
BACHELOR THESIS

Martin Pastyř́ık

Security of cryptographic schemes for
contact tracing

Computer Science Institute of Charles University

Supervisor of the bachelor thesis: Mgr. Pavel Hubáček, Ph.D.
Study programme: Mathematics (B1101)

Study branch: Mathematics for Information
Technologies (MMIT)

Prague 2021

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In Prague date 27.5.2021 .
Author’s signature

i

I would like to thank my supervisor, Mgr. Pavel Hubáček, Ph.D., for all the time
and energy he put into helping me with this thesis.

ii

Title: Security of cryptographic schemes for contact tracing

Author: Martin Pastyř́ık

Institute: Computer Science Institute of Charles University

Supervisor: Mgr. Pavel Hubáček, Ph.D., Computer Science Institute of Charles
University

Abstract: Due to the Covid-19 pandemic in 2020 there was a big development of
contact tracing schemes and applications. In this thesis, we describe the DP3T
scheme and some possible attacks against it mainly the replay and relay attacks.
In order to resist these attacks, we formally define and construct Pietrzak’s Delay-
MAC (INDOCRYPT 2020). Using this construction and the definition of a DCT
scheme by Danz et al. (IACR Cryptol. ePrint Arch. 2020: 1309), we formally de-
fine Pietrzak’s (INDOCRYPT 2020) contact tracing scheme, which we call DP4T.
Using the security model presented in (IACR Cryptol. ePrint Arch. 2020: 1309),
we prove that DP4T is resistant to replay attacks and discuss if the improvement
of DP4T presented in (INDOCRYPT 2020) is resilient to relay attacks. Using
definitions and properties from (IACR Cryptol. ePrint Arch. 2020: 1309) we
discuss privacy of DP4T. We then present two new attacks on DCT schemes and
prove that other schemes from literature are not resistant to them. We prove
that DP4T is resilient against one of those attacks and discuss the importance of
this result to the improvement of DP4T resistant to relay attacks.

Keywords: Contact tracing Covid-19 DP-3T Delay-MAC DP4T

iii

Contents

Introduction 2

1 Decentralized Contact Tracing 3
1.1 DP3T . 3
1.2 Attacks on DCT Schemes . 4

1.2.1 Attacks on Integrity . 4
1.2.2 Privacy Disclosing Attacks 5

2 Delay-MAC 7
2.1 Definition . 7
2.2 Integrity . 8

2.2.1 Integrity of Pietrzak’s Construction 9
2.3 Privacy . 12

2.3.1 Privacy of Pietrzak’s Construction 12

3 DP4T 14
3.1 Integrity . 17

3.1.1 Security Model . 17
3.1.2 Integrity of DP4T . 19

3.2 Privacy . 22
3.2.1 Message Unlinkability . 22
3.2.2 Trace Unlinkability . 23
3.2.3 Privacy Disclosure by a Dishonest Server Owner 24

Conclusion 29

Bibliography 30

List of Figures 31

1

Introduction
With the spreading pandemic of SARS-CoV-2 in 2020 emerged many societal,
technological and other problems which need to be resolved as fast as possible.
Among them occurred the need to track the people who were in close contact with
an infected individual. It was soon discovered that large-scale contact tracing
cannot be performed manually and, thus, mechanical help is needed in this field.
And so it became an objective for computer scientists and programmers to design
a system to track those people in a reliable and fast way.

However, they had to create a system, which reveals minimum personal in-
formation about its users. This had to remain true even if someone would attack
the system or its history would be revealed. Moreover, this system had to be
resistant to any attempt to misuse it to make its users falsely believe they were
in a dangerous contact.

Many schemes were published to address this task. One of the first of them
was DP3T [TPH+20]. Due to the rush in defeating the pandemic, it had many
cryptographical issues as described, for example, by Vaudenay [Vau20]. On the
other hand, it became an inspiration for many other schemes such as GAEN
[LI20], a work of the union of the Google and Apple companies. This scheme is
used nowadays in most of the tracing apps among Europe, including the Czech
smartphone application eRouška [zČr20].

Our results
In this thesis, we start with describing the DP3T scheme and its problems, mainly
the replay and relay attack. In chapter 2, we formally define Pietrzak’s [Pie20]
Delay-MAC, define its security properties and prove that Pietrzak’s construction
of Delay-MAC meets these properties. Our main contribution here is that we
decouple the definition and the construction presented together in [Pie20].

In chapter 3, we use Delay-MAC to formally define Pietrzak’s [Pie20] contact
tracing scheme which we call DP4T. In section 3.1, using definitions and secu-
rity model from [DDL+20], we prove that DP4T is resistant to replay attacks.
Moreover, we discuss how to adapt our proof to show that a variant of DP4T
suggested by Pietrzak [Pie20] is resilient also to relay attacks.

In section 3.2, we study privacy properties of DCT. First, we analyse resilience
of DP4T against known attacks on privacy from [DDL+20]. Second, we introduce
two new attacks on privacy in DCT. We show that DP4T is resilient to one of
these attacks, while other two DCT schemes from the literature are not resilient
to either of these attacks. Finally, we discuss why our results suggest that DP4T
is a better alternative for a DCT scheme resilient against relay attacks.

2

1. Decentralized Contact Tracing
While constructing a contact tracing scheme, there are two alternative types of
approach. The first one is to collect coordinates of everyone for all the time in
one central server. After a user is tested positive, the server can easily compute
his contacts and alert them. This approach is correct but it uses one central
server with all the information. In other words, it completely gives up privacy of
everyone to the server.

Another approach is to create a communication scheme that would allow its
users to get the information that they have been in a dangerous contact with
someone else revealing neither who was the infected one nor when this contact
happened. This was the goal of Decentralized Privacy-Preserving Proximity Trac-
ing (or DP3T for short) in [TPH+20]. This scheme did not turn out to be the
safest, but it was one of the first solutions and many other schemes took inspi-
ration from it. One of them is Pietrzak’s scheme using Delayed Authentication,
presented in [Pie20], which is the focus of this thesis. Another successor is GAEN
1.2, which is used in many contact tracing applications throughout Europe and
the United States.

1.1 DP3T
In this section, we describe how DP3T works. Since Pietrzak’s work was deter-
mined to improve this scheme, it would be best to start with this description.

The protocol has four phases: joining, broadcasting, sharing and checking.
There are three participating parties in this scheme: users, a trusted server and
a health authority.

Joining: When a user joins the scheme, he randomly generates his initial key
sk0.

Broadcasting: Broadcasting is the normal phase of DP3T, which happens for
the majority of the time, i.e., until someone tests positive for the disease.
Every user generates a list of ephemeral identifiers, which we call nyms, as
follows:

nym1∥ . . . ∥nymn := PRG(PRF(skd, ”broadcast key”)),

where PRF is a pseudorandom function, PRG is a pseudorandom generator
and skd is a private key for the day d. This key is computed from the key
for day d− 1 using a hash function H(skd−1) = skd.
The nyms are then broadcasted by the user in a random order via a BLE
(Bluetooth Low Energy) beacon. Moreover, every user stores any nym he
receives from other broadcasting users alongside with an identifier of the
current day. This storing process may differ over implementations, e.g., it
can be suitable to check if the broadcasting beacon was close enough and
the contact lasted for long enough time.

3

Sharing: Once a user is confirmed positive by the health authority, he reveals
his skd−∆ to the central server, where ∆ is the time period when person
can be asymptotic but infectious. The key is then stored at the server
for anybody to download. Note that, in this phase, we need the health
authority to confirm that the person is in fact positive and, thus, should
alert his contacts. Otherwise, anybody could call himself sick and create
false alerts.

Checking: When a user downloads a key sk, he can compute all the keys derived
form this key and generate all the nyms that the original owner of the key
was broadcasting. Then, the user can compare the generated nyms with the
ones he stored during the broadcasting phase. If there is any intersection
between these two sets the user can assume that he was in a close contact
with an infectious user and, thus, undergo some preventive procedures like
testing or quarantine.

1.2 Attacks on DCT Schemes
We can see that based on communication between two people, someone can neg-
atively affect someone else’s life. Indeed, attacks on DP3T were developed very
quickly. See, e.g., Vaudenay [Vau20], who described more than ten attacks only
few weeks after the publication of DP3T. We describe some of the attacks de-
scribed in [Vau20] below.

1.2.1 Attacks on Integrity
The first category of attacks on DP3T is the more obvious one. In these attacks
an adversary is trying to make his victim believe that the victim was in a close
contact with an infectious user, even though it is not true. This is obviously a
problem because it could lead to an unnecessary quarantine, lost of trust in the
tracing application or even to an intentional overload of testing capacities.

Replay Attack: In the scenario of replay attack, there are three participants.
An adversary A, an honest user U , who will be tested positive in a few
days, and an honest victim V .
The attack works as follows. A listens close to U and eventually receives a
nymU which U is broadcasting. A then travels to his victim V and broad-
casts the nymU next to V . Then V probably receives it.
Now, after a few days, U is tested positive. He therefore uploads his key
from ∆ days back to the server. V , as an honest user, downloads the key
and generates all the nyms which U has been broadcasting over the last
∆ days. Among them, he generates the nymU he received from A. This
triggers an alert in the application and makes V proceed as if he was in a
close contact with an infected user, which he was not. (Or at least as far
as we know.)

Relay Attack: The relay attack does not differ much from the replay attack. In
this scenario we use the same three participants as in the previous attack.

4

Again, A listens close to U and eventually receives a nymU that U is broad-
casting. But this time A immediately transmits the nymU to his accomplice
A′, who is already close to V . A′ can immediately broadcast the nymU and
V probably receives and stores it.
Again, after a few days U is tested positive and he uploads his key. V
downloads this key and generates all the nyms U was broadcasting. V
finds that one of these nyms is among the nyms, which he has stored and
proceeds as if he has been exposed to the infection.
The main difference between these two attacks is that in the relay attack the
transmission is performed almost immediately. This turned out to be a big
problem for many schemes resistant to the replay attack. This is because
in order to resist replay attack the schemes check the time of contact in
some way. If the time of receiving a nym differs from the time of sending
the nym, the scheme rejects the nym as an attempt to perform a replay
attack. But since relay attack happens almost immediately, this approach
is not effective against it.

Released Case Attack: In this scenario there is an adversary A and an honest
victim V . A leverages a positive honest user U , but this time, A does not
approach U directly.
In the scenario of the released case attack, A listens to the server and tries
to download the key of any infected user as soon as possible. In particular,
before V does. A then generates a nymU for the current day, approaches
V , and sends him the nymU .
After that, V downloads the key, generates all the nyms and finds out that
one of them is the nymU , which he received. This again leads to security
measures for the victim, even though he has never been in contact with U .
(Or at least as far as we know.)

Pseudonym Forging Attack: If A somehow finds out, how U generates his
nyms, or more specifically, has a reliable way to predict a next one, A can
generate a nymU and then send it to his victim V .
Then nymU is actually a nym broadcasted by U . When U becomes positive,
he reveals his keys. V then downloads them and finds out that one of the
nyms broadcasted by U was the nymU which V received.
We note that this attack is the only one presented in this section that cannot
be successfully used to attack DP3T.

1.2.2 Privacy Disclosing Attacks
The second category of attacks we discuss are the attacks whose goal is to exploit
the application to find out some non-trivial information about its users. Such
information may contain identity, social groups, visited places or personal time
schedules.

This type of attacks is not a big problem for DP3T since it stores minimum
personal information about its users. On the other hand, it becomes an issue for

5

more complex schemes resistant to most of the attacks from the first category,
which in exchange, store more exploitable data.

Linking Attack: In this scenario, an adversary is trying to decide, which nyms
came from the same user. As an example, we can imagine linking a nym0,
whose author we know, to another nym1, whose author we want to reveal.
In DP3T, this is trivial once the author of nym1 becomes positive and
reveals his key.

6

2. Delay-MAC
To overcome the potential attacks described in chapter 1, Pietrzak [Pie20] in-
troduced an idea of delayed authentication in the form of Delay-MAC. In this
chapter, we provide its formal definition, define its basic security properties and
prove that Pietrzak’s construction of Delay-MAC satisfies these properties.

2.1 Definition
We define Delay-MAC by extending the standard definition of MAC from [KL15]:

Definition 1. A Message Authentication Code (or MAC) consists of three
polynomial-time algorithms (MAC.Gen, MAC.Tag, MAC.Vrf) such that:

• The key-generation algorithm MAC.Gen takes as input the security param-
eter 1n and outputs a key k with |k| ≥ n.

• The tag-generation algorithm MAC.Tag takes as input a key k and a message
m ∈ {0, 1}∗, and outputs a tag t. Since this algorithm may be randomized,
we write this as t← MAC.Tagk(m).

• The deterministic verification algorithm MAC.Vrf takes as input a key k, a
message m, and a tag t. It outputs a bit b, with b = 1 meaning valid and
b = 0 meaning invalid. We write this as b = MAC.Vrfk(m, t).

It is required that for every security parameter n, every key k output by MAC.Gen(1n),
and every m ∈ {0, 1}∗, it holds that MAC.Vrfk(m, MAC.Tagk(m)) = 1.

If there is a function l such that for every k output by MAC.Gen(1n), algorithm
MAC.Tagk is only defined for messages m ∈ {0, 1}l(n), then we call the scheme a
fixed-length MAC for messages of length l(n).

Pietrzak’s idea was to preserve the idea of verifying by a key, but not immedi-
ately upon receiving the tag. In the meantime between receiving and verification
he wanted to store the tag in a way which would make it almost impossible to
find out, what was the message. Moreover, this property must hold even if the
set of possible messages is rather small.

We now provide the formal definition of Delay-MAC.

Definition 2. A Delayed Message Authentication Code (or Delay-MAC)
consists of four polynomial-time algorithms (DMAC.Gen, DMAC.Send, DMAC.Receive,
DMAC.Vrf) such that:

• On input a security parameter 1n, the probabilistic key generating algorithm
DMAC.Gen outputs a key k with |k| ≥ n.

• On input a key k and a message m ∈ {0, 1}∗, the probabilistic tag generating
algorithm DMAC.Send outputs a tag t. We write this as
t← DMAC.Sendk(m).

• On input a message m and a tag t, the deterministic storing algorithm
DMAC.Receive outputs a stored value st. We write this as
st = DMAC.Receive(m, t)

7

Experiment ExpMAC-forge
A,MAC (n) :

k ← MAC.Gen(1n), Q = ∅
(m, t)← AOMAC.Tagk (1n)

Return
{︄

1 if MAC.Vrfk(m, t) = 1 ∧m /∈ Q
0 otherwise

OMAC.Tagk
(m)

Q = Q∪ {m}
t← MAC.Tagk(m)
Return t

Figure 2.1: MAC-forge Experiment

• On input a key k and a stored value st, the deterministic verification al-
gorithm DMAC.Vrf outputs a bit b, with b = 1 meaning valid and b = 0
meaning invalid. We write this as b = DMAC.Vrfk(st).

The most basic property of Delay-MAC is correctness, as defined here:

Definition 3. A Delay-MAC DMAC = (DMAC.Gen, DMAC.Send, DMAC.Receive,
DMAC.Vrf) is correct if for every security parameter n, every key k output by
DMAC.Gen(1n), and every message m ∈ {0, 1}∗, it holds that:

DMAC.Vrfk

(︃
DMAC.Receive

(︂
m, DMAC.Sendk(m)

)︂)︃
= 1.

2.2 Integrity
In this section, we define the requirements for a Delay-MAC to be secure, and
prove that Pietrzak’s construction of Delay-MAC satisfies these conditions.

For a standard MAC to be secure, we require it to be resistant to forging. In
other words it must be infeasible for any probabilistic polynomial-time adversary
to succeed in the forging experiment described in Figure 2.1. The experiment
and the following definition were both presented in [KL15].

Definition 4. A message authentication code MAC = (MAC.Gen, MAC.Tag, MAC.Vrf)
is existentially unforgeable under an adaptive chosen-message attack, or just se-
cure, if for all probabilistic polynomial-time adversaries A, there is a negligible
function negl such that:

Pr[ExpMAC-forge
A,MAC (n) = 1] ≤ negl(n).

The notion of a secure Delay-MAC is analogous to a classic MAC. We allow
the adversary to communicate with an oracle DMAC.Sendk(·), which produces
a correct Delay-MAC-tag for any message m. We also store every message the
adversary asked for. We consider it a break of the scheme if the adversary is able
to output any message m together with a tag t such that:

1. t is a valid tag for the message m (i.e., DMAC.Vrfk(DMAC.Receive(m, t)) = 1)

and

2. the adversary had not previously requested the oracle to tag the message m.

A Delay-MAC satisfying the level of security specified above is said to be
unforgeable. Again, we start with the formal definition of the security experiment,
which is presented in Figure 2.2.

Now, we define what it means for a Delay-MAC to be secure:

8

Experiment ExpDMAC-forge
A,DMAC (n):

k ←DMAC.Gen (1n), Q = ∅
(m, t)← AODMAC.Sendk (1n)
rec← DMAC.Receive(m, t)

Return
{︄

1 if DMAC.Vrfk(rec) = 1 ∧ m /∈ Q

0 otherwise

ODMAC.Sendk
(m)

Q = Q ∪ {m}
t← DMAC.Sendk(m)
Return t

Figure 2.2: DMAC-forge Experiment

Definition 5. A Delay-MAC DMAC = (DMAC.Gen, DMAC.Send, DMAC.Receive,
DMAC.Vrf) is existentially unforgeable under an adaptive chosen-message attack,
or just secure, if for all probabilistic polynomial-time adversaries A, there is a
negligible function negl such that:

Pr[ExpDMAC-forge
A,DMAC (n) = 1] ≤ negl(n).

2.2.1 Integrity of Pietrzak’s Construction
Pietrzak constructed a secure Delay-MAC from any (weakly) computationally
binding commitment scheme and a standard secure MAC.

We provided the definition of a secure MAC at the beggining of this chapter.
We provide the classical definition of a commitment scheme from [KL15] now.

Definition 6. A (non-iterative) commitment scheme is defined by two algo-
rithms (comGen, commit) such that:

• On input security parameter 1n, the randomized algorithm comGen outputs
public parameters par.

• On input parameters par and a message m ∈ {0, 1}n, the probabilistic algo-
rithm commit outputs a commitment com. If we make the randomness used
by commit explicit, we denote it ρ and write it as com = commit(par, m; ρ).

We use the classical definition of the computationally binding property which
is a part of the definition of a secure commitment scheme in [KL15] and use the
commitment binding experiment displayed in Figure 2.3 also from [KL15].

Definition 7. A commitment scheme CS = (comGen, commit) is computation-
ally binding if for all probabilistic polynomial-time adversaries A there is a
negligible function negl such that:

Pr[ExpBinding
A,CS (n) = 1] ≤ negl(n).

Pietrzak’s construction of Delay-MAC is formally described in Figure 2.4.
The correctness of Pietrzak’s construction of Delay-MAC is evident. The next

theorem proves that the construction is secure. Pietrzak [Pie20] provides a similar
statement and a proof sketch in his work. Here, we expand on his proof sketch
using the formal definition of Delay-MAC introduced above (Definition 2). In the
proof, we use the standard union bound:

9

Experiment ExpBinding
A,CS (n):

par← comGen(1n)
(com, m, r, m′, r′)← A(par)

Return
{︄

1 if m ̸= m′ and commit(par, m; r) = com = commit(par, m′; r′)
0 otherwise

Figure 2.3: Binding Experiment

Using a MAC MAC = (MAC.Gen, MAC.Tag, MAC.Vrf) and a commitment scheme
CS = (comGen, commit). Let par output by comGen(1n) be publicly known pa-
rameters of the commitment scheme.

DMAC.Gen: The DMAC.Gen is constructed as the MAC.Gen algorithm from the
MAC function, i.e., on input security parameter n:

DMAC.Gen(1n) := MAC.Gen(1n).

DMAC.Send: On input a message m, the DMAC.Send algorithm samples a random
coins ρ for commit. The algorithm is then constructed as a combination
of commit and MAC. It produces a pair consisting of the MAC-tag t =
MACk(commit(par, m; ρ)) and the random coins ρ :

DMAC.Sendk(m) :=
(︃

MACk

(︂
commit(par, m; ρ)

)︂
, ρ

)︃
= (t, ρ) = tag,

where ρ←$ R

DMAC.Receive: The DMAC.Receive algorithm takes on input a message m and a
tag pair tag = (t, ρ) and outputs a pair of the received t and the commitment
c = commit(par, m; ρ):

DMAC.Receive
(︂
m, (t, ρ)

)︂
:=

(︂
t, commit(par, m; ρ)

)︂
= (t, c) = st.

DMAC.Vrf: The DMAC.Vrfk algorithm takes as input a pair st = (t, c) and out-
puts 1 if and only if MAC.Vrfk(c, t) = 1:

DMAC.Vrfk(st) = 1 ⇔ MAC.Vrfk(c, t) = 1.

Figure 2.4: Pietrzak’s construction of Delay-MAC

Proposition 1 (Union Bound). Let A1, A2, . . . , An be a set of events. Then

Pr[
⋃︂
i

Ai] ≤
∑︂

i

Pr[Ai].

Theorem 2. If the commitment scheme is computationally binding and the MAC
is secure then Pietrzak’s construction of Delay-MAC defined in Figure 2.4 is
secure.

Proof. Let par output by comGen(1n) be publicly known parameters of the
commitment scheme.

10

Suppose to the contrary that there is an adversary A who can succeed in
the Delay-MAC forge experiment with a non-negligible probability. We use him
to break either the unforgeability of the MAC or the binding property of the
commitment scheme.

We construct an adversary B, who uses A as his subprogram, simulates for
A the DMAC.Sendk(·) oracle and is a successful adversary in the ExpMAC-forge

B,MAC
experiment or the ExpBinding

B,CS experiment. The communication then proceeds as
follows.
A sends a message m to B. B generates a random coins ρ and computes

c = commit(par, m; ρ). Then, B sends this c to his MAC.Tagk oracle. The oracle
returns a tag t = MAC.Tagk(c). This tag is then sent to A alongside with the
random coins ρ as a pair (t, ρ).

Now, since A is a successful adversary, he eventually produces a tag-pair
tagA = (tA, ρA) and a message mA, such that:

DMAC.Vrfk(DMAC.Receive(mA, (tA, ρA))) = 1.

By the construction of DMAC.Vrfk and DMAC.Receive, it follows that:

tA = MAC.Tagk(commit(par, mA; ρA)).

But this means that B has just produced a message a = commit(par, mA; ρA)
with a tag tA such that MAC.Tagk(a) = t. Now, there are two possibilities:

1. The value a has not been sent to the MAC.Tagk oracle by B to be tagged.
In that case B produced a new message a with its correct tag tA. In other
words B is able to break the unforgeability of the MAC we used. This
violates our assumption that the MAC is secure.

2. The value a = commit(par, mA; ρA) has been sent to the MAC.Tag oracle to
be tagged. But since we know that A is a successful adversary, the message
m could have not been sent to B to be Delay-MAC-tagged.
Therefore, B is able to produce a message b = commit(par, m′; r), where m′

is another message asked by A and r is a random number generated upon
asking for m′. Therefore, b = a ∧ m ̸= m′, which is a direct violation of
the binding property of the commitment scheme.

In other words, we have just showed that

Pr[ExpDMAC-forge
A,DMAC (n) = 1] ≤ Pr[(ExpMAC-forge

B,MAC (n) = 1) ∪ (ExpBinding
B,CS (n) = 1)].

Thus, by union bound (Proposition 1), it holds that

Pr[ExpDMAC-forge
A,DMAC (n) = 1] ≤ Pr[ExpMAC-forge

B,MAC (n) = 1] + Pr[ExpBinding
B,CS (n) = 1].

Since we assume that A is a successful adversary, there is by definition a
non-negligible function f(n) < Pr[ExpDMAC-forge

A,DMAC (n) = 1]. This means that one
of the probabilities on the right side of the last inequation has to be at least 1

2
of Pr[ExpDMAC-forge

A,DMAC (n) = 1] > f(n). But since 1
2 of a non-negligible function is

still non-negligible, we get that there exists a non-negligible function g(n) such
that either

Pr[ExpMAC-forge
B,MAC (n) = 1] ≥ g(n)

11

or
Pr[ExpBinding

B,CS (n) = 1] ≥ g(n),
which is a contradiction to at least one of our assumptions. Thus, Pietrzak’s
construction of Delay-MAC is secure.

2.3 Privacy
In this section we define the privacy property for a Delay-MAC and prove that
Pietrzak’s construction (Figure 2.4) meets these requirements.

To be able to define privacy, we need to define statistical distance. We use
the classical definition of statistical distance from [CDN15].

Definition 8. Let X0 and X1 be two random variables defined on the same
probability space and with common range D. We define the statistical distance
between X0 and X1 as

δ(X0, X1) := 1
2

∑︂
d∈D

⃓⃓⃓
Pr[X0 = d]− Pr[X1 = d]

⃓⃓⃓

We present the definition of the privacy property of a Delay-MAC, which is
similar to the definition of the hiding property of a commitment scheme (Defini-
tion 10).

Definition 9. A Delay-MAC DMAC = (DMAC.Gen, DMAC.Send, DMAC.Receive,
DMAC.Vrf) with a message space M is statistically private if for all m0, m1 ∈
M and a security parameter n there is a negligible function negl such that:

δ(ST0(n), ST1(n)) ≤ negl(n),

where STb(n) is defined as:
1. k ← DMAC.Gen(1n),
2. st = DMAC.Receive(mb, DMAC.Sendk(mb)),
3. output st.

2.3.1 Privacy of Pietrzak’s Construction
Pietrzak [Pie20] constructed his Delay-MAC scheme as described in Figure 2.4.
In this construction he uses a commitment scheme with the statistically hiding
property.

We use the classical definition of statistical hiding presented as a part of the
definition of a secure commitment scheme in [KL15]:

Definition 10. A commitment scheme (comGen, commit) is statistically hiding
if for all m0, m1 ∈ M, a security parameter n and a par output by comGen(1n)
there is a negligible function negl such that

δ(commit(par, m0), commit(par, m1)) ≤ negl(n).

12

We prove that Pietrzak’s construction is a private Delay-MAC if it uses a
commitment scheme which has the hiding property. Similarly to Theorem 2, an
analogous statement to Theorem 4 appears with a proof sketch in [Pie20]. To
prove Theorem 4, we need to state Proposition 3 which was presented in [CDN15].

Proposition 3. Let A be any algorithm, and let X0, X1 be any random variables
with common range D. Then it holds that

δ(A(X0), A(X1)) ≤ δ(X0, X1).

Theorem 4. If the commitment scheme is statistically hiding then Pietrzak’s
construction of Delay-MAC (Figure 2.4) is private.

Proof. Let n ∈ N. Let par be output by comGen(1n).
For every m0, m1 ∈M let C0 = commit(par, m0) and C1 = commit(par, m1) be

two random variables. (Note that commit if a randomized algorithm.) Therefore,
from the statistical hiding property of the commitment scheme we get that:

δ(C0, C1) < negl(n)

for a negligible function negl. Let A be an algorithm as follows:
An(c):
1. k ← DMAC.Gen(1n),
2. t← MAC.Tagk(c),
3. Return (t, c).

The output of STb(n) from Definition 9 is:

DMAC.Receive(mb, DMAC.Sendk(mb)) =

= (MAC.Tagkb
(commit(par, mb; ρb)), commit(par, mb; ρb))

for uniformly random ρb. By definition of Cb above, STb is the same distribution
as An(Cb). Thus An(Cb) = STb(n).

By Proposition 3, we get that

δ(An(C0), An(C1)) ≤ δ(C0, C1).

In conclusion, we get:

δ(ST0(n), ST1(n)) = δ(An(C0), An(C1)) ≤ δ(C0, C1) < negl(n).

Thus, by definition, Pietrzak’s construction of Delay-MAC is private.

13

3. DP4T
In this chapter we formally define Pietrzak’s [Pie20] improvement of DP3T which
uses Delay-MAC to provide more security properties than classical DP3T. We
call this scheme Decentralized Pietrzak’s Privacy-Preserving Proximity Tracing
(or DP4T for short).

We start with the general definition of a decentralized contact tracing scheme
presented in [DDL+20]. This definition uses discrete time measured by days and
epochs. A day is the time period when a single daily key is used. An epoch is
a part of a day and denotes the time period during which a user broadcasts one
nym.

Definition 11. A decentralized contact tracing scheme DCT is a tuple of algo-
rithms (Init, Rotate, MsgGen, MsgRec, TraceGen, TraceTf, TraceVf) defined as
follows:

Init(1n) → k1. Outputs an initial day key k1 and sets CL ← ∅.
Rotate(kd) → kd+1. On input a day key kd, outputs a new key kd+1.
MsgGen(kd, e)→ msg. Outputs a broadcasted message for key kd and epoch e.
MsgRec(CL, d, e, msg) → CL’. On input a contact list CL, the current time

d, e and a message msg, outputs an updated contact list CL’.
TraceGen(Keys, dstart, estart) → t. On input a set of day keys

Keys = (kd−∆, ..., kd), a starting day dstart and epoch estart, outputs a
tracing key t for the tracing period (dstart, estart), . . . , (d, e). We assume
that the algorithm always checks that d−∆ ≤ dstart ≤ d and 1 ≤ estart ≤ e.

TraceTf(TL, t)→ TL’. On input the current tracing list TL and a new tracing
key t, outputs an updated list TL’.

TraceVf(CL,TL) → {0, 1}. On input of a contact list CL and tracing list TL
outputs a bit, where 1 indicates that a match was found.

Remark 1. We had to change the definition a little to describe our scheme better.
These changes are solely aesthetic and the model would work exactly the same
if we stuck to the original definition. Specifically, in the original definition from
[DDL+20], there were algorithms NymGen and NymRec, instead of MsgGen and
MsgRec. We wanted to avoid any abuse of notation and decided to use the term
nym exclusively for the ephemeral identifier. This produced the need to denote
any additional information sent along with the nym. Therefore, we call a message
(or a msg for short) all the data any user sends, which contains a nym and any
additional information.

DP3T and DP4T use a pseudorandom function and a pseudorandom genera-
tor. We use the classical definitions of these primitives from [KL15].

Definition 12. Let l be a polynomial and let G be a deterministic polynomial-
time algorithm such that for any n and any input s ∈ {0, 1}n, the result G(s) is
a string of length l(n). We say that G is a pseudorandom generator if the
following conditions hold:

1. (Expansion:) For every n it holds that l(n) > n.

14

2. (Pseudorandomness:) For any PPT algorithm D, there is a negligible
function negl such that⃓⃓⃓

Pr[D(G(s)) = 1]− Pr[D(r) = 1]
⃓⃓⃓
≤ negl(n),

where the first probability is taken over uniform choice of s ∈ {0, 1}n and
the randomness of D, and the second probability is taken over uniform
choice of r ∈ {0, 1}l(n) and the randomness of D.

We call l the expansion factor of G.

Definition 13. Let F : {0, 1}∗×{0, 1}∗ → {0, 1}∗ be an efficient length-preserving,
keyed function. F is a pseudorandom function if for all PPT distinguishers
D, there is a negligible function negl such that:⃓⃓⃓

Pr[DFk(·)(1n) = 1]− Pr[Df(·)(1n) = 1]
⃓⃓⃓
≤ negl(n),

where the first probability is taken over uniform choice of k ∈ {0, 1}n and the
randomness of D, and the second probability is taken over uniform choice of
f ∈ Funcn and the randomness of D.

Pietrzak’s idea was to preserve the basic DP3T scheme and authenticate ev-
ery time of a user sending a nym. This tag is then verified when another user
compares the nyms he received and the ones he generated from TL. In Figure 3.1
we present Pietrzak’s [Pie20] construction following the definition of DCT.
Remark 2. Pietrzak’s scheme is slightly different than the one given in Figure 3.1.
He uses a Delay-MAC to authenticate the actual time (i.e., measured in minutes)
of sending the msg instead of the epoch number. But since the time is measured
as (d, e) in our model, we authenticate this value instead of minutes.

Moreover, Pietrzak [Pie20] uses one more feature in his scheme, which is
rounding times of communicating users to the same value. Particularly, along
with nym and tag in a message between users he also adds the least significant
bit of the sender’s time. This bit is then used to round the time of the receiver to
match in the least significant bit. Thus, it provides synchronization of time for
all users whose time differs at most in one minute. This part is unnecessary in
our model since we assume all the users to use the same time and the transitions
to happen immediately.
Remark 3. Pietrzak proposes yet another scheme which is supposed to be resistant
to relay attacks. This one uses the same approach with authenticating some
additional information with an ephemeral key. But this time, the additional
information is the time and the coordinates of the user. Again, together with tag
and nym the sending user sends the least significant bits of both coordinates to
allow the receiving user to accordingly round his values.

15

Protocol 1. Decentralized Pietrzak’s Privacy-Preserving Proximity
Tracing (DP4T):

using Delay-MAC DMAC = (DMAC.Gen, DMAC.Send, DMAC.Receive, DMAC.Vrf),
a hash function H, a pseudorandom function PRF and a pseudorandom generator
PRG:

Init(1n, emax):
– k′

1 ←R {0, 1}n

– Choose a random permutation MAP1 : {1, . . . , emax} → {1, . . . , emax}
– Return k1 = (k′

1, MAP1).
Rotate(kd) with kd = (k′

d, MAPd):
– k′

d+1 ← H(k′
d)

– Choose a random permutation MAPd+1 : {1, . . . , emax} → {1, . . . , emax}.
– Return kd+1 = (k′

d+1, MAPd+1).
MsgGen(kd, e):

– nymd,1∥ . . . ∥nymd,emax
← PRG(PRF(k′

d, ”broadcast key”))
– kE

d,1∥ . . . ∥kE
d,emax

← PRG(PRF(k′
d, ”secret key”))

– tag ← DMAC.SendkE
d,MAPd(e)

((d, e))
– Return msg = (nymd,MAPd(e), tag)

MsgRec(CL,d, e, msg), for m = (nym, tag) :
– st← DMAC.Receive((d, e), tag)
– Return CL′ = CL ∪ (nym, st)

TraceGen(Keys, ds, es):
– Retrieve kdstart ∈ Keys with kdstart = (k′

dstart
, MAPdstart)

– Return t = (k′
dstart

, dstart, d− 1)
TraceTf(TL,t):

– Return TL′ = TL ∪ t
TraceVf(CL,TL):

– For each (k′
di

, di, dend) in TL:
• Set d∗ = di, k∗

d∗ = k′
di

• While d∗ ≤ dend do:
∗ nym∗

d∗,1∥ . . . ∥nym∗
d∗,emax

← PRG(PRF(k∗
d∗ , ”broadcast key”))

∗ k∗E
d∗,1∥ . . . ∥k∗E

d∗,emax
← PRG(PRF(k∗

d∗ , ”secret key”))
∗ Add (nym∗

d∗,ej
, k∗E

d∗,ej
) to Nyms for ej = 1, . . . , emax

∗ k∗
d∗+1 ← H(k∗

d∗), d∗ = d∗ + 1
– Set b = 0
– For each (nym, st) ∈ CL and each (nym′, k′) ∈ Nyms

• If nym = nym′ then:
∗ If DMAC.Vrfk′(st) = 1 then:

▷ Set b = 1
– Return b

Figure 3.1: Construction of DP4T

16

ONewUser()
set l← l + 1 and U ← U ∪ l
store kl

d ←R Init(1n), CL[l] = ∅

OGetMsg(uS)
abort if uS /∈ U
msg ← MsgGen(ku

d , e)
Qmsg = Qmsg ∪ {(uS,A, d, e, msg)}
return msg

ORecMsg(uR, msg)
abort if uR /∈ U
CL′[uR]← NymRec(CL[uR], d, e, msg)
Qmsg = Qmsg ∪ {(A, uR, d, e, msg)}

OSendMsg(uS, uR)
abort if uS or uR /∈ U
msg ← MsgGen(kuS

d , e)
CL′[uR]← MsgRec(CL[uR], d, e, msg)
Qmsg = Qmsg ∪ {(uS, uR, d, e, msg)}

ORotate(X) with X ∈ {day, epoch}
if X = epoch and e < emax:

set e = e + 1
if X = day:
∀u ∈ U : ku

d+1 ← Rotate(ku
d)

Set d = d + 1 and e = 1

OTraceGen(u, dstart, estart)
abort if u /∈ U , set U ← U\u
t← TraceGen(Keysu, dstart, estart)
TL′ ← TraceTf(TL, t)
{(di, ej)} ← Validity(d, t)
∀(di, ej) : Opos = Opos ∪ {(u, di, ej)}

OUploadTrace(t)
TL′ ← TraceTf(TL, t)
{(di, ej)} ← Validity(d, t)
∀(di, ej) : Opos = Opos ∪ {(A, di, ej)}

OGetTL()
return TL

Figure 3.2: Oracles, adversary is given access to in ExpIntegrity
A,DCT

3.1 Integrity
In this section, we prove that Pietrzak’s improvement of DP3T is beneficial and
helps the scheme achieve a strong notion of integrity, i.e., resilience to all attacks
captured by our security model except against the relay attacks. For the formal
analysis, we use the security model presented in [DDL+20].

3.1.1 Security Model
Integrity is presented in a model which simulates the adversary’s communication
with honest users and communication among the users themselves.

The adversary plays a game where he can communicate with oracles described
in Figure 3.2. He eventually outputs a user u∗ who is considered the victim of
the attack.

In the game, we measure time as (d, e) ∈ N2 where d denotes the current day
and e denotes the current epoch. We set (d, e) = (0, 0) at the beginning of the
experiment. Time is united for every participant (i.e., the adversary and users)
of the experiment and is only changed by the adversary by calling the ORotate
oracle.

The game keeps listsQmsg andQpos, which are essential for the experiment. In
Qmsg, there are stored all the messages generated during the experiment alongside
with their sender, receiver, and the time of this transition in a form of a pair
(d, e) denoting the day and the epoch of this communication. Every encounter is

17

stored as one element. If a msg was sent to more participants, then it is stored
individually every time.

The second list is Qpos which stores information about who was marked as
infectious at a certain time. More precisely, it stores the name of a user alongside
with the time (d, e) for every epoch the user was considered infectious.

We describe what each of the oracles in Figure 3.2 does on high-level:

NewUser: The oracle ONewUser() creates a new user for the game and generates
him a key. It also adds the new user to the list of users, which we denote
U . We also denote l the current number of users.

GetMsg: The oracle OGetMsg(uS) generates the message msg, which is broad-
casted by user uS at the current epoch. The oracle also adds this msg with
the information about current time to the list of sent messages Qmsg as if
it was sent to the adversary.

RecMsg: The oracle ORecMsg(uR, msg) simulates the receiving process of a user
uR for the message msg. It also stores this message in the list Qmsg as it
was sent by the adversary to uR at current epoch.

SendMsg: The oracle OSendMsg(uS, uR) simulates the contact of two users uS

and uR. The user uS generates a msg and uR receives it. This contact is
then registered in the Qmsg list.

Rotate: The oracle ORotate(X) increases time and, if needed, rotates the key of
every user. The adversary can decide, if he wants to increase only the value
of epoch or if he wants to start a new day.

TraceGen: The oracle OTraceGen(u, dstart, estart) simulates the revelation of keys
by a user who was tested positive. It generates his tracing information,
transforms it as an honest server would do and adds the information about
the user u being positive from time (dstart, estart) to the list of positive users
Qpos. The Validity function is there to choose the days when the keys in
the tracing information t are considered valid.

UploadTrace: The oracle OUploadTrace(t) simulates the adversary calling himself
positive with tracing information t at the current time. Again, the Validity
function is there to choose the days when the keys in t are considered valid.

GetTL: The oracle OGetTL() simulates the adversary downloading the list of
tracing information from the server.

The goal of the adversary is to make his victim u∗ believe that there was a
close contact between the victim and a positive user. The adversary has to do
this without leveraging any trivial possibilities. This definition of integrity and
the experiment described in Figure 3.3 were presented in [DDL+20].

Definition 14. A DCT scheme provides strong and weak integrity respec-
tively if for all efficient adversaries A and a security parameter n there is a
negligible function negl such that

Pr[ExpIntegrity
A,DCT (n) = 1] ≤ negl(n).

18

Experiment ExpIntegrity
A,DCT (n):

d← 1, e← 1, l← 0, TL← ∅
u∗ ←R AONewUser,ORotate,OGetMsg,ORecMsg,OSendMsg,OTraceGen,OUploadTrace,OGetTL(1n)
retrieve current tracing list TL, and the contact list CL[u∗]
return 1 if TraceVf(CL[u∗], TL) = 1 and
∀(P, u∗, di, ej , msg) ∈ Qmsg with di ∈ [d− λ, d] it holds that:

1. if P = uS : ∄(uS , di, ej) ∈ Qpos
2. if P = A

(a) if ∃(uS ,A, di, ej , msg) ∈ Qmsg : ∄(uS , di, ej) ∈ Qpos
(b) if ∄(uS ,A, di, ej , msg) ∈ Qmsg : ∄(A, di, ej) ∈ Qpos

Weak Integrity: condition 2a is relaxed to replay attacks by removing the epoch:
2.a∗) if ∃(uS ,A, di, ∗, msg) ∈ Qmsg : ∄(uS , di, ∗) ∈ Qpos

Figure 3.3: Integrity Experiment

To make these conditions more understandable we describe them here:
Condition 1. ensures that the adversary cannot win by simply putting his

victim in a close contact with a positive honest user. This constraint is needed
because this type of communication is meant to happen in any DCT scheme.

Condition 2.a) forbids the adversary from performing a relay attack. The
condition states that if there was a msg, sent by a user uS to A at a time (d, e),
and this msg was then forwarded by A to the victim u∗ at the same time, the
user uS could not be considered positive at the time (d, e). In other words, If the
adversary resends a msg immediately, it cannot be from a user, who is eventually
tested positive for that time. This condition is presented in [DDL+20], because
all the schemes analyzed in there are not resistant to relay attacks.

Condition 2.b) forbids A from sending his victim a msg, which was generated
by A from a key k, and then uploading this key to the tracing list. This type
of attack would require A to be tested positive by the health authority. But we
assume the health authority to be trusted. Therefore, the only option, how A
can perform this attack is to actually become positive, which we cannot consider
a successful attack.

Finally, condition 2.a∗) forbids the adversary from performing not only a relay
attack, but even a replay attack during one day. The idea is the same as for the
condition 2.a). If A forwards a message msg from a user uS to the victim u∗

in one day, it cannot be from a user who eventually tested positive for that day.
This condition is used in [DDL+20] in the context of weaker schemes, in order to
prove that these schemes are resistant to other attacks captured by their model
except relay and replay attacks.

3.1.2 Integrity of DP4T
Before proving that Pietrzak’s construction provides integrity, we need to present
two more definitions securing the properties of the primitives used in the scheme.
Both Definition 15 and Definition 16 were presented in [DDL+20].

Definition 15. A pseudorandom function PRF is key-preimage resistant, if
for all probabilistic polynomial adversaries A there is a negligible function negl

19

such that

Pr[(k′, x) = APRF(k,·)(1n) : PRF(k, x) = PRF(k′, x)] ≤ negl(n),

where the probability is over the randomness of A and k ← {0, 1}n.

Definition 16. A pseudorandom generator PRG : {0, 1}n → {0, 1}r·l is partial
preimage resistant, if for all efficient adversaries A and any seed s uniformly
randomly chosen from {0, 1}n there is a negligible function negl such that

Pr[PRG(s)[i] = PRG(A(1n, PRG(s)))[j] for some i, j] ≤ negl(n),

where PRG(x)[i] is the i-th block of the output of PRG(x) of length r.

Now, we can prove that DP4T provides strong integrity. The first part of the
proof is analogous to the proof of weak integrity of the basic DP3T scheme in
[DDL+20].

Theorem 5. The DP4T scheme (defined in Figure 3.1) satisfies strong integrity
if H is a random oracle, pseudorandom function PRF is key-preimage resis-
tant, pseudorandom generator PRG is partial preimage resistant and DMAC =
(DMAC.Gen, DMAC.Send, DMAC.Receive, DMAC.Vrf) is secure.

Proof. First, we prove that the basic DP3T algorithm provides weak integrity.
Note that in DP3T a msg contains only a nym.

Suppose to the contrary that there exists a PPT adversary A who can suc-
ceed in the integrity experiment with a non-negligible probability. Therefore,
TraceVf(CL[u∗], TL) = 1. In other words, the victim has received a nym which
was then also generated from one of the keys in TL. Let us split this situation to
two cases:

1. The victim has received the nym generated by an honest user. But by the
condition 1) or 2.a) from Figure 3.3, this implies that the honest user was
not positive at this time. In other words, his key k for the day of this
contact is not in the list TL. But we know that the nym was generated
from a key k′ which is in the list TL.
This means that the adversary or another honest user (accidentally) gener-
ated the key k′ such that for a broadcast key BR either

• PRF(k′, BR) = PRF(k, BR), which is negligible since the used PRF is
key-preimage resistant.
or

• ∃ i, j ∈ [1, emax] such that y[i] = y′[j] for y′ ← PRG(PRF(k′, BR)) and
y ← PRG(PRF(k, BR)), which we know is negligible since the used
PRG is partial preimage resistant.

2. The nym was generated by an adversary A. But from the condition 2.b)
we know that the adversary was not considered positive at that time. In
other words, any key k′ computed by A could not be in the TL list. This
means that A was able to predict an outcome of a PRG or a PRF which we
know is negligible from the pseudorandomness of these oracles.

20

From the first part and the fact that the condition 2.a) from Figure 3.3 forbids
A to perform a relay attack, we know that if the adversary was successful, he had
to perform a replay attack within one day. In other words, he had to compute a
tag tA such that

DMAC.Vrfk(DMAC.Receive((d, eA), tA)) = 1

for some (d, eA) ̸= (d, e), where (d, e) is the epoch when nym was originally
broadcasted by an honest user. But this means that A was able to produce a
valid Delay-MAC-tag tA for a message (d, eA) with no information about a key
k, which we know is negligible because the Delay-MAC is secure.

Remark 4. We actually have to generate a special k∗E
d,ej

for each epoch to prevent
the replay attack. Imagine, if we used only one key to MAC all the times in a day
d. An adversary A could then collect two messages (nym1, tag1), (nym2, tag2)
sent by an honest user U at different epochs (d, e1), (d, e2) respectively.
A could then send (nym1, tag2) at time (d, e2) to his victim V . Assuming U

eventually becomes positive and his keys become revealed, this message would
get verified by V . Thus, the adversary succeeded in the replay attack.

This obviously requires A to be able to transmit the tag2 at the time (d, e2)
to V . With this ability we can probably anticipate him to be able to just perform
the relay attack. To justify this attack, let us assume that the tracing application
does not give its user just the information that he was in contact with a positive
user, but explicitly states how many times. In this situation the described attack
could easily make the victim believe that he was in a close contact with as much
as n infectious people for n the number of epochs in a day.
Remark 5. As stated in Remark 3, Pietrzak [Pie20] presents yet another scheme.
This scheme is even resistant to relay attacks. The proof would be exactly the
same as for the Theorem 5. It would assume that the location of the contact
with U was different from the location of the contact with V and thus A had to
produce a valid Delay-MAC-tag for a new message.

However, even this scheme does not provide resistance against a relay attack
performed on two users who are close to each other, but would never actually
meet (e.g., they are in different rooms of a same building).

21

Experiment ExpMsgUnlink
A,DCT (n):

k0
1 ←R Init(1n), k1

1 ←R Init(1n), d = 1
(e∗, st)←R AORotate,OMsgGen(1n)
Store current day as challenge day d∗.
b←R {0, 1}
msgb ← MsgGen(kb

d∗ , e∗)
b∗ ←R AORotate,OMsgGen,OTraceGen(st, msgb)

Return
{︄

1 if b∗ = b and (d∗, e∗) /∈ Q.

0 otherwise.

ORotate()
k0

d+1 ←R Rotate(k0
d)

k1
d+1 ←R Rotate(k1

d)
Set d = d + 1.

OMsgGen(u, e)
msgn

d,e ← MsgGen(keyu
d , e)

Q = Q ∪ {(d, e)}
Return msgu

d,e.

OTraceGen(u, dstart, estart)
strong: abort if (dstart, estart < (d∗, e∗ + 1))
weak: abort if (dstart, estart < (d∗ + 1, 1))
tu ← TraceGen(Keysu, dstart, estart)
Return tu.

Figure 3.4: Message Unlinkability Experiment

3.2 Privacy
The second property we would like a DCT scheme to have is privacy. In other
words, there is no way how to misuse the application to track somebody or to
find out any other information about a contact beyond the fact that it happened.
This is the biggest difference between a DCT scheme and a centralized scheme. In
a centralized scheme, there is a central server which is intentionally constructed
to know when and where every contact happened.

3.2.1 Message Unlinkability
The first property we consider is the message unlinkability presented in [DDL+20].
Note that in [DDL+20], they call this property pseudonym unlinkability. But
as discussed in Remark 1, we call the sent information a message instead of a
pseudonym.

The property requires that no PPT adversary is able to link two different
messages (or pseudonyms in their notation) to one person during the broadcasting
phase. The formal definition uses the experiment described in Figure 3.4 and was
presented in [DDL+20].

Definition 17. A DCT scheme provides strong and weak message unlink-
ability respectively, if for all efficient PPT adversaries A there is a negligible
function negl such that

Pr[ExpMsgUnlink
A,DCT (n) = 1] ≤ 1/2 + negl(n).

DP3T has the weak message unlinkability property as shown by [DDL+20].
DP4T uses a message, containing a nym and a Delay-MAC-tag. As the tag

is an output of an authentication scheme, it is possible that it leaves some infor-
mation about its sender. Therefore, the tags can, in principle, be used to link
distinct messages of one user. However, this property depends on the MAC which
is used to construct the Delay-MAC in DP4T. If this MAC is constructed, for
example, as a HMAC by a hash function, it could result in DP4T having the weak
message unlinkability property. We leave this as a question for future research.

DP4T cannot aim for strong message unlinkability since its nyms are still
generated from a single key and they are broadcasted in a random order during
the day. This implies that we have to let the verifying users generate the nyms

22

Experiment ExpTraceUnlink
A,DCT (n):

k0
1 ←R Init(1n), k1

1 ←R Init(1n), d = 1
(e∗, st)←R AORotate,OMsgGen(1n)
store current day as challenge day d∗

b←R {0, 1}
msgb ← MsgGen(kb

d∗ , e∗)
b∗ ←R AORotate,OMsgGen,OTraceBoth(st, msgb)
return 1 if b∗ = b and

Strong Unlinkability: (d∗, e∗) /∈ Q
Weak Unlinkability: (d∗, ∗) /∈ Q

OTraceBoth(d0
start, e0

start, d1
start, e1

start)
abort if (du

start, eu
start) > (d∗, e∗)

t0 ← TraceGen(Keys0, d0
start, e0

start)
t1 ← TraceGen(Keys1, d1

start, e1
start)

TL← TraceTf(TraceTf(∅, t0), t1)
return TL

Figure 3.5: Trace Unlinkability Experiment

for every epoch in every day. Thus, any adversary can trivially link two nyms for
different epochs generated form the same key, even though the original owner of
this key was considered infectious only in one of those epochs.

Post-compromise security

[DDL+20] also defined the property of post-compromise security, which requires
that a DCT scheme is message unlinkable even if one of its daily keys is com-
promised (i.e., revealed to an adversary). DP4T obviously does not fulfill this
property since all its keys are generated from one starting key. Thus, leaking of
the key for day d∗ compromises the secrecy of all the keys for days d ≥ d∗.

3.2.2 Trace Unlinkability
The second type of unlinkability presented in [DDL+20] is trace unlinkability. It
requires that no PPT adversary can link distinct messages of a user after the
keys, which were used to generate both these messages, were made public. The
formal definition uses the experiment described in Figure 3.5 and was presented
in [DDL+20].

Definition 18. A DCT scheme provides strong and weak trace unlinkability
respectively, if for all efficient A there is a negligible function negl such that

Pr[ExpTraceUnlink
A,DCT (n) = 1] ≤ 1/2 + negl(n).

Obviously, DP4T does not fulfill this definition, since all its nyms in one day
are generated from one daily key. In particular, strong integrity (definition 14)
of DP4T prevents trace unlinkability as we show below.

Theorem 6. DP4T does not achieve trace unlinkability in any form if the pseu-
dorandom generator PRG is partial preimage resistant and the pseudorandom
function PRF is key-preimage resistant.

Proof. Let us construct an adversary A who proves this theorem. For the
first challenge we use an adversary as folows: AORotate,OMsgGen(1n) constructed as
follows:

1. Call ORotate() until d ̸= 1.
2. Set st = {(0, msg0)}, where msg0 ← OMsgGen(0, 1).

23

3. Set st = st ∪ {(1, msg1)}, where msg1 ← OMsgGen(1, 1).
4. Call ORotate().

Now, the current day d is set as d∗ and a random bit b is generated. Then the
challenge message msgb is computed. Let us construct the next adversary as
follows:
AORotate,OMsgGen,OTraceBoth(st, msgb):

1. TL← OTraceBoth(1, 1, 1, 1).
2. Obtain keys kx and ky form TL.
3. Extract the pseudonym nym0 from msg0.
4. Extract the pseudonym nym1 from msg1.
5. Generate nymx

(1,1)∥ . . . ∥nymx
(2,emax) using kx.

6. Generate nymy
(1,1)∥ . . . ∥nymy

(2,emax) using ky.
7. Find nymc

(1,e) such that nymc
(1,e) = nym0, set c = 0.

8. Find nymd
(1,e) such that nymd

(1,e) = nym1, set d = 1.
9. Find nymf

(2,e) such that nymf
(1,e) = nymb, set b = f .

10. Return b.
This adversary can distinguish b with the probability (1−p), where p is the prob-
ability that for any u ̸= v or d1 ̸= d2 or e1 ̸= e2 holds that nymu

(d1,e1) = nymv
(d2,e2),

which we know is negligible since PRG has the partial preimage resistance prop-
erty and PRF has the key-preimage resistance property.

3.2.3 Privacy Disclosure by a Dishonest Server Owner
The idea of DCT was to prevent a server owner from obtaining any non-trivial
information about the users of a scheme. In this section, we formalize two new
attacks on DCT schemes, which show that a server owner can, in fact, use a DCT
scheme to acquire some information. Note that we assume a server owner who is
capable of obtaining (e.g., by using police or secret service) any user’s history of
contacts stored by the scheme.

Contact Identity Disclosure by a Server Owner

The first attack we present is the identity leaking attack. In this attack, a dis-
honest server owner chooses an honest user V and tries to reveal the identity of
the users V was in contact with.

Note that we restrict the set of V ’s contacts only to the set of users who were
tested positive. This can be justified by the fact that, in real life, the server
owner often has a strong influence on the health authority (they can even be the
same organization) and, thus, the server owner can easily make any user declared
positive if needed.

We present our formal definition of resistance to an identity leaking attack,
which uses the experiment described in Figure 3.6:
Definition 19. A DCT scheme is identity-leak resistant if for every prob-
abilistic polynomial-time adversary A there is a negligible function negl such
that

Pr[ExpIdentityReveal
A,DCT (n) = 1] ≤ 1

2 + negl(n).

24

Experiment ExpIdentityReveal
A,DCT (n):

k0
1 ←R Init(1n), k1

1 ←R Init(1n), d∗ = 1
b∗ ←R {0, 1}
e∗ ←R {1, . . . , emax}
msgb∗ ← MsgGen(kb∗

d , e∗)
CL← MsgRec((∅, d∗, e∗, msgb)
t0 ← TraceGen(k0

1, d∗, 1)
t1 ← TraceGen(k1

1, d∗, 1)
bA ←R A(CL, (0, t0), (1, t1))

Return
{︄

1 if bA = b∗

0 otherwise

Figure 3.6: Identity Reveal Experiment

Theorem 7. Any correct DCT scheme with at least weak integrity, is not identity-
leak resistant.

Proof. In the experiment, the adversary gets the keys k0 and k1. Since the
scheme is correct, we know that one of the keys can be used to verify the msgb∗ .
Since the scheme has the weak integrity property, we know that the probability
of both the keys being usable to verify the msgb∗ is negligible. Therefore, the
adversary can try to verify the msgb∗ by one key at a time and output the bit of
the key which succeeds in the verification. This approach has the probability of
success 1− µ(n) for some negligible µ which we know is greater than 1

2 + negl(n)
and, thus, the DCT scheme is not identity-leak resistant.

Note that this attack requires the adversary to have access to very specific
information. In DP4T and other successors of DP3T the central server has exactly
this type of information which makes it suitable to be the adversary. On the other
hand, it could be possible to construct a scheme which does not use a central
server and, thus, provides no possibility that an adversary would get the type
of information he needs. Therefore, in that scheme the identity leaking attack
as described in this thesis would not even make sense. We leave the question of
identity-leak resistant DCT schemes open for future research.

Time of Contact Disclosure

In this section, we present the second new attack on DCT schemes, where a
dishonest server owner tries to determine when a contact happened. We call
this attack a time revealing attack. We know from the previous section that a
dishonest server owner can determine every pair of users who were in contact.
Therefore, we can simply consider a scenario, where the server owner gets the
history of a victim containing only one contact, and tries to determine when this
contact happened.

We present our formal definition of resistance to a time revealing attack, which
uses the experiment defined in Figure 3.7.

Definition 20. A DCT scheme is time-reveal resistant if for every polynomial

25

Experiment ExpTimeReveal
A,DCT (n):

d = 1, kd ←R Init(1n)
(dA, e0), (dA, e1)← A(kd, ∆)
b←R {0, 1}
While d < dA : Rotate(kd)
msg ← MsgGen(kdA , eb)
CL← MsgRec(∅, dA, eb, msg)
While d < ∆ : Rotate(kd)
t← TraceGen({k1, . . . , k∆}, 1, 1)
bA ← A(CL, t)

Return
{︄

1 if b = bA

0 otherwise

Figure 3.7: Time Reveal Experiment

adversary A there is a negligible function negl such that

Pr[ExpTimeReveal
A,DCT (n) = 1] ≤ 1

2 + negl(n).

In the experiment, we let the adversary know the tracing information gener-
ated by a positive user. Then, we give the adversary a history generated by the
scheme for a victim who was in contact with the now positive user. The goal of
the adversary is to determine the epoch of this contact.

We argue that DP4T is resistant to this type of attack unlike some other
schemes which are considered secure.

GAEN 1.2: We start by briefly describing the GAEN 1.2 [LI20] scheme as it
was described in [DDL+20]. This scheme is a successor of DP3T and is very
similar in many ways. Similarly to DP3T, this scheme broadcasts nyms which
are randomly generated from private daily keys. The first difference is that in
GAEN 1.2 a daily key is not derived from the key for the previous day but is
chosen uniformly random every day. When a user becomes positive, he shares all
the keys he used in last ∆ days and not only the one for the first day.

Integrity of GAEN 1.2 stems from the way it stores its messages, which contain
only a nym and no additional information. The nyms are stored alongside with
the time of receiving them. Note that this time is not masked or encrypted. When
sharing his keys after being tested positive, a user also shares an information
about when he was using each of the keys. This makes the GAEN 1.2 scheme
achieve the strong integrity property as shown in [DDL+20]. On the other hand,
this approach makes the scheme trivially vulnerable to a disclosure of the time
of contact.

Note that this attack is not exclusive to the sever owner and can be performed
by anyone who can obtain the application history (e.g., a thief).

Theorem 8. GAEN 1.2 is not time-reveal resistant.

Proof. In GAEN 1.2, the CL contains tuples (nym, d, e). Therefore, any adver-
sary can easily extract the time (d, e) and win.

26

DP3T-UNLINK: Another successor of DP3T is DP3T-UNLINK from the au-
thors of DP3T. We describe this scheme as it is described in [DDL+20]. This
scheme chooses a different key (or a seed as they call it) for every nym it gen-
erates. Consequently, when a user becomes positive, he shares all of those seeds
alongside with the information when were the seeds used. The messages this
scheme sends also contain only the nyms and no additional information.

DP3T-UNLINK does not store the time of contact as a raw data. The scheme
stores H(nym, d, e) for a hash function H, a time (d, e), and an identifier nym.
Its integrity stems from the trust put into the server. The server is responsible for
generating all the nyms and computing their corresponding hash. The users then
download only the list of hashes. Therefore, the users can never actually see the
keys. This approach makes this scheme very robust. It achieves strong integrity
as shown in [DDL+20]. On the other hand, security of this scheme strongly relies
on the trust to the server. Therefore, we prove that a malicious server owner can
succeed in a time revealing attack.

Theorem 9. DP3T-UNLINK is not time-reveal resistant.

Proof. An adversary A can generate all the possible outputs of the hash function
same as the server does when preparing the nyms to be revealed. While doing
this, A can mark which seed was used to compute each of these hash values. In
the end, he outputs the time of the seed which generated the challenging nym.
This approach will have the same probability of failure as the probability of the
scheme generating the same nym for two different epochs, which we know is neg-
ligible since DP3T-UNLINK has the strong integrity property.

DP4T: Unlike other schemes, DP4T hides the additional information by
DMAC.Receive. It also sends its nyms in a random order. If the used DMAC
is private, it makes any PPT adversary unable to determine in which epoch the
communication happened.

Theorem 10. If the used Delay-MAC DMAC = (DMAC.Gen, DMAC.Send,
DMAC.Receive, DMAC.Vrf) is statistically private, then DP4T is time-reveal re-
sistant.

Proof. In this scheme, an adversary A gets CL = (nym, st) such that
st = DMAC.Receive((d, e), tag). The value of nym is completely independent of
time in DP4T. Therefore, it does not give A any information about time. We
assume the DMAC to be statistically private. Therefore the probability that the
st value could give A any information about the time is negligible. Thus, the
probability of A succeeding in the experiment is 1

2 + negl(n) for some negligible
function negl. Thus, DP4T is time-reveal resistant.

Note that by statistical privacy of Delay-MAC the time-reveal resistance holds
even if the adversary is computationally unbounded.

27

Remark 6. As we can see, the approach GAEN and DP3T-UNLINK used to
overcome a replay attack made them vulnerable to revealing the time of a contact.
This observation is important because it justifies, why we should not try to make
these schemes even rela y attack resistant. In both cases this step would be trivial,
as it would only require storing some coarse measured location (e.g., coordinates)
alongside the time of contact. On the other hand, as we have just proven, this step
would allow any malicious server owner to disclose not only who were its users in
contact with but even when and where. The idea of decentralized contact tracing
was to prevent the server owner from obtaining exactly this type of information.
Therefore, this extension would jeopardize the founding idea of DCT.

On the other hand, if we do this improvement in DP4T, we do not show any
new information. This is because the hiding property of Delay-MAC. In Pietrzak’s
second scheme, a sender tags not only his time (d, e), but a tuple (d, e, x, y), where
x, y are some coarsely measured coordinates. This approach makes the scheme
resistant to relay attacks as discussed in Section 3.1. Using the same argument
as in the last proof, we can show that an adversary can get no information about
the tuple (d, e, x, y) from the history of an honest user.

28

Conclusion
In this thesis, we formally defined Delay-MAC introduced by Pietrzak [Pie20] and
the decentralized contact tracing scheme he builds using Delay-MAC, which we
call DP4T. Using security model from [DDL+20], we proved that DP4T achieves
strong integrity property as defined in [DDL+20] and, thus, is resilient to re-
play attacks. We discussed resilience of Pietrzak’s [Pie20] improvement of DP4T
against relay attacks.

We left as a question for future research how to construct DP4T to be message
unlinkable as defined in [DDL+20]. We proved that DP4T is not trace unlinkable
as defined in [DDL+20].

We presented two new attacks on DCT schemes. We proved that no correct
DCT scheme with at least weak integrity property (as defined in [DDL+20])
is resilient against our identity revealing attack. We proved that unlike other
schemes from the literature, DP4T is resilient to our time revealing attack.

We leave for future research how to use these results to construct a DCT
scheme which would achieve both integrity and privacy.

29

Bibliography
[CDN15] Ronald Cramer, Ivan Bjerre Damg̊ard, and Jesper Buus Nielsen. Se-

cure Multiparty Computation and Secret Sharing. Cambridge Univer-
sity Press, 1 edition, 2015.

[DDL+20] Noel Danz, Oliver Derwisch, Anja Lehmann, Wenzel Pünter, Marvin
Stolle, and Joshua Ziemann. Security and privacy of decentralized
cryptographic contact tracing. IACR Cryptol. ePrint Arch., 2020,
2020.

[KL15] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptog-
raphy and Second Edition. CRC Press, 2015.

[LI20] Google LLC and Apple Inc. Exposure notification, 2020.
https://covid19.apple.com/contacttracing.

[Pie20] Krzysztof Pietrzak. Delayed authentication: Preventing replay and
relay attacks in private contact tracing. In Karthikeyan Bharga-
van, Elisabeth Oswald, and Manoj Prabhakaran, editors, Progress in
Cryptology - INDOCRYPT 2020 - 21st International Conference on
Cryptology in India, Bangalore, India, December 13-16, 2020, Pro-
ceedings, volume 12578 of Lecture Notes in Computer Science, pages
3–15. Springer, 2020.

[TPH+20] Carmela Troncoso, Mathias Payer, Jean-Pierre Hubaux, Marcel
Salath, James Larus, Edouard Bugnion, Theresa Stadler Wouter
Lueks, Apostolos Pyrgelis, Sylvain Chatel, Daniele Antonioli, Lu-
dovic Barman, Kenneth Paterson, Srdjan Capkun, David Basin, Jan-
Beutel, Dennis Jackson, Bart Preneel, Nigel Smart, Dave Singelee,
Aysajan Abidin, Seda Guerses, Michael Veale, Cas Cremers, Michael
Backes, Nils Ole Tippenhauer, Reuben Binns, Ciro Cattuto, Alain
Barrat, Giuseppe Persiano, Dario Fiore, Manuel Barbosa, and Dan
Boneh. Decentralized privacy-preserving proximity tracing, 2020.
https://github.com/DP-3T/documents.

[Vau20] Serge Vaudenay. Analysis of DP3T. IACR Cryptol. ePrint Arch.,
2020:399, 2020.

[zČr20] Ministerstvo zdravotnictv́ı České republiky. eRouška, 2020.
https://erouska.cz/audit-kod.

30

List of Figures

2.1 MAC-forge Experiment . 8
2.2 DMAC-forge Experiment . 9
2.3 Binding Experiment . 10
2.4 Pietrzak’s construction of Delay-MAC 10

3.1 Construction of DP4T . 16
3.2 Oracles, adversary is given access to in ExpIntegrity

A,DCT 17
3.3 Integrity Experiment . 19
3.4 Message Unlinkability Experiment 22
3.5 Trace Unlinkability Experiment 23
3.6 Identity Reveal Experiment . 25
3.7 Time Reveal Experiment . 26

31

	Introduction
	Decentralized Contact Tracing
	DP3T
	Attacks on DCT Schemes
	Attacks on Integrity
	Privacy Disclosing Attacks

	Delay-MAC
	Definition
	Integrity
	Integrity of Pietrzak's Construction

	Privacy
	Privacy of Pietrzak's Construction

	DP4T
	Integrity
	Security Model
	Integrity of DP4T

	Privacy
	Message Unlinkability
	Trace Unlinkability
	Privacy Disclosure by a Dishonest Server Owner

	Conclusion
	Bibliography
	List of Figures

