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Abstract: This work is concerned with modelling of the spread of infectious dis-
eases with emphasis on the current COVID-19 pandemic. Our goal is to estimate
unknown parameters in epidemiological models from real data on the spread of
the disease in the Czech Republic. To model the evolution of the epidemic, we
consider compartmental models, which lead to a system of ordinary differential
equations. We then formulate a non-linear least squares problem for the opti-
mization of the model parameters to fit the model outcome to the observed data.
We numerically optimize by the Levenberg–Marquardt method, which requires
the Jacobian of the vector of residuals. This is obtained by deriving and solv-
ing the sensitivity equations corresponding to the considered model. We test the
method on noisy artificial data and on a well documented English boarding school
influenza epidemic. Finally, we apply the method to Czech COVID-19 data and
discuss the results. One of the conclusions of this work is the introduction of the
concept of effective population size, to overcome the unrealistic assumption of
complete homogeneity of the population. Thus the population size is not apriori
given, but is an unknown parameter to be optimized. This leads to much better
agreement of the models and real data. This appears to be a new concept.

Keywords: COVID-19, parameter optimization, non-linear least squares, epi-
demiological models, effective population size

iii



Contents

Introduction 2

1 Epidemiological models 4
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 SIR model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Consequences of assumptions of the SIR model . . . . . . 6

1.3 SIQR model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Other advanced models . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Sensitivity equations 10
2.1 Derivation and definition . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Ordinary differential equations and notation . . . . . . . . 10
2.1.2 Sensitivity equations – simple ODE . . . . . . . . . . . . . 11
2.1.3 Multiple parameters and parameter in initial condition . . 12

2.2 Examples and derivation for the SIR model . . . . . . . . . . . . . 13
2.2.1 Simple ODE . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 SIR model . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Numerical methods 15
3.1 Runge–Kutta method . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Algorithms for parameter optimization . . . . . . . . . . . . . . . 15

3.2.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . 15
3.2.2 Gauss–Newton algorithm . . . . . . . . . . . . . . . . . . . 17
3.2.3 Levenberg–Marquardt algorithm . . . . . . . . . . . . . . . 18
3.2.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . 19

3.3 Program description . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Application to epidemiological data 25
4.1 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 SIR model . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Influenza epidemic in a boarding school . . . . . . . . . . . . . . . 29
4.3 COVID-19 – the SIR model . . . . . . . . . . . . . . . . . . . . . 30

4.3.1 Data description . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.2 Numerical experiments . . . . . . . . . . . . . . . . . . . . 32

4.4 COVID-19 – the SIQR model . . . . . . . . . . . . . . . . . . . . 35
4.5 Other advanced models . . . . . . . . . . . . . . . . . . . . . . . . 37

Conclusion 39

Bibliography 40

List of Figures 42

List of Tables 43

1



Introduction
Mathematical modelling has become a real focus of interest lately due to the
global pandemic of COVID-19. Epidemiological modelling, formerly studied only
by a handful of experts, is now in the center of attention of the general public. The
scientific results and predictions are one of the fundamental sources of information
for adopting restrictive measures against the spread of the disease.

There are many approaches for addressing the problem of modelling infectious
diseases. A variety of stochastic or discrete time models have been used to treat
this problem, cf. [1], [2] and [3] for an overview. The focus of this work is on
the standard compartmental models, which is presumably the most widely used
category of epidemiological models. Due to the COVID-19 pandemic, even many
non-experts have heard of the simplest compartmental model – the SIR model
– introduced in the pioneering work of Kermack and McKendrick in 1927, [4].
However, the aim of the work lies beyond the classical approach of numerical
simulations of various models. The compartmental models depend on several
parameters characterizing the epidemic, estimated usually by means of medical
research. Our goal is to estimate the parameters from observational epidemiolog-
ical data using some numerical methods.

Mathematically, compartmental models are formulated as a system of ordi-
nary differential equations for the number of individuals in each epidemiological
category. These systems of ordinary differential equations contain parameters
which must be tuned so that the outcome of the model best fits the observed
data. This problem thus fits into the broader framework of numerical data fit-
ting, cf. [5]. Specifically, we consider a nonlinear least squares formulation of
the parameter estimation problem, where we minimize a least squares functional
measuring the discrepancy between the model outcome and measured data. From
the many possible approaches to tackle such a problem, in this thesis we choose
a technique based on the so-called sensitivity equations, cf. [6] and [5]. These
differential equations describe how the solution of the original system of ordinary
differential equations depends on the chosen parameters. This in turn allows us
to optimize with respect to these parameters using standard numerical techniques
such as the Gauss-Newton or Levenberg-Marquardt methods, cf. [7].

One of the major issues of the standard epidemiological models we encounter
in this thesis lies in the unrealistic assumptions made both on the population
and on the disease. The models are derived providing complete homogeneity
of the population, which is clearly not satisfied in practice. To deal with this
problem, a concept of the effective population size reflecting the assumptions of
the models is introduced in this thesis. Effectively, we treat the population size
as an unknown parameter rather than an apriori given constant. This approach
appears to improve significantly the accuracy of the models.

The thesis is divided into four chapters. In the first chapter, the compartmen-
tal models are introduced and a commentary on their assumptions is given. The
second chapter provides the reader with the necessary mathematical background
of the parameter optimization algorithms – selected topics on the theory of ordi-
nary differential equations with an emphasis on the derivation of the sensitivity
equations. In the third chapter, the nonlinear least squares problem is introduced
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and the optimization algorithms themselves are described along with a method
for the numerical solution of the ordinary differential equations. The program im-
plemented for the numerical algorithms is introduced as well. Finally, the fourth
chapter presents the results of these methods for various epidemiological data
along with an interpretation and discussion of the results.
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1. Epidemiological models

1.1 Introduction
The origin of mathematical modelling in epidemiology dates back to the second
half of the 18th century when the Swiss mathematician and physicist Daniel
Bernoulli studied and mathematically analysed the increase in life expectancy
caused by inoculation against smallpox. In his paper, published in 1776, he
presented the earliest mathematical model of this particular disease. However,
predictive modelling was not given any special attention until the beginning of
the 20th century. A great contribution in this direction was made by Kermack
and McKendrick who published a paper in 1927 [4] in which they described the so
called compartmental models, the models we use in this thesis. Epidemiological
modelling went through a dramatic expansion in the second half of the 20th
century, but it has become a real focus of attention recently owing to the pandemic
of COVID-19.

Mathematical models in epidemiology may be sorted into various categories
according to different criteria – discretisation of time (models with discrete in-
tervals and continuous time models), allowing for randomness (stochastic and
deterministic models), structure of the population etc. In this thesis we take into
account exclusively deterministic, continuous time models and the population is
assumed to be a homogeneous continuum. Presumably the most widely known
representatives of this kind of models are the standard compartmental models,
some of which are derived and described in this chapter.

The compartmental models are based on the principle of dividing the popu-
lation into several labeled compartments (eg. Infectious, Recovered etc.) under
certain simplifying assumptions. The development of the epidemic in the pop-
ulation is then determined by certain relations describing the flow between the
compartments. Each relation indicates the rate of flow between a pair of com-
partments. The model is formulated mathematically by means of a system of
ordinary differential equations. In the subsequent sections we address some indi-
vidual models, which will be later used in practice.

1.2 SIR model
In this section, we introduce the SIR model, which is the basis for the more
sophisticated models we use. This simple model can be used to illustrate some
of the fundamental principles. We do not present here the analysis of the model
from the perspective of the theory of ordinary differential equations, see [2] for
further information.

1.2.1 Derivation
In this section, we follow the book [1]. In order to derive the SIR model, it is
necessary to make some simplifying assumptions regarding both the population
and the spread of the disease. On one hand, the model must be sufficiently simple
for practical application, on the other hand, the model should take into account
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the specificities of the disease in question. Let us describe the compartments of the
SIR model and the flow between them. Let T > 0. The epidemic is considered on
the time interval [0, T ]. The population is divided into three groups, each group
a function of time:

• Susceptible (S) — those who have not come across the disease and can fall
ill if they come into contact with an infectious person. Afterwards, they
become infectious themselves.

• Infectious (I) — those who spread the disease among the susceptible pop-
ulation. After recovery they move to the compartment R:

• Recovered (R) — those who are removed from the compartment I either
due to recovery or due to death.

The relations between the presented compartments are based on four funda-
mental assumptions:

1. The vital dynamics is neglected and the size of the population is supposed
to be constant, we denote it by N , N > 0.

2. The population is assumed to be a homogeneous continuum, i.e. all people
have an equal number of contacts, the probability of the transmission of the
disease between a susceptible and an infectious person during their contact
remains constant and the infectious people are equally distributed among
the population.

3. The rate of flow between the compartments I and R is directly proportional
to the size of the compartment I.

4. The recovered people acquire immunity and cannot spread the infection.
Those who fall victims to the disease are treated as recovered.

Let us denote by r the number of contacts of a person per unit time and let
p ∈ (0, 1) be the probability of the transmission between an infectious and a sus-
ceptible person when they meet. It is desired to find the number of people an
infectious person infects per unit time. The fraction of susceptible population
within the total population is S

N
. Therefore, the infectious person meets a total

of r S
N

susceptible people per unit time. It follows that the number of infected
susceptible people per infectious person per unit time is pr S

N
. It proves conve-

nient to define a new constant β = pr. Because the total number of infectious
people is equal to I, it can be concluded that the total number of infected people
per unit time is βI S

N
.

We now determine the relation between compartments I and R. As stated in
the assumption 2, the rate of flow between the compartments I and R is directly

S I R
β
N SI γI

Figure 1.1: SIR model
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proportional to the size of the compartment I. Denote by γ the coefficient of
proportionality. The rate of flow is then equal to γI. For visualization of the
compartments and relations between them, see Figure 1.1.

In order to complete the derivation of the model, it remains to define the
initial conditions. Let I0 > 0 and R0 ≥ 0 such that N − R0 − I0 > 0. We set

S(0) = N − R0 − I0,

I(0) = I0,

R(0) = R0.

(1.1)

It is clear that there are no recovered people at the beginning of the epidemic,
i.e. R0 = 0. However, the model may not always be applied from the beginning
of an epidemic and in this case, we allow R0 > 0.

The development of the model is described formally by a system of ordinary
differential equations. In conclusion, we obtain the SIR model in the form of an
initial value problem

S ′ = − β

N
SI,

I ′ = β

N
SI − γI,

R′ = γI,

(1.2)

with the initial conditions given by (1.1). The resulting model is shown schemat-
ically in Figure 1.1.

As presented in [1], the value 1
γ

is equal to the expected amount of time spent
in the compartment I. We define the basic reproduction number R0 = β

γ
, which

represents the number of infected people from a single infectious person in a
population where all people are susceptible.

1.2.2 Consequences of assumptions of the SIR model
Let us make a few remarks on the consequences of the assumptions of the SIR
model on its practical application.

The population is assumed to be distributed into three compartments. It is
clear that this pattern is satisfied for very specific disease outbreaks as it neglects
many important factors such as the latent period of the disease, quarantine, case
fatality rate, etc. More advanced models involving some of these factors are
presented in Sections 1.3 and 1.4.

The relations between the three compartments are based on the assumptions
1–4 stated above. These assumptions may limit applications of the model con-
siderably. The condition of a constant population size is usually satisfied if we
restrict ourselves to epidemics lasting a short period of time. As regards the
homogeneity of the population, this assumption may cause some difficulties. If
the considered epidemic consists of several small local outbreaks, this condition
is clearly not satisfied. This consideration leads us to the definition of an effec-
tive population size. The idea is to use a reduced population size which reflects
the assumption of homogeneity. However, before the detailed description of this
notion is given, the reader must be provided with some theoretical background.
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We therefore postpone the detailed description to Section 4.1. The third condi-
tion involves the rate of flow between the compartments I and R. It turns out
that the directly proportional rate of flow does not often correspond with the real
situation and it can be set in a more realistic way, see [8]. We however restrict
ourselves to this simple case. The satisfaction of the last condition regarding the
acquired immunity depends on the properties of the disease. As a rule, at least
temporary immunity is acquired by the recovered population considering most
of the common diseases. In this model, those who fall victims to the disease are
treated as recovered. This does not pose a problem when the case fatality rate
of the disease is zero or close to zero.

1.3 SIQR model
We move on to a more advanced model implementing quarantine. This model,
adapted from [9], is based on the additional assumption that every infectious
subject is quarantined after the infection is detected.

Let us briefly introduce the model. It is built on the standard SIR model
introduced in Section 1.2. In addition to the compartments S, I, and R, we
define a new compartment called Quarantined and denoted by Q. The infec-
tious move from the compartment I to the compartment Q with a rate of flow
directly proportional to the size of I. Analogously, the quarantined leave the
compartment Q and move on to the compartment R with a rate of flow directly
proportional to the size of Q. The coefficients of proportionality are denoted by
α and δ, respectively.

One more supplementary modification must be made in the SIR model so as
to obtain the SIQR model. We need to take into account that the quarantined
people are not able to interact with the rest of the population (the so called active
population). Therefore, the rate of flow between the compartments S and I in
the SIR model (see Figure 1.1) has to be modified in an appropriate manner.
Since the size of the active population can be expressed as N − Q, we replace
the expression β

N
SI with β

N−Q
SI. The resulting SIQR model is illustrated in

Figure 1.2.

S I Q R
β

N−Q SI αI δQ

Figure 1.2: SIQR model

For completeness, we define the initial conditions of the model. They are
analogous to the initial conditions of the SIR model (1.1). Let I0 > 0, Q0 ≥ 0,
and R0 ≥ 0 such that N − R0 − Q0 − I0 > 0. We set

S(0) = N − R0 − Q0 − I0,

I(0) = I0,

Q(0) = Q0,

R(0) = R0.

(1.3)
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To conclude, we obtain the initial value problem corresponding to the SIQR
model:

S ′ = − β

N − Q
SI,

I ′ = β

N − Q
SI − αI,

Q′ = αI − δQ,

R′ = δQ,

(1.4)

with the initial conditions (1.3). The basic reproduction number for this model
is given by R0 = β

α
. Analogously to the SIR model, the value 1

α
is equal to the

expected amount of time one spends in the compartment I and 1
δ

equals the
expected amount of time spent in the compartment Q.

1.4 Other advanced models
The SIR and SIQR models presented in Sections 1.2 and 1.3 are applied on the
COVID-19 epidemiological data in Chapter 4 followed by thorough discussion of
the results. Thanks to our own implementation of the optimization algorithm
described in Section 3.3, we were able to test a wider range of compartmental
models. Since the focus of this work is not on the models themselves, we describe
these more sophisticated models only briefly. The outcome is interesting – these
models gave us results almost identical with the two previously described models.
A concise discussion of the results is therefore provided.

These advanced models are introduced schematically in the form of diagrams,
a short description is given below.

S E I R

Figure 1.3: SEIR model

S I R

Q

Figure 1.4: SIQR model No. 2

S E I Q R

Figure 1.5: SEIQR model

The SEIR model 1.3 adds the latency period to the standard SIR model.
The letter E stands for the word Exposed, this compartment contains infected
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people who are not infectious yet. Development of the compartment I is therefore
delayed in comparison with the SIR model.

A different approach to the quarantine is shown by the second SIQR model 1.4.
This approach allows us to model the case when some infectious are not detected
and avoid the quarantine. Finally, the SEIQR model combines the latency period
with quarantine.

Results of the application of these model to the COVID-19 epidemiological
data from the Czech Republic are reviewed briefly in Section 4.5.
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2. Sensitivity equations
The main goal of this thesis is the estimation of the parameters in models pre-
sented in Chapter 1. This cannot be accomplished without introducing the nec-
essary mathematical background regarding the theory of the ordinary differential
equations. In this chapter we derive the equations describing the sensitivity of
a system of ordinary differential equations (we write ODE for short) with re-
spect to a parameter. Then we give some illustrative examples and present the
derivation of the sensitivity equations for the SIR model.

2.1 Derivation and definition

2.1.1 Ordinary differential equations and notation
For our purposes, we use the notion of a system of differential equations in the
following way:
Notation. Let n ∈ N, let Ω ⊂ R × Rn be a non-empty open set and fi : Ω → R
for i ∈ {1, . . . , n}. By a system of differential equations we mean any system of
the form

y′
1 = f1(y1, . . . , yn, t),

y′
2 = f2(y1, . . . , yn, t),
... (2.1)

y′
n = fn(y1, . . . , yn, t).

We write it in vector notation y′ = f(t, y(t)) for brevity. For our purposes
Ω = R × Rn if not stated otherwise.
Definition 1. By a solution to the system (2.1) we mean a vector-valued function
y = (y1, . . . , yn)T defined on an open interval I such that for all t ∈ I and for
every i ∈ {1, . . . , n} the condition (2.1) holds.
Definition 2. By an initial value problem we mean a system of differential equa-
tions y′ = f(t, y(t)) together with a point (t0, y0) ∈ Ω called the initial condition.
A function y is said to be a solution to the initial value problem if y is a solution
to the system of differential equations and satisfies y(t0) = y0.

Since the systems of ODEs corresponding to the epidemiological models de-
pend on some parameters, we need to formalise the notion of a function dependent
on a parameter. Consider a function g : I × G → Rn, where I ⊂ R is an open
interval and G ⊂ R is an open set (for our purposes I = G = R if not stated oth-
erwise). Then g is a function of two variables, we write g = g(t, c), where c ∈ R.
By g(·, c) we mean a function of one variable (the variable is denoted by the dot)
with a fixed value of the parameter c. In other words we define g(·, c) = h, where
h : I → Rn is given by h(t) = g(t, c). In order to simplify the notation, for
some fixed value of the parameter c we will sometimes omit the second argument
and write g(t, c) = g(t). Analogously, we write g′(t, c) = g′(t) = ∂g

∂t
(t, c) if the

right-hand side is defined. This will simplify the notation for ordinary differential
equations, where t is the relevant variable and c is only a parameter.
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2.1.2 Sensitivity equations – simple ODE
In this section we follow the paper of Dickinson and Gelinas [6] and the monograph
[5] by Schittkowski. Let us consider an initial value problem

y′(t, c) = f
(︂
y(t, c), t, c

)︂
, y(0, c) = y0, (2.2)

which depends on a real parameter c. The initial value problem may be repre-
sented either by one equation or by a system of equations, thus y and f are either
scalar-valued or vector-valued functions and we do not distinguish between these
two cases in notation. We now assume that the initial condition y(0, c) = y0 ∈ Rn

does not depend on the parameter c. Let y = (y1, . . . , yn)T be a solution of (2.2).
Then y can be treated as a function of two variables, t and c, we write y = y(t, c).
In order to optimize the parameters in our models we need to define and deter-
mine the so called sensitivity of the system with respect to the parameter c. We
also introduce the notion of a sensitivity equation.

Definition 3. Suppose that for every i ∈ {1, . . . , n} and for all t and c of the
domain of y there exists ∂yi

∂c
(t, c). We define the sensitivity of the i-th variable

with respect to the parameter c by

zi(t, c) = ∂yi

∂c
(t, c).

The sensitivities defined above can be obtained as a solution of a system of
differential equations called the sensitivity equations which we derive now. Let
i ∈ {1, . . . , n}. We assume that the partial derivatives ∂yi

∂c
and ∂yi

∂t
are sufficiently

smooth functions. Then we obtain by Definition 3 and the rule for interchanging
the order of differentiation

∂zi

∂t
(t, c) = ∂

∂t

(︄
∂yi

∂c
(t, c)

)︄
= ∂

∂c

(︄
∂yi

∂t
(t, c)

)︄
.

By using (2.2), the chain rule for differentiation and Definition 3 we have

∂zi

∂t
(t, c) = ∂

∂c

[︂
fi

(︂
y1(t, c), . . . , yn(t, c), t, c

)︂]︂
= ∂fi

∂c

(︂
y1, . . . , yn, t, c

)︂
+

n∑︂
j=1

∂fi

∂yj

(︂
y1, . . . , yn, t, c

)︂∂yj

∂c
(t, c)

= ∂fi

∂c

(︂
y1, . . . , yn, t, c

)︂
+

n∑︂
j=1

∂fi

∂yj

(︂
y1, . . . , yn, t, c

)︂
· zj(t, c).

(2.3)

We obtain what will be referred to as the sensitivity equations. These are
a system of n differential equations which can be solved simultaneously with the
original system (2.2). We now determine the initial condition of the sensitivity
equations. Since the initial condition of the original system (2.2) does not depend
on the parameter c, we have for i ∈ {1, . . . , n} by Definition 3

zi(0, c) = ∂yi

∂c
(0, c) = ∂y0

i

∂c
= 0.

For some fixed value of the parameter c we write simply ∂zi

∂t
(t, c) = z′

i(t). Summing
up, we have the following definition:
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Definition 4. Let y′(t, c) = f(y(t, c), t, c), y(0, c) = y0 be an initial value prob-
lem of the form (2.2) and suppose that the initial condition does not depend on
the parameter c ∈ R. We define the sensitivity equations by

z′
i(·, c) = ∂fi

∂c

(︂
y1, . . . , yn, t, c

)︂
+

n∑︂
j=1

∂fi

∂yj

(︂
y1, . . . , yn, t, c

)︂
· zj(·, c), zi(0, c) = 0,

for i ∈ {1, . . . , n}.

2.1.3 Multiple parameters and parameter in initial condi-
tion

Until now we have discussed the case when the initial condition does not depend
on the parameter. However, a parameter may appear both in the equation and
in the initial condition and we need to derive the sensitivity equations for this
situation as well. Consider the following initial value problem:

y′(t, c) = f
(︂
y(t, c), t, c

)︂
, y(0, c) = (c, y0

2, . . . , y0
n)T , (2.4)

where c ∈ R and (y0
2, . . . , y0

n)T ∈ Rn−1. The derivation of the sensitivity equation
itself is identical with the first case (2.3). We obtain the equation of the same
form as presented in Definition 4:

z′
i = ∂fi

∂c
+

n∑︂
j=1

∂fi

∂yj

zj, i ∈ {1, . . . , n}.

We now compute the corresponding initial conditions. For the first variable z1
we have by Definition 3

z1(0, c) = ∂y1

∂c
(0, c) = ∂

∂c
c = 1.

For i ∈ {2, . . . , n} we get

zi(0, c) = ∂yi

∂c
(0, c) = ∂y0

i

∂c
= 0,

which completes the derivation. Note that the only difference from the case with
the parameter-independent initial condition from Definition 4 is in the value of
the initial condition of zi.

In our models there can often be found more parameters than one. Thus,
we generalise our derivation of the sensitivity equations for the case of multiple
parameters. The corresponding initial value problem is stated as follows:

y′(t, c) = f
(︂
y(t, c), t, c

)︂
, y(0, c) = y0 ∈ Rn, c = (c1, . . . , cm)T ∈ Rm. (2.5)

Notation 1. Consider the initial value problem (2.5). Suppose that for every
i ∈ {1, . . . , n}, j ∈ {1, . . . , m} and for all t and c of the domain of y there
exists ∂yi

∂cj
(t, c). We define the sensitivity of the i-th variable with respect to the

parameter cj by
zj

i (t, c) = ∂yi

∂cj

(t, c).

12



Let i ∈ {1, . . . , n} and j ∈ {1, . . . , m}. Similarly to the derivation in the
previous case (2.3) we obtain the sensitivity equation for the sensitivity of the
i-th variable with respect to the parameter cj:

∂zj
i

∂t
(t, c) = ∂

∂t

(︄
∂yi

∂cj

(t, c)
)︄

= ∂

∂cj

(︄
∂yi

∂t
(t, c)

)︄
= ∂

∂cj

[︂
fi

(︂
y1(t, c), . . . , yn(t, c), t, c

)︂]︂
= ∂fi

∂cj

(︂
y1, . . . , yn, t, c

)︂
+

n∑︂
k=1

∂fi

∂yk

(︂
y1, . . . , yn, t, c

)︂∂yk

∂cj

(t, c)

= ∂fi

∂cj

(︂
y1, . . . , yn, t, c

)︂
+

n∑︂
k=1

∂fi

∂yk

(︂
y1, . . . , yn, t, c

)︂
· zj

k(t, c).

Since the initial condition y0 does not depend on the parameters c1, . . . , cm, we
get in total m · n sensitivity equations of the form

(zj
i )′ = ∂fi

∂cj

+
n∑︂

k=1

∂fi

∂yk

zj
k,

along with the initial conditions zj
i (0, c) = 0.

2.2 Examples and derivation for the SIR model

2.2.1 Simple ODE
Example 1. Consider the equation y′ = cy, y(0) = K, c, K ∈ R. Find the
sensitivity equation and solve both equations.

Solution. The given ODE is separable, the solution is therefore y(t) = Kect, t ∈
R. The sensitivity equation is derived as follows in accordance with Definition 4:

z′ = ∂

∂c
(cy) + ∂

∂y
(cy) · z = y + cz = Kect + cz.

We obtain the sensitivity equation which is a linear differential equation with
constant coefficients and a special right-hand side

z′ − cz = Kect.

Its fundamental system is {ect}. The form of the right-hand side gives us a par-
ticular solution of the form ptect for some p ∈ R. Comparing the coefficients on
the left- and right-hand side yields p = K. Therefore, the general solution is

z(t) = Ktect + αect, t ∈ R, α ∈ R.

Our solution satisfies the condition z(0) = 0, hence α = 0. Summing up, we get

y(t) = Kect,

z(t) = Ktect, t ∈ R

which is our solution. Note that since we are able to solve the given equation
analytically, the sensitivity can be computed directly from Definition 3 and the
results are identical. ♣
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Example 2. Consider the equation y′ = cy, y(0) = c, c ∈ R. Find the sensitivity
equation and solve both equations.

Solution. The solution of the given ODE is (analogously to the previous exam-
ple) y(t) = cect, t ∈ R. The sensitivity equation is derived as follows:

z′ = ∂

∂c
(cy) + ∂

∂y
(cy) · z = y + cz = cect + cz.

Similarly as in Example 1 we obtain z′ − cz = cect, which is a linear differential
equation with constant coefficients and a special right-hand side. It has the
general solution of the form

z(t) = ctect + αect, t ∈ R, α ∈ R.

The initial condition z(0) = 1 (the equation is of the form (2.4)) yields α = 1,
therefore

z(t) = ect + ctect,

which is the formula for sensitivity. ♣

2.2.2 SIR model
For our models, the sensitivity equations used in the optimization algorithm are
computed by our program using MATLAB. For completeness, we present here the
derivation of the sensitivity equations for the SIR model. Consider the equations
of the SIR model (1.2) along with the initial conditions (1.1).

This system of differential equations depends on two parameters, β and γ.
The resulting initial value problem is thus of the form (2.5). According to 1, the
sensitivity equations can be derived either with respect to β or γ. We introduce
the following notation: f1(S, I, R, t, β, γ) = − β

N
SI, f2 = β

N
SI −γI, f3 = γI. The

sensitivity equations are derived following the results from the last paragraph
of Section 2.1.3. We begin with the sensitivity equations with respect to the
parameter β:

(zβ
S)′ = ∂f1

∂β
+ ∂f1

∂S
zβ

S + ∂f1

∂I
zβ

I + ∂f1

∂R
zβ

R = − 1
N

SI − β

N
Izβ

S − β

N
Szβ

I ,

(zβ
I )′ = ∂f2

∂β
+ ∂f2

∂S
zβ

S + ∂f2

∂I
zβ

I + ∂f2

∂R
zβ

R = 1
N

SI + β

N
Izβ

S +
(︂ β

N
S − γ

)︂
zβ

I ,

(zβ
R)′ = ∂f3

∂β
+ ∂f3

∂S
zβ

S + ∂f3

∂I
zβ

I + ∂f3

∂R
zβ

R = γzβ
I .

The derivation with respect to the parameter γ follows. We present here only the
results as the process is analogous.

(zγ
S)′ = − β

N
Izγ

S − β

N
Szγ

I ,

(zγ
I )′ = −I + β

N
Izγ

S +
(︂ β

N
S − γ

)︂
zγ

I ,

(zγ
R)′ = I + γzγ

I .

Since the initial conditions of the standard SIR model do not depend on the
parameters, all the initial conditions of the sensitivity equations are equal to 0.
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3. Numerical methods
Numerical methods are used in two ways in this thesis. First of all, we need
to find an approximate numerical solution to differential equations we are not
able to solve analytically. We address this problem by using the fourth-order
Runge–Kutta method. Then we proceed to the formulation of our parameter
estimation problem and we find a suitable numerical method for its solution.

3.1 Runge–Kutta method
In order to approximate a solution to a given system of ODEs, we use the standard
fourth-order Runge–Kutta method, which provides us with adequate accuracy.
We give here a brief description of this method adapted from the book [10].
Consider the following initial value problem:

y′(t) = f(y(t), t), y(0) = y0,

where y0 ∈ Rn. Let us denote by y the solution to this problem. We start at
a given time t0 (in our case t0 = 0) and construct a finite sequence {(tj, yj)}N

j=0
such that yj ≈ y(tj) for j ∈ {1, . . . , N} (here yj ∈ Rn). Let h > 0 be a fixed step
and y0 = y(0). For j = 0, 1, 2, . . . define

tj+1 = tj + h,

yj+1 = yj + 1
6(k1 + 2k2 + 2k3 + k4),

(3.1)

where k1, . . . , k4 ∈ Rn are increments computed at each step and defined by

k1 = f(yj, tj),
k2 = f

(︂
yj + 1

2hk1, tj + 1
2h
)︂
,

k3 = f
(︂
yj + 1

2hk2, tj + 1
2h
)︂
,

k4 = f
(︂
yj + hk3, tj + h

)︂
.

For our purposes, it proves sufficient to set h = 1
100 . More details and derivation

of this method can be found in [10].

3.2 Algorithms for parameter optimization
In this section we formulate the non-linear least squares problem in the context of
our models. Then we introduce two algorithms suitable for solving our problem.
The described methods are tested on the function from Example 1. At the end,
we give the description of our program implementing the Levenberg–Marquardt
algorithm.

3.2.1 Problem formulation
We now address the problem of optimizing the parameters in the models intro-
duced in Chapter 1. The parameters are sought in such a way that the models
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correspond as precisely as possible with the observational data. There are many
possibilities how to approach this problem, see [5]. Our approach is the follow-
ing: The resulting function obtained as a solution to the considered model fits
the measured data in the least squares sense. More precisely, consider the initial
value problem

y′(t, c) = f
(︂
y(t, c), t, c

)︂
, y(0, c) = y0 ∈ Rn, (3.2)

which depends on m parameters c = (c1, . . . , cm)T ∈ Rm. The function y is
represented in component form as y = (y1, . . . , yn)T . The initial condition in (3.2)
is given here in such a way that it does not depend on the parameters c1, . . . , cm.
However, if it does depend on the parameters, the process is completely identical.

Suppose we have a set of data points {(tj, Y j) ∈ Rn+1, j = 0, . . . , M}. We
want to find a vector of parameters cmin ∈ Rm such that it satisfies the condition

cmin = arg min
c∈Rm

M∑︂
j=0

∥y(tj, c) − Y j∥2, (3.3)

where y(·, c), c = (c1, . . . , cm)T ∈ Rm, denotes the solution to (3.2) and ∥ · ∥ is
the Euclidean norm in Rn. The expression in (3.3) may be rewritten

M∑︂
j=0

∥y(tj, c) − Y j∥2 =
M∑︂

j=0

n∑︂
i=1

(︂
yi(tj, c) − Y j

i

)︂2
=

M∑︂
j=0

n∑︂
i=1

(︂
rij(c)

)︂2
.

Here
rij(c) = yi(tj, c) − Y j

i (3.4)
are the residuals. Let us denote for c ∈ Rm

F (c) =
M∑︂

j=0
∥y(tj, c) − Y j∥2.

Now, we are able to rewrite (3.3) in the form

cmin = arg min
c∈Rm

M∑︂
j=0

n∑︂
i=1

(︂
rij(c)

)︂2
= arg min

c∈Rm
F (c). (3.5)

The problem of minimizing a function of the form (3.5) is called the non-
linear least squares problem (for further information see the book [7]). In the
case when the functions rij(c) depend linearly on the parameter vector c, the
problem reduces to (linear) least squares. Since we are not able to find analytic
solutions to most of the equations obtained from the epidemiological models, we
cannot write the explicit formulae for the functions rij(c). It is therefore required
to find suitable numerical algorithms in order to solve this problem. In spite
of the fact that we do not have the explicit formulae for rij(c), it is possible to
compute the partial derivatives

∂rij

∂ck

(c), k ∈ {1, . . . , m}

by using the sensitivity equations derived in Chapter 2. We use these observations
in the numerical algorithms presented in the subsequent sections.
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3.2.2 Gauss–Newton algorithm
First, we give the description of the Gauss–Newton algorithm in the context of
our problem introduced in Section 3.2.1. We present here the derivation of the
Gauss–Newton method from the standard Newton method for the problem (3.5)
adapted from [7].

It is desired to find a vector cmin satisfying the condition (3.5). The considered
functions are assumed to be sufficiently smooth. The Newton method iteratively
constructs a sequence c(1), c(2), . . . of estimates of the vector cmin. Let c(0) be our
initial estimate of the minimum. The Newton method proceeds iteratively by
setting

c(l+1) = c(l) −
(︂
H(c(l))

)︂−1
∇F (c(l)), (3.6)

where

H(c(l)) =

⎛⎜⎜⎜⎝
∂2F
∂c2

1
(c(l)) · · · ∂2F

∂c1∂cm
(c(l))

... . . . ...
∂2F

∂cm∂c1
(c(l)) · · · ∂2F

∂c2
m

(c(l))

⎞⎟⎟⎟⎠
is the Hessian matrix of F (it is assumed to be invertible) and

∇F (c(l)) =
(︂

∂F
∂c1

(c(l)) · · · ∂F
∂cm

(c(l))
)︂T

is the gradient of F . For simplicity of notation, we sometimes omit the argu-
ment c(l). The α-th element of ∇F is equal to

(︂
∇F

)︂
α

= ∂F

∂cα

=
M∑︂

j=0

n∑︂
i=1

∂

∂cα

(rij)2 =
M∑︂

j=0

n∑︂
i=1

2rij
∂rij

∂cα

= 2(JT r)α, (3.7)

where r denotes the vector of the residua, i.e.

r = (r1,0, . . . , r1,M , r2,0, . . . , r2,M , . . . , rn,0, . . . , rn,M)T ,

and the Jacobian matrix J is given by

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂r1,0
∂c1

∂r1,0
∂c2

· · · ∂r1,0
∂cm... ... . . . ...

∂r1,M

∂c1

∂r1,M

∂c2
· · · ∂r1,M

∂cm... ... . . . ...
∂rn,0
∂c1

∂rn,0
∂c2

· · · ∂rn,0
∂cm... ... . . . ...

∂rn,M

∂c1

∂rn,M

∂c2
· · · ∂rn,M

∂cm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let us compute the element at the α-th row and β-th column of matrix H(c(l)):

Hα,β = ∂2F

∂cα∂cβ

= ∂2

∂cα∂cβ

M∑︂
j=0

n∑︂
i=1

(rij)2 =
M∑︂

j=0

n∑︂
i=1

∂2

∂cα∂cβ

(rij)2

=
M∑︂

j=0

n∑︂
i=1

2
(︂∂rij

∂cα

∂rij

∂cβ

+ rij
∂2rij

∂cα∂cβ

)︂
.
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The main idea of the Gauss–Newton method is to neglect the second partial
derivatives ∂rij

∂cα∂cβ
. By setting them to zero we obtain

Hα,β = 2
M∑︂

j=0

n∑︂
i=1

∂rij

∂cα

∂rij

∂cβ

= 2(JT J)α,β. (3.8)

According to (3.7) and (3.8), the iteration (3.6) may be written as

c(l+1) = c(l) − (JT J)−1JT r(c(l)).

It is assumed that (M + 1)n ≥ m, which is a necessary condition for invertibility
of the matrix JT J . The matrix JT J is a Gram matrix of the column vectors
of J . It is therefore invertible if and only if the column vectors of J are linearly
independent. In the case when (M + 1)n < m, it is evident that the column
vectors of J are linearly dependent, because the dimension of J is (M + 1)n × m.

The matrix J can be expressed by computing the values of the partial deriva-
tives ∂ri,j

∂ck
, k ∈ {1, . . . , m}. Using (3.4) and following Notation 1 we obtain

∂ri,j

∂ck

(c(l)) = ∂

∂ck

(︂
yi(tj, c(l)) − Y j

i

)︂
= ∂

∂ck

yi(tj, c(l)) = zk
i (tj, c(l)).

The matrix J may now be written in the form

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1
1(t0) z2

1(t0) · · · zm
1 (t0)

... ... . . . ...
z1

1(tM) z2
1(tM) · · · zm

1 (tM)
... ... . . . ...

z1
n(t0) z2

n(t0) · · · zm
n (t0)

... ... . . . ...
z1

n(tM) z2
n(tM) · · · zm

n (tM)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

This derivation leads us to the following statement of the algorithm. Let
N ∈ N be the number of iterations. We start by defining an initial estimate c(0).
The iterations are then given for l ∈ {1, . . . , N} by

c(l+1) = c(l) − (JT J)−1JT r(c(l)).

In our implementation we compute the term (JT J)−1JT r(c(l)) as a solution to
a system of linear equations. Denote x = (JT J)−1JT r(c(l)). Then we have

(JT J)x = JT r(c(l)). (3.9)

This system has a unique solution under the assumption that the column vectors
of J are linearly independent. In conclusion, we get the algorithm in the form of
pseudocode (see Algorithm 1).

3.2.3 Levenberg–Marquardt algorithm
The Levenberg–Marquardt algorithm is a more robust and frequently used al-
gorithm used for solving the non-linear least squares problem. In practice, one
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Algorithm 1: Gauss–Newton algorithm
Input: Initial condition y0; (tj, Y j), j = 0, . . . , M ; c(0)

Output: c(N)

for i = 1 to N do
for j = 0 to M do

compute y(tj, c(i−1)) and z(tj, c(i−1)) using the Runge–Kutta
method;

end
construct matrix J and vector r(c(i−1));
solve (JT J)x = JT r(c(i−1));
let c(i) = c(i−1) − x;

end

often encounters problems with the Gauss–Newton algorithm caused by the near-
singularity of the matrix JT J in (3.9). The Levenberg-Marquardt algorithm fixes
this problem using a simple modification of the matrix JT J . We do not present
here the details and the derivation of this algorithm, for further information see
the books [7] and [5]. In the Gauss–Newton algorithm we solve the following
equation for x (see (3.9)):

(JT J)x = JT r(c(l)). (3.10)

We now replace this equation by an equation of the form

(JT J + λ(l)I)x = JT r(c(l)), (3.11)

where I is the identity matrix and λ(l) > 0. Our strategy for the choice of the
factor λ(l) is taken from the paper [11]. We proceed directly to the pseudocode,
see Algorithm 2. In the statement of the algorithm we use the notation introduced
in Section 3.2.1.

3.2.4 Numerical experiments
We now perform some numerical experiments with the algorithms presented in
Sections 3.2.2 and 3.2.3 on the equation from Example 1. Due to the fact that we
are able to find the exact solution to this problem, we can analyse the error and
estimate the order of convergence and the rate of convergence of the numerical
methods. We introduce these notions in the following definitions.

Consider an iterative numerical method estimating the solution (denoted
by cmin) to the problem (3.5). Let c(1), c(2), . . . be a sequence of estimates ob-
tained from the method. Let us denote by en the error in the n-th iteration, i.e.
en = c(n) − cmin.
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Algorithm 2: Levenberg–Marquardt algorithm
Input: Initial condition y0; (tj, Y j), j = 0, . . . , M ; c(0)

Output: c(N)

let ν > 1;
let λ(0) > 0;
let F (0) = F (c(0));
for i = 1 to N do

for j = 0 to M do
compute y(tj, c(i−1)) and z(tj, c(i−1)) using the Runge–Kutta
method;

end
construct matrix J and vector r(c(i−1));
solve (JT J + λ(i−1)I)xa = JT r(c(i−1));
solve (JT J + λ(i−1)

ν
I)xb = JT r(c(i−1));

let ca = c(i−1) − xa;
let cb = c(i−1) − xb;
compute F (ca);
compute F (cb);
if F (cb) ≤ F (i−1) then

let λ(i) = λ(i−1)

ν
;

let F (i) = F (cb);
let c(i) = cb;

else if f(ca) ≤ f (i−1) then
let λ(i) = λ(i−1);
let F (i) = F (ca);
let c(i) = ca;

else
{multiply λ by ν until for some smallest k it holds
F (c(k)

c ) ≤ F (i−1), where c(k)
c is obtained by solving

(JT J + λ(i−1)νkI)x(k)
c = JT r(c(i−1)), c(k)

c = c(i−1) − x(k)
c };

let λ(i) = λ(i−1)νk;
let F (i) = F (c(k)

c );
let c(i) = c(k)

c ;
end
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Definition 5. The numerical method is said to be convergent for a given problem
of the form (3.5) if

lim
n→∞

∥en∥ = 0.

A real number q ≥ 1 is said to be the order of convergence of the numerical
method if

lim
n→∞

∥en+1∥
∥en∥q

= C

for some C > 0 called the rate of convergence.

In applications, the order and the rate of convergence are estimated using
a system of algebraic equations

Cn = ∥en∥
∥en−1∥qn

, Cn = ∥en−1∥
∥en−2∥qn

.

Example 3. Let c ∈ R. Consider the equation

y′ = cy, y(0) = 1 (3.12)

from Example 1 on the interval [0, 3] and a set of data points D = {(jτ, Y j)T ∈
R2, τ = 0.1, j = 0, . . . , 30}. The exact description of the set D is given below.
It is desired to solve the corresponding non-linear least squares problem stated
in Section 3.2.1. According to (3.3), we seek cmin ∈ R such that

cmin = arg min
c̃∈R

30∑︂
j=0

|y(jτ, c̃) − Y j|2. (3.13)

0 0.5 1 1.5 2 2.5 3
-5

0

5

10

15

20

25

Figure 3.1: Original data and approximation found by Gauss-Newton method
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GN method LM method
n cn en cn en

1 3.65776 2.64153 3.65801 2.64177
2 3.31452 2.29828 3.31494 2.29871
3 2.97020 1.95397 2.97076 1.95452
4 2.62502 1.60878 2.62566 1.60942
5 2.28000 1.26377 2.28069 1.26446
6 1.93865 0.92242 1.93935 0.92312
7 1.61092 0.59469 1.61159 0.59536
8 1.32152 0.30528 1.32207 0.30583
9 1.11611 0.09988 1.11643 0.10020

10 1.02930 0.01307 1.02938 0.01315
11 1.01657 0.00034 1.01657 0.00034
12 1.01624 0.00000 1.01624 0.00000

Table 3.1: Results of Gauss–Newton (GN)
and Levenberg–Marquardt (LM) method

n qn Cn

3 1.14253 0.75757
4 1.16599 0.74050
5 1.19769 0.72122
6 1.24176 0.70024
7 1.30442 0.67969
8 1.39415 0.66556
9 1.51904 0.67230

10 1.67557 0.72928
11 1.82024 0.86585
12 1.80015 0.82671

Table 3.2: Rate and or-
der of GN method

0 2 4 6 8 10 12
10-5

10-4

10-3

10-2

10-1

100

101

Figure 3.2: Error of Gauss-Newton method

We now describe the set D more precisely. The data points are given in such
a way that they represent statistical errors in some observational data. At first, we
take the exact solution to the equation (3.12) with c = 1, i. e. y(t) = et, t ∈ [0, 3]
(see Example 1). We then define Y j = y(jτ) + wj, where wj, j ∈ {0, . . . , 30}, are
uniformly distributed random numbers in the interval (−4, 4). To give a sense of
scale, Figure 3.1 shows the resulting so called noisy data.

Note that the exact equality c = cmin does not hold in general due to the
properties of the noisy data. In this example we have on one hand c = 1, on
the other hand cmin ≈ 1.0162. The latter can be computed in this specific case
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from (3.13) using the exact solution to Equation (3.12). These two values are dis-
tinguished in this example. In practice, it is desired to find the value of c, while
the value of cmin is found by the numerical method (if the convergence is suc-
cessful) and it is assumed c ≈ cmin. Since this simple problem can be completely
solved analytically, we used it to verify the correctness of our implementation.

Let us define an initial estimate c(0) = 4. The stopping criterion is given by the
total number of iterations, we set N = 12. The fourth-order Runge–Kutta method
described in Section 3.1 is implemented in both algorithms for solving the differ-
ential equation with the step h = 1

100 . In the Levenberg–Marquardt algorithm
we set ν = 3 and λ(0) = 1

100 (see Algorithm 2). Comparison of both algorithms
based on Table 3.1 shows that they are equally successful in terms of convergence
considering this simple equation. One can observe that the coefficient λ(n) in the
Levenberg–Marquardt algorithm tends to 0 as n increases. This indicates why
the results of both methods are so similar – the Levenberg–Marquardt method
”approaches” the Gauss–Newton method, cf. (3.10) and (3.11). The correspond-
ing error ∥en∥ of the Gauss–Newton method is illustrated in Figure 3.2. The
estimates of the convergence order qn and the convergence rate Cn for the same
method are shown in Table 3.2. From the presented results it follows that the
convergence is superlinear, i. e. qn ∈ (1, 2). ♣

3.3 Program description
For the considered epidemiological models, the Levenberg–Marquardt method
proved to be superior to the Gauss–Newton method, the latter often failing or
exhibiting slow convergence. The Levenberg–Marquardt method was therefore
chosen for implementation in our final program using MATLAB. It has been
designed to provide the user with multiple useful options and to reduce manual
computations to an essential minimum.

On the input of the program there are only the necessary data – a system
of ODEs corresponding to our epidemiological model, an initial estimate of the
parameters of our model and a set of data points for optimization. The output
contains the desired estimate of the parameters.

As for the algorithm itself, the Levenberg-Marquardt method has been im-
plemented in accordance with Algorithm 2. After performing many numerical
experiments, we settled on the values λ(0) = 1

100 and ν = 3. The sensitivity
equations are derived automatically using MATLAB. The user is provided with
several options: It is not necessary to optimize the model with respect to all its
parameters, one can select only the relevant ones. This is a useful tool in appli-
cations – the values of some of the parameters are known more precisely and can
therefore be fixed.

In addition, in the optimization it is not necessary to take into account all
the compartments of the model in question. This is practical, since the reliability
of the data from certain compartments may be questionable. Moreover, some
compartments cannot be measured at all in practice. In these cases it is possible
to include in the minimized function F (see (3.5)) only the compartments we want
– those with reliable data. Examples to elucidate this approach are presented in
the next chapter.

The program can also handle the situation when a parameter occurs in the
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initial condition of the system of equations. As described in Section 1.2.2, it
turns out that it may be convenient to optimize the models with respect to the
total population size N . Since N appears typically in the initial conditions of the
models, we need to include this feature in our program.
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4. Application to epidemiological
data
In this chapter, the models and methods developed previously are applied to
various epidemiological data. At first, we experiment with the properties and
limitations of the presented epidemiological models using computer-generated
data. Then we proceed to real epidemiological data. Before the models are
applied to the COVID-19 epidemiological data, we present here one simpler case,
where the conditions are easier to analyse – the case of an influenza epidemic in
an English boarding school.

4.1 Numerical experiments
In this section we perform some numerical experiments with the epidemiological
models presented in Chapter 1. The computer-generated data are given in such
a way that they represent real statistical errors. In the first example of the SIR
model, the problem is formulated precisely and in the rest of the examples we
proceed analogously.

4.1.1 SIR model
Example 4. Let β > 0 and γ > 0. Consider the initial value problem given by
the SIR model (1.2) for the population of N = 2000 people on the time interval
[0, 80] with the initial conditions

R0 = 0,

I0 = 1,

S0 = 1999.

(4.1)

It is required to solve the non-linear least squares problem stated in Section 3.2.1
corresponding to a set of data points D, which is given as follows:

The set of data points D is defined in such a manner that it represents some
statistical data obtained from an influenza epidemic in a population of 2000 peo-
ple. To acquire the data set D, we first set the values of parameters β and γ.
Let β = 0.4 and γ = 0.25.1 Let τ = 1 be the data interval corresponding to one
day. We proceed by solving the corresponding system (1.2) with the initial condi-
tions (4.1) using the fourth-order Runge–Kutta method with sufficient accuracy,
the results are visualized in Figure 4.1. Let us define

Sj = S(jτ) + ξj,

Ij = I(jτ) + ηj,

Rj = R(jτ) + ζj,

where ξj, ηj and ζj for j ∈ {0, . . . , 80} are some random numbers from the normal
distribution with the expected value ν = 0 and the standard deviation σ = 100.

1This can be computed using the fact that β
γ = R0, see Section 1.2. It can be estimated

R0 ≈ 1.6, see [12]. We assume the infectious period to be 4 days long, i.e. γ ≈ 0.25.
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Figure 4.1: SIR model, β = 0.4, γ = 0.25
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Figure 4.2: Data from compartment R and the resulting approximation
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See Figure 4.2 for illustration of the compartment R with the resulting noise.
Finally, we set D = {(jτ, Sj, Ij, Rj)T ∈ R4, j ∈ {0, . . . , 80}} representing mea-
sured data on individual days.

We are now able to formulate the non-linear least squares problem precisely.
In accordance with (3.3), it is desired to find a vector of parameters (βm, γm)T

such that

(βm, γm)T = arg min
(β̃,γ̃)T ∈R2

80∑︂
j=0

(︂ ⃓⃓⃓
S̃(jτ) − Sj

⃓⃓⃓2
+
⃓⃓⃓
Ĩ(jτ) − Ij

⃓⃓⃓2
+
⃓⃓⃓
R̃(jτ) − Rj

⃓⃓⃓2 )︂
, (4.2)

where S̃ = S(·, β̃, γ̃), Ĩ = I(·, β̃, γ̃) and R̃ = R(·, β̃, γ̃) denote the solution of the
SIR model equations (1.2) with (β, γ)T = (β̃, γ̃)T and the initial conditions (4.1).

The program described in Section 3.3 is used to solve the problem (4.2) con-
sidering the initial estimate (β(0), γ(0))T = (1, 1)T and the stopping criterion given
by the increment size

∥(βm, γm)T − (βm+1, γm+1)T ∥∞ < 10−5, (4.3)

where ∥ · ∥∞ is the maximum norm on R2. The stopping criterion of this form
is used in the whole chapter. The desired estimate computed by the program is
(βm, γm)T ≈ (0.4022, 0.2493)T , which is a good approximation of the true values
β = 0.4 and γ = 0.25. It can be observed that the convergence is fast in spite of
the inaccurate initial guess of the minimum. To get a better perspective of the so-
lution, we solve the SIR model equations (1.2) taking (β, γ)T = (0.4022, 0.2493)T .
The result is shown in Figure 4.2 for compartment R. ♣

Example 5. In practice, one does not often posses the data from all three com-
partments. In many cases, only the data regarding compartment I are available
for our computations. It is therefore necessary to test the accuracy of the mini-
mization algorithm using this incomplete data.

Let us consider the SIR model along with the initial conditions from Example 4
with the same value of parameters β = 0.4 and γ = 0.25. The noisy data
are obtained the same way as in Example 4 with the exception that only the
compartment I is considered now, i.e. we have the noisy data of the form

Ij = I(jτ) + ηj,

where τ = 1 and ηj for j ∈ {0, . . . , 80} are taken from Example 4. In this
case, we set D = {(jτ, Ij)T ∈ R2, j ∈ {0, . . . , 80}}. On the whole, we have the
minimization problem of the form

(βm, γm)T = arg min
(β̃,γ̃)T ∈R2

80∑︂
j=0

⃓⃓⃓
Ĩ(jτ) − Ij

⃓⃓⃓2
, (4.4)

where the notation follows the notation in Equation 4.2. The initial guess is
again set as (β(0), γ(0))T = (1, 1)T and the stopping criterion is given by the
increment size (see (4.3)), which is achieved after NI = 30 iterations. The final
estimate found by Levenberg–Marquardt algorithm is (β, γ)T = (0.4151, 0.2635)T

The results for compartment I may be seen in Figure 4.3. Unexpectedly, the
incomplete data do not affect the accuracy of the algorithm to a large degree,
although more iterations are required for successful convergence. ♣
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Figure 4.3: Data from compartment I and the resulting approximation

Example 6. As we suggested in Section 1.2.2, it may be convenient to intro-
duce the notion of an effective population, as the real population size is often
exaggerated for the purposes of the epidemiological models. Informally speaking,
the real population size is reduced in order to ensure the homogeneity of the
population in accordance with the assumptions of the SIR model. The question
is how to determine the size of the effective population. Our approach is simple
– the population size N will not be considered a fixed constant (as it has been
until now). Instead, N will be treated as a parameter. In other words, we now
consider our epidemiological data (number of infectious etc.) corresponding to
an unknown population size and we want to determine this size. Formally, the
change is that instead of the parameter vector (β, γ)T for the SIR model, we have
now an extended parameter vector (β, γ, N)T . The following example is given to
elucidate this notion:

Let us take the data set D = {(jτ, Sj, Ij, Rj)T ∈ R4, j ∈ {0, . . . , 80}} from
Example 4. Note that this data set corresponds to a population of 2000 people.
In accordance with the explanation above, N is now considered a parameter.
The optimization is thus performed with respect to three parameters – β, γ and
N . Let us remark that the parameter N appears now in the initial conditions
of the SIR equations, see (1.1). This does not pose a problem since the theory
regarding parameters in initial conditions has been presented in Section 2.1.3 and
this feature has been implemented in our program as described in Section 3.3.
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The optimization problem is of the form

(βm, γm, Nm)T = arg min
(β̃,γ̃,Ñ)T ∈R3

80∑︂
j=0

(︂ ⃓⃓⃓
S̃(jτ) − Sj

⃓⃓⃓2
+
⃓⃓⃓
Ĩ(jτ) − Ij

⃓⃓⃓2
+
⃓⃓⃓
R̃(jτ) − Rj

⃓⃓⃓2 )︂
,

where S̃ = S(·, β̃, γ̃, Ñ), Ĩ = I(·, β̃, γ̃, Ñ) and R̃ = R(·, β̃, γ̃, Ñ) denote the so-
lution of the SIR model equations (1.2) taking (β, γ, N)T = (β̃, γ̃, Ñ)T with the
initial conditions (4.1).

Let us perform the optimization using the initial guess (β(0), γ(0), N (0))T =
(1, 1, 4000)T and the stopping criterion given by the increment size, analogously
to (4.3). The tolerance 10−5 is achieved after NI = 16 iterations. The resulting
estimate is (βm, γm, Nm)T ≈ (0.4030, 0.2499, 2008)T , which is an accurate approx-
imation of the original values. ♣

4.2 Influenza epidemic in a boarding school
The SIR model was derived under certain conditions made on the population
and the disease itself. This may significantly affect the accuracy of the model.
It is no more than wishful thinking to assume that these conditions are satisfied
in most practical situations. We present here one case, which is apparently as
close as possible to satisfying those conditions. This is the case of an influenza
outbreak in an English boarding school. We give here just a brief description of
the epidemic based on the information from [13]. The data for optimization are
taken from [3].

In total, 763 boys were present at school at the beginning of the epidemic.
From 15 to 18 January, one boy had an influenza-like illness. Over the next
fortnight, a total of 512 boys developed similar symptoms spending between three
and seven days in the college infirmary. It is desired to estimate the values of
parameters β and γ from the SIR model (1.2) corresponding to this epidemic.

Let us make a few remarks on the conditions specified in Section 1.2.1 in this
particular case. It is clear that the population remains constant over the whole
period, i.e. N = 763. As for the homogeneity of the population, the contacts
of the pupils were limited to the people in school, the students and the staff can
therefore be considered a closed community – it seems that the population is as
homogeneous as possible.

The disease itself seems to satisfy the assumptions of the SIR model. Dividing
the population into three groups appears to be convenient since the conditions for
spread of the disease were ideal. The presymptomatic period is short, no death
cases occurred and the recovered people acquire sufficiently long immunity.

One problem concerning the available data may occur. As a rule, in practical
cases we do not possess the data which fit into the structure of the SIR model
precisely. The data we possess consist of the number of students confined to bed
each day. Following [1], we assume the data to be from the compartment I.

We proceed to the parameter estimation. Having only the data from com-
partment I, we get the optimization problem of the form (4.4). For visuali-
sation of the measured data, see Figure 4.4. The initial estimate is given by
(β(0), γ(0))T = (1, 1

7)T and the stopping criterion by the increment size, see (4.3).
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Figure 4.4: Measured data of the flu epidemic and the estimate of compartment I

The desired tolerance 10−5 is achieved after NI = 6 iterations. The resulting es-
timate of the parameters is (βm, γm)T ≈ (1.6998, 0.4469)T . Figure 4.4 shows that
the estimated values of the compartment I are in good agreement with measured
data.

However, we may find some discrepancies if we examine the case more closely.
Let us solve the SIR model (1.2) with the obtained (β, γ)T = (1.6998, 0.4469)T

and the initial conditions corresponding to this influenza epidemic. We find out
that the results do not quite correspond with the available data. Namely, the SIR
model shows that the total number of people who suffered from the illness is 744,
whereas the number stated in [13] is 512. In addition, we know from Chapter 1
that the value 1

γ
≈ 2.24 represents the expected time (in days) one spends in

the Infectious compartment. It can be seen that this value is somewhat less then
the observed value, which is three to seven days. These considerations suggest
that even in this simple case some unexpected issues limiting the accuracy of
the model occur. This is a consequence of several facts. As stated above, the
available data do not fit the model precisely – a person diagnosed with the illness
has limited possibilies of spreading the disease because their contacts with the
susceptible population are restricted. In addition, the pattern of the SIR model
may not be entirely convenient for this particular disease. Nevertheless, in order
to adjust the model in accordance with the disease we need additional medical
information. These are not available since the epidemic was small and was not
given any special significance.

4.3 COVID-19 – the SIR model
To conclude our work, we apply the presented numerical methods to the COVID-
19 epidemiological data from the Czech Republic. Multiple approaches presented
in Examples 4, 5, and 6 are used and compared in this section. At first, let us
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discuss the selection of the data.

4.3.1 Data description
The source of epidemiological data for our computations are the data sets pro-
vided by the Ministry of Health of the Czech republic, see [14]. Note that it is
not the purpose of this thesis to analyse the methodology of data collection. For
further information regarding the methodology, see [15]. First, we need to select
a time period for modelling of the epidemic. It follows from the derivation of the
SIR model in Chapter 1 that the parameters β and γ in the SIR model are speci-
fied by the properties of the disease itself. However, the values of the parameters
depend also on some external influences. For instance, adopting some restrictive
measures against the spread of the disease decreases the value of parameter β,
because the number of contacts of a person is reduced. Thus, the chosen time
period should satisfy the condition that the values of the parameters β and γ
remain constant within that period. We choose the period from 13 March 2020
to 24 May 2020. The reasons are the following: On 13 March, the key measure
forbidding retail sales and the sales of services in business premises came into
effect and on 25 May the crucial part of the restrictive measures ended. However,
this choice of the time period presents us with a challenge – there is no need
to examine the epidemiological data in detail to see that the number of infected
population in this time period is very small in proportion to the total population
of the Czech Republic which is considered to be N = 1.065 · 107. This allows
us to test the possibilities of the models and the numerical methods in extreme
conditions.

Let us describe the available data. We operate with the data set [16] obtained
from the web page of the Ministry of Health of the Czech Republic. From this
data set, we can extract the cumulative number of infected people, recovered
people and people who died of the illness. One problem must be addressed now:
It is necessary to adjust the data in order to fit the pattern of the SIR model. In
the SIR model, the case fatality rate is neglected and therefore the compartment
for the people who died of the illness is not included. As presented in Section 1.2,
we include the number of the people who died of the illness in the compartment
R.

It follows from the description of the data that the available number of infected
people, i.e. the cumulative number, does not correspond to the compartment I.
This problem does not occur in case of the compartment R – for this compartment
it is possible to use directly the given data. Nonetheless, the data corresponding to
the compartment I can be computed very simply. Denote by Ic(t) the cumulative
number of infected people at time t. The value I(t) can be obtained from the
following equation:

I(t) = Ic(t) − R(t).
It remains to determine the values of the compartment S. The value S(t) of the
compartment S at time t is given by

S(t) = N − I(t) − R(t),

where N is the total population size.
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Figure 4.5: SIR: Results of the full-data approach for compartment I

Taking into account the methodology of the data collection, it is question-
able, whether the computed data (from the compartment I for instance) fit the
definition of I precisely. Since the SIR model is very simple, it leaves us no other
option. Using results of medical research, the data could be slightly modified or
scaled, for example. Nevertheless, this is not what we focus on.

4.3.2 Numerical experiments
We proceed directly to the numerical experiments. The first (so-called full-data)
approach uses all the available data for the optimization and optimizes with
respect to both β and γ. In this case, the form of the optimization problem is
completely analogous to Example 4. To sum up, we minimize a function of the
form

(βm, γm)T = arg min
(β̃,γ̃)T ∈R2

71∑︂
j=0

(︂ ⃓⃓⃓
S̃(jτ) − Sj

⃓⃓⃓2
+
⃓⃓⃓
Ĩ(jτ) − Ij

⃓⃓⃓2
+
⃓⃓⃓
R̃(jτ) − Rj

⃓⃓⃓2 )︂

with the data set D = {(jτ, Sj, Ij, Rj)T ∈ R4, j ∈ {0, . . . , 71}} described in
Section 4.3.1. The data interval τ = 1 corresponds to one day. The epi-
demic is modelled on the time interval [0, 71], which is the length of the con-
sidered time period in days. The initial guess of the parameters is given by
(β(0), γ(0))T = (1, 1)T and the initial conditions S(0), I(0), and R(0) are given
completely by the data set. The tolerance 10−5 in the stopping criterion given
by the increment size (4.3) is achieved after NI = 10 iterations with the resulting
estimate (βm, γm)T ≈ (0.5162, 0.5081)T . To determine the accuracy of the model,
it suffices to visualise the results for the compartment I, see Figure 4.5.

It is clear that the results are utterly inapplicable in practice. This is due to
the obvious fact that the epidemic of COVID-19 in the Czech Republic at that
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Figure 4.6: SIR: Results of the incomplete-data approach for compartment I

time period consisted of small local outbreaks and thus the assumptions of the
SIR model discussed in Section 1.2 are not satisfied. The measured data from
the compartment I are on the level of a statistical error in comparison with the
population size N = 1.065 · 107.

The second (so-called incomplete-data) approach is based on the idea of op-
timizing the parameters β and γ using the data from the compartment I only.
It seems that the data from the compartment I are crucial for determining the
behaviour of the epidemic, which leads us to this approach. In this case, the
optimization problem follows Example 5, i.e. the function to minimize is of
the form (4.4) with the data set D = {(jτ, Ij)T ∈ R2, j ∈ {0, . . . , 71}} ob-
tained as described in Section 4.3.1. The initial guess of the parameters is again
given by (β(0), γ(0))T = (1, 1)T and the initial conditions are the same as in the
previous case (of the full-data approach). Again, the tolerance in the stopping
criterion (4.3) was achieved after NI = 10 iterations. The computed estimate
is (βm, γm)T ≈ (4.6687, 4.5244)T . It can be observed from Figure 4.6 that the
values from the compartment I are approximated more accurately compared to
the previous approach as expected. However, if we examine the results in more
detail, we find some discrepancies. From the computed estimate it follows that
the expected time a person remains infectious is 1

γm
≈ 0.22 days, which is clearly

an unrealistic value based on the results of meta-analysis [17]. From this it can
be deduced that the approximation of the values of the remaining two compart-
ments S and R is not good either. Indeed, the model shows that the total number
of recovered people at the and of the considered time interval is approximately
6.15 · 105, which is about a hundred times higher than the actual value 7750.

The third approach is based on the idea of the effective population proposed
in Example 6. In addition, we consider only the data from the compartment I
for the optimization (similarly to the second, incomplete-data approach). As a

33



0 10 20 30 40 50 60 70 80
0

1000

2000

3000

4000

5000

Figure 4.7: SIR: Results of effective population approach for compartment I

result, we obtain the optimization problem of the form

(βm, γm, Nm)T = arg min
(β̃,γ̃,Ñ)T ∈R3

71∑︂
j=0

⃓⃓⃓
Ĩ(jτ) − Ij

⃓⃓⃓2
with the same data set D = {(jτ, Ij)T ∈ R2, j ∈ {0, . . . , 71}} obtained as de-
scribed in Section 4.3.1. Since we are not able to estimate the size of the effective
population in advance, we set the initial guess (β(0), γ(0), N (0))T = (1, 1, 106)T .

The computed results are (βm, γm, Nm)T ≈ (0.2587, 0.0444, 8593), the stop-
ping criterion is given by the increment size with the tolerance 10−5 analogously
to (4.3). It proved sufficient to set the number of iterations NI = 50 to achieve the
desired tolerance. The approximation of the measured values from the compart-
ment I is accurate as illustrated in Figure 4.7. The other important characteristics
have been improved as well. The estimated total number of recovered people at
the and of the considered time interval is 7636, which is a good approximation of
the true value 7750. The expected length of the infectious period is in this case
approximately 22 days. This is close to the length of the potential maximal in-
fectious period (in other words illness duration) estimated in meta-analysis [17],
which is from 15 to 21 days. The estimate of the basic reproduction number
R0 = βm

γm
≈ 5.8 exceeds the values in the interval from 2.4 to 3.4 estimated by the

meta-analysis [18].
To conclude, the presented method of the effective population considerably

increased the accuracy of the basic SIR model in the situation when the SIR model
itself failed due to high inconsistency of the measured data with the assumptions
of the model.
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4.4 COVID-19 – the SIQR model
The second model we want to analyse thoroughly is the SIQR model introduced
in Section 1.3. The data set used for the parameter optimization remains the
same and was described in Section 4.3.1. We proceed in the same manner as
with the SIR model, although wider discussion regarding the data interpretation
is now required.

Let us recapitulate the properties of the data set we possess. The data set, as
described in Section 4.3.1, corresponds roughly to the pattern of the SIR model.
From the original data, we have computed the values corresponding to all the
three compartments S, I, and R. However, having examined the data set in
more detail, we observe that the interpretation of the measured data correspond-
ing to the SIQR model is different. The measured data originally belonging to the
compartment I represent the number of positively tested subjects. It is evident
that a positively tested person is immediately quarantined in real situation. It is
therefore natural to assume that the numbers of positively tested people corre-
spond to the compartment Q instead of I in the pattern of the SIQR model. All
in all, we now have the data corresponding to the compartments Q and R. In this
case, we are not able to compute the values corresponding to the compartment
S, as the numbers regarding the compartment I are unknown in advance. This
is why we skip the full-data approach from Section 4.3.2 and proceed directly to
the incomplete-data approach.

In order to set up the input of the Algorithm 2 implemented in our program,
we need to determine the initial conditions. This was trivial in the case of the SIR
model, because the data set fitted precisely the pattern of the model. Considering
the SIQR model, we have to determine the values of S(0) and I(0). It suffices to
find the value of I(0), the former can then be expressed as

S(0) = N − I(0) − Q(0) − R(0).

It is clear that value of I(0) must be greater than the value of Q(0), since the
epidemic is at its beginning and it grows. Our choice is based on the following
considerations: The length of the presymptomatic infectious period is estimated
to be from 1 to 4 days, see [17]. We add two days for the testing procedure getting
in total around 5 days. It follows that the value I(0) corresponds roughly to the
value Q5 from the data set D = {(jτ, Qj)T ∈ R2, j ∈ {0, . . . , 71}}, it is however
with some uncertainty. This is why we test and distinguish two cases here. In
the end, we find out that the choice of the initial condition I(0) does not affect
the result to a high extent in case of the effective population approach.

First, let us take I(0) ≈ Q5. The procedure in now similar to the incomplete-
data approach from Section 4.3.2 with the exception that we have three parame-
ters now, i.e. α, β, and δ, corresponding to the SIQR model (1.4). The data set
is modified as well, as described above. The functional to be optimized is of the
form

(αm, βm, δm)T = arg min
(α̃,β̃,δ̃)T ∈R3

71∑︂
j=0

⃓⃓⃓
Q̃(jτ) − Qj

⃓⃓⃓2
with the data set D = {(jτ, Qj)T ∈ R2, j ∈ {0, . . . , 71}}. The initial guess is
given by (α(0), β(0), δ(0))T = (1, 1, 0.01)T . The stopping criterion defined by the
increment size is, mutatis mutandis, of the form (4.3).
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Figure 4.8: SIQR: Results of incomplete data approach for compartment Q

The convergence is slow, it takes approximately NI = 500 iterations to achieve
the result (αm, βm, δm)T ≈ (0.7512, 0.7925, 0.0423)T with the desired accuracy.
As illustrated in Figure 4.8, the resulting approximation for compartment Q is
only roughly in agreement with the measured data. This is why we proceed
immediately to the effective population approach to see whether the results get
better.

We distinguish two cases here. First, we set I(0) ≈ Q5 (the same as in the
previous paragraph). The process is similar to the effective population approach
from Section 4.3.2. It is desired to solve the following optimization problem:

(αm, βm, δm, Nm)T = arg min
(α̃,β̃,δ̃,Ñ)T ∈R4

71∑︂
j=0

⃓⃓⃓
Q̃(jτ) − Qj

⃓⃓⃓2
.

Again, we have the data set D = {(jτ, Qj)T ∈ R2, j ∈ {0, . . . , 71}} and the same
stopping criterion specified by the increment size. The initial guess is defined by
(α(0), β(0), δ(0), N (0))T = (1, 1, 0.01, 105)T . Let us remark that certain accuracy of
the initial guess is required in this more sophisticated case, otherwise a blow-up
often occurs.

The desired tolerance is achieved after NI = 90 iterations and the final es-
timate is (αm, βm, δm, Nm)T ≈ (0.1633, 0.3369, 0.0497, 10061)T . Figure 4.9 shows
the resulting approximation for the compartment Q, which is in a good agreement
with the observed data. It is however necessary to discuss other indicators as well.
The total number of recovered people at the end of the considered time period
is 8664, which exceeds the true value 7750. The maximal potential infectious
period (the duration of the illness) is estimated to be 1

αm
+ 1

δm
≈ 26 days. The

actual value estimated in [17] varies from 15 to 21 days. The basic reproduction
number is predicted to be R0 = βm

αm
≈ 2.1. The interval for the basic reproduction

number estimated in [18] is from 2.4 to 3.4.
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Figure 4.9: SIQR: Results of effective population approach for compartment Q

To demonstrate that the outcome is not sensitive to changes of the initial
condition I(0), we increase the value of I(0) by 50 % of its original size. The
other input parameters remain the same as in the previous case, i.e. we take
the initial estimate (α̃(0), β̃

(0)
, δ̃

(0)
, Ñ

(0))T = (1, 1, 0.01, 105)T with the data set
and the stopping criterion described in the previous paragraph. The resulting
estimate is (α̃m, β̃m, δ̃m, Ñm)T ≈ (0.1152, 0.3033, 0.0574, 10095)T . By comparison
with the original estimate (αm, βm, δm, Nm)T ≈ (0.1633, 0.3369, 0.0497, 10061)T ,
it can be concluded that the change in the initial condition does not affect the
result to a high extent all the important properties being preserved.

We observe that the effective population approach improved the accuracy of
the SIQR model. We have computed the important characteristics of the disease
and we have found out that the computed values are in agreement with the
medically observed values, although some small discrepancies occur.

4.5 Other advanced models
Apart from the basic SIR and the simple SIQR model, three other models were
described in Section 1.4. In the previous Sections 4.3.2 and 4.4, we provided an
extensive discussion of the results of the SIR and SIQR model. It turns out that
the three other advanced models do not present us with additional information on
top of the data obtained by the SIR and SIQR models. In other words, the results
proved to be almost identical in terms of the effective population approach. Let
us explain this in a more detailed manner.

Consider the SEIR model 1.3. When applied to the COVID-19 epidemiological
data using the effective population approach, the model seems to ”converge” to
the SIR model: The rate of flow between the compartments E and I is more
than a hundred times higher than the rate of flow between the compartments
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Figure 4.10: SEIR: Results of the effective population approach for the Czech
Republic COVID-19 data

S and E. This causes the latent period to be extremely short. The SEIR model
thus ”approaches” the SIR model. To illustrate this phenomenon, Figure 4.10
shows the resulting estimate of the SEIR model. We can explain this phenomenon
by the fact that our data set described in 4.3.1 neglects the latency period of the
disease.

The other two models – SEIQR and SIQR No. 2 behave in a similar way. The
model SIQR No. 2 (see Figure 1.4) ”converges” to the first SIQR model 1.2. This
is due to the fact that the rate flow between the compartments I and R tends
to zero. The SEIQR model from Figure 1.5 ”approaches” the SIQR model 1.2 as
well. This is caused by the extremely high rate of flow between the compartments
E and I.
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Conclusion
On the topic of mathematical modelling in epidemiology, many papers were writ-
ten from both the mathematical and epidemiological point of view. It is without
any doubt that joint work of experts among both of those fields is the key to
address this problem successfully. In this thesis, we have brought together some
considerations from these two approaches.

The main goal of the thesis has been to estimate the parameters characterizing
the coronavirus disease COVID-19 from available epidemiological data from the
Czech Republic. In order to give insight into this complex issue, the reader was
provided with the necessary theoretical background. We gave a brief introduc-
tion to compartmental models – a specific category of epidemiological models –
with special focus on the basic SIR model. We formulated the parameter estima-
tion problem mathematically as a non-linear least squares optimization problem,
where we minimize a least squares functional measuring the discrepancy between
the model outcome and measured data.

Since the considered compartmental models lead to a system of ordinary dif-
ferential equations, we chose the sensitivity equation approach of [6] as a basis of
the optimization technique. These equations describe the derivative of the solu-
tions to the original differential equations with respect to its parameters, which
can then be applied in the Gauss–Newton or Levenberg–Marquardt optimization
algorithms. Several illustrative examples were given in order to elucidate these
notions.

The presented methods were implemented in a complex program in MAT-
LAB allowing us to perform a wide range of numerical experiments for various
models. Before we proceeded to the COVID-19 epidemiological data, the meth-
ods had been extensively tested on fabricated data and on a well documented
influenza epidemic in an English boarding school, [13], in order to examine their
performance and convergence properties with respect to noisy or incomplete data.

Application to the influenza and COVID-19 epidemiological data has lead us
to interesting conclusions. One of the crucial outcomes is the introduction of the
effective population size. As presented, it is necessary to reduce the size of the
population in which the epidemic is modelled in order to satisfy the unrealistic
assumptions of the simple epidemiological models. Considering this reduced pop-
ulation size, considerably better accuracy of the estimates was accomplished. In
effect, it is thus necessary to include the population size with the other unknown
parameters to be optimized. The estimated parameters were then much more in
accordance with the actual values based on the comparison with the medically
observed data.

We were not able to find in the literature this approach of adding the popu-
lation size to the list of unknown model parameters to be optimized. Some cases
appeared, when the researchers cut down the population to a fraction of its ac-
tual size without any further commentary. This thesis provides a basis for these
considerations along with a thorough discussion. We consider the concept of the
effective population size to be a great possibility for further research from both
mathematical and epidemiological perspective.
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