates, as Kamata et al. [2019] proposed. Therefore, it might be useful
to implement clathrate layer evolution, which was suggested in Supplementary
information of Kamata et al. [2019].

Parametric study of surface crater relaxation showed us the dependence of
the relaxation timescale on the impactor radius. If the final crater radius is
larger than the shell thickness, the relaxation will be slightly slower. If we want
to investigate the relaxation of Sputnik Planitia basin, elasticity and plasticity
should be taken into account. Similarly, the pressure of the nitrogen layer, which,
in this case acts both as an thermal insulator and as a surface load, should be
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taken into account. Again, it is not known when it started to accumulate and
at what rate. Once the load reaches hydrostatic equilibrium with the basin, the
relaxation stops. If this is the case, we cannot decide for how long the relaxation
is over, therefore we may not be able to conclude anything about relaxation from
the observed surface crater.
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Conclusions
In this thesis, we investigated the viscous relaxation of Sputnik Planitia uplift
with and without the clathrate layer proposed by Kamata et al. [2019] and surface
crater relaxation for various impactor sizes and shell thicknesses.

Without the insulating and high viscosity layer of clathrates, the ocean uplift
relaxes in less than 10 Myr for shells of thickness 100 – 200 km and gravity
anomaly loses its positive sign even earlier. We further investigated the effect of
a 5 – 10 km thick clathrate layer on a 150 km shell. Depending on the clathrate
layer thickness, the relaxation timescale can be substantially prolonged: by two
orders of magnitude for a 5 km layer, by 6 orders of magnitude for a 10 km layer.

We investigated two models for which Kamata et al. [2019] obtained relaxation
times in the order of billions years. Due to the inclusion of the impact heating
and nonlinear ice and clathrates rheology, the model with 200 km shell and with
10 km thick clathrate layer starts relaxing in 0.01 Myr, while the model with
100 km shell and 5 km thick clathrate layer starts relaxing around 1 Gyr. Both
results thus differ from the conclusion of Kamata et al. [2019]. Moreover, the
insulating effect of the accumulated nitrogen layer, as well as the unlikeliness of
a uniform undisrupted clathrate layer, should be taken into account.

Models of a surface crater relaxation showed that relaxation timescale depends
on the impactor radius (determining the final crater and isobaric core radii) and,
for larger craters, on the shell thickness.

Our results suggest that the hypothesis by Kamata et al. [2019] might be
sufficient to explain the reorientation, but not to explain the current orientation.
However, although ocean uplift rises naturally in case of the impact, it cannot be
excluded that the positive gravity anomaly is primarily being maintained by the
impactor remnants, if it was denser than ice. The question of Pluto’s ocean is
therefore left for future studies. Data from future missions should help to answer
this question.
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