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doc. RNDr. Ing. Miloš Kopa, Ph.D., for his supervision, advice, and guidance
from the very beginning of this thesis. I am especially grateful for his practical
insights and valuable feedback on the thesis. I am also very grateful to Martin
Štefánik, who helped me navigate through my studies of mathematics.

Furthermore, I would like to thank my parents and close family for their
incredible support and utmost encouragement throughout my studies. Last but
not least, I offer my deepest gratitude to Veronika for her endless support and
for always being there for me.

ii



Title: Risk and ratio measures in portfolio optimization

Author: Juraj Zelman

Department: Department of Probability and Mathematical Statistics
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Introduction
In the financial industry and portfolio selection problems, the trade-off between
risk and reward is usually the main topic of interest. Since the introduction
of the Markowitz mean-variance model (Markowitz [1959]), numerous quantita-
tive methods that allow us to maximize returns efficiently have been proposed.
However, various past financial events have demonstrated the necessity and the
importance of thorough risk measurement, particularly in the area of quantitative
trading and hedge fund strategies.

The theory of risk measures, which is the main topic of this thesis, offers
numerous methods on how to measure and estimate risks. In this thesis, we focus
on the class of distortion risk measures (Wang [2000]). The class of distortion
risk measures is prospective, as some of these measures allow us to assign higher
probabilities to events with low probability but extreme losses. This is of great
importance, as the impact of such events often reaches far beyond the financial
industry.

This thesis is organized as follows. In Chapter 1, we introduce the theory
of risk measures on two widely-known risk measures: Value-at-Risk (Acerbi and
Tasche [2002a]) and Expected Shortfall (Acerbi and Tasche [2002b]). We present
their properties and closed formulas under the assumption of normally distributed
loss random variables. Then, we introduce the theory of distortion risk measures.
We propose their properties related to coherency and stochastic dominance. In
this chapter, we also present several examples of distortion risk measures, some
of which we later analyze on the financial data from the S&P 500 index.

In the following chapter, Chapter 2, we extend the theory of risk measures to
the studies of reward-risk ratios, which allow us to construct portfolios with the
highest reward per unit of risk. We introduce the Sharpe ratio (Sharpe [1966])
and the general form of a distortion reward-risk ratio (Cheridito and Kromer
[2013]).

The main theoretical result of this thesis is the proposition of a general reward-
risk optimization framework for distortion risk measures, which can be found in
Chapter 3 (to our knowledge, a similar result has not yet been published in the
literature). We propose this model with the assumption of a discrete loss random
variable with equal probabilities of its realizations.

In Chapter 4, we summarize the results of our implementation of the reward-
risk optimization model, which was implemented in the specialized optimization
software GAMS. We illustrate the effect of distortion risk measures on the shape of
efficient frontiers and compare optimal portfolios for various distortion functions
with a special focus on the portfolios with the highest reward-risk ratio.
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1. Risk Measures
In the whole thesis, we assume that X is a set of random variables on a probability
space (Ω, F , P ) such as the space of all essencially bounded random variables
L∞(Ω, F , P ) (Rudin [1987]). A random variable X ∈ X represents a loss random
variable (typically, positive values are associated with losses and negative values
represent gains) of some financial asset over a time interval of length T ∈ R+.
Furthermore, we denote for X, Y ∈ X inequalities of random variables almost
surely X ≤ Y ⇐⇒ X(ω) ≤ Y (ω) for all ω ∈ Ω. For X ∈ X we denote its
cumulative distribution function as FX(x) = P (X ≤ x).

In this chapter, we introduce the theory of risk measures. Firstly, we recall
coherency axioms and two widely known risk measures called Value-at-Risk and
Expected Shortfall. We present their properties as well as their closed formulas
under the assumption of a normally distributed loss random variable. Then, we
focus on the theory of distortion risk measures. We explain their relation to
coherent risk measures and risk measures Value-at-Risk and Expected Shortfall.
Furthermore, we prove some of their properties related to stochastic dominance
and present numerous examples of these measures. This chapter begins with the
definition of a general risk measure.

Definition 1. (Artzner et al. [1999]) We define a risk measure as a functional
ρ : X → R.

In other words, a risk measure is a mapping that assigns a numerical value
to elements of a set of loss random variables. The purpose of such functional
is usually to determine the amount of capital that is at risk or that should be
kept in reserve. However, as we will see in the section related to the optimization
of distortion risk measures, this interpretation does not always hold. Sometimes
these values only provide us with a form of ranking on random variables.

One of the major milestones in risk measurement was the proposition of the
first axioms of risk measurement, summarized in Artzner et al. [1999]. Risk
measures obeying these axioms are known as coherent risk measures.

Definition 2. (Artzner et al. [1999]) The four coherency axioms are defined as:

(i) Translation invariance: For all random variables X ∈ X and every
constant λ ∈ R it follows

ρ(X + λ) = ρ(X) + λ.

(ii) Subadditivity: For all random variables X and Y from X it holds

ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

(iii) Positive homogeneity: For all λ ≥ 0 and all random variables X ∈ X :

ρ(λX) = λρ(X).
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(iv) Monotonicity: For all random variables X and Y from X such that X ≤
Y it follows

ρ(X) ≤ ρ(Y ).

A risk measure ρ is called coherent, if it satisfies all four axioms of translation
invariance, subadditivity, positive homogeneity and monotonicity.

These properties (adjusted for losses) have been introduced due to their finan-
cial interpretation, which is explained below. However, some of them are subject
to criticism as every class of risk measures has its drawbacks and limitations.
If we understand a risk measure as a functional that determines the amount of
capital that is at risk; then their financial interpretation is as follows.

The property of translation invariance states that if the losses increase by
a given constant, the risk increases proportionally by the same deterministic
quantity. If we choose α = −ρ(X) or in other words, we invest in our portfolio
a capital investment with the volume equal to ρ(X) (a value that is usually
interpreted as a capital requirement), then the risk of the whole position is equal
to zero.

The axiom of subadditivity reflects the idea that risk can be reduced by di-
versification or, as was stated by Artzner et al. [1999] “a merger does not create
extra risk”. This means that the portfolio’s risk should not exceed the sum of
risks of its components. This property also allows risk managers to choose suit-
able constraints for different trading desks in order to ensure that the total risk
of their positions does not exceed the given upper bound.

Positive homogeneity implies from a financial viewpoint that a linear increase
of the loss results in a linear increase in risk by the same proportion. However, as
Föllmer and Schied [2002] note, the portfolio’s risk does not necessarily increase
linearly with the portfolio’s size in some cases. Therefore, they suggest relaxing
this condition.

The monotonicity axiom intuitively implies that if one financial instrument
has the loss X, which is smaller or equal to the loss Y of the second instrument,
then it requires less risk capital. Moreover, positions where X ≤ 0 almost surely
do not require any risk capital.

1.1 Value-at-Risk
In this section, we define one of the well-known risk measures used in the financial
industry. This measure is called Value-at-Risk (VaR). VaR replaced volatility as
a superior measure of risk and still remains in use due to its simple operational
implementation. Firstly, we define upper and lower quantiles.

Definition 3. (Acerbi and Tasche [2002a]) Let X ∈ F and α ∈ (0, 1) be some
confidence level. We define:

qα(X) = inf{x ∈ R : P (X ≤ x) ≥ α} as the lower α-quantile of X,
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qα(X) = inf{x ∈ R : P (X ≤ x) > α} as the upper α-quantile of X.

Based on this definition, we define Value-at-Risk as the lower α-quantile of X.

Definition 4. (McNeil et al. [2015]) Given some confidence level α ∈ (0, 1) and
X ∈ X , we define Value-at-Risk of a loss X at a confidence level α as

V aRα(X) = qα(X) = inf{x ∈ R : P (X > x) ≤ 1 − α}.

The interpretation of Definition 4 is as follows: Suppose that we have a port-
folio with the given loss X ∈ X and we choose the confidence level α ∈ (0, 1).
Typical choices of α include 0.95 or 0.99, although other values of this parameter
are also in use. Then, V aRα(X) is the smallest value x such that the probability
of the loss X greater than x does not exceed 1 − α. Or in other words, V aRα(X)
is the α-quantile of the loss distribution. For this reason, V aRα(X) is categorized
as a quantile risk measure.

Some of the important properties of V aRα(X) are proved in the next theorem.

Theorem 1. (Artzner et al. [1999]) Let α ∈ (0, 1) and X, Y ∈ X . The risk mea-
sure V aRα(X) is translation invariant, positively homogeneous and monotone.

Proof.

1. From Definition 4 we get

V aRα(X + λ) = inf{x ∈ R : P (X + λ > x) ≤ 1 − α}.

By a simple substitution u = x − λ we obtain

V aRα(X + λ) = inf{u + λ ∈ R : P (X > u) ≤ 1 − α} =

= inf{u ∈ R : P (X > u) ≤ 1 − α} + λ =
= V aRα(X) + λ,

what proves the translation invariance property.

2. Firstly, if λ = 0 we immediately obtain V aRα(0X) = 0. Now suppose that
λ > 0. Then

V aRα(λX) = inf{x ∈ R : P (λX > x) ≤ 1 − α} =

Again, by substitution u = x
λ

we get

V aRα(λX) = inf{λu ∈ R : P (X > u) ≤ 1 − α} =

= λinf{u ∈ R : P (X > u) ≤ 1 − α} =
= λV aRα(X),

what was to be shown for positive homogeneity.
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3. The condition ∀ω ∈ Ω : X(ω) ≤ Y (ω) implies that ∀x ∈ R : P (X > x) ≤
P (Y > x). Therefore

V aRα(X) = inf{x ∈ R : P (X > x) ≤ 1 − α} ≤

≤ inf{x ∈ R : P (Y > x) ≤ 1 − α} = V aRα(Y ),
what proves the monotonicity property and, therefore, the whole theorem.

The following theorem explains one of the VaR’s drawbacks, the fact that
VaR does not fulfill the sub-additivy property.

Theorem 2. (Artzner et al. [1999]) Let α ∈ (0, 1) and X, Y ∈ X . Then, V aRα

violates the sub-additivity property

V aRα(X + Y ) ≰ V aRα(X) + V aRα(Y ).

Therefore, V aRα is not a coherent risk measure.

As we have seen from the previous theorem, Value-at-Risk is a risk measure
that violates the sub-additive property and therefore, the risk of a portfolio could
be potentially larger than the sum of risks of its components.

In the following part, we derive the exact formula for Value-at-Risk with the
assumption of normally or tn-distributed loss random variable.

Theorem 3. (McNeil et al. [2015]) Suppose that X ∈ X is normally distributed
with mean µ ∈ R and variance σ2 > 0. Then

V aRα(X) = µ + σΦ−1(α), (1.1)

where Φ denotes the standard normal distribution function and Φ−1(α) is the
α-quantile of Φ.

Proof. We provide proof based on the idea from (McNeil et al. [2015]). From the
definition of V aRα and by equivalent manipulations we obtain

V aRα(X) = inf{x ∈ R : P (X > x) ≤ 1 − α} =

= inf{x ∈ R : P
(︃

X − µ

σ
>

x − µ

σ

)︃
≤ 1 − α} =

= inf{x ∈ R : P
(︃

X − µ

σ
≤ x − µ

σ

)︃
≥ α}.

Because X ∼ N (µ, σ2), we have X−µ
σ

∼ N (0, 1) and therefore we can rewrite

V aRα(X) = inf{x ∈ R : Φ
(︃

x − µ

σ

)︃
≥ α} =

= inf{x ∈ R : x ≥ µ + σΦ−1(α)} = µ + σΦ−1(α),
what proves the statement.
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In the previous theorem, we assumed that the losses are normally distributed.
However, the choice of suitable distribution for losses is one of the most discussed
topics in the financial industry. Since the observation of Mandelbrot [1963], who
argued that the assumption of normal distribution for some asset returns could
underestimate tail risks and suggested alternative classes of distributions with
heavier tails, many classes of heavy-tailed distributions that assign higher prob-
abilities to extreme events have been proposed.

One of such distributions with similar properties to the normal distribution
but heavier tails is the tn-distribution (for low values of n). According to Stoyanov
et al. [2011], tn-distribution is probably one of the most commonly used heavy-
tailed distributions due to its computational simplicity.

Therefore, a similar result to Theorem 3 but for the tn-distribution can be de-
rived. In this case, we will assume that the loss X has a generalized tn-distribution.
The generalized tn-distribution is defined as tn(a, b) = a + btn, where tn denotes
the standard tn distribution and a, b ∈ R are chosen scaling constants. In our
case, this distribution fulfills E[X] = µ and var(X) = nσ2/(n−2), provided that
n > 2. Then we have

V aRα(X) = µ +
√︄

n − 2
n

σtn
−1(α), (1.2)

where tn
−1(α) denotes the α-quantile of the standard tn-distribution.

From equations (1.1) and (1.2), we see the computational advantage of V aRα.
This computational simplicity is one of the benefits that this risk measure pro-
vides. Another strength of V aRα is its universality and use across different classes
of securities.

On the other hand, these advantages are compensated by several drawbacks.
We have already seen that V aR is not a sub-additive risk measure. Furthermore,
numerous financial events where extreme losses occurred, such as the collapse
of LTCM in 1998 or the US subprime mortgage crisis in 2007-2008, raised the
awareness of the limitation of V aRα to capture rare events with extreme losses.
It is obvious from the definition of quantile that V aRα does not take into consid-
eration extreme losses with probability lower than 1 − α. Therefore, alternative
risk measures which capture the tail risks more accurately are studied.

1.2 Expected Shortfall
The risk measure Expected Shortfall was proposed as an alternative to V aR
and was constructed in order to deal with the deficiencies of V aR, mostly the
subadditivity property. This measure has numerous variants with different names
such as conditional value at risk, tail conditional expectation or worst conditional
expectation. However, as Acerbi and Tasche [2002a] proposed, most definitions of
Expected Shortfall lead to the same results under the assumption of continuous
loss distributions. We define Expected Shortfall in the following definition.

Definition 5. (Acerbi and Tasche [2002b]) Let X ∈ X be a random variable,
E[|X|] < ∞ and α ∈ (0, 1). We define Expected Shortfall at a confidence level
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α as
ESα(X) = 1

1 − α

∫︂ 1

α
V aRγ(X) dγ,

where V aRγ(X) denotes Value-at-Risk.

It must be noted that this definition is adjusted for loss random variables.
The interpretation of Definition 5 is the following. The risk measure Expected
Shortfall is closely related to V aRα(X) and can be interpreted as an average over
all possible losses that exceed or are equal to V aRα(X). As we mentioned before,
in comparison to V aRα, ESα fulfills the subadditivity property.

Theorem 4. (Acerbi and Tasche [2002a]) Let E[|X|] < ∞. Then, the risk
measure ESα(X) is monotone, subadditive, positive homogeneous and translation
invariant. Therefore, ESα(X) is a coherent risk measure.

Figure 1.1: Value-at-Risk and Expected Shortfall for a possible realization of a
loss random variable X.

In a similar way to V aRα, closed formulas for ESα under the assumption of a
loss with a normal or tn-distribution can be obtained. The following two theorems
summarize these formulas.

Theorem 5. (McNeil et al. [2015]) Suppose that X ∈ X is a random variable
with a normal distribution with mean µ ∈ R and variance σ2 > 0. Fix α ∈ (0, 1).
Then

ESα(X) = µ + σ
ϕ(Φ−1(α))

1 − α
, (1.3)

where ϕ is the density of the standard normal distribution and Φ−1(α) is the
α-quantile of the standard normal distribution function.

Proof. We provide proof based on the idea from (McNeil et al. [2015]). Firstly,
we recall from Theorem 3 that when the loss X is normally distributed it holds
that V aRα(X) = µ + σΦ−1(α). Therefore, we can rewrite from Definition 5
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ESα(X) = 1
1 − α

∫︂ 1

α
V aRγ(X) dγ = 1

1 − α

∫︂ 1

α
(µ + σΦ−1(γ)) dγ =

= µ + 1
1 − α

∫︂ 1

α
σΦ−1(γ) dγ.

Now we will calculate the last integral by substituting γ = Φ(u). Hence we
have u = Φ−1(γ) and dγ = ϕ(u)du, where Φ is the distribution function of the
standard normal distribution with the density ϕ and Φ−1 is the inverse of the
standard normal distribution. Thus, we obtain

∫︂ 1

α
σΦ−1(γ) dγ =

∫︂ Φ−1(1)

Φ−1(α)
σuϕ(u) du =

∫︂ ∞

Φ−1(α)

σu√
2π

exp

(︄
−u2

2

)︄
du.

By solving the last integral, we get
∫︂ ∞

Φ−1(α)

σu√
2π

exp

(︄
−u2

2

)︄
du = σ√

2π

∫︂ ∞

Φ−1(α)
uexp

(︄
−u2

2

)︄
du =

= σ√
2π

[︄
−exp

(︄
−u2

2

)︄]︄∞

Φ−1(α)
= σ√

2π
exp

(︄
− [Φ−1(α)]2

2

)︄
= σϕ(Φ−1(α)).

Therefore, from the previous result, we obtain

ESα(X) = µ + 1
1 − α

∫︂ 1

α
σΦ−1(γ) dγ = µ + σ

ϕ(Φ−1(α))
1 − α

,

what we wanted to prove.

Similarly to the previous theorem, we can derive a formula for Expected Short-
fall for a loss with a tn-distribution.

Theorem 6. (Norton et al. [2019]) Suppose the loss random variable X ∈ X
has a generalized tn-distribution tn(µ, σ) such that E[X] = µ and var(X) =
nσ2/(n − 2), where n > 2. Then

ESα(X) = µ +
√︄

n − 2
n

σ
[n + (t−1

n (α))2]
n − 1

τn(t−1
n (α))

1 − α
, (1.4)

where tn denotes the distribution function and τn the density of the standard
tn-distribution.

In order to better illustrate the sensitivity of ES to the severity of losses
exceeding V aRα, we propose a concrete example on daily losses of a particular
stock using the idea from McNeil et al. [2015]. Suppose that the current value
of our position is Vt = 15000 and that daily log returns Xt+1 have mean 0 and
standard deviation σ = 0.181/

√
253. We assume the average number of trading

days is equal to 253. Moreover, we assume that the stock has an annualized
volatility equal to 18.1% what is the average annualized volatility of the stock
index S&P500. Therefore, we can calculate the loss of our portfolio as L∆

t+1 =
−VtXt+1.
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In this example, we compare values of V aRα and ESα for different confidence
levels α and for two different distributions. In the first case we have a loss with
a normal distribution, and in the second case we will have a tn-distribution with
n = 4 degrees of freedom scaled to have the standard deviation equal to σ. As we
stated in the section behind Theorem 3, a tn-distribution with n = 4 degrees of
freedom is a distribution with heavier tails than a normal distribution, meaning
that higher absolute values have higher probabilities. Values of V aRα in a normal
or a tn model can be calculated by (1.1) or (1.2) respectively. Values of ESα are
given by (1.3) and (1.4). We summarize our computations in Table 1.1 and
illustrate them in Figure 1.2.

α 0.90 0.95 0.975 0.99 0.995
V aRα (normal) 218.7 280.8 334.5 397.1 439.7
V aRα (tn) 185.1 257.3 335.1 452.2 555.7
ESα (normal) 299.6 352.1 399.0 454.9 493.6
ESα (tn) 301.7 386.6 482.0 630.1 763.4

Table 1.1: Values of V aRα and ESα under the assumption of a loss with a normal
and tn distribution

What makes this example interesting is the comparison of values of V aRα be-
tween both distributions. As was mentioned, the tn-distribution is a distribution
with heavier tails than the normal distribution. Intuitively, we would probably
assume that this fact would be reflected on higher values of V aRα with the as-
sumption of the tn distribution. This effect is visible only on values above the
confidence level 0.99. Thus, this illustrates one of the drawbacks of V aRα. In
comparison to V aRα, the risk measure Expected Shortfall captures the tail risk
of the tn-distributed loss in this example more accurately.

(a) V aRα and ESα (normal) (b) V aRα and ESα (tn)

Figure 1.2: V aRα and ESα for different values of α and losses with different
distributions
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1.3 Distortion Risk Measures
In the following section, we introduce the class of distortion risk measures. We
recall some of their known characteristics and then show their relation to coherent
risk measures known from the previous section. At the end of this chapter, we
explain that VaR and ES, which were defined previously, can be represented as
distortion risk measures. We also present some other known examples of these
measures.

Historically, distortion risk measures have their roots in the dual theory of
choice under uncertainty proposed by Yaari [1987] and were later developed by the
axiomatic approach of Wang [2000]. The idea behind the distortion risk measure
is the transformation of the given probability measure in order to quantify the
tail risk more accurately and therefore give more weight to higher risk events.

The motivation for distorting a probability measure arose from numerous
studies on risk perception, such as the work of Kahneman and Tversky [1979],
who observed that people evaluate risk as a non-linear distorted function rather
than a linear function of the probabilities. The function g(S(x)), defined after
the following definition, can be thus interpreted as a risk-adjusted decumulative
distribution function.
Definition 6. (Dhaene et al. [2012]) Suppose that g : [0, 1] → [0, 1] is a non-
decreasing function such that g(0) = 0 and g(1) = 1 (also known as the dis-
tortion function) and X ∈ X with a distribution function FX(x). Then, the
distortion risk measure associated with the distortion function g is defined as

ρg(X) = −
∫︂ 0

−∞
[1 − g(1 − FX(x))]dx +

∫︂ ∞

0
g(1 − FX(x))dx,

provided that at least one of the integrals is finite.
When we define the decumulative distribution function (also known as

the survival function) SX(x) = 1 − FX(x) = P (X > x) and we use it instead
of the distribution function, we obtain

ρg(X) = −
∫︂ 0

−∞
[1 − g(SX(x))]dx +

∫︂ ∞

0
g(SX(x))dx.

The interpretation of this definition is that the distortion measure represents
the expectation of a new random variable with re-weighted probabilities.

Originally, distortion risk measures found their application in the insurance
problems. For example, Wang [1995] presented an approach to insurance pricing
using the proportional hazards transform. However, due to the relation between
insurance and investment risks, distortion risk measures started to be also used in
the investment context and portfolio selection problems (see for example Van der
Hoek and Sherris [2001]).

In some cases, such as problems related to insurance or capital requirements,
it is appropriate to assume that the random variable X ∈ X is non-negative. In
this case, when X ∈ X is a non-negative random variable, then ρg reduces to

ρg(X) =
∫︂ ∞

0
g(SX(x))dx.
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1.3.1 Properties of distortion risk measures
As was stated in the previous section about coherent risk measures, in order
to develop a risk measure with desired properties, some axiomatic conditions
should be proposed. The class of distortion risk measures is prospective, because
distortion measures, in the general case, fulfill the conditions of monotonicity,
positive homogeneity and translation invariance. These three properties are the
scope of the following theorems.

Theorem 7. (Monotonicity) Suppose that X, Y ∈ X and X ≤ Y . Then ρg(X) ≤
ρg(Y ).

Proof. Proof of this theorem follows immediately from the properties of distribu-
tion functions. We have X ≤ Y =⇒ ∀x ∈ R : FX(x) = P (X ≤ x) ≥ P (Y ≤
x) = FY (x). Thus ∀x ∈ R : SX(x) ≤ SY (x). Due to the fact, that g is a non-
decreasing function, we obtain ∀x ∈ R : g(SX(x)) ≤ g(SY (x)). Therefore, we get
from Definition 6 that ρg(X) ≤ ρg(Y ).

Theorem 8. (Positive homogeneity) For a distortion risk measure ρg, X ∈ X
and λ ≥ 0:

ρg(λX) = λρg(X)

Proof. Firstly, assume that λ = 0. Then λX has a degenerate distribution func-
tion

FλX(x) =
⎧⎨⎩1 when x ≥ 0,

0 otherwise.
Therefore, we have

ρg(λX) = 0 = λρg(X),
because

1 − g(1 − FλX(x)) = 0 for x ∈ (−∞, 0) and g(1 − FλX(x)) = 0 for x ∈ [0, ∞).

Now suppose that λ > 0. Then it holds

SλX(x) = P (λX > x) = P
(︃

X >
x

λ

)︃
= SX

(︃
x

λ

)︃
.

Thus, we obtain

ρg(λX) = −
∫︂ 0

−∞
[1 − g(SλX(x))]dx +

∫︂ ∞

0
g(SλX(x))dx =

= −
∫︂ 0

−∞
[1 − g(SX

(︃
x

λ

)︃
)]dx +

∫︂ ∞

0
g(SX

(︃
x

λ

)︃
)dx.

By substituting u = x
λ

and du = 1
λ
dx we get

ρg(λX) = −λ
∫︂ 0

−∞
[1 − g(SX(u))]du + λ

∫︂ ∞

0
g(SX(u))du =

= λρg(X),
what was to be shown.
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Theorem 9. (Sereda et al. [2010]) (Translation invariance)
For a distortion risk measure ρg and X ∈ X it holds that

∀c ∈ R : ρg(X + c) = ρg(X) + c.

Proof. We see from the properties of a decumulative distribution function that

SX+c(x) = P (X + c > x) = P (X > x − c) = SX(x − c).
Then, we have

ρg(X + c) = −
∫︂ 0

−∞
[1 − g(SX+c(x))]dx +

∫︂ c

0
g(SX+c(x))dx +

∫︂ ∞

c
g(SX+c(x))dx =

= −
∫︂ 0

−∞
[1 − g(SX(x − c)]dx +

∫︂ c

0
g(SX(x − c))dx +

∫︂ ∞

c
g(SX(x − c))dx.

Now, by substituting x = c + u, dx = du we obtain

ρg(X + c) = −
∫︂ −c

−∞
[1 − g(SX(u)]du +

∫︂ 0

−c
g(SX(u))du +

∫︂ ∞

0
g(SX(u))du =

= −
∫︂ 0

−∞
[1 − g(SX(u)]du +

∫︂ ∞

0
g(SX(u))du +

∫︂ 0

−c
1du =

= ρg(X) + c.

Moreover, distortion risk measures fulfill an additional property related to
their dual distortion function.
Theorem 10. (Sereda et al. [2010]) For a distortion risk measure ρg and X ∈ X
it holds that

ρg(−X) = −ρg̃(X),
where g̃(x) = 1 − g(1 − x).
Proof. Firstly, we will rewrite from the definition

S−X(x) = P (−X > x) = P (X < −x) = 1 − SX(−x) − P (X = −x).

Now, we can calculate

ρg(−X) = −
∫︂ 0

−∞
[1 − g(S−X(x))]dx +

∫︂ ∞

0
g(S−X(x))dx =

= −
∫︂ 0

−∞
[1−g(1−SX(−x)−P (X = −x))]dx+

∫︂ ∞

0
g(1−SX(−x)−P (X = −x))dx.

By using the substitution u = −x and du = −dx we obtain

ρg(−X) =
∫︂ 0

∞
[1 − g(1 − SX(u))]du −

∫︂ −∞

0
g(1 − SX(u))du =

=
∫︂ 0

−∞
[1 − g̃(SX(u))]du −

∫︂ ∞

0
g̃(SX(u))du = −ρg̃(X),

what proves this property.
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Distortion risk measures in general case do not fulfill the additive property.
This fact is shown in the following theorem.

Theorem 11. In general, for X, Y ∈ X :

ρg(X + Y ) ̸= ρg(X) + ρg(Y ).

Thus, in general, distortion risk measures are not additive.

Proof. We will prove this theorem by counterexample using the idea from Sereda
et al. [2010]. Assume that X, Y ∈ X are two discrete iid losses with the distri-
bution P (X = 3) = P (X = −3) = 1

2 . Suppose that the joint distribution of
X and Y is defined as follows:

P (3, 3) = P (−3, 3) = P (3, −3) = P (−3, −3) = 1
4 ,

where P (a, b) denotes P (X = a, Y = b). Furthermore, let g = x2. Then, we
obtain

ρg(X) = −
∫︂ 0

−3
[1 −

(︃
1 − 1

2

)︃2
]dx +

∫︂ 3

0

(︃
1 − 1

2

)︃2
dx = −3

2 .

Similarly, for X + Y we have that

ρg(X + Y ) = −
∫︂ 0

−6
[1 −

(︃
1 − 1

4

)︃2
]dx +

∫︂ 6

0

(︃
1 − 3

4

)︃2
dx = −9

4 .

Therefore, we proved the statement because

ρg(X + Y ) = −9
4 ̸= −3

2 − 3
2 = ρg(X) + ρg(Y ).

In the last theorem of this section, we state the important property of one
sub-group of distortion risk measures. As you may have noticed, we proved that
distortion risk measures obey 3 out of 4 axiomatic properties proposed in the
previous section. The following theorem is related to the last property of sub-
additivity and therefore explains the relationship between distortion risk measures
and coherent risk measures.

Theorem 12. The distortion risk measure ρg(X) is sub-additive

ρg(X + Y ) ≤ ρg(X) + ρg(Y ),

if and only if g is a concave distortion function. Therefore, concave distortion
risk measures are coherent risk measures.

Proof. The proof is given in Wirch and Hardy [2001], Theorem 2.2.

More properties of distortion risk measures follow from the construction of
the Choquet integral and can be found in Denneberg [1994]. In the following
part, we summarize another group of properties, results related to the stochastic
ordering.

14



1.3.2 Stochastic dominance
The stochastic dominance approach is one of the concepts related to investment
decision-making under uncertainty. It is a form of stochastic ordering which allows
us to partially order random variables, in our case, loss random variables. In the
following definition, we define two such rankings, known as first- and second-order
stochastic dominance.

Definition 7. (Wirch and Hardy [2001]) Assume that X, Y ∈ X are losses with
decumulative distribution functions SX and SY . Then, we say X first-order
stochastically dominates (FSD) Y , if ∀x ∈ R : SX(x) ≤ SY (x). We denote
Y ⪯1st X.

We also say that X is second-order stochastically dominant (SSD)
over Y , if and only if

∀x ∈ R :
∫︂ ∞

x
SX(t)dt ≤

∫︂ ∞

x
SY (t)dt.

We denote this property by Y ⪯2nd X.

Firstly, we must note that this is a definition for loss random variables (where
positive values represent losses) and is a modification of the definition in the
original text. This definition is an equivalent reformulation for profit-and-loss
random variables (where positive values represent returns).

Furthermore, the definition states the following: In the case of first-order
stochastic dominance, loss random variables with lower realizations (or lower
losses) are preferred. However, second-order stochastic does not only take into
account the scale of losses but also their volatility. Thus, it also allows us to
capture the risk-aversion of investors.

In the following theorem, we prove that distortion risk measures are consistent
with first-order stochastic dominance.

Theorem 13. Suppose that g is a distortion function and ρg is the associated
distortion risk measure. Let X, Y ∈ X such that Y ⪯1st X. Then, ρg(X) ≤
ρg(Y ).

Proof. This proof follows from the definition of first-order stochastic dominance.
We have ∀x ∈ R : SX(x) ≤ SY (x) and a non-decreasing distortion function g.
Therefore, it holds ∀x ∈ R :

SX(x) ≤ SY (x) =⇒ g(SX(x)) ≤ g(SY (x)) =⇒ ρg(X) ≤ ρg(Y ).

In order to obtain second-order stochastic dominance, an additional assump-
tion for a distortion function g is needed.

Theorem 14. (Wirch and Hardy [2001]) Let g be a concave distortion function
with the associated distortion risk measure ρg. Assume that X, Y ∈ X are such
that Y ⪯2nd X. Then, ρg(X) ≤ ρg(Y ).
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Proof. This proof is based on the proof from Wirch and Hardy [2001], but we
extend this result for negative losses. It must also be noted that our definition
of second-order stochastic dominance slightly differs from the one in the original
text. Furthermore, due to Müller [1996], it is sufficient to prove the theorem for
non-decreasing concave distortion risk measures where the decumulative functions
cross only once.

Let us assume that E[X] ≤ E[Y ], Y ⪯2nd X and t0 denotes the crossing point
such that

SX(t) ≥ SY (t) for t < t0

SX(t) ≤ SY (t) for t ≥ t0.

Now we will define a new decumulative distribution function,

SZ(t) = max{SX(t), SY (t)} =
⎧⎨⎩SX(t) for t < t0

SY (t) for t ≥ t0.

We defined SZ(t) because in the first step, we will calculate ρg(Z) − ρg(X)
and ρg(Z) − ρg(Y ). Then, we will estimate these integrals, and by combining
both inequalities, we obtain that ρg(Y ) − ρg(X) ≥ 0.

Therefore, in the first part of the proof, we estimate ρg(Z) − ρg(X). Firstly,
suppose that t0 ≥ 0. From the definition of distortion risk measures and SZ(t),
we have

ρg(Z) − ρg(X) =
∫︂ ∞

t0
[g(SY (t)) − g(SX(t))]dt

and for t0 < 0, we can also calculate that

ρg(Z) − ρg(X) =
∫︂ 0

t0
[1 − g(SX(t))] − [1 − g(SY (t))]dt +

∫︂ ∞

0
[g(SY (t)) − g(SX(t))]dt

=
∫︂ ∞

t0
[g(SY (t)) − g(SX(t))]dt.

In order to use the assumption of second-order stochastic dominance, we need
to estimate the difference in this integral. For t > t0 it holds that SZ(t0) ≥
SY (t) ≥ SX(t). If for all t > t0 : SX(t) = SY (t), then g(SY (t)) − g(SX(t)) = 0.
Now suppose that for some t > t0 : SZ(t0) ≥ SY (t) > SX(t). For some ϵ ≥ 0, it
holds, due to the monotonicity of g, that

g(SY (t)) − g(SX(t)) − ϵ

SY (t) − SX(t) = g(SZ(t0)) − g(SX(t))
SZ(t0) − SX(t) ,

and therefore, we can rewrite

g(SY (t)) − g(SX(t)) ≥ (SY (t) − SX(t))g(SZ(t0)) − g(SX(t))
SZ(t0) − SX(t)

≥ (SY (t) − SX(t))g′
+(SZ(t0)),
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where g′
+ denotes a right-side derivative.

Thus, for t > t0, we obtain the following inequality

ρg(Z) − ρg(X) ≥ g′
+(SZ(t0))

∫︂ ∞

t0
[SY (t) − SX(t)]dt. (1.5)

In the second part of the theorem, which goes similarly to the first part, we
estimate ρg(Z) − ρg(Y ). For t0 ≥ 0, we obtain that

ρg(Z)−ρg(Y ) =
∫︂ 0

−∞
−[1−g(SX(t))]+[1−g(SY (t))]dt+

∫︂ t0

0
[g(SX(t))−g(SY (t))]dt

=
∫︂ t0

−∞
[g(SX(t)) − g(SY (t))]dt.

When t0 < 0, we have

ρg(Z) − ρg(Y ) =
∫︂ t0

−∞
[g(SX(t)) − g(SY (t))]dt.

In this case, for t < t0 : SX(t) ≥ SY (t) ≥ SZ(t0). If SY (t) = SX(t) for all t < t0
then ρg(Z) − ρg(Y ) = 0. Now assume that for some t < t0 : SX(t) > SY (t) ≥
SZ(t0). Then, for some ϵ ≥ 0, it holds

g(SX(t)) − g(SY (t)) + ϵ

SX(t) − SY (t) = g(SX(t)) − g(SZ(t0))
SX(t) − SZ(t0)

,

and therefore, we can again rewrite

g(SX(t)) − g(SY (t)) ≤ (SX(t) − SY (t))g(SX(t)) − g(SZ(t0))
SX(t) − SZ(t0)

≤ (SX(t) − SY (t))g′
−(SZ(t0)),

where g′
− denotes a left-side derivative. Thus, for t < t0, we have the second

inequality

ρg(Z) − ρg(Y ) ≤ g′
−(SZ(t0))

∫︂ t0

−∞
[SX(t) − SY (t)]dt. (1.6)

In the last part of the proof, by subtracting inequalities (1.5) and (1.6), we
obtain

ρg(Y ) − ρg(X) ≥ min{g′
+(SZ(t0)), g′

−(SZ(t0))}
∫︂ ∞

−∞
[SY (t) − SX(t)]dt ≥ 0,

where the right side of the first inequality is non-negative due to the assump-
tion of second-order stochastic dominance and the fact that g is non-decreasing.
In summary, we proved that

ρg(Y ) ≥ ρg(X).
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1.3.3 Examples of distortion risk measures
In the previous parts of this thesis, we studied two widely used risk measures VaR
and Expected Shortfall. Moreover, these risk measures can also be represented
as distortion risk measures. In the following two theorems, we propose these
representations and explain the relationship between VaR or ES and distortion
risk measures. In the following theorem, we define the distortion function related
to VaR.

Theorem 15. (Ambrož [2011]) Suppose that X ∈ X , α ∈ (0, 1) and

g(x) =
⎧⎨⎩0 if 0 ≤ x < 1 − α

1 if 1 − α ≤ x ≤ 1.

Then, V aRα can be represented as a distortion risk measure associated with the
distortion function g, meaning that

V aRα(X) = ρg(X).

Proof. The function g fulfills all conditions in Definition 6 and therefore is a well
defined distortion function. We recall from Definition 4 that we have V aRα(X) =
qα(X) = qα. From the definition of quantile, we obtain

∀x ∈ (−∞, qα) : g(SX(x)) = 1, because SX(x) ≥ 1 − α,

and also
∀x ∈ (qα, ∞) : g(SX(x)) = 0, because SX(x) < 1 − α.

Thus, we have for qα ≥ 0

ρg(X) = −
∫︂ 0

−∞
[1 − g(SX(x))]dx +

∫︂ ∞

0
g(SX(x)))dx =

= −
∫︂ 0

−∞
0dx +

∫︂ qα

0
1dx +

∫︂ ∞

qα

0dx = qα = V aRα(X).

Similarly, for qα < 0 we get

ρg(X) = −
∫︂ 0

−∞
[1 − g(SX(x))]dx +

∫︂ ∞

0
g(SX(x)))dx =

= −
∫︂ qα

−∞
0dx −

∫︂ 0

qα

1dx +
∫︂ ∞

0
0dx = qα = V aRα(X).

Therefore, we have proved that V aRα(X) = ρg(X).

In the second example, we define the distortion function that is related to
Expected Shortfall and thus show that ESα can be represented as a distortion
risk measure.

Theorem 16. (Ambrož [2011]) Let X ∈ X , α ∈ (0, 1) and

g(x) = min
(︃

x

1 − α
, 1
)︃

, where x ∈ [0, 1].

Then, Expected Shortfall can be represented as a distortion risk measure with the
distortion function g, meaning that

ESα(X) = ρg(X).
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Proof. Similarly to the proof of the previous theorem, we see that function g
meets all conditions in Definition 6 and thus is a distortion function. From the
definition of Expected Shortfall, properties of quantile and SX , we can rewrite

ESα(X) = 1
1 − α

∫︂ 1

α
V aRγ(X)dγ = qα + 1

1 − α

∫︂ ∞

qα

SX(x)dx,

where qα = qα(X) and SX is a decumulative distribution function. Further-
more, we can conclude that

∀x ∈ (−∞, qα) : g(SX(x)) = 1, because SX(x) ≥ 1 − α,

and also

∀x ∈ (qα, ∞) : g(SX(x)) = SX(x)
1 − α

, because SX(x) < 1 − α.

For qα ≥ 0 we have

ρg(X) = −
∫︂ 0

−∞
[1 − g(SX(x))]dx +

∫︂ ∞

0
g(SX(x)))dx =

= −
∫︂ 0

−∞
0dx +

∫︂ qα

0
1dx +

∫︂ ∞

qα

SX(x)
1 − α

dx =

= qα + 1
1 − α

∫︂ ∞

qα

SX(x)dx = ESα(X).

It remains to prove the assertion for qα < 0. In this case, we get

ρg(X) = −
∫︂ 0

−∞
[1 − g(SX(x))]dx +

∫︂ ∞

0
g(SX(x)))dx =

= −
∫︂ qα

−∞
0dx −

∫︂ 0

qα

[︄
1 − SX(x)

1 − α

]︄
dx +

∫︂ ∞

0

SX(x)
1 − α

dx =

= qα + 1
1 − α

∫︂ ∞

qα

SX(x)dx = ESα(X).

We have thus proved that ESα(X) = ρg(X).

Another example of distortion risk measure includes the Proportional Haz-
ard (PH) transform proposed by Wang [1995] as a new risk-adjusted premium
for insurance risk pricing. This measure has a distortion function

g(x) = x1/γ, x ≥ 0, γ ≥ 1. (1.7)
Consequently, we define the PH-transform measure as:

ρP H(X) =
∫︂ ∞

0
SX(x)1/γdx, γ ≥ 1,

where SX(x) = 1 − FX(x) is defined as previously.

As we can see from the definition of the distortion function g of the PH
transform, this function is concave and therefore, Theorem 12 implies that the
PH-transform measure satisfies the sub-additivity property. As Wang [1995] men-
tions, this is an important property as it does not provide any advantage to
policy-holders when splitting the risk of their positions into pieces.

Another well known examples of distortion functions include:
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• The Wang transform (Wang [2000])

gλ(x) = Φ(Φ−1(x) + λ) for λ ≥ 0,

where Φ is the standard normal distribution function. The parameter λ can
be adjusted in order to inflate the probabilities of high losses.

• The MINVAR distortion function (Cherny and Madan [2009])

g(x) = 1 − (1 − x)1+λ for λ ≥ 0. (1.8)

• The MINMAXVAR distortion function (Cherny and Madan [2009])

g(x) = 1 − (1 − x1/(1+λ))1+λ for λ ≥ 0.

In all three cases, the positivity of the parameter λ ensures that the distortion
function is concave.

In the last example, we will illustrate the effect of distortion risk measures on
the example of the function presented by Guegan and Hassani [2015]. Suppose
that

gδ(x) = a

[︄
x3

6 − δ

2x2 +
(︄

δ2

2 + β

)︄
x

]︄
, (1.9)

where a = (1
6 − δ

2 + ( δ2

2 + β))−1, δ ∈ [0, 1] and β ∈ R.

This function was constructed in order to modify the given distribution and
obtain a bimodal distribution; hence we choose a third degree polynomial func-
tion.

(a) Different values of δ (β = 0.005) (b) Different values of β (δ = 0.8)

Figure 1.3: The distortion functions introduced in equation (1.9) for different
choices of δ and β
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In Figure 1.3, we illustrate the effect of this distortion measure for different
values of δ and β. In this Figure, we can see a better illustration of the possi-
bilities that distortion measures provide. Firstly, in Figure 1.3a there are several
distortion functions with different choices of parameters δ with the fixed param-
eter β = 0.005. As can be noticed, this parameter influences the position of the
saddle points and thus creates a convex and concave part in the interval [0, 1].
We should also notice that the effect of saddle point decreases for higher values
of δ.

On the other hand, Figure 1.3b illustrates the effect of the second parameter
β on several presented distortion functions with the fixed parameter δ equal to
0.8. We might notice that the closer the β is to 0, the more significant would be
the effect of g on the distribution of losses. Moreover, when β approaches 1 then
the distortion function tends to the mapping of identity.

(a) Distortion functions (b) Distorted standard normal distributions

Figure 1.4: The distortion effect on the standard normal distribution for different
values of β (with fixed δ = 0.5)

Similarly to the previous Figure 1.3a, in Figure 1.4a, we have a simulation of
distortion functions for numerous parameters β. However, in this case, we fix the
parameter δ to be equal to 0.5. As was mentioned previously, in this graph, we
also observe the effect of convex and concave parts. Specifically, for lower values
of β (0.0001 and 0.01), we obtain noticable separate parts, one concave part for
x ∈ [0, 0.5] and second convex part for x ∈ [0.5, 1].

Distortion measures with the same parameters as in Figure 1.4a are also shown
in Figure 1.4b. However, in this Figure, we illustrate their effect on the distribu-
tion function of the standard normal distribution. If the value of β approaches 1
then the distorted distribution tends to the standard normal distribution. A more
interesting phenomenon can be observed for values of β approaching 0. In this
case, we might notice that the distorted measure associated with the distortion
function gδ assigns smaller probabilities to the middle part of the distribution
and shifts more weight to the tail parts of the distribution. This is an important
example of the benefit that distortion risk measures provide.
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2. Reward-Risk Ratios
In the previous chapter, we studied the theory of risk measurement. We intro-
duced one approach to partial risk ordering, the concept of stochastic dominance.
This approach is based on the axiomatic model of risk-averse preferences. How-
ever, in practice, the optimizations problems that arise from this theory are usu-
ally not easy to solve. Moreover, it is often not sufficient to only minimize risk.
We often also aim to maximize our return. Therefore, we extend the theory of
risk to studies of reward-risk ratios. The main source of this short chapter is the
article from Cheridito and Kromer [2013].

The concept of reward-risk ratios gives us another approach to the partial
ordering of risks. In this theory, the choice of the optimal portfolio is given by
two criteria - portfolio risk and the expected portfolio return. This choice is based
on the value of a reward-risk ratio (RRR), which is generally defined as

R(X) = µ(−X)+

ρ(X)+ , (2.1)

where X ∈ X , µ : X → R denotes a reward measure, ρ : X → R is a risk
measure and x+ denotes the positive part x+ = max{0, x}. If we understand
0/0 = 0 and ∀x ∈ R+ \ {0} : x/0 = ∞, then this ratio is well defined for all cases.
For example, if the value of a reward measure is negative and the value of a risk
measure is positive, the ratio is equal to 0. Similarly, for the positive value of a
reward measure and the negative value of a risk measure, the ratio is equal to
∞. This is a general theoretical construction that allows us to capture different
cases. However, in practice, we often work with loss random variables for which
the values of reward and risk measures are positive. In the following definition,
we define some of the interesting properties of RRR.

Definition 8. (Cheridito and Kromer [2013]) Properties of reward-risk measures:

(i) (Monotonicity) For all X, Y ∈ X , X ≤ Y, we have R(X) ≥ R(Y )

(ii) (Quasi-concavity) For all X, Y ∈ X and λ ∈ R satisfying 0 ≤ λ ≤ 1 is
R(λX + (1 − λ)Y ) ≥ min(R(X), R(Y ))

(iii) (Scale-invariance) For any X ∈ X and λ ∈ R+ \ 0 such that λX ∈ X it
holds R(λX) = R(X)

(iv) (Distribution-based) R(X) only depends on the distribution of X

The following theorem gives us the sufficient conditions for properties defined
in Definition 8 and hence explains the connection between the properties of risk
measures and reward-risk ratios.

Theorem 17. (Cheridito and Kromer [2013]) Let R be of the form (2.1).

1. If µ(−X) ≥ µ(−Y ) and ρ(X) ≤ ρ(Y ) for all X, Y ∈ X such that X ≤ Y ,
then R satisfies the monotonicity property

2. If µ is concave and ρ convex, then R satisfies the quasi-concavity property.
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3. If ρ(λX) = λρ(X) and µ(λX) = λµ(X) for all X ∈ X and λ ∈ R+ \ 0 such
that λX ∈ X , then R satisfies the scale-invariance property.

4. If µ and ρ satisfy the distribution-based property, then so does R.

2.1 Sharpe Ratio
Suppose that X ∈ X denotes a loss random variable. We can define µ(−X) :=
E[−X]. Then, µ(−X) is equal to the expected value of negative losses (or
equivalently to the expected value of returns). Furthermore, assume that the
risk measure is defined as the standard deviation of negative losses, σ(X) :=
∥(−X) − E[−X]∥2. We obtain one of the widely known ratios

SR(X) = E[−X]+
σ(X)+ , (2.2)

known as the Sharpe ratio. This ratio was first presented in Sharpe [1966]
and is the extension of the Markowitz model from Markowitz [1959]. However, in
comparison to the original text, we present it in (2.2) in the form that corresponds
to the generalized form of a reward-risk ratio in (2.1). This ratio allows us to find
the optimal portfolio, for which is the expected return for a unit of risk (in this
case, the standard deviation) maximized. In the optimization part of this thesis,
we choose the Sharpe ratio as our benchmark ratio against distortion risk ratios.

2.2 Distortion Reward-Risk Ratios
Let’s assume that we have two distortion functions g, h from Definition 6 such that
g is convex and h is concave. Suppose that we have their associated distortion risk
measures ρg and ρh such that ρg(X), ρh(X) ∈ R for all X ∈ X . The assumption
of convexity and concavity implies that ρg is concave and ρh convex. We will also
use this fact in the reformulation of the general optimization problem in Chapter
3. Then, we obtain from Theorem 17 and Definition 6 that the distortion RRR

Rg,h(X) = ρg(−X)+

ρh(X)+ , X ∈ X ,

fulfills all four properties from Definition 8.

In the following chapter, where we will optimize portfolios with respect to
distortion reward-risk measures, we will choose g(x) = x, where x ∈ [0, 1]. This
function fulfills all necessary conditions from the definition of a distortion func-
tion. In this case, it can be shown that the associated distortion risk measure
reduces to ρg(−X) = E[−X]. Therefore, ρg is equal to the expected value of
negative losses (or returns). Our distortion reward-risk ratio then reduced to the
form

Rh(X) = E[−X]+
ρh(X)+ , X ∈ X . (2.3)

It must be noted that in practical applications of portfolio selection, distortion
risk measures might have as well negative values (when assuming that X ∈ X
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is a random variable representing losses). In such cases, to ensure that the risk
measure is strictly positive, it is possible to overcome this problem with the
suitable transformation of data. We discuss this problem and its solution in
Chapter 3.
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3. Portfolio Optimization

3.1 Preliminaries
In this chapter, we introduce a reward-risk framework for the optimal portfolio
selection problem based on the reward-risk distortion measures defined in the
previous section. This approach is based on investors’ preferences to maximize
returns per unit of risk. Firstly, we will formulate a general reward-risk optimiza-
tion problem.

Suppose that we have n financial securities, where n ∈ N. We denote by
L = (L1, ..., Ln)T a random vector of their losses with expected value E[L] =
(E[L1], ..., E[Ln])T . Let w = (w1, . . . , wn)T ∈ Rn be a vector of portfolio weights,
where wi is the portfolio weight corresponding to the ith asset, such that wT e =∑︁n

i=1 wi = 1. The return of the whole portfolio with weights w is given by
rp(w) = −wT L = ∑︁n

i=1 −wiLi and we denote its expected value as µp(w) =
wT E[−L] = ∑︁n

i=1 wiE[−Li].
In some cases, the investor faces additional external constraints. For exam-

ple, non-negative weights (when short sales are not allowed) or restrictions on
the proportion of one asset in the whole portfolio. These constraints are often
generalized by a matrix A ∈ Rk x n, a vector of lower bounds V b ∈ Rk, a vector
of upper bounds Ub ∈ Rk and a relevant inequality including this matrix and
bounds in the optimization problem.

To build our portfolio selection framework, we need to establish the following
definition.

Definition 9. (Dupacova et al. [2002]) A portfolio with weights w is called an
efficient portfolio (with respect to the mean return µ and risk measure ρ) if
there is no other portfolio with weights w∗ such that ∑︁n

i=1 w∗
i = 1, w∗

i ≥ 0 and

[ρ(wT L)) ≥ ρ([w∗]T L)) and µp(w) < µp(w∗)]

or
[ρ(wT L) > ρ([w∗]T L) and µp(w) = µp(w∗)].

We also define an efficient frontier as a subset of R2 that contains pairs
(ρ(wT L), µp(w)) for all efficient portfolios w.

In other words, this definition states that there does not exist another portfolio
with the higher expected return and lower or equal risk or a portfolio such that
its expected return is equal, but its risk is lower (in comparison to the efficient
portfolio). Furthermore, this model is based on the economic assumptions that
investors behave rationally and all necessary information are equally available.
We also do not allow short sales in our models.

If we choose the Sharpe ratio defined as (2.2), we can formulate our benchmark
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optimization problem

maximize
w

E[−wT L]√︂
wT Σpw

subject to wT e = 1
V b ≤ Aw ≤ Ub,

(3.1)

where Σp denotes the covariance matrix of portfolio’s negative losses.

3.2 Distortion Reward-Risk Optimization
In order to be able to formulate and solve a distortion reward-risk optimization
problem, we need to derive a formula for a distortion risk measure of a discrete
real random variable.

Suppose that we have a discrete real random variable Y , representing losses (in
percent), with possible values y1, . . . , ym ∈ R, where y1 ≤ y2 ≤ · · · ≤ ym. As we
need to separate these values to negative and non-negative, assume that the index
k ∈ {0, . . . , m} is such that values y1, y2, . . . , yk are negative and yk+1, . . . , ym are
non-negative (where for k = 0 we understand that all values are non-negative and
for k = m are all negative). For the simplicity, we assume that ∀i ∈ {1, . . . , m} :
P (Y = yi) = 1

m
. Then, we know that its cumulative distribution function is

FY (y) = 1
m

∑︁m
i=1 1{yi≤y}, where 1A denotes an indicator function of a set A. This

means that FY (y) is constant on intervals (−∞, y1), [y1, y2), . . . , [ym, ∞). Thus,
from Definition 6 of a distortion measure ρg, we can derive that

ρg(Y ) = −
k−1∑︂
i=1

(yi+1 − yi)
[︃
1 − g

(︃
1 − i

m

)︃]︃
+ yk

[︄
1 − g

(︄
1 − k

m

)︄]︄
+

+yk+1g

(︄
1 − k

m

)︄
+

m−1∑︂
i=k+1

(yi+1 − yi)g
(︃

1 − i

m

)︃
=

= y1 +
m−1∑︂
i=1

(yi+1 − yi)g
(︃

1 − i

m

)︃
.

Therefore, to compute distortion risk measure ρg for a discrete random vari-
able Y, it is sufficient to have all the possible values yi, where i ∈ {1, . . . , m},
ordered. We do not need to differentiate between non-negative and negative
values. Now we can focus on the formulation of the reward-risk optimization
problem.

Assume that we have m ∈ N time periods (e.g. weeks) numbered 1, . . . , m
and n ∈ N financial assets 1, . . . , n. Let l = (lij)n,m

i=1,j=1 ∈ Rn x m, m, n ∈ N be a
matrix, where lij represents a concrete realization of a loss of i-th financial asset
at time j. Suppose that w = (w1, . . . , wn)T ∈ Rn denotes weights of a portfolio
associated to our financial assets such that wT e = 1 and ∀i ∈ {1, . . . , n} : wi ≥ 0
(we do not allow short sales).
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For a given vector of weights w, we can calculate a vector of losses for this
portfolio as lp = (wT l)T ∈ Rm. Equivalently the j-th position of the vector lp
is equal to re-weighted sum of assets’ losses at time j or ∑︁n

i=1 wilij. However,
as we see from the previous part, where we derived the formula for distortion
measure, to calculate values of risk measure for different portfolios, we need to
first re-order the values of lp. Therefore, in our optimization problem we need
to define a permutation matrix P = (pi,j)m,m

i=1,j=1 consisting of 0 and 1 such that
the sum in every row and column is equal to 1. Then, we can define a new
vector y = (y1, . . . , ym) ∈ Rm such that it has the same values as lp, but its
values are ordered from the lowest to the highest. Let Y denote a discrete loss
random variable with the possible values y1, . . . , ym, defined at the beginning of
this section. We will denote the expected value of its returns (or negative losses
of Y) as µ(−Y ).

Furthermore, we recall that V b ∈ Rk, A ∈ Rk x n and Ub ∈ Rk are ad-
ditional financial constraints discussed at the beginning of this chapter. If we
define a variable R representing the reciprocal value of a distortion reward-risk
ratio (minimization over a reciprocal value of a reward-risk ratio is equivalent to
maximization of a reward-risk ratio), we can formulate the distortion reward-risk
optimization problem as

minimize
w∈F

R

subject to ρg(Y ) = µ(−Y ) × R

µ(−Y ) ≥ 0
lp = (wT l)T

Plp = y , where P = (pi,j)m,m
i=1,j=1

m∑︂
i=1

pij = 1 ∀j ∈ {1, . . . , m}

m∑︂
j=1

pij = 1 ∀i ∈ {1, . . . , m}

pij ∈ {0, 1} ∀i, j ∈ {1, . . . , m}
y1 ≤ y2 ≤ · · · ≤ ym

wT e = 1
V b ≤ Aw ≤ Ub.

(3.2)

However, since distortion risk measures distort the expected value of losses
(values of risk can be positive or negative), it might be possible in practical
applications to construct portfolios with values of risk close to 0. However, this
would degenerate our problem as it would not prefer portfolios with the lowest
risk but portfolios with the values of risk closest to 0. Therefore, we have to
modify this problem to ensure that the distortion risk measure is strictly positive.
In our case, it was sufficient to transform our loss matrix l to gross losses l̃ by
adding one (e.g. the value 1,1 represents 10% loss and value 0,9 represents 10%
return). This does not affect our results because, as we explained in the first
chapter, distortion risk measures are consistent with the properties of translation
invariance and positive homogeneity. Therefore, in our case, we do not need any
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additional restrictions on returns. Thus, we obtain a reformulation of Problem
(3.2):

minimize
w∈F

R

subject to ρg(Ỹ ) = µ(Ỹ −) × R

l̃p = (wT l̃)T

P l̃p = ỹ , where P = (pi,j)m,m
i=1,j=1

m∑︂
i=1

pij = 1 ∀j ∈ {1, . . . , m}

m∑︂
j=1

pij = 1 ∀i ∈ {1, . . . , m}

pij ∈ {0, 1} ∀i, j ∈ {1, . . . , m}
ỹ1 ≤ ỹ2 ≤ · · · ≤ ỹm

wT e = 1
V b ≤ Aw ≤ Ub,

(3.3)

where Ỹ − denotes gross returns of Ỹ (representing gross losses).
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4. Results
In this chapter, we propose results of our implementation of the distortion reward-
risk optimization model. As a benchmark for the analysis, we will use Markowitz
mean-variance model with its extension - the Sharpe ratio. We will compare the
shape of efficient frontiers for two distortion risk measures with various parameters
representing different levels of risk aversion.

4.1 Data Analysis
To demonstrate our model, we selected ten stocks (A1 - A10), which are traded
at stock exchanges NYSE and Nasdaq. These stocks were selected to represent
various GICS sectors. Their corresponding tickers and GICS sectors are listed
in Table A.1. The historical financial data of our selected assets were imported
from the Yahoo finance database. This section focuses on the implementation of
distortion reward-risk measures, and therefore, we restrict to a smaller sample of
weekly adjusted closing prices ranging from 2020-12-21 to 2021-02-22. A smaller
sample was selected due to the computational complexity of our model, which
leads to a non-linear mixed-integer optimization problem.

In Table 4.1, we present a summary of distributional statistics of selected
assets, namely average weekly losses, standard deviation, skewness and kurtosis.
These statistics are computed for losses (negative returns) in our chosen period
and correspond to selected assets A1-A10. In this table, we can see that the asset
A3 is the asset with the highest average returns. In Table 4.2, we illustrate the
correlation matrix of selected assets’ losses.

Asset Mean STD Skew Kurt
A1 -0,6819 4,0610 -0,3921 -0,7449
A2 -2,6650 4,7336 -0,4433 -0,4911
A3 -2,9216 4,3100 0,6384 0,1735
A4 0,0185 4,6628 -0,0319 -0,9853
A5 -1,7407 4,3618 -1,3716 1,3264
A6 0,3360 2,7173 0,6757 0,3627
A7 0,2898 2,7736 -0,8366 -0,4255
A8 -0,2696 2,7502 0,2278 -0,8388
A9 -1,5568 4,4873 0,1004 -0,9060
A10 -2,7424 5,5100 -0,2532 -0,8491

Table 4.1: A summary of distributional statistics of assets’ losses

4.2 Markowitz Model
Our benchmark model, the Markowitz model with the Sharpe ratio optimization,
was implemented in Python using the Problem (3.1) and solved by Sequential
Least Squares Quadratic Programming (SLSQP). However, in order to be able
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1 -0,288 -0,297 0,310 0,730 -0,057 0,758 0,407 -0,283 -0,278
-0,288 1 0,493 0,088 -0,010 0,813 0,033 0,446 0,264 0,404
-0,297 0,493 1 0,662 0,247 0,352 -0,055 0,090 0,749 0,741
0,310 0,088 0,662 1 0,697 0,167 0,510 0,524 0,540 0,464
0,730 -0,010 0,247 0,697 1 0,218 0,849 0,429 0,362 0,395
-0,057 0,813 0,352 0,167 0,218 1 0,267 0,477 0,180 0,494
0,758 0,033 -0,055 0,510 0,849 0,267 1 0,580 -0,019 0,035
0,407 0,446 0,090 0,524 0,429 0,477 0,580 1 -0,008 -0,008
-0,283 0,264 0,749 0,540 0,362 0,180 -0,019 -0,008 1 0,861
-0,278 0,404 0,741 0,464 0,395 0,494 0,035 -0,008 0,861 1

Table 4.2: The correlation matrix of assets’ losses

to compare the results with distortion reward-risk ratios, we scale this model for
weekly losses. Furthermore, in our implementation we do not allow short sales
and do not assume any other financial constraints. The complete source code of
our implementation can be found in the attached files.

In Figure 4.1, we present the Markowitz efficient frontier together with high-
lighted significant portfolios. Namely, the portfolio with the lowest standard
deviation and the portfolio with the highest Sharpe ratio. Corresponding alloca-
tions of these portfolios can be found in Table 4.3, where we exclude the assets
with zero allocation.

Figure 4.1: The Markowitz efficient frontier scaled for mean weekly returns. The
blue point represents the efficient portfolio with respect to Sharpe ratio. Black
points represent mean returns and standard deviations of our selected assets.

4.3 Distortion Risk Model
In the previous chapter, we proposed the general distortion reward-risk optimiza-
tion problem for discrete random variables with the assumption of equal probabil-
ities of their realizations. As can be seen, Problem (3.3) leads to a mixed-integer

30



nonlinear program (MINLP). Due to the complexity of this problem, for the im-
plementation, we had to use the specialized optimization software GAMS with
the Branch-And-Reduce Optimization Navigator (BARON) (Tawarmalani and
Sahinidis [2005]). All source codes can be found in the attached files. Again,
we suppose that short sales are not allowed and do not assume any additional
financial constraints.

In our implementation, we focused on two distortion risk measures. The
Proportional Hazard transform (defined in (1.7)) for two different parameters
γ = 2 and γ = 5 and the MINVAR distortion risk measure (defined in (1.8)) for
two parameters λ = 1 and λ = 4. For better illustration of the position of the
portfolio with the highest reward-risk ratio, we present it with resulting efficient
frontiers in Figures 4.2 and 4.3 and Tables 4.4 and 4.5 with allocations of the
optimal portfolios. Corresponding full allocations of assets for selected levels of
returns can be found in Section A.2.

Firstly, we notice that when γ → 1+ or λ → 0+, both the Proportional Hazard
transform and the MINVAR distortion function tend to the identity function.
From the definition of a distortion risk measure, we immediately obtain that this
risk measure is equal to the expected value of the loss random variable X ∈ X .
Therefore, these choices of parameters are not practical due to the fact that the
optimization problem degenerates to the problem of finding portfolios with the
highest mean return, as the higher mean returns represent lower values of risk.

However, for higher choices of these parameters, we obtain interesting results.
As can be seen in Figure 4.2, different choices of parameter γ does not only affect
the position of the efficient frontiers but influences their shape as well. This
is the result of the shapes of Proportional Hazard functions depicted in Figure
A.1a. As we can see, these functions assign higher values especially to lower
values of x. Thus, the corresponding risk measure assigns higher probabilities
to realizations with the highest losses. This effect is noticeable especially on
the portfolios beyond the highest reward-risk ratio portfolio, where risks grow
significantly faster than in the previous part of the efficient frontier. Therefore,
different choices of parameters allow us to model various levels of risk perception
and to construct optimal portfolios with respect to these levels.

Furthermore, from Tables A.2 and A.3 it can also be noticed that different
choices of the parameter γ for the PH transform measure do not necessarily lead
to different allocations for selected levels of returns. This effect is noticeable
for levels of return equal to 2,10%, 2,30%, 2,50% and 2,70%, where we obtain
equivalent weights. However, values of risks at these levels of return for different
choices of γ differ. This is not surprising, as the PH transform with γ = 5 assigns
higher values to all x ∈ (0, 1) than for γ = 2 . Moreover, as can be seen from
Table 4.4, the optimal portfolios with the lowest risk and the highest reward-
risk ratio differ significantly. Not only with respect to their values of risk but
regarding their allocations as well.

Similar results are obtained for the MINVAR distortion function. In this
case, different choices of parameter λ do not only lead to different values of risk
but also to different allocations of optimal portfolios. These differences can be
noticed from Table 4.5 and tables in Section A.2. The effect on the shapes of
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efficient frontiers and their positions is depicted in Figure 4.3. As we can see, the
shapes of MINVAR distortion functions from A.1b are translated into the shapes
of efficient frontiers. Therefore, in comparison to the PH measure, we also obtain
different allocations of optimal reward-risk portfolios.

To conclude, through our formulation of the reward-risk optimization problem
with the assumption of concave distortion functions (and therefore associated co-
herent risk measures, as we explained in Section 1.3.1), we obtain a similar frame-
work for portfolio analysis to the Markowitz model. To be able to implement this
model in real financial practice, it would be necessary to compute results for large
data samples. The computational aspect is one of the limitations of distortion
risk measures, as they, in the general case, lead to mixed-integer nonlinear prob-
lems. However, the class of distortion risk measures is prospective as it allows us
to retain more information from (empirical) distributions of our assets in values
of risk. Furthermore, the main benefit of distortion risk measures is the abil-
ity to re-weight probabilities of portfolio distributions, thus influencing shapes of
constructed efficient frontiers. This enables us to control different risk aversion
levels and allows us to construct optimal portfolios with respect to investors’ risk
aversion requirements.
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The Markowitz mean-variance model
Return A1 A2 A3 A6 A8 A9 A10 Risk SR Optimum
0,30% 0,209 0 0 0,457 0,158 0,176 0 1,36% 0,224 Min Risk
1,71% 0,405 0,258 0,159 0 0 0,175 0,003 2,07% 0,827 Max SR

Table 4.3: Optimal portfolios with respect to the Markowitz mean-variance
model and their Sharpe ratios scaled to mean weekly returns.

Proportional Hazard transform, γ = 2
Return A1 A2 A3 A10 Risk RRR Optimum
1,93% 0,386 0,310 0,024 0,280 0,992774 1,026696 Min Risk
2,68% 0 0,860 0 0,140 0,993617 1,033354 Max RRR

Proportional Hazard transform, γ = 5
Return A1 A2 A9 A10 Risk RRR Optimum
1,28% 0,537 0,071 0,294 0,098 0,99964 1,013188 Min Risk
2,54% 0,071 0,759 0 0,170 1,009303 1,015921 Max RRR

Table 4.4: Optimal portfolios with respect to the Proportional Hazard transform
with corresponding mean returns, risks and reward-risk ratios (RRR).

MINVAR distortion function, λ = 1
Return A1 A2 A3 A10 Risk RRR Optimum
1,93% 0,399 0,264 0,187 0,150 0,993088 1,026426 Min Risk
2,82% 0 0,401 0,599 0 0,994221 1,034163 Max RRR

MINVAR distortion function, λ = 4
Return A1 A2 A3 A9 A10 Risk RRR Optimum
1,32% 0,471 0,155 0 0,374 0 1,0021 1,0111 Min Risk
1,90% 0,421 0,169 0,211 0 0,200 1,0047 1,0142 Max RRR

Table 4.5: Optimal portfolios with respect to the MINVAR distortion function
with corresponding mean returns, risks and reward-risk ratios (RRR).
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Figure 4.2: The efficient frontiers of the Proportional Hazard transform for two
different choices of γ. Portfolios with the highest return, the highest reward-risk
ratio and the lowest risk are highlighted. Values are calculated for mean weekly
returns.

Figure 4.3: The efficient frontiers of the MINVAR distortion measure for two
different choices of λ. Portfolios with the highest return, the highest reward-risk
ratio and the lowest risk are highlighted. Values are calculated for mean weekly
returns.
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Conclusion
In this thesis, we studied numerous risk measures. In the first chapter, we pre-
sented the properties of two risk measures, Value-at-Risk and Expected Short-
fall, that are often used in practice. Furthermore, the theory of distortion risk
measures was also provided. We focused on the proofs of properties related to
coherency axioms and stochastic dominance. The relation between this class of
risk measures and Value-at-Risk and Expected Shortfall was also illustrated.

Then, the theory of general and distortion reward-risk ratios was provided,
and their relation to risk measures explained. As we discussed, the framework of
reward-risk ratios allows us to construct optimization problems where is reward
per unit of risk maximized.

The application of distortion risk measures in optimal portfolio selection prob-
lems was presented in Chapter 3. In this chapter, we proposed the main theoret-
ical result of this thesis, the distortion reward-risk optimization model. To our
knowledge, a similar result has not yet been published in the literature. We dis-
cussed the advantages of using distortion risk measures in portfolio optimization
and discussed the limitations of this framework. We managed to implement this
theoretical model in the specialized optimization software GAMS. As it turned
out, this problem leads to the non-linear mixed-integer optimization and there-
fore, to be able to fully apply this model in real financial practice, the theory
behind optimal solving methods and algorithms has to be further explored.

However, as we have seen on the results computed with real financial data, the
class of distortion risk measures is prospective. It allows us not only to re-weight
probabilities in the distribution but enables us to translate different levels of risk
aversion into portfolio optimization problems.

35



Bibliography
Carlo Acerbi and Dirk Tasche. On the coherence of expected shortfall. Journal

of Banking & Finance, 26(7):1487–1503, 2002a.

Carlo Acerbi and Dirk Tasche. Expected shortfall: a natural coherent alternative
to value at risk. Economic notes, 31(2):379–388, 2002b.
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List of Abbreviations

α a confidence level
ESα Expected Shortfall at a confidence level α
E[X] expected value of a random variable X
e an unit vector
FX(x) a cumulative distribution function of a random variable

X
g′

+ a right-side derivative of a function g
g′

− a left-side derivative of a function g
1A an indicator function of a set A
Kurt Kurtosis
N a set of natural numbers
N (µ, σ2) a normal distribution with mean µ and variance σ2

Nasdaq the National Association of Securities Dealers Auto-
mated Quotations

NYSE The New York Stock Exchange
P a probability measure
ϕ the density of the standard normal distribution
Φ the distribution function of the standard normal distri-

bution
qα(X) a lower α-quantile of a random variable X
qα(X) an upper quantile of a random variable X
R a set of real numbers
R+ a set of non-negative real numbers
ρ a risk measure
ρg a distortion risk measure associated to a distortion func-

tion g
RRR a reward-risk ratio
S&P 500 The Standard and Poor’s 500 stock market index
Skew Skewness
STD standard deviation
SX(x) a decumulative distribution function
tn the Student’s t-distribution with n degrees of freedom
τn the density of the standard tn-distribution
V aRα Value-at-Risk at a confidence level α
w portfolio weights
X a set of loss random variables
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A. Attachments

A.1 First Attachment

Asset Company Ticker GICS Sector
A1 Microsoft Corp. MSFT Information TechnologyA2 Intel Corp. INTC
A3 Goldman Sachs Group GS FinancialsA4 BlackRock BLK
A5 Alphabet Inc. GOOGL Communication ServicesA6 AT&T Inc. T
A7 Amazon.com, Inc. AMZN Consumer Discretionary
A8 Johnson & Johnson JNJ Health Care
A9 General Electric GE Industrials
A10 Exxon Mobil Corp. XOM Energy

Table A.1: Selected assets and their corresponding GICS sectors

A.2 Second Attachment
In the second attachment, we illustrate both distortion risk measures used in our
optimization model. These measures are illustrated in Figure A.1.

Corresponding optimal allocations of selected assets with respect to the Pro-
portional Hazard transform (1.7) are presented in Tables A.2 and A.3. Optimal
allocations of assets with respect to the MINVAR distortion measure (1.8) are
presented in Tables A.4 and A.5.

(a) Proportional Hazard transform (b) MINVAR distortion function

Figure A.1: Selected distortion measures for different parameters
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