
BACHELOR THESIS

Richard Hladík

Combinatorial Algorithms for Flow
Problems

Computer Science Institute of Charles University

Supervisor of the bachelor thesis: Mgr. Martin Koutecký, Ph.D.
Study programme: Computer Science

Study branch: General Computer Science

Prague 2021

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

ii

I am extremely grateful to my supervisor Mgr. Martin Koutecký, Ph.D. for all
his invaluable help and his supportiveness during our work on this project and
beyond. I would also like to thank Swati Gupta, Steffen Borgwardt and Sebastian
Pokutta for the help they provided over email. Lastly, I thank my family, as well
as my friends Tom and Pája, for their constant support and patience.

iii

iv

Title: Combinatorial Algorithms for Flow Problems

Author: Richard Hladík

Institute: Computer Science Institute of Charles University

Supervisor: Mgr. Martin Koutecký, Ph.D., Computer Science Institute of Charles
University

Abstract: The multicommodity flow problem (MCF) and the length-bounded
flow problem (LBF) are two generalisations of the maximum flow problem. Both
can be solved using linear programming and approximated using fully polynomial-
time approximation schemes (FPTASs). However, there are no known algorithms
for them that are at the same time 1) exact, 2) polynomial, and 3) combinatorial
and/or not relying on general methods like linear programming. Multicommodity
flow is sometimes called “the easiest problem with no combinatorial algorithm”.
In this thesis, we summarise problem-specific as well as general methods used to
solve these problems. We propose two new combinatorial algorithms, one based
on the Frank-Wolfe method for convex optimisation (for MCF and LBF), and the
other one based on most helpful cycle cancelling (for MCF), and prove that in
networks with polynomial demands they both run in poly(input size, 1/ε) time.
We also present some results from polyhedral theory, examining the circuits of
MCF and LBF polyhedra. On the one hand, we prove that the existence of a
circuit-like set consisting of vectors of small norm would make both algorithms
nearly-exact (i.e., withO(log 1/ε) convergence). On the other hand, we prove that
exponential circuits exist for both MCF and LBF. The existence of a circuit-like
set other than the circuit set which only contains small vectors remains an open
question.

Keywords: algorithm, flow, combinatorial, frank-wolfe, most helpful cycles

v

Název práce: Kombinatorické algoritmy pro tokové problémy

Autor: Richard Hladík

Institut: Informatický ústav Univerzity Karlovy

Vedoucí práce: Mgr. Martin Koutecký, Ph.D., Informatický ústav Univerzity
Karlovy

Abstrakt: Problém multikomoditního toku (MCF) a problém K-omezeného toku
(LBF) jsou dvě zobecnění problému maximálního toku. Oba problémy jdou řešit
pomocí lineárního programování a aproximovat plně polynomiálními aproximač-
ními schématy (FPTAS). Není však pro ně znám žádný algoritmus, který je záro-
veň 1) exaktní, 2) polynomiální a 3) kombinatorický a/nebo nepoužívající obecné
metody jako lineární programování. O multikomoditním toku se někdy mluví jako
o „nejsnazším problému, který nemá kombinatorický algoritmus“. V této práci
shrnujeme specializované i obecné metody pro řešení obou problémů. Přinášíme
dva nové kombinatorické algoritmy, první založený na metodě Frank-Wolfe pro
konvexní optimalizaci (pro MCF i LBF), druhý založený na most helpful cycle
cancelling (pro MCF), a dokazujeme, že v sítích s polynomiálními poptávkami
oba algoritmy běží v čase poly(délka vstupu, 1/ε). Také přinášíme výsledky v po-
lyhedrální teorii, zejména v souvislosti s kružnicemi MCF- a LBF-mnohostěnů.
Na jednu stranu dokazujeme, že existence množiny zobecňující množinu kružnic
sestávající se pouze z vektorů malé normy by už zaručila „skoro-exaktnost“ obou
algoritmů (resp. konvergenci v O(log 1/ε) krocích). Na druhou stranu dokazu-
jeme existenci exponenciálně velkých kružnic pro MCF i LBF. Existence množiny
zobecňující množinu kružnic jiné než množina kružnic, která obsahuje pouze malé
vektory, zůstává otevřenou otázkou.

Klíčová slova: algoritmus, tok, kombinatorický, frank-wolfe, most helpful cycles

vi

Contents

Introduction 3
Our Contributions . 4
Organisation of the Thesis . 6
Related Work . 7

MCF and LBF . 8

1 Preliminaries 9
1.1 Linear-Algebraic Minimum, Notation 9
1.2 Flows . 10
1.3 Circulations . 11
1.4 Linear Programming . 11
1.5 Conformality . 12
1.6 Walks, Paths, Cycles . 13
1.7 Weighted Paths and Cycles . 14
1.8 Convergence . 16

2 The State of the Art 17
2.1 Flow Problems . 17

2.1.1 Multicommodity Flow . 18
2.1.2 Length-Bounded Flow . 20

2.2 Formulations . 21
2.2.1 Linear Programming . 21
2.2.2 Penalty Function . 24
2.2.3 Notation and Terminology 25

2.3 Prior Work . 26
2.3.1 Traditional Algorithms for MCF 26
2.3.2 Modern FPTASs . 27
2.3.3 Minimum Length-Bounded Cut 28
2.3.4 General Methods . 28

3 Frank-Wolfe 31
3.1 Strong Convexity and Smoothness 31
3.2 Algorithm Sketch . 33
3.3 Common Variants . 33
3.4 Pairwise and Away-Steps Frank-Wolfe 34
3.5 Convergence Analysis . 35

3.5.1 Hölder Error Bound . 37
3.6 Interpreting Frank-Wolfe on MCF and LBF 37

3.6.1 Adaptation for LBF . 39
3.7 Convergence Analysis for MCF and LBF 40

3.7.1 Smoothness . 40
3.7.2 Convexity . 41
3.7.3 Strong Convexity . 41
3.7.4 HEB and Linear Convergence 42

3.8 Proof of Theorem 3.3 . 43

1

4 Circuits and Inflation 45
4.1 Definitions and Basic Properties of Circuits 45
4.2 Steepest-Descent Augmentation 47
4.3 Inflating Polyhedra . 48
4.4 Examining MCF Circuits . 52
4.5 Exponential Circuits for MCF and LBF 54

4.5.1 Adaptation for LBF . 57

5 Most Helpful Cycles 59
5.1 Minimum-Cost Maximum Flow 59

5.1.1 Finding Most Helpful Cycles 61
5.1.2 Convergence Analysis . 62

5.2 Most Helpful Cycles for MCF . 63
5.3 Analysing Helpful-MCF . 65

5.3.1 Finding the Best Cycle Collection 65
5.3.2 Improving Cycle . 66
5.3.3 Bounding Cycle Improvement 67
5.3.4 Achieving O(1/ε)-like Convergence 69
5.3.5 Inflation to the Rescue . 71
5.3.6 Filling in the Gaps in Helpful-MCF 73

Conclusion 75
Further Work . 76

2

Introduction
Network flows is one of the most prominent fields of combinatorial optimisation
[AMO88]. Flow networks are used to model real-world situations in which a
commodity (oil, network packets, electricity, . . .) is transported in a network
consisting of vertices (junctions, routers, logical gates, . . .) and edges (pipes,
networking cables, wires, . . .) connecting them. Usually each edge has a capacity
signifying the amount of the commodity that can be transported through it.
There are usually also two special vertices, the source and the sink, in which the
commodity is created or consumed, respectively. In all the other vertices, the
amount of the commodity coming in must equal the amount of the commodity
going out (the so-called flow conservation property). A flow then determines the
amount of the commodity transported by each edge so that the assumptions on
capacities and flow conservation are met.

The most famous of network flow problems is the maximum flow problem
[FF56], in which the task is to find a flow transporting the maximum amount
of one commodity from the source to the sink. In this thesis, we study two
generalisations of this problem, namely the multicommodity flow problem (MCF)
[FF58] and the length-bounded flow problem (LBF) [AK71]. At the first sight,
they seem quite unrelated, but we will uncover multiple similarities between them.

In MCF, we have multiple commodities, each with its own source-sink pair
and a demand on how much of this commodity must be transported. The task
is to find a collection of flows for each commodity – a multicommodity flow or a
multiflow for short – given that all commodities share a single network and its
capacities.

In LBF, we have a single commodity (e.g., network packets, perishable goods)
that we want to transport from the source to the sink as quickly as possible;
namely, each unit of the commodity is allowed to travel through at most K edges
before reaching the sink. Formally, the task is to find a flow satisfying the demand
that can be decomposed into paths of length at most K.1

Both of these problems have been extensively studied, and several FPTASs
exist for both the MCF family of problems [Fle99; GK07; Mąd10] and LBF
[Vob16].2 Both problems can also be solved exactly in polynomial time using
linear programming (LP) [FF58]. However, it is not known whether there exists
an exact algorithm which is of a combinatorial nature and/or which does not rely
on LP or related methods. In fact, MCF has been sometimes called “the easiest
problem with no combinatorial algorithm” [Ste12].

The term “combinatorial algorithm” is inherently ambiguous and has to do
with taste and style; the term falls into similar categories as “elegant”, “intuitive”
or “beautiful”; and “I know it when I see one” is a valid and often-heard answer to
the question of what constitutes a combinatorial algorithm [VO21]. One possible

1Although we talk about units of goods for simplicity, the amount of flow on each path does
not have to be integral. That is, LBF is still a continuous problem, not discrete.

2An FPTAS, or a fully polynomial-time approximation scheme, is, for a maximisation prob-
lem, an approximation algorithm whose running time is, for a chosen approximation error ε,
polynomial in the input size and 1/ε, and which finds a solution whose objective value is within
a factor of (1− ε) of the optimal one.

3

characterisation is that such algorithms rely on the combinatorial structure of
the problem and their inner workings can be explained in terms of this structure.
This is opposed to algorithms using general methods such as linear programming
or convex optimisation, which indeed do solve the problem, but usually offer little
meaningful insight into how the problem is “really” solved.

Consider, for example, the shortest paths problem in a graph with positive
lengths. It can be certainly formulated as an LP – see, for example, Ahuja,
Magnanti, and Orlin [AMO88, Section 11.7]. Since LP is solvable in polynomial
time by e.g. the ellipsoid method or interior-point methods, we have obtained a
polynomial algorithm for the shortest paths problem.

However, if we try to interpret it and understand why it works – as opposed
to “just” proving its correctness from the correctness of LP – we will most likely
fail miserably. For example, interior-point methods walk inside an n-dimensional
polytope of feasible solutions, trying to find a point which is the farthest with
respect to some predefined direction, but at the same time avoiding getting too
close to polytope’s boundary. It is not at all clear how these steps in a continous,
n-dimensional world relate to the discrete problem of finding the shortest path in
a graph.

On the other hand, the algorithms of Dijkstra or Bellman and Ford not only
solve the same problem more efficiently, they are also much easier to understand,
and one can not only see that they work, but also why they work.

The pursuit of combinatorial algorithms for problems so far only solvable via
LP has been an important topic for a at least a few decades now:

[The pursuit of combinatorial algorithms] has led to superior algo-
rithms for a variety of optimization problems, including shortest path,
maximum flow, minimum spanning tree, matching, and minimum cost
flow. —Kevin D. Wayne [Way02]

Finding combinatorial algorithms for MCF and LBF is important because
they can leverage the specific structure of the problem, and are therefore likely to
be faster than general methods. Any such algorithm will also necessarily provide
new insights into the problem structure.

On the other hand, any negative results help us better understand what makes
these flow problems so different from other generalisations which still allow com-
binatorial algorithms, such as generalised flow or balanced flow. Also, they force
us to refine what we mean by a “combinatorial algorithm” – it is one thing to
show such an algorithm, and another thing entirely to (try to) disprove its exis-
tence. An “I know it when I see it” approach is not really helpful in this case if
there is nothing to see.

Our Contributions
In this thesis, we summarise problem-specific as well as general methods used to
solve MCF and LBF, and interpret some of them combinatorially. In particular,
we review several variants of the Frank-Wolfe algorithm (FW) that is used for
convex optimisation, and interpret their operation with respect to our specific
problems. We also propose a combinatorial algorithm for MCF based on Wein-
traub’s combinatorial algorithm for the minimum-cost maximum flow problem.

4

Additionally, we conjecture a geometric property of the MCF and LBF polyhe-
dra, under which both methods converge in time weakly polynomial in input size
and O(log 1/ε), and, in the case of FW, the demands. (The convergence rate of
log(1/ε) is also referred to as linear convergence.)

Algorithms from the Frank-Wolfe family are in themselves quite simple and
the steps they make admit a combinatorial interpretation, which makes them
a promising candidate for a general method of constructing combinatorial algo-
rithms. However, until recently, there have been several obstacles to this, which
explains why there have been few such attempts in this area. Vanilla FW has
provably at best a Θ(1/ε)-style convergence in the general case, and the fast
convergence of improved FW variants in a general enough setting was shown
only recently [LJ15]. Even then, FW requires the problem formulation to sat-
isfy certain conditions; their verification for our problems is also a part of our
contribution.

In this work, we show that the Away-Steps Frank-Wolfe algorithm applied to
a penalty-based formulation of MCF and LBF reduces to iteratively solving the
shortest path problem with weights changing based on the current flow, and that
it achieves a penalty of ε in time polynomial in the input size, 1/ε and the sum
of demands.

We also propose a combinatorial algorithm for the penalty-based formula-
tion of MCF based on the most helpful cycle augmentation algorithm for the
minimum-cost maximum flow problem; from now on, we refer to this algorithm
as Helpful-MCF. We prove that Helpful-MCF also achieves a penalty of ε
in time polynomial in the input size, 1/ε and the sum of demands, although ex-
perimental results suggest that the algorithm in fact converges linearly on public
instances.

Although both of these algorithms come from a completely different back-
ground, we have, to our surprise, discovered that their linear convergence would
follow from the same structural properties of the MCF and LBF polyhedra. This
dependence is depicted in Figure 1. The most important is the notion of what
we call the inflation rate, a property of the polyhedron closely related to the so-
called Hoffman constant. Intuitively, if the inflation rate is small, it means that
if we “inflate” the polyhedron by increasing the right-hand side of its inequality
constraints, the newly added points of the inflated polyhedron cannot lie very far
from the original polyhedron.

Assuming the inflation rate is polynomial in input size, we directly prove
the linear convergence of Helpful-MCF. We also notice that the bound on
the inflation rate is equivalent to the so-called Hölder condition (also known as
the Hölder error bound, HEB) holding with appropriate parameters for our FW
formulation, which would guarantee a linear convergence of the FW algorithm
(although polynomial in the demands). In short, HEB states that solutions with
a near-optimal penalty value cannot lie very far from some optimal solution.

Although we do not provide explicit bounds on the inflation rate, we show that
it can be lower bounded by the norm of the circuits of the MCF matrix, where
circuits are certain integer vectors associated with a polyhedron’s constraint ma-
trix. They have many interesting properties; for example, the set of circuits of a
matrix contains all possible edge directions for an arbitrary choice of the right-
hand side. They are also a universal test set, meaning that whenever we are at a

5

point x ∈ P in the polyhedron that is suboptimal with respect to a linear3 cost
function, there always exists a suitably scaled circuit εg such that x+εg ∈ P and
the cost improves. Perhaps surprisingly, we show that exponential-sized circuits
exist for both MCF and LBF. However, the bound on the inflation rate would be
implied by any universal test set (actually, even weaker conditions suffice), and
the existence of such a set is an open question.

Helpful-MCF runs in time
polynomial in input size and
log(1/ε)

Away-Steps FW solves MCF
in time polynomial in input size,
log(1/ε) and demands

the ℓ1-inflation rate HMCF of the
MCF instance is polynomial in
input size

the Hölder condition holds for
MCF with appropriate bounds

there exists a MCF-universal
test set with polynomially-sized
integer vectors

the circuits of the MCF matrices
have norm polynomial in input
size

Section 5.3,
Corollary 5.20

Section 3.7,
Theorem 3.7

Theorem 4.8

Section 4.3,
Theorem 4.5

Remark 4.7

Figure 1: An implication diagram showing the dependence between fast conver-
gence of our algorithms and structural properties of MCF. The statement in red
has been proven false, all other statements remain undecided. The diagram for
LBF is practically the same, except that there is no Helpful-LBF algorithm.

Organisation of the Thesis
Overall, Chapters 1 and 2 introduce the needed terminology and notation and
review existing results. Our original results are contained in Chapters 3 to 5;
namely, each of the chapters first introduces the existing results and then builds
upon them to present our contribution. The introduction of each chapter details
the split between our and existing results, as well as the overall organisation of the
chapter. In order to make the thesis more self-contained, we have reproved some
simple and helpful statements, at times somewhat differently than was previously
done in the literature.

In Chapter 1, we briefly review basic theory from flow networks, graph theory
and optimisation, and introduce most of our notation and terminology.

In Chapter 2, we review the current state of the art. We begin by formulating
the problems in Section 2.1, and restate them as linear and convex programs in
Section 2.2. In Section 2.3, we review current approaches to MCF and LBF,

3Actually, even separable convex.

6

including several recent FPTASs. We also briefly mention general methods for
linear and convex programming and discuss their application and interpretation
with respect to MCF and LBF.

In Chapter 3, we describe the Frank-Wolfe algorithm used for convex opti-
misation, and interpret its operation when applied to the convex formulations of
MCF and LBF. In Chapter 4, we define circuits and describe their basic proper-
ties, define the previously mentioned inflation rate and describe its relationship to
circuits. Lastly, we show that exponential-sized circuits exist for MCF and LBF.
In Chapter 5, we describe Weintraub’s algorithm for solving the minimum-cost
maximum flow problem based on cycle cancelling and present its adaptation for
MCF. We analyse its convergence and show that it is weakly polynomial in the
input size and O(log(1/ε)) if the inflation rate of the MCF polyhedron is small.

Related Work

In minimum-cost maximum flow (MCMF), each edge has a cost per each unit
of flow transported, and the task is to find a maximum flow that has addition-
ally the lowest possible cost. Many efficient and combinatorial approaches exist,
for example, most helpful cycle cancelling [BT89], minimum mean cycle can-
celling [GDL15] or cost scaling [GT90]. See also Shigeno, Iwata, and McCormick
[SIM00].

Perhaps the most general flow problem that still admits a combinatorial al-
gorithm is the generalised minimum-cost maximum flow problem. The setting is
the same as in MCMF, but each edge also may have a positive multiplier called a
gain factor γ(e) associated with it. For each unit of flow that enters edge e, γ(e)
units exit. For a long time, the problem was only solvable by linear programming
methods, or by algorithms that were combinatorial, but not polynomial. It was
not until 2002 that Wayne [Way02] presented a polynomial combinatorial algo-
rithm based on a generalisation of the idea of minimum mean cycle cancelling.
A version of this problem with no costs is admittedly easier, but it still was not
until 1991 that the first combinatorial polynomial algorithm appeared [GPT91],
and the first combinatorial strongly polynomial algorithm was given only recently
[Vég17; OV20].4

We postpone the area-specific related work into the respective relevant chap-
ters and sections, where, after having discussed the needed context, it can be
discussed in a more qualified manner. For example, all the related work for
Frank-Wolfe is discussed in Chapter 3, while the circuit-related work appears in
Chapter 4. Specifically, relevant modifications of MCF and LBF are discussed in
Section 2.1, while Section 2.3 deals with the problem-specific approaches for MCF
and LBF. Now we will only mention two results that bear the most similarity to
our work.

4Slightly inaccurately, an algorithm runs in strongly polynomial time if it runs in time
polynomial only in the number of numbers on the input, regardless of their size. If it is only
polynomial in input’s encoding length in bits, it is called weakly polynomial instead.

7

MCF and LBF
The formulation of MCF that does not have capacity constraints and penalises
exceeding the capacity by a quadratic penalty instead is by no means new. The
same formulations were used in the work of Schneur and Orlin [SO98] and Liu
[Liu19]; the general idea of using a penalty in place of capacity constraints ap-
peared in many other works, some of which are given in Section 2.3. As far as
we know, the work of Liu is the only one besides ours that uses the Frank-Wolfe
algorithm to construct a combinatorial algorithm.

Schneur and Orlin [SO98] use an approach similar to ours. Their algorithm
starts with a multiflow that does not satisfy capacity constraints and iteratively
improves it by changing it along cycles such that the penalty decreases. In each
phase, it has a step size δ, and tries to improve the flow by changing it by δ along
some cycle, until no such cycle exists in any commodity. Then, a next phase
begins with δ := δ/2. This approach is in contrast with that of Helpful-MCF:
while Helpful-MCF finds the most improving combination of cycle and step
size in each step, this method of Schneur and Orlin [SO98] has the step size
fixed and picks any cycle that is improving with respect to the current step size.
Furthermore, the number of cycles found in each phase of their algorithm may be
large – proportional to 1/δ and the sum of demands in the worst case – and the
total time complexity is polynomial in input size, 1/ε and the sum of demands.

Liu [Liu19] also uses an approach that resembles ours. The main difference
is that while our approach finds the combination of the step size and cycle that
decreases the penalty the most, his approach finds any improving cycle and then
finds the best step size for this particular cycle. The author does not analyse
the time complexity of this algorithm; we furthermore suspect that there exists
an instance such that a bad choice of negative cycles may lead to very slow
convergence to an optimum (or even no convergence), in a way similar to how
the Ford-Fulkerson algorithm may not converge on an instance with irrational
capacities. Additionally, the author applies the vanilla Frank-Wolfe algorithm
to MCF in a formulation similar to ours, but again, analysis and important
details are missing and the variant used is known to generally converge slowly.
As a consequence of results presented in Chapter 3, this algorithm is at best
polynomial in 1/ε, the input size and demands, and the linear dependence on
1/ε inherent to this variant of Frank-Wolfe cannot be improved without problem-
specific knowledge.

8

1. Preliminaries
In this chapter, we introduce terminology used throughout the thesis. Some more
problem-related notation is introduced later in Section 2.2, especially in Sec-
tion 2.2.3.

1.1 Linear-Algebraic Minimum, Notation
We write vectors in bold font (e.g., x) and their entries in regular font (e.g.,
x1, x2). The coordinates of a vector may be indexed by any set, for example,
c ∈ RE has an entry ce for each e ∈ E. In all other respects, vector spaces RE

and Rn for n = |E| behave identically. We will sometimes even assume that
E = {1, . . . , n}. Superscript is used for indexing, i.e., we may have a collection
x1, x2, . . . , xK of vectors, then xi

e is the e-th entry of the vector xi. We will also
use the standard notation x ≤ y to signify that xi ≤ yi for all i; similarly for
x = y, x < y, etc.

We will never distinguish between row and column vectors and treat all vectors
as column vectors. The dot product of vectors x and y is denoted by x · y, even
if both vectors are column vectors.

Unless specified otherwise, we assume that matrices are integer. The i-th row
of matrix A ∈ Zm×n is a vector Ai∗ ∈ Zn. Similarly, its j-th column is a vector
A∗j ∈ Zm. Given a set I ⊆ {1, . . . , m} of row indices, AI is the matrix created by
leaving out the rows of A whose indices do not belong to I, and AI is the matrix
created by leaving out the rows of A whose indices do belong to I; similarly for
vectors.

The i-th unit vector of Rn is the vector ei defined as

(ei)j =
{︄

1 if i = j,
0 otherwise.

The identity matrix In ∈ Rn×n is a matrix with Ii∗ = ei.
The kernel of a matrix A ∈ Rm×n is the set ker(A) = {x ∈ Rn | Ax = 0 }
Usually, ∥ · ∥ denotes an arbitrary norm, i.e., any function ∥ · ∥ : Rn → R

satisfying, for all x, y ∈ Rn and α ∈ R:
• ∥x∥ ≥ 0 and ∥x∥ = 0 only for x = 0,
• ∥αx∥ = |α| · ∥x∥,
• ∥x + y∥ ≤ ∥x∥+ ∥y∥.
The last of the three properties is called the triangle inequality. ∥ · ∥1 denotes

the absolute-value norm ∥x∥1 = |x1|+ · · ·+ |xn| and ∥ · ∥2 denotes the standard
Euclidean norm ∥x∥2 =

√︂
x2

1 + · · ·+ x2
n.

A set X ⊆ Rn is convex, if for any x, y ∈ X and α ∈ [0, 1], it holds that
(1−α)x + αy ∈ X, that is, for any two points in X, the line segment connecting
them is also contained in X. A convex hull conv(X) of a set X ⊆ Rn is the
smallest convex set (with respect to inclusion) containing X as a subset. A
function f : Rn → R is convex, if the set { (x, y) ∈ Rn+1 | y ≥ f(x) } is convex.
It is concave if −f is convex.

A half-space is a set {x ∈ Rn | a · x ≤ b } for a ∈ Rn, b ∈ R. A polyhedron is
any set P ⊆ Rn expressible as a finite intersection of half-spaces. A polytope is a

9

bounded polyhedron; equivalently it is a set Q ⊆ Rn expressible as a convex hull
of a finite set of points. Both polyhedra and polytopes are convex.

A face of a polytope P = {x ∈ Rn | Bx ≤ b } is a set of points P ′ = {x ∈
Rn | BIx = bI ∧ BIx ≤ bI } where I ⊆ {1, . . . , m}, i.e., we have changed some
inequalities to equalities. It can be shown that a face is also a polyhedron and
that a face of a face of P is also a face of P . The dimension of a face (and
generally of any set of points) is defined as the dimension of the smallest affine
space containing it. A face of dimension 0 is a vertex, a face of dimension 1 an
edge, and a face of dimension n− 1 a facet.

We use the notation [x]+ to stand for max(0, x). We will also use it vector-
wise, that is, [x]+ := y such that yi = [xi]+ for all i.

We use poly(n) to stand for nO(1); similarly poly(n, m, . . .) = (nm . . .)O(1).

1.2 Flows
Now we turn our attention to basic terminology of flow networks. We loosely
follow the notation of Mareš [Mar17, Chapter 14].

A network is a tuple G = (V, E, c) where (V, E) is a directed graph and
c ∈ RE, c ≥ 0 is the vector of edge capacities. Formally, V is a set of vertices and
E ⊆ { (u, v) | u, v ∈ V ∧ u ̸= v } is a set of edges. We use the notation uv for the
edge (u, v) and say that the edge goes from u to v and that it is adjacent to u
and v.

Given (V, E), a vector f ∈ RE assigning real numbers to edges, and a vertex v,
we define:

f+(v) =
∑︂

uv∈E

fuv, f−(v) =
∑︂

vu∈E

fvu, fδ(v) = f+(v)− f−(v) (1.1)

and call it the inflow, the outflow and the excess flow of v (with respect to f),
respectively.

Given (V, E) and vertices s, t ∈ V (usually called source and sink), an st-flow
is a vector f ∈ RE satisfying

f ≥ 0, (1.2)
∀v ∈ V \ {s, t} : fδ(v) = 0, (1.3)

that is, the flow is non-negative and does not emerge or vanish in any vertex
except for the source and sink. To emphasise the nonnegativity of the flow, we
will sometimes call it a feasible flow (as opposed to a hypothetical infeasible flow,
which satisfies (1.3) but not (1.2)).

An st-flow f is satisfying (with respect to capacities c) if it also satisfies

f ≤ c, i.e., ∀e ∈ E : fe ≤ ce. (1.4)

Constraints (1.2)–(1.4) are also called flow nonnegativity constraints, flow con-
servation constraints and capacity constraints, respectively. Whenever s and t are
clear from the context, we shall use the terms (feasible) flow and satisfying flow.
Note that it makes sense to talk about flows – as opposed to satisfying flows –
even if no capacities are given, and we will sometimes do so.

10

Let us also remark that “flow” is sometimes used for what we call “satisfying
flow”, and “pseudoflow” is used for what we call “(feasible) flow”; the terminology
in the literature is however not consistent.

The value of the flow f is defined as |f | = −fδ(s) and it can be shown that
|f | = −fδ(s) = fδ(t). Informally, |f | measures the amount of goods transported
from the source to the sink.

1.3 Circulations

Definition 1.1 (Circulation). A circulation is a vector ∆ ∈ RE satisfying:

∀v ∈ V : ∆δ(v) = 0,

i.e., for every vertex, the inflow is equal to the outflow. A positive circulation
further satisfies ∆ ≥ 0.

Circulations can be regarded as a “neutral” variant of flows, since they do
not have a source and a sink and satisfy flow conservation everywhere; we also
allow them to be negative. As we will see later, if we write the flow conservation
constraints (also including s and t, with −fδ(s) = fδ(t) = d > 0 for some d) in a
matrix form, Ax = a, then circulations are exactly the elements of ker(A), i.e.,
the solutions to Ax = 0.

Adding a circulation to a flow always results in a flow, unless the result would
be negative on some edge. A circulation ∆ is called feasible with respect to flow
f if f + ∆ is a (feasible) flow, i.e., f + ∆ ≥ 0.

Lemma 1.1. Let f , f1, f2 be st-flows, let ∆, ∆1, ∆2 be circulations and let
α ∈ R. Then

• α ·∆, ∆1 + ∆2 and 0 are circulations;
• α · f , f1 + f2 and 0 are st-flows and |α · f | = α · |f |, |f1 + f2| = |f1|+ |f2|;
• if f + ∆ ≥ 0, then f + ∆ is an st-flow and |f + ∆| = |f |;
• if |f1| = |f2|, then f1 − f2 is a circulation; if further f2 ≤ f1, then it is a

positive circulation.

Proof sketch. By definition of xδ in Equation (1.1), observe that (α · x)δ(v) =
α · xδ(v) and (x + y)δ(v) = xδ(v) + yδ(v). The rest follows from a substitution
into the definition of flows and circulations.

1.4 Linear Programming

Linear programming is such a versatile technique that its study has throughout
the years developed into a field of its own. In this thesis, we use it mostly as a
theoretical and practical tool; see [Sch99] or [GLS12] for an in-depth exposition.

A linear program (LP) is any optimisation problem that can be expressed in
the form:

11

Input: A ∈ RmA×n, a ∈ RmA , B ∈ RmB×n, b ∈ RmB , c ∈ Rn

Maximise: cx for x ∈ Rn

Subject to: Ax = a
Bx ≤ b

Linear Programming (LP)

Given an LP formulated in this way, its feasible region is a polyhedron P = {x ∈
Rn | Ax = a ∧Bx ≤ b }.

An LP can be solved using a number of arithmetic operations which is poly-
nomial in both n, m and the encoding length of A, B, a, b, c using for example the
ellipsoid method [GLS12] or interior-point methods [NN94]. Such a complexity is
known as weakly polynomial, because it depends on the magnitude of the numbers
involved in the input. A strongly polynomial algorithm for LP, i.e., an algorithm
using a number of arithmetic operations depending only on n and m, is currently
unknown. Tardos [Tar86] gave an algorithm which is only weakly polynomial in
the numbers of A, and Megiddo [Meg84] gave a strongly polynomial algorithm
for LP if the dimension is a constant.

In all the linear programs in this thesis, A, B and c will be integer and a and
b will be rational.

Although we will use LP quite sparingly, most of the algorithms presented in
this thesis can also be viewed through the lens of LP (and it is often helpful to do
so): each solution corresponds to a point in the polyhedron and the algorithms
walk through the polyhedron, trying to find the best solution.

1.5 Conformality
The main reference for this section is [Onn10, Subsection 2.3.4].

Definition 1.2 (Sign-compatibility). Vectors x, y ∈ Rn are sign-compatible, if
they belong to the same orthant1 of Rn, that is, xi · yi ≥ 0 for all 1 ≤ i ≤ n.

Definition 1.3 (Conformality, conformal sum). Let ⊑ be a partial ordering on
Rn defined as follows: x ⊑ y if and only if

∀1 ≤ i ≤ n, xi · yi ≥ 0 ∧ |xi| ≤ |yi|.

Informally, x ⊑ y if and only if x would fit in an n-dimensional box with two
opposite corners in 0 and y. We say that x is conformal to y.

A finite sum y = ∑︁
i xi is called a conformal sum or a conformal decomposition

of y if xi ⊑ y for all i.

Fact 1.2. Conformality has the following properties:
a) For nonnegative vectors x, y ≥ 0, saying x ⊑ y is equivalent to x ≤ y. This

is true, e.g., for flows.
b) For all x ∈ Rn, 0 ⊑ x and x ⊑ x.

1Orthant is a generalisation of the terms quadrant (in R2) and octant (in R3) for higher
dimensions.

12

c) If x ⊑ y ⊑ z, then y−x ⊑ z. This can be seen by considering the cases zi ≥ 0
and zi ≤ 0 for each 1 ≤ i ≤ n. Specially, z− y ⊑ z.

d) If ∆2 ⊑∆1 are circulations and f and f + ∆1 are feasible flows, then f + ∆2

is also a feasible flow. If f and f + ∆1 are satisfying flows, then f + ∆2 is also
a satisfying flow.
We will revisit conformality in Chapter 4, where we will see its usefulness in

discrete optimisation, particularly in the context of circuits.

1.6 Walks, Paths, Cycles
Definition 1.4 (Directed path, walk, cycle). A (directed) walk in graph (V, E) is
a sequence w = (v0v1, v1v2, . . . , vℓ−1vℓ) such that v0, . . . , vℓ ∈ V , v0v1, . . . , vℓ−1vℓ ∈
E. Vertices v0 and vℓ are called the start vertex and end vertex of w, and we can
also say that w is a v0vℓ-walk. The length of the walk is then defined as |w| = ℓ.

A (directed) path is a walk p = (v0v1, v1v2, . . . , vℓ−1vℓ) such that all vi are
pairwise distinct (which also implies all edges are pairwise distinct).

A (directed) cycle is a walk C = (v0v1, v1v2, . . . , vℓ−1vℓ) such that |C| ≥ 3 and
all vi are pairwise distinct, with the only exception being that v0 = vℓ.

Remark 1.3. It is a well-known fact that every st-walk can be simplified into an
st-path only by removing a subsequence of its edges. It can be done by iteratively
finding a subsequence of the walk that forms a cycle and removing it until there
are no cycles left.

Although we will exclusively work with directed graphs throughout the thesis,
we will sometimes need to use paths and cycles that “forget” edges’ orientation.
This notion is formalised in the following definition.

Definition 1.5 (Undirected path, walk, cycle). An undirected walk is a sequence
w = (e0, . . . , eℓ−1) such that e0, . . . , eℓ−1 ∈ E and there exist vertices v0, . . . , vℓ

such that either ei = vivi+1 or ei = vi+1vi for 0 ≤ i ≤ ℓ − 1. We may again say
that w is an undirected v0vℓ-walk.

An undirected path is an undirected walk p such that all vi from the definition
are pairwise distinct. Similarly, an undirected cycle is an undirected walk C such
that |C| ≥ 3 and all vi from the definition are pairwise distinct except that
v0 = vℓ.

Whenever we talk about a walk/path/cycle, we implicitly mean a directed
walk/path/cycle, unless specified otherwise. Also note that a walk/path/cycle is
automatically also an undirected walk/path/cycle, but not vice versa.

Without a knowledge of the underlying vertex sequence, the orientation of
an undirected walk may be ambiguous – take for example an undirected path
of length 1; on the other hand, a cycle has multiple representations, differing
by which vertex they start with. For those reasons, we will almost completely
abandon the previous definitions and instead use the following one, which takes
orientation into account.

Definition 1.6 (Incidence vector). Let p = (e0, . . . , eℓ−1) be an undirected path
and v0, . . . , vℓ its underlying vertex sequence. An incidence vector of p is a vec-

13

tor p such that:

pe =

⎧⎪⎪⎨⎪⎪⎩
1 if e = vivi+1 for some i ∈ {0, . . . , ℓ− 1},
−1 if e = vi+1vi for some i ∈ {0, . . . , ℓ− 1},
0 otherwise.

An incidence vector C of an undirected cycle C is defined in the same manner.
From now on, we will simply say that p is an (un)directed path and that C is

an (un)directed cycle, only explicitly falling back to the sequence-based notation
when needed.

Informally, the incidence vector is 0 for edges not on the path (cycle), 1 for
edges that are passed in their “correct” direction, and −1 for edges that are
passed in the opposite direction. Specifically, incidence vectors of directed paths
and cycles are 0 and 1 for all edges.

The notion of incidence vectors can naturally be extended to other objects
besides paths and cycles; for example, in Chapter 5, we talk about an incidence
vector of a disjoint collection of undirected cycles, which is naturally defined as
the sum of the incidence vectors of the individual cycles.

Of course, for some objects there does not exist a meaningful definition –
that is why we did not define the incidence vector for general walks, since we
would have to deal with things like multiple repetitions of the same edge or the
occurrence of both uv and vu in the walk (which cannot happen with paths and
cycles).

1.7 Weighted Paths and Cycles
Definition 1.7. A weighted (st-)path is an (st-)flow f such that f = w · p where
p is an (st-)path and w ∈ R+

0 ; w is then called the weight of the weighted path.
All path-related terms such as length are naturally extended to weighted paths;
for example, |wp| = |p|.

Similarly, a weighted cycle is a circulation ∆ = w · C where w ∈ R+
0 and

C is an incidence vector of an undirected cycle. A positive weighted cycle is
a circulation ∆ = w · C such that w ∈ R+

0 and C is an incidence vector of a
directed cycle; clearly ∆ ≥ 0.

Lemma 1.4 (Cycle decomposition of circulations). Every circulation ∆ can be
expressed as a conformal sum of at most |E| weighted cycles:

∆ =
ℓ∑︂

i=1
αiCi,

where ℓ ≤ |E|, αi > 0 and all Ci are different.

Proof sketch. We prove that z cycles suffice, where z ≤ |E| is the number of
nonzero edges in ∆. We proceed by induction on z. If z = 0, we are done.
Otherwise, one can show that we may always find an undirected cycle C ̸= 0 such
that εC ⊑ ∆ for some small ε > 0. (Key observation: due to flow conservation,
each vertex that has flow coming in also must have flow coming out.)

14

Let α > 0 be the maximum value such that ∆−αC ⊑∆. Set ∆′ := ∆−αC.
Clearly, if ∆e = 0, then also ∆′

e = 0. Due to the choice of α, there exists an
edge e such that ∆e ̸= 0 and ∆′

e = 0. Therefore, we have reduced the number of
nonzero edges at least by one and we may use the inductive hypothesis on ∆′.

Let ∆′ = α1C1 + · · · + αζCζ be the decomposition of ∆′ with ζ < z. The
sought decomposition is ∆ = α1C1 + · · · + αζCζ + αC. Its conformality follows
from Fact 1.2 and the fact that ∆′ ⊑∆ and αC ⊑∆.

See [AMO88, Property 3.6] for a full proof.

The realisation that if we express a positive vector as a conformal sum, all
the summands must also be positive, leads to the following corollary:
Corollary 1.5. Every positive circulation ∆ can be expressed as a conformal sum
of at most |E| positive weighted cycles.
Remark 1.6. As we will see in Chapter 4, if we view the set of all satisfying
flows as a polytope P = { f ∈ RE | Af = d ∧ f ≥ 0 ∧ f ≤ c } where A is the
incidence matrix of the network G and d is the vector of per-vertex demands,
then undirected cycles in G correspond to so-called circuits of A (also discussed
in Chapter 4) and circulations in G correspond to vectors x ∈ RE such that
Ax = 0.

The previous lemma can then be seen as a special case of [Onn10, Lemma 2.17],
which states that each vector x ∈ Rn satisfying Ax = 0 can be expressed as a
conformal sum of at most n circuits of A. (Actually, it guarantees even stronger
properties that we do not need here.)
Lemma 1.7 (Path decomposition of flows). Every st-flow can be expressed as a
conformal sum of at most |E| weighted st-paths and at most |E| positive cycles.

Proof. See [AMO88, Theorem 3.5]. The idea is similar to the proof of Lemma 1.4,
with the difference that we have to substract several weighted st-paths first till
the remaining flow has zero value, turning it into a positive circulation. The rest
of the proof is identical.

Corollary 1.8. For every st-flow f , there exists an st-flow g such that |f | = |g|,
g ⊑ f and g can be expressed as a conformal sum of weighted st-paths.

Proof. Use Lemma 1.7 to express f as a conformal sum f = ∑︁q
i=0 αi·Ci+

∑︁r
i=0 βi·pi

and set g := ∑︁r
i=0 βi · pi. We have

|f | =
⃓⃓⃓⃓
⃓

q∑︂
i=0

αi ·Ci +
r∑︂

i=0
βi · pi

⃓⃓⃓⃓
⃓ =

q∑︂
i=0
|αi ·Ci|+

r∑︂
i=0
|βi · pi| =

q∑︂
i=0

0 +
r∑︂

i=0
βi = |g| .

Remark 1.9. The decomposition of circulations (and flows) into cycles (and paths)
is not unique. Even a simple flow f = 2p consisting of a single weighted path can
be decomposed as f = 2p, f = p + p, f = 1/4 · p + 7/4 · p, . . ., however silly this
example may be.

We will assume that the procedure given in the proofs of Lemma 1.4 and
Lemma 1.7 is deterministic – for a fixed flow, it always gives the same decom-
position. It is also “well-behaved”, in the sense that no cycle or flow is zero or
repeats in the decomposition. We will refer to this particular decomposition as
the canonical decomposition.

15

1.8 Convergence
Lastly, we present two useful technical lemmas which we will later use when
talking about convergence of algorithms.

Lemma 1.10. Let (hn) be a sequence of non-negative numbers such that for some
B > 0,

ht+1 ≤ ht · (1− ht/B).
Then, for all t ≥ 1,

ht ≤
2B

t
.

Proof. This lemma is a special case of Kerdreux, d’Aspremont, and Pokutta
[KdP18, Lemma B.1]. The recurrence there is of the form ht+1 ≤ ht ·max{1/2, 1−
ht/B}, but the proof holds even for our recurrence.

Lemma 1.11. Let (hn) be a sequence of non-negative numbers such that for some
ρ ∈ (0, 1] and α > 0,

ht ≤ h0 · (1− ρ)αt.

Then for any ε > 0, the inequality hQ ≤ ε holds for any Q satisfying

Q ≥ log(h0/ε) · ρ

α
.

Proof. This is a direct consequence of the known inequality (1+1/x)x ≤ e applied
with x = −1/ρ:

hQ ≤ h0 · (1− ρ)αQ ≤ h0 · e(−1/ρ)·αQ ≤ h0 · e(−1/ρ)·α log(h0/ε)· ρ
α

= h0 · e−1·log(h0/ε) = h0 · elog(ε/h0) = h0 · ε/h0 = ε.

16

2. The State of the Art
In this chapter, we review the current state of the art regarding both MCF and
LBF. We start by formally stating both problems in Section 2.1, as well as men-
tioning notable related problems. Then we present two formulations of MCF
and LBF in Section 2.2, namely in the form of linear and convex programs. We
introduce some more notation and terminology in the process. In Section 2.3,
we review problem-specific methods for both problems, namely the traditional
algorithms for MCF, which are generally without polynomial-time guarantees,
and modern FPTASs for both MCF and LBF. We also briefly touch on the Min-
imum Length-Bounded Cut problem. We conclude by mentioning some of
the methods used for solving linear and convex programs, and their application
and (current lack of) interpretation with respect to MCF and LBF.

2.1 Flow Problems
As a warm-up, let us define the Maximum Flow problem on which both of our
problems are based.

A flow network is a tuple G = (G, s, t) where G = (V, E, c) is a network and
s, t ∈ V, s ̸= t.

The Maximum Flow problem is:

Input: A flow network G = (G, s, t).
Find: A satisfying st-flow of maximum value.

Maximum Flow

We also define a similar problem which, for our purposes, acts like a decision
version of the Maximum Flow problem.

Input: A flow network G = (G, s, t), demand d ∈ R+
0 (i.e., d ∈ R, d ≥ 0).

Find: A satisfying st-flow of value d.

Fixed-Demand Flow

It is trivial to see that whenever there exists a satisfying flow f of value d,
there also exists a satisfying flow of value d′ < d: one may simply scale f down
by a correct factor.

Both problems can be generalised by introducing a vector w ∈ RE of costs
per one flow unit transported along each edge. Then the task is not only to find
a maximum or satisfying flow, but to find one that minimises w · f at that:

Input: A flow network G = (G, s, t), weights w ∈ RE.
Find: A satisfying st-flow f that primarily maximises |f | and secondar-

ily minimises w · f .

Minimum-Cost Maximum Flow (MCMF)

17

Input: A flow network G = (G, s, t), demand d ∈ R+
0 , weights w ∈ RE.

Find: A satisfying st-flow f of value d that minimises w · f .

Minimum-Cost Fixed-Demand Flow (MCFDF)

2.1.1 Multicommodity Flow
The Multicommodity Flow problem (MCF) generalises the Maximum Flow
problem by considering multiple commodities, each with its own source and sink,
sharing the underlying network and capacities.

A commodity is defined by a tuple (sk, tk, dk) where sk, tk ∈ V, sk ̸= tk and
dk ∈ R+

0 ; sk, tk and dk are respectively called the source, sink, and demand of
commodity k.

Given a collection of commodities K =
(︂
(sk, tk, dk)

)︂
K
k=1, a multiflow is a col-

lection f of flows f1, . . . , fK such that fk is an sktk-flow and |fk| = dk.1 For each
edge e ∈ E, we define the total flow along it as:

fΣ(e) =
K∑︂

k=1
fk

e . (2.1)

The notation fe ∈ RK denotes the collection of K flows on edge e, while the
notation fΣ ∈ RE naturally denotes the collection of fΣ(e) for all e ∈ E.

A multiflow f is satisfying if:

∀e ∈ E : fΣ(e) ≤ ce,

or equivalently,

fΣ ≤ c.

A multiflow network is a pair G = (G,K) where G = (V, E, c) is a network
and K =

(︂
(sk, tk, dk)

)︂
K
k=1 is a collection of commodities. We will also sometimes

use the notation d ∈ RK , d = (d1, . . . , dK) for the vector of demands.
Again, we may state the Multicommodity Flow problem:

Input: A multiflow network G = (G,K)
Find: A satisfying multiflow.

Multicommodity Flow (MCF)

Remark 2.1. MCF has many variants, some of which are often referred to as “the
multicommodity flow problem” in the literature. To avoid confusion, let us briefly
describe some of them and point out their differences from our definition.

• Undirected MCF. In this variant, the underlying graph is undirected. The
flow can travel in both directions along each edge, and the capacity con-
straints restrict the total flow in both directions combined. Note that this

1Notice the subtle difference from single-commodity flow: since we will be only considering
the setting with fixed demands, we have incorporated the demands into the definition of the
multiflow.

18

is different from having two directed edges for each undirected edge, since
in the latter case the two collections of flows on the opposite edges are un-
related. It is unclear whether there exists a meaningful reduction between
directed and undirected MCF. For example, undirected 2-commodity MCF
seems to have fundamentally different structure than directed 2-commodity
MCF [Ita78].

• Integer MCF. It is a well known property of the Maximum Flow that
if all the capacities are integer, there exists an optimal flow that is also
integer. Surprisingly, this does not hold for MCF with integer demands,
even in the case of two commodities and unit capacities [Ita78]. In fact, the
problem of finding a 0-1 multiflow in a two-commodity network with unit
capacities is NP-hard [EIS76], as is, by extension, the general integer MCF
problem. On the other hand, MCF is in P , since it may be formulated
as a linear program with polynomially many variables and constraints (see
Section 2.2.1).

• Weighted MCF. While we have formulated MCF as a decision problem, there
are also many optimisation formulations. In weighted MCF, each combina-
tion of an edge and commodity has an associated weight wk

e ∈ R and the
goal is to find a satisfying multiflow minimising ∑︁e∈E

∑︁
k∈K wk

e · fk
e . Some

of the methods presented in later chapters may be adapted for this variant.
See [AMO88] for the full formulation and an overview of approaches.

• Concurrent flow. In this variant, we want to maximise the scaling factor
ρ such that if we scale all demands by ρ, the resulting multiflow network
still admits a satisfying flow. See [Mąd10, Section 1.1] for a short survey of
known results.

• Other generalisations. In the most general setting, there are no demands
and the optimisation criterion is a function of the current multiflow, e.g.,
a weighted sum of |fk|, a quadratic function penalising “nearly saturated”
edges etc. The hardness of these variants obviously depends on the choice
of the criterion. Some versions are even more general and allow, e.g., to
specify additional per-commodity restrictions. For a more detailed overview
and a list of hard instances, see [Ope13].

Remark 2.2. The definitions and lemmas we gave in Chapter 1 easily generalise
to multicommodity flows. For example, a multicirculation ∆ is a collection of
circulations ∆1, . . . , ∆K . A (multicommodity) weighted sktk-path is defined as
a multiflow f such that fk = wp is a (single-commodity) weighted sktk-path and
f j = 0 for j ̸= k. Similarly, a (multicommodity) weighted cycle is defined as
a multicirculation ∆ such that ∆k is a (single-commodity) weighted cycle and
∆j = 0 for j ̸= k.

Multicommodity analogues of Lemma 1.4 and Lemma 1.7 hold: a multicir-
culation ∆ is a conformal sum of at most |E| · K weighted cycles, at most |E|
per each commodity, and a multiflow f is a conformal sum of at most |E| · K
weighted sktk-paths and |E| · K weighted cycles, again at most |E| of both per
each commodity.

19

2.1.2 Length-Bounded Flow
Other generalisation of the Maximum Flow problem we are interested in is the
Length-Bounded Flow problem (LBF). We already know from Section 1.7
that every st-flow can be decomposed into st-paths.2 In LBF, the goal is to find
a satisfying flow of a given value that can be decomposed into paths of length at
most K for some K ∈ N.

A K-flow network is a tuple G = (G, s, t, K) where G = (V, E, c) is a network,
s, t ∈ V and K ∈ N. A K-bounded st-path is an st-path of length at most K. A
K-bounded st-flow (or just K-flow) is an st-flow f such that there exist positive
real weights w1, . . . , wℓ > 0 and K-bounded st-paths p1, . . . , pℓ satisfying:

ℓ∑︂
i=1

wipi = f .

The Length-Bounded Flow problem may be stated as follows:

Input: A K-flow network G = (G, s, t, K), demand d ∈ R+
0 .

Find: A satisfying K-bounded st-flow of value d.

Length-Bounded Flow (LBF)

Remark 2.3. As with MCF, there are many notable variants of LBF and other
related problems:

• Maximum length-bounded flow. Instead of finding a K-flow of value d, find
a K-flow of maximum value. This is actually the standard formulation of
LBF. We decided to formulate LBF as a decision problem instead, mainly
for the sake of simplicity and consistency with MCF. As in the case of
weighted MCF, many of the algorithms presented here can be adapted to
maximum LBF. Note that one can always solve maximum LBF using LBF
and binary searching for the maximum value of d for which there still exists
a satisfying flow. This introduces a O(log(d/ε)) slowdown, where ε is the
needed accuracy.

• General edge lengths. One can assign a length ℓ(e) ≥ 0 to each edge and
define the length of a path as the sum of the lengths of edges on the path.
Our definition can then be seen as a special case with ℓ(e) = 1 for all
edges. It turns out that LBF with this generalised notion of path length is
NP-hard even for unit capacities [Bai+10].

• Integrality. Similarly to integer MCF, LBF with integer demands does not
necessarily have an integer solution, even in the case of unit capacities.
In fact, the problem of finding a 0-1 K-bounded flow of given value in a
network with unit capacities is equivalent to the K-bounded edge-disjoint
path problem [Vob16], which is NP-hard [IPS82a].

2More precisely, into st-paths and positive cycles, but the cycles can be omitted while pre-
serving flow value and satisfaction.

20

• Length-bounded cut. Similarly to the relation between the Maximum Flow
and Minimum Cut problem, the Length-Bounded Flow has a corre-
sponding Minimum Length-Bounded Cut problem. The objective there
is to find the set of edges with the smallest possible sum of capacities such
that after their removal, the graph no longer contains an st-path of length
≤ K. Variations exist; the goal may be to remove vertices instead of edges
and the size of the cut may be defined as the number of vertices in the
cut. Minimum Length-Bounded Cut has been studied more than LBF
and several hardness results, approximation algorithms, and parameterised
results (both positive and negative) are known [DK18; CK20]. We will talk
about Minimum Length-Bounded Cut more in Section 2.3.3.

2.2 Formulations
In this section, we present two common formulations of MCF and LBF. First we
formulate both problems as linear programs which we then transform into con-
vex programs by relaxing some constraints and bringing them into the objective
function. The second approach may seem unnecessarily complicated, given that
linear programming is generally easier then convex programming, but it allows
us to approach the problems from a different perspective.

2.2.1 Linear Programming
MCF

Formulating MCF as a linear program is straightforward:
find f ∈ RE×K

subject to fk
δ (v) =

⎧⎪⎪⎨⎪⎪⎩
−dk if v = sk,
dk if v = tk,
0 otherwise.

∀k = 1, . . . , K ∀v ∈ V

fΣ ≤ c
f ≥ 0

(MCF-LP)

(Of course, we must replace fk
δ and fΣ with their respective definitions from

Equations (1.1) and (2.1). Both of them expand to sums of some entries of f and
the formulation is therefore indeed an LP formulation.) The equalities correspond
to the flow conservation constraints for each commodity, while the inequalities
are just the capacity and nonnegativity constraints for multicommodity flows.

It immediately follows that MCF is in P , since the LP size is polynomial in
the problem size and since linear programs can be solved in weakly polynomial
time. What is more, the constraint matrix of MCF has small coefficients, which
means that MCF is solvable in strongly polynomial time using Tardos’ algorithm.
The same is true for LBF, as we will shortly see.

LBF

When formulating LBF, it is common not to work directly with the original graph,
but to apply the following transformation first [KS06, Claim 1].

21

For a network G = (V, E, c) and K ∈ N, define a layered network GK as
follows. We take the set of vertices V and make K +1 distinct copies V 0, . . . , V K .
Let vk denote the copy of v in V k. We then define GK = (VK , EK , c) where:

VK = V 0 ∪ · · · ∪ V K ,

EK = {ukvk+1 | k ∈ {0, . . . , K − 1}, uv ∈ E }
∪ { vkvk+1 | k ∈ {0, . . . , K − 1}, v ∈ V }.

For e = uv ∈ E, let ek denote the edge ukvk+1. The edges of type vkvk+1 are
called loop edges.

(Note that we have not yet specified how the capacities c ∈ RE relate to flows
f ∈ REK in the layered network, so although it makes sense to talk about flows,
it does not yet make sense to talk about satisfying flows.)

Due to practical reasons, we shall abuse the notation and denote the flow on
edge ek as fk

e instead of fek . This notation is also more consistent with MCF.
The idea is that each K-bounded st-path in G can be represented as an s0tK-

path in GK and each s0tK-path in GK conversely represents a st-walk in G.
Using the fact that flows can be decomposed into paths, it can be concluded that
s0tK-flows correspond to K-bounded st-flows and vice versa. In order to state
this formally, we need a few definitions first.

Definition 2.1 (Flattening, expansion). Given a network G and the correspond-
ing layered network GK , let flattening be a mapping πK from s0tK-paths in GK to
K-bounded st-paths in G, where we define πK(pK) as follows (using the definition
of paths as sequences of edges):

First, we remove all loop edges from pK and replace each edge ek ∈ EK by
a corresponding edge e ∈ E. This gives us a walk w in G of length ≤ K. We
then simplify w into a path p by iteratively removing cycles until none are left
(using Remark 1.3) and set πK(pK) := p. It can be verified that p is a K-bounded
st-path because w is a K-bounded st-walk and the loop removal procedure does
neither increase the length of the path nor change its endpoints.

Let expansion be a mapping π−1
K from K-bounded st-paths in G to s0tK-paths

in GK defined as follows: for a path p = (e0, . . . , eℓ−1), ℓ ≤ K,

π−1
K (p) = (e0

0, . . . , eℓ−1
ℓ−1, tℓtℓ+1, . . . , tK−1tK).3

Note that πK(π−1
K (p)) = p, but generally π−1

K (πK(pK)) ̸= pK .

Definition 2.2 (Flattening for flows). We will extend the definition of πK and
π−1

K for weighted paths and flows: Given a K-bounded weighted st-path wp in
G, we define πK(wp) = wpK where pK ∈ REK is the incidence vector of πK(p).
Similarly, given wqK in GK , define π−1

K (wqK) = wq where q is the incidence
vector of π−1

K (q).
For a flow fK in GK , define πK(fK) = ∑︁r

i=0 πK(βipi) where fK = ∑︁q
i=0 αiCi +∑︁r

i=0 βipi is the canonical decomposition (in the sense of Remark 1.9) of fK into
weighted cycles and paths.

3This is why we introduced loop edges in the definition above, since without them, we would
be only able to represent st-paths of length exactly K.

22

Similarly, for a K-bounded st-flow g in G, define π−1
K (g) = ∑︁r′

i=0 π−1
K (β′

ip′
i)

where g = ∑︁q′

i=0 α′
iC′

i+
∑︁r′

i=0 β′
ip′

i is the canonical decomposition of g into weighted
cycles and paths.

Notice that |fK | = |πK(fK)| and |g| = |π−1
K (g)|.

What about edge capacities and satisfaction? Observe that for a flow f in G
and its expansion g = π−1

K (f) in G, it holds that fe = ∑︁K−1
k=0 gk

e for every edge
e ∈ E, since every weighted path in the decomposition of f that contributes to fe

gets mapped to a weighted path of same weight that contributes to gk
e for exactly

one k. This motivates the following definition:

Definition 2.3 (Total flow, satisfying flow). Let f be a flow in GK = (VK , EK),
which is a layered representation of G = (V, E, c). We define the total flow along
edge e ∈ E as:

fΣ(e) =
K−1∑︂
k=0

fk
e . (2.2)

We say that f is satisfying with respect to c if:

fΣ ≤ c.

(This is a slight abuse of notation, since we already use the same symbol with
MCF. However, the intended meaning is always clear from the context and both
of these definitions express a similar concept.)

The previous observations can be summed up in the following lemma:

Lemma 2.4. A K-bounded flow f in G is satisfying with respect to c if and only if
the corresponding flow π−1

K (f) in GK is satisfying with respect to c. Furthermore,
|f | = |π−1

K (f)|.
Consequently, there exists a K-bounded satisfying flow of value d in G if and

only if there exists a satisfying flow of value d in GK, and given one of those
flows, we may construct the other one in a straightforward manner.

Proof. The first part follows directly from the definitions. For the second part,
we prove both implications. Given a satisfying flow f in G of value d, we already
know that π−1

K (f) is a satisfying flow in GK and that it has value d. On the
other hand, if we have a satisfying fK in GK of value d, we may observe that
gK := π−1

K (πK(fK)) is also satisfying and of value d, since gΣ
K ≤ fΣ

K . This can be
seen by decomposing fK into weighted paths and observing what π−1

K ◦ πK does
to each path. Now we may apply the first part of the lemma on πK(fK), which
says that πK(fK) is satisfying and of value d if and only if π−1

K (πK(fK)) = gK is,
but we have just shown that it is.

We may now finally formulate LBF as a linear program:

find f ∈ REK

subject to fδ(v) =

⎧⎪⎪⎨⎪⎪⎩
−d if vk = s0,
d if vk = tK ,
0 otherwise.

∀vk ∈ VK

fΣ ≤ c
f ≥ 0

(LBF-LP)

23

(Again, we have to replace fk
δ and fΣ with their respective definitions, this

time from Equations (1.1) and (2.2). These definitions are again just sums of
entries of f and the formulation is therefore an LP formulation.)

2.2.2 Penalty Function

Constraint relaxation is a general approach in constrained optimisation. The
idea is that some constraints are in some sense more difficult to satisfy than
others, so we remove them and bring them to the objective function instead.
One of common techniques used in linear programming is Lagrangian relaxation
[AMO88, Chapter 16]. We will use a slightly different approach by introducing
a penalty function. See e.g. [BV04, Section 6.2] for more insight and related
techniques.

In MCF and LBF, we consider the capacity constraints to be the “difficult”
constraints, and the non-negativity and flow conservation constraints to be the
easy ones. The intuition is that without capacity constraints, we are basically left
with several smaller independent and unbounded Fixed-Demand Flow prob-
lems (in the case of MCF), or even just one larger unbounded Fixed-Demand
Flow problem (in the case of LBF). In both cases, the structure of the remaining
problems is much simpler (e.g., the constraint matrix is totally unimodular) and
well studied.

To turn the capacity constrains into a penalty function, we consider the fol-
lowing function for both problems:4

φ(f) :=
∑︂
e∈E

φe(f), where φe(f) := max{fΣ(e)− ce, 0}2 =
[︂
fΣ(e)− ce

]︂2
+

.

In other words, edges that do not exceed capacity do not contribute to the penalty,
and the remaining edges contribute the square of their capacity violation. Triv-
ially, satisfying flows (which we want to find in both MCF and LBF), are exactly
the flows whose penalty is 0.

It can be seen that φ is a sum of several convex functions and is therefore also
convex. We prove this more rigorously in Section 3.7.2.

Relaxing the capacity constraints in (MCF-LP) and (LBF-LP) using this
penalty function then yields the following two convex programs:

minimise φ(f) =
∑︂
e∈E

[︂
fΣ(e)− ce

]︂2
+

for f ∈ RE×K

subject to fk
δ (v) =

⎧⎪⎪⎨⎪⎪⎩
−dk if v = sk,
dk if v = tk,
0 otherwise.

∀k = 1, . . . , K ∀v ∈ V

f ≥ 0

(MCF-P)

4As we have already mentioned, the meaning of fΣ depends on the problem.

24

and:
minimise φ(f) =

∑︂
e∈E

[︂
fΣ(e)− ce

]︂2
+

for f ∈ REK

subject to fδ(v) =

⎧⎪⎪⎨⎪⎪⎩
−d if vk = s0,
d if vk = tK ,
0 otherwise.

∀vk ∈ VK

f ≥ 0

(LBF-P)

As mentioned previously, the constraints of (MCF-P) and (LBF-P) are ar-
guably simpler than those of (MCF-LP) and (LBF-LP). Namely:

• (MCF-P) can be decomposed into K unbounded Fixed-Demand Flow
problems in G. These subproblems are unrelated, and only interact in the
penalty.

• (LBF-P) is a single unbounded Fixed-Demand Flow problem in the
layered network GK .

We will show how some approaches exploit this structure in later chapters.

2.2.3 Notation and Terminology
Since we will be mostly using the relaxed formulations (MCF-P) and (LBF-P)
throughout the majority of this thesis, it is useful to introduce some general
notation and terminology. In the following, f is always a (multi)flow, ∆ a feasible
(multi)circulation (with respect to f) and ∆∗ a feasible (multi)circulation such
that f + ∆∗ is optimal. The notation is identical for MCF and LBF.

The optimality gap is defined as GAP(f) = φ(f)−φ(f + ∆∗), i.e., it measures
by how much the current penalty is greater than the optimal one. Penalty im-
provement with respect to f is defined as IMPf (∆) = φ(f) − φ(f + ∆). Clearly
GAP(f) = IMPf (∆∗). GAP is convex (since it is just φ shifted by a constant)
and IMPf is concave for a fixed f (since then it is a difference of a constant and
of a convex function).

A feasible circulation ∆ is improving (with respect to f) if IMPf (∆) > 0,
i.e., if and only if adding ∆ to f improves the penalty. A (possibly infeasible)
circulation ∆ is an improving direction if there exists some ε > 0 such that ε∆ is
feasible and improving. The properties of φ (namely convexity) guarantee that
whenever ε∆ for ε > 0 is improving, then ε′∆ for ε > ε′ > 0 is also improving.

One-dimensional penalty (1D penalty) with respect to f and a feasible ∆
is a function hf ,∆ : [0, 1] → R defined as hf ,∆(γ) := −IMPf (γ∆) = φ(f +
γ∆) − φ(f). It will be useful in contexts where we are figuratively standing at
point f knowing that ∆ is an improving direction and are interested in how adding
different quantities of ∆ changes the penalty. We will talk about hf ,∆ later, now
it suffices to say that it is convex and continuously differentiable (because φ is),
hf ,∆(0) = 0 and that its first derivative is nondecreasing. It follows from our
discussion of improving directions that ∆ is improving if and only if there exists
ε > 0 such that hf ,∆(ε) < 0. Applying the convexity of hf ,∆, its relation to h′

f ,∆
and the fact that hf ,∆(0) = 0 gives us the following characterisation.

Lemma 2.5. Let f be a flow and ∆ a circulation. Then ∆ is an improving
direction if and only if h′

f ,∆(0) < 0.

25

We will also use some of this notation even for penalties different from φ
and problems other than MCF and LBF, especially GAP(x) (which denotes the
difference between the current penalty and the optimal one) and IMPx(y) (which
denotes the difference between the penalty at x and the penalty at x + y).

2.3 Prior Work
Both MCF and LBF have been widely studied and many algorithms have been
developed for them. For example, LBF has been long thought solvable by an
algorithm proposed by Koubek and Říha [KŘ81], but Altmanová [Alt18] has
recently shown that this algorithm is fundamentally flawed and most likely not
easily fixable. The earliest algorithms for MCF date back to 1950s [FF58]. In
recent years, many FPTASs for MCF have been proposed [SM90; Fle99; GK07;
Mąd10] (see [Mąd10] for more references). The FPTAS of Garg and Könemann
[GK07] has been adapted for LBF by Voborník [Vob16].

In this section, we briefly describe some of the more traditional methods of
solving MCF. We then turn our attention towards modern FPTASs for MCF and
LBF. After that, we talk about the Minimum Length-Bounded Cut problem
and its relationship to LBF. Lastly, we briefly examine some of the methods
used for solving linear and convex programs, and their application and possible
combinatorial interpretation with respect to MCF and LBF. This section is meant
as a general overview; the reader is advised to see the original articles for a more
in-depth description.

2.3.1 Traditional Algorithms for MCF
The main reference for this section is [AMO88, Chapter 17], see also the surveys by
Assad [Ass78] and Kennington [Ken78]. Let us emphasise that to our knowledge,
none of the presented algorithms have been shown to run in polynomial time
[AMO88, Section 17.9], although some of them may run in polynomial time if the
capacities are polynomial in input size and/or the required approximation error
(if applicable for the algorithm) is constant.

Traditional approaches for MCF usually fall into one of three categories: price-
directive decomposition [CST70; CD74], resource-directive decomposition [GG74]
and basis partitioning [GM76].

Price-directive methods relax the capacity constraints and bring them to the
objective function, so that the problem decomposes into several single-commodity
Minimum-Cost Fixed-Demand Flow problems. We can view this as “charg-
ing” the commodities for using the shared capacity of each edge. There are
several methods for finding the appropriate prices, e.g. Lagrangian relaxation
[AMO88, Chapter 11] or Dantzig-Wolfe decomposition [DW60]. While both can
be viewed as general-purpose approaches for decomposing problems consisting of
“easy” and “hard” constraints, the latter is more special in that it is applicable
for linear programs with a special block structure.

Resource-directive methods use a different approach: instead of allowing each
commodity to independently use as much capacity as it needs but “discouraging”
congestion using costs, each commodity is instead allocated a portion of each
edges’ capacity, which it can use as it pleases, but which it cannot exceed. The

26

method then consists of alternating between solving independent (unweighted)
single commodity flow problems and using their solution to reallocate the capac-
ities between commodities.

Basis partitioning methods are inspired by the simplex method and the net-
work simplex. They maintain a linear programming basis that is composed of
bases of the individual single commodity flow problems, as well as additional
edges.

Notable is also a scaling algorithm developed by Schneur [Sch91, Section
3.3][SO98], which we have already mentioned in the introduction. It works with
the (MCF-P) formulation, i.e., it has no capacity constraints and a quadratic
penalty function. Initially it finds any multiflow satisfying demands. Then it per-
forms a series of scaling steps: it picks δ and repeatedly tries to find a weighted
cycle of weight δ that, if added to the flow in some commodity, decreases the
penalty. When such a cycle no longer exists, the procedure is repeated with
δ/2, δ/4, . . ., until it is guaranteed that the optimality gap is below some ε > 0.
The running time is polynomial in the input size, 1/ε and the sum of demands,
which means that this algorithm is an FPTAS if the capacities are polynomially
bounded.

2.3.2 Modern FPTASs
Starting from 1990s, numerous FPTASs for MCF and the related concurrent flow
problem have been proposed. We briefly review some of them, see [Mąd10] for
a more comprehensive view. In practice, these FPTASs may be preferred to LP,
since solving LP might generally be slower and one is often only interested in an
approximate solution.

Many of the earlier FPTASs [Kle+94; Lei+95; Gol92] are based on Lagrangian
relaxation. They find an initial feasible but unsatisfying flow and redistribute it
with the help of a penalty function. Young [You95] deviated from this pattern
and presented an oblivious rounding algorithm for the concurrent flow problem
that does not reroute the flow and builds it from scratch instead. It uses an
exponential edge length function that models the congestion of edges. At each
step, it augments the flow along the shortest (i.e., relatively uncongested) path,
and updates the length function. At the end, the final solution is obtained by
scaling the flow down to honour capacities.

A similar approach was taken by Garg and Könemann [GK07], who also devel-
oped a general framework for solving multicommodity flow problems. Fleischer
[Fle99] subsequently used this framework to develop faster algorithms for various
multicommodity flow problems. Recently, Mądry [Mąd10] proposed an approach
that builds upon the previous two results and additionally uses dynamic graph
algorithms and data structures along with randomisation to obtain faster run-
ning times. In the case of MCF, it runs in time ˜︁O(ε−2 · |V | · |E|), where ˜︁O(·) is
a variation of the O-notation that hides polylogarithmic factors.5

For LBF, the list of known results is – at least to our knowledge – much
shorter, probably because MCF has been more widely studied. Apart from the
flawed algorithm of Koubek and Říha [KŘ81], an FPTAS for LBF, even for the

5Formally, g(n) is ˜︁O(f(n)) if and only if it is O(f(n) · logk f(n)) for some constant k.

27

case with general edge lengths, was given by Baier [Bai04]. However, it relies
on linear programming. Baier also mentioned, without going into detail, the
possibility of adapting the exponential length function approach of Garg and
Könemann and Fleischer for LBF. Such an adaptation was recently given by
Voborník [Vob16]; its running time is O(ε−2 · |E|2 ·K log K), which makes it an
FPTAS.

2.3.3 Minimum Length-Bounded Cut
As already mentioned in Section 2.1.2, the Minimum Length-Bounded Cut
problem (LBC) is in some sense a dual problem to LBF. Specifically, the LP
relaxation of its integer linear program formulation is dual to an LP formulation
of LBF [AKV20].6 However, this is where the analogy with Maximum Flow
and Minimum Cut ends: for example, it is not the case that the value of the
minimum K-bounded cut must always equal the size of the maximum K-bounded
flow [AK71]; Baier et al. [Bai+10] have shown that there exist infinitely many
instances where the ratio between the two values is O(|V |2/3), and at the same
time, that this is the worst possible ratio. LBC is also much harder than LBF: it
is solvable in polynomial time for K ≤ 3 (K ≤ 4 in the vertex-cut version), but
NP-hard for K ≥ 4 (K ≥ 5) [CK20]; see Itai, Perl, and Shiloach [IPS82b] for
both the polynomial algorithm and NP-hardness result for edge-cut LBC.

LBC is fixed parameter tractable (FPT)7 when parametrised by K and the
tree-width of the input graph, it is also FPT when parametrised by the tree-
depth of the graph; see Dvořák and Knop [DK18]. Also look there for additional
hardness results.

LBC also admits an approximation algorithm; the best result known to us
is an (0.44K + O(1))-approximation for the general case. At the same time, it
is known that finding a 1.1715-approximation is NP-hard; see Chlamtáč and
Kolman [CK20] for both results and a more detailed overview.

2.3.4 General Methods
Probably the most straightforward way of tackling MCF and LBF is to formulate
them as linear or convex programs, for example using the formulations (MCF-LP),
(LBF-LP), (MCF-P), (LBF-P) we have given in Section 2.2, and then using gen-
eral methods for solving linear and convex programs on these formulations. The
obvious upside is that any advances in these general methods automatically lead
to better algorithms for our problems, not to mention the relative simplicity of
this approach if we view the methods as black boxes. Furthermore, this approach
is so far the only one that is known to produce both exact and polynomial-time
algorithms.

6Namely, to a so-called path formulation, which is different from (LBF-LP) and generally
can have a superpolynomial number of variables – one per each K-bounded st-path. The LP
sums them up to both calculate the total flow and to constrain the amount of flow through
each edge.

7FPT is, informally, a class of problems for which there exists an algorithm running in time
nO(1) ·f(k) where n is the input size, f is a computable function and k is a parameter depending
on the input.

28

A great downside is that using those techniques as black boxes usually does
not provide much insight into the problem structure, nor allows us to utilise this
structure to speed up the algorithms. To the best of our knowldge, the combi-
natorial interpretation of these algorithms is unclear, with the notable exception
of the Frank-Wolfe algorithm. We have already spoken at great lengths about
the importance of combinatorial algorithms in the introduction and all the points
apply here as well. For these reasons, we are mentioning these methods only in
passing.

For LPs, one standard approach is to use the simplex method. It is fast in
practice, but many of its pivoting rules have exponential-time counterexamples
and the existence of a polynomial-time pivoting rule is an open question. Another
possibility is to use the ellipsoid method, which is provably (weakly) polynomial
(first such algorithm was given by Khachiyan [Kha80]), or some of the interior-
point methods which are also (weakly) polynomial (with the first such algorithm
given by Karmarkar [Kar84]); for both approaches, many improvements have
been made in the recent years. See [Sch99] or [GLS12] for an in-depth exposition
to all three approaches and to LP in general.

For convex programs, one may also use interior-point methods, it is known
that many polynomial algorithms exist [NN94]. Another approach is the Frank-
Wolfe algorithm, which will be the subject of the next chapter. Of course, linear
and convex optimisation are vast fields and there are many more approaches, but
they are out of the scope of this thesis. The reader is advised to refer to [BV04]
or the aforementioned books.

29

30

3. Frank-Wolfe
The Frank-Wolfe algorithm (FW, also known as conditional gradient) is a general
method for smooth convex optimisation. Discovered in the 1950s [FW+56], it has
recently regained popularity, especially in sparse optimisation and machine learn-
ing. Although the vanilla FW algorithm generally converges in time proportional
to 1/ε, where ε is the approximation error, multiple fast-converging variants have
been proposed in the recent years [Wol70; LJ15; BPZ19].

FW solves a general convex optimisation problem of the form

arg min
x∈P

f(x), (3.1)

where P ⊆ Rn is a compact and convex feasible region and f : P → R is convex
and differentiable. We will denote the gradient of f at point x as ∇f(x); the dif-
ferentiability of f guarantees that ∇f(x) exists for all x ∈ P . The algorithm only
needs to access P and f using an LP oracle and a first-order oracle, respectively:

Input: c ∈ Rn

Output: x ∈ P maximising c · x

LP Oracle

Input: x ∈ Rn

Output: ∇f(x) and f(x)

First-Order Oracle

Before reviewing notable variants of FW, we will need a few definitions to be
able to compare their performance and assumptions on P and f . We will also
informally describe the general idea behind FW-based algorithms.

For simplicity’s sake, from now on we assume that P is a bounded convex
polytope. Throughout this chapter, x∗ always denotes some fixed optimal solution
to (3.1). Recall the definition of the optimality gap: GAP(x) = f(x)−f(x∗) ≥ 0.

The chapter is organised as follows: in Section 3.1, we (re)define the needed
mathematical terminology. The general outline of FW-based algorithms is given
in Section 3.2 and the most common variants are discussed in Section 3.3. We
then describe two of them, Pairwise FW and Away-Steps FW, in more detail
in Section 3.4. We briefly sketch the known result about the convergence of
Away-Steps FW in Section 3.5. Our original contribution begins in Section 3.6,
where we describe our interpretation of Pairwise FW and Away-Steps FW
on MCF, and later, LBF. This is followed by Section 3.7 where we use the general
machinery from Section 3.5 to prove concrete bounds on convergence of Away-
Steps FW applied to MCF and LBF. We conclude this chapter with Section 3.8
where we prove the main technical theorem from Section 3.5.

3.1 Strong Convexity and Smoothness
We start by formulating the terms we have already used in the description of FW
above, and some more that will be useful in the subsequent convergence analysis.

31

Definition 3.1 (Differentiability, gradient). Given P ⊆ Rn and f : P → R, we
say that f is differentiable if, for every x0 ∈ P , f can be locally approximated by
some affine mapping Lx0 : Rn → R, formally,

lim
∥x−x0∥→0

f(x)− Lx0(x)
∥x− x0∥

= 0.

Another interpretation is that Lx0 determines a hyperplane tangent to f at x0.
For a differentiable f : P → R and a fixed x0 ∈ P , we define ∇f(x0) ∈ Rn as

a row vector whose i-th element is the partial derivative of f at x0 with respect to
the i-th coordinate. Then, notation-wise, ∇f(x0) · y is a dot product of ∇f(x0)
and y. It can be shown that if f is differentiable, then the affine mapping locally
approximating f at x0 is uniquely defined as Lx0(x) = f(x0) +∇f(x0) · (x−x0).

Definition 3.2 (Convexity, strong convexity). A differentiable function f : P →
R is convex, if:

∀x, y ∈ P : f(y)− f(x) ≥ ∇f(x)(y− x).

Furthermore, f is µ-strongly convex for µ > 0, if:

∀x, y ∈ P : f(y)− f(x) ≥ ∇f(x)(y− x) + µ

2 · ∥x− y∥2
2.

Clearly, µ-strong convexity implies regular convexity.

Definition 3.3 (Smoothness). A convex function f : P → R is L-smooth for
L > 0, if:

∀x, y ∈ P : f(y)− f(x) ≤ ∇f(x)(y− x) + L

2 · ∥x− y∥2
2.

One can get an intuitive understanding of convexity by moving f(x) to the
right-hand side:

∀x, y ∈ P : f(y) ≥ f(x) +∇f(x)(y− x),

This equation says that if we fix any x ∈ P , the tangent hyperplane Lx(y) =
f(x) +∇f(x) · (y− x) bounds f from below. A µ-strong convex function has an
even stronger property: it is not only fully above any tangent hyperplane, it is
above any “tangent µ-parabola”, where µ controls how steep this parabola is.1

On the other hand, an L-smooth function lies fully below any “tangent L-
parabola”. Therefore, if a function is both µ-strongly convex and L-smooth,
necessarily µ ≤ L. Functions that are strongly convex and smooth are important
when it comes to desiging faster FW algorithms, since informally, they do not
contain “too flat plateaus” (due to strong convexity) or “too sharp bumps” (due
to smoothness).

1It may be not immediately clear that the right-hand side indeed is an (n-dimensional)
parabola and not for example some “skewed” parabola-like shape. Nevertheless, one can verify
that for a fixed x, it can be written as c · y + µ/2 ·

(︁∑︁n
i=1 y2

i

)︁
+ C for some c and C.

32

3.2 Algorithm Sketch
The most basic variants of the Frank-Wolfe algorithm work roughly as follows:
in each iteration, we take the current solution xi and try to improve f(xi) as
much as we can based on the information locally available at xi. To that end, we
approximate f by its tangent hyperplane Lxi(x) = f(xi) +∇f(xi)(x − xi) and
then find its minimum over P :

y = arg min
x∈P

Lxi(x) = arg min
x∈P

∇f(xi) · x.

This can be done using one call to First-Order Oracle (to obtain the vec-
tor ∇f(xi)) and one call to LP Oracle with c = ∇f(xi). Then we jump
from xi in the direction of y. Ideally, f(y) would be the minimum, but we
have to remember that y only solves a linear approximation, and not the orig-
inal problem. Therefore we do a line search to pick the best point on the line
segment conv(xi, y): we set d = y − xi and then pick γ ∈ [0, 1] such that
xi+1 := xi + γd = (1− γ)xi + γy has the smallest possible value of f . There are
multiple methods of picking γ: ideally the function hxi,d : [0, 1]→ R defined as

hxi,d(γ) = f(xi + γd)

is simple enough that we can find γ∗ = arg minγ∈[0,1] hxi,d(γ) algebraically. Oth-
erwise, we can approximate it, for example by trying γ = 1, β1, β2, . . . , βk for a
global constant β ∈ (0, 1) and k. It is known that both approaches yield asymp-
totically equal convergence for virtually all FW variants.

Observe how this approach contrasts with gradient descent: there, we always
make a step in the direction of the gradient, which is, in a theoretical sense “the
best possible direction”. However, this may lead us out of the feasible region,
and therefore we need to project our solution back into the polyhedron after each
step. In contrast, Frank-Wolfe only takes the gradient direction as guide in the
form of a cost function, finding the best direction within the polyhedron that
maximises this cost. Therefore, no projection is needed.

3.3 Common Variants
There are many variants of FW. The original formulation, which we call Classic
FW, dates back to 1956 [FW+56], and is nearly identical to what we have just
described. For a fixed P and a fixed smooth and strongly convex f , it provably
achieves the convergence rate of 1/ε, i.e., it requires t = O(1/ε) iterations to
converge to a solution xt with optimality gap GAP(xt) ≤ ε.2 Later, it was shown
that it has actually a convergence rate of log(1/ε) under the same conditions
on f and P , provided that the optimal solution x∗ lies in the strict interior of
P [GM86], i.e., it does not lie in any proper face of P . A convergence rate of
log(1/ε) is also known as geometric or linear convergence, the latter probably
because the order of magnitude of the optimality gap decreases linearly with the
number of iterations.

2Of course, this disregards the dependence on P , f and the dimension n. We will see that
for our problems and some FW variants, it is reasonable, but it generally needs not be.

33

The reason why Classic FW converges slowly if x∗ lies on the boundary
of P is called the zig-zagging phenomenon [LJ15]. When x∗ lies in a face of
dimension ≥ 2, the algorithm, after getting close enough to the face, alternates
between moving towards several vertices of the face, making very little progress
towards the optimum lying in its middle. That is because LP Oracle always
returns a vertex of P and Classic FW can only move in its direction. To see the
problem, imagine an isosceles triangle with the optimum lying in the middle of
its base and f being an “amphitheatre” (e.g., f(x) = ∥x− x∗∥2

2). See Figure 3.1
for illustration.

x0

x1

x2

x3
x4

x∗

Figure 3.1: Illustration of the zig-zagging phenomenon. The dotted lines represent
the directions on which line search is performed.

Several variants which tackle this problem have been proposed, most notably
Away-Steps FW [Wol70] and Pairwise FW [LJ15]. Both of these algorithms
combat the zig-zagging phenomenon by having a different method of choosing
the improving direction. In short, Away-Steps FW also allows to move away
from some vertex, picking either a regular step or away-step (whichever is better)
in each iteration, while Pairwise FW combines the regular and away direction
and always moves in this “compromise” direction. Surprisingly, both of these
simple changes are enough to get rid of the zig-zagging phenomenon. In the
next Section 3.4, we will describe Pairwise FW and Away-Steps FW in more
detail.

In recent years, many advances were made and algorithms proposed, for ex-
ample, Lazy FW [BPZ19], FW with restarts [KdP18] and many more. Their
description is out of the scope of this thesis; see e.g. [KdP18] for references.

3.4 Pairwise and Away-Steps Frank-Wolfe
Pairwise FW (PFW) and Away-Steps FW (AFW) build on the observation
that each solution xi can be represented as a convex combination of some vertices
of P , i.e., xi = ∑︁

v∈A αvv. In FW terminology, vertices are called atoms3, the
coefficients αv ∈ [0, 1] are called weights and the set of atoms with currently
non-zero weight is called the active set. We denote the set of all atoms by A and

3Actually, the term is more general, and it is allowed to have atoms that are not vertices,
but we will not distinguish between atoms and vertices for the sake of simplicity.

34

the active set by S. By the definition of convex combination, the weights sum up
to 1.

One can easily modify the Classic FW to maintain the active set and
weights: recall that in each step, FW sets xi+1 := xi + γd = (1 − γ)xi + γy.
To reflect that, we need to scale the weights of all atoms in S by 1− γ, add y to
S (unless it is already there) and increase αy (possibly from zero) by γ.

The key idea behind PFW and AFW is to change the way an improving
direction is chosen. Besides the FW direction dFW = y− xi that points towards
y, we also calculate the away direction daway = xi − v, where v is some atom in
the active set. Namely:

v = arg max
v∈S

Lxi(v) = arg max
v∈S

∇f(xi) · v,

That is, we find the atom that maximises the linearly approximated objective
and then point away from it. Note that we do not need LP Oracle for this,
since we can manually check all the atoms in S. Also note that xi + daway does
not necessarily lie in the polyhedron.

Pairwise FW combines these two directions: d = dFW + daway and carries
on with the line search for γ ∈ [0, γmax] that minimises xi+1 := xi + γd, where
γmax = αv. Note that xi + γd = xi + γ(y− xi + xi − v) = xi + γ(y− v), which
makes the weight changes much simpler: αy := αy + γ, αv := αy − γ, and all the
other weights remain unchanged. This also explains our choice of γmax.

Informally, while each step in Classic FW increases one weight at the ex-
pense of uniformly diluting all the other weights, in a Pairwise FW step, the
weight is only being shifted between two atoms. One can intuitively see how this
helps combat the zig-zagging phenomenon: it is much easier to bring an atom’s
weight to zero and thus remove it from the active set.

Away-Steps FW has a different strategy for picking d. It compares dFW
and daway and picks the one with smaller value of ∇f(xi) · d. Then, if d =
dFW was chosen, it sets γmax = 1 and the rest is the same as in Classic FW.
Otherwise d = daway, it sets γmax = αx/(1 − αx) and later, the algorithm sets
xi+1 := xi + γd = xi + γ(xi−v) = (1 + γ)xi− γv, which means that the weights
are updated as follows: αx := (1 + γ)αx for x ̸= v, and αv := (1 + γ)αv − γ.
Observe that these updates are correct and that αv becomes zero exactly when
γ = γmax.

See also [LJ15] for a more thorough description (including, for example, the
stopping conditions, which we omitted here for simplicity), as well as a pseu-
docode of both Pairwise FW and Away-Steps FW.

3.5 Convergence Analysis
Since the full analysis of Frank-Wolfe, especially of AFW and PFW, is quite
cumbersome, we will only summarise the main ideas and state the results in the
form into which we can later plug in. For an exposition, we recommend the blog
post series of Pokutta [Pok18a], which offers detailed explanation and links to
other resources. For the complete analysis of AFW and PFW, see for example
the original paper by Lacoste-Julien and Jaggi [LJ15].

35

From a very high-level perspective, the convergence analysis of Frank-Wolfe
algorithms usually has at least two distinct parts. The overall goal is to arrive
at some lower bound for the improvement in one iteration, ideally of the form
GAP(xi+1) ≤ GAP(xi)(1− ρ) where ρ on depends on P and f ; in that case, the
convergence is linear.

On the one hand, one usually uses strong convexity to obtain an upper bound
on GAP(xi) = f(xi) − f(x∗) in terms of the current gradient: roughly, since
f is above some parabola, f(x∗) cannot be very small and therefore GAP(xi)
cannot be very large. On the other hand, smoothness gives us a lower bound on
the progress, GAP(xi) − GAP(xi+1), in terms of the current gradient: as f is
below some parabola, it cannot deviate very quickly from the tangent hyperplane
we used as its local approximation, and moving in the direction of the gradient
therefore is “reasonably good”.

Then, one needs to combine these two bounds together. This step usually
requires some additional ingredients, for example the knowledge that the optimum
lies in the strict relative interior of P .

As already mentioned, Classic FW converges linearly if the solution lies in
the strict relative interior, and there are instances where its convergence is Θ(1/ε)
when the solution lies on the boundary. For Away-Steps FW, the following
result due to [LJ15] is known:

Theorem 3.1 ([LJ15], Theorem 1). Let P be a polyhedron, let f : P → R be
µ-strongly convex and L-smooth and define diam(P) as the diameter of P , i.e.,
the maximum distance between any two points in P . Furthermore, let PWidth(P)
be the so-called pyramidal width (as defined in Lacoste-Julien and Jaggi [LJ15])
of P . Then the sequence x0, . . . , xt of iterates of the Away-Steps FW algorithm
satisfies:

GAP(xt) ≤ (1− ρ)t/2GAP(x0), where ρ = µ

4L
·
(︄

PWidth(P)
diam(P)

)︄2

.

The t/2 term emerges to account for so-called drop steps, during which the
algorithm does not necessarily make enough progress. For Away-Steps FW, it
can be shown that drop steps amount for at most 1/2 of all the steps, therefore
the bound uses t/2 instead of t. Unfortunately, Pairwise FW introduces an
additional type of steps called swap steps, of which there can be a very large
amount; the authors bound it by O(|A|!) per one good step, which leads to
t/Ω(|A|!) appearing instead of t. Until this bound improves, this makes Pairwise
FW impractical for our purposes. Although, we should note that PFW seems to
behave quite well in practice, so the bound on the number of swap steps could
perhaps be significantly improved.

Lastly, we mention a weaker result that holds even for non-strongly convex
functions and Classic FW. For a proof, see e.g. [Pok18a]. The result is well-
known for Classic FW; for Away-Steps FW, it can be derived with a 1/2
slowdown due to drop steps, by observing that the good steps improve the objec-
tive at least as much as in the Classic FW algorithm.

Theorem 3.2. Let P be a polyhedron, let f : P → R be convex and L-smooth and
define diam(P) as the diameter of P . Then the sequence x0, . . . , xt of iterates of

36

the Classic FW algorithm satisfies:

GAP(xt) = O
(︄

L diam(P)2

t

)︄
,

and the same bound holds for Away-Steps FW.

3.5.1 Hölder Error Bound
As we will see later, our penalty function φ is smooth and convex, but not strongly
convex. Fortunately, there is an alternative to strong complexity which can be
used to prove effectively the same bounds.

Definition 3.4 (Hölder Error Bound (HEB), [KdP18]). A convex function f :
P → R is (θ, σ)-HEB, if there exists θ ∈ [0, 1] and σ > 0 such that

min
x∗∈X∗

∥x− x∗∥2 ≤ σ(f(x)− f ∗)θ,

where f ∗ is the minimum value of f and X∗ ⊆ P is a set of all x∗ where this
minimum is attained.

Since we will be mostly interested in (1/2, σ)-HEB functions, we will use the
shortcut “σ-HEB function” to stand for a (1/2, σ)-HEB function. In that case,
the former equation can be rearranged as:

f(x)− f ∗ ≥ 1
σ
· min

x∗∈X∗
∥x− x∗∥2

2.

Roughly, if a penalty function is σ-HEB, then the points with a small value
of penalty must lie close to some optimal solution, with the strictness of this
condition governed by σ.

As already mentioned, HEB is enough to obtain a bound similar to Theo-
rem 3.3:

Theorem 3.3 (Global linear convergence for Away-Steps FW using HEB). Let
P be a polyhedron, let f : P → R be σ-HEB and L-smooth and define diam(P)
as the diameter of P . Furthermore, let PWidth(P) be the pyramidal width of P .
Then

GAP(xt) ≤ (1− ρ)t/2GAP(x0), where ρ = 1
8σ2L

·
(︄

PWidth(P)
diam(P)

)︄2

.

As the proof is very technical, we will give it at the end of this chapter, in
Section 3.8.

3.6 Interpreting Frank-Wolfe on MCF and LBF
Now we present our contribution: the interpretation of PFW and AFW applied to
MCF and LBF. We will describe its application for (MCF-P) first; modifications
for (LBF-P) are small and will be described at the end of the section.

37

Recall that in (MCF-P), the feasible region P is the set of all (feasible, but
not necessarily satisfying) multiflows f ∈ RE×K , f ≥ 0 and the penalty is defined
as

φ(f) :=
∑︂
e∈E

[︂
fΣ(e)− ce

]︂2
+

,

where fΣ(e) = ∑︁K
k=1 fk

e .
We need P to be bounded, so we add an additional constraint f ≤ M · 1,

where M = ∑︁K
k=1 dk is a sufficiently large upper bound on the total flow through

an edge. Let us call (MCF-P) with this added constraint (MCF-P∗) and observe
that this modification does not affect the existence of a solution with φ(f) = 0.4

Describing the algorithm amounts to describing LP Oracle and First-
Order Oracle. Let us start with the latter.

One can easily verify that for f(x) = [x + a]2+, we obtain:
(︂
[x + a]2+

)︂′
= 2 · [x + a]+ · [x + a]′+ = 2 · [x + a]+ ,

and thus, using that fΣ(e) = ∑︁K
k=1 fk

e ,

∂φ

∂fk
e

= ∂

∂fk
e

[︂
fΣ(e)− ce

]︂2
+

= 2 ·
[︂
fΣ(e)− ce

]︂
+

.

Note that ∂φ
∂fk

e
(f) ≥ 0, hence ∇φ(f) ≥ 0. For a fixed edge e, all ∂φ

∂fk
e
(f) are equal

across commodities.
LP Oracle solves the following linear program (we use the knowledge that

it is always called with c = ∇φ(f) ≥ 0):

minimise c · f for f ∈ RE×K , given fixed c ∈ RE×K , c ≥ 0

subject to fk
δ (v) =

⎧⎪⎪⎨⎪⎪⎩
−dk if v = sk,
dk if v = tk,
0 otherwise.

∀k = 1, . . . , K ∀v ∈ V

f ≥ 0
f ≤M · 1 for M = ∑︁K

k=1 dk

(MCF-ORC)

First, we may notice that variables from different commodities do not interact
with each other and the problem may thus be decomposed into K separate ones,
each of which can be solved independently:

minimise ck · fk for fk ∈ RE, given fixed ck ∈ RE, ck ≥ 0

subject to fδ(v) =

⎧⎪⎪⎨⎪⎪⎩
−dk if v = sk,
dk if v = tk,
0 otherwise.

∀v ∈ V

fk ≥ 0
fk ≤M · 1 for M = ∑︁K

k=1 dk

(MCF-ORC-k)

4This follows from Lemma 1.7 and Corollary 1.8, since every f can be made to satisfy
f ≤ M · 1 by decomposing each commodity into weighted paths and positive cycles and then
omitting the cycles.

38

Now observe that each subproblem is exactly a Minimum-Cost Fixed-
Demand Flow (MCFDF) problem with weights ck ≥ 0, source-sink pair (sk, tk),
demand dk and uniform capacities M ·1. At this point, we might finish by saying
that MCFDF can be solved combinatorially in polynomial time (one such algo-
rithm will be presented in Chapter 5). However, the situation is even simpler
than that:

Lemma 3.4. Let p be a shortest sktk-path p with respect to edge costs ck. Then
the weighted path dk · p is an optimal solution to (MCF-ORC-k).

Proof. One can verify that dkp is a satisfying solution, since M > dk.5
Consider any sktk-flow fk with |fk| = dk. We need to prove that ck · fk ≥

ck · dkp. According to Lemma 1.7, fk can be expressed as a conformal sum of
weighted sktk-paths and positive cycles: fk = ∑︁q

i=0 αi ·Ci +∑︁r
i=0 βi · pi. Hence,

ck · fk = ∑︁q
i=0 αi · ck ·Ci +∑︁r

i=0 βi · ck ·pi. Without loss of generality, let ckp1 be
minimal over all ckpi. Also realise that ckp′ is simply the length of path p′ with
respect to edge lengths ck. Then:

ck · fk =
q∑︂

i=0
αi · ck ·Ci +

r∑︂
i=0

βi · ck · pi ≥
r∑︂

i=0
βi · ck · pi

≥
r∑︂

i=0
βi · ck · p1 = ck · p1 ·

r∑︂
i=0

βi = ck · p1 · dk ≥ ck · p · dk,

where we used, respectively, decomposition, nonnegativity of aiCi and ck, mini-
mality of ck · p1, reordering, the fact that ∑︁i βi = |fk| = dk, and the fact that p
is a shortest sktk-path.

Therefore, LP Oracle only needs to find a shortest sktk-path (with respect
to ck) for each commodity and then concatenate the results. This can be done in
O(K|E| log |V |) time using Dijkstra’s algorithm. This could be further optimised
by exploiting the fact that all ck are identical and all the calls to Dijkstra’s
algorithm thus use the same weighted graph (e.g., by switching to all-pair shortest
paths algorithms for cases with large K), but we consider this to be beyond the
scope of this work.

3.6.1 Adaptation for LBF

The adaptation for LBF is very similar. We also augment (LBF-P) with a con-
straint f ≤M ·1, this time with M = d, thus forming (LBF-P∗). Although φ and
fΣ(e) represent, formally speaking, different concepts than before, they behave
the same in virtually all aspects.

Accordingly, ∂φ
∂fk

e
= 2 ·

[︂
fΣ(e)− ce

]︂
+

and ∇φ(f) ≥ 0. As for LP Oracle, this

5This is one of the reasons why (MCF-ORC-k) is much easier than general MCFDF.

39

time the linear subprogram is a single MCFDF in the layered graph GK :

minimise c · f for f ∈ REK , given fixed c ∈ REK , c ≥ 0

subject to fδ(v) =

⎧⎪⎪⎨⎪⎪⎩
−d if vk = s0,
d if vk = tK ,
0 otherwise.

∀vk ∈ VK

fΣ(e) ≤ ce ∀e ∈ E

f ≥ 0
f ≤M · 1 for M = d

(LBF-ORC)

The same reasoning applies and this LP can be solved by a single call to
Dijkstra’s algorithm in the layered network GK . The running time is O(|EK | ·
log |VK |) = O(K · |E| log(|V | ·K)).

3.7 Convergence Analysis for MCF and LBF
Now we analyse the convergence of Away-Steps FW adopted for MCF and
LBF as described in the previous section. We examine the properties of φ and P
and subsequently plug them into Theorem 3.3.

3.7.1 Smoothness
We start by showing that φ is L-smooth for L = 2n = 2|E| ·K. We go through
the calculations with MCF in mind, but they are practically identical for LBF
(only notation would change slightly).
Lemma 3.5. Given P ⊆ RE×K ∼= Rn and φ from (MCF-P), the inequality

φ(y)− φ(x) ≤ ∇φ(x)(y− x) + L

2 · ∥x− y∥2
2

holds with L = 2n for every x, y ∈ P .

Proof. Using the definition of φ and ∇φ, we may rewrite the left- and right-hand
side as, respectively:

∑︂
e∈E

[︄
−ce +

K∑︂
k=1

yk
e

]︄2

+
−
[︄
−ce +

K∑︂
k=1

xk
e

]︄2

+

and ∑︂
e∈E

2 ·
[︄
−ce +

K∑︂
k=1

xk
e

]︄
+
·
(︄

K∑︂
k=1

yk
e − xk

e

)︄
+ L

2 ·
(︄

K∑︂
k=1

(︂
xk

e − yk
e

)︂2
)︄

.

We will show that the inequality holds for every edge in the sum, and summing
up those |E| inequalities will prove L-smoothness. From now on, fix e ∈ E. Let
X := −ce +∑︁K

k=1 xk
e , similarly for Y . Using the new notation, we want to prove

that:

[Y]2+ − [X]2+ ≤ 2[X]+(Y −X) + L

2 · ∥xe − ye∥2
2, i.e.,

[Y]2+ − [X]2+ − 2[X]+(Y −X) ≤ L

2 · ∥xe − ye∥2
2. (∗)

40

Now we will get rid of [·]+ by assuming that X ≥ 0, Y ≥ 0. We will afterwards
handle cases where this does not hold. The left-hand side simplifies to:

Y 2 −X2 − 2X(Y −X) = Y 2 − 2XY + X2 = (X − Y)2 (∗∗)

=
(︄

ce − ce +
K∑︂

k=1
xk

e − yk
e

)︄2

≤
(︄

K∑︂
k=1

⃓⃓⃓
xk

e − yk
e

⃓⃓⃓)︄2

= ∥xe − ye∥2
1.

Plugging this back into (∗) gives us

Y 2 −X2 − 2X(Y −X) ≤ ∥xe − ye∥2
1 ≤

L

2 ∥xe − ye∥2
2,

which holds with L = 2n. This follows from the known relation between ℓ1- and
ℓ2-norms: ∀a ∈ Rn, ∥a∥1 ≤

√
n∥a∥2.

What about the cases when X < 0 or Y < 0? When both X < 0 and Y < 0,
then (∗) asks us to prove that 0 − 0 − 0 ≤ L

2 · ∥xe − ye∥2
2, which holds trivially.

When X < 0 and Y ≥ 0, the left-hand side of (∗) becomes Y 2. It holds that
0 ≤ Y ≤ Y − X, and thus Y 2 ≤ (Y − X)2 = (X − Y)2, and we may carry on
from (∗∗) as before. Finally, when X ≥ 0 and Y < 0, the left-hand side simplifies
to −X2 − 2X(Y −X) ≤ Y 2 −X2 − 2X(Y −X) and we may carry on from (∗∗)
again.

3.7.2 Convexity
Next we show that φ is convex. Combined with smoothness, this is enough to
guarantee O(1/ε) convergence of all three mentioned FW algorithms.

Lemma 3.6. Given P ⊆ RE×K ∼= Rn and φ from (MCF-P), it holds that

∀x, y ∈ P φ(y)− φ(x) ≥ ∇φ(x)(y− x).

Proof. We will reuse the procedure and notation from the proof of Lemma 3.5.
The equation can be written as a sum of |E| similar equations, one per each edge,
and we will again prove those and then sum them up to obtain the result. Fix
e ∈ E and reuse the definition of X := −ce +∑︁K

k=1 xk
e , and similarly for Y . Then

we need to prove:
[Y]2+ − [X]2+ − 2[X]+(Y −X) ≥ 0

This time, the proof is even more straightforward. When X, Y ≥ 0, we get
(X − Y)2 ≥ 0, when X, Y < 0, we get 0 ≥ 0, for X ≥ 0, Y < 0, we get
X2 − 2XY ≥ X2 ≥ 0 and for X < 0, Y ≥ 0, we get Y 2 ≥ 0.

Note that one can also prove the lemma directly by using the well-known
properties of convexity, such as that the composition of a convex function with a
convex and nondecreasing function is convex.

3.7.3 Strong Convexity
Lastly, we would like to prove µ-strong convexity. Combined with L-smoothness,
it would guarantee linear convergence for Pairwise FW and Away-Steps FW.
However, it turns out in fact, that φ is generally not µ-strongly convex for any

41

µ > 0. This is because any differentiable µ-strongly convex function needs to have
at most one global minimum in the strict interior of P , since any x∗ attaining
this minimum has to satisfy ∇φ(x∗) = 0 and the condition on µ-strong convexity
translates into all y ̸= x∗ having φ(y) ≥ φ(x∗) + µ/2 · ∥y− x∗∥2

2 > φ(x∗).
To be concrete, consider the following example with V = {s, u, v, t}, E =

{s→ u, s→ v, u→ t, v → t}, c = 1, a single commodity with source s, sink t and
demand d = 1. Then P = { (α, 1−α, α, 1−α) | α ∈ [0, 1] } and φ(x) = 0 ∀x ∈ P .
We can verify that all x in the strict interior of P have ∇φ(x) = 0, which, along
with the observation from the previous paragraph, means that φ can be at most
0-strongly convex.

A possible solution to this problem is to change the penalty in some way, for
example by adding a regulariser, i.e., chaning φ(f) to φ(f) + ε ·R(f), where R is
some strongly convex function and ε > 0 is a suitable constant; a sensible option
is R(f) := ∥f∥2

2. We can neither confirm nor deny that some sensible choice of
R and ε would make the penalty strongly convex without significantly changing
the algorithm, as we have tried to avoid this approach due to the complexity it
adds to the algorithm. Additionally, it is not immediately clear how to achieve
µ-strong complexity for a large enough µ and at the same time not let the R(f)
term dominate the penalty.

3.7.4 HEB and Linear Convergence
Theorem 4.8 from Section 4.3 guarantees that if the instance has a solution with
φ(x) = 0, then φ is an (H2|E|)-HEB function, where H is the so-called inflation
rate of the MCF / LBF polyhedron. In order to use Theorem 3.3 to prove linear
convergence of Away-Steps FW for MCF and LBF, we only need to provide
bounds on diam(P) and PWidth(P).

We know that P fits in the box with corners in 0 and M ·1, where M = ∥d∥1
(which equals ∑︁K

k=1 dk for MCF and d for LBF) and its diameter can therefore
be bounded by the diameter of this box:

diam(P) ≤ diam([0, M]E×K) = ∥0− 1 ·M∥2 = ∥1∥2 ·M =
√

E ×K · ∥d∥1.

For PWidth(P), we use an equivalent characterisation due to Peña and Ro-
dríguez [PR19], which says that the pyramidal width is equivalent to a so-called
facial distance of P . This is defined as the minimum distance between a face
and the convex hull of all vertices that do not lie on it. As P comes from the
relaxed formulation, it is a cartesian product of K (for MCF) or 1 (for LBF) flow
polytopes (with capacity M on each edge). It is a known fact that flow polytopes
have integer vertices if the capacities are integer, which is the case here (even if d
were not integer, we can set M := ⌈M⌉ without changing the problem), and hence
P is also integer. This special structure can be exploited: for integer polytopes,
it holds that PWidth(P) is bounded by 1/poly(M, n) [Gup21].
Theorem 3.7. Let G = (G,K) be a satisfying MCF instance with G = (V, E, c)
and K =

(︂
(sk, tk, dk)

)︂
K
k=1. Then Away-Steps FW finds a solution with penalty

at most ε in time polynomial in input size, the ℓ1-inflation rate HMCF, ∥d∥1 and
log(1/ε).

The same is true for a satisfying LBF instance G = (G, s, t, K) with demand
d, with HLBF instead of HMCF.

42

Proof. The proof is the same for MCF and LBF once we define ∥d∥1 = d for
LBF. In both cases, we know from Theorem 3.3 that

GAP(xt) ≤ (1− ρ)t/2GAP(x0), where ρ = PWidth(P)2

8σ2 · L · diam(P)2 ,

and plugging the bound on diam(P) from above, the Hölder Error Bound from
Theorem 4.8 and the bound on smoothness from Section 3.7.1 gives us:

GAP(xt) ≤ (1− ρ′)t/2GAP(x0), where ρ′ = PWidth(P)2

8 ·H4
MCF|E|2 · 2|E|K · |E|K∥d∥2

1

= PWidth(P)2

16H4
MCF|E|4K2 · ∥d∥2

1
.

The initial gap GAP(x0) can be bounded from above by the maximum attainable
flow: GAP(x0) ≤ (|E| ·K · ∥d∥1)2.

Finally, use Lemma 1.11 to get that we achieve φ(fQ) = GAP(fQ) ≤ ε after

Q = 2 · log GAP(x0)
ρ′ ≤ 4 · 16H4

MCF|E|4K2 · ∥d∥2
1

PWidth(P)2 · log(|E| ·K · ∥d∥1)

iterations. Recalling that 1/ PWidth(P) ∈ poly(∥d∥1, |E|, K) proves the theo-
rem.

3.8 Proof of Theorem 3.3
Now we prove Theorem 3.3 from Section 3.5.1. As the full proof is heavily techni-
cal, we will entrust all the heavy lifting to the original linear convergence article
[LJ15] and only point out the changes needed when moving from strong convexity
to HEB. All references to lemmas and theorems in the proof will refer to Lacoste-
Julien and Jaggi [LJ15] and we expect the reader to follow our progress there.
Although we worked out most of the calculations independently (and take the
responsibility for errors introduced in the process), all ideas are already contained
in Pokutta [Pok18b] and Lacoste-Julien and Jaggi [LJ15].

Proof. We need to prove Theorem 8, the rest follows from its direct application
to Theorem 1. The only place where strong convexity comes into question is in
Equations (27) and (28) to upper bound the optimality gap. First, use respec-
tively the convexity of φ, rearranging and f being σ-HEB to bound the primal
gap; x∗ is the optimal solution minimising ∥x∗−xt∥, f ∗ := f(x∗) and we use the
notation ⟨x, y⟩ for dot product x · y for consistency with the original proofs:

f(xt)− f ∗ = f(xt)− f(x∗)
≤
⟨︂
∇f(xt), xt − x∗

⟩︂
= ⟨∇f(xt), xt − x∗⟩

∥xt − x∗∥
∥xt − x∗∥

≤ ⟨∇f(xt), xt − x∗⟩
∥xt − x∗∥

σ(f(xt)− f ∗)1/2.

43

And thus, after dividing by σ(f(xt)− f ∗)1/2:

1
σ

(f(xt)− f ∗)1/2 ≤ ⟨∇f(xt), xt − x∗⟩
∥xt − x∗∥

,

and rearranging yields:

f(xt)− f ∗ ≤ σ2
(︄
⟨∇f(xt), xt − x∗⟩
∥xt − x∗∥

)︄2

. (3.2)

According to Theorem 3, we have

⟨−∇f(xt), dPFW⟩⟨︂
−∇f(xt), xt−x∗

∥xt−x∗∥

⟩︂ ≥ PWidth(P),

where dPFW = dFW + daway is the pairwise direction. As both the numerator and
denominator are positive, we have:⟨︄

−∇f(xt), xt − x∗

∥xt − x∗∥

⟩︄
≤ ⟨−∇f(xt), dPFW⟩

PWidth(P) .

Now we can plug this into (3.2):

f(xt)− f ∗ ≤ σ2
(︄
⟨∇f(xt), xt − x∗⟩
∥xt − x∗∥

)︄2

= σ2
⟨︄
∇f(xt), xt − x∗

∥xt − x∗∥

⟩︄2

= σ2
⟨︄
−∇f(xt), xt − x∗

∥xt − x∗∥

⟩︄2

≤ σ2 ⟨−∇f(xt), dPFW⟩2

PWidth(P)2 .

Now, observe that gt that appears in Equation (28) equals ⟨−∇f(xt), dPFW⟩.
And thus, we have:

ht = f(xt)− f ∗ ≤ g2
t

1
σ2 PWidth(P)2 .

Using Theorem 6 on the original bound ht ≤ g2
t /(2µA

f) gives us that the
original bound says that ht ≤ g2

t /(2µ PWidth(P)2). Comparing this with our
derived bound gives us that the original bound holds if we choose µ := 1/(2σ2).
We can therefore repeat the rest of the proof with 1/(2σ2) instead of µ and
PWidth(P)2/σ2 instead of µA

f . Since the rest of the proof does not use strong
convexity any more, we can conclude with plugging µ = 1/(2σ2) into Theorem 1
and obtaining exactly the needed bound.

44

4. Circuits and Inflation
The circuits of a polyhedron are an important concept in linear programming
and the study of polyhedra. A polyhedron’s set of circuits gives us some useful
characterisations: for example, the circuits contain all of the polyhedron’s edge
directions [Onn10, Lemma 2.18]. They are also a universal test set: given a
linear objective c, any point x in the polyhedron is optimal with respect to c
if and only if no circuit g is an improving direction, that is, for no g does it
hold that ∃α > 0 : x + αg ∈ P and c · g < 0. (The same property holds for
any separable convex objective function.) This immediately suggest a simple
iterative augmentation scheme: as long as x is not optimal, set x := x + αg for
some feasible improving step αg; we shall discuss issues of convergence and other
details later on.

Circuits appear in many contexts: from newer results, let us mention the
study of matroids and transportation problems [Mil16], the classification of pos-
sible definitions of the graph diameter of polyhedra [BDF16], and the study of
Hirsch conjecture (which proposes a relationship between the polytope’s dimen-
sion and the minimum edge-distance between any two of its vertices) and its
variants [BSY18]. Very recently, Dadush et al. [Dad+20] design an algorithm
which solves LP in strongly-polynomial time essentially if the circuits of the con-
straint matrix are well-behaved. A curious reader will find further references in
the aforementioned papers.

The main reference for this chapter is [BV19]; the reader is also referred to
Borgwardt and Viss [BV20] and Onn [Onn10]. As in the whole thesis, all matrices
are assumed integer, unless specified otherwise.

The chapter is organised as follows: in Section 4.1, we define circuits and de-
scribe their basic properties. Section 4.2 contains the description of the steepest-
descent augmentation, which is a general method for solving linear programs using
circuits. Our original results begin in Section 4.3. There, we give a new charac-
terisation of polyhedra called the inflation rate, which may be seen as a variation
on the so-called Hoffman constant. We then give our independently discovered
result that a small norm of circuits implies a small inflation rate. In Section 4.4,
we look a little closer at the circuits of MCF and single-commodity flows. Lastly,
in Section 4.5 we describe a construction of exponential-sized circuits for MCF
and sketch its adaptation for LBF.

4.1 Definitions and Basic Properties of Circuits
Definition 4.1 (Support, support-minimality). Given a vector x ∈ Rn, its sup-
port is the set of its nonzero indices, i.e.:

supp(x) = { i ∈ {1, . . . , n} | xi ̸= 0 }.

Given a set X ⊆ Rn, a vector x ∈ X is support-minimal over X if supp(y) ̸⊂
supp(x) (but possibly supp(y) = supp(x)) for all y ∈ X.

Definition 4.2 (Circuit direction, circuit [BV19]). A vector g is a circuit direc-
tion of a polyhedron P = {x ∈ Rn | Ax = a ∧ Bx ≤ b } if g ∈ ker(A) \ {0} and

45

Bg is support-minimal over {Bx | x ∈ ker(A) \ {0} }. A vector g is a circuit, if it
is a circuit direction and additionally g1, . . . , gn are all integer and their greatest
common divisor is 1.

The set of circuits of a polyhedron P = {x ∈ Rn | Ax = a ∧ Bx ≤ b } is
denoted by C(A, B). For a polyhedron P = {x ∈ Rn | Ax = a ∧ x ≤ b }, we will
use a shorter notation C(A) = C(A, In).

Intuitively, circuit directions are such vectors that, if added to some x ∈ Rn,
they preserve (i.e., do not change the left-hand side of) all equalities and at the
same time preserve as many inequalities with respect to inclusion as possible.
That is, given a circuit direction, there cannot exist another direction preserving
all equalities that preserves a strict superset of inequalities.

There are several ways one may define the set of circuits, because a circuit is
fully characterised by its direction, i.e., it is invariant under scaling. Thus, we
need some way to normalise circuits in order to obtain a set of some “canonical”
circuits. One possible normalisation are the integrality and coprimality conditions
given in Definition 4.2.1 Another possibility is to require ∥g∥ = 1. Note that in
any case, circuits always come in antipodal pairs, i.e., if g is a circuit, then so
is −g.

Note that referring to circuits as “circuits of a polyhedron” without specifying
how the polyhedron is defined does not make sense, since the circuits depend on
the constraint matrices A and B and one polyhedron can have dramatically dif-
ferent sets of circuits depending on which constraints we choose for its definition.
To emphasise this point, we will sometimes speak about the circuits of matrices
A and B instead.

Specially, as C(A, B) only depends on A and B, it means that polyhedra dif-
fering only in a and b have the same set of circuits. Also note that multiplying the
rows of A and B by nonzero coefficients does not change the set of circuits. This
means C(A) = C(A,−In) is also a set of circuits of a standard form polyhedron
P = {x ∈ Rn | Ax = a ∧ x ≥ 0 }.

An important property of circuits is that they contain as a subset the set of
all possible edge directions of P :

Lemma 4.1. Let P = {x ∈ Rn | Ax = a∧Bx ≤ b } and let X be its set of edge
directions, formally

X = {x ∈ Rn | ∃α ∈ R, p ∈ Rn s. t. conv(p, p + αx) is an edge of P } .

Let further C = {αg | α ∈ R \ {0}, g ∈ C(A, B) } be the set of circuit directions
of P . Then X ⊆ C.

Proof. Realise that for every edge direction e, we can choose some row indices I
of the matrix B, such that e is a nonzero solution to the system

Ax = 0
BIx = 0

(4.1)

1Actually, here we use the requirement that A and B are integer; with real A and B it may
not be possible to scale a circuit direction so that all its entries are integer.

46

formed from the original system by changing some inequalities to equalities and
removing the remaining ones so that rank

(︂
A
BI

)︂
= n − 1 (compare with the def-

inition of face and edge in Section 1.1). Among all possible I, pick one that is
inclusion-maximal, meaning that keeping any single removed inequality would in-
crease the rank to n. In other words, the set of solutions is a line and keeping any
more equalities would leave only a zero solution. Let I denote the complement
of I, i.e., the indices of rows in B that have not been put into BI .

We know that e is a non-zero solution to (4.1). Naturally e ∈ ker(A) \ {0},
what remains to show is that Be is support-minimal over {Bx | x ∈ ker(A) \
{0} }. Observe that supp(Be) = { i ∈ {1, . . . , n} | (Be)i ̸= 0 } = { i | Bi∗e ̸= 0 }.
We show that supp(Be) = I: for i ∈ I, we have Bi∗e = 0 and therefore i /∈
supp(Be). On the other hand, for i ∈ I, it must hold that Bi∗e ̸= 0, otherwise
i could have been added to I and e would still remain a nonzero solution to
Equation (4.1), which is a contradiction with the maximality of I.

From the same argument, Be must be support-minimal: if we had x ∈ ker(A)\
{0} such that supp(Bx) ⊊ supp(Be) = I, we could pick i ∈ I \ supp(Bx) and
augment I with it. Hence, e is a circuit direction.

See also [Onn10, Lemma 2.18] for a different proof.

4.2 Steepest-Descent Augmentation

A direct corollary of Lemma 4.1 is that the set of circuits is a universal test set
for any linear program over P [BV20]. That is, given a linear program min{ c ·x |
x ∈ P } and a feasible solution x0, either x0 is an optimal solution or there
exists a circuit g ∈ C(A, B) and a step size α > 0 such that x0 + αg ∈ P and
c · (x0 + αg) < c · x0. This is true since the same property holds for edges, which
are always contained in the circuit directions by the previous lemma.

This fact gives rise to a whole family of augmentation schemes that start
with an arbitrary feasible solution, and, in each iteration, gradually improve the
current solution x by finding (in some sense) the steepest / the best / a good
enough circuit direction and moving along it. This is repeated until the optimum
is reached or the problem is found to be unbounded. These schemes are in a
sense a generalisation of the simplex method, since they too move along edge
directions of the polyhedron, but may also use additional directions and traverse
its interior.

One such scheme is steepest-descent augmentation. Among strictly feasible
circuits, i.e., circuits g such that x+αg ∈ P for some α > 0, it picks the one that
minimises c · g/∥Bg∥1, that is, the circuit that improves the objective the most
per one unit of change in the inequalities. The algorithm then finds the greatest
α > 0 such that x + αg ∈ P and sets x := x + αg.

The steepest-descent augmentation scheme has some surprising properties
[BV19; BV20]. Firstly, the steepest-descent circuit direction g does not only min-
imise c · g/∥Bg∥1 over strictly feasible circuits, it minimises that over all strictly
feasible directions. Secondly, the steepest-descent directions get less steep over
time: if we denote the solutions and improving directions over time as x1, . . . , xt

47

and α1g1, . . . , αt−1gt−1 where xi+1 = xi + αigi, then it holds that:
cg1

∥Bg1∥1
≤ cg2

∥Bg2∥1
≤ · · · ≤ cgt−1

∥Bgt−1∥1
< 0.

Furthermore, no gi is ever repeated and at least one of n successive inequalities
must hold strictly. These two facts imply that the number of steps is limited
respectively by |C(A, B)| and n · |{ cg/∥Bg∥1 ; g ∈ C(A, B) }|. In other words,
if the number of circuits or the number of different steepnesses is polynomial,
the steepest-descent augmentation runs in polynomial time. For proofs of and
intuitions behind these properties, see Borgwardt and Viss [BV19; BV20].

4.3 Inflating Polyhedra
In this section, we present our original result stating that, roughly, given a poly-
hedron with small circuits and a point outside of it that violates its constraints
only by a small amount, then the point is close to the polyhedron. To the best of
our knowledge, this result is original, although it is in spirit similar to a result of
Jansen, Lassota, and Rohwedder [JLR20], see discussion below. An interesting
property of our result is that its proof uses the steepest-descent algorithm under
the hood even though the result itself is purely theoretical.

The general idea that points that “almost” satisfy polyhedron’s inequalities
are “close” to it is certainly not new: Hoffman [Hof52] proved that for a fixed
matrix A and any right-hand side a such that P = {x ∈ Rn | Ax ≤ a } is
nonempty, there exists a constant c > 0 (sometimes called Hoffman constant or
Hoffman condition number in the literature) depending only on A, such that if
we pick any x ̸∈ P , then the distance between x and the polyhedron is at most
c times the norm of constraint violations of x. Subsequent works have presented
alternative proofs and improved bounds on the value of c [GHR95; Man81].

To our knowledge, our work is the first one to explicitly connect Hoffman’s
bound with circuits. Jansen, Lassota, and Rohwedder [JLR20] mention a similar
result, but they state it with the Graver basis instead of circuits, only for n-fold
matrices and the equality form formulation Ax = a, x ≥ 0, and they do not make
an explicit connection to the Hoffman constant. Furthermore, unlike our proof, it
is not obvious how to adapt their approach to work for any (A, a, B, b)-universal
test set and not only the circuit set (or the Graver basis).

The connection with circuits is especially of importance for families of poly-
topes with provably small circuits, such as flow polytopes, polytopes defined by
n-fold matrices, and generally polytopes defined by matrices with small primal
or dual treedepth and small coefficients [KLO18].

We start by formalising Hoffman’s constant in our context. As our definition
is not equivalent to the usual definition of Hoffmann constant, but may instead
be viewed as a granularisation thereof, we use our own terminology grounded in
the intuitive notion of “inflating” polyhedra to avoid confusion. The connection
between the two terms is discussed in Remark 4.4.
Definition 4.3 (Inflated polyhedron, inflation rate). Let P = {x ∈ Rn | Ax =
a ∧ Bx ≤ b }, A ∈ ZmA×n, B ∈ ZmB×n be a nonempty polyhedron and δ ∈ RmB ,
δ ≥ 0. We define the δ-inflation of P as the polyhedron P δ = {x ∈ Rn | Ax =
a ∧Bx ≤ b + δ }. Clearly P ⊆ P δ.

48

For a norm ∥·∥, the nonempty polyhedron P = {x ∈ Rn | Ax = a∧Bx ≤ b }
has an inflation rate H∥·∥(A, a, B, b) ≥ 0 defined as the infimum over all R > 0
such that for any δ ≥ 0 and any point x ∈ P δ, there exists y ∈ P such that
∥x− y∥ ≤ R∥δ∥1. Formally:

H∥·∥(A, a, B, b) = inf{R > 0 | ∀δ ≥ 0 ∀x ∈ P δ ∃y ∈ P : ∥x− y∥ ≤ R∥δ∥1 }.

In other words, if x is not in P , then it is at most at a distance proportional
to H∥·∥(A, a, B, b) and the magnitude of the violation.

Specially, let H1(A, a, B, b) := H∥·∥1(A, a, B, b); similarly for H2(A, a, B, b)
and H∞(A, a, B, b).

Remark 4.2. We had to use infimum instead of minimum in the previous defini-
tion, since it is not immediately obvious that the minimum exists. This poten-
tially gives rise to a situation when ∥x − y∥ > H∥·∥(A, a, B, b)∥δ∥1 for some x
and δ, but ∥x − y∥ ≤ (H∥·∥(A, a, B, b) + ε)∥δ∥1 for all ε > 0. We can however
instantly see that this cannot happen, since a real number cannot be strictly
greater than some number, but smaller than all greater numbers. We therefore
have

∀δ ≥ 0 ∀x ∈ P δ ∃y ∈ P : ∥x− y∥ ≤ H∥·∥(A, a, B, b)∥δ∥1.

Remark 4.3. The same caveat as with circuits applies here: even though we are
talking about the inflation rate of a polyhedron, H∥·∥(A, a, B, b), as the notation
suggests, also depends on how the polyhedron is defined, i.e., it makes no sense
to talk about the inflation rate without also specifying A, a, B and b.
Remark 4.4. The traditional Hoffman constant H(A, B) is usually defined not
only over all δ, but also over all possible a and b. Hence, the relationship between
our inflation rate and the Hoffman constant is captured by the following equation:

H(A, B) = sup
a,b

H(A, a, B, b),

where the supremum goes over all a ∈ RmA , b ∈ RmB such that {x ∈ Rn | Ax =
a ∧Bx ≤ b } is nonempty.

≥ M

(2M,−1)

(M, 0)

(0, 1)

(−2M,−1)

(−M, 0)

Figure 4.1: An example showing that the inflation rate can be arbitrarily large
even for triangles in the plane.

One might think that the inflation rate is a trivial property and even that
there has to exist a constant R such that all polyhedra have an inflation rate
≤ R. This is not true even in the plane, since we may take an arbitrarily large
M ∈ N and consider a “very obtuse” triangle T = conv((−M, 0), (M, 0), (0, 1))
described by the following inequalities:

T = {(x1, x2) ∈ R2 | −x2 ≤ 0 ∧ x1 + Mx2 ≤M ∧ −x1 + Mx2 ≤M}.

49

Adding 1 to the first inequality, i.e., (1, 0, 0)-inflating T , will change the tri-
angle to T ′ = conv((−2M,−1), (2M,−1), (0, 1)) and we can see that the distance
of the point (2M, 1) from the original triangle T is at least M , and therefore the
inflation rate of T is at least M . See Figure 4.1 for illustration.

Now we present our main result of this section: although there is no universal
bound on the inflation rate holding for all polyhedra, we can bound the inflation
rate of any particular polyhedron by the norm of its circuits. For that purpose,
let us define c∥·∥(A, B) for an arbitrary norm ∥·∥ as c∥·∥(A, B) = maxg∈C(A,B) ∥g∥.
Specially, c1(A, B) := c∥·∥1(A, B).

Theorem 4.5. Let P = {x ∈ Rn | Ax = a∧Bx ≤ b } be a nonempty polyhedron,
C(A, B) its set of circuits and ∥ · ∥ an arbitrary vector norm. Then P has an
inflation rate c∥·∥(A, B).

We will prove the theorem with the help of the following lemma, which says
that P has inflation rate c∥·∥(A, B) provided that we only limit ourselves to in-
flations that change only one inequality.

Lemma 4.6. Let P = {x ∈ Rn | Ax = a ∧Bx ≤ b } be a nonempty polyhedron,
C(A, B) its set of circuits and ∥ · ∥ a norm. Furthermore, let δ = δej where
j ∈ {1, . . . , n}, δ > 0 and ej is the j-th unit vector. Then for any x ∈ P δ, there
exists y ∈ P such that ∥x− y∥ ≤ c∥·∥(A, B)∥δej∥1 = c∥·∥(A, B)δ.

Proof. The cases with x ∈ P hold trivially. Let x = x1 ∈ P δ \ P . Now we will
use steepest-descent augmentation in P δ that starts with x1, with c = Bj∗ as the
cost vector. Clearly, x ∈ P ⇐⇒ x ∈ P δ ∧ c · x ≤ dj. Therefore, we modify the
algorithm so that it stops once c · x = dj. Specially, should c(x + αg) ≤ dj after
some step, we scale the step down so that c(x + α′g) = dj, and stop.

This algorithm will always terminate and produce sequences x1, . . . , xt and
α1g1, . . . , αt−1gt−1 such that xi+1 = xi + αigi and xt ∈ P . We claim that xt is
the sought point in P such that ∥x1 − xt∥ ≤ c∥·∥(A, B)δ.

Observe that each augmentation step xi+1 := xi +αigi improves the objective
by cxi−cxi+1 = cxi−c(xi +αigi) = αicgi = αiBj∗gi ≥ αi. The inequality holds
because each augmentation step strictly improves the objective, and both Bj∗
and gi are integer and their dot product therefore has to be at least one. Since
cx1 ≤ dj + δ and cxt = dj, it follows that δ ≥ cx1 − cxt = ∑︁t−1

i=1 (cxi − cxi+1) ≥∑︁t−1
i=1 αi.

At the same time, we may bound the change of x between steps: ∥xi−xi+1∥ =
∥xi − xi − αigi∥ = αi∥gi∥ ≤ αic∥·∥(A, B). The last inequality follows from the
bound on the norm of circuits. Summing up over all i and applying the bound
from the previous paragraph yields:

t−1∑︂
i=1
∥xi − xi+1∥ ≤

t−1∑︂
i=1

αic∥·∥(A, B) ≤ δc∥·∥(A, B)

Now we apply the triangle inequality and obtain that

c∥·∥(A, B)δ ≥
t−1∑︂
i=1
∥xi − xi+1∥ ≥

⃦⃦⃦⃦
⃦

t−1∑︂
i=1

xi − xi+1

⃦⃦⃦⃦
⃦ = ∥x1 − xt∥,

which is what we wanted to prove.

50

With this lemma, proving Theorem 4.5 is straightforward:

Proof. We proceed by induction. Let δ≤i = (δ1, δ2, . . . , δi, 0, . . . , 0) ≥ 0. Define
a sequence of polyhedra P = P0 ⊆ P1 ⊆ · · · ⊆ PmB

= P δ, where Pi = P δ≤i =
{x ∈ Rn | Ax = a∧Bx ≤ b+δ≤i }. We will prove the following inductive claim:
given x ∈ Pi, there exists y ∈ P such that ∥x − y∥ ≤ c∥·∥(A, B)∑︁i

j=1 δj. The
claim trivially holds for i = 0, and proving it for i = mB will prove the theorem.

Let 1 ≤ i ≤ mB. Thanks to the way we defined the auxiliary polyhedra,
Lemma 4.6 may be used on Pi−1 and Pi, which gives us that for any x ∈ Pi, there
is y ∈ Pi−1 such that ∥x−y∥ ≤ δi. Now we use the inductive hypothesis on Pi−1
to obtain that for our y ∈ Pi−1, there exists z ∈ P such that ∥y− z∥ ≤ ∑︁i−1

j=1 δj.
Summing these two inequalities and using the triangle inequality, we obtain that
∥x− z∥ ≤ ∥x− y∥+ ∥y− z∥ ≤ ∑︁i

j=1 δj, exactly as we wanted to show.

Remark 4.7. The only place in the proof of Theorem 4.5 and Lemma 4.6 where
we use the fact that C(A, B) is a set of circuits, is when it is used as a universal
test set in the steepest-descent augmentation algorithm. We can easily replace
C(A, B) with any set of integer vectors, provided that the steepest-descent still
works with it – for example, we may as well have used the set of all edge directions.
This way, we lose the other beneficial properties of the steepest-descent algorithm
that depend on the test set being a circuit set, but as long as the algorithm still
converges, we may use it in our proof. The precise requirement on the test set is
stated formally in Definition 4.4.

As promised in Section 3.7, we now show an equivalence between the inflation
rate and a Hölder Error Bound of a related function. A similar observation was
made by Beck and Shtern [BS17] and probably others. For the sake of simplicity,
we only show it in our MCF / LBF setting although it could be generalised for
arbitrary polyhedra.

Theorem 4.8. Let G be a satisfying MCF / LBF instance, let P = {x ∈ Rn |
Ax = a∧Bx ≤ b } ≠ ∅ be a feasible set of its exact LP formulation (MCF-LP) /
(LBF-LP), let Q ⊇ P be a feasible set of its relaxed convex formulation (MCF-P)
/ (LBF-P) or (MCF-P∗) / (LBF-P∗) and let φ : Q→ R be the associated penalty
function. If P has ℓ1-inflation rate H = H1(A, a, B, b), then φ is (H2|E|)-HEB.

On the other hand, assuming that Q comes from (MCF-P) / (LBF-P), if φ
is σ-HEB, then the ℓ2-inflation rate of P satisfies H2(A, a, B, b) ≤

√
σ.

Proof. It is clear that P is exactly the set of x∗ ∈ Q such that φ(x∗) = 0.
We start with the first part of the proof. Pick x ∈ Q and set δ = [Bx− b]+ =[︂

xΣ − c
]︂

+
. Then x lies in P δ and Definition 4.3, along with the relation between

ℓ1- and ℓ2-norms, guarantee the existence of y ∈ P such that H ·∥δ∥1 ≥ ∥x−y∥1 ≥
∥x− y∥2 and thus, ∥δ∥1 ≥ ∥x− y∥2/H.

Now, realise that

φ(x) =
∑︂
e∈E

[︂
xΣ − c

]︂2
+

=
∑︂
e∈E

δ2
e = ∥δ∥2

2.

Using the relation between ℓ1- and ℓ2-norms for δ ∈ RE, and using that φ∗ =

51

minx′∈Q φ(x′) = φ(y) = 0,

φ(x)− φ∗ = φ(x) = ∥δ∥2
2 ≥
∥δ∥2

1
|E|

≥ 1
H2 · |E|

· ∥x− y∥2
2

≥ 1
H2 · |E|

min
x∗∈P
∥x− x∗∥2

2,

which is exactly the definition of an (H2|E|)-HEB function.
For the second part, we need to show that for any δ and x ∈ P δ, there exists

z ∈ P close enough to x. Fix x and δ and define δ′ :=
[︂
xΣ − c

]︂
+

. Necessarily
δ′ ≤ δ and ∥δ′∥2 ≤ ∥δ∥2. We know that

1
σ

min
x∗∈P
·∥x− x∗∥2

2. ≤ φ(x)− φ∗.

Picking x∗ := z ∈ P that minimises the expression and using the relationship
between ℓ1- and ℓ2-norms yields:

1
σ
· ∥x− z∥2

2. ≤ φ(x)− φ∗ = φ(x) = ∥δ′∥2
2 ≤ ∥δ∥2

2

≤ ∥δ∥2
1,

and therefore, ∥x− z∥2
2 ≤ σ∥δ∥2

1 and ∥x− z∥2 ≤
√

σ∥δ∥1. Since we have proven
this for arbitrary δ and x, it follows that H2(A, a, B, b) ≤

√
σ.

Perhaps anticlimatically, it turns out that polyhedra of MCF and LBF can
in fact have large – even exponential-sized – circuits, and we will shortly present
such instances. Although these instances serve as evidence of hardness of MCF
and LBF, this does not automatically mean that they have large inflation rates.
The theorem may well still give us a polynomial bound if we use a different
universal test set, and bounds on inflation rate may still be proven by completely
different means. It is also worth noting that the MCF and LBF LPs have fairly
special right-hand sides, which makes it difficult to construct an instance where
the steepest-descent augmentation needs to use a large circuit at some point,
or where such a circuit appears as an edge of the polyhedron. The following
definition summarises the properties of a test set that would suffice for plugging
it into Theorem 4.5 and obtaining a bound on the inflation rate.
Definition 4.4 (MCF-/LBF-universal test set). Let {x ∈ Rn | Ax = a ∧ Bx ≤
b } be a feasible polyhedron of an MCF instance. We say that a set S of integer
vectors is an (A, a, B, b)-universal test set if, for any choice of the cost function
c = Bj∗, any vector δ ≥ 0 and any x ∈ P δ that is not optimal with respect to cx,
there exists ε > 0 and s ∈ S such that x + εs ∈ P δ and the cost improves, i.e.,
cs < 0. For brevity, we call these test sets MCF-universal test sets (with respect
to the current instance). Analogically for LBF instances and LBF-universality.

Any universal test set is also an (A, a, B, b)-universal test set, but not vice
versa.

4.4 Examining MCF Circuits
In this section, we take a closer look at the circuits of MCF, and, indirectly, of
LBF, since the circuits of both problems have a similar structure.

52

Recall that x is a circuit direction if and only if x = αg for some α ̸= 0 and a
circuit g. As a warm-up, we show that for a single-commodity flow, circuits are
exactly undirected cycles:

Lemma 4.9. Let P = { f ∈ RE | Af = a ∧ f ≥ 0 ∧ f ≤ c } = { f ∈ RE | Af =
a ∧ Bf ≤ b }, for some B and b, be a (single-commodity) flow polytope. Then
g ∈ RE is a circuit if and only if it is an (incidence vector of an) undirected cycle.

Proof. We know that all circuits lie in ker(A)\{0}, which, in this case, is the space
of all non-zero circulations (since we can recall that the i-th row of Af measures
the excess flow at vertex i and circulations are exactly those vectors with zero
excess flow everywhere). Hence, circuit directions are exactly those circulations g
for which Bg is support-minimal. Since B = (−IE, IE)T , this is equivalent with g
being support-minimal. Thus, we want to prove that undirected weighted cycles
are exactly support-minimal circulations; the transition from circuit directions to
circuits follows trivially by scaling.

The implication “undirected cycle =⇒ support-minimal” is trivial, since
one can immediately see that any nonzero x with smaller support than the cycle
cannot be a circulation. On the other hand, let ∆ be a circulation that is not
a weighted cycle. By Lemma 1.4, it can be decomposed into a conformal sum
of nonzero weighted cycles, ∆ = ∑︁ℓ

i=1 αiCi, and necessarily ℓ > 1. But then,
thanks to conformality, αiCi has a strictly smaller support, which contradicts
the support-minimality of ∆.

The situation is more complicated in the multi-commodity case: the nonneg-
ativity constraints stay the same, but the capacity constraints change from f ≥ c
to fΣ ≥ c. (Recall that fΣ(e) is the total flow through edge e.) However, the ob-
servation about ker(A) still holds, and all circuits are therefore multicirculations.
Summed up, we get that circuit directions in MCF are exactly (multi-)circulations
∆ that are support-minimal with respect to both ∆ and ∆Σ, in other words, for
which the set supp(∆) ∪ supp(∆Σ) = { (e, k) ∈ E × K | ∆k

e ̸= 0 } ∪ { e ∈ E |
∆Σ(e) ̸= 0 } is inclusion-minimal (with respect to other circulations).

If we look at supp(∆Σ), we may see that it is a subset of the set of all edges
that participate in supp(∆), since all edges that have a nonzero net flow change
must have a nonzero flow change in some commodity, but on the other hand, on
some edges the flows may cancel out and the net flow is zero. This motivates the
following definition.

Definition 4.5. An edge e ∈ E is a balancing edge with respect to a circulation ∆
if ∆k

e ̸= 0 for some k, but ∆Σ(e) = 0. Denote the set of all balancing edges induced
by ∆ as bal(∆).

We can immediately see that bal(∆) = { e ∈ E | ∃k : (e, k) ∈ supp(∆) } \
supp(∆Σ) and therefore ∆ is a circuit direction if and only if supp(∆) is inclusion-
minimal and at the same time, bal(∆) is inclusion-maximal; that is, if supp(Γ) ⊊
supp(∆) for some other circulation Γ, then bal(Γ) ̸⊇ bal(∆), and vice versa, if
bal(Γ) ⊋ bal(∆), then supp(Γ) ̸⊆ supp(∆). Colloquially, ∆ is a circuit direction
if it balances as many edges while using as few edges as possible.

We will use this brief characterization in the next section when proving that
some particular circulations are circuits.

53

4.5 Exponential Circuits for MCF and LBF
As promised, we now show there exist infinitely many MCF instances that have
exponentially-sized circuits. Later, in Section 4.5.1, we use the same idea for
LBF. Pick a parameter p ∈ Z, p > 1 and construct a network as per the following
scheme displayed in Figure 4.2. The network consists of p partially overlapping
blocks, each consisting of 5 vertices and 7 edges, from which 4 vertices and 2
edges are shared with the adjacent blocks (except for the leftmost and rightmost
block).

0

1

1

1

1

1

2

2

2

2

2

2

4

4

4

4

4

4

· · · 2p−1

2p−1

2·2p−1

2p−1

2p−1

2p−1

2p−1

· · ·

1

1

1

11

2

2

2

22

4

4

4

44

· · · 2p−1

2p−1

2p−1

2p−12p−1

1

1

1

1

2

2

2

2

4

4

4

4

· · ·

2p−1

2p−1

2p−1

2p−1

· · ·

Figure 4.2: Top: a schema of an MCF instance with 3p + 2 vertices, 6p + 1 edges
and 3 commodities (not visible). Without loss of generality, it displays the case
with even p. Bottom: a circuit g of norm ∥g∥2 ≥ 2p in this network. When a
flow is portrayed to go against the edge’s prescribed direction, it simply means
the flow is negative there.

The norm of the displayed circuit can be lower bounded as:

∥g∥2 =

⌜⃓⃓⎷p−1∑︂
i=1

9 · (2i)2 ≥
√

9 · 22(p−1) = 3 · 2p−1 ≥ 2p

For simplicity, we pick p = 4 and reproduce the circuit of this MCF instance
in a more readable fashion, see Figures 4.3 and 4.4.

Now that we have described the circuit, what remains to be proven is that it
is a circuit. We start with an auxiliary lemma.

Lemma 4.10. Let g be the circulation depicted in Figure 4.2 and let h be a
circulation with supp(h)∪ supp(hΣ) ⊆ supp(g)∪ supp(gΣ). Let β, 1 ≤ β ≤ p, be
a block, and k ∈ {y, b, g} be a commodity and further assume that the commodity
participates nontrivially in the block, i.e., if k = y, then p is odd, and if k = b,
then p is even. Denote the seven edges of this block as Eβ = {e1, . . . , e7} such
that e1 is the rightmost edge and the other edges are assigned in an arbitrary
order. Then the following holds: for all e ∈ Eβ such that gk

e = 0, also hk
e = 0.

54

1

1

1

11

2

2

2

22

4

4

4

44

8

8

8

88

+

1

1

1

1

2

2

2

2

4

4

4

4

8

8

8

8

Figure 4.3: A large MCF circuit with p = 4. The depiction of the circuit is split
into two parts for better readability.

1

1

1

1

1

2

2

2

2

4

4

4

4

8

8

8

8

2·8

Figure 4.4: A large MCF circuit with p = 4, depiction of gΣ. Light grey edges
are those where the total flow does not change at all (i.e., gΣ(e) = 0), while violet
edges depict non-zero gΣ(e), with the sign determined by the edge direction.

Furthermore, there exists some xk
β ∈ R (potentially zero) such that for all the

remaining edges (with gk
e ̸= 0), hk

e = xk
β.

Proof. For the sake of a clearer exposition, let us follow the proof on Figures 4.3
and 4.4. For a circulation ∆ and a commodity k, let us define E(∆, k) as the
subset of E containing only edges e such that ∆k

e ̸= 0. Clearly E(h, k) ⊆ E(g, k).
Similarly, for a block β, let Eβ(∆, k) = E(∆, k) ∩ Eβ.

The first part is trivial, since if gk
e = 0, but hk

e ̸= 0, then supp(h) ̸⊆ supp(g).
For the second part, we will distinguish two cases based on the commodity k.
Notice that always gk

e1 ̸= 0 due to our choice of e1.
If k = y or k = b, the proof is easy, since E(g, k) consists of vertex-disjoint

cycles and the flow conservation property automatically ensures that the value of
hk

e1 determines all the other edges in the sense that hk
eβ

= hk
e1 for all eβ ∈ Eβ(h, k).

To elaborate on that, if we look at some endpoint of e1, we can see that its degree
in E(h, k) is it most its degree in E(g, k), which is 2, and therefore the value hk

eα

55

on the only other edge eα ̸= e1 incident with it must equal to hk
e1 .

For k = g, this is more complicated, since E(g, k) decomposes into edge-
disjoint, but not vertex-disjoint cycles and it is theoretically possible that h
has a different flow on the topmost edge than on the other edges, and the “ex-
cess”/“deficit” is handled by the neighbouring blocks. We will proceed by induc-
tion on β. For the leftmost block β = 1, the lemma holds, since we can start with
x = hg

e1 and then apply the flow conservation constraints in anti-clockwise order
to again show that hg

eβ
= hg

e1 for all eβ ∈ Eβ(h, g). The only vertex that can
have degree ≥ 2 and therefore cannot be used for the inference, is the top-right
vertex, but by the time we arrive there, we have already determined all edges in
the block.

The induction step proceeds in a similar fashion. The only additional problem
could occur in the top-left vertex which is of degree 4 in E(g, g), but due to the
induction hypothesis, we know that it is balanced with respect to the previous
block (i.e., the flows of the two edges from the previous block cancel out) and
there only remain the two free variables in the equation representing the edges
ea, eb ∈ Eβ from the current block, for which it therefore must hold that hg

ea
= hg

eb
,

and we may therefore use the same chain of inferences as in the base case to get
that hg

eβ
= hg

e1 for all eβ ∈ Eβ(h, g).

Now we may prove the main lemma.

Lemma 4.11. For any choice of p, the circulation g depicted in Figure 4.2 is a
circuit.

Proof. Let h be a circulation with supp(h) ∪ supp(hΣ) ⊊ supp(g) ∪ supp(gΣ).
We will show that h = 0, which proves that g is support-minimal among nonzero
circulations.

Due to Lemma 4.10, we know that for each block β and commodity k, the
behaviour of hk on β can be fully described by some x ∈ R. Therefore, we may
represent h as a p × 2 vector x ∈ Rp×{g,y/b}, where xg

β represents the xk
β from

Lemma 4.10 for β = β and k = g and x
y/b
β represents the x for β = β and k equal

to whichever of y and b participates in block β.
As supp(hΣ) ⊆ supp(gΣ), h needs to preserve all the balanced edges of g. We

can therefore write the equations by observing the pictures: we get that xg
i = x

y/b
i

and xg
i + x

y/b
i = x

y/b
i+1 for all 1 ≤ i ≤ p, the only exception being the last block

where the latter equation does not appear.
Now, we distinguish two cases, as we know that supp(h) ∪ supp(hΣ) ⊊

supp(g) ∪ supp(gΣ). First, we assume that supp(h) ⊊ supp(g). Then for some
e and k, gk

e ̸= 0 and hk
e = 0, and due to how we defined x, the corresponding

xk
i must be zero. But then one of the balancing equations shown in the previ-

ous paragraph implies that xg
i = x

y/b
i = 0, and from another one, we get that

x
y/b
i+1 = xg

i + x
y/b
i = 0. Similarly, xg

i−1 + x
y/b
i−1 = x

y/b
i = 0, and we can see that

xg
i−1 + x

y/b
i−1 = 2 · xy/b

i−1 = 0. Hence, the zeros propagate in both directions, and we
can carry on with both i := i− 1 and i := i + 1. After reaching both 1 and p, we
get that x = 0 and therefore h = 0, exactly as we wanted to show.

In the other case, supp(h) = supp(g). But then supp(hΣ) ⊊ supp(gΣ), which
is an immediate contradiction, because we may see from the figures that there
is no way of balancing any additional edge compared with g without shrinking

56

supp(g), since all the other edges have only one commodity flowing through
them.

Corollary 4.12. There exist infinitely many MCF instances with |E| = 6p+1 and
K = 3 that contain circuits of norm ≥ 2p.
Remark 4.13. It is possible to construct a flow f in the network displayed in
Figure 4.2 such that φ(f) = 1 and φ(f + g) = 0 where g is the exponential
circuit, potentially by introducing new commodities and picking sources and sinks
appropriately. However, in all examples we have produced so far, there always
exists some small circuit h such that φ(f + h) also equals 0, and such examples
therefore do not serve as a proof of large inflation rates.

4.5.1 Adaptation for LBF

Figure 4.5: A schema of two blocks of the exponential MCF circuit adapted for
LBF. The whole network has eight layers. All cycles belong to the same (and
only) commodity; the colours are used for better visibility.

We now briefly sketch the adaptation of the exponential circuit construction
for LBF. The overall structure is very similar to the construction from Figure 4.2,
however a crucial difference is that there is only one commodity and edges instead
have multiple copies in different layers. We describe the procedure for translating
the presented MCF circuit to a LBF circuit. See Figure 4.5 for an illustration.

For simplicity, we first modify the MCF instance by splitting the commodity
g into two, ga and gb. The flow commodity g in the MCF circuit gets reassigned
to ga and gb as follows: we split it into edge-disjoint cycles and assign the cycles
alternatively to ga and gb. Note that this modified circulation is also a circuit:
the outcomes of Lemma 4.10 are even easier to prove since all four commodities
now consist of vertex-disjoint cycles, and the proof Lemma 4.11 applies almost
identically.

57

The idea is to use this instance and circuit to construct an exponential circuit
in LBF. The LBF network will have L = 8 layers (i.e., the path length restriction
will be 7). The k-th commodity for (k ∈ {1, 2, 3, 4} ∼= {ga, y, gb, b}) will be
restricted exclusively to layers 2k − 2 and 2k − 1 (recall that in LBF we index
layers from zero). Let g denote the original MCF circuit. We start with a zero
circulation h and then, for commodity k and edge uv in turn, we set hu2k−2v2k−1 :=
hv2k−1v2k−2 := gk

e .
This construction maps different commodities to different layers that do not

interact. It also produces a circulation that consists of vertex-disjoint weighted
cycles, which makes it easy to prove an analogy of Lemma 4.10. The fact that
a circulation produced this way is a circuit then follows from an adaptation
of Lemma 4.11, since the balancing equations that arise are identical to those
of MCF. Generally, the situation in LBF is not entirely analogous to MCF due to
loop edges, but those do not pose a problem here because of the vertex-disjoint
structure.

58

5. Most Helpful Cycles
In this chapter, we propose an iterative algorithm for MCF and provide some
guarantees on its running time, although the question of O(log 1/ε)-style conver-
gence will remain unanswered. However, practical experiments suggest it runs in
time polynomial in input size and log(1/ε) on instances from the standard testset
[Ope13], where ε is the desired error in penalty.

The algorithm is based on a modified version of Weintraub’s algorithm [BT89]
for the Minimum-Cost Maximum Flow problem (MCMF), which we will in-
troduce in the following section. We describe it in a fair amount of detail, since
its understanding is crucial for the understanding of our algorithm. Later, in
Section 5.2, we will describe our adaptation for MCF.

The main idea of both algorithms is to start with an initial flow of suboptimal
cost and iteratively improve it by a adding a weighted cycle to it. However, since
finding the best cycle would be NP-hard, we will instead find a collection of
vertex-disjoint weighted cycles that improves the solution by at least as much as
the best single cycle. In the case of the MCMF algorithm, and conditionally, in
our case, we will then be able to prove that this approach leads to fast convergence.

The chapter is organised as follows: in Section 5.1, we describe Weintraub’s
algorithm for MCMF, and demonstrate on it many concepts useful later. Our
contributions start in Section 5.2 where we describe our adaptation of Weintraub’s
algorithm for MCF. In Section 5.3, we analyse this algorithm.

5.1 Minimum-Cost Maximum Flow
Recall that the Minimum-Cost Maximum Flow problem is a generalisation
of the Maximum Flow problem in which we are given a vector w ∈ RE of costs
per one flow unit transported along each edge, and want to find a flow f that
primarily maximises |f | and secondarily minimises w · f .

MCMF has been widely studied and many weakly and strongly polynomial
algorithms have been developed; for an overview, see [AMO88]. The algorithm
we describe was originally proposed by Weintraub [Wei74] and its modification
and subsequent analysis was described in [BT89].

Weintraub’s algorithm repeatedly solves a problem called Most Helpful
Cycles. The task is to find an optimal vertex-disjoint collection of undirected
cycles with respect to some edge costs. Actually, there are two vectors of edge
costs, x+ and x−, where x+

e is the cost of picking e in its normal orientation and
x−

e is the cost of picking e in its opposite orientation. Formally, the problem is:

Input: Graph G = (V, E), edge costs x+, x− ∈ RE

Find: An incidence vector D ∈ {−1, 0, 1}E of a vertex-disjoint collec-
tion of undirected cycles minimising the cost function:

cost(D) =
∑︂
e∈E

⎧⎪⎪⎨⎪⎪⎩
x+

e if De = 1,
x−

e if De = −1,
0 otherwise.

Most Helpful Cycles

59

We will discuss the Most Helpful Cycles problem shortly. For now, we
only need to know that it is solvable in polynomial time.

The outline of the modified Weintraub’s algorithm is presented in Algorithm 1.

Algorithm 1: Most helpful cycles for MCMF (Helpful-MCMF)
Input: A flow network, weights w ∈ RE, allowed absolute error ε > 0
Output: Maximum flow fQ whose cost is within ε of the optimal cost
/* calculate the upper bound on the difference between the initial and

optimal cost: */
C ← ∑︁

e∈E |we| · ce

Q← log(C/ε) · 2|E| /* number of iterations, see Theorem 5.5 */
f0 ← an arbitrary maximum satisfying flow
for i = 0, . . . , Q− 1 do

5 for λp = λ1, . . . , λq do /* try several step sizes λp, see Remark 5.1 */
define x+, x− ∈ RE the cost of increasing/decreasing the flow on
each edge by λp:

x+
e =

{︄
λp · we if f i

e + λp ≤ ce

+∞ otherwise
x−

e =
{︄
−λp · we if f i

e − λp ≥ 0
+∞ otherwise

Dp ← FindMostHelpfulCycles(G, x+, x−)
/* due to properties of x+ and x−, Dp is a disjoint collection of

undirected cycles such that f i + λpDp is satisfying and Dp

minimises w ·λpDp, i.e., it maximises the cost improvement */

end
/* find the λp and the cycle collection that decreases the total cost by

the most and add it to the flow: */
9 λ, D← arg minλp,Dp

{w · λpDp }
if λD = 0 then

f i is already optimal, return it
end

13 f i+1 ← f i + λD
end

Remark 5.1. In Algorithm 1, we intentionally omit the choice of candidate step
sizes λ1, . . . , λq. We present two options:

1. Exhaustive step sizes. We try all λp from the set Ui = { f i
e | e ∈ E } ∪

{ ce − f i
e | e ∈ E }. As we will later see, this is sufficient to always find the

globally best cycle collection.

2. Power-of-two step sizes. Let u be the maximum element from Ui. We try all
powers of 2 smaller than u, starting from 1.1 This way we will try Θ(log u)
different step sizes instead of O(|E|).

We will analyse both approaches when discussing the runtime of the algorithm.

1Here we assume that c ∈ NE and therefore there is an integer optimal solution. Otherwise
we would also have to try all negative powers of two greater than some δ > 0.

60

5.1.1 Finding Most Helpful Cycles
We will now describe the procedure FindMostHelpfulCycles(G, x+, x−) for
solving the Most Helpful Cycles problem. As mentioned before, insisting
that the returned incidence vector D has to be just a single undirected cycle makes
the problem NP-hard. For example, by setting x+ = −1 and x− = +∞ and
checking if the minimum cost of D is −|E|, we obtain the (directed) Hamiltonian
cycle problem.

On the other hand, the Most Helpful Cycles problem is solvable in poly-
nomial time by a reduction to the Assignment Problem, which we now briefly
define; see also Ramshaw and Tarjan [RT12] for a survey.

A weighted perfect complete bipartite graph is a graph G = (V, E, w) such that
V = A∪B, |A| = |B|, E = A×B, w ∈ RE. A matching in G is a subset of edges
M ⊆ E such that no two edges of M share a common vertex. A matching M is
perfect, if |M | = |A| = |B|, i.e., each vertex v ∈ V is incident to some (and exactly
one) edge in M . The weight of a matching M is defined as w(M) = ∑︁

e∈M we.
The Assignment Problem is defined as:

Input: Weighted perfect complete bipartite graph G
Find: Perfect matching M of minimum weight

Assignment Problem

Lemma 5.2. Most Helpful Cycles is solvable in polynomial time by reduc-
tion to Assignment Problem.

Proof. The idea is that we let each vertex choose its successor on the cycle, with
an additional option with cost 0 of not belonging to any cycle. For that, we
create a bipartite graph H = (Vout∪Vin, Vout×Vin, x) with Vout and Vin being two
disjoint copies of the original vertex set V and x defined as

xuoutvin
=
{︄

0 if u = v,
min(x+

uv, x−
vu) otherwise,

where x+
uv and x−

vu are defined to be +∞ if the respective edges do not exist.
Let M be the perfect matching solving the Assignment Problem and create
the resulting incidence vector D as follows: set D = 0 for all entries with the
following exception:

for each uoutvin ∈M ,
{︄

Duv := 1 if x+
uv ≤ x−

vu,
Dvu := −1 if x+

uv > x−
vu.

That is, we just translate the choice of M into which edge and in which
direction to pick in the original graph.

The properties of matchings in H allow each vertex in G to have exactly one
successor and predecessor (including itself), which means perfect matchings in H
have one-to-one correspondence to undirected cycle collections in G.2 Addition-
ally, the costs are chosen in such a way that each perfect matching of H has the
same cost as the corresponding cycle collection in G.

2Technically, this is true only if G does not contain two edges of opposite orientation, i.e.,
uv ∈ E =⇒ vu /∈ E, but if it does, we always want to pick the cheaper of the two edges
anyway.

61

5.1.2 Convergence Analysis
Let f∗ be some fixed optimal solution, i.e., a solution minimising w · f . Then, for
the purposes of the section, we define the optimality gap as a function GAP(f) :=
w · f −w · f∗ = w · (f − f∗) ≥ 0.

We will now show that in each step, the optimality gap of the current solution
gets reduced by a multiplicative factor c ∈ (0, 1) that is linear in 1/|E|, which
means that after Q iterations, the optimality gap reduces to (1−c)Q of the initial
gap. We start by analysing the improvement possible by picking an appropriate
single cycle, and later show that finding a most helpful collection of disjoint cycles
yields at least as much improvement.

Lemma 5.3. Let f i be a flow at the start of the i-th iteration of Algorithm 1 and
let GAP(f) and f∗ be the optimality gap and a fixed optimal solution, respectively.
Then there exists a weighted cycle αC such that f i + αC is satisfying and

GAP(f i + αC) ≤ (1− 1/m) ·GAP(f i),

where m = |E|.

Proof. Set ∆ = f∗ − f i. From Section 1.7, we know that ∆ is a circulation, and
that it can be expressed as a conformal sum of ℓ ≤ m = |E| weighted cycles:

∆ =
ℓ∑︂

i=1
αiCi.

Since the dot product and therefore also our cost function w · f is linear, it
follows that

GAP(f i) = w · (f i − f∗) = −w ·∆ = −
ℓ∑︂

i=1
w · αiCi.

Let αC be the weighted cycle with the largest improvement, i.e., the most
negative value of w · αC, among the cycles in the sum. We immediately see that
w · αC ≤ 1/ℓ ·w ·∆, since the smallest of ℓ values must certainly be below their
average. Thus, GAP(f i + αC) = w(f i + αC − f∗) = w · (f i − f∗) + w · αC ≤
w · (f i− f∗) + 1/ℓ ·w ·∆ = w · (f i− f∗) + 1/ℓ ·w · (f∗− f i) = (1−1/ℓ) ·GAP(f i) ≤
(1− 1/m) ·GAP(f i).

The algorithm obviously does not find αC since it does not know ∆, but we
will show that the weighted cycle collection found by the algorithm decreases the
optimality gap enough:

Lemma 5.4. Let f i, f i+1 be flows at the start of iteration i and i+1 of Algorithm 1
and let GAP(f) and f∗ be the optimality gap and an optimal solution, respectively.
Then

• GAP(f i+1) ≤ (1 − 1
m

) · GAP(f i) if we use the exhaustive step size rule
(Remark 5.1),

• GAP(f i+1) ≤ (1 − 1
2m

) · GAP(f i) if we choose the power-of-two step size
rule.

62

Proof. We focus on the former case first.
Let ∆ = f∗ − f i and let αC be the most-improving cycle from the canon-

ical cycle decomposition of ∆. We already know from the previous lemma
that GAP(f i + αC) ≤ (1 − 1/m) · GAP(f i). We fix a satisfying weighted cy-
cle γB with γ > 0 that minimises w · γB among all satisfying weighted cycles;
clearly w · γB ≤ w · αC < 0 and w · B < 0. We will show that γ ∈ Ui (i.e.,
γ = f i

e or γ = ce − f i
e for some e ∈ E), which means that γ has been consid-

ered as a step size during the current iteration. We proceed by contradiction:
if this is not the case, then adding γB to f i does not bring any new edge to
0 or its capacity, and we can therefore increase γ to some γ′ > γ. But then
w · γ′B = γ′(w ·B) < γ(w ·B) = w · γB, which is a contradiction.

Therefore, λp = γ for some p on Line 5 of Algorithm 1. Then clearly w·λpDp ≤
w · γB, since γB = λpB is a disjoint collection of cycles (albeit consisting only of
a single cycle) with step size λp, and λpDp is the best such collection. This proves
the first case of the lemma, since the most helpful cycle collection λD found by
the algorithm (Line 9) decreases the optimality gap by −w · λD ≥ −w · λpDp ≥
−w · γB ≥ −w · αC ≥ −1/m ·w ·∆ = 1/m ·GAP(f i).

For the second case, take the best cycle collection λD from the previous
paragraph and observe that there exists some power-of-two step size λ∗ ∈ [λ/2, λ]
tried by the algorithm. Since λ∗D is a satisfying cycle collection for this step size
(because λ∗D ⊑ λD), the best cycle collection must improve the optimality gap
at least by −w ·λ∗D ≥ −w · (λ/2)D ≥ −1/2 ·w ·λD. By the argument from the
previous paragraph, the optimality gap decreases by−w·λ∗D ≥ 1

2m
·GAP(f i).

Theorem 5.5. The modified Weintraub’s algorithm solves MCMF in time poly-
nomial in |V |, |E| and log(C/ε), and gives a solution with optimality gap ≤ ε,
where C ≤ ∑︁e∈E |we| · ce is some upper bound on the initial optimality gap of f0.

Proof. Each iteration runs in time polynomial in |V |, |E| and log(C), and the
optimality gaps of the solutions satisfy GAP(f0) ≤ C, GAP(f i+1) ≤ (1 − 1

2|E|) ·
GAP(f i). According to Lemma 1.11, after log(C/ε)2|E| iterations, the optimality
gap drops below ε.

5.2 Most Helpful Cycles for MCF
We now present our adaptation of Weintraub’s algorithm for MCF (from now
on referred to as Helpful-MCF), namely for the (MCF-P) formulation where
the capacity constraints have been replaced with a quadratic penalty function.
We are focusing only on MCF and not LBF, since the latter problem has so far
resisted our attempts at adopting the same approach for it – although we would
not be surprised if this idea eventually turned out to be applicable there as well.

The quadratic penalty presents an obvious complication because many argu-
ments in the previous section relied on the cost function being simply a scalar
product w · f . Consequently, we will not be able to straightforwardly prove fast
convergence, although we will still show weaker properties, such as the existence
of an improving cycle.

The changes in Helpful-MCF as compared to Helpful-MCMF are as
follows:

63

1. The upper bounds C and Q, on, respectively, the optimality gap and the
number of iterations, no longer apply. We postpone their determination
until after convergence analysis, to Section 5.3.6. Now we informally replace
them in the algorithm by “sufficiently large numbers”.

2. It is no longer true that trying all step sizes λp ∈ Ui (i.e., those of the form
fk

e and ce − fk
e) is enough to find the optimal cycle collection. Further-

more, the optimal solution no longer has to be integral. Therefore, we will
use a modified power-of-two step size rule, which considers λp ∈ {λmin =
2ℓ, 2ℓ+1, . . . , 2r−1, 2r = λmax} with ℓ, r ∈ Z. We discuss the correct values of
λmin and λmax later, also in Section 5.3.6.

3. The body of the main loop in Algorithm 1 (lines 5 to 13) is now performed K
times, once for each commodity k ∈ {1, . . . , K}. Each time, we leave other
commodities fixed and try to find the most helpful cycles by changing only
the flow in the current commodity. At the end of each iteration (after trying
all commodities), we choose the most improving cycle collection among all
λ and k.

4. The cost function changes from w · f to φ(f) = ∑︁
e∈E φe(f).3 Also, the

capacities can now be exceeded. This entails changes in the definition of
x+ and x− (which now depends not only on λp, but also on k):

x+
e = φe(f + λpek,e)− φe(f),

x−
e =

{︄
φe(f − λpek,e)− φe(f) if f − λpek,e ≥ 0,
+∞ otherwise,

where ek,e ∈ RE×K is the (k, e)-th unit vector, i.e., a vector that is 0 ev-
erywhere except for the k-th commodity on the edge e, where it is 1. In
other words, for each e ∈ E, we calculate the difference in penalty if we re-
spectively increase or decrease the flow along edge e in the k-th commodity
by λp.

All the other details, as well as the fact that we use the FindMostHelp-
fulCycles subprocedure, remain unchanged.
Remark 5.6. Note that keeping FindMostHelpfulCycles intact is only pos-
sible because of how φ is defined. Firstly, edges do not interfere with each other,
meaning that the total change in φ is equal to the sum of changes of φe over all
e ∈ E, i.e., the function φ is separable with respect to E. Secondly, for each edge,
we only ever change the flow in one commodity.

This is why the same algorithm cannot be used verbatim for LBF. There, the
edges still do not interact with each other, but it is no longer the case that at most
one ∆k

e may be changed on each edge e, since the graph is one big layered network,
and not k independent ones. In such cases, x+ and x− no longer accurately reflect
the costs: for a circulation ∆ that has ∆i

e, ∆j
e ≥ 0 for i ̸= j and ∆∗

e = 0 elsewhere,
the final cost change for edge e is φe(f +∆i

e +∆j
e)−φe(f), which cannot generally

be expressed in terms of φe(f), φe(f + ∆i
e) and φe(f + ∆j

e), precisely because φe

is not a linear function.

3Recall that φe is defined in Section 2.2.2 as φe(f) =
[︁
fΣ(e)− ce

]︁2
+.

64

5.3 Analysing Helpful-MCF
Although the analysis is much more complicated than in the case of Helpful-
MCMF due to a more complex penalty function, we will show that Helpful-
MCF still finds the best possible cycle in each iteration (or rather a constant
approximation thereof). The question is, however, whether this is enough. In the
case of MCMF, we have shown that finding the best cycle decreases the optimality
gap by a multiplicative factor of Ω(1/m) in each iteration. It is a priori unclear
whether any such bounds hold here.

To illustrate the added complexity that non-linearity brings: in MCMF, when
we look at the cycle decomposition of the circulation that leads to the optimum,
it does not matter in which order we add those cycles to the current flow, since
due to linearity, a given cycle always improves the penalty function by the same
amount regardless of to which flow it is applied. In MCF, on the other hand, the
order in which we apply the cycles matters – in fact, applying the cycles from the
optimal decomposition one-by-one may, under some circumstances, even lead to
the penalty first increasing and only then decreasing. Therefore, it is not even
immediately clear that there must exist an improving cycle.

The organisation of this section is as follows: in Section 5.3.1, we show that
Helpful-MCF always finds a cycle collection that is, up to a multiplicative
constant, best possible. In Section 5.3.2, we show that there always exists an
improving cycle, and subsequently provide bounds on its improvement in Sec-
tion 5.3.3. In Section 5.3.4, we prove a O(1/ε)-style convergence of Helpful-
MCF. Then, in Section 5.3.5 we call on our knowledge of inflation rate and prove
a O(HMCF · log(1/ε))-style convergence of Helpful-MCF, where HMCF is the
inflation rate of the MCF polyhedron. Finally, in Section 5.3.6, we fill in the last
remaining technical details of Helpful-MCF, which follow from our analysis.

5.3.1 Finding the Best Cycle Collection
We will reuse the arguments from Lemma 5.4 to show that whenever there exists
a cycle that decreases the penalty function by ε, Helpful-MCF finds a cycle
collection that decreases the penalty function by at least ε/2.

In this and following sections, we will heavily use the notation from Sec-
tion 2.2.3.

Lemma 5.7. Let f i, f i+1 be flows at the start of iteration i and i+1 of Helpful-
MCF and let αC be any weighted one-commodity cycle feasible with respect to
f i. Furthermore, assume that λmin ≤ α ≤ 2λmax. Then,

φ(f i)− φ(f i+1) ≥ 1/2 · IMPf i(αC),

That is, the weighted disjoint collection of cycles found by the algorithm is a 2-
approximation of the best possible weighted cycle, assuming correct values of λmin
and λmax.

Proof. Let k∗ be the commodity of cycle αC. Pick the step size λp considered by
the algorithm such that λp ≤ α and λp is maximum possible. By our assumptions,
α/2 ≤ λp ≤ α, and thus λp = tα for some t ∈ [1/2, 1].

65

The most important observation is that taking λpC instead of αC improves
the penalty by at least half the amount of αC, i.e., IMPf (λpC) ≥ 1/2 ·IMPf (αC).
This follows directly from the concavity of IMPf :

IMPf (λpC) = IMPf
(︂
(1− t) · 0 + t · αC

)︂
≥ (1− t) · IMPf (0) + t · IMPf (αC)

= tIMPf (αC) ≥ 1
2 · IMPf (αC).

Identically to the proof for MCMF, we can see that for each given λ and k,
Helpful-MCF finds an optimal cycle collection λD in the k-th commodity, i.e.,
one such that IMPf i(λD) is maximum possible – specially, it is greater than any
IMPf i(λC) of a weighted cycle λC. The argumentation follows from the correct-
ness of the FindMostHelpfulCycles subprocedure and from the correctness
of our choice of x+ and x−. Hence, for λ = λp and k = k∗, Helpful-MCF finds
a solution λpD with IMPf (λpD) ≥ IMPf (λpC) ≥ 1/2 · IMPf (αC) which proves
the lemma.

Thus, we have shown that the algorithm always finds a cycle collection that
is, up to a multiplicative constant, best possible. The remaining question that
we try to answer for the rest of Section 5.3 is, how good that actually is.

5.3.2 Improving Cycle
We start off by showing that there always exists an improving cycle, a fact that
seemed almost trivial for MCMF. Recall from Section 2.2.3 that (for a fixed
flow f and a feasible circulation ∆) the function hf ,∆ : [0, 1] → R, hf ,∆(γ) :=
−IMPf (f + γ∆) is continous and convex, its derivative h′

f ,∆ is continous and
nondecreasing and that a circulation is an improving direction if and only if
h′

f ,∆(0) < 0. This motivates the following definition: define the acceleration of
∆ (with respect to f) as wf (∆) = h′

f ,∆(0). Clearly, ∆ is an improving direction
if and only if its acceleration is negative. Additionally, the more negative the
acceleration is, the more improvement we get by adding infinitesimal multiples
of ∆ to f . For an illustration, see Section 5.3.2.

Lemma 5.8. Given a flow f and a feasible and improving circulation ∆, there
exists a feasible and improving weighted cycle αC ⊑∆.

Proof. We may express hf ,∆ in terms of φ:

hf ,∆(γ) = φ(γ∆ + f)− φ(f)

=
∑︂
e∈E

[︂
(γ∆ + f)Σ(e)− ce

]︂2
+
− φ(f)

=
∑︂
e∈E

[︂
γ ·∆Σ(e) + fΣ(e)− ce

]︂2
+
− φ(f),

where fΣ(e)− ce and φ(f) are constant for a fixed f and ∆Σ(e) is constant for a
fixed ∆. Taking the first derivative yields

h′
f ,∆(γ) = 2 ·

∑︂
e∈E

∆Σ(e) ·
[︂
γ ·∆Σ(e) + fΣ(e)− ce

]︂
+

,

66

hf ,∆

0 1

h′
f ,∆

0 1

hf ,Γ

0 1

h′
f ,Γ

0 1

Figure 5.1: Illustration of h for the improving (hf ,∆) and non-improving (hf ,Γ)
case.

and therefore:

wf (∆) = h′
f ,∆(0) = 2 ·

∑︂
e∈E

∆Σ(e) ·
[︂
fΣ(e)− ce

]︂
+

.

We see that wf is linear: whenever Γ + Ψ = ∆ and all three circulations are
feasible with respect to f , it also holds that wf (Γ)+wf (Ψ) = wf (∆). This follows
from the fact that ΓΣ(e) + ΨΣ(e) = ∆Σ(e).

From Remark 2.2 we know that ∆ can be decomposed into a conformal sum
of weighted cycles, ∆ = ∑︁ℓ

i=0 αiCi. Due to conformality, αiCi ≥ 0 is feasible for
all i, as is εCi for 0 ≤ ε ≤ αi.

Applying linearity of wf , we get wf (∆) = ∑︁ℓ
i=0 wf (αiCi). Since ∆ is improv-

ing, wf (∆) must be negative. But then so must be the right-hand side, meaning
that some wf (αiCi) also has to be negative. Then by the properties of hf ,∆, αiCi

is an improving direction. Taking εαiCi for a sufficiently small ε finishes the
proof.

In fact, we get an even stronger property which we will use soon:
Lemma 5.9. Given a flow f and a feasible and improving circulation ∆, there
exists a feasible and improving weighted cycle αC ⊑ ∆ such that wf (αC) ≤
wf (∆)/(|E| ·K).
Proof. We know that wf (∆) = ∑︁ℓ

i=0 wf (αiCi) and that ℓ ≤ |E| · K. We may
therefore take the cycle with the smallest wf (αiCi), and the inequality follows
from the argument that the smallest of ℓ numbers has to be less than their average,
which we already used in the proof of Lemma 5.3.

5.3.3 Bounding Cycle Improvement
An obvious next step is to try to use these bounds to establish some penalty im-
provement guarantees. Our ultimate goal is to have a theorem akin to Lemma 5.3,

67

showing that there is a cycle which improves the penalty by some large-enough
fraction of the optimality gap. We start by proving a useful upper and lower
bounds from which other bounds can be generated.

Lemma 5.10. For a flow f and a feasible circulation ∆ with wf (∆) < 0, it holds
that:

−wf (∆) ≥ IMPf (∆).

Additionally, there exists some ε ∈ (0, 1] such that:

IMPf (ε∆) ≥ wf (∆)2

4∥∆∥2
1

.

Proof. Let us prove the top inequality first. Using the definition of IMPf and
hf ,∆, the fact that hf ,∆(0) = 0 and that

∫︁ b
a f ′(x) dx = f(b)− f(a), we have

IMPf (∆) = −hf ,∆(1) = hf ,∆(0)− hf ,∆(1) = −
∫︂ 1

0
h′

f ,∆(γ) dγ.

Now, since h′
f ,∆(0) = wf (∆) and h′

f ,∆ is nondecreasing, it means that h′
f ,∆(γ) ≥

wf (∆) ∀γ ∈ [0, 1]. Therefore, the negated integral can be bounded from above by
the area of the box [0, 1]× [wf (∆), 0] and thus IMPf (∆) ≤ 1 · (−wf (∆)), which
is what we wanted to prove.

The idea behind the second part is to bound the steepness of h′
f ,∆, and,

subsequently, bound the area between h′
f ,∆ and the x-axis in the part of the

graph where h′
f ,∆ is negative. That way, even if h′

f ,∆ reaches zero as fast as
possible, it will still delineate at least this much area (and therefore imply at
least this much improvement).

Recall that

h′
f ,∆(γ) = 2 ·

∑︂
e∈E

∆Σ(e) ·
[︂
γ ·∆Σ(e) + fΣ(e)− ce

]︂
+

,

and thus,

h′′
f ,∆(γ) = 2 ·

∑︂
e∈E

∆Σ(e)2 · 1x>0(γ ·∆Σ(e) + fΣ(e)− ce),

where 1x>0(x) = 0 for x ≤ 0 and 1x>0(x) = 1 for x > 0. h′′
f ,∆(γ) may generally

be undefined in finitely many points, but those do not affect the reasoning in any
way since their measure is zero and h′

f ,∆ is continuous (and therefore cannot have
any sudden jumps, which is the only thing in which this could give us trouble).
An important observation is that 1x>0(x) ≤ 1 and therefore,

h′′
f ,∆(γ) ≤ 2 ·

∑︂
e∈E

∆Σ(e)2 · 1 = 2 ·
∑︂
e∈E

(︄
K∑︂

k=1
∆k

e

)︄2

≤ 2 ·
∑︂
e∈E

(︄
K∑︂

k=1

⃓⃓⃓
∆k

e

⃓⃓⃓)︄2

≤ 2 ·
(︄∑︂

e∈E

K∑︂
k=1

⃓⃓⃓
∆k

e

⃓⃓⃓)︄2

= 2 · ∥∆∥2
1,

where we use, in turn, the properties of 1x>0(x), expansion, the triangle inequality
for | · |, the fact that ∑︁i a2

i ≤ (∑︁i ai)2 for ai ≥ 0 and the definition of ∥ · ∥1.

68

This bound on the steepness of h′
f ,∆ means that h′

f ,∆(γ) ≤ h′
f ,∆(0)+2∥∆∥2

1γ =
wf (∆) + 2∥∆∥2

1γ. Specially, we get that

h′
f ,∆

(︄
−wf (∆)

2∥∆∥2
1

)︄
≤ 0.

Let ε := −wf (∆)/(2∥∆∥2
1). This means that the total area below the x-axis

can be bounded from below by the area of the triangle with vertices in (0, 0),
(0, wf (∆)) and (ε, 0). Therefore,

IMPf (ε∆) = −hf ,ε∆(1) = φ(f + ε∆)− φ(f) = −hf ,∆(ε)

≥ triangle area =
⃓⃓⃓⃓
⃓12 · wf (∆) ·

(︄
−wf (∆)

2∥∆∥2
1

)︄⃓⃓⃓⃓
⃓ = wf (∆)2

4∥∆∥2
1

,

which is precisely what we wanted to show.

Remark 5.11. This bound is fairly crude and most likely not tight in the general
case. It is, however, good enough to let us establish polynomial convergence (in
some sense), although it is to blame for introducing relatively big exponents to
the derived bounds.

Lemma 5.12. Let f and ∆ satisfy the conditions from the previous lemma.
Additionally, let it for all e ∈ E hold that fe ≤ d and (f + ∆)e ≤ d, where d is
the demand vector. Then there exists some ε ∈ (0, 1] such that:

IMPf (ε∆) ≥ wf (∆)2

4|E| · ∥d∥2
1
.

Proof. The proof is identical to that of the previous lemma, we just use a different
bound on the steepness of h′

f ,∆. We already know that

h′′
f ,∆(γ) ≤ 2 ·

∑︂
e∈E

∆Σ(e)2.

The additional condition ensures that |∆k
e | ≤ dk and therefore ∆Σ(e) ≤∑︁K

k=1 |∆k
e | ≤ ∥d∥1. From this it follows that h′′

f ,∆(γ) ≤ 2|E| · ∥d∥2
1. We may then

repeat the rest of the proof with 2|E| · ∥d∥2
1 in place of 2∥∆∥2

1.

Remark 5.13. This condition on f , ∆ and d is easily achieved in Helpful-MCF
(and indeed any “stateless” iterative algorithm). After each iteration, we may, in
O(|E| ·K) time, find the canonical decomposition of the current f i into weighted
paths and positive cycles, and then drop all the cycles. This way, the flow on
each edge may only decrease, and the penalty may thus only improve. In each
commodity k, the values of all the paths sum up to dk, meaning that the flow on
each edge cannot exceed dk either.

5.3.4 Achieving O(1/ε)-like Convergence
The previous bound may be used almost directly to drive the convergence rate.

69

Lemma 5.14. Let f ∈ RE×K be a flow and ∆∗ a circulation such that f + ∆∗ is
feasible and optimal. Then there exists some feasible cycle αC ⊑∆∗ such that:

IMPf (αC) ≥ GAP(f)2

4 · |E ×K|2 · ∥∆∗∥2
1
.

Moreover, if (f + ∆∗)e, fe ≤ d for all e (as is the case in Helpful-MCF), then:

IMPf (αC) ≥ GAP(f)2

4|E|3|K|2∥d∥2
1
.

Proof. We may assume that f is not optimal, otherwise αC := 0 trivially satisfies
the conditions. Lemma 5.9 guarantees the existence of a cycle α′C ⊑ ∆∗ such
that 1

|E|·K · wf (∆∗) ≥ wf (α′C) ≥ wf (∆∗) (the latter inequality follows from the
optimality of ∆∗). Additionally, −wf (∆∗) ≥ IMPf (∆∗) = GAP(f), which we
get, respectively, from Lemma 5.10 and f + ∆∗ being optimal. Also observe that
x ⊑ y implies ∥x∥1 ≤ ∥y∥1. Using Lemma 5.10 on α′C gives us α ≤ α′ such that:

IMPf (αC) ≥ wf (α′C)2

4∥α′C∥2
1

Now we use, respectively, Lemma 5.9 (remember that both wf are negative), the
fact that α′C ⊑∆∗, and twice the relationship between wf , IMPf and GAP.

IMPf (αC) ≥ wf (∆∗)2

4|E ×K|2∥α′C∥2
1
≥ wf (∆∗)2

4|E ×K|2∥∆∗∥2
1

≥ IMPf (∆∗)2

4|E ×K|2∥∆∗∥2
1

= GAP(f)2

4|E ×K|2∥∆∗∥2
1

To prove the second part of the proof, we may redo it with Lemma 5.12 instead
of Lemma 5.10, which gives us the factor of |E| · ∥d∥2

1 instead of ∥∆∗∥2
1.

Lemma 5.15. Given a multiflow network G = (G,K) with G = (V, E, c) and
demands d ∈ RK, let fQ be the flow obtained by performing Q ≥ 1 iterations of
the Helpful-MCF algorithm. Then

GAP(fQ) ≤ 16|E|3|K|2∥d∥2
1

Q
.

Proof. Let αC be the most-improving feasible cycle. Assuming correct bounds
λmin, λmax on the step size tried by Helpful-MCF, Lemma 5.7 guarantees us
that it will find a cycle collection λD with IMPf i(λD) ≥ 1/2 · IMPf i(αC). Plug-
ging this into the bound from Lemma 5.14 (and using the relationship between
GAP and IMPf) yields:

IMPf i(λD) ≥ GAP(f i)2

8|E|3|K|2∥d∥2
1
,

and thus,

GAP(f i+1) = GAP(f i)− IMPf i(λD) ≤ GAP(f i)− GAP(f i)2

8|E|3|K|2∥d∥2
1
,

= GAP(f i) ·
(︄

1− GAP(f i)
8|E|3|K|2∥d∥2

1

)︄
.

The rest then follows automatically from Lemma 1.10.

70

Theorem 5.16. Given a multiflow network G = (G,K) with G = (V, E, c) and
demands d ∈ RK, Helpful-MCF finds a solution with total penalty within ε of
the optimal penalty in time polynomial in input size, ∥d∥1 and 1/ε.

Proof. Setting Q = 16|E|3|K|2∥d∥2
1/ε and plugging it into Lemma 5.15 yields

GAP(fQ) ≤ ε. Therefore, the number of iterations is polynomial, and each
iteration takes polynomial time, assuming “reasonable” λmax and λmin.

5.3.5 Inflation to the Rescue
As it turns out, using the inflation rate is enough to obtain an algorithm with
O(log(1/ε))-style convergence, although the rate of convergence depends on the
inflation rate. We start by improving the bound from Lemma 5.14.

Lemma 5.17. Let G be a MCF instance, P = {x ∈ Rn | Ax = a ∧ Bx ≤ b }
the feasible polytope of its (MCF-LP) formulation, HMCF = H1(A, a, B, b) the
(ℓ1-)inflation rate of P and let f ∈ RE×K be a flow. Furthermore assume that the
instance is satisfying, i.e., it has a solution with zero penalty. Then there exists
a weighted cycle αC such that

IMPf (αC) ≥ GAP(f)
4|E|3K2H2

MCF
.

Proof. We may assume that f is not optimal, otherwise 0 satisfies the conditions.
For a moment, we switch from our current interpretation (MCF-P) without capac-
ity constraints back to the “stricter” one, (MCF-LP). The point f does not belong
to the (MCF-LP) polyhedron, as it has nonzero penalty and therefore violates
some constraints. In the language of polyhedra, if P = {x ∈ Rn | Ax = a∧Bx ≤
b } is the (MCF-LP) polyhedron, then f ̸∈ {x ∈ Rn | Ax = a ∧ Bx ≤ b }, but
there exists a nonnegative vector δ = [Bf − b]+ ∈ RE – and, to account for the
nonnegativity constraints which are kept intact, its zero-padded extension δ′ into
RE×(K+1) – such that f ∈ P δ′ = {x ∈ Rn | Ax = a ∧Bx ≤ b + δ′ }.

We may observe that P δ′ is precisely the δ′-inflation of P . By the definition of
the inflation rate, there exists some satisfying flow f∗ ∈ P such that ∥f∗ − f∥1 ≤
HMCF · ∥δ′∥1 = HMCF · ∥δ∥1. Stated differently, there exists a circulation ∆∗ such
that f + ∆∗ ∈ P and ∥∆∗∥1 ≤ HMCF · ∥δ∥1. Let us fix this circulation.

By Lemma 5.14, there exists a feasible cycle αC ⊑∆∗ such that

IMPf (αC) ≥ GAP(f)2

4 · |E ×K|2 · ∥∆∗∥2
1
.

Our strategy is to express GAP(f) in terms of ∥δ∥1, so that we can use the
relationship between ∥δ∥1 and ∥∆∗∥1. Realise that δe = fΣ(e)− ce. Then:

GAP(f) = φ(f)− φ(f + ∆∗) = φ(f) =
∑︂
e∈E

[︂
fΣ(e)− ce

]︂2
+

=
∑︂
e∈E

δ2
e = ∥δ∥2

2

Using the relation between ℓ1- and ℓ2-norms in RE,

∥δ∥2
2 ≥ ∥δ∥2

1/|E|.

71

Using ∥∆∗∥1 ≤ HMCF · ∥δ∥1 yields:
∥δ∥1

∥∆∗∥1
≥ 1

HMCF
.

Putting this all together:
GAP(f)

4|E|2K2∥∆∗∥2
1
≥ ∥δ∥2

2
4|E|2K2∥∆∗∥2

1
≥ ∥δ∥2

1
4|E|3K2∥∆∗∥2

1
≥ 1

4|E|3K2H2
MCF

.

Plugging this into the original inequality gives us the needed bound.
Lemma 5.18. Given a multiflow network G = (G,K) with G = (V, E, c) and
demands d ∈ RK, let fQ be the flow obtained by performing Q ≥ 0 iterations of
the Helpful-MCF algorithm. Furthermore assume that G has a solution with
zero penalty. Then

GAP(fQ) ≤ |E| · ∥d∥2
1 ·
(︄

1− 1
8|E|3K2H2

MCF

)︄Q

.

Proof. The initial flow f = f0 surely satisfies e ∈ E : fe ≤ d and therefore

GAP(f) = φ(f) =
∑︂
e∈E

[︂
fΣ(e)− ce

]︂2
+
≤
∑︂
e∈E

fΣ(e)2 ≤
∑︂
e∈E

∥d∥2
1 = |E| · ∥d∥2

1.

For Q ≥ 1, we repeat the proof of Lemma 5.15 by assuming the algorithm
has correct bounds λmin and λmax on the step size and invoking Lemma 5.7 about
2-approximation. Hence, the algorithm finds a cycle collection λD such that
IMPf i(λD) ≥ 1/2 · IMPf i(αC), where αC is the most-improving weighted cycle.
Plugging this into the bound from the previous lemma yields:

IMPf i(λD) ≥ GAP(f)
8|E|3K2H2

MCF

and thus,

GAP(f i+1) = GAP(f i)− IMPf i(λD) ≤ GAP(f i)− GAP(f)
8|E|3K2H2

MCF

= GAP(f i) ·
(︄

1− 1
8|E|3K2H2

MCF

)︄
.

The rest is just applying induction on Q.
Theorem 5.19. Let G = (G,K) be a multiflow network with G = (V, E, c) and
demands d ∈ RK. Assuming G has a solution with zero penalty, Helpful-MCF
finds a solution with penalty at most ε in time polynomial in input size, HMCF
and log(∥d∥1/ε).
Proof. By applying Lemma 1.11 on the previous lemma, we get that we obtain
φ(fQ) = GAP(fQ) ≤ ε after

Q = 2 log(|E| · ∥d∥1/ε) · 8|E|3K2H2
MCF

iterations.

Corollary 5.20. Let G = (G,K) be a multiflow network with G = (V, E, c) and
demands d ∈ RK . Assuming that HMCF is polynomial in input size and G has a
solution with zero penalty, Helpful-MCF finds a solution with penalty at most
ε in time polynomial in input size and log(∥d∥1/ε).

72

5.3.6 Filling in the Gaps in Helpful-MCF
There are two remaining details: how to set λmin and λmax, and how to deal with
instances that do not have a satisfying solution.

The latter question has an easy, but impractical answer. The algorithm simply
assumes that a satisfying solution exists and that GAP(f) = φ(f), and maintains
an upper bound on GAP(f), as per the previous lemma, while continously check-
ing that φ(f) still satisfies it. As long as the upper bound holds, the algorithm
makes good enough progress whether or not the instance is satisfying. If the
upper bound is violated, this necessarily means that in fact GAP(f) < φ(f) and
the instance is unsatisfying. In that case, the algorithm stops.

A major disadvantage is that although the algorithm may generally be much
faster than what is guaranteed by our bounds (and we are almost certain of
that because of their crudeness), this approach will most probably lead to a self-
fulfilling prophecy in the unsatisfying case, that is, the bounds will be tight.
Additionally, unless one uses the weaker O(1/ε)-style bound, one needs to have
a reasonable bound on HMCF, but we are currently unaware of even a subexpo-
nential bound.

What about λmin and λmax? The latter can be set to maxK
k=1 dk (or to the

nearest greater power of two thereof). For the former, we need to provide a lower
bound on |α| of the most-improving weighed cycle αC ⊑ ∆∗ that appears in
Lemmas 5.14 and 5.17. Thanks to Remark 5.13, we may use the second part of
Lemma 5.14, which guarantees that

IMPf (αC) ≥ GAP(f)2

4|E|3|K|2∥d∥2
1
.

At the same time, from Lemma 5.10, we know that −wf (αC) ≥ IMPf (αC) and
by the definition of wf ,

−wf (αC) = −αwf (C) = −αh′
f ,C(0) = −2α ·

∑︂
e∈E

CΣ(e) ·
[︂
fΣ(e)− ce

]︂
+

≤ −2α ·
∑︂
e∈E

(−1) ·
[︂
fΣ(e)− ce

]︂
+

= 2α ·
⃦⃦⃦⃦[︂

fΣ − c
]︂

+

⃦⃦⃦⃦
1

≤ 2α ·
⃦⃦⃦
fΣ
⃦⃦⃦

1
= 2α · ∥f∥1 ≤ 2α|E| · ∥d∥1 .

Chained together, we get

2α|E| · ∥d∥1 ≥ −wf (αC) ≥ IMPf (αC) ≥ GAP(f)2

4|E|3|K|2∥d∥2
1
,

and therefore,
α ≥ GAP(f)2

8|E|4|K|2∥d∥3
1
≥ ε2

8|E|4|K|2∥d∥3
1
,

where ε is the final approximation error. This is the value that we may set
λmin to. Although it may seem large at first, remember that we are only trying
log(λmax/λmin) different step sizes in each iteration, and

log(λmax/λmin) ≤ log
(︄

8|E|4|K|2∥d∥4
1

ε2

)︄
= O (log (|E| · |K| · ∥d∥1/ε)) ,

and hence the total time complexity is not impacted in any significant way.

73

74

Conclusion
In this work, we studied multicommodity and length-bounded flows, and although
these two problems do not seem very related at the first sight, they share not only
a similar LP formulation, but also a very similar structure and open questions.
Both problems seem in some sense inherently more difficult than the maximum
flow problem and both have so far resisted attempts both at creating exact polyno-
mial-time combinatorial algorithms for them, and at proving that such algorithms
cannot exist – for whatever definition of “combinatorial”.

We have tried to bridge this gap, and even though we have not succeeded
fully, we have contributed several new pieces to the puzzle. We have proposed
two new algorithms: an adaptation of Away-Steps FW for MCF and LBF and
the Helpful-MCF algorithm for MCF. Both of them run in time polynomial in
the input size, 1/ε and the demands. While Helpful-MCF is quite undoubtedly
combinatorial, the boundaries are more blurred in the case of Away-Steps FW –
the algorithm itself is simple, but its analysis is fairly complex. Whatever the
reader’s feeling about this may be, our ultimate motivation is to look for fast
algorithms that do not use the deep machinery of LP, and in this regard, both
algorithms have brought us further along this path.

One of our main contributions is examining the conditions under which both
algorithms are “practically exact” – with only log(1/ε) dependence on the ap-
proximation error4 – while simultaneously uncovering the common bottleneck of
both approaches. These results are summarised in Figure 5.2.

The central definition is the inflation rate. Surprisingly, this property summed
up as “a flow that only oversteps the capacities a little must be close to some
flow that satisfies the capacities” is enough to guarantee fast convergence of both
algorithms – even though they do not seem very related at first glance. An-
other surprising fact is that although small inflation rate seems almost trivial for
single-commodity maximum flow, it is far from that once one introduces more
commodities or layers.

A similar situation occurs with circuits: while single-commodity circuits are
simply all undirected cycles, the situation gets more complicated with multiple
commodities / layers, and as we have shown, there exist circuits of exponential
size that send 1 unit of flow over some edge and 2Θ(|E|×K) units over some other
edge. This is in a sense both fortunate and unfortunate. It is fortunate because it
gives us a possible clue as to why MCF and LBF seem so much harder than other
popular flow problems, and potentially opens doors to other hardness results. At
the same time, it is unfortunate, since one of our results is that (for a general
LP problem) small circuits imply small inflation rate, which, in our case, would
imply fast convergence.

Luckily, the proof does not rely on all properties of circuits – it works with
any universal test set, and even with any MCF-/LBF-universal test set. Lastly,

4With a bit of LP theory, algorithms that converge this quickly actually are, in a sense,
exact, since for solutions with error ε = Θ(1/nn) (so that log(1/ε) = Θ(n log n)), the optimal
solution can be obtained by rounding the current solution to the nearest vertex of the polyhe-
dron – although the known procedures for finding this vertex perhaps would not be considered
combinatorial.

75

Helpful-MCF runs in time
polynomial in input size and
log(1/ε)

Away-Steps FW solves MCF
in time polynomial in input size,
log(1/ε) and demands

the ℓ1-inflation rate HMCF of the
MCF instance is polynomial in
input size

the objective φ for (MCF-P∗) is
σ-HEB and σ is polynomial in in-
put size

there exists a MCF-universal
test set with polynomially-sized
integer vectors

the circuits of the MCF matrices
have norm polynomial in input
size

Section 5.3,
Corollary 5.20

Section 3.7,
Theorem 3.7

Theorem 4.8

Section 4.3,
Theorem 4.5

Remark 4.7

Figure 5.2: The implication diagram from Figure 1 revisited. The statement in
red has been proven false, all other statements remain undecided. The diagram
for LBF is practically the same, except that there is no Helpful-LBF algorithm.

it is not the only path for showing small inflation rate or fast convergence, unless,
of course, the opposite implication is proven.

Further Work
Alternative MCF-/LBF-universal test sets are an area we deem worthy of explor-
ing. A prominent example is the set of all edge directions that can ever appear
(for some choice of constraints’ right-hand side that forms a valid MCF / LBF
instance), which may generally be much smaller (and contain smaller vectors)
than the circuit set.

This is a possible reason why we have not so far been successful in construct-
ing a network and a large circuit that appears as an edge in the corresponding
polyhedron, which is another topic worth exploring. A similar endeavour is trying
to construct an instance where the optimal solution has large fractionality, i.e.,
where it is described by a rational vector with at least one large denominator.
We are convinced that using a large circuit to construct a polytope with the cor-
responding constraint matrices and with a vertex of high fractionality is possible,
but it gets more interesting in our case where not all right-hand sides form a valid
MCF / LBF instance.

An analogous question can be asked about the inflation rate: do large circuits
already imply large inflation rate? Again, it seems fairly feasible to construct
a polyhedron with large inflation rate once we have a large circuit and unlim-
ited freedom in choosing the right-hand side, but the question gets much more
interesting if we only limit ourselves to MCF / LBF instances.

Lastly, we are interested in the similarities and differences between MCF and

76

LBF. Although they share almost all results, this may not be the case with
perhaps the most important one: there is Helpful-MCF for MCF, but so far
no Helpful-LBF for LBF. An important question to answer is whether there
always exists an improving cycle that does not use more than one copy of each
edge in the layered network, and generally, whether there is a way of adapting
Helpful-MCF for LBF.

77

78

Bibliography
[AK71] Jiří Adámek and Václav Koubek. “Remarks on flows in network with

short paths”. In: Commentationes Mathematicae Universitatis Car-
olinae 12.4 (1971), pp. 661–667.

[AMO88] Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. Network
Flows. Massachusetts Institute of Technology, Operations Research
Center, 1988.

[Alt18] Kateřina Altmanová. “Toky cestami omezené délky”. BA thesis.
Univerzita Karlova, Matematicko-fyzikální fakulta, 2018.

[AKV20] Kateřina Altmanová, Petr Kolman, and Jan Voborník. “On Poly-
nomial-Time Combinatorial Algorithms for Maximum L-Bounded
Flow”. In: J. Graph Algorithms Appl. 24.3 (2020), pp. 303–322. doi:
10.7155/jgaa.00534. url: https://doi.org/10.7155/jgaa.
00534.

[Ass78] Arjang A Assad. “Multicommodity network flows—a survey”. In:
Networks 8.1 (1978), pp. 37–91.

[Bai04] Georg Baier. Flows with path restrictions. Göttingen: Cuvillier, 2004.
isbn: 9783898739641.

[Bai+10] Georg Baier et al.. “Length-bounded cuts and flows”. In: ACM Trans-
actions on Algorithms (TALG) 7.1 (2010), pp. 1–27.

[BT89] Francisco Barahona and Éva Tardos. “Note on Weintraub’s mini-
mum-cost circulation algorithm”. In: SIAM Journal on Computing
18.3 (1989), pp. 579–583.

[BS17] Amir Beck and Shimrit Shtern. “Linearly convergent away-step con-
ditional gradient for non-strongly convex functions”. In: Math. Pro-
gram. 164.1-2 (2017), pp. 1–27. doi: 10.1007/s10107-016-1069-4.
url: https://doi.org/10.1007/s10107-016-1069-4.

[BDF16] S Borgwardt, JA De Loera, and E Finhold. “Edges versus circuits: A
hierarchy of diameters in polyhedra”. In: Advances in Geometry 16.4
(2016), pp. 511–530.

[BSY18] Steffen Borgwardt, Tamon Stephen, and Timothy Yusun. “On the
Circuit Diameter Conjecture”. In: Discret. Comput. Geom. 60.3
(2018), pp. 558–587. doi: 10.1007/s00454- 018- 9995- y. url:
https://doi.org/10.1007/s00454-018-9995-y.

[BV19] Steffen Borgwardt and Charles Viss. “A polyhedral model for enumer-
ation and optimization over the set of circuits”. In: Discrete Applied
Mathematics (2019).

[BV20] Steffen Borgwardt and Charles Viss. “An implementation of steepest-
descent augmentation for linear programs”. In: Operations Research
Letters 48.3 (2020), pp. 323–328.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Mar.
2004. isbn: 9780521833783.

79

https://doi.org/10.7155/jgaa.00534
https://doi.org/10.7155/jgaa.00534
https://doi.org/10.7155/jgaa.00534
https://doi.org/10.1007/s10107-016-1069-4
https://doi.org/10.1007/s10107-016-1069-4
https://doi.org/10.1007/s00454-018-9995-y
https://doi.org/10.1007/s00454-018-9995-y

[BPZ19] Gábor Braun, Sebastian Pokutta, and Daniel Zink. “Lazifying Con-
ditional Gradient Algorithms”. In: J. Mach. Learn. Res. 20 (2019),
71:1–71:42. url: http://jmlr.org/papers/v20/18-114.html.

[CD74] H Chen and CG Dewald. “A generalized chain labelling algorithm for
solving multicommodity flow problems”. In: Computers & Operations
Research 1.3-4 (1974), pp. 437–465.

[CK20] Eden Chlamtáč and Petr Kolman. “How to Cut a Ball Without Sep-
arating: Improved Approximations for Length Bounded Cut”. In:
Approximation, Randomization, and Combinatorial Optimization. Al-
gorithms and Techniques, APPROX/RANDOM 2020, August 17-19,
2020, Virtual Conference. Ed. by Jaroslaw Byrka and Raghu Meka.
Vol. 176. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020, 41:1–41:17. doi: 10.4230/LIPIcs.APPROX/RANDOM.2020.41.
url: https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.41.

[CST70] JE Cremeans, RA Smith, and GR Tyndall. “Optimal multicommod-
ity network flows with resource allocation”. In: Naval Research Lo-
gistics Quarterly 17.3 (1970), pp. 269–279.

[Dad+20] Daniel Dadush et al.. “A scaling-invariant algorithm for linear pro-
gramming whose running time depends only on the constraint ma-
trix”. In: Proccedings of the 52nd Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-
26, 2020 . Ed. by Konstantin Makarychev et al.. ACM, 2020, pp. 761–
774. doi: 10.1145/3357713.3384326. url: https://doi.org/10.
1145/3357713.3384326.

[DW60] George B Dantzig and Philip Wolfe. “Decomposition principle for
linear programs”. In: Operations research 8.1 (1960), pp. 101–111.

[DK18] Pavel Dvořák and Dušan Knop. “Parameterized Complexity of
Length-bounded Cuts and Multicuts”. In: Algorithmica 80.12 (2018),
pp. 3597–3617. doi: 10.1007/s00453-018-0408-7. url: https:
//doi.org/10.1007/s00453-018-0408-7.

[EIS76] S Even, A Itai, and A Shamir. “On the Complexity of Timetable and
Multicommodity Flow Problems”. In: SIAM Journal on Computing
5.4 (1976), pp. 691–703.

[Fle99] Lisa Fleischer. “Approximating fractional multicommodity flow inde-
pendent of the number of commodities”. In: 40th Annual Symposium
on Foundations of Computer Science (Cat. No.99CB37039) (1999),
pp. 24–31.

[FF56] LR Ford and DR Fulkerson. “Maximal Flow Through a Network”.
In: Canadian Journal of Mathematics 8 (1956), pp. 399–404.

[FF58] Lester Randolph Ford Jr and Delbert R Fulkerson. “A suggested
computation for maximal multi-commodity network flows”. In: Man-
agement Science 5.1 (1958), pp. 97–101.

[FW+56] Marguerite Frank, Philip Wolfe, et al.. “An algorithm for quadratic
programming”. In: Naval Research Logistics Quarterly 3.1-2 (1956),
pp. 95–110.

80

http://jmlr.org/papers/v20/18-114.html
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.41
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.41
https://doi.org/10.1145/3357713.3384326
https://doi.org/10.1145/3357713.3384326
https://doi.org/10.1145/3357713.3384326
https://doi.org/10.1007/s00453-018-0408-7
https://doi.org/10.1007/s00453-018-0408-7
https://doi.org/10.1007/s00453-018-0408-7

[GK07] Naveen Garg and Jochen Könemann. “Faster and simpler algorithms
for multicommodity flow and other fractional packing problems”. In:
SIAM Journal on Computing 37.2 (2007), pp. 630–652.

[GDL15] Jean Bertrand Gauthier, Jacques Desrosiers, and Marco E Lübbecke.
“About the minimum mean cycle-canceling algorithm”. In: Discrete
Applied Mathematics 196 (2015), pp. 115–134.

[GG74] Arthur M Geoffrion and Glenn W Graves. “Multicommodity distri-
bution system design by Benders decomposition”. In: Management
science 20.5 (1974), pp. 822–844.

[Gol92] Andrew V Goldberg. “A natural randomization strategy for multi-
commodity flow and related algorithms”. In: Information Processing
Letters 42.5 (1992), pp. 249–256.

[GPT91] Andrew V Goldberg, Serge A Plotkin, and Éva Tardos. “Combina-
torial algorithms for the generalized circulation problem”. In: Math-
ematics of operations research 16.2 (1991), pp. 351–381.

[GT90] Andrew V Goldberg and Robert E Tarjan. “Finding minimum-cost
circulations by successive approximation”. In: Mathematics of Oper-
ations Research 15.3 (1990), pp. 430–466.

[GM76] Glenn W Graves and Richard D McBride. “The factorization ap-
proach to large-scale linear programming”. In: Mathematical Pro-
gramming 10.1 (1976), pp. 91–110.

[GLS12] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric
algorithms and combinatorial optimization. Vol. 2. Springer Science
& Business Media, 2012.

[GM86] Jacques Guélat and Patrice Marcotte. “Some comments on Wolfe’s
‘away step’”. In: Mathematical Programming 35.1 (1986), pp. 110–
119.

[GHR95] Osman Güler, Alan J Hoffman, and Uriel G Rothblum. “Approxima-
tions to solutions to systems of linear inequalities”. In: SIAM Journal
on Matrix Analysis and Applications 16.2 (1995), pp. 688–696.

[Gup21] Swati Gupta. Private communication. May 2021.
[Hof52] Alan J Hoffman. “On Approximate Solutions of Systems of Linear

Inequalities”. In: Journal of Research of the National Bureau of Stan-
dards 49.4 (1952).

[Ita78] Alon Itai. “Two-commodity flow”. In: Journal of the ACM (JACM)
25.4 (1978), pp. 596–611.

[IPS82a] Alon Itai, Yehoshua Perl, and Yossi Shiloach. “The complexity of
finding maximum disjoint paths with length constraints”. In: Net-
works 12.3 (1982), pp. 277–286.

[IPS82b] Alon Itai, Yehoshua Perl, and Yossi Shiloach. “The complexity of
finding maximum disjoint paths with length constraints”. In: Net-
works 12.3 (1982), pp. 277–286. doi: 10.1002/net.3230120306.
url: https://doi.org/10.1002/net.3230120306.

81

https://doi.org/10.1002/net.3230120306
https://doi.org/10.1002/net.3230120306

[JLR20] Klaus Jansen, Alexandra Lassota, and Lars Rohwedder. “Near-Linear
Time Algorithm for n-Fold ILPs via Color Coding”. In: SIAM J. Dis-
cret. Math. 34.4 (2020), pp. 2282–2299. doi: 10.1137/19M1303873.
url: https://doi.org/10.1137/19M1303873.

[Kar84] Narendra Karmarkar. “A new polynomial-time algorithm for linear
programming”. In: Proceedings of the sixteenth annual ACM sympo-
sium on Theory of computing. 1984, pp. 302–311.

[Ken78] Jeff L Kennington. “A survey of linear cost multicommodity network
flows”. In: Operations Research 26.2 (1978), pp. 209–236.

[KdP18] Thomas Kerdreux, Alexandre d’Aspremont, and Sebastian Pokutta.
Restarting Frank-Wolfe: Faster Rates Under Hölderian Error Bounds.
2018. arXiv: 1810.02429 [math.OC].

[Kha80] Leonid G Khachiyan. “Polynomial algorithms in linear program-
ming”. In: USSR Computational Mathematics and Mathematical
Physics 20.1 (1980), pp. 53–72.

[Kle+94] Philip Klein et al.. “Faster approximation algorithms for the unit
capacity concurrent flow problem with applications to routing and
finding sparse cuts”. In: SIAM Journal on Computing 23.3 (1994),
pp. 466–487.

[KS06] Petr Kolman and Christian Scheideler. “Improved bounds for the
unsplittable flow problem”. In: J. Algorithms 61.1 (2006), pp. 20–44.

[KŘ81] Václav Koubek and Antonín Říha. “The maximum k-flow in a net-
work”. In: International Symposium on Mathematical Foundations of
Computer Science. Springer. 1981, pp. 389–397.

[KLO18] Martin Koutecký, Asaf Levin, and Shmuel Onn. “A Parameterized
Strongly Polynomial Algorithm for Block Structured Integer Pro-
grams”. In: 45th International Colloquium on Automata, Languages,
and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Re-
public. Ed. by Ioannis Chatzigiannakis et al.. Vol. 107. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, 85:1–85:14.
doi: 10.4230/LIPIcs.ICALP.2018.85. url: https://doi.org/10.
4230/LIPIcs.ICALP.2018.85.

[LJ15] Simon Lacoste-Julien and Martin Jaggi. “On the Global Linear Con-
vergence of Frank-Wolfe Optimization Variants”. In: Advances in
Neural Information Processing Systems 28: Annual Conference on
Neural Information Processing Systems 2015, December 7-12, 2015,
Montreal, Quebec, Canada. Ed. by Corinna Cortes et al.. 2015,
pp. 496–504. url: https://proceedings.neurips.cc/paper/
2015/hash/c058f544c737782deacefa532d9add4c-Abstract.html.

[Lei+95] Tom Leighton et al.. “Fast approximation algorithms for multicom-
modity flow problems”. In: Journal of Computer and System Sciences
50.2 (1995), pp. 228–243.

[Liu19] Pengfei Liu. “A Combinatorial Algorithm for the Multi-commodity
Flow Problem”. In: CoRR abs/1904.09397 (2019). arXiv: 1904 .
09397. url: http://arxiv.org/abs/1904.09397.

82

https://doi.org/10.1137/19M1303873
https://doi.org/10.1137/19M1303873
https://arxiv.org/abs/1810.02429
https://doi.org/10.4230/LIPIcs.ICALP.2018.85
https://doi.org/10.4230/LIPIcs.ICALP.2018.85
https://doi.org/10.4230/LIPIcs.ICALP.2018.85
https://proceedings.neurips.cc/paper/2015/hash/c058f544c737782deacefa532d9add4c-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/c058f544c737782deacefa532d9add4c-Abstract.html
https://arxiv.org/abs/1904.09397
https://arxiv.org/abs/1904.09397
http://arxiv.org/abs/1904.09397

[Mąd10] Aleksander Mądry. “Faster approximation schemes for fractional
multicommodity flow problems via dynamic graph algorithms”. In:
Proceedings of the 42nd ACM Symposium on Theory of Computing,
STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010 . Ed.
by Leonard J. Schulman. ACM, 2010, pp. 121–130. doi: 10.1145/
1806689.1806708. url: https://doi.org/10.1145/1806689.
1806708.

[Man81] Olvi L Mangasarian. A Condition Number for Linear Inequalities and
Linear Programs.. Tech. rep.. Wisconsin Univ-Madison Mathematics
Research Center, 1981.

[Mar17] Martin Mareš. Průvodce labyrintem algoritmů. CZ.NIC, 2017. isbn:
9788088168195.

[Meg84] N. Megiddo. “Linear Programming in Linear Time When the Dimen-
sion is Fixed”. In: Journal of Association for Computing Machinery
31.1 (Jan. 1984), pp. 114–127.

[Mil16] Jacob Andrew Miller. Transportation networks and matroids: algo-
rithms through circuits and polyhedrality. University of California,
Davis, 2016.

[NN94] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial
algorithms in convex programming. SIAM, 1994.

[OV20] Neil Olver and László A. Végh. “A Simpler and Faster Strongly
Polynomial Algorithm for Generalized Flow Maximization”. In: J.
ACM 67.2 (2020), 10:1–10:26. doi: 10.1145/3383454. url: https:
//doi.org/10.1145/3383454.

[Onn10] Shmuel Onn. Nonlinear Discrete Optimization. Zurich Lectures in
Advanced Mathematics. European Mathematical Society Publishing
House, 2010. isbn: 978-3-03719-593-2. doi: 10.4171/093.

[Ope13] Operations Research Group, University of Pisa. Multicommodity
Problems. 2013. url: http://groups.di.unipi.it/optimize/
Data/MMCF.html (visited on 06/22/2020).

[PR19] Javier Peña and Daniel Rodríguez. “Polytope Conditioning and Lin-
ear Convergence of the Frank-Wolfe Algorithm”. In: Math. Oper.
Res. 44.1 (2019), pp. 1–18. doi: 10.1287/moor.2017.0910. url:
https://doi.org/10.1287/moor.2017.0910.

[Pok18a] Sebastian Pokutta. Cheat Sheet: Hölder Error Bounds for Condi-
tional Gradients. 2018. url: https://www.pokutta.com/blog/
research/2018/12/07/cheatsheet-smooth-idealized.html (vis-
ited on 07/21/2020).

[Pok18b] Sebastian Pokutta. Cheat Sheet: Hölder Error Bounds for Condi-
tional Gradients. 2018. url: http://www.pokutta.com/blog/
research/2018/11/12/heb-conv.html (visited on 07/21/2020).

[RT12] Lyle Ramshaw and Robert E Tarjan. “On minimum-cost assignments
in unbalanced bipartite graphs”. In: HP Labs, Palo Alto, CA, USA,
Tech. Rep. HPL-2012-40R1 (2012).

83

https://doi.org/10.1145/1806689.1806708
https://doi.org/10.1145/1806689.1806708
https://doi.org/10.1145/1806689.1806708
https://doi.org/10.1145/1806689.1806708
https://doi.org/10.1145/3383454
https://doi.org/10.1145/3383454
https://doi.org/10.1145/3383454
https://doi.org/10.4171/093
http://groups.di.unipi.it/optimize/Data/MMCF.html
http://groups.di.unipi.it/optimize/Data/MMCF.html
https://doi.org/10.1287/moor.2017.0910
https://doi.org/10.1287/moor.2017.0910
https://www.pokutta.com/blog/research/2018/12/07/cheatsheet-smooth-idealized.html
https://www.pokutta.com/blog/research/2018/12/07/cheatsheet-smooth-idealized.html
http://www.pokutta.com/blog/research/2018/11/12/heb-conv.html
http://www.pokutta.com/blog/research/2018/11/12/heb-conv.html

[Sch91] Rina Schneur. “Scaling algorithms for multicommodity flow prob-
lems and network flow problems with side constraits”. PhD thesis.
Massachusetts Institute of Technology, 1991.

[SO98] Rina R Schneur and James B Orlin. “A scaling algorithm for mul-
ticommodity flow problems”. In: Operations Research 46.2 (1998),
pp. 231–246.

[Sch99] Alexander Schrijver. Theory of linear and integer programming. Wi-
ley-Interscience series in discrete mathematics and optimization. Wi-
ley, 1999. isbn: 978-0-471-98232-6.

[SM90] Farhad Shahrokhi and David W Matula. “The maximum concurrent
flow problem”. In: Journal of the ACM (JACM) 37.2 (1990), pp. 318–
334.

[SIM00] Maiko Shigeno, Satoru Iwata, and S Thomas McCormick. “Relaxed
most negative cycle and most positive cut canceling algorithms for
minimum cost flow”. In: Mathematics of Operations Research 25.1
(2000), pp. 76–104.

[Ste12] Clifford Stein. Multicommodity Flow. Apr. 2012. url: http : / /
www.columbia.edu/~cs2035/courses/ieor6614.S16/multi.pdf
(visited on 12/14/2020).

[Tar86] Éva Tardos. “A strongly polynomial algorithm to solve combinatorial
linear programs”. In: Operations Research 34.2 (1986), pp. 250–256.

[VO21] Vijay Vazirani and James Orlin. Private communication. Mar. 2021.
[Vég17] László A. Végh. “A Strongly Polynomial Algorithm for Generalized

Flow Maximization”. In: Math. Oper. Res. 42.1 (2017), pp. 179–211.
doi: 10.1287/moor.2016.0800. url: https://doi.org/10.1287/
moor.2016.0800.

[Vob16] Jan Voborník. “Algoritmy pro L-omezené toky”. MA thesis. Uni-
verzita Karlova, Matematicko-fyzikální fakulta, 2016.

[Way02] Kevin D Wayne. “A polynomial combinatorial algorithm for gener-
alized minimum cost flow”. In: Mathematics of Operations Research
27.3 (2002), pp. 445–459.

[Wei74] Andres Weintraub. “A primal algorithm to solve network flow prob-
lems with convex costs”. In: Management Science 21.1 (1974), pp. 87–
97.

[Wol70] Philip Wolfe. “Convergence theory in nonlinear programming”. In:
Integer and nonlinear programming (1970), pp. 1–36.

[You95] Neal E Young. “Randomized rounding without solving the linear
program”. In: Proceedings of the sixth annual ACM-SIAM symposium
on Discrete algorithms. Vol. 76. SIAM. 1995, p. 170.

84

http://www.columbia.edu/~cs2035/courses/ieor6614.S16/multi.pdf
http://www.columbia.edu/~cs2035/courses/ieor6614.S16/multi.pdf
https://doi.org/10.1287/moor.2016.0800
https://doi.org/10.1287/moor.2016.0800
https://doi.org/10.1287/moor.2016.0800

	Introduction
	Our Contributions
	Organisation of the Thesis
	Related Work
	MCF and LBF

	Preliminaries
	Linear-Algebraic Minimum, Notation
	Flows
	Circulations
	Linear Programming
	Conformality
	Walks, Paths, Cycles
	Weighted Paths and Cycles
	Convergence

	The State of the Art
	Flow Problems
	Multicommodity Flow
	Length-Bounded Flow

	Formulations
	Linear Programming
	Penalty Function
	Notation and Terminology

	Prior Work
	Traditional Algorithms for MCF
	Modern FPTASs
	Minimum Length-Bounded Cut
	General Methods

	Frank-Wolfe
	Strong Convexity and Smoothness
	Algorithm Sketch
	Common Variants
	Pairwise and Away-Steps Frank-Wolfe
	Convergence Analysis
	Hölder Error Bound

	Interpreting Frank-Wolfe on MCF and LBF
	Adaptation for LBF

	Convergence Analysis for MCF and LBF
	Smoothness
	Convexity
	Strong Convexity
	HEB and Linear Convergence

	Proof of fw-away-heb-convergence

	Circuits and Inflation
	Definitions and Basic Properties of Circuits
	Steepest-Descent Augmentation
	Inflating Polyhedra
	Examining MCF Circuits
	Exponential Circuits for MCF and LBF
	Adaptation for LBF

	Most Helpful Cycles
	Minimum-Cost Maximum Flow
	Finding Most Helpful Cycles
	Convergence Analysis

	Most Helpful Cycles for MCF
	Analysing [algo:most-helpful-mcf]Helpful-MCF
	Finding the Best Cycle Collection
	Improving Cycle
	Bounding Cycle Improvement
	Achieving O(1/)-like Convergence
	Inflation to the Rescue
	Filling in the Gaps in [algo:most-helpful-mcf]Helpful-MCF

	Conclusion
	Further Work

