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Department: Department of Distributed and Dependable Systems
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1. Introduction
Data lineage forms an important aspect of today’s enterprise environment. It
describes the flow of data within the application. In other words, it describes
relationships between the application’s data sources and data sinks. However,
these enterprise applications tend to be large, and thus there is a greater need
for automation of data lineage across the whole company’s system. Tracking of
data lineage inside these systems is especially important due to audits and legal
reasons, for example, it is necessary to have complete information about the flow
of client’s data throughout the system and whenever the client asks the system
to delete all information about himself, the system should remove all the traces
about his existence without any asking. This is where automated data lineage
shines because it can scan the whole system’s source code, extract information
about manipulation with data and associate data accesses to each other. The
result is a data lineage graph that is understandable not only for developers but
also for other company stakeholders who can easily conclude whether the system
satisfies legal obligations. Nevertheless, there are very few applications in to-
day’s enterprise environment that do not use dependency injection, or generally
any kind of IoC1 principle, at least in a very limited way. Dependency injection
makes programming easy, the code is more readable and dependencies between
the system’s components are more clear. Therefore, it is needed to support au-
tomated data lineage of applications that utilize dependency injection as well.

Dependency injection frameworks with no exception use reflection, which is
purely a matter of target language runtime. However, data lineage analyzers
are mostly static, which means they should not be able to execute the analyzed
code. In other words, the analyzer is technically unable to use features of the
dependency injection framework used within the analyzed application. In the
thesis, we describe a way how to modify the analyzer so it can analyze the data
lineage of applications that use dependency injection frameworks. Particularly, we
present an implementation of support for the the Spring Framework [1], a popular
dependency injection framework targeting Java Platform, within MANTA Flow
[2], the fully automated lineage platform.

1.1 Goals
The main goal of the thesis is to propose a solution for support of the Spring
Framework within the MANTA Flow platform. Although the Spring Framework
itself has many features, we only focus on its features related to dependency
injections, Spring Beans in particular. Since there was no support for dependency
injection frameworks in the MANTA Flow platform previously, one of the goals
is to analyze an impact on the data lineage analyzer, as well as to design the
solution in such a way that it is modular and easily extensible by support for
other dependency injection frameworks. Among others, the proposed solution
has a great impact on the call graph, one of the core structures of the data
lineage analyzer responsible for resolving method calls’ targets, which we are

1Inversion of Control
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supposed to modify in such a way that it can support dependency injection. As a
result, the data lineage analyzer should be able to produce a correct data lineage
flow graph not only for standard Java applications but also for those which use
dependency-injection-related features from the Spring Framework.

1.2 Outline
Chapter 1 is an introduction into the problematics, where we provide a basic
view into the problem and what the goals are. In Chapter 2, we describe the
MANTA Flow platform, which is the target platform for our solution. Chapter 3
talks about technologies and algorithms that we use in the solution. In Chapter
4, we perform an analysis of the problem and describe requirements on the data
lineage. In Chapter 5, we describe an implementation of the plugin for the Spring
Framework targeting Bytecode Scanner in the MANTA Flow platform. Chapter
6 describes an implementation of the call graph for bytecode and its extension to
support dependency injection plugins. In Chapter 7, we evaluate the solution by
discussing the limitations. Last, Chapter 8 concludes the thesis and talks about
possible future extensions of the solution.
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2. MANTA Flow Platform
The MANTA Flow platform is a commercial product, the unified data lineage
platform [2]. The platform supports data lineage analysis of many technologies.
For each technology, there is a scanner that can perform the analysis, i.e., track
data propagations and transformations across the analyzed code from sources to
sinks. Among the supported technologies are databases1, reporting tools2, data
integrations3 and programming languages. For programming languages, we are
particularly interested in Bytecode Scanner, which can perform analysis of Java
code, or generally any code compiled into Java bytecode. In the thesis, we have
gained inspiration for many problems solving in the novel C# Scanner [3], which
is a part of the MANTA Flow platform as well.

2.1 Bytecode Scanner
Bytecode Scanner, like any other scanner in the MANTA Flow platform, is di-
vided into two parts, Connector and Dataflow Generator. We are particularly
interested in Connector only, which is the component that performs the analysis.
More precisely, like any other connector, Bytecode Connector is further divided
into Extractor and Resolver. The Extractor prepares input and configuration
for the Resolver. The input is a program to be analyzed and some options for
the analysis. The Resolver produces the analysis’ output, which is made of the
graph with dataflows, where a node is some data action endpoint like database
or file stream, and there is an oriented edge between two nodes if some data flow
between the two nodes. A brief introduction into the analysis is described in Sec-
tion 2.1.1. In Section 2.1.2, we describe a way how the analysis can be extended.
Decomposition of the scanner into modules is visualized in Figure 2.1.

2.1.1 Bytecode Analysis
The analysis of bytecode is symbolic and modular, and is realised by Bytecode Re-
solver. The symbolic analysis deals with symbolic expressions. Symbolic expres-
sions create an abstraction over bytecode. For example, the simplest expression
is a constant expression, which just holds information about the loaded constant.
Another expression can be an expression symbolizing access to a particular ele-
ment in an array.

Expressions are products of bytecode interpretation. Instead of simulating
the value stack in JVM4, the analyzer maintains a stack of symbolic expressions.
For example, if there are two constant expressions and the interpreter is just
approaching the instruction add, it pops the two expressions from the top of the
stack and creates a new binary expression. The binary expression is a simple tree,
where the root is the operator and it has two leaves, the operands. Then, this
expression is pushed onto the stack of symbolic expressions. The JVM runtime

1Microsoft SQL Server, Oracle, PostgreSQL or DB2
2Qlik Sense, Microsoft Excel, Tableau or Microsoft SQL Server Integration Services
3Alation, Talend or StreamSets
4Java Virtual Machine
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Bytecode Scanner

Bytecode Connector

Bytecode Dataflow Generator

Bytecode Extractor

Bytecode Resolver

Figure 2.1: Module view of Bytecode Scanner

would push the actual value onto the value stack, which would be a product of
the binary operation.

The analysis uses a worklist algorithm. It processes methods one by one until
the fixed point over dataflows is reached, i.e., there are no new flows. Precisely,
a single method is analyzed with respect to an invocation context. The context
is a particular method and flows for all its arguments, i.e., argument expressions.
When the single method analysis is done, the algorithm checks whether the flow
data for a particular invocation context has changed. If so, the method, its direct
callers, and callees are enqueued into the worklist to be processed in the next
iterations. The algorithm terminates when the worklist is empty.

In the context of a single method analysis, the analysis keeps a set of tracked
expressions. At start, only argument expressions are tracked. Next, if the inter-
preter encounters some assignment, the expression symbolizing its left-hand side
is tracked and flows from the right-hand side of the assignment are propagated
into the left-hand side expression. Method calls are handled similarly. If some
method is invoked with, e.g., the first argument equal to the variable named x in
the caller method, it is effectively an assignment where the left-hand side of the
assignment is the first parameter of the callee method, and the right-hand side
of the assignment is the variable named x. However, results of such assignments
are stored not in the results of the caller method’s analysis, but the invocation
context of the callee method.

The mentioned method calls and assignments construct a method summary,
i.e., the flow data for a particular invocation context. Method summaries are
then used to get the final result of the analysis. The process of transformation of
method summaries into the final graph is not-so-important aspect of our project.

2.1.2 Bytecode Scanner Plugins
The analysis can be extended by plugins, which is the way we shall implement a
support for the Spring Framework. Two main concepts of plugins exist:
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1. Dataflow Plugins – This kind of plugins directly contributes to the re-
sults of the analysis. The main idea is to supply some semantics to the
handled methods, which the analysis would not be able to analyze with the
interpreter. The most basic dataflow plugin in Bytecode Scanner is a plugin
for Java Platform. For example, if there is some manipulation with I/O,
the plugin familiarizes the analysis with this fact. In our context, methods
handled by our extension for the Spring Framework will be those that are
responsible for retrieving Spring Beans objects from the application context.
Their integration with the core analysis is rather easy, instead of calling the
bytecode interpreter for a single method analysis, the semantics provided
by a plugin is used to handle a method call instead.

2. Dependency Injection Plugins – This kind of plugins indirectly con-
tributes to the results of the analysis. The main idea is to extend a set
of methods that could be possibly called by the analyzed method. This
is especially important in the Spring Framework’s analysis since it is nec-
essary to pass the type information about injected instances into the core
analysis. In other words, when obtaining some Spring Bean using an appli-
cation context, then it is necessary to have the correct type information for
it because usually some method will be further called upon the Spring Bean
object and it is necessary to determine the target of such a call precisely.
This kind of plugins existed on a conceptual level only, with no clear idea
of how it should be designed, and there was no support for it previously by
any means. Its realization is one of the topics of this thesis.
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3. Technologies and Background
We do not start our solution from scratch, we have gained inspiration for many
problems solving in several other articles and theses. In Section 3.1, we provide an
overview of frameworks that are useful for obtaining information about bytecode,
along with their relation to call graph construction. In Section 3.2, we describe
several algorithms which can be used to build a call graph. In Section 3.3, we
take a look at few dependency injection frameworks and what features they can
offer.

3.1 Bytecode Inspection Frameworks
To construct a call graph, we need to obtain information about the types and
methods declared in the analyzed program. Even though there is an abstraction in
Bytecode Scanner which helps us to surpass the gap between our code and third-
party libraries, we need at least a basic idea of what some bytecode inspection
frameworks can offer.

T. J. Watson Libraries for Analysis
T. J. Watson Libraries for Analysis framework is better known under its acronym
of WALA [4]. The framework provides static analysis capabilities for bytecode
mainly. Not only it can parse bytecode and provide information about types and
methods declared in the analysis scope, but it also provides a class hierarchy,
a structure with relations between declared types, and Pointer Analysis, a very
powerful tool suitable for call graph construction. The Pointer Analysis will be
described in greater detail in Section 3.2.

The author of the thesis [5], which deals with static analysis of Java programs
built on top of the WALA framework, describes the workflow of call graph con-
struction in great detail. Based on information provided by the author, we can
declare that the manipulation with framework seems to be very straightforward
and could suit our purposes very well. However, there is one major downside with
this framework, being the fact that it can only handle programs written in Java
8 or older. With new versions of Java being rolled out once in a while, this makes
the framework technically unusable in a commercial environment where it is ex-
pected that Bytecode Scanner should analyze programs targeting newer versions
of Java runtime as well. It is also worth mentioning that the call graph which
WALA provides does not support dependency injection, the Spring Framework
in particular.

ASM
ASM framework [6], similarly to the WALA framework, is a framework for byte-
code inspection and analysis. Unlike the WALA framework, the ASM framework
is more focused on performance. This fact makes the framework very suitable to
be used in compilers, it is utilized in both Groovy and Kotlin compilers. This is
also why this framework is well-maintained and supports newer versions of Java,
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in contrast to the WALA framework. However, the ASM framework has no ex-
plicit support for class hierarchy and call graph construction, and thus we would
be supposed to implement this functionality on our own.

3.2 Call Graph Algorithms
The call graph is an oriented graph where the set of vertices is made of all methods
declared in the analyzed program, and there is an edge between the nodes A and
B, if the method represented by the node A calls the method represented by
the node B. The call graph is a crucial structure in static data lineage analysis,
it is necessary to analyze all methods reachable from the entry-point method.
Note that the call graph is not necessarily a tree, a cycle can occur when having
recursive method calls. Also note that the call graph can consist of multiple
connected components, for example, if there are multiple entry-points in the
analyzed program. In the thesis, if we talk about the call graph, we always refer
to the connected component that contains the entry-point method.

The construction of the call graph seems to be quite straightforward, it could
be sufficient to traverse methods’ instructions from the entry-point method and
whenever some instruction invoke is encountered, a new recursive branch of the
same algorithm is started from the caller, i.e., the operand of the instruction
invoke. However, in object-oriented languages, we usually work with interfaces
or abstract classes, or generally with virtual methods. Therefore, determining
the call targets of the instruction invoke is not that straightforward in the static
analysis, since it cannot be precisely said of which type the receiver of the method
call is. To resolve the problem in the static analysis, we over-approximate the
results, meaning that we do not declare exactly which method would normally
be called at a given call site. We work with a set of methods that could be called
at the given call site instead. This set of methods is computed by a call graph
builder, a component using heuristics to compute call targets. In this section, we
present several call graph builders that can help us to build the call graph, each
of them using different heuristics.

Pointer Analysis
The Pointer Analysis [7] aims to find all possible heap pointers which can the
variable point to. Therefore, it should be easy to find possible call targets, by
finding a method with the same name and signature in types which can receiver
of the method call point to. However, the implementation of the analysis in terms
of sufficient efficiency and reasonable performance is rather hard, although it has
been proven that there exists a construction algorithm running in almost linear
time [7].

Class Hierarchy Analysis
The Class Hierarchy Analysis [8] is implementation-wise very straightforward. It
uses a combination of the statically declared type of receiver of a method call with
the class hierarchy to compute a set of possible targets for a particular method
call. This principle is considered the best one for heavy over-approximation,
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however, such kind of over-approximation is not always suitable to produce re-
sults that are precise enough. In the context of Java programs, consider some
classes located near the root of the language type hierarchy, for instance, the class
java.lang.Object. The class defines the methods toString(), hashCode() or
equals(Object) which almost every class overrides. Therefore, when calling any
of these methods, the Class Hierarchy Analysis would return a set of all overriding
methods across the analyzed program as possible call targets. Note that the call
graph construction algorithm is recursive, and these methods can potentially call
many other methods. In other words, with the Class Hierarchy Analysis, the data
lineage analysis might produce very imprecise results and would be unreasonably
slow in terms of performance.

Rapid Type Analysis
The Rapid Type Analysis [9] uses the Class Hierarchy Analysis in its core. It
works exactly the same as the Class Hierarchy Analysis, but filters a set of pos-
sible call targets to only those methods, whose declaring types are marked as
instantiated. The Rapid Type Analysis itself does not specify how exactly a set
of instantiated types should be created. There are several ways of how to create a
set of instantiated types, for example, we can mark all types defined in specified
application packages as instantiated. The algorithm presented by the authors,
however, constructs this set by recursive traversal of methods’ instructions, simi-
larly to call graph construction, and marks the type as instantiated if there is the
instruction new somewhere in the bytecode with an operand equal to that type
[9]. The latter way is probably the best way of how to build a set of instantiated
types.

3.3 Dependency Injection
Dependency injection is a programming technique that allows developers to spec-
ify references between instances of classes, these references are specified declar-
atively and the process works on the background. These references are called
dependencies. The process of passing dependencies to instances of classes that
they are dependent on is called injection. Without dependency injection, de-
pendencies between objects are usually hard-coded, which in result makes the
code less readable and less maintainable. Generally, there are several types of
dependency injection:

• Constructor injection – Dependencies are injected into the instance of
the class during its initialization, i.e., in the class’ constructor. The de-
pendencies are mapped to the constructor’s parameters. The benefit of
constructor injection is clear here, the object can become immutable imme-
diately after instantiation.

• Setter injection – Dependencies are injected into the instance of the class
by calling setter methods. As a general rule, these setter methods usually
have a single parameter and they are mapped to respective fields, but it
is not a strict requirement. Similarly to constructor injection, in setter
injection, dependencies are mapped to parameters of the setter method.
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However, classes utilizing setter injection usually cannot be immutable, in
contrast to using constructor injection.

• Field injection – Dependencies are injected into the instance of the class
by directly assigning a particular field with its dependency. This kind of
injection is the least recommended one, because of the impossibility to
achieve immutability of the class and tight coupling between the class and
the dependency injection container.

In Java, there are several dependency injection frameworks that somehow
manage the dependent objects. These objects are then called managed objects.
In this section, we present the most popular ones.

Jakarta Enterprise Edition
Jakarta Enterprise Edition, formerly known as Java Platform Enterprise Edition,
is a set of specifications defining features to be used within enterprise applica-
tions. In our context, we are particularly interested in Jakarta Contexts and
Dependency Injection [10], also known as CDI. The CDI is described by JSR1

299, however, it also uses JSR 330 Dependency Injection for Java, which is very
simplistic. It defines own few annotations from the package javax.inject.

The authors describe the specification as “a powerful set of complementary
services that help to improve the structure of application code” [10]. The whole
concept is built on top of Jakarta Enterprise Beans, objects managed by the
dependency injection framework. Note that the CDI is only a standard, there are
several implementations of the standard, including those from Oracle or IBM.
@Named("KITT")
@RequestScoped
class Car {

@Inject
private Engine engine;
...

}

@Named
@RequestScoped
class Engine {

...
}

Listing 3.1: A basic example of field injection in CDI

In Listing 3.1, a basic example of field injection in the CDI can be observed.
Here, the dependency injection framework instantiates the class Engine at first.
It is therefore considered as an object managed by the framework, or Jakarta
Enterprise Bean. The class Car is instantiated similarly, however, the class defines
a field annotated with the annotation @Inject, saying that some dependency
should be injected into the field. The framework, therefore, scans a pool of

1Java Specification Request
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managed objects and finds those which match the field’s type. There should
always be a single object of such type, which is this case as well. However, it
can easily happen that there will be multiple managed objects of the same type,
and therefore it is also possible to specify some requirements for the injection.
These requirements are usually called qualifiers, and only such managed object
which satisfies the qualifiers is qualified to be injected. The most basic qualifiers
matching is by name of Jakarta Enterprise Bean, which is defined by the value of
the annotation @Named. If the value is empty, the name of the class is considered
a default name. Note that constructor and setter injection work similarly, the
annotation @Inject is simply defined on constructor, setter method respectively.
Also note that the annotations @Named and @Inject are defined by JSR 330.

The example with cars and engines was chosen not only because it is easily
understandable for beginners, but it also nicely demonstrates features of depen-
dency injection generally, not only in Jakarta Enterprise Edition. In the car
industry, cars are being manufactured concerning some configurations. Without
loss of generality, suppose that the only customizable configuration is a selection
of the engine. Usually, a car model comes with multiple engines that the customer
can choose from. Except for the engine, the car model is always the same. When
mapped to dependency injection, there would be multiple Jakarta Enterprise
Beans of the type Engine, each of them having qualifiers describing the features
of the engine. When constructing an instance of the class Car, based on defined
qualifiers, we can decide which particular managed object of the type Engine
would be injected. Except for injected instance of the type Engine, everything
else would remain the same.

Of course, there are many more use cases for dependency injection. In the
enterprise environment, dependency injection is especially useful when distin-
guishing between development, test, or production environment.

Spring Framework
The Spring Framework [1] provides a comprehensive programming model for en-
terprise applications targeting Java Platform. It provides not only features re-
lated to dependency injection, very similar to Jakarta Enterprise Edition, but
also many more features which simplify development, like powerful expression
language called SpEL, extensive support for data accesses, or a convenient test
environment. However, it is important to say that the Spring Framework is
not an implementation of Jakarta Enterprise Edition, but is considered a more
lightweight container. In other words, a developer does not need the whole Spring
Framework to use only a part of it, for example, he can use Spring Web MVC,
a part of the framework suitable for building applications with Model-View-
Controller architecture, without Spring Data JDBC, a part of the framework
dealing with accesses to the database.

12



@Component
@Qualifier("KITT")
class Car {

@Autowired
private Engine engine;
...

}

@Component
class Engine {

...
}

Listing 3.2: An example from Listing 3.1 in the Spring Framework’s representa-
tion

In Listing 3.2, we introduce exactly the same example as in Listing 3.1, but in
Spring Framework’s representation. Note that even though the Spring Framework
defines its own set of annotations, it also has support for annotations specified by
JSR 330. Therefore, if we replaced the annotation @Autowired by the annotation
@Inject and the annotation @Qualifier by the annotation @Named, it would work
exactly the same even in the Spring Framework.

In the Spring Framework, objects managed by the framework are called Spring
Beans. We analyze the Spring Framework in bigger detail in Section 4.1.

Spring Boot
Spring Boot [11] is nothing but an extension of the Spring Framework, eliminating
boilerplate configurations required to set up the application managed by the
Spring Framework. Therefore, the development of applications built on top of
the Spring Boot is even faster, more convenient, and more efficient, opposed to
using the Spring Framework.
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4. Requirements and Analysis
In this chapter, we discuss requirements on the solution, based on which we care-
fully analyze the problem. As the solution itself can be technically divided into
two parts, we do the same in this chapter. First, we introduce requirements on the
data lineage analysis of applications that use the Spring Framework, its features
related to dependency injection in particular. Then, we analyze a way of how to
construct a call graph in the context of dependency injection, where assignments
of instances of implementation classes to respective variables of interface types
are not hardcoded in the source code. Our proposed solution has the form of
a plugin for the data lineage analyzer, which handles the usage of the Spring
Framework by the subject application.

4.1 Spring Framework
The Spring Framework has already been briefly introduced in Section 3.3. We
have chosen the Spring Framework as the main target for our work on extend-
ing the data lineage platform with support for dependency injection. The Spring
Framework is probably the most popular dependency injection framework target-
ing Java Platform. It features all the important aspects of dependency injection,
and therefore all the principles described in our thesis apply not only to the Spring
Framework but generally to any dependency injection framework targeting any
platform.

In this section, we discuss dependency-injection-related features of the Spring
Framework in a detail. The text will be structured in such a way, that we first
describe a particular Spring Framework’s feature, and then we discuss what are
the requirements and how to design a support for data lineage analysis of such
feature.

The basic entities in the Spring Framework are Spring Beans. From now on,
we will refer to them simply as beans. The bean is an object managed by the
Spring Framework. From our perspective, there are two important views of the
beans:

• Spring Bean Definition – Definition is a static concept describing prop-
erties or configuration of some bean. The framework can instantiate and
manage the bean based on the configuration. We describe definitions in
Section 4.1.1.

• Spring Bean Flow Data – Flow data are specific for our project. Flow
data represent the state of some bean. At runtime, such a state is defined
by the object which is managed by the framework. The flow data for a
particular bean can be constructed based on the definition of the bean. We
describe flow data in Section 4.1.2.

4.1.1 Spring Beans Definition
Beans are defined within a configuration of the application context which holds
information about beans in the program. From the developer’s perspective, the
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application context is a place where he can configure beans to be used within his
program. In Section 4.1.1.1, we describe configurable properties of beans. This
description is rather abstract, but in Section 4.1.1.2, we describe a way of how
to configure the application context which goes along with practical examples of
beans configuration.

4.1.1.1 Spring Bean Properties

Every single bean has multiple configurable properties which we discuss in this
section. For each property, we describe its meaning. Then, we provide our
requirements on the data lineage analysis with respect to the property configura-
tion. Last, we propose an approach of how the data lineage analysis should work,
based on the property configuration.

Profile

• Definition. A bean can be assigned with a profile name or multiple names
which is active in. It can be either a plain profile name, like myProfile, or
profile expression, like (thisProfile | thatProfile) & !otherProfile.
If none profile is assigned, the bean is automatically assigned with the profile
default. Active profiles can be specified at various places, for example, in
Maven scripts or at the command line. If no active profile is selected, the
profile default is considered as the only active one.

• Requirements. As mentioned, active profiles can be specified at various
places. In the data lineage analysis, it is generally not possible to cover
all these places. As a fault-tolerance requirement, the data lineage analysis
should not fail if there is some problem with profiles that could not otherwise
happen at runtime. It should log a warning instead.

• Approach. We introduce a configurable field in Bytecode Scanner config-
uration where the customer can specify active profiles manually. If the field
is empty, all profiles that appear in the application context are considered
active ones. This approach has several consequences. The major one being
the fact that instead of working with a single bean matching some require-
ments, we should work with multiple beans. This would normally cause
an exception at runtime. Nevertheless, if some problem related to multiple
active profiles should occur, a warning should be logged and the customer
should be asked to configure the active profiles, to make the data lineage
analysis more precise.

Name

• Definition. A bean can be assigned with a unique name, sometimes called
an identifier. The name can be further used in the program to obtain the
object of bean. It is also possible to specify aliases of names.

• Requirements. Both simple names and aliases shall be supported as they
are one of the most important aspects of bean configuration.
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• Approach. In our representation of application context, we define a map
from name to a set of definitions matching the name. The set is introduced
due to already described support for profiles. Aliases are handled similarly,
multiple same values can appear in the map, but with a different key.

Type

• Definition. Each bean has some type, this type refers to a class type of
the object managed by the Spring Framework. The type can be defined
either explicitly, or implicitly.

• Requirements. Type shall be supported as it is one of the most important
aspects of bean configuration and the key aspect of dependency injection
itself.

• Approach. If defined explicitly, we use the explicitly configured type.
Otherwise, we deduce the actual type from the bean configuration. This
deduction is based on other properties of a particular bean definition.

Qualifiers

• Definition. A qualifier is a mapping from some keys to respective val-
ues. A single bean can have none or multiple qualifiers. Qualifiers are
used to distinguish between multiple beans of the same type, where differ-
entiation based on name only is not applicable. At a point of injection,
qualifiers matching the qualifiers of bean which we would like to inject shall
be specified as well. During a process called finding of appropriate autowire
candidates, only those beans which match qualifiers defined on the injection
point are considered.

• Requirements. The only qualifier pre-defined by the Spring Framework
is a mapping consisting of a single key-value pair, where the user can map
the pre-defined key to a string value. However, the Spring Framework
also supports custom qualifiers, where the mapping can be customized to
contain any key-value pairs, based on the configuration. We shall support
both concepts.

• Approach. We don’t have to distinguish between the pre-defined qualifier
and custom ones. We can handle them both in the same way. All we
have to do is to parse Spring Framework’s representation of qualifiers into
a simple map, representing qualifiers. When finding appropriate autowire
candidates, the plugin tests these key-value pairs defined on the bean and
key-value pairs defined at the point of injection on equality.

Primary

• Definition. A bean can be declared as a primary bean of its class type. At
a point of injection, if there are multiple beans of the same type, the primary
one will be injected, if there is any. By default, beans are non-primary.
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• Requirements. Primary beans shall be supported, filter of primary beans
should be applied wherever applicable.

• Approach. When finding appropriate autowire candidates, the found can-
didates are filtered to primary beans only. If there is no primary bean
among the candidates, this filter is not applied.

Scope

• Definition. A bean is always assigned with some scope, which refers to
a way of how the bean can be obtained from the application. The Spring
Framework defines two scopes:

– Singleton – A single bean definition refers to a single instance, i.e., a
single object managed by the Spring Framework. Whenever such bean
is accessed, the framework always returns the same instance.

– Prototype – A single bean definition can refer to multiple instances,
i.e., multiple objects managed by the Spring Framework. Whenever
such bean is accessed, the framework always creates a new instance
and returns it.

• Requirements. We claim no requirements on the scope since it technically
has no impact on the data lineage of the analyzed application.

• Approach. We can parse the scope configuration of bean, however, it has
no real usage. Whenever some bean is accessed in the analyzed applica-
tion, the flow data for such pre-analyzed bean are returned. This refers
to prototype scope. To achieve the functionality of singleton scope, after
every single method analysis, it would be required to track the bean and
propagate new flow data to our representation of application context where
the plugin stores flow data of beans. This operation might be performance-
wise unfeasible and would slow down the analysis which is already quite
computational demanding. The approach is discussed in greater detail in
Section 8.2.

Initialization Method Arguments

• Definition. Initialization method arguments refer to parameters’ values
that should be used during bean instantiation, i.e., arguments of the ini-
tialization method, like a constructor. The value can be either simple, or it
can be a reference to another bean.

• Requirements. Initialization method arguments shall be supported, ad-
ditionally, we need to find appropriate overload of the initialization method
based on these arguments’ types and their count.

• Approach. The process of finding an appropriate overload of the initial-
ization method is described in Section 4.1.1.2 since the process is influenced
by other properties of the bean as well. In terms of flow data, the flow data
of an initialization method argument has to be correctly injected into the
respective parameter. This is described in Section 4.1.2.1.
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Factory Method

• Definition. Instead of being instantiated by a constructor, a bean can
define a factory method that is used to instantiate the bean. The factory
method must be declared in the class type of the bean and shall be static.
The return value of such a factory method is the instantiated bean.

• Requirements. A factory method of the bean shall be supported, however,
its appropriate overload should be looked-up correctly.

• Approach. Factory methods are similar to constructors, the only differ-
ence in static analysis is that the factory method stores flow data of the
bean being instantiated into an object which is returned by the method,
whilst the constructor stores them into the receiver of the constructor call.
The process of finding appropriate overload applies to constructors as well,
the appropriate overload is looked-up based on the initialization method
arguments and is further described in Section 4.1.1.2.

Factory Spring Bean

• Definition. Factory bean refers to abstract factory pattern and goes in
conjunction with factory method of the bean. In the Spring Framework,
the factory bean can be defined and such bean refers to an object to call
factory method upon. The factory method call will then instantiate the
defining bean. Note that in such a case, the factory method does not have
to be static.

• Requirements. Factory beans shall be supported. Since a bean which
defines the factory bean does not have to define its class type explicitly, we
should support type deduction in these cases.

• Approach. The concept of factory beans is important for us especially in
terms of searching initialization method and injecting flow data of factory
bean into the receiver of the factory method call. The process of flow data
injection is described in Section 4.1.2.1. Deduction of class type is rather
easy. If there is some factory bean defined, we declare a return type of
the factory method as the class type of the defining bean. However, such
factory method must be looked-up at first. This process is described in
Section 4.1.1.2.

Autowire Mode

• Definition. Autowire mode refers to how a bean is instantiated, there are
several autowire modes:

– Default – This is a standard and default in the Spring Framework with
no magical autowiring, the initialization method arguments are used
to instantiate the bean.

– By name – Properties of the bean, i.e., setters, will be injected by
searching for a bean with the same name. These found beans will be
further used to call particular setters with arguments of these beans.
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– By type – Properties of the bean, i.e., setters, will be injected by
searching for a bean with the same type. These found beans will be
further used to call particular setters with arguments of these beans.

– Constructor – The bean will be instantiated by a particular construc-
tor, the Spring Framework will search for beans that could be injected
into the arguments of the constructor.

– Autodetect – Autowiring by constructor will be tried at first, if au-
towiring using constructor cannot be done, autowiring by type is uti-
lized instead.

• Requirements. All the autowire modes shall be supported. One special
note goes to constructor autowire mode, where a constructor to be used
can be either marked by a special annotation, or a single constructor in the
class is used instead. If there is neither a single constructor in the class1,
nor a constructor marked by a special annotation, an error should be raised.

• Approach. The whole concept of autowire mode is nothing but finding
appropriate initialization methods which can initialize bean or setters that
should be called immediately after the initialization of the bean. Autowire
mode is one of many factors that can influence flow data whose computation
is described in Section 4.1.2.1.

Initialization Callbacks

• Definition. Initialization callbacks are methods that accept no arguments
and have no return value. These methods can be configured to be called
immediately after an instantiation of the defining bean.

• Requirements. Initialization callbacks shall be supported, they can be
specified in several different ways and we shall support all of them:

– Explicitly by configuring method name of the initialization callback.
– Implicitly by marking initialization callback method by a special an-

notation.
– By implementing the interface InitializingBean which defines a sin-

gle method. This method refers to an initialization callback.

• Approach. As the last step in the initialization of the bean, we extend the
flow data of bean by flow data computed by these initialization callbacks.
The process of computing flow data is described in Section 4.1.2.1.

Destruction Callbacks

• Definition. Destruction callbacks are methods that accept no arguments
and have no return value. These methods can be configured to be called
just before a destruction of the defining bean.

1This means more like at most one constructor from a developer’s perspective, however, a
default constructor is always there if not specified otherwise, and therefore we can refer to a
single constructor.
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• Requirements. Destruction callbacks are not supported, we assume that
these methods propagate no information which could be important for the
data lineage.

• Approach. There is no correct way of how to handle destruction callbacks.
At runtime, these callbacks are called just before a garbage collector calls a
finalizer upon them. However, in the data lineage analysis which is static,
there is no garbage collector. The data lineage analysis does not model
neither dynamic heap, nor dynamic heap objects. In fact, data accesses are
represented by symbolic expressions. Therefore, we are unable to determine
a point in the program where the method should be called.

Property

• Definition. A property of some bean refers to a setter that should be
called during an initialization of the bean. In property definition, the actual
argument of the setter invocation is expected to be specified. Similarly to
the initialization method argument, either plain string value or reference to
another bean can be specified.

• Requirements. Properties shall be initialized right after the instantiation
of the bean. Properties can be defined either explicitly, or implicitly by
marking setter methods by a special annotation. We shall support both.

• Approach. First, we need to resolve setter methods based on the names of
properties that the bean defines. Then, we can analyze these setters with
respect to flow data of the defining bean, as described in Section 4.1.2.1.

Abstract

• Definition. A bean can be marked as abstract which means that it should
not be managed by the Spring Framework. Beans are non-abstract by
default.

• Requirements. We shall support abstract beans in terms of parsing these
bean definitions.

• Approach. No analysis of abstract beans is required, as these are never
instantiated by the Spring Framework itself.

Parent bean

• Definition. A bean can be assigned with a parent bean which is some
abstract bean. The defining bean inherits configuration from its parent,
initialization method arguments, initialization callbacks or properties in
particular, but also factory method or factory bean. There are two types of
configurable fields in bean definition, each having different semantics when
inheriting from the parent bean:

– Single value – Among single values are, e.g., factory method or factory
bean. These values can be inherited from parent bean, but only when
the defining bean does not override these values.
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– A collection of values – Among collections of values are, e.g., properties
or initialization method arguments. The defining bean always inherits
these values from its parent.

• Requirements. Inheritance of beans shall be supported.

• Approach. Inherited values can be treated in the same manner like they
were defined by the defining bean.

4.1.1.2 Spring Bean Configuration

Beans can be defined at several places, the most common ones being XML doc-
uments and code.

Spring Beans in XML Documents

Application contexts defined by XML documents are the most classic way of how
to configure beans.

In Listing 4.1, an empty application context can be observed. First, the el-
ement beans ia a root element of the XML document. The application context
is valid only if the document conforms to XML Schema defined by the root ele-
ment. Next, we can see definitions of multiple namespaces, the namespaces util
and context namely. One of our requirements is to support not only all the
elements in the schema called beans, but also some elements defined in the two
previously mentioned namespaces. In particular, we are interested in the ele-
ments context:component-scan, context:property-placeholder, util:map,
util:set, util:properties and util:list. In the example, we can also ob-
serve that the profile named myProfile is defined, which means that this par-
ticular profile is active in all beans defined under the particular element beans.
Note that the element beans can be defined recursively.
<?xml version="1.0" encoding="UTF -8"?>
<beans xmlns="..."

xmlns:xsi="..."
xmlns:util="..."
xmlns:context="..."
xsi:schemaLocation="..."
profile="myProfile"/>

Listing 4.1: An empty application context

A single bean is defined by the element bean, as can be seen in Listing 4.2.
In this particular example, bean with the name kitt will be instantiated in such
a way that it will use bean named carFactory with the method makeSuperCar.
The return value of such method is a result of the bean creation, and it is an object
of the type Car. The method accepts a single parameter of the type Engine, which
is defined by the element constructor-arg. This refers to constructor injection,
if no factory method was specified, a constructor matching the method descriptor
would be used instead. In data lineage analysis, we do not mind whether we work
with constructor or factory method. All we have to do is to find appropriate
initialization method. The algorithm of finding such method works as follows:
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1. Is there any factory bean defined? If so, consider this particular bean as a
reference one. Otherwise, consider the current bean as a reference one.

2. Is there any factory method defined? If so, consider all methods defined in
the bean from the previous step matching the name. Otherwise, consider
all constructors defined in the current bean.

3. Filter methods from the previous step to those matching parameters’ types
by comparing them to types of the elements constructor-arg with respect
to the ordering of the elements.

4. The initialization method is returned.

The value of the element constructor-arg can be of multiple types, similar
holds for the element property in Listing 4.3:

• Plain string value – This can be either string literal, property variable
placeholder, or SpEL expression. One of our requirements is to support both
string literals and property variable placeholders, SpEL expressions are not
required to be supported. A support for SpEL expressions is considered a
future work and is discussed in Section 8.2.
Support for string literals is rather straightforward. For property variable
placeholders, we introduce a global variable that defines a mapping between
placeholders and actual values. This mapping is pre-filled by the customer’s
provided files with the extension .properties.
The process of resolving string value to a final string works as follows:

1. Property variable placeholders are expanded iteratively. Note that the
value of a placeholder can refer to some other placeholder, and there-
fore the expansion should work recursively. However, this is rather
easy to achieve. If we detect a cycle, we should raise an error that the
string could not be evaluated correctly.

2. SpEL expressions are evaluated iteratively. We don’t support SpEL
expressions, and therefore we should only log a warning if we encounter
some expression that cannot be evaluated.

3. Final string is returned.

The Spring Framework also has a support for type conversion. As the most
basic example, a simple string literal can be mapped to a parameter of
the type int. Type conversion should be supported in our project as well.
We claim no requirements on type conversion, however, the most common
conversions should be supported and it should be easily extensible, so new
conversion services can be eventually supplied in the future.

• Reference to another bean – A name of referenced bean is provided, as
in Listing 4.2.

• Bean in-place configuration – This applies not only to the element
bean, but the elements util:list, util:map, util:set, util:array or
util:props are supported as well.
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<beans>
<bean name="kitt"

class="com.company.Car"
scope="prototype"
factory -bean="carFactory"
factory -method="makeSuperCar">

<constructor -arg ref="superEngine"/>
</bean>

<bean name="carFactory"
class="com.company.Factory"/>

<bean name="superEngine"
class="com.commpany.Engine"
scope="prototype"/>

</beans>

Listing 4.2: A simple example of XML configuration of a bean

Last, in Listing 4.3, we provide an example with parent bean and the element
property, which refers to setter injection. In this particular example, there are
two abstract beans, both have the name abstractBean. However, each is defined
in a different profile. Note that abstract bean is somewhat different from the
abstract class. Abstract bean does not even have to define its type, it is more
like a logical concept. Bean with the name myBean inherits everything from the
specified parent bean, which are properties in this case. The element property
itself defines a name of the property. It is expected by the Spring Framework
that in declaring class, there will be a matching setter, i.e., a method with the
signature void setA(String), in this case, a method with the signature void
setB(String) respectively. The particular setter with the specified argument is
then called during bean creation.

Now, let’s move back to our design of support for profiles. The bean named
myBean specifies the name of the parent bean, however, if no profile was active,
this bean would technically have two parents. This is where the problem arises,
since the class C does not define a method with the signature void setB(String),
as defined by the bean named abstractBean in the profile named B. Therefore, it
is an invalid configuration. To prevent problems with invalid configuration, due
to our design of support for profiles, we always enforce bean to have at most one
parent. If more parents due to multiple active profiles should occur, we shall stop
the analysis and force the customer to configure profiles.
<beans>

<beans profile="A">
<bean name="abstractBean" abstract="true">

<property name="A" value="a"/>
</bean>

</beans>

<beans profile="B">
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<bean name="abstractBean" abstract="true">
<property name="B" value="b"/>

</bean>
</beans>

<beans profile="default">
<bean name="myBean"

class="com.company.C"
init -method="myInit"
parent="abstractBean"/>

</beans>
</beans>

class C {
void setA(String a) { ... }
void myInit () { ... }

}

Listing 4.3: A simple example of bean inheritance

Spring Beans in Code

Although definitions of beans in XML documents are considered a gold standard,
beans defined in code are gaining more popularity in recent years. They are most
commonly configured using Spring Framework’s annotations. These annotations
have their retention policies set to runtime, and therefore are recognizable by the
Spring Framework at runtime during application context initialization.

There are altogether three ways of how to configure beans in code and we
should support all of them:

• Configuration classes – As the name suggests, these beans are used to
configure the application context. These classes must have the annotation
@Configuration. The two most important annotations except for the an-
notation @Configuration are the following:

– The annotation @PropertySource(s) is an equivalent to the element
context:property-placeholder in XML documents. Their values
refer to locations of files with the extension .properties which are
used when resolving property variable placeholders. If none property
source is specified, all the files with the extension .properties in
resources are utilized instead. This Spring Framework’s behavior is
utilized in our solution as well.

– The annotation @ComponentScan(s) is an equivalent to the element
context:component-scan in XML documents. This refers to a com-
ponent scan, a process during which beans are being looked-up and
registered into the context. The process itself is decribed later on in
this section.

• Bean methods – These methods must be defined in classes annotated by
the annotation @Configuration and the methods by themselves must be
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annotated by the annotation @Bean. Return values of these methods are
treated as beans. These methods can define parameters. During an initial-
izing call, beans matching types of these parameters will be injected into
arguments of the initializing call. This refers to a process of finding ap-
propriate autowire candidates, which is described in Section 4.1.2.1. These
methods can be either static or instance. In the case of the instance method,
the defining bean annotated by the annotation @Configuration is utilized
as a receiver of the initializing call.

• Component classes – These classes are being discovered during the com-
ponent scan. Technically, it can be an arbitrary class. When discovered by
the component scan, such a class is instantiated with autowire mode set to
the constructor. Then, it is considered a bean.

All of these beans defined in code can be annotated by the annotations like
@Scope, @Profile, @Primary or @Qualifier whose meaning should be obvious.
We support all the standardly used annotations defined by the Spring Frame-
work, but also those defined by JSR-330.

In Listing 4.4, there is an example of simple beans configuration in code. We
can observe the class DatabaseConnectionConfiguration annotated by the an-
notation @Configuration. This class is considered a bean. Next, there is the
field named credentials in the class, annotated by the annotation @Autowired.
The annotation says that during the initialization process of the bean named
DatabaseConnectionConfiguration, some bean of the type Credentials with
the qualifier value:myCredentials will be injected into the field. This refers
to field injection. The annotation @Inject is an alternative to the annotation
@Autowired, similarly the annotation @Resource where it is possible to also
specify a name of the bean to be injected. We shall support all of these an-
notations. Apart from that, the annotation @Value declared on the field named
connectionString is a stronger variant of autowiring, saying that a specified
string literal will be injected into the field. An expansion of property variable
placeholders is supported here as well, as explained in Section 4.1.1.2. Similar
holds for type conversion.

The method getConnection(String) in Listing 4.4 is another example of
definition of a bean, by using the annotation @Bean in this particular case. Here,
we can notice that the annotation @Value can also be declared on parameters
with the same semantics when defined on fields. If the first parameter was not
annotated by the annotation @Value, it would work exactly the same as for
the fields annotated by the annotation @Autowired. However, for parameters,
there is no need of specifying neither of dependency injection annotations2. Also
note that the annotation @Value can also be defined on methods. In such a
case, its value is used as a default value for all the parameters that are not
annotated by the annotation @Value. If the bean of the type Connection is
accessed somewhere in the analyzed program, we shall simulate this whole Spring
Framework’s machinery to obtain correct flow data as computed by a call of the
method Connections.initialize(String, String, String, String).

2The annotations @Autowired, @Inject, or @Resource
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@Configuration
public class DatabaseConnectionConfiguration {

@Value("${database.connection}")
private String connectionString;

@Autowired
@Qualifier("myCredentials")
private Credentials credentials;

@Bean
public Connection getConnection(

@Value("${database.schema}") String schema) {
return Connections.initialize(connectionString ,

credentials.user , credentials.pw , schema );
}

}

Listing 4.4: An example of usage of beans defined in code

Last, in Listing 4.5, we can observe an example of all three types of injection
that can be realized within the Spring Framework:

• Field injection refers to fields annotated by the annotation @Autowired or
similar, as described in the previous paragraphs.

• Setter injection refers to methods annotated by the annotation @Autowired
or similar, this is equivalent to properties defined in XML documents.

• Constructor injection refers to constructors annotated by the annotation
@Autowired or similar, autowire mode is set to the constructor.

In this particular case, the class MyBean is scanned during the component
scan and registered as a bean. All these injections get processed during the
initialization of the bean. In our environment, this refers to the computation of
flow data for a particular bean which is described in Section 4.1.2.1.
@Component
public class MyBean {

private final MyValue constructorInjection;

private MyValue setterInjection;

@Autowired
private MyValue fieldInjection;

@Autowired
public MyBean(MyValue value) {

this.constructorInjection = value;
}
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@Autowired
public void setProperty(MyValue value) {

this.setterInjection = value;
}

}

Listing 4.5: An example of all types of injections in the Spring Framework

Component Scan

The component scan is basically an iteration through classes in the specified
package and its sub-packages with some filtering, the result of which is a set of
classes that are further registered as beans. There are several options that can
be defined for component scan:

• It is possible to turn off the default filter which is by default turned on. The
default filter looks for all classes that defines some of the meta-annotations
@Component, @ManagedBean, or @Named.

• An include filter can be specified, as the name suggests, it includes all classes
matching the specified condition.

• An exclude filter can be specified, as the name suggests, it excludes all
classes matching the specified condition.

The condition in both include and exclude filters is specified using some kind
of predicate. However, no arbitrary predicate can be chosen. There are few types
of predicates supported by the Spring Framework:

• Regex filter that matches the specified regular expression, the fully qualified
name of the tested class is then matched with such a regular expression.
We shall support this type of filter.

• Annotation type filter that checks whether the tested class contains the
specified annotation as a declared annotation or meta-annotation. We shall
support this type of filter.

• Assignable type that checks whether the specified type is assignable from
the tested class. We shall support this type of filter.

• AspectJ type filter that uses AspectJ expression to test the class. This type
is not required to be supported and is considered a future work.

• Custom type filter implementation that uses custom code segment to test
the class. This type is not required to be supported and is considered a
future work.

Component scan can be defined in two different ways, by the annotation
@ComponentScan or by the element context:component-scan. In Listing 4.6,

27



an example of the configuration by the annotation @ComponentScan can be ob-
served. In Listing 4.7, there is an equivalent example but defined by the element
context:component-scan. However, the component scan itself has the same se-
mantics in both cases. Therefore only what differs is the actual parsing of the
component scan definition.
@ComponentScan(

basePackages = "com.company"
useDefaultFilters = false ,
includeFilters = {

@ComponentScan.Filter(
type = FilterType.ASSIGNABLE_TYPE ,
value = Annotation.class),

@ComponentScan.Filter(
type = FilterType.ANNOTATION ,
value = Interface.class)

}
)
@Configuration
class ConfigurationClass {}

Listing 4.6: An example of the annotation @ComponentScan

<context:component -scan
base -package="com.company"
use -default -filters="false">
<context:include -filter

type="annotation"
expression="com.company.Annotation"/>

<context:include -filter
type="assignable"
expression="com.company.Interface"/>

</context:component -scan>

Listing 4.7: An example of the element context:component-scan

Our requirement is to support both styles of definition by introducing par-
ticular parsers. Then, we should be able to scan the analyzed code and register
scanned classes as beans, which copies a behavior of the Spring Framework.

4.1.2 Spring Beans Flow Data
Flow data are specific for our project. At runtime, there is a heap and beans
are nothing but ones of many objects on the heap. However, the data lineage
analysis does not simulate the heap. Actually, data accesses are realised by
symbolic expressions. There are three basic types of expressions:

• Local variable expressions – These expressions are always defined within
some method and cannot cross method boundaries.

• Argument expressions – In fact, argument expressions are treated in the
same manner like local variable expressions.
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• Field accesses expressions – Each field access expression consists of a target
object and the field being accessed. Target object should always refer to
another field access expression, local variable expression or argument ex-
pression. For example, for the field access a.b.c, the target object is the
field access a.b and the accessed field is the field c. Note that a receiver
for a method call, i.e., the variable this, is realised by the zeroth argument
expression. Unlike local variable expressions, field access expressions can
cross method boundaries, in such a way that the root target object is re-
placed by some other root target object. For example, consider the method
call foo(a.b) where the target object a is some local variable defined in
caller method. When processing such call, the root target object, which is
the local variable a in this case, is replaced by the first argument expression
for the callee method, and propagated into the call. Therefore, in callee
method, the expression arg1.b is tracked and contains exactly the same
flow data as the field access a.b in caller method.

The propagation of flow data across method boundaries is especially impor-
tant to know in context of beans flow data, since these root target objects are
being replaced during injection of bean into some field of argument.

In Listing 4.8, we present a simple example of beans configuration. In the
following enumeration, we explain what are those flow data for the two beans in
the example that the Spring Framework plugin should compute:

• The bean of the type Injected contains a single tracked expression:

1. The field access expression Injected.value – The expression is as-
signed with a console flow which denotes that there is some value
which was read from the console.

• The bean of the type Configuration contains two tracked expressions:

1. The field access expression Configuration.injected.value – The
expression contains exactly the same flow as the field access expression
Injected.value in the flow data of the bean of the type Injected.

2. The field access expression Configuration.stream – The expression
is assigned with a file stream flow which denotes that there is some
opened file stream. In this particular case, the file stream flow refers
to the location path/to/file.txt.

@Configuration
class Configuration {

private Injected injected;

@Value("path/to/file.txt")
private InputStream stream;

@Autowired
void setInjected(Injected Injected) {
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this.Injected = Injected;
}

}

@Component
class Injected {

private final String value;

public Injected () {
this.value = System.in.readline ();

}
}

Listing 4.8: An example of flow data of beans

4.1.2.1 Computing Spring Beans Flow Data

The analysis computes flow data across the program by analyzing methods one
by one. For us, the important methods are initialization methods, initialization
callbacks or setters defined by some bean. Therefore, we shall be able to identify
them and analyze them. However, we are not interested in flow data of the
methods as a whole, which usually contain also some local variables which we do
not care about at all. We are interested in flow data of analyzed bean only, these
are usually field accesses associated with a receiver of the method call, in case of
constructors, initialization callbacks or setters, or expressions related to return
value of analyzed method, in case of factory methods or methods annotated
by the annotation @Bean. Therefore, we analyze these important methods in
some ordering and we pass the flow data for bean computed by some method
to a receiver of the call of the following method, because the following method
can refer to flow data computed by the previous method. The ordering is the
following:

1. Initialization method – Based on the bean configuration, it can be either
constructor, factory method or method annotated by the annotation @Bean.

2. Setters – Based on the bean configuration, they can be properties defined in
XML documents, or methods defined in declaring type which are annotated
by the annotation @Autowired or similar.

3. Initialization callbacks – Based on the bean configuration, they can be
explicitly configured initialization callbacks, the methods in the declar-
ing type annotated by the annotation @PostConstruct, or the method
afterPropertiesSet() defined by the interface InitializingBean.

This refers to initialization process of a single bean. Last, we add flow data which
are created due to fields defined in declaring type annotated by the annotation
@Autowired or similar.

This process is recursive, if some bean references another bean, the referenced
bean needs to be analyzed beforehand so it can be injected. References are either
explicit, or implicit, the implicit references are being resolved during a process
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of finding appropriate autowire candidates which is further described in Section
5.2.2. Note that references can be cyclic, and therefore our requirement is to
design a solution which should be robust enough so that the initialization process
does not end up in an infinite cycle.

It is important to say that neither initialization method, nor initialization
callbacks, nor setters appear in the call graph. Therefore, we are supposed to
analyze them in advance so we can access them once needed during the program’s
analysis. We considered two approaches:

• Modifying call graph by adding auxiliary node for the Spring
Framework’s initialization – This approach is based on modifying the
already existing call graph. A root of each call graph is the entry-point of
the analyzed application, in this approach, we would create an auxiliary
node for Spring Framework’s initialization. This node would be called be-
fore the actual entry-point and we would add an edge between this node
and the entry-point, symbolizing that our auxiliary node calls the entry-
point. From such node, initialization methods of all defined beans would
be called, i.e., initialization methods, initialization callbacks or setters. The
advantage here should be clear, if we constructed such a node correctly, ev-
erything would be analyzed implicitly within the analysis run, even cyclic
dependencies.
However, construction of such a node might be complicated, in this para-
graph, we describe one of the reasons and proposed solutions. Consider
some bean named A that has a dependency on bean named B in its con-
structor. In such a case, we shall incorporate such dependency into the
graph. The first step would be to add an auxiliary edge between the ini-
tialization method of the bean named A and the initialization method of
the bean named B into the graph. In the second step, the problem arises,
because we shall be able to propagate flow data of the bean named B into
an argument of the initialization method call of the bean named A. In the
analysis, this only happens if there is some instruction invoke in bytecode.
At this point, there are two proposed solutions:

1. Modify the initialization method of the bean named A to call the ini-
tialization method of the bean named B with correct arguments. As
arguments for the call are expected to appear on the operand stack, it
would be necessary to push there these operands beforehand. Another
step would be to assign the return value of the instruction invoke into
a particular argument of the initialization method of the bean named
A. In other words, a non-trivially amount of generated bytecode would
be needed.

2. Modify the analysis somehow so it can propagate flow data not only
if it encounters some instruction invoke. This could be achieved by
introducing some callback into the core analysis algorithm that would
do the trick. Compared to the previous proposal, this one is preferred,
and should be less invasive.
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Either way, this approach would cause that all defined beans would be
initialized which might be performance-demanding since not all the defined
beans are necessarily used in the analyzed application. Therefore, we would
prefer a solution where the initialization of a bean can be performed lazily.

• Calling the data lineage analyzer as a service to compute flow data
for a bean – For invocation of some bean method3, we would need some
black-box that computes its flow data, analyzing its whole call tree, since
the method associated with the invocation can call some other methods,
which can call other methods and so on. That sounds much simpler, in
contrast to the previous approach. The disadvantage here being the fact
that we should do all the propagations manually, e.g., if the bean named
A has dependency on the bean named B, we should call our black-box for
the bean named B initialization method at first, and then inject results
into an appropriate argument in initialization method of the bean named
A. However, such a disadvantage is quite acceptable and this approach can
also be implemented in a lazy manner, and therefore we have decided to
choose this approach.

With all that being said, we can present a basic outline of the initialization al-
gorithm in form of a pseudocode in Algorithm 1. The algorithm uses the function
GetFlow as a black-box. Its purpose is to analyze a method which is passed
into the function call in the first argument, and return computed flow data for
the method. However, this function is a subject to a deeper discussion, Section
5.2.1 is dedicated to its problematics.

Algorithm 1 AnalyzeBean
Input: Application context AC, bean definition b ∈ AC
Output: Flow data f(b) for the bean definition b

1: f(b)← GetFlow(b.initMethod) ▷ Analyze initialization method.
2:
3: for all property ∈ b.properties do ▷ Analyze properties.
4: f(b)← f(b) ∪GetFlow(property)
5:
6: for all initCallback ∈ b.initCallbacks do ▷ Analyze initialization callbacks.
7: f(b)← f(b) ∪GetFlow(initCallback)
8:
9: for all field ∈ b.fields do ▷ Analyze fields.

10: if {@Autowired, @Inject, @Resource, @Value} ∩ field.annotations ̸= ∅
then

11: f(b)← f(b) ∪AnalyzeBean(GetBean(field))
12:
13: return f(b)

Recalling the example in Listing 4.8, the bean of the type Configuration is
initialized by using Algorithm 1 as follows:

3Initialization method, initialization callback or setter
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1. Initialize an empty set for flow data.

2. Add flow data computed by the analysis of the constructor into the set.
Note that the default constructor is utilized here, and therefore the set
remains unchanged.

3. Extend the set with flow data computed by the analysis of the setter method
void setInjected(Injected). Note that at this point, the function An-
alyzeBean is called recursively for the bean of the type Injected.

4. Extend the set with flow data originating from the value of the annotation
@Value. Note that at this point, a plain string value is considered an
in-place bean configuration which is further converted into the flow data
representation of the type InputStream.

5. Return the computed set. The returned set refers to flow data of the bean
of the type Configuration.

4.1.2.2 Accessing Spring Bean from Application Code

The whole purpose of managing the flow data of beans is that these flow data
will be accessed somewhere in the analyzed program. Flow data of beans by
themselves do not contribute to the results of the data lineage analysis unless
some piece of code in the analyzed program manipulates with them.

There are several ways of how to access bean object in application code. The
most common one is by using the interface ApplicationContext. The example
with using the interface ApplicationContext can be observed in Listing 4.9.
public class Program {

public static void main(String [] args) {
ApplicationContext context =

new XmlApplicationContext("app.xml");

Object myBeanByName =
context.getBean("myBean");

MyBean myBeanByClass =
context.getBean(MyBean.class);

}
}

Listing 4.9: An example of usage of ApplicationContext interface

We can see that a bean can be accessed either by its name or by its type.
Our goal is to support both these ways. To do that, we have to semanti-
cally describe these two overloads of the method BeanFactory::getBean. This
refers to a concept of dataflow plugins as described in Section 2.1.2, which al-
ready exists in Bytecode Scanner. Therefore we shall design a dataflow plu-
gin for the Spring Framework. Without a loss of generality, let us describe
what happens when the data lineage analyzer encounters a call of the method
BeanFactory::getBean(String):
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1. The call of the method BeanFactory::getBean(String) is encountered by
the data lineage analyzer.

2. The data lineage analyzer tries whether some of the registered dataflow
plugins can process the method.

3. The dataflow plugin for the Spring Framework can process the method, and
therefore is selected to analyze the method.

4. A semantic description of the method BeanFactory::getBean(String) ex-
tracts flows from the first argument, this refers to the name of the bean being
accessed.

5. The semantic description accesses our representation of application context
with a query for all beans matching the name.

6. Flow data of returned beans are computed. This refers to a call of the
function AnalyzeBean in Algorithm 1.

7. The semantic description associates the computed flow data with a return
value of the call of the method BeanFactory::getBean(String).

From the description, it should be clear that a design of semantic descriptions
is rather straightforward. In our particular case, all the semantic description
should do is to find appropriate beans, compute flow data for them and return
these flow data.

4.1.2.3 Evaluating Call Targets on Spring Bean

Recalling the example in Listing 4.9, the methods to obtain beans are designed
generically, in other words, their return values do not say us anything about the
actual type of the returned bean. Similar holds in the example which can be
observed in Listing 4.10, we only know that some bean whose class type imple-
ments the interface MyInterface will be injected into the field injectedBean in
the class ComponentClass, but we do not know what is the actual type of the
injected bean.
@Component
class ComponentClass {

@Autowired
private MyInterface injectedBean;

}

interface MyInterface {
void doIt ();

}

@Component
class MyClass implements MyInterface {

void doIt() {
...
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}
}

Listing 4.10: An example of unclear actual type of the injected bean

However, we need to know such information in the data lineage analysis.
We shall be able to correctly evaluate a call target when calling some method
upon the bean object. For example, when evaluating targets of the method call
injectedBean.doIt(), the method MyClass::doIt shall be returned, because
the class MyClass is the actual type of the injected bean. Therefore, we need to
modify the data lineage analyzer a little bit. Without that, the only evaluated
target would be the method MyInterface::doIt which could lead to a loss of
some important data lineage information.

This refers to a concept of dependency injection plugins as described in Section
2.1.2. In our particular case, our proposed solution is that we design a special flow
that marks the point of injection, saying there is some bean in it. In the example,
when performing an injection into the field ComponentClass::injectedBean, we
assign the particular field access expression with a special flow representing the
bean MyClass. Such a flow can be propagated across assignments freely. Now,
let us describe what happens when the data lineage analyzer encounters some
method invocation:

1. The method invocation injectedBean.doIt() is encountered by the data
lineage analyzer.

2. The data lineage analyzer tries whether some of the registered dependency
injection plugins can process the method.

3. The dependency injection plugin for the Spring Framework is selected to
process the method.

4. The dependency injection plugin extracts flow data from the receiver of the
method call.

5. The dependency injection plugin checks whether there is some special flow
denoting the presence of some bean in the receiver.

6. If there is no such special flow, the dependency injection plugin cannot
process the method. Let us suppose that there is some special flow denoting
the presence of the bean.

7. The actual type of the bean is resolved.

8. The dependency injection plugin tries to obtain a declared method with the
same signature as the invoked method in the resolved type.

9. If there is such declared method, it is returned as the only possible call
target. Otherwise, the dependency injection plugin cannot process the in-
vocation.

From the description, it should be clear that an evaluation of possible call
targets should be context-sensitive because we shall be able to obtain flow data
for the receiver of a method call. The way this is achieved is described in Section
4.2.4.
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4.2 Call Graph
The call graph is a crucial structure for static data lineage program analysis.
Whenever the data lineage analyzer encounters some method invocation, a target
of such a call must be evaluated correctly. At runtime, the evaluation is resolved
by looking up the target in the virtual method table. However, in the static
analysis, there is no such table because we do not often know the actual type
of a receiver of the method call, due to the missing model of program heap.
Therefore, we shall over-approximate targets of method calls. It effectively means
that in the data lineage analysis, multiple target methods have to be considered
for each instruction invoke. In this section, we discuss possible approaches to
call graph implementation and its relation to support for the Spring Framework.
We consider two variants of the call graph. One of the variants is the context-
insensitive call graph, which is described in Section 4.2.2. Its stronger variant,
the context-sensitive call graph, is described in Section 4.2.3.

4.2.1 Type Hierarchy
The most important helper structure we need for call graph is type hierarchy,
sometimes referred to as class hierarchy. Every single type in Java Platform
defines two pieces of information about relations between types:

• A list of super interfaces it implements. In Java code, this is realised by the
keyword implements in type definition.

• A superclass it extends. In Java code, this is realized by the keyword
extends in type definition. If there is no such keyword, the class always
extends the class java.lang.Object, a root of class hierarchy in Java Plat-
form.

However, as we will see in Section 4.2.2.1, this is not enough. To have a complete
picture of relations between types, we shall be able to perform the following two
queries:

• For an interface type, we shall be able to obtain a list of all reference types
that implement the particular interface.

• For a class type, we shall be able to obtain a list of all its subclasses.

Additionally, a requirement on these two queries is that their evaluation should
be fast enough since queries for the relations of types form the core of the static
analysis. However, it can be observed that these queries are nothing but scanning
for types that implement a given interface, extend a given class respectively.

4.2.2 Context-Insensitive Call Graph
The context-insensitive call graph is a graph where the set of vertices is made of
all the methods defined in the analyzed program, and there is an edge between
the node A and the node B if the method represented by the node A calls the
method represented by the node B regardless of the arguments’ values. In other
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words, the context-insensitive call graph does not distinguish between the method
call foo(1) and the method call foo(2).

The context-insensitive call graph is being constructed from the specified
entry-point of the analyzed application. In the data lineage analysis, we only
care about the graph component which contains the entry-point. The other
graph components are not being constructed since they are unreachable from
the entry-point, and therefore they are not being analyzed. The algorithm that
can construct the context-insensitive call graph is described in Algorithm 2. The
algorithm is nothing but a simple depth-first search algorithm using a call graph
builder to evaluate call targets, which is described in Section 4.2.2.1.

Algorithm 2 ConstructContextInsensitiveCallGraph
Input: Entry-point e of the application, call graph builder CGB
Output: Context-insensitive call graph G built from e

1: vertices← ∅
2: edges← ∅
3: stack ← {e}
4: while stack ̸= ∅ do
5: current← Pop(stack)
6: if current ∈ vertices then ▷ Avoid recursive calls
7: continue
8: vertices← vertices ∪ {current}
9: for all invocation ∈ GetInvokeInstructions(current) do

10: targets← EvaluateTargets(CGB, invocation)
11: for all target ∈ targets do
12: edges← edges ∪ {(current, target)}
13: stack ← stack ∪ {target}
14: return (vertices, edges)

Note that since the context-insensitive call graph cannot differentiate between
two invocations of the same method but with a different context, it also cannot
determine whether the receiver of some method invocation is some bean or not.
Similar holds for lambda expressions, which are evaluated dynamically. There-
fore, for our project, we need some stronger variant of call graph which could
handle contexts of method invocations as well. The call graph that can handle
contexts of method invocations is described in Section 4.2.3 and is built on top
of the context-insensitive call graph.

4.2.2.1 Rapid Type Analysis

The Rapid Type Analysis is one of many algorithms for building the context-
insensitive call graph, as we discussed in Section 3.2. These algorithms are some-
times referred to as call graph builders, and the algorithm itself has a form of the
function EvaluateTargets from Algorithm 2. From all the call graph builders
discussed in Section 3.2, we have chosen Rapid Type Analysis to be used in our
project, because the amount of over-approximation is acceptable for the data
lineage analysis and the implementation is rather straightforward.
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The Rapid Type Analysis uses Class Hierarchy Analysis under the hood. In
JVM specification, the Class Hierarchy Analysis is referred to as method selection
[12]. The method selection is only applicable when a method being selected is
expected to be overridden, i.e., it is either interface, or abstract, or a virtual
method. For static methods and instance initializers, the method selection is not
being used. There can always be a single target of invocation of such a method,
the method itself. Otherwise, our modification of method selection uses type
hierarchy from Section 4.2.1 as follows:

• If a method being selected is defined by an interface, get all possible over-
rides of the method in all the implementors, i.e., all implementing interfaces
and classes.

• If a method being selected is defined by a class, get all possible overrides of
the method in all the subclasses.

Therefore, there is not a single call target in the data lineage analysis, there is
a set of call targets. The data lineage analyzer simulates the behavior in such
a way that a single instruction invoke can call multiple methods, the evaluated
targets.

All the Rapid Type Analysis does is that it filters targets computed by the
method selection. The Rapid Type Analysis selects only those methods, whose
declaring type has been instantiated earlier during symbolic program execution.
Therefore, our goal is to construct a set of instantiated types. To do so, there are
two approaches:

• Treat all user-defined types in the analyzed application as the instantiated
ones.

• Treat all types, which has been instantiated by the instruction new some-
where in the symbolic program execution, as the instantiated ones.

Our solution combines both approaches. For the first approach, we require
that the implementation will contain an option that, if enabled, causes that all
user-defined types in the analyzed application are added into the set of instan-
tiated types. Enabling such option should increase performance during the call
graph construction, but make the analysis less precise. Otherwise, Algorithm
3 collects all the instructions new in methods reachable from the entry-point
method and constructs the set this way. Note that the input parameter CGB in
the function ConstructInstantiatedTypesSet is the Rapid Type Analysis
itself, which utilizes the set being constructed. The algorithm computes the set
until the fixed point over instantiated types is reached, because a new instantiated
type may have caused that some set of targets has changed. Therefore, if a new
target should occur in the set, it means that we have to process it as well. Such
a new target can, however, instantiate some other new type, which we would not
know if we did not compute the set of instantiated types to the fixed point.
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Algorithm 3 ConstructInstantiatedTypesSet
Input: Entry-point e of the application, a set of static initializers S, call

graph builder CGB
Output: A set of instantiated types T

1: T← ∅
2: targetsMap← ∅
3: changed← true
4: while changed do ▷ Repeat until the fixed-point is reached.
5: changed← false
6: visited← ∅
7: queue← {e} ∪ S ▷ Enqueue entry-point and static initializers.
8: while queue ̸= ∅ do
9: current← Dequeue(queue)

10: T← T ∪GetInstructionsNew(current)
11: for all invocation ∈ GetInstructionsInvoke(current) do
12: tagets← EvaluateTargets(CGB, invocation)
13: if targetsMap[invocation] ̸= targets then
14: changed← true ▷ The method targets have changed.
15: targetsMap[invocation]← targets

16: for target ∈ targets do
17: if visited ∩ {target} = ∅ then ▷ Avoid recursive calls.
18: queue← queue ∪ {target}
19: visited← visited ∪ {target}
20: return T
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4.2.3 Context-Sensitive Call Graph
The context-sensitive call graph is a graph where the set of vertices is made of all
the methods defined in the analyzed program, and there is an edge between the
node A and the node B if the method represented by the node A calls the method
represented by the node B, concerning the arguments’ values. In the context-
insensitive call graph, for the two method calls foo(1) and foo(2), there is
only one edge between the caller and the method foo. In the context-sensitive
call graph, there are two edges, between the caller and the method call foo(1),
the caller and the method call foo(2) respectively. For clarity, consider the
example in Listing 4.11. A visualization of the context-insensitive call graph can
be observed in Figure 4.1. A visualization of the context-sensitive call graph can
be observed in Figure 4.2.

The context-sensitive call graph utilizes the context-insensitive call graph in
its core. Since the context-sensitive call graph does care about arguments’ values,
it cannot be pre-computed during the initialization of the data lineage analyzer
as the context-insensitive call graph. It is being built on the fly, during the
analysis in such a way, that whenever the data lineage analyzer encounters a
method invocation, it adds an edge into the graph between invocation context
representing the caller, and invocation context representing the callee. However,
a single callee can have multiple call targets, and therefore the context-insensitive
call graph is utilized here to compute a set of call targets for the callee.

As the data lineage analyzer uses a fixed-point algorithm to compute method
summary for a single method, queries for direct callees and direct callers are
the most commonly used operations during the analysis. This is also one of the
motivations for the context-sensitive call graph. In the rest of this paragraph,
without loss of generality, consider the query for direct callees only. The reasoning
for the query for direct callers is analogous. With the context-insensitive call
graph, the data lineage analyzer does not know which invocation contexts are
callees of the invocation context being analyzed. Therefore, it must analyze
all invocation contexts related to a callee method. However, with the context-
sensitive call graph, we know the exact callee’s invocation contexts. In result, the
analysis utilizing the context-sensitive call graph should be significantly faster,
because a set of callees is expected to be much smaller. Therefore, the analysis
should take less time, opposed to utilizing the context-insensitive call graph.
Formally, if the set C contains all edges leading to vertices representing invocation
contexts of the direct callees and the set M represents the direct callees methods,
it always holds that |C| ≤ ∑︁|M |

i=0 ni, where ni is a number of recorded invocation
contexts for the method Mi. Whilst the |C| is a count of iterations when utilizing
the context-sensitive call graph, the ∑︁|M |

i=0 ni is a count of iterations when utilizing
the context-insensitive call graph.

However, the main motivation for the context-sensitive call graph is to enable
support for the Spring Framework and lambda expressions, which is described in
Section 4.2.4.

40



main(args)

foo(int)

bar(int)

Figure 4.1: A visualization of the context-insensitive call graph for the example
in Listing 4.11

main(args)

foo(1) foo(2)

bar(2) bar(3)

Figure 4.2: A visualization of the context-sensitive call graph for the example in
Listing 4.11

void main(String [] args) {
foo (1);
foo (2);

}

void foo(int n) {
bar(n + 1);

}

void bar(int n) {
...

}

Listing 4.11: An example of simple program to demonstrate the difference be-
tween the context-insensitive call graph and the context-sensitive call graph
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4.2.4 Dependency Injection Plugins
The motivation for dependency injection plugins is the proper support for the
Spring Framework. In Listing 4.12, we introduce a basic example of what we
aim to achieve. In the example, there are two beans, the classes SomeComponent
and OtherComponent. The both classes implement the interface MyInterface.
In the method main, there is a query into the application context to obtain a
bean of the type MyInterface, followed by invocation of the method doIt upon
the bean object. At this point, the context-sensitive call graph evaluates two
call target methods for the invocation, the methods SomeComponent::doIt and
OtherComponent::doIt. However, in this basic example, we know that there
should be a single target only, the method SomeComponent::doIt, because the
bean of the type SomeComponent was assigned to the local variable variable named
bean since the bean is marked as primary. Therefore, we should ensure that the
context-sensitive call graph follows this behavior, in order to make the analysis
more precise.
public class Program {

public static void main(String [] args) {
ApplicationContext context

= new XmlApplicationContext("app.xml");
MyInterface bean

= context.getBean(MyInterface.class);
bean.doIt ();

}
}

public interface MyInterface {
void doIt ();

}

@Component
@Primary
public class SomeComponent implements MyInterface {

...
}

@Component
public class OtherComponent implements MyInterface {

...
}

Listing 4.12: An example of a need for dependency injection plugins

Our solution follows a concept of plugins that already exists in Bytecode
Scanner, in a form of dataflow plugins as we discussed in Section 2.1.2. Our goal
is to add similar support for dependency injection plugins. Since there was already
a support for dataflow plugins before, we decided to use almost the same way of
modularization, due to already existing infrastructure and to avoid confusion.

Dependency injection plugins are a kind of plugins that extend the context-
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sensitive call graph. The algorithm of evaluating call targets from Section 4.2.3
is modified as follows for dependency injection plugins:

• Is there any registered dependency injection plugin that can evaluate the
call targets? If so, use it to evaluate the call targets.

• Otherwise, use the original algorithm as a fallback. In other words, use
context-insensitive call graph, Rapid Type Analysis respectively, to com-
pute a set of the call targets.

If a dependency injection plugin is eligible to evaluate the call targets, it is
given the invocation context of the callee at its input. As a result, it produces
the set of the call targets. For example, the dependency injection plugin for the
Spring Framework is eligible to evaluate the call targets if there is some bean
injected into a receiver of the method call. The plugin shall evaluate the set of
the call targets in such a way, that it obtains a type of the injected bean and
resolves a method with the same method signature in that type. This method is
further returned, and it is a result of the dependency injection plugin call.

For the example in Listing 4.12, when evaluating targets for the invocation of
the method doIt, the plugin knows that the bean of the type SomeComponent is
in the receiver of the invocation. Therefore, it tries to resolve the method doIt
in the class SomeComponent and such a method is considered the only target of
the method call, copying method arguments’ values from the original invocation.

Furthermore, the general requirements on the dependency injection plugins
are the following:

• The dependency injection plugin shall be enabled only if a framework han-
dled by the plugin is used within the analyzed application.

• It shall be easy to register the dependency injection plugin into Bytecode
Scanner, e.g., by using the dependency injection.

The general requirements shall be satisfied implicitly by existing infrastructure
in Bytecode Scanner, and that is also the next reason why we opted to use this
form of modularization.

Support for dependency injection plugins is further described in Section 6.3
where we also describe support for lambda expressions in Java Platform, which
is closely related to dependency injection plugins.
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5. Spring Framework Plugin
Before we can immerse ourselves into the implementation of the Spring Frame-
work plugin, a common term for both dataflow and dependency injection plugins
for the Spring Framework, we shall have a model for its basic structures prepared.
Let us remind that these basic structures are called beans. A bean is an object
that is instantiated and managed by IoC container within the Spring Framework.
In other words, a bean is simply one of many objects in the application. A model
of beans is described in Section 5.1.

From the analysis perspective, beans are especially important because they
are usually not included in the basic call graph, they are instantiated implicitly
within the Spring Framework, whose code the data lineage analyzer without
the Spring Framework plugin does not analyze. Analyzing such code might be
performance-demanding and might slow down the analysis. Additionally, the
analysis does not support reflection for similar reasons. Therefore, to correctly
analyze the application, we shall be able to propagate beans flow data to the
correct place somehow. The computation of beans flow data is described in
Section 5.2. Propagation of these flow data across the analyzed application is
described in Section 5.3.

Listing 5.1 contains an example that we will use in this chapter to explain
motivation for the Spring Framework plugin. In Listing 5.1, we can observe that
the method Main::main(String[]) obtains an instance of the class Executor at
first, followed by a call of the method Executor::doExecute() upon the obtained
object. This method further calls the method CompanyData::getAudit() upon
the declared field, and this is the place where the problem arises. Since the field
named companyData has the annotation @Autowired, meaning that it is injected
by the Spring Framework, we have no information about its flow data. These
flow data are important to correctly analyze the program, since the field named
companyData can contain important flows, e.g., results of queries of the database
or I/O actions.
@Configuration
public class ConfigurationClass {

@Bean
public static CompanyData companyData () {

return getCompanyData ();
}

private static CompanyData getCompanyData () {
CompanyData companyData = new CompanyData ();
addEmployeesData(companyData );
addCustomersData(companyData );
return companyData;

}

...
}
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public class Main {

public static void main(String [] args) {
...
applicationContext.getBean(Executor.class)

.doExecute ();
}

}

@Component
public class Executor {

@Autowired
private CompanyData companyData;

public void doExecute () {
String audit = companyData.getAudit ();
System.out.print(audit);

}
}

Listing 5.1: Motivational example for the Spring Framework plugin

Therefore, the analyzer shall be able to inject appropriate flow data into the
field named companyData in the class Executor somehow. To do that, an appro-
priate bean shall be found. This process is explained in Section 5.2.2.

It is necessary to analyze a particular bean, which is a return value of the
method companyData() defined in the class ConfigurationClass in this case.
Note that it is not sufficient to analyze a single method, since the method can
call other methods as well. Therefore, it is necessary to treat all beans methods1

similarly like entry-points of the analysis, i.e., analyze their whole call tree and
then extract required flow data for this particular entry-point only. This process
is explained in Section 5.2.1.

5.1 Spring Beans Model
Our model for beans follows the model defined by the Spring Framework. The
Spring Framework defines the interface BeanDefinition which is implemented
by several classes. Our model is built on top of this interface defined by the Spring
Framework. The whole model of beans, described in this section, is visualized
in Figure 5.1. We describe in more detail just the most important classes and
interfaces from our model.

The most low-level interface of our model is the interface BeanElement. The
interface is a common interface for all beans entities, most importantly beans
and string literals. It defines a single method, which is a getter to obtain an
instance of the type BeanContext. As the name suggests, the type BeanContext

1Initialization methods, initialization callbacks, setters etc.

45



contains all loaded beans in the analyzed program, and it is our representation
of the application context. These beans are stored in a simple map, which maps
the name of the bean to a set of instances of the class AbstractBeanDefinition.

You may have noticed that name of the bean is mapped to a set of instances
of the class AbstractBeanDefinition, whilst at runtime, the name is always
unique. This is because of our design of support for profiles. In general, we over-
approximate the results, and this is closely related to bean definitions as well.
The customer can specify an active profile in the configuration, by the prop-
erty named bytecode.resolver.plugin.springframework.profiles.active.
However, if such property is not set, all profiles are active by default. That is
why our solution works with multiple instances rather than just a single instance,
the name of bean is one example in many. Active profiles are obtained through
the class Environment which is our representation of the environment of the ap-
plication. Not only active profiles are stored in it, but property values are also
stored there, including those defined by the system environment. However, the
customer shall specify these property values manually, since the analysis of the
program is usually executed on a different machine than the application itself.

The abstract class AbstractBeanDefinition follows a model from the Spring
Framework, however, entities defined by us are more type-safe and suit better
the analysis needs. For example, in the analysis, we shall be able to obtain an
instance of the class Method which refers to the initialization method, being either
class’ constructor or factory method. Additionally, it is not sufficient to find such
method by its name only, we shall be able to find appropriate overload matching
initialization method arguments’ types. However, the interface BeanDefinition
in the Spring Framework does not provide us an easy way of how to obtain such
method. First, we need to check if there is some factory bean defined. If not, we
consider the defining bean as a reference one. Next, we have to check whether
there is some factory method defined. If so, we look-up all methods matching
the factory method name, which is some string literal, in the class type of the
bean. Otherwise, we consider all constructors in the reference bean as potential
initialization methods. In the last step, we have to check a number of parameters
in all the potential initialization methods and we also have to compare types of
parameters.

Another example can be a dependency tree of beans. If a bean defines a
factory bean, it must be initialized beforehand. Similarly for beans referenced
in initialization method arguments. The Spring Framework does not provide a
straightforward way to do so, and therefore we define a method in the abstract
class AbstractBeanDefinition to do the job. It simply returns a set of all the
beans that the defining bean can reference, and these beans have to be analyzed
before the analysis of the defining bean can start.

In Section 4.1.1.1, we mentioned that sometimes it is necessary to deduce the
actual type of the bean. Again, the Spring Framework does not provide an easy
way to provide the actual type of the bean, and therefore we have to implement
this functionality by ourselves. First, we have to check whether the class type of
the bean is defined explicitly. If so, it is still not sufficient, since we have to check
whether the bean defines a factory method. If so, we declare a return type of the
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factory method as the actual type of the bean, note that it does not necessarily
have to be the same type as the explicitly declared one, although it is very likely.
Otherwise, if the explicitly declared class type is not set, we check whether the
bean defines some factory bean. If it does, then we apply the same procedure of
finding the return type of a factory method. If everything fails, which, however,
should not, in case of valid configuration, we return the class java.lang.Object
as the actual type of the bean.

We have already stated that our model defines the interface BeanElement as
a foundation stone of all the elements that can appear in the bean definition.
There is also one more such interface, the interface InjectableElement extend-
ing the original interface BeanElement. As the name suggests, all bean definition
elements that can get injected into either parameter or field, implement the inter-
face. The interface defines a single method which determines whether the instance
is qualified to be injected into the specified entity, i.e., parameter or field, or not.
There are only two direct implementations of the interface. These are the ab-
stract class AbstractBeanDefinition for obvious reasons, and the final class
InjectableStringElement which wraps all the string literals that appear in the
application context, basically values of the attribute value in XML definitions,
or a value of the annotation @Value declared in code.

Now, we can move on to the subclasses of the class AbstractBeanDefinition.
We define the abstract class AbstractXmlBeanDefinition for XML definitions
and the abstract class AbstractAnnotatedBeanDefinition for code definitions.
These classes override methods from the class AbstractBeanDefinition whose
implementations should be common for all the subclasses.

We define two subclasses of the abstract class AbstractXmlBeanDefinition:

• The abstract class AbstractXmlStandardBeanDefinition, which refers to
standard bean definitions in XML documents, and has two subclasses:

– The final class GenericXmlBeanDefinition, which accepts an instance
of Spring Framework’s class GenericBeanDefinition in its construc-
tor argument and implements functionality for, e.g., autowire mode or
qualifiers.

– The final class BasicXmlBeanDefinition, which accepts an instance
of Spring Framework’s interface BeanDefinition in its constructor
argument. Since Spring Framework’s interface BeanDefinition does
not provide any information about autowire mode or qualifiers, we
return a default value, i.e., default autowire mode, empty collection of
qualifiers respectively.

• The abstract class AbstractXmlCollectionBeanDefinition, which refers
to collections defined in the schema util. Subclasses of this abstract class
are dsecribed in Section 5.1.1.4.

Similarly for the abstract class AbstractAnnotatedBeanDefinition, we de-
fine two subclasses:
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• The final class ClassAnnotatedBeanDefinition, representing classes in
scope obtained from component scan, i.e., any class having the annotation
@Component as a meta-annotation, or generally any class if the custom filters
have been applied. Such a bean is always set to be autowired by constructor
and therefore has no explicit initialization method.

• The final class MethodAnnotatedBeanDefinition, representing beans re-
alized by methods annotated by the annotation @Bean. Such a bean has
autowire mode set to default and the initialization method is a method
which defines the annotation.

As a part of bean definition, there are some helper implementation of the
interface BeanElement which are used within the class AbstractBeanDefinition,
usually as return types of some particular methods:

• The final class AutowireCandidateQualifier is utilized for qualifiers that
are defined by the bean.

• The final class InitializationMethodArgument represents an argument of
the initialization method, i.e., a constructor or factory method if autowire
mode is set to the value default. It can be easily observed that its value
can be an instance either of the class AbstractBeanDefinition, or the class
InjectableStringElement. Note that it shall be a set of these instances
instead of a single instance because of our design of support for profiles.

• The final class PropertyDefinition is used to represent properties defined
in XML definitions. This class is in fact similar to the aforementioned
class InitializationMethodArgument except that its value is mapped
from some string literal, i.e., name of the property.

To make sure a correct class for a particular bean definition will be instanti-
ated, we use the factory method pattern in the class BeanDefinitionFactory.
Similarly, factory methods are used to obtain qualifiers, property definitions and
initialization method arguments. In property definition and initialization method
argument, there can be several types of entities, these are resolvable by the class
XmlElementResolver:

• String literals, the string literal is wrapped by an instance of the class
InjectableStringElement. These refer to the attribute value and the
attribute null in XML definitions.

• Inner beans, a new instance of the class AbstractBeanDefinition is cre-
ated by using the factory, but not added into the instance of the type
BeanContext since it cannot be referenced from anywhere else. These refer
to the element bean in XML definitions. However, also collections from the
schema util can be specified here, and this applies to the elements set,
list, map, props and array in XML definitions.

• Referenced beans, name of the referenced bean is looked-up in the in-
stance of the type BeanContext and returned. We can do this because
the model is designed in such a way that methods defined by the class
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Figure 5.1: Simplified UML class diagram of beans model
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AbstractBeanDefinition are implemented lazily. Therefore, all bean def-
initions are parsed and instantiated at first, and only then the methods in
the type BeanContext can be safely called. These refer to the attributes
ref and idref in XML definitions.

5.1.1 Parsing of Spring Beans
To parse a bean definition, we introduce the interface BeanDefinitionResolver.
The interface defines a single method that can parse the definitions into the spec-
ified instance of the type BeanContext. There are currently two implementations
of the interface BeanDefinitionResolver:

• The final class XmlBeanDefinitionResolver, which can parse definitions
from XML documents. The implementation is described in Section 5.1.1.1.

• The final class AnnotatedBeanDefinitionResolver, which can parse def-
initions from code, based on specified annotations. The implementation is
described in Section 5.1.1.2.

5.1.1.1 Parsing of Spring Beans in XML Documents

In order to parse a XML document, we need to have an access to it at first. That is
achieved by using an instance of the type AnalysisScope, provided by Bytecode
Infrastructure, which provides us such a functionality. Input for Bytecode Scanner
is configured using XML file, which can define a list of resources. These resources
are simply traversed, files with the extension *.xml are filtered and we further
filter these resources to contain the root element named beans only.

Having a list of resources, we can use the class XmlBeanDefinitionReader
defined by the Spring Framework, which is utilized by the Spring Framework
itself to read bean definitions. This helps us to prevent from bugs that could
possibly occur if we decided to implement a custom parser. Additionally, such
approach could help us in future releases of the Spring Framework, where could
possibly be some changes in the schema. We utilize the class as follows. The
Spring Framework stores instances of the class BeanDefinition into an instance
of the class BeanDefinitionRegistry at first. Then, our algorithm iterates over
the registry and uses the class BeanDefinitionFactory to create our represen-
tation of bean definitions. Our representation of bean definitions is realised by
the class AbstractBeanDefinition as described in Section 5.1. Instances of the
class AbstractBeanDefinition are further stored into the specified instance of
the type BeanContext, every bean is assigned with its name. Note that beans
defined in XML documents also support aliasing of names, and therefore we
should do the same. However, this step is rather simple. Our algorithm re-
quests all aliases for given bean from the instance of Spring Framework’s class
XmlBeanDefinitionRegistry and saves such information into the instance of the
type BeanContext. Last, the algorithm registers all beans defined by component
scan, if there are any. The process of component scanning is described in Section
5.1.1.3.
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During implementation of the class XmlBeanDefinitionReader, we had to
face one catch only with the element <import resource="..."/>. The problem
occurs if the attribute’s value is prefixed with the prefix classpath:, meaning
that the Spring Framework expects such a resource on the classpath. The problem
here is the absence of resource on the classpath. During the program execution,
the resource should be there, but we must realize that we have classpath of Byte-
code Scanner available only, i.e., we cannot access the classpath of the analyzed
program. It does not exist at that time in Java Virtual Machine. However, the
solution of the problem is rather simple. The Spring Framework uses the class
DefaultBeanDefinitionReader to parse the XML document. This class de-
fines the protected virtual method importBeanDefinitionResource(Element)
to process imports. Therefore, we designed our reader, realized by the class
CustomBeanDefinitionReader which extends the default one, and we have over-
riden the method with our logic to avoid the problem. If there is some resource
with mentioned prefix, our reader simply tries to find appropriate resource in the
instance of the type AnalysisScope which in fact represents the classpath of the
analyzed program. Then, it replaces value of the resource attribute with absolute
path to the resource. Note that similar is applicable to other prefixes as well, like
the prefixes file: or http:.

5.1.1.2 Parsing of Spring Beans in Code

Because of the mentioned problem with the classpath in Section 5.1.1.1, we can-
not reuse the Spring Framework to parse beans definitions in code which was
the case for XML documents. The class AnnotatedBeanDefinitionReader pro-
vided by the Spring Framework to parse bean definitions, defines a method which
accepts an instance of the class Class<?> and returns an instance of the class
BeanDefinition containing parsed data. However, in the analysis, we cannot
access instances of the class Class<?> being analyzed, we only have an access
to instances of the class Type. These instances are provided by Bytecode In-
frastructure and provide us almost identical information as instances of the class
Class<?>.

Therefore, we have to parse these beans manually. First, our algorithm iterates
through the instance of the type AnalysisScope and finds all classes that define
the annotation @Configuration. The algorithm registers these classes into the
instance of the type BeanContext. It also checks whether any of these classes
define the annotation @ComponentScan and if they do, the algorithm stores such
information. Then, it registers beans that are defined by methods annotated by
the annotation @Bean in classes defining the annotation @Configuration. Last, it
uses information defined by the collected annotations @ComponentScan to iterate
the scope again, and it registers classes obtained from the component scan as
beans. The process of component scanning is described in Section 5.1.1.3.

5.1.1.3 Component Scan

Since the component scan itself has the same semantics for both code defini-
tion and XML definition, we can define two classes to implement the common
functionality:
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• The class FilterBuilder utilizes builder pattern to build filters described
in Section 4.1.1.2. For example, the code snippet in Listing 5.2 creates a
filter that matches all classes whose names start with the character ’A’ and
are annotated by the annotation @MyBean.

• The class ComponentScanQueryBuilder accepts a list of base packages in
its constructor, and can build a stream of classes with respect to component
scan rules and filters that can be specified.

The component scan itself is handled by implementation of the interface
BeanDefinitionResolver by utilizing helper classes decribed in this section.
More precisely, the parser for both the annotation @ComponentScan and the an-
notation @ComponentScans is implemented in the class ComponentScanner. For
the element component-scan defined in the schema context, the parser is a part
of the class XmlBeanDefinitionResolver where we take an advantage of support
for namespaces defined within Spring Framework’s reader.
new FilterBuilder ()

.withRegexMatch("ˆA.*")

.withDeclaredMetaAnnotation(MyBean.class)

.build ()

Listing 5.2: An example of usage of the class FilterBuilder

5.1.1.4 Collections as Spring Beans

Like almost everything in the Spring Framework, beans with the type of some
collection can be defined in both code and XML documents:

• Collections defined in code are usually methods annotated by the annotation
@Bean with a return type of some collection. These beans do not require any
special handling, their bytecode is analyzed as usual. Therefore, collections
defined in the code do not require any special care within the plugin for the
Spring Framework.

• Collections in XML documents are realized by the elements list, set,
properties, and map from the schema util. Unlike collections defined
in code, these beans cannot be processed by Bytecode Scanner by default.
Therefore, we introduce a mechanism that can both parse these elements,
and convert parsed entities into the representation which Bytecode Scanner
expects so they can be further used from the core analysis. We discuss the
mechanism in the rest of this section.

In Bytecode Scanner, the most basic dataflow plugin is for Java Platform.
Apart from others, it can handle collections as well. Particulary, it can handle
both obtaining an element from the collections, as well as inserting an element
into the collection. First of all, let us describe a way of how the plugin for Java
Platform handles collections. There are two types of collections:
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• So-called flat collections. Among these collections are, for example, lists
or sets. Adding some item into the collection object works as expected, all
its flows are wrapped by instances of the class FlatCollectionItemFlow
and assigned to the expression representing the collection. Obtaining some
item of the collection works a little bit unusual. If an element at some
index of the list is accessed, the index is partially ignored and all items of
the collection are returned instead. Before they are returned, their flows are
unwrapped from instances of the class FlatCollectionItemFlow at first.

• So-called mapped collections. The most common mapped collection is a
simple map, but the class Properties is also considered a mapped col-
lection. Adding some item into the collection works similarly like for flat
collections. A cross product of key flows and value flows is computed, these
pairs are wrapped by instances of the class MappedCollectionItemFlow
and assigned to the expression representing the collection. Obtaining some
item of the collection works based on the key being accessed. If it is a con-
stant, only those values assigned to the particular constant are returned,
otherwise the whole value set is returned. These values are unwrapped from
particular instances of the class MappedCollectionItemFlow.

As can be observed in Figure 5.1 representing the model, our infrastruc-
ture for collections defined as beans in XML documents is identical when com-
pared to behavior of the plugin for Java Platform. There is the abstract class
AbstractXmlCollectionBeanDefinition defining the common functionality. It
has several subclasses:

• The abstract class AbstractFlatXmlCollectionBeanDefinition defines
common functionality for all flat collections. There are two subclasses
of this class, the final class XmlListBeanDefinition and the final class
XmlSetBeanDefinition.

• The abstract class AbstractMappedXmlCollectionBeanDefinition defi-
nes common functionality for all mapped collections. There are two sub-
classes of this class, the final class XmlMapBeanDefinition and the final
class XmlPropertiesBeanDefinition.

The purpose of the class AbstractXmlCollectionBeanDefinition should
be clear. Its purpose is to provide the analyzer with some instances of the
class AbstractXmlCollectionItemDefinition representing items of the collec-
tion. This class is nothing but a wrapper for a set of instances of the type
InjectableElement instances that are included in the collection. The particular
analyzer should then follow the behavior of the plugin for Java Platform and
create flow instances for the items of the collection exactly in the same way, so
they can be accessed from other parts of the analysis as well.

5.1.2 Summary of Spring Beans Model
As a summary, we present an overview of the most important classes in the
presented model, and also basic examples of bean definitions that are represented
by a particular class:
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• The class ClassAnnotatedBeanDefinition represents beans defined in co-
de in form of classes:

– The class @Configuration class MyBean.
– The class @Component class MyBean, if the default filters are enabled.
– The class @Service class MyBean, if the default filters are enabled.
– The class class MyBean implements MyInterface, if the custom fil-

ter for searching bean implementing the interface MyInterface has
been applied.

• The class MethodAnnotatedBeanDefinition represents beans defined in
code in form of methods:

– The method @Bean MyBean getMyBean().

• The class AbstractXmlStandardBeanDefinition represents all beans de-
fined by the element bean:

– The element <bean id="myBean" class="java.lang.Object" />.

• The class XmlListBeanDefinition represents all beans defined by the ele-
ment util:list:

– The element <util:list id="myBean" ... />.

• The class XmlSetBeanDefinition represents all beans defined by the ele-
ment util:set:

– The element <util:set id="myBean" ... />.

• The class XmlMapBeanDefinition represents all beans defined by the ele-
ment util:map:

– The element <util:map id="myBean" ... />.

• The class XmlPropertiesBeanDefinition represents all beans defined by
the element util:properties:

– The element <util:properties id="myBean" ... />

5.2 Spring Beans Analysis
In this section, we describe a way of how structures from Section 5.1 are utilized
to produce flow data for the specified bean. In Section 5.2.1, we describe the
algorithm of building a set of flow data for the specified bean in detail. In Section
5.2.2, we provide technical details of how the flow data of some bean are injected
into the flow data of another bean. Last, in Section 5.3, we describe a way of
how the flow data of beans are utilized in Bytecode Scanner.
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5.2.1 Initialization Process of Spring Beans
First, it is important to note that instances of the type AbstractBeanDefinition
by themselves are not sufficient for the complete analysis of some Spring appli-
cation. As mentioned in Section 5.1, there is the interface InjectableElement,
which is implemented not only by the class AbstractBeanDefinition, but also
implemented by the class InjectableStringElement. Therefore, we need to be
able to analyze instances of the class InjectableStringElement somehow as
well. That is why we introduce the interface InjectableElementAnalyzer to do
the job.

The interface InjectableElementAnalyzer defines two methods, it is given
some instance of the type InjectableElement at input and the implementation
of the interface InjectableElementAnalyzer can:

• Determine whether it can analyze a given element.

• Analyze the given element and return its flow data. If the element cannot
be analyzed, the exception is thrown.

Currently, there are three classes that implement the interface
InjectableElementAnalyzer:

• The final class BeanDefinitionAnalyzer, that can analyze instances of the
class AbstractBeanDefinition.

• The final class InjectableStringElementAnalyzer, that can analyze in-
stances of the class InjectableStringElement.

• The final class CompositeInjectableElementAnalyzer which involves the
two previous analyzers and calls one of them, based on the actual type of
the instance at input. As the name suggests, this refers to a composite
design pattern.

Injectable String Element Analyzer

The analyzer is realized by the class InjectableStringElementAnalyzer and
works in three steps:

1. Expansion of property placeholders to actual values — Specific properties
defined by the element context:property-placeholder in XML docu-
ments, or by the annotation @PropertySource defined upon some bean
with the annotation @Configuration can be utilized in expansion. How-
ever, if there is no such element or annotation, all properties in scope are
utilized instead. Either way, all the properties are stored in an instance of
the type PropertySources accessible from the class Environment. Note
that expansion can work recursively and can also detect cycles. If a cycle
is detected, the property placeholder is not being expanded. If the value
for the given property placeholder is not defined by any of files with the
extension *.properties, the placeholder is not being expanded as well.

2. Evaluation of SpEL expressions — There is currently no support for SpEL
expressions. If some expression is detected, a warning is logged.
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3. The evaluated string is returned as instance of the class TypedStringFlow.
This flow is further converted by some implementation of the interface
TypedStringConverter at the injection point, based on field’s or parame-
ter’s type, into a particular type. The type conversion is further described
in Section 5.2.3.

Bean Definition Analyzer

The analyzer is realized by the class BeanDefinitionAnalyzer. The analyzer
is given an instance of the class AbstractBeanDefinition at its input, and it
returns an instance of the class ExpressionFlowMap at its output, i.e., flow data
for a given bean definition. The returned instance contains computed flow data
of the bean object, which means its fields, or potentially a return value. In the
analyzed program, when the program tries to access some bean from, e.g., an
instance of the type ApplicationContext, an analysis of the particular bean is
executed and its flow data are propagated into the desired place, which is usually
some variable. The class BeanDefinitionAnalyzer internally uses an instance
of the type AnalysisExecutor, which is our black-box to run the analysis as
a service. The analyzer works lazily, i.e., flow data for a particular bean are
computed and cached once requested. It is also worth mentioning that before
analysis of the particular bean, its dependencies shall be analyzed beforehand.
This is done before actual analysis of the bean, recursively, using a simple depth-
first search algorithm. The recursive algorithm might lead to a potential stack
overflow in case of some cyclic dependencies within the beans, and therefore we
shall handle cyclic dependencies correctly. This is described in Section 5.2.1.

Within the class BeanDefinitionAnalyzer, there are several handlers to an-
alyze a bean. Their purpose is to decompose the class BeanDefinitionAnalyzer
into smaller pieces that can be properly unit-tested. All these handlers imple-
ment the interface BeanInitializationHandler and are applied in order when
analyzing the bean. The following handlers are implemented, to analyze a general
bean:

1. The class AutowiringModeHandler is a dispatcher to other handlers which
can process the initial step in the analysis, based on the configured autowire
mode:

• The class DefaultAutowiringHandler is a handler for the classic con-
struction of the bean with no magical autowiring. Specified initializa-
tion method arguments are used within this handler.

• The class NameAutowiringHandler is a handler that can autowire
properties based on their names, i.e., call appropriate setters with
autowired arguments.

• The class TypeAutowiringHandler is a handler that can autowire
properties based on their types, i.e., call appropriate setters with au-
towired arguments.

• The class ConstructorAutowiringHandler is a handler for handling
the annotations like @Autowired, @Inject or @Resource defined on
constructors. It also handles a case when there is no annotation but
only a single constructor in the declaring class.
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2. The class FieldAutowiringHandler is a handler for the annotations like
@Autowired, @Inject or @Resource defined on fields. It scans a class type
of the bean and injects flow data into fields that have any of the annotations.

3. The class ExplicitXmlPropertiesHandler is a handler that can process
properties defined in an XML document, i.e., call appropriate setters with
the specified arguments.

4. The class MethodAutowiringHandler is a handler for the annotations like
@Autowired, @Inject or @Resource defined on methods. It scans a class
type of the bean and calls methods that have any of the annotations with
appropriate arguments.

5. The class InitializationCallbackMethodHandler is a handler to cor-
rectly process initialization callbacks. If a class type of the bean imple-
ments the interface InitializingBean then a method with the signature
afterPropertiesSet(), methods with the annotation @PostConstruct, as
well as custom initialization callback methods specified in XML document
or defined by the annotation @Bean.

As mentioned in Section 5.1, there are some specialized bean definitions that
need special care. Therefore, the class BeanInitializationHandlerDispatcher
has been introduced. It contains a mapping from a subclass type of the class
AbstractBeanDefinition to the particular handler. If the currently analyzed
bean does not conform to any of the specified subclass types in the map, the
fallback handler is used. The fallback handler is the list of handlers mentioned
above, i.e., the handlers for a general bean. The map contains these entries:

• For instances of the class XmlListBeanDefinition, the class
XmlListBeanInitializationHandler is utilized.

• For instances of the class XmlSetBeanDefinition, the class
XmlSetBeanInitializationHandler is utilized.

• For instances of the class XmlMapBeanDefinition, the class
XmlMapBeanInitializationHandler is utilized.

• For instances of the class XmlPropertiesBeanDefinition, the class
XmlPropertiesBeanInitializationHandler is utilized.

Computing Flow Data of Spring Beans

Whenever some implementation of the interface BeanInitializationHandler
attempts to analyze some method of a bean, it utilizes an instance of the type
AnalyzeExecutor. The analysis returns an instance of the class MethodFlowMap
representing flow data of the particular method, e.g., a constructor. However,
such an instance contains flow data for a lot of entities that we are not particu-
larly interested in, these are, e.g., some helper local variables defined within the
method. We are interested only in flow data for field accesses, eventually flow
data for the return value, if the analyzed method has any.
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A completely different story, yet still closely related to the problematics, is
injection of flow data of beans into fields and parameters. For both, it is necessary
to correctly replace root target objects of accessed fields, so the analysis can work
correctly. This corresponds to instances of the class FieldAccessExpression
which consists of a target object and an instance of the class Field, which
represents the field itself. In other words, our goal is to find such target ob-
ject expression that is not of the type FieldAccessExpression, i.e., the root
one, and replace it. For example, if the tracked expression is the field access
<placeholder>.b.c and we want to inject flow data associated with the field
access into the first argument of some method, our goal is to replace the field ac-
cess expression <placeholder>.b.c with the field access expression <argument
1>.b.c. The point why this is necessary is explained in the rest of this section.
Also, note that the placeholder expression is represented by the class BeanPlace-
holderExpression and its goal is to unify prefixes of field accesses belonging to
a particular bean. Otherwise, a prefix for some field access in a constructor of
the bean could be different than a prefix for some field access in an initialization
callback of the bean.

Flow data of every single analyzed bean are stored in an instance of the class
MutableBeanFlowMap. This class extends the class ExpressionFlowMap defined
in Bytecode Resolver, it is a variant of the class MutableExpressionFlowMap
used throughout Bytecode Resolver with only one difference. Whilst the class
MutableExpressionFlowMap contains a method to track arbitrary expression, the
class MutableBeanFlowMap contains methods to track the particular expression
either as an autowired field or as an autowired argument.

First, let’s see how the tracking of the autowired field works. At its input, the
method is given three parameters:

1. A bean definition of the class being injected into.

2. The field that we want to inject flow data into.

3. The expression to be injected.

@Component
class A {

@Autowired
public B b;

@Autowired
public A(B b) { ... }

}

@Component
class B {

public C c;
}
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class C {
public D d;

}

Listing 5.3: An example of injecting flow data into the autowired field

Consider the example in Listing 5.3. The expression to be injected is ex-
pected to be some instance of the class FieldAccessExpression with the field
defined in the class B, e.g., the field access <placeholder B>.c.d. The method
which performs the symbolic injection transforms the expression to the field access
<placeholder A>.b.c.d. The flows of the original expression are assigned to the
transformed expression which represents the result of the injection. Alternatively,
the original expression can be of the type InjectableElementExpression, which
is an artificial expression representing return values of factory methods, methods
annotated by the annotation @Bean, or values originating from the annotation
@Value. In such a case, this helper expression is without any questions trans-
formed into the expression <placeholder A>.b.

Now let’s move to the tracking of the autowired arguments. This can be
observed in the same example in Listing 5.3, it refers to the constructor injection
in the class A. It works very similarly, the method is given the following at its
input:

1. The parameter we want to inject flow data into.

2. The expression to be injected.

Here, several scenarios can happen:

1. The expression to be injected is of the type FieldAccessExpression. Then,
it is expected that it shall be some autowired bean. For that reason, the tar-
get object of such expression should be some placeholder. Therefore, we re-
place the expression <placeholder B>.b.c with the expression <argument
N>.b.c, because the expression is tracked as the argument. The number N
refers to the position of the argument.

2. The expression to be injected is of the type LocalVariableExpression.
Everything is fine then, no transformation is needed.

3. The expression to be injected is of some other type, e.g., a return value of
the bean represented by the type InjectableElementExpression. Since
the argument is autowired, it is expected to be tracked to the specified
argument.

@Component
class C {

private B b;

public C() {
this.b = new B(); // OK
this.b.someField = 3; // OK
A a = new A();
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a.someField = 4; // NOT INCLUDED
C self = this;
self.b.otherField = a.someField; // OK
B bb = self.b;
bb.x = 4; // OK

}
}

Listing 5.4: An example of filtering field accesses

With the class MutableBeanFlowMap being introduced, we can move on to a
description of the actual algorithm which can extract flow data of a bean method2

from an instance of the class MethodFlowMap. The algorithm works in three steps:

1. Collect relevant root target objects for the field accesses3:

(a) If the processed method has no return value and is instance, then
consider only those fields whose root target object is an expression
representing the zeroth argument of that method, i.e., the receiver.
Otherwise, it is a factory method that should have some return value,
consider all return value expressions then.

(b) Find all expressions aliased with any of the collected expressions and
consider only those fields whose root target object is any of these ex-
pressions.

Using this approach, we restrict the resulting flow to the flow of the bean
only, i.e., there will be no field accesses that may belong to some helper
local variables, like in the example in Listing 5.4.
It could also happen that the root expression is a local variable and serves as
an alias for some field access like the local variable named bb in the example
in Listing 5.4. If this is the case, replace the root expression with that field
access and behave as it has never ever been a local variable. If applied to the
example, the field access bb.x will be expanded to the field access self.b.x.
With such field access, we can continue in the algorithm mentioned above,
i.e., the local variable named self is an alias for the expression this which
yields that the field access can be stored as flow data for the analyzed
bean. In the example, the field access self.b.otherField is relevant and
it contains all flows assigned to the field access a.someField. But the field
access a.someField on its own, however, should not be marked as the one
belonging to the bean object.

2. Iterate through the flow data stored in the original instance of the class
MethodFlowMap:

(a) During the iteration, check all stored field accesses whether their root
target object is in the set, as computed in the previous step. If so, track
such an expression in the structure MutableBeanFlowMap as bean ob-
ject, which means to simply replace the root target object of the field

2Constructor, factory method, setter, initialization callback etc.
3For example, the root target object for the field access a.b.c is a.
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access to an instance of another artificial expression, the expression
of the class BeanPlaceholderExpression. The expression holds in-
formation about an instance of the class AbstractBeanDefinition it
belongs to. Its main purpose is to give a common prefix for field ac-
cesses belonging to a particular bean, provide better exception safety
and simplify the debugging.

(b) Additionally, look for all return value expressions. Assign flows, origi-
nally belonging to the collected expressions, to a single instance of the
class InjectableElementExpression representing the return value of
the bean. This is especially necessary for those return types which
have special semantics but have no fields. Among these types are,
e.g., the class java.lang.String or collections.

3. Add information about the bean object. This step is rather simple. Track
a particular expression of the type InjectableElementExpression and
assign it an instance of a flow represented by the class InjectedBeanFlow,
wrapping the defining instance of the class AbstractBeanDefinition. The
flow can be then propagated over assignments and method calls freely. This
is important in order to correctly resolve all possible call targets, i.e., this
is necessary for functionality of dependency injection plugin as described in
Section 5.3.2.

The algorithm discussed above is implemented in form of a single method in
the class AbstractBeanInitializationHandler and is utilized by all the sub-
classes to store the flow data.

Handling of Cyclic Dependencies

As mentioned in Section 5.2.1, if there are some cyclic dependencies between two
or more beans, stack overflow would be reached in case we had not supported the
cyclic dependencies. Fortunately, we support them. We show the way the cyclic
dependencies are resolved on the example in Listing 5.5.
<bean id="A">

<constructor -arg ref="B"/>
</bean>

<bean id="B">
<constructor -arg ref="C"/>

</bean>

<bean id="C">
<constructor -arg ref="A"/>

</bean>

Listing 5.5: An example of cyclic dependencies among beans

First, we have to detect a cycle. However, this is rather simple. In our
recursive depth-first search algorithm, the algorithm saves a path of references
and if it finds the second occurrence of some bean in the chain, it stops the
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recursion and executes the algorithm for handling of cyclic dependencies. In the
example, if the root bean is the bean named A, the path would be A -> B -> C
-> A at the point the recursion would have stopped.

The algorithm for handling cyclic dependencies works as follows. For the
chain of length n, analyze n different chains to get as precise results as possible.
For example, for the chain A -> B -> C, analyze the chain itself at first, then
the chain B -> C -> A, and the chain C -> A -> B at last. This guarantees us
that flow data of the analyzed bean, e.g., the bean named C, are injected into the
bean which references it, e.g., the bean named B, and they are at least partially
correct.

However, it can be observed that the first chain, i.e., the chain A -> B ->
C has a little disadvantage. Initially, we don’t have any flow data for the bean
named A which could get injected into the bean named C. Note that, in fact, it is
the infinite chain A -> B -> C -> A -> · · · . Therefore, the algorithm performs
several iterations of the analysis. In the second iteration, it already has some flow
data for the bean named A and therefore it can already inject them, unlike the first
iteration. It is assumed that two iterations should be enough to retrieve results
which are precise enough and this is also how it is implemented, however, there
is actually a constant for debugging purposes if needed any time in the future.
An alternative here would be a worklist algorithm, which might be rather time-
consuming, but far more precise. The current solution for cyclic dependencies is
very experimental, and we may consider replacing it with the worklist algorithm
in the future.

It is also worth mentioning, that within the first iteration in the chain A ->
B -> C, it is important to mark the bean named C, i.e., the last element, as it
has no flow data. Otherwise, the analysis would enter into an infinite cycle, since
the method to obtain flow data would be invoked to obtain flow data of the bean
named C which would not have existed, and therefore the whole analysis process
would start over.

The algorithm is a part of the class BeanDefinitionAnalyzer.

5.2.2 Finding Appropriate Autowire Candidates
To simulate a behavior of the Spring Framework, we need to be able to find
appropriate autowire candidates for given entities. These two entities are:

• Fields. For any field that has any of the annotations like @Autowired,
@Inject, or @Resource defined, we shall be able to find all beans that can
be injected into it.

• Parameters. This has multiple use cases, e.g., for methods having the an-
notation @Bean or any of the annotations like @Autowired, @Inject, or
@Resource, but the principle is similar to fields.

To find autowire candidates for a given entity, we need an access to an instance
of the type BeanContext holding information about all loaded beans, as described
in Section 5.1.

It is also worth mentioning that we shall preserve the over-approximation
principle. In the context of finding autowire candidates, that basically means
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that there can be multiple candidates for a particular entity. When the Spring
Framework tries to find a candidate for autowiring, it always finds a single one or
throws an exception. However, we cannot do the same because of several reasons:

• If no autowire candidate has been found, we shall not treat that as an error.
The user could provide an incomplete program and that is rather a problem
one level up, i.e., in configuration and input providers. Therefore, we log
this fact and continue with no flow data injecting into the given entity. It
can also happen that the given entity is not required to be autowired, i.e.,
it can have the attribute required set to false.

• If multiple autowire candidates have been found, we shall not treat that
as an error as well. The reason could be the same as above, however, in
this case, the reason which is more likely to cause problems is a design of
support for profiles, as described in Section 4.1.1.1. In other words, there
can be multiple autowire candidates if multiple profiles are active.

The process of finding appropriate candidates works as follows:

1. Get all bean definitions matching a type of a point of injection, or if the
point of injection defines the annotation @Resource, use the name defined
by the annotation instead.

2. Filter these bean definitions to those matching qualifiers declared upon the
point of injection.

3. Are there any primary beans?

• If so, filter beans collected in the step 2 to those which are primary,
and return them.

• Otherwise, return all beans collected in the step 2.

The algorithm is implemented in the method named getAutowireCandidates
which has two overloads, i.e., for parameters and fields, and is defined in the class
MutableBeanContext.

Injection of Values

In this particular case, if we primarily mean values defined by the annotations
@Value. We treat the annotation as a stronger variant of autowiring. In other
words, when checking for the annotation @Autowired or others, our algorithm first
checks whether a point of injection, i.e., parameter or field, defines the annotation
@Value. If it does, it adds an instance of the class InjectableStringElement
representing string literal in the value of the annotation @Value into the set of
possible autowire candidates. The element is further analyzed in a classic way, in
this particular case, by the class InjectableStringElementAnalyzer. In other
words, we in fact treat these values as beans of the type java.lang.String
declared in-place.

Note that the annotation @Value can be also defined on methods. In such a
case, its value serves as a default value for all the methods’ parameters. Therefore,
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when checking for autowire candidates for a particular method parameter, we
shall take that into consideration and include the default value as well, if not
specified otherwise.

Handling of Qualifiers

Qualifiers in the Spring Framework are useful when identifying a bean using
its class type only is insufficient. If this is the case, the bean can be provided
a qualifier which is basically a mapping between some keys and values for the
keys. Similarly, injection points, i.e., parameters or fields, can be provided with
some qualifiers. Qualifiers are mapped to annotation types, but they can also
be defined in XML documents. There is already one qualifier prepared in the
Spring Framework, the annotation @Qualifier. However, custom qualifiers can
be defined as well. These custom qualifiers must declare the meta-annotation
@Qualifier, in order to be considered. Then, when determining whether some
bean is qualified to be injected into the point of injection, qualifiers defined on
both the candidate bean and the injection point are compared as follows:

1. For each qualifier required by the point of injection, do the following:

(a) Is there a qualifier defined on the queried bean with the same annota-
tion type?

i. If so, continue.
ii. Otherwise, the bean is not qualified to be injected

(b) Iterate over all the keys defined in the mapping and check their values
on equality.

(c) If any value is not matched, the bean is not qualified to be injected.

2. If we get to this step, it means that the bean is qualified to be injected into
the specified point of injection.

The algorithm is implemented in the method named isQualified in the
class AbstractBeanDefinition. It accepts a single argument, which is some
annotated entity, i.e., the point of injection. The method is utilized when finding
appropriate autowire candidates as described in Section 5.2.2, in the step 2.
@Qualifier("Qualified")
@Component
class Qualified extends Base {}

@Component
class NonQualified extends Base {}

abstract class Base {}

@Component
class MyBean {

public MyBean(@Qualifier("Qualified") Base base) {}
}
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Listing 5.6: An example of qualified and non-qualified beans

In the example in Listing 5.6, there are technically two beans of the type Base,
however, only the bean of the type Qualified is qualified to be injected into the
constructor of the class MyBean, because it defines the same qualifier which is
defined at the point of injection, which is the first parameter of the constructor
in this case. In other words, the method isQualified returns false for the bean
of the type NonQualified, and returns true for the bean of the type Qualified.

5.2.3 Type Conversion
In XML documents or in values of the annotation @Value, values can be only
specified as plain strings. For example, when specifying some number in XML
document, it is in fact treated as an instance of the class java.lang.String, al-
though it should rather be treated as an instance of the class java.lang.Integer.
Therefore, there is a need to support some type of conversion, similar to the one
in the Spring Framework. In our case, this will only involve conversion from plain
string literals into flow data of the literals, based on the requested type. In most
cases, the logic of converters’ implementations just copies a behavior as defined
by the Java Platform plugin.

We introduce the interface TypedStringConverter which defines two meth-
ods:

• A method that can decide whether the specified type can be converted by
the converter. This specified type usually refers to the type of the injection
point, i.e., parameter or field.

• A method that can convert an instance of the class TypedStringFlow into
a set of flow data. Before the actual injection, this method is invoked
and results from the method are injected. Note that instances of the class
TypedStringFlow are the ones which represent values.

Currently, there is a support for conversion of the following types:

• The class java.lang.String which is realized by the final class
StringValueConverter.

• The class java.lang.Class which is realized by the final class
ClassValueConverter.

• The class java.util.Properties which is realized by the final class
PropertiesValueConverter.

• The classes implementing the interface java.lang.Iterable which is real-
ized by the final class CollectionValueConverter.

• The classes extending the class java.lang.Number and primitive types
which is realized by the final class NumberValueConverter.
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• The class java.nio.file.Path, the class java.io.File and the class
java.io.InputStream which is realized by the final class
PathToFileValueConverter.

The converters mentioned in the previous enumeration are registered within
the class CompositeTypedStringConverter, which selects appropriate converter
based on the actual type at injection point. When implementing a new class which
implements the interface TypedStringConverter, it is necessary to register its
singleton instance of such class into the class CompositeTypedStringConverter,
so it can be recognized by the Spring Framework plugin.

5.3 Integration with Bytecode Scanner
The solution for the Spring Framework has a form of two plugins into Byte-
code Scanner. In Section 5.3.1, we describe a dataflow plugin for the Spring
Framework, which is necessary for propagating flow data of beans into the data
lineage analysis. In Section 5.3.2, we describe a dependency injection plugin for
the Spring Framework, which is necessary for a correct evaluation of targets of
invocations upon bean objects.

5.3.1 Spring Framework Dataflow Plugin
The dataflow plugin is realized by the class SpringFrameworkDataflowPlugin
which extends the abstract class DataflowPlugin defined by Bytecode Scanner.
The aformentioned abstract class makes the implementation easy, the only we
have to do is to implement so-called propagation modes which semantically de-
scribes a handled method. Our goal is to handle overloads of the method named
getBean defined in the interface BeanFactory. We are particularly interested in
the methods getBean(String) and getBean(Class<?>).

To do that, we design the abstract class AbstractGetBeanPropagationMode
which is a realization of propagation mode to handle the overloads of the method
named getBean. It defines an abstract method that accepts a set of flow data
for the argument with information about the queried bean and returns a set of
bean definitions. The class extends the abstract class PropagationMode defined
by Bytecode Scanner and works as follows:

1. Obtain a set of instances of the class AbstractBeanDefinition that are
queried by the invocation of the method named getBean.

2. Compute flow data for these instances as described in Section 5.2, by uti-
lizing the class BeanDefinitionAnalyzer.

3. Propagate the computed flow data into a return value of the invocation.

The subclasses of the abstract class AbstractGetBeanPropagationMode are
the following:

• The final class ClassGetBeanPropagationMode which expects a set of in-
stances of the class LiteralFlow wrapping a constant of the type ClassVa-
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lue in its argument. These flows are created in the data lineage analy-
sis whenever the analyzer encounters the statement MyClass.class. The
propagation mode collects these types and looks up an instance of the type
BeanContext to find appropriate bean definitions. These bean definitions
are further returned.

• The final class NameGetBeanPropagationMode which expects a set of in-
stances of the class LiteralFlow wrapping a constant of the type String-
Value in its argument. These flows are created in the data lineage analysis
whenever the analyzer encounters a string literal defined in bytecode. The
propagation mode collects these literals and looks up an instance of the type
BeanContext to find appropriate bean definitions. These bean definitions
are further returned.

Finally, to make sure that invocations of the overloads of the method named
getBean are handled correctly, we need to configure the dataflow plugin, fol-
lowing conventions defined by the abstract class DataflowPlugin. The config-
uration of the plugin is realized by the XML document, located in resources,
named dataflow-plugin-spring-framework-configuration.xml and its con-
tent is listed in Listing 5.7.
<Package name="org.springframework.beans.factory">

<Type name="BeanFactory">
<Method name="getBean"

returnType="java.lang.Object">
<Argument position="0"

type="java.lang.Class"/>
<Propagation mode="getBeanByClass"

from="arg0"
to="returnValue"/>

</Method >

<Method name="getBean"
returnType="java.lang.Object">

<Argument position="0"
type="java.lang.String"/>

<Propagation mode="getBeanByName"
from="arg0"
to="returnValue"/>

</Method >
</Type>

</Package >

Listing 5.7: A configuration of the dataflow plugin for the Spring Framework

5.3.2 Spring Framework Dependency Injection Plugin
The dependency injection plugin is realized by the class SpringFrameworkDepe-
ndencyInjectionPlugin which extends the abstract class DependencyInject-
ionPlugin described in Section 6.3. The plugin is implemented in such a way
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that every time some bean is analyzed by the class BeanDefinitionAnalyzer
from Section 5.2.1, one additional helper instance of the class InjectedBeanFlow
is assigned to its flows. This corresponds to the step 3 of the algorithm in Section
5.2.1. The flow works as any other flow, e.g., if the particular bean gets injected
into some parameter or field, the flow is propagated into the particular entity as
well.

The dependency injection plugin for the Spring Framework works in such a
way that before every call of some method, it checks flows assigned to the receiver
of the invocation. If there is some instance of the class InjectedBeanFlow, the
type of the bean that got injected into the receiver is extracted and a particular
overridden method is found if there is such. This way, the algorithm constructs
a set of methods that would be called at runtime, and this set is utilized within
the context-sensitive call graph described in Section 4.2.3.
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6. Call Graph
In this chapter, we discuss technical details of the construction of the call graph
which was introduced in Section 3.2. In Section 6.1, we provide details on imple-
mentation of Rapid Type Analysis. In Section 6.2, we describe an implementation
of both context-insensitive and context-sensitive call graphs. Section 6.3 describes
an extension of context-sensitive call graph with dependency injection plugins.
Last, Section 6.4 is focused on lambda expressions, as support for them is closely
connected to dependency injection plugins.

6.1 Rapid Type Analysis
As we discussed in Section 4.2.2.1, the Rapid Type Analysis filters result from
method selection to compute possible invocation targets of a particular method.
The filtering is based on a set of instantiated types. Precisely, it filters invocation
targets to those, whose declaring type has been instantiated. Our major goal is to
construct the set of instantiated types. To do that, we need to recursively traverse
reachable methods in the analyzed program and collect types instantiated by the
instruction new. As we are traversing the bytecode of the analyzed program from
the entry-point method, we need to deal with bytecode instructions that can
invoke a method. There are several instructions that can invoke a method in
bytecode:

• The instruction invokestatic. This instruction is utilized to invoke static
methods. There can be only a single call target of the method, being the
method itself.

• The instruction invokespecial. This instruction is utilized to invoke an
instance method without a look-up of the virtual method table. This in-
struction is usually utilized to call a constructor of the class. Similarly to
the instruction invokestatic, there can be only a single call target of the
method, being the method itself.

• The instruction invokevirtual. This instruction is utilized to invoke a
virtual method. At runtime, the virtual method table is utilized to find the
target method. However, in the data lineage analysis, we over-approximate
the results by a set of methods that could possibly be called there, as we
usually do not know the exact type of the receiver. Such a set is being
computed by the Rapid Type Analysis.

• The instruction invokeinterface. This instruction is utilized to invoke a
method defined by the interface. From our perspective, we can treat this
instruction in the same way as the instruction invokevirtual.

• The instruction invokedynamic. This instruction provides a mechanism
for binding a method invocation to its target method at runtime [13]. As
we cannot process dynamic invocation in the data lineage analysis which
is static, we only care about its arguments. Precisely, we care about the
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arguments of the type java.invoke.MethodHandle. These arguments ba-
sically provide references to methods, along with their invocation modes,
which are passed to the bootstrap method of the instruction. For purposes
of the Rapid Type Analysis, we extract these references and treat them as
they were invoked at the point of the particular instruction invokedynamic.
Note that our goal is to traverse reachable methods, and thus this approach
is perfectly fine for the Rapid Type Analysis.

Our implementation of Algorithm 3 from Section 4.2.2.1 which can construct
the set of the instantiated types is located in the class RtaMethodInvocation-
TargetSelector.Builder. The implementation utilizes a builder pattern to
build an instance of the class RtaMethodInvocationTargetSelector, which is
the realization of the Rapid Type Analysis. Moreover, the builder class features
the following methods to customize the behavior of the building algorithm:

• The method setIncludeAllApplicationTypes accepts a single argument
of the type boolean and decides whether all application types should be
marked as instantiated or not. Setting this flag to true may speed up the
construction of the Rapid Type Analysis significantly, but can make the
analysis less precise.

• The method setIncludeLibraryMethods accepts a single argument of the
type boolean and decides whether all library methods should be traversed
as well or not. Setting this flag to false may speed up the construction
of the Rapid Type Analysis significantly, but can make the analysis less
precise, especially in terms of processing library callbacks.

• The method setIncludeStaticInitializers accepts a single argument of
the type boolean and decides whether static initializers should be traversed
as well or not. Since the static initializers can never be invoked directly, we
shall incorporate them into the construction of the Rapid Type Analysis as
well.

Additionally, the builder class features two other methods, the methods named
addEntryPoint and withEntryPoints, that can set the entry-point methods of
the analyzed program from which the Rapid Type Analysis should be constructed.

6.2 Call Graph Variants
First of all, to implement either of the variants of call graph, that means context-
insensitive and context-sensitive call graph, it is necessary to have the type hier-
archy as discussed in Section 4.2.1. The implementation is located in the class
StandardTypeHierarchy and is rather simple. Except for its straightforward de-
scription in Section 4.2.1, it utilizes a little optimization with the use of modifiers
in Java Platform. If the type being inspected for its relations with other types
in the analyzed program is marked as package-private, it only makes sense to
scan the declaring package, since no other type can extend the particular type,
implement it respectively.
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The class ContextInsensitiveCallGraph utilizes the Rapid Type Analy-
sis from Section 6.1 to implement the context-insensitive call graph. Respec-
tively, the class ContextInsensitiveCallGraphBuilder implements a builder
pattern which in the method named build runs the implementation of Algo-
rithm 2 from Section 4.2.2 to build the graph. The graph is represented by the
class ContextInsensitiveCallGraph. However, keep in mind that invocations
caused by the instruction invokedynamic do not appear in the context-insensitive
call graph. The most common usage of the instruction is for lambda expressions.
A way of how they are handled is described in Section 6.4.

The most important for us is the context-sensitive call graph which is im-
plemented in the class ContextSensitiveCallGraph. Its mutable counterpart
is located in the class MutableContextSensitiveCallGraph which extends the
read-only variant in the class ContextSensitiveCallGraph. For us, only the mu-
table variant is important. However, in later stages of the data lineage analysis,
there is a need of finding callers for the specified invocation, callees respectively.
At that phase, the call graph shall be modifiable no longer, and that is also the
reason for designing the read-only variant. The mutable variant features a method
that can add a relation between the specified caller and the specified callee. This
method is called whenever the data lineage analyzer encounters some instruction
invoke and corresponds to adding an edge into the graph. The context-sensitive
call graph accepts an instance of the class ContextInsensitiveCallGraph in its
constructor which is being utilized to obtain possible call targets for the virtual
method invocation.

6.3 Dependency Injection Plugins
A dependency injection plugin is an extension of the context-sensitive call graph.
It is realized by the abstract class DependencyInjectionPlugin which extends
the class ResolverPlugin defined by Bytecode Scanner. Moreover, it implements
the interface CallHandler which is the actual realization of extension into the
context-sensitive call graph. The interface defines the following methods:

• A method to obtain all callers for the specified instance of the class
InvocationContext.

• A method to obtain all callees for the specified instance of the class
InvocationContext.

• A method to obtain possible call targets for the specified instance of the class
InvocationContext. This is meant, e.g., if there is some injected object in
the receiver, then the method should return all overriding methods matching
types injected into the receiver. However, the definition of the method is
generic enough so this might not be the only usage of it. It should return
an empty set in case the handler cannot process the invocation.

Whilst the first two methods are optional and return empty set by default,
the third method is the most important one so the whole concept can work.
Additionally, an additional helper method for a check of supported invocation
modes is present as well, however, the method forms rather some sort of runtime
check to assure the configuration is correct.
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The interface CallHandler is further utilized by the class ContextSensitive-
CallGraph which provides information about the method invocations. This is also
how it is assured that the correct methods will be analyzed by the core analysis
algorithm. Precisely, within the class ContextSensitiveCallGraph, the class
DependencyInjectionPluginManager is utilized. This class implements a com-
posite pattern for the class DependencyInjectionPlugin. During a search for
possible call targets in the context-sensitive call graph, the dependency injection
plugins are being tried in order, by calling the method to obtain possible call tar-
gets defined by the interface CallHandler. If the method returns a non-empty
set, the resulting set forms a result of the context-sensitive call graph query for
possible call targets. Otherwise, if none of the dependency injection plugins re-
turns a non-empty set, results from the context-insensitive call graph are utilized
instead.

There is currently only one implementation of the class DependencyInject-
ionPlugin, being the dependency injection plugin for the Spring Framework
from Section 5.3.2. On top of that, there is one additional implementation of
the interface CallHandler, utilized for handling lambda expressions. The way of
how they are handled is described in Section 6.4.

6.4 Handling of Lambda Expressions
Lambda expressions need special care in the data lineage analysis. The reason
behind that is a fact that they do not appear in the context-insensitive call
graph, since they can be propagated over assignments and method calls which
are context-sensitive. Therefore, our goal is to extend support in context-sensitive
call graph to support lambda expressions as well.

Our solution for lambda expressions relies on the expression represented by the
class InvokeDynamicExpression. In short, the expression is created whenever
the analyzer processes the instruction invokedynamic. It contains information
about lambda to be invoked which could be technically treated as a lambda
object.

In analysis, when processing the expression InvokeDynamicExpression, it is
always associated with an instance of the class LambdaFlow, if applicable, i.e.,
when the handler method is equal to the method named metafactory defined in
the class java.lang.invoke.LambdaMetaFactory. The flow basically wraps the
expression but also contains flow data of so-called captured arguments. These are
the arguments that are not present in the signature of the method defined by the
functional interface method representing the lambda but are present in the actual
lambda method to be invoked. These arguments are usually some fields or local
variables defined in the method where the lambda is defined. In the example in
Listing 6.1, in the lambda expression, there is one captured argument, being the
variable named one.

The instance of the class LambdaFlow contains all the following:

• The actual lambda method, so-called body method, along with its invocation
dispatch mode.

• Expressions representing captured arguments in the method call which cre-
ated the flow.
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• Flows for expressions representing captured arguments in the method which
created the flow.

• An instance of the class InvocationContext for the method call which cre-
ated the flow. This is necessary for the propagation of captured arguments
back once the lambda is processed.

The presented flow can be propagated, as any other flows, over assignments
and method calls which the lambda expression does as well at runtime.
void foo() {

int one = 1;
Function <Integer , Integer > plusOne =

number -> number + one;
}

Listing 6.1: An example of lambda expression with a captured argument

Lambda Call Handler

The place where instances of the class LambdaFlow are being processed is the
class LambdaCallHandler, a class implementing the interface CallHandler. This
is an example of another usage of the interface CallHandler besides dependency
injection plugins.
boolean myMethod () {

Predicate <String > hasMoreThanTenCharacters =
str -> str.length () > 10;

return hasMoreThanTenCharacters
.test("master␣thesis");

}

Listing 6.2: A simple example of lambda expression

myMethod ()Z
L0
INVOKEDYNAMIC myMethod ()
Ljava/util/function/Predicate; [

// handle kind 0x6 : INVOKESTATIC
java/lang/invoke/LambdaMetafactory.metafactory (...)
Ljava/lang/invoke/CallSite;

// arguments:
(Ljava/lang/Object ;)Z,
// handle kind 0x6 : INVOKESTATIC
lambda$myMethod$3(Ljava/lang/String ;)Z,
(Ljava/lang/String ;)Z

]
ASTORE 1

L1
ALOAD 1

73



LDC "master␣thesis"
INVOKEINTERFACE java/util/function/Predicate.test
(Ljava/lang/Object ;)Z (itf)

IRETURN

Listing 6.3: A bytecode of the example in Listing 6.2

Now, consider the example in Listing 6.2 along with its simplified bytecode
in Listing 6.3. In the example, the lambda expression object is created by using
the instruction invokedynamic at L0. In the analysis, an instance of the class
LambdaFlow is assigned to the particular expression representing the dynamic
invocation, i.e., the expression of the type InvokeDynamicExpression. The flow
gets further propagated over the assignment into the expression representing the
first local variable, which is achieved by the instruction ASTORE 1 and is realized
by the local variable named hasMoreThanTenCharacters.

When processing the method call at L1, i.e., the instruction invokeinterface,
the flow is present in the receiver. This is achieved by the instruction ALOAD 1.
Thus, everything the class LambdaCallHandler has to do is to check all instances
of the type LambdaFlow in the receiver expression and then create instances of the
class LambdaInvocationContext based on the collected flows. In other words,
our approach totally neglects the call of the method named test defined by the
functional interface, but it replaces the call with the actual method represent-
ing the lambda expression. Therefore, instead of adding an edge between the
invocation of the method named myMethod and the invocation of the method
named test into the context-sensitive call graph, the edge between the invoca-
tion of the method named myMethod and the invocation of the method named
lambda$myMethod$3 is added instead. Note that captured arguments shall be in-
cluded in each instance of the LambdaInvocationContext if any. In our example,
there are no captured arguments.

Within the class LambdaCallHandler, it is also necessary to mark the method
call which created the instance of the class LambdaFlow as a caller of the partic-
ular instance of the class LambdaInvocationContext. This is necessary because
if the lambda method causes any side effects on captured arguments, their flows
must be propagated back into the particular place, i.e., the method which created
the lambda expression by using the instruction invokedynamic. This behavior is
not ensured implicitly by the worklist algorithm, since the lambda method does
not necessarily have to modify the flow data of the actual caller. It can sim-
ply modify just captured arguments which the caller technically does not know
about. Note that the other direction, i.e., marking the instance of the class
LambdaInvocationContext as a callee of the method invocation which created
the instance of the class LambdaFlow, is handled implicitly. If the flow of captured
arguments has changed, a new instance of the class LambdaFlow is created and
this flow is further propagated into the point of actual invocation.

Furthermore, we also had to modify the class MethodAnalysisVisitor to
reflect our support for lambda expressions. This class implements a visitor pattern
and its instance is given to the bytecode interpreter at its input. We made two
changes in its behavior:
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• The changes in the method named visitInvokeDynamicInstruction –
As mentioned above, instances of the class InvokeDynamicExpression are
associated with instances of the class LambdaFlow in this method. Then,
the captured arguments must be propagated back to the method flow at
the same point. All instances of the class LambdaInvocationContext cor-
responding to the specified instance of the class LambdaFlow are collected
and the arguments are propagated back. However, this is relatively easy to
achieve, since we can create a mapping between expression prefixes of the
captured argument in the owner method and the captured argument in the
actual lambda method.

• The changes in the method named visitInvokeInstruction – When in-
voking lambda expression, the arguments shall be matched when propa-
gating data out of the method call. This effectively means that we have to
skip captured arguments at the beginning, and the receiver of the functional
interface’s method as well.
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7. Evaluation
The solution presented in the thesis is able to analyze a majority of applications
utilizing the Spring Framework. The implementation of the plugin for the Spring
Framework includes both unit and integration tests and meets general criteria on
code coverage. To test the plugin properly, we have also implemented two real-
istic test examples, on top of unit and integration tests. The tests are presented
in Section 7.1, along with their data lineage graphs, i.e., results of the analy-
sis. However, the discussed solution has several limitations. The limitations are
discussed in Section 7.2. The structure of the project is described in Appendix B.

7.1 Test Data
The plugin is carefully tested by both unit and integration tests. These tests are
included in the folder named test in the module. We use the Spring Framework
as a basic infrastructure for testing since we can re-use the beans from the produc-
tion environment, and in the testing environment we provide the framework with
beans relevant for testing, usually the test data only. The test data for the inte-
gration tests are included in the module named manta-testing-bytecode-re-
solver-plugin-spring-framework. During the build of the module with the
plugin, the testing module is compiled into the file *.jar and copied into the
module with the plugin. In tests, the compiled file with basic test examples is
loaded into an instance of the type AnalysisScope which is further used in the
integration tests.

Moreover, for end-to-end testing, we have implemented two realistic non-
trivial examples which test the integration of the plugin with Bytecode Scanner
as a whole. These tests are intended to be run on top of the MANTA Flow
platform which can produce a graph with dataflows.

The example manta-testing-bytecode-ecdc-etl

This example is a Spring application that takes advantage of open data provided
in the comma-separated values format by the European Centre for Disease Pre-
vention and Control. It uses two data sources, the first one to fetch daily reports
of cases provided by member countries of the European Union on COVID-19
pandemic, the second one to fetch daily reports of vaccination progress among
the European Union.

Here we describe how the application works. First, the values are downloaded
from the Internet using standard API provided by the Java Platform. Then,
the program parses lines in the file one by one into a list of intermediate val-
ues. Furthermore, these intermediate values, i.e., daily reports, are reduced to
cumulative reports in the specified time horizon. This is done for both reports of
cases, and reports of vaccinations. Last, cumulative reports are written into the
standard output. Similarly, these reports are updated in the schema in MANTA’s
test database. This whole machinery is configured and executed by the Spring
Framework, testing the most commonly used features in the Spring Framework
plugin.
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As a result of the program’s analysis, it is expected that there will be a
data flow between the data source for reports of cases, the console, and the
database. Similarly, there will be a data flow between the data source for reports
of vaccinations, the console, and the database. In Figure 7.1, there is the output
graph with all edges forming the corresponding data flow path highlighted by the
red color leading from the reports of cases. Similarly, in Figure 7.2, there is the
output graph with all edges forming the corresponding data flow path highlighted
by the red color leading from the reports of vaccinations. We can see that data
from both the files are stored in the database using a single SQL statement.

The example manta-testing-bytecode-ecdc-queries

This example is a Spring application that utilizes the results computed by the
example manta-testing-bytecode-ecdc-etl in such a way that it queries the
same database. Precisely, it queries two tables, one with cumulative reports, one
with data for countries. Then, for each cumulative report, it finds information
about a country that the report belongs to. These data are written into the
standard output in a human-readable format. Similarly, the example is configured
and executed by the Spring Framework, testing the most commonly used features
in the Spring Framework plugin.

As a result of the program’s analysis, it is expected that there will be a data
flow between the two tables, and the console. The result is visualized in Figure
7.3.

7.2 Limitations
In this section, we discuss the major limitations of the Spring Framework plugin.
These are considered a future work at the same time, and therefore we also present
a basic outline of the solution for them. On top of that, as the solution is an
extension of Bytecode Scanner, it inherits its limitations as well. Among these
limitations is memory consumption, which can be quite large and depends on the
size of the analyzed program. Next, the analysis can sometimes get unreasonably
slow. On the other hand, Bytecode Scanner is one of the latest scanners in the
MANTA Flow platform, and therefore there is plenty of space for optimizations.
Optimizations of Bytecode Scanner itself may influence the performance of the
plugin for the Spring Framework since it uses the analyzer as a service to analyze
beans defined in the analyzed program.

Scope of Spring Beans

In the current implementation, whenever some bean is accessed in the analyzed
application, the flow data for such pre-analyzed bean are returned. However, this
refers just to prototype scope. To achieve the functionality of singleton scope,
after every single method analysis, it would be required to track the bean and
propagate new flow data to our representation of application context where we
store flow data of beans. Since a vast majority of beans have a singleton scope,
the improvement of handling scopes of beans is desirable.
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Figure 7.1: A graph of the ECDC ETL example with highlighted edge leading
from the reports of cases
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Figure 7.2: A graph of the ECDC ETL example with highlighted edge leading
from the reports of vaccinations
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Figure 7.3: A graph of the ECDC QUERIES example
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In the core analysis, there is the class StaticFieldFlowPropagatingMethod-
HandlerDecorator which implements the interface MethodHandler and a decora-
tor pattern. This class decorates the core analysis algorithm for a single method
analysis. It is responsible for the propagation of flows of static fields into the
method call before the analysis, and after the analysis, it propagates the flows
out to some global variable. In the plugin for the Spring Framework, we might
need similar decorator which would propagate flow data of the analyzed bean out,
in case it has a singleton scope. Whether the analyzed method is called upon
some bean receiver or not, would be determined based on instances of the class
InjectedBeanFlow in the receiver, which denotes that there is the bean in the
receiver of the method invocation.

Support for SpEL Expressions

Spring Expression Language is an important aspect of the Spring Framework.
However, in the current implementation, whenever there is some SpEL expres-
sion, we only log a warning that we currently cannot process these expressions.
The proposed solution for SpEL expressions should take an advantage of the class
SpelCompiler defined by the Spring Framework. Note that our goal is not to
evaluate such an expression, but to analyze it instead. The mentioned class should
be able to compile the expression into bytecode. Then, we can run our bytecode
analysis onto the compiled expression. This way, we should be able to analyze
even complex expressions and propagate data lineage information correctly. Al-
ternatively, we might present our interpreter of SpEL expressions, however, such
solution might be unnecessarily over-complicated.

Support for Generic Arguments in Autowiring

The current implementation does not support autowiring of generic types because
of the lack of support for generic arguments in Bytecode Infrastructure. In other
words, if the point of injection is of the type List<C> and there are beans of the
types List<C>, List<D>, and List available, all of these beans will get injected.
However, the goal here is to inject the bean of the type List<C> only, which
would make the analysis far more precise. The proposed solution should influence
the process of finding appropriate autowire candidates only from Section 5.2.2.
However, based on the implementation of the support for generic arguments in
Bytecode Infrastructure, it is also possible that no changes would be required,
except for the support for collections originating from elements in the schema
util where it would be necessary to match generic arguments manually.

Support for Type Conversion in Autowiring

The current support for type conversion from Section 5.2.3 only supports convert-
ing string literals into particular types. The goal here is to extend the support
for type conversion to support not only string literals. However, this is partially
influenced by the support for generic arguments in Bytecode Infrastructure. For
example, if the point of injection is of the type List<T> and there is no explicit
bean of the type List<T>, all beans of the type T should get injected. Similar
applies to a concept utilizing the interface Provider<T>. Note that support for

81



this kind of type conversion should influence the process of finding appropriate
autowire candidates only from Section 5.2.2.
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8. Conclusion
In the thesis, we presented a way of how the data lineage analyzer can be extended
with support for dependency injection frameworks. To demonstrate the practi-
cal usefulness of the proposed concept, we applied the concept on dependency-
injection-related features of the Spring Framework. Next, we implemented the
plugin for the Spring Framework for Bytecode Scanner, a data lineage analyzer
for programs written in Java bytecode in the MANTA Flow platform. As the
dependency injection is focused on invocations of methods that are processed
implicitly by the dependency injection framework, we also had to present several
modifications of the call graph, to support dependency injection as well. The
most important modification is a switch from context-insensitive call graph to
context-sensitive call graph, which can support dependency injection plugins.

8.1 Related Works
The thesis covers two topics, each of them has different works that are less or
more related to it:

• The topic of call graph construction deals with the problem of how to con-
struct a call graph along with dependency injection frameworks incorpo-
rated into it. The C# Scanner [3] describes a way of how the call graph
can be constructed, and we have gained a lot of inspiration there. However,
it has no support for dependency injection frameworks, and therefore we
have presented a way of how to extend it to support dependency injection
frameworks as well.

• The topic of the data lineage analysis of dependency-injection-related fea-
tures in the Spring Framework is unique for us since it targets the MANTA
Flow platform. There was no support for the Spring Framework in the
MANTA Flow platform previously. The work related to the topic is the
Spring Framework [1] itself, as we have to simulate its behavior in many
aspects. We could not take an advantage of the framework itself, because
it is a runtime matter, and our analysis is static.

8.2 Future Plans
In the future, we plan to improve our support for the Spring Framework with
support for:

• Scope of beans.

• SpEL language.

• Generic arguments in autowiring.

• Type conversion in autowiring.

• Spring Boot.
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The highest priority has the plugin for Spring Boot as its popularity has
increased recently. Since Spring Boot is built on top of the Spring Framework, it
could use the plugin for the Spring Framework introduced in this thesis in its core.
Additionally, as future work, we may focus on features of the Spring Framework
not related to dependency injection.
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A. User Documentation
To run the analysis, it is necessary to have the MANTA Flow platform installed.
The platform is a commercially licensed product and is not a part of the thesis.
Running of the analysis is fairly easy, all the user has to do is to configure inputs
for a particular scanner. For us, only Bytecode Scanner is important, however, if
the analyzed program accesses the database, it is also necessary to configure scan-
ners for particular database providers, e.g., MSSQL Scanner or Oracle Scanner,
to have complete information about the data lineage. If the database scanners are
not configured, the tool, however, is still able to produce results of the bytecode
analysis, but the database nodes are not matched.

The configuration for Bytecode Scanner is located in the file cli/sce-
narios/manta-dataflow-cli/etc/bytecode/template.properties. Actually,
the file is only a template and it is expected to be copied into the same folder,
changing its name to whatever the user wants to, usually a name of the analyzed
program. It contains the following properties which are documented in greater
detail in the template file itself:

• bytecode.system.id – An identifier of the analyzed program, this value is
irrelevant for the analysis. The identifier is only shown in a visualizer.

• bytecode.system.application.path – A filesystem path to the analyzed
application, usually a file with the suffix *.jar. For example, /home/user/
manta-testing-bytecode-ecdc-etl-1.3-SNAPSHOT-spring-boot.jar.

• bytecode.system.application.basePackage – A base Java package of
the analyzed application. For example, eu.profinit.

• bytecode.system.java.standardLibrary.path – A filesystem path to
Java Platform standard libraries. For example, C:/Program Files/Java/
jre1.8.0 251.

• bytecode.system.plugin.springframework.profiles.active – A con-
figuration of active Spring profiles, actually a comma-separated list.

Once the input is configured, it is necessary to run the analysis. It can be
done in the following steps:

1. Run the flow server by executing the file server/bin/startup.bat.

2. Run the analysis by executing the file cli/scenarios/manta-dataflow-
-cli/bin/ run.bat. This can take some time.

3. View the results visualized in the graph at the address localhost:8080/ma-
nta-dataflow-server/viewer.

Note that the tutorial has been provided for scripts with the suffix *.bat only,
however, each such script file has its Unix counterpart with the suffix *.sh.
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B. Project Structure
Bytecode Scanner, as any other scanner in the MANTA Flow platform, utilizes
Maven scripts for builds and the Spring Framework for dependency injection, and
so do we. Within the scanner, the code is distributed into multiple modules. Par-
ticularly, each plugin has its own module. Our plugin for the Spring Framework
is implemented within the module named manta-connector-bytecode-re-
solver-plugin-spring-framework and has the following package hierarchy:

• The package beans contains structures and algorithms useful for parsing
definitions of beans.

• The package expression contains artificial expressions that we had to in-
troduce.

• The package flow contains algorithms that can analyze bean definitions,
as well as subclasses of the class Flow that we need to obtain flow data of
some bean.

• The package propagation contains propagation modes that can propagate
flow data of beans into the core analysis.

Moreover, as it was necessary to modify already existing modules in Bytecode
Scanner, in the attached code, we also include code fragments from the following
modules:

• The module manta-connector-bytecode-infrastructure contains an im-
plementation of type hierarchy. Generally speaking, the module is a repre-
sentation of JVM for static analysis purposes.

• The module manta-connector-bytecode-resolver-analysis contains an
implementation of call graph, i.e., Rapid Type Analysis, context-insensitive
call graph, context-sensitive call graph and solution for lambda expressions.
On top of that, it also includes classes that enable to call the analysis as a
service, particularly the interface AnalysisExecutor and its subclasses.

• The module manta-connector-bytecode-resolver-plugin-core defines
structures and basic infrastructure for all the dependency injection plugins.
All modules representing the plugins are expected to reference this module.

• The module manta-testing-bytecode-resolver-plugin-spring-
-framework contains very basic test examples for the Spring Framework
plugin.
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C# Scanner. 2020.

[4] T. J. Watson Libraries for Analysis. https://github.com/wala/WALA.
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