
BACHELOR THESIS

Filip Sedlák

Remixing OSM maps using recurrent
neural networks

Department of Software Engineering

Supervisor of the bachelor thesis: RNDr. Miroslav Kratochvíl

Study programme: Computer Science

Study branch: IPSS

Prague 2021

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

ii

I would like to thank my supervisor Miroslav Kratochvíl for valuable advice.
Next I would like to thank my family and friends for support during my study.

iii

iv

Title: Remixing OSM maps using recurrent neural networks

Author: Filip Sedlák

Department: Department of Software Engineering

Supervisor: RNDr. Miroslav Kratochvíl, Department of Software Engineering

Abstract: Generation of random realistic maps is a highly desirable content cre-
ation method for entertainment industry. Neural networks provide powerful
computational capabilities proven useful in many fields. This thesis describes
an algorithm that adapts real-world data to train Recurrent Neural Networks
(RNNs) inspired by the pixel RNNs. An algorithm is constructed to generate a
map of altitudes, roads, rivers and buildings. The results are tested and evaluated
on multiple selected real-world regions. It shows the ability of RNNs to learn and
create random realistic maps. Algorithm generates realistic altitude maps reflect-
ing user input and training dataset. The creation of roads and rivers was met with
weaker results. The creation of buildings was met with unsatisfactory results.

Keywords: recurrent neural networks, open street map, random generated media

v

vi

Contents

Introduction 3

1 Neural Networks for map generation 5
1.1 Artificial Neural Networks . 5
1.2 Recurrent Neural Networks . 7
1.3 Map Generation Methods . 8

2 Generating maps with RNNs 11
2.1 Problem specification . 11
2.2 Available data . 12
2.3 Network design . 14
2.4 Additional Layers . 16

3 Applying the RNN generation to real world data 21
3.1 Input datasets . 21
3.2 Training the Networks . 22

4 Results and discussion 25
4.1 Generation Results . 25
4.2 Discussion . 32

Conclusion 35

Bibliography 37

A Using the software 39

1

2

Introduction

Generation of random realistic maps is a highly desirable content creation
method for entertainment industry. For instance, open-world games or large
scale movies often need to provide a map of size that is nearly impossible to be
created manually.

There are multiple viable methods for generation including noise func-
tions [1], erosion algorithms [1] or genetic algorithms. [9] These algorithms
generate or improve terrain in the form of an altitude map. Realism of the out-
put is usually improved by using real-world data as a basis for map generation,
such as freely available OpenStreetMap (OSM) data. It is difficult for an artist
to capture complex natural features by hand. A helpful alternative might be
an algorithm that generates maps based on features learned from real-world
training examples. This thesis explores the possibilities of applications of neural
networks in the field of terrain generation with additional objects, such as roads,
rivers and buildings, providing reasonable user control.

Recurrent neural networks (RNNs) provide powerful widely used method for
deriving random remixed content from training datasets. However, direct applic-
ation of OSM data is complicated due unfitting vector and graph based data rep-
resentation and complexity of the OSM annotations. This is a problem, because
neural networks expect input as a simple series of numbers.

This thesis describes an algorithm that adapts OSM data to RNN input. Net-
works are inspired by pixel recurrent neural networks, as published by Van Oord,
Kalchbrenner and Kavukcuoglu[14]. Next, these networks are used to generate
an altitude map with iterative addition of other elements. Roads and rivers are
generated based on the altitudes. Buildings are generated based on altitudes,
roads and rivers. The deep learning approach is popular in the field of machine
learning. However, we have decided to avoid it because of its performance, which
conflicts with our goal of terrain generation being interactive.

This approach is successful in creation of realistically looking altitude maps
that reflect training dataset and user input. It was less successful in creation of
more complicated features.

This thesis is organized as follows. The first chapter is composed of intro-

3

duction to neural networks, recurrent neural networks and overview of existing
map generation algorithms. In the second chapter, this thesis introduces nature
of available data and describes the broad design of the map generation algorithm.
The third chapter describes specifics of implementation regarding RNNs struc-
ture and used software tools. In the final chapter, RNNs are tested and evaluated
on multiple selected OSM regions and user inputs.

4

Chapter 1

Neural Networks for map
generation

This chapter describes what is a neural network and recurrent neural network.
It also describes existing map generation methods.

1.1 Artificial Neural Networks
Definition 1 (Artificial neuron). Artificial neuron, or neuron for short, is a math-
ematical function based on biological neurons. [10] Neuron is defined by weights
(w0, ..., wn), activation function A and bias b. A usually takes form of any nonlin-
ear function. Given inputs (x0, ..., xn), the neuron computes the output as follows:

y = A(b +
n∑︂

i=0
xiwi)

Definition 2 (Artificial neural network). Artificial neural network, or neural net-
work for short, is a circuit of neurons. [10] These neurons are organized into layers
(L0, ..., Ln). Layer L0 is an input layer. Layer Ln is an output layer. Layers between
the input and the output layer are called hidden layers. Outputs of each hidden layer
Li are used as inputs for layer Li+1.

More appropriate and simpler view of neural networks in relation to this
thesis is to think of them as function approximations. Zainuddin and Pauline[15]
describes good explanation of this view. To summarize, real world problems of-
ten present themselves in a form of a mapping between an input and an output
space with a set of input-output data. However, often there is no known explicit
formula to describe the function f to solve such problem. There is only an avail-
able subset of input and corresponding output data. Function approximation is

5

x0

x1

·

·

·

xn−1

xn

Σ +b A() Output

w0

w1

w2

w3

Figure 1.1 This figure shows computation of a single neuron.

x0

x1

x2

x3

y0

y1

Input Layer

Hidden Layer

Output Layer

Figure 1.2 This figure shows the structure of a simple neural network. x0 .. x3
are inputs. y0 and y1 are outputs. Each circle represents a neuron.

6

a method to approximate function f . Given a set of input data I and output data
O, an error function E(f) is selected. E calculates how far f is from the perfect
function for the given dataset I → O. The error function is also called loss func-
tion in context of neural networks. The goal of the approximation is to minimize
this error for all kinds of data. There are many ways to minimize the loss for
neural networks. One popular approach is Stochastic Gradient Descent.

Theorem 1 (Universal Approximation Theorem). Given a real continuous func-
tion f and ϵ > 0 there exists a neural network with one hidden layer that approx-
imates f within the precision of ϵ. 1

Neural networks are one such function approximation method. According to
Zainuddin and Pauline[15], they are capable to approximate arbitrary continuous
function with any desired accuracy without predetermined models. This is tied to
Universal approximation theorem1 proven by Cybenko[3]. Such ability makes
them powerful among other approximation techniques. But they also require
much more computational power. Neural networks are frequently used to solve
various complex problems, such as:

• As time series predictors, they are able to predict the future of sales in
business for instance. The approximated function is f(x) = y, where x
are sales from the past and y are sales in the near future. [13]

• They are being used to solve problems relating to visual data. An example
of this is image classification, where x is a rasterized image and y is a
certain class. One problem of this nature is hand written digit classification.
[7]

1.2 Recurrent Neural Networks
Definition 3 (Recurrent neural networks). Recurrent neural networks are neural
networks that use their own previous outputs as inputs.

One iteration on previous input is called a step. These steps in computation
are usually called timesteps. Such network structure allows for processing in-
puts of arbitrary length without expanding its size. They also allow, but do not
demand, capturing historical information of the previous inputs using hidden
layers. This allows capturing dependencies in a sequence of inputs, where each
input is dependent on previous ones. Although, the history is limited. Drawback
is that the training is very slow compared to other networks. "The butterfly-
effect" is one reason. A small change in early timestep can create very large

1For a more formal treatment of the Universal Approximation Theorem refer to Cybenko[3].

7

changes many iterations later. This implies that the derivative of the loss func-
tion at one time can be exponentially large with respect to the hidden activations
at much earlier time. RNNs also suffer from the vanishing gradient problem. This
means that in some cases the gradient is vanishingly small to affect weights and
thus preventing further training. Sutskever [12] describes all of this and expands
on further complexity of the structure of RNNs. This thesis only uses the most
basic idea of recurrence, as defined above in Definition 3.

RNNs have proven useful in fields of speech recognition [2], natural lan-
guage processing, and even language generation. [6] Van Oord, Kalchbrenner
and Kavukcuoglu [14] also describe a way to use RNNs for generating partial
images. This approach is called pixel recurrent neural network. This is import-
ant, as it is used as an inspiration for this thesis in further chapters. Given a part
of some image, this algorithm tries to generate the rest of the image in a row by
row fashion. By giving the network a certain area that has already been drawn,
it tries to guess what the next pixel should be. It then works on its own outputs
to generate the rest of the image row by row.

1.3 Map Generation Methods
Video games with very large amounts of content are often in need of creating
content procedurally for various reasons. In games, it can be a source of random-
ness, to always give the player a new experience. Viewing map generation as a
construction of an altitude map image, algorithms for generating graphical data
can also be used effectively. There are multiple viable methods of generating a
map. This section sums up and describes some of the most relevant ones.

Noise functions: In the field of computer science, noise is used for procedural
generation of 2D and 3D models. Some examples of this are texture mod-
els and, more relevant for us, terrain models (especially landscapes). The
downside of this approach is that it is difficult for the user to control. The
speed of the algorithm varies. Fastest algorithms can generate terrain in
real time using a chunk system.2 Most recognizable noise functions are
Perlin Noise and Simplex Noise. [1]

Erosion Algorithms: Erosion algorithms are used to further modify a model
to give it more worn and realistic appearance. Such algorithms usually
work by transferring material (soil) at steep slopes to make changes in
inclination. Some examples of this are hydraulic and thermal erosion. [8]

2https://minecraft.fandom.com/wiki/Seed_(level_generation)

8

https://minecraft.fandom.com/wiki/Seed_(level_generation)

Wave Function Collapse: WFC functions are somewhat similar to neural net-
works. WFC learns from a small input image. Algorithm then generates
patterns based on that input.

The learning process consists of two steps. The first step is dissecting and
dividing the the image into small samples. The second step is recognizing
rules, describing which samples can be placed next to each other. The map
is then filled based on the rules gathered.

As Opposed to neural networks, they have restrictive and deterministic
learning. WFC can be also highly controlled.

This algorithm is largely effective for generation of pictures that have re-
peatable patterns. It is also effective for generation of tile based maps, such
as with repeatable objects, buildings, rooms and hallways.

However, it is not very suitable for natural terrain generation. [11]

Genetic Algorithms: As an example, Ong et al. [9] describes a genetic al-
gorithm that allows for terrain generation, where it is possible to give the
user enough control without overwhelming them or requiring knowledge
about the algorithm. There are, however, limits to what genetic algorithms
can create regarding natural structures.

Cellular Automata: Cellular Automata are often used in graphics as an erosion
algorithm as specified above. They are also used for environmental sys-
tems, like fire, fluid flow etc. Johnson, Yannakakis and Togelius used it to
generate complete 2D maps. It has shown capabilities of generating nat-
ural cave-like levels. This approach is fast and can generate map in real
time. This is especially handy in rogue-like games, where is an infinite
number of levels and need to be generated on demand. [4]

9

10

Chapter 2

Generating maps with RNNs

This chapter specifies the problem and introduces the proposed solution.

2.1 Problem specification

This thesis explores the possibilities of application of neural networks in the field
of terrain generation with additional features, such as roads, rivers and buildings,
providing reasonable user control.

Procedural map generation, closely tied with image generation, is required in
large games, in which content is needed to be generated as it is almost impossible
to be created manually. There are multiple algorithms to solve this problem men-
tioned earlier.

Realism of the output is usually improved by using real-world data as a basis
for generation, such as the freely available OpenStreetMap (OSM) data. As map
generation is closely tied to image generation, Pixel recurrent neural networks,
published by Van Oord, Kalchbrenner and Kavukcuoglu[14] provides a good
basis for such algorithm. The direct application of OSM data is difficult due to its
vector and graph representation. The first problem is how to transform the data
into a rasterized image well suited for pixel RNNs.

With transformed data, this thesis focuses on constructing simple pixel RNNs
to generate an altitude map. As RNNs are difficult to train well, multiple ap-
proaches are described to further preprocess the data. This makes it easier for
the networks to digest the input. Similarly, roads, rivers, and buildings are iter-
atively generated.

11

2.2 Available data

OpenStreetMap is a collaborative project to create free editable map of the world
1. This means that it contains large open source collection of world map data.
In particular, it contains information about things on Earth’s surface, such as
streets, roads, buildings, lakes, etc. This information is encoded in an OSM file.
The OSM file is specific kind of XML file. 2 Such file is composed of elements.

There are 3 important elements:

• Node represents a single point on the map. It contains the unique identifier
of the node, latitude and longitude of the represented point and additional
information about it. 3

• Way contains a list of unique identifiers of nodes that represent either an
open way, a closed way or a polygon of an area, depending on tags present
in the way’s definition. It can be also implied by the type of the element. 4

• Relation contains a list of unique identifiers of nodes, ways and other
relations. Relations are used to to define logical or geographic relationships
between other elements. 5

However, OSM data do not contain altitudes. OpenTopography is an NSF
EAR project that provides community access to high resolution Earth topography
data. 6 In particular, it provides us with an altitude map. This can be used as a
replacement for missing altitude data in OSM data.

OSM contains overwhelming amount of data. The type of map attempted to
be created in this thesis is a map of cities based on other map elements. Altitudes
being the obvious one, cities are mostly built near a source of water. Rivers are
chosen for this reason. Historically, cities were built on routes, to be connected to
civilization. Therefore, roads are the next logical choice. And lastly buildings are
chosen to represent cities or settlements. There are other possibilities to consider,
however, these 4 types are enough for demonstration purposes. It is also enough
in a lot of games.

12

OSM file

ASC file

Parser

Altitudes training data

Roads training data

Rivers training data

Buildings training data

User Input + Randomness

Altitudes Network

Roads Network

Rivers Network

Buildings Network

altitudes[]

roads[]

rivers[]

buildings[]

PARSING

LEARNING GENERATION

Figure 2.1 This figure shows broad representation of the entire algorithm used
in this thesis. Every row in Generation phase is a stage. Each stage contains
neural networks. Networks need to be trained first. The output of each stage is
then also used as an input for the next stage. The exception is that generation of
rivers does not take roads as its input.

13

2.3 Network design
The output of the algorithm is generated in stages. These consist of generating
visual images of altitudes, rivers, roads, and buildings. The Figure 2.1 shows this
structure. Each stage contains multiple neural networks. The final output is a
set of the outputs of the stages.

The common structure of each network can be seen in Figure 2.2. The input
consists of a context and a recurrent input. Given a part of an image, for example
an altitude map, the recurrent input represents a narrow area of the already gen-
erated part. This area shall be called the window. The output of the network is
a single pixel. The window moves in a row by row fashion, generating the map
pixel by pixel. The map being generated is called generation matrix in this thesis.
Figure 2.3 shows this process, as well as the shape of the recurrent window and
the output. This design is inspired by pixel RNNs. [14] The context represents
the wider area, so the network has a better understanding of what to generate in
larger scales. This is explained in the next section.

Neural networks in general are effective working with ranges (0, 1) or
(−1, 1). Because of this, images are represented by matrices with numbers
between 0 and 1. In the case of an altitude map, such floating point number
represents the altitude at a given location. The value 1 represents the maximum
altitude in the original image. The value 0 represents the minimum. In the case
of other features, roads for example, the value represents the probability of the
feature being there. Once a window is cut out from the matrix, it is flattened into
an array to be used as an input for a network. There are more ways to process
such input in order to reduce potential work the hidden layers might have to do.
In the case of altitudes, network needs to be able to generate certain patterns
with respect to any current altitude level. For instance, to generate a recess for a
lake in the mountains as well as in some lower placed meadows. This is achieved
by taking the average of the given input window and making it as only absolute
value. This value is subtracted from all the values of the window, making them
relative. The absolute value is appended to the input to retain knowledge about
the current altitude.

The values themselves can still be processed further. Unary encoding of
length L is used for segmentation of the value range into multiple neurons. This
makes the neural network much more aware of the value. [5] Some values behave

1https://www.openstreetmap.org/
2https://wiki.openstreetmap.org/wiki/OSM_XML
3https://wiki.openstreetmap.org/wiki/Node
4https://wiki.openstreetmap.org/wiki/Way
5https://wiki.openstreetmap.org/wiki/Relation
6https://opentopography.org/

14

https://www.openstreetmap.org/
https://wiki.openstreetmap.org/wiki/OSM_XML
https://wiki.openstreetmap.org/wiki/Node
https://wiki.openstreetmap.org/wiki/Way
https://wiki.openstreetmap.org/wiki/Relation
https://opentopography.org/

context recurrent input

Dense Layers

Single Output

Figure 2.2 This figure shows the general structure of networks used in this
thesis. Input consists of a context and the recurrent input. Context gives the
network general idea of what to generate. The outputs from previous stages are
also included here.. The recurrent input consists of previous outputs, making the
network recurrent.

exponentially. For this reason, relative altitudes and probabilities are encoded
logarithmically: x = − log2(value). For example: 3.32 ≈ − log2(0.1). The
value x is then unary-encoded as an array of length L: [1, 1, 1, 0.32, 0, 0]. Neg-
ative values are simply encoded as an array with negative numbers instead of
positive. However, this encoding has certain reverse effect. The further the val-
ues in the array are from 0, the closer the original value was to 0. This resulted in
generated images containing artifacts (for example sudden changes in altitude).
Therefore, reverse encoding is used: [0, 0, 0, 0.68, 1, 1]. Some other values, like
the absolute altitude, behave linearly. These are unary-encoded as well, except
for taking the logarithm, they are multiplied by L : x = value · L. In this thesis,
L = 8. This choice is explained in the next section. However, there arises a
problem with reconstruction of a value from the network. Networks generate an
array of floats, which can be far from proper encoded form. Given a generated ar-
ray arr, the exponential reconstruction is as follows: result = 2−|

∑︁
(arr)|. This

works quite well for features except for altitudes. Altitudes can also generate
negative values and are encoded in reverse. The following algorithm provided
results without any artifacts: result = ΣL

i=0sign(arr[i]) · (−2−|arr[i]−i| + 2−i).
This simply reconstructs each value separately by its position in the array and
sums the results.

15

repeated

application

Figure 2.3 This figure shows the basic generation algorithm using pixel RNNs.
On the left hand side, light blue cells are used as the recurrent input for the
network. The blue cell is the output of a single step. This window then moves in
a row by row fashion, filling the matrix with the outputs. On the right hand side,
the blue cells are the output of the algorithm. This sub-matrix is cut out. White
cells on the right hand side were only read from. These need to be somehow
initialized in advance.

2.4 Additional Layers
Definition 4 (Layer-Nx). The set of inputs representing an area N-times wider
than the base area is called Layer-Nx.

In general, this thesis uses layers with N being a power of 4. Each stage is
generated in multiple layers. First, the user provides a rough sketch of what to
generate. This is in form of an image I . An image representing Layer-16x is
generated from Layer-64x. Generation matrix needs to be created to begin the
generation. This is done by scaling down I using linear interpolation. Then the
reflection padding is added to fill in the edges. Demonstration of this is shown
in Figure 2.3. Next, Layer-64x is created from I , taking 320 × 320 windows and
scaling them down to 5×5. For this purpose, I is also padded with the reflection
padding. As the output should be image representing Layer-16x, it is 16-times
smaller than I . Therefore, the contexts are taken only at every 16th cell. Finally,
using algorithm described in Figure 2.3, output is generated. It is called L16.
Figure 2.4 shows this process.

Next, as shown in Figure 2.5, Layer-4x is generated. Networks generating
this layer are taking both Layer-16x and Layer-64x as context. As Layer-16x is
already generated, we can omit I and focus on recurrent generation. As the result
should be an image that is 4-times greater than L16, L16 is scaled up four times to
provide sufficient number of contexts. Layer-64x at this point is represented by
the 16-times larger (80×80) windows from scaled up L16. Similarly, Layer-16x is

16

represented by (20 × 20) windows. The resulting image of this process is called
L4.

At last, L1 is generated. Networks generating this layer are taking Layer-
16x and Layer-4x as context. This is achieved by scaling up L4 with value of
4, and using the same algorithm as before. The resulting image of this process
is the final image in full resolution called L1. In the case of altitudes, random
noise is added to I , L16, and L4 after scaling them up. This noise has exponential
distribution with value of 20% of the distance between maximum and minimum
of the image.

Roads, rivers, and buildings also take context from previous stages in a similar
manner. For instance, the network generating L16 road map does not only take
Layer-64x of roads as its context, but also Layer-64x and Layer-16x of altitudes.
Refer to Figure 2.1 for map of context dependencies. As generating these features
appeared to be too difficult problem for the networks to handle, an additional
layer was added. Generating of L1 is split into 2 steps. First, Lblurred is generated,
creating rough sketch of probabilities. Then an additional network generates
Lsharp based only on Lblurred. This results in roads, rivers, and buildings being
actual lines and dots instead of smudges on the map.

The highest layer used in this thesis is Layer-64x. As the original images of
roads, rivers, and buildings contain only zeros and ones, the smallest number
that can appear in Layer-64x is 1/27. For this reason, the choice of the length
of unary encoding is 8. This way, logarithmic unary encoding can represent the
smallest value of 1/28.

17

User input

L16

Neural Network

Figure 2.4 This figure shows generation of L16. Values are smaller for demon-
stration purposes. User input has ’reflection’ padding. This is represented by
gray colour. L16 is the generation matrix. Its edges are initialized by scaled
down user input. This is also represented by gray colour. Layer-64x is taken at
orange cells at user input. This is every 16th cell in reality. The blue part of L16
is generated by using the neural network as shown in Figure 2.3 and is cut out.

18

L4 L16 (scaled up)

Neural Network

Encoding

Reconstruction

Figure 2.5 This figure shows processing of a single input in generation of L4
using L16 as context. Smaller windows are used for demonstration. The middle
position of all windows is the same. In practice, windows are of size 5 × 5,
20×20 and 80×80. The green window is the recurrent input. The blue window
is Layer-16x context. The orange window is Layer-64x context. These 2 windows
are scaled down to 5 × 5, as shown above.

19

User input

L16

L4

L1

Figure 2.6 This figure shows the idea behind generation of an entire stage. Gen-
erating L16 from the user input results in loss of data, capturing only high level
features. Then the networks expand on previous layer and generate a more de-
tailed version. This results in remixed content filled with details that networks
picked up on during training.

20

Chapter 3

Applying the RNN generation to
real world data

3.1 Input datasets
A general area of Czech Republic was selected due to its diversity of terrain, good
size and high quantity of map features. Table 4.1 shows its Earth coordinates.
In both, OSM and OpenTopography, the data is downloaded using rectangular
selection, specifying corners with longitude and latitude coordinates. This allows
for easy matching of data from both sites. However, the OpenStreetMap site has
limits on the size of the exported area. QGIS is a free and open source geographic
information system 1. QGIS 2.18.28 with OSMDownloader plugin 2 solves this
problem by allowing unlimited downloads. This plugin offers option to select
area by rectangle. However, it is only compatible with older versions of QGIS.

The first step is to parse the altitude matrix. The data can be downloaded in
ESRI ArcASCII format, which is easily parsed and provides a complete matrix
of altitudes. The second step is to parse the OSM file. OSM data is in a form
of non-discrete points and polygons. This needs to be rasterized. That is, we
need to create a matrix of the same size as the altitude matrix and translate the
coordinates to discrete form. Finally, we need to simply draw the shapes into the
created matrices. Value 0 means absence of a feature and value 1 means presence
of that feature. Note that roads are just in the form of lines, while rivers tend to
be wider and are often represented by polygons. The specific tags used to filter
only needed features are as follows:

Roads: (key=highway, value=motorway|trunk|primary|secondary|tertiary)

1https://www.qgis.org/en/site/
2https://github.com/lcoandrade/OSMDownloader

21

https://www.qgis.org/en/site/
https://github.com/lcoandrade/OSMDownloader

Altitudes Roads

Rivers Buildings

Figure 3.1 PGM data

Rivers: key=waterway, (key=water, value=river)

Buildings: key=building, key=amenity

For simplicity, C# provides XMLReader class for the large OSM file. Using a
standard drawing library, polygons and lines can be easily drawn into the matrix,
by converting it into an image. The output form of the data needs to be easily
parsable and viewable. The PGM grayscale image format serves this purpose, as
it is one of the simplest existing image formats.

The output of this algorithm consists of 4 PGM images for each type of data.
Altitudes, roads, rivers, and buildings. They can be seen in Figure 3.1. These
images are then processed into concrete inputs for the networks.

3.2 Training the Networks
Keras is the most widely used Python deep learning framework. It comes with
simple and flexible API. 3 This framework is used to build the networks.

There are 3 networks for every stage. Networks that generate L16 from Layer-
64x are denoted as: network (64) → 16. Altitude generation stage requires
following networks: (64) → 16, (64, 16) → 4 and (16, 4) → 1. Other features
have the last layer split into (16, 4) → blurry and (blurry) → sharp. The blurry
layer is simply created by using Gaussian blur with kernel shape of (5 × 5) on
the original image.

The first step to prepare the training data is to cut out windows across the
layers. The base size for a Layer-1x window is (5 × 5). Windows are taken at

3https://keras.io/

22

https://keras.io/

every pixel. Layer-Nx has a window N-times larger, which is then scaled down
to (5 × 5). The result of this are lists of (5 × 5) windows for every layer. The
standard score normalization is used for altitude data. For altitude generation,
random noise is also applied to these layers to reduce the chance of overfitting.

As roads and rivers depend on the differences in altitude more than on ac-
tual altitudes, 2 more images are generated. Differences of altitudes in x and y
direction. Given altitude matrix A, the matrix containing the differences of alti-
tudes in x direction Dx is defined as: Dx[row, column] = A[row, column] −
A[row, column+1]. Similarly: Dy[row, column] = A[row, column]−A[row +
1, column].

All of this results in 4 images parsed into layers, as explained in Section 2.4.
Altitudes, altitude differences in x and y direction, roads, rivers, and buildings.
The next step is to take the layers and create training examples for the networks.
This is individual for every stage and every network. However, every training
set consists of 150 000 random examples. Roads and rivers are processed in the
same way and are addressed as paths. The inputs and outputs for each network
are described as follows:

Altitudes (64) → 16 : The input consists of Layer-64x context and recurrent
input. Making the heights relative and encoding the inputs makes total
size of input 392. The output is a single encoded pixel in 8 neurons. The
loss is mean squared error.

Altitudes (64, 16) → 4 and (16, 4) → 1 : Both networks take 2 layers as con-
text. This makes input length 600. The output length is 8. The loss is mean
squared error.

Paths (64) → 16 : The context consists of Layer-64x of paths and altitude differ-
ences. It also consists of Layer-16x altitude differences. This makes input
length 1176. The output length is 8. The loss is mean squared error.

Paths (64, 16) → 4 : The context consists of Layer-64x and Layer-16x of paths
and altitude differences. It also consists of Layer-4x of altitude differences.
This makes input length 1776. Output is 8. The loss is mean squared error.

Paths (16, 4) → blurry : The context consists of Layer 16x and Layer-4x of alti-
tude differences. It also consists of Layer-1x of altitude differences. This
makes input length 1776. The output length is 8. The loss is mean squared
error.

Paths (blurry) → sharp : Sharpening network takes only blurry layer as con-
text. This makes total length of input 222. The output length is 1. This

23

network simply tries to classify, wether there is a path or not. The loss is
binary crossentropy.

Buildings (64) → 16 : Buildings take roads, rivers and altitudes as context. It
consists of Layer-64x of roads, rivers, altitudes and buildings. It also con-
sists of Layer-16x of roads, rivers and altitudes. This makes input length
1592. The output length is 8. The loss is mean squared error.

Buildings (64, 16) → 4 : The context consists of Layer-64x and Layer-16x of
roads, rivers, buildings and altitudes. It also consists of Layer-4x of roads,
rivers and buildings. This makes total length of input 2400. The output
length is 8. The loss is mean squared error.

Buildings (16, 4) → blurry : The context consists of Layer-16x and Layer-4x of
roads, rivers, buildings and altitudes. It also consists of Layer-1x of roads,
rivers and buildings. Recurrent input is blurry Layer-1x of buildings. This
makes total length of input 2400. The output length is 8. The loss is mean
squared error.

Buildings (blurry) → sharp : This network takes only blurry Layer-1x as con-
text. Input length is 222. The output length is 1. The loss is binary cros-
sentropy.

24

Chapter 4

Results and discussion

4.1 Generation Results

Due to computational difficulty of training recurrent neural networks, their large
quantity and large size of the created datasets, all networks have been trained up
to 10 epochs. Even after 10 epochs they already received diminishing improve-
ments of loss. Loss of all the networks was between 0.1 and 0.01.

Networks for generating altitudes were trained on multiple datasets shown
in Figure 4.1. All user inputs used in this testing are in the shape of (100 × 100).
Using a neural network trained on Czech Republic dataset, Figure 4.3 shows gen-
eration results on a simple hand drawn input of a valley. The output is visibly
more complex. Figure 4.2 shows generation results on complex input from a real
world map. The map retains some broad features of the original input. Figure 4.4
and Figure 4.5 show impact from training on Sahara dataset. The resulting im-
ages are visually close to sand dunes. Figure 4.6 and Figure 4.6 are results based
on the Himalayas dataset. This network seems to generate vertical valleys, which
share similarities with the Himalayas dataset. Sahara and Himalayas networks
seem to generate maps that are very different from the user input.

Generation of other features was more difficult. It can be seen in Figure 4.8
and Figure 4.11 that the sharpening network was successful in creation of lines
from the blurry layer. However, the blurry layer is simply too inaccurate to gen-
erate longer, more connected roads. Figure 4.9 and Figure 4.12 show very similar
results in generation of rivers. As Figure 4.13 and Figure 4.10 show, the attempt
at generating buildings was mostly unsuccessful. The Network generating the
blurry layer generates only empty images.

Figure 4.15 and Figure 4.14 show more closely how roads and rivers respond
to altitudes. In some cases, they follow edges of elevated levels.

Figure 4.16 is a result without any randomness. This picture resembles the

25

Czech Republic

Sahara Himalayas

Figure 4.1 Training datasets of multiple regions. Their locations on Earth can
be seen in Table 4.1.

Area Left longitude Right longitude Bottom latitude Top latitude

Czech Republic 13.500000000 16.165283203 49.28252211106 50.3701685954
Sahara 12.3310546875 14.9968893975 23.769305315898 24.8575011166
Himalayas 85.4110107421 88.0784912109 27.225447545489 28.3130940298

Table 4.1 This table shows Earth’s coordinates of training datasets.

original valley. Compared to Figure 4.15, it shows impact of randomness. This
picture has far less features than the original input. It is, however, more detailed.
The problem is that the details may be visually pleasing, but are not result of
learning from real world examples. Therefore, a lot of tweaking is needed to find
the right amount of randomness. On the other hand, comparing Figure 4.18 and
Figure 4.17, neither of them resemble the original input. This happens despite
the fact that Figure 4.17 was generated without any randomness.

26

Original L16 L4 L1

Figure 4.2 Generation of altitudes from complex input with Czech networks.

Original L16 L4 L1

Figure 4.3 Generation of altitudes from simple drawn input with Czech net-
works.

Original L16 L4 L1

Figure 4.4 Generation of altitudes from complex input with Sahara networks.

Original L16 L4 L1

Figure 4.5 Generation of altitudes from simple input with Sahara networks.

27

Original L16 L4 L1

Figure 4.6 Generation of altitudes from complex input with Himalayas net-
works.

Original L16 L4 L1

Figure 4.7 Generation of altitudes from simple input with Himalayas networks.

Original L16 L4 Lblurry Lsharp

Figure 4.8 Generation of roads based on altitudes in Figure 4.2.

Original L16 L4 Lblurry Lsharp

Figure 4.9 Generation of rivers based on altitudes in Figure 4.2.

28

Original L16 L4 Lblurry Lsharp

Figure 4.10 Generation of buildings based on Figure 4.8, Figure 4.9 and Fig-
ure 4.2.

Original L16 L4 Lblurry Lsharp

Figure 4.11 Generation of roads based on altitudes in Figure 4.3.

Original L16 L4 Lblurry Lsharp

Figure 4.12 Generation of rivers based on altitudes in Figure 4.3.

Original L16 L4 Lblurry Lsharp

Figure 4.13 Generation of buildings based on Figure 4.11, Figure 4.12 and Fig-
ure 4.3.

29

Figure 4.14 Map of all features generated from complex input by Czech net-
works. The blue colour represents locations of rivers. The green colour repres-
ents locations of roads.

Figure 4.15 Map of all features generated from simple drawn input by Czech
networks. The blue colour represents locations of rivers. The green colour rep-
resents locations of roads.

30

Figure 4.16 Map of all features generated from simple drawn input by Czech net-
works without any randomness. The blue colour represents locations of rivers.
The green colour represents locations of roads.

Figure 4.17 Map of all features generated from the complex input by Sahara net-
works without any randomness. The blue colour represents locations of rivers.
The green colour represents locations of roads.

31

Figure 4.18 Map of all features generated from the complex input by Sahara
networks. The blue colour represents locations of rivers. The green colour rep-
resents locations of roads.

4.2 Discussion
The altitude networks show applicable results. They proved capable of producing
realistically looking images that are resembling the user input. The generated
images show influence of training datasets. However, these images still lack fine
details in comparison to training datasets. This is solved by random noise, but at
the cost of user control. Maybe given much larger input image, less data would
have been lost in the process of generation.

Roads and rivers were successful in generation of some path resembling im-
ages. They also show ability to respond to altitudes. However, the lines are too
short and inconsistent. Improving the generation of the blurry layer could have
the most impact on better generation. Maybe reducing the kernel size of Gaus-
sian blur might help in future improvements.

Buildings networks are the most computationally demanding networks be-
cause of their large input. This makes them very time consuming to train. The
network generating blurry layer seems to lose almost all of the data and gener-
ates empty images. Except for improving this network, processing the previous
layer might give this network enough information. For example, rescaling values
in L4, so it contains higher probabilities.

In all cases, future work would include trying larger networks with more
training. Altitude networks in particular could benefit from different unary re-

32

construction method to encourage more detailed, fractal generation.

33

34

Conclusion

In this thesis, OSM data together with OpenTopography were analyzed and suc-
cessfully converted to a viable form for RNNs. An algorithm for generation of
random maps using pixel RNNs was successfully constructed and implemented.
The networks have shown the ability to create altitude maps, road maps, and
river maps.

Altitude images generated by the algorithm look realistically and are not far
from actual usable maps. The generation is controllable by simple user input and
choice of the training dataset. Neither road nor river images generated by the
algorithm are of applicable quality, but they could become useful upon further
improvements to the algorithm. The building images have not been successfully
generated.

Trained RNNs show the ability to generate random maps. The real world
samples show influence on creating realistically looking maps. This is especially
true for altitude maps. With the basic algorithm provided, it is possible to iterate
on this and create better results by improving the neural networks.

For the future work, there are multiple areas to make the algorithm better:

• Testing the networks on larger inputs.

• Improving neural networks.

• Tweaking the noise added in training and generation phase to better reflect
user input.

• Choice of different data encoding and reconstruction.

• Addition of more map features.

35

36

Bibliography

[1] Travis Archer. “Procedurally generating terrain”. In: 44th annual midwest
instruction and computing symposium, Duluth. 2011, pp. 378–393.

[2] William Chan et al. Listen, Attend and Spell. 2015. arXiv: 1508 . 01211
[cs.CL].

[3] George Cybenko. “Approximation by superpositions of a sigmoidal func-
tion”. In: Mathematics of control, signals and systems 2.4 (1989), pp. 303–
314.

[4] Lawrence Johnson, Georgios N Yannakakis and Julian Togelius. “Cellular
automata for real-time generation of infinite cave levels”. In: Proceedings of
the 2010 Workshop on Procedural Content Generation in Games. 2010, pp. 1–
4.

[5] Subhash Kak. Unary Coding for Neural Network Learning. 2010. arXiv:
1009.4495 [cs.NE].

[6] Andrej Karpathy. The Unreasonable Effectiveness of Recurrent Neural
Networks. https : / / karpathy . github . io / 2015 / 05 / 21 / rnn -
effectiveness. 2015.

[7] Stefan Knerr, Léon Personnaz and Gérard Dreyfus. “Handwritten digit re-
cognition by neural networks with single-layer training”. In: IEEE Trans-
actions on neural networks 3.6 (1992), pp. 962–968.

[8] Jacob Olsen. “Realtime procedural terrain generation”. In: (2004).

[9] Teong Joo Ong et al. “Terrain generation using genetic algorithms”. In:
Proceedings of the 7th annual conference on Genetic and evolutionary com-
putation. 2005, pp. 1463–1470.

[10] Raúl Rojas. Neural networks: a systematic introduction. Springer Science &
Business Media, 2013.

[11] Dominik Scholz. “Tile-Based Procedural Terrain Generation”. PhD thesis.
Technische Universität Wien, 2019.

37

https://arxiv.org/abs/1508.01211
https://arxiv.org/abs/1508.01211
https://arxiv.org/abs/1009.4495
https://karpathy.github.io/2015/05/21/rnn-effectiveness
https://karpathy.github.io/2015/05/21/rnn-effectiveness

[12] Ilya Sutskever. Training recurrent neural networks. University of Toronto
Toronto, Canada, 2013.

[13] Frank M Thiesing and Oliver Vornberger. “Sales forecasting using neural
networks”. In: Proceedings of International Conference on Neural Networks
(ICNN’97). Vol. 4. IEEE. 1997, pp. 2125–2128.

[14] Aaron Van Oord, Nal Kalchbrenner and Koray Kavukcuoglu. “Pixel recur-
rent neural networks”. In: International Conference on Machine Learning.
PMLR. 2016, pp. 1747–1756.

[15] Zarita Zainuddin and Ong Pauline. “Function approximation using artifi-
cial neural networks”. In: WSEAS Transactions on Mathematics 7.6 (2008),
pp. 333–338.

38

Appendix A

Using the software

The following dependencies are needed for the algorithm used in this thesis.
These are the steps to get them on a windows based system:

• .NET Core 3.0 : Download with Visual Studio: https://visualstudio.
microsoft.com/downloads/

• System.Drawing.Common : Download in Visual Studio in OSM_Parser
project under NuGet Packages function.

• Python 3+ : Download from https://www.python.org/downloads/

• Tensorflow 2.2.0 : Use python -m pip install tensorflow=2.2.0
in the command line or navigate to https://www.tensorflow.org/
install). It needs to be this specific version.

• NVCuda 10.1+ : Follow the guide: https://docs.nvidia.com/cuda/
cuda-installation-guide-microsoft-windows/index.html

• cuDNN 7.6 : Follow the guide: https://docs.nvidia.com/
deeplearning/cudnn/install-guide/index.html It needs to be
this specific version.

• openCV : python -m pip install opencv-python

• numpy : python -m pip install numpy

• pyplot : python -m pip install matplotlib

• Jupyter Notebook : python -m pip install jupyterlab

39

https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://www.python.org/downloads/
https://www.tensorflow.org/install
https://www.tensorflow.org/install
https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html
https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html
https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html
https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html

• QGIS 2.18.28 (optional) : Navigate to https://qgis.org/downloads/
and download the correct version. Then through "manage plugins" feature,
download OSMDownloader plugin.

The complete steps for the whole process of downloading and parsing the
data, training the networks and generating the maps are described as follows:

1. Go to https://portal.opentopography.org/datasets and select the
region you want to export by hand.

2. Under "Global Data" select Global Multi-Resolution Topography (GMRT)
Data Synthesis option.

3. You can adjust the longitude and latitude values precisely at this point.

4. Select ESRI ArcASCII format and hight resolution. Download the data and
extract them.

5. Navigate to https://www.openstreetmap.org/ and use the export fea-
ture to download the same coordinates as before. If your area is too large,
open QGIS and use OSMDownloader instead.

6. Open OSM_Parser/OSM_Parser.sln in visual studio.

7. Install the System.Drawing.Common library via NuGet packages function.

8. Build the solution in release mode.

9. Copy your osm and asc files into the release directory.

10. Parse the files using the program: ./OSM_Parser.exe file.asc
file.osm. This will result in 4 images: heights.pgm, roads.pgm,
rivers.pgm, and buildings.pgm. If osm file is not specified, only heights
file will be created.

11. Place the files in a folder of your choosing and navigate to "Neural Net-
works" folder in the command line.

12. Execute jupyter notebook in the command line and open "Ex-
ample.ipynb" in the browser window that is now opened. This file contains
rest of the instructions on how to parse the data, train the networks and
generate new maps.

40

https://qgis.org/downloads/
https://portal.opentopography.org/datasets
https://www.openstreetmap.org/

The selected area has to be quite large for the parsing to be successful. (720×
720) is the bare minimum for the altitude (ArcASCII) map. The number of viable
training examples will be less from such map as empty examples are omitted for
roads, rivers, and buildings. Area of Czech Republic, as specified in Table 4.1, is
recommended.

To summarize the python scripts, "nn_generator" folder contains 5 main
scripts. Each of them contains a single function that does its functionality.

• parse.py parses the input image into layers. It is used to parse training
images into Layers 64x, 16x, 4x and 1x. It also computes blurry layer and
layers of altitude differences.

• normalize_heights.py uses standard score normalization on the height
layers.

• process_training_data.py takes the given layers and processes them into
training data for a single network.

• train.py is parametrized with a name of a file that specifies network struc-
ture. It builds the network based on this file, trains it based on given para-
meters and saves it into given location.

• generate.py is provided with configuration file "generation_config.txt",
which specifies which networks are used for the generation. This script
is given a name of a folder containing user input and generates the maps
into the specified output folder.

• libraries folder contains libraries with helpful functions.

• model_structures folder contains files describing structures of each net-
work.

• generation_data folder contains example files for the generation.

• Example.ipynb is, as mentioned above, example python notebook file
containing script on how to perform the algorithm from parsing to gener-
ation.

It is important to note that these computations are very demanding and
time consuming. Especially data used for training the network for generation of
buildings. This network takes data from all the previous layers as an input. The
software comes with prepared unparsed PGM images in raw_data folder. It also
comes with pre-trained networks in models folder. This is for demonstration
purposes.

41

The source code can be found on the github: https://github.com/Ermith/
Thesis-Public.git

42

https://github.com/Ermith/Thesis-Public.git
https://github.com/Ermith/Thesis-Public.git

	Introduction
	Neural Networks for map generation
	Artificial Neural Networks
	Recurrent Neural Networks
	Map Generation Methods

	Generating maps with RNNs
	Problem specification
	Available data
	Network design
	Additional Layers

	Applying the RNN generation to real world data
	Input datasets
	Training the Networks

	Results and discussion
	Generation Results
	Discussion

	Conclusion
	Bibliography
	Using the software

