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Abstract: Internal gravity waves (GWs) are an important component of the at-
mospheric dynamics, significantly affecting the middle atmosphere by momentum
and energy transport and deposition. In order to be able to improve global cir-
culation models, in which the majority of the GW spectrum is not resolved, it
is necessary to quantify their effects as precise as possible. We study GWs in a
high-resolution simulation of the WRF model around Southern Andes, Antarc-
tic Peninsula and South Georgia Island. We analyse a Gaussian high-pass filter
method for separation of the GWs from the basic flow. To overcome an ob-
served problem of dependence of the method on a cutoff parameter, we propose
an improved method that determines the parameter at each time step from the
horizontal kinetic energy spectrum. The differences between the methods are
further examined using the horizontal kinetic energy spectrum, vertical potential
energy spectrum and forcing to the divergence equation evaluated by the active
wind method, which is a recent theory-based method that divides the flow into
a balanced flow and a perturbation field. The results suggest that the high-pass
filter method does not produce correct results for time periods with strong wave
activity.

Keywords: internal gravity waves, momentum flux, general stationary solution,
high resolution model simulations

iii



Contents

Introduction 3

1 Waves in the Atmosphere 5
1.1 Some Basic Wave Types . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Internal Gravity Waves . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Vertical Oscillation . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Dispersion and Polarization Relations . . . . . . . . . . . . 7

2 Methodology 14
2.1 GW Detection Methods . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 High-pass Filter Method . . . . . . . . . . . . . . . . . . . 14
2.1.2 Active Wind Method . . . . . . . . . . . . . . . . . . . . . 15
2.1.3 Other GW Separation Methods . . . . . . . . . . . . . . . 20

2.2 GW Momentum Fluxes and Drag . . . . . . . . . . . . . . . . . . 21
2.3 Effective Resolution and GW Spectra . . . . . . . . . . . . . . . . 25

2.3.1 Horizontal Energy Spectrum . . . . . . . . . . . . . . . . . 25
2.3.2 Vertical Energy Spectrum . . . . . . . . . . . . . . . . . . 27
2.3.3 Periodization Methods . . . . . . . . . . . . . . . . . . . . 30
2.3.4 Effective Resolution . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.1 High-pass Filter Method . . . . . . . . . . . . . . . . . . . 32
2.5.2 Active Wind Method . . . . . . . . . . . . . . . . . . . . . 33
2.5.3 Momentum Fluxes and Drag . . . . . . . . . . . . . . . . . 34
2.5.4 Horizontal Energy Spectrum . . . . . . . . . . . . . . . . . 34
2.5.5 Vertical Energy Spectrum . . . . . . . . . . . . . . . . . . 36
2.5.6 Effective Resolution and GW Range . . . . . . . . . . . . 36

3 Results 39
3.1 Effective Resolution and GW spectra . . . . . . . . . . . . . . . . 39

3.1.1 Horizontal Energy Spectrum . . . . . . . . . . . . . . . . . 39
3.1.2 Vertical Energy Spectrum . . . . . . . . . . . . . . . . . . 40
3.1.3 Effective Resolution and GW Range . . . . . . . . . . . . 43

3.2 High-pass Filter Method . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.1 Sensitivity to Cutoff . . . . . . . . . . . . . . . . . . . . . 46
3.2.2 Improved Method . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Active Wind Method . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Conclusion 61

Bibliography 63

List of Figures 69

1



List of Abbreviations 70

A Coordinate systems 71

B Electronic Attachment 73

2



Introduction
Internal gravity waves (GWs) manifest themselves in the flow as oscillations driven
by the buoyancy force within the fluid [1],[2]. One of their crucial properties is
the variety of temporal and spatial scales on which they emerge. Horizontal wave-
lengths of GWs range from thousands to a few kilometers [3]. They dominate the
mesoscale wave spectrum (wavelengths in the orders of 10 - 1000 km) in the mid-
dle atmosphere [4] but they also impact the synoptic scale [5] and planetary scale
circulations [4]. They can also directly influence the surface weather conditions
including extreme weather events. For example, mountain waves, which belong
to gravity waves, can support the development of strong warm Foehn winds [6].

The fact that the internal gravity waves exist on greater range of scales
presents a challenge for numerical atmospheric models, as the scale of a signifi-
cant portion of the GW spectrum is smaller than the scale of the computational
grid. Even if the resolution of the model is experimentally set higher, it seems
that the result still miss important GW effects [7]. The problem is bypassed
by using so-called parameterizations that supplement the influence of sub-grid
scale processes in order to get realistic wind and temperature climatologies in the
models.

GW parameterization schemes employ various simplifications of the sourc-
ing, propagation and dissipation processes. Usually, the schemes assume linear,
hydrostatic, vertically propagating GWs. In the level of GWs saturation, the
schemes decelerate the resolved flow in the model [8]. The parameterizations
employ several tunable parameters that are set so that the model is in agreement
with observed temperature and wind climatologies [9] or with some more com-
plex atmospheric phenomena concerning middle-atmosphere variability such as
quasi-biennial oscillation [10] or frequency of sudden stratospheric warming [11].

Constraining the tunable parameters is complicated, because it requires gen-
eral knowledge of GW features like the global distribution of wavelengths, fre-
quencies or momentum fluxes of the waves [12]. Because GWs act on various
spatio-temporal scales, observing them in the real atmosphere is not an easy
task.

In principle, the momentum flux can be measured using satellite methods,
superpressure balloons or radiosondes [9]. The satellite measurements use the fact
that the magnitude of the momentum flux is proportional to the temperature,
which can be measured very precisely. Due to the fact that only a part of the
GW spectrum is sampled, the dependence of the horizontal resolution on the
measurement track, and many approximations made during the post-processing
of the data such as single wave assumption or mid frequency approximation,
satellite measurements result in relatively high error in the propagation direction
and wavelength [13].

Observations by superpressure balloons can supplement the very uncertain
information from satellite measurements, as the balloons measure horizontal tem-
perature and pressure anomalies with great precision while drifting with the wind.
On the other hand, the balloons provide information that is horizontally sparse
and for a given altitude only [14], [15].

Using the radiosonde data, it is also possible to combine temperature and
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wind information to obtain GW momentum fluxes [16]. However, the methods
computing momentum flux that use the radiosonde data do not cover whole
gravity wave spectrum [9] and the information is purely local. Another option
are in situ radars and lidars.

All in all, observational estimates of GW parameters and their momentum
fluxes and resulting drag include significant uncertainty. To be able to constrain
GW parametrisation in the global circulation models, it is necessary to obtain the
information by other means. Therefore, it seems reasonable to first utilize models
with very high resolution, which would allow us to simulate the majority of the
GW spectrum, and then use the knowledge to improve existing parametrisations.

In the thesis, we study the GWs and their interaction with background flow
using experimental model runs of Weather Research and Forecasting Model with
horizontal resolution of 3 km. We discuss different methods for GW detection
and we apply two of them – a high-pass filter method and a method based on a
division of the flow to so-called active and inactive components. We study the
properties of the methods and the spectrum of the gravity waves present in the
data.

In Chapter 1, we introduce the internal gravity waves and we derive some
of their properties. In Chapter 2, the theoretical concepts used on the gravity
wave detection and analysis are presented. Chapter 3 contains an analysis of the
results of our computations on the model data.
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1. Waves in the Atmosphere
The circulation of the air in the atmosphere consists of a variety of motion types.
Apart from the patterns given by the global atmospheric circulations, it is possible
to observe diverse wave-like motions. They differ in the mechanism of origin, scale
at which they occur and their propagation speed. Some of them are described in
the first part of this chapter. In the second part of the chapter, we describe the
internal gravity waves, which are the waves studied in the thesis.

1.1 Some Basic Wave Types
The waves with the shortest period are the sound waves [2]. They show itself as a
regular compression and rarefaction of the air. Because they propagate relatively
quickly, they might cause a problem with the convergence of an atmospheric
model due to the Courant–Friedrichs–Lewy condition. To improve the model
convergence, sound waves can be excluded by assuming the incompressibility of
the air. A similar sound wave filtering effect is also caused by the hydrostatic
approximation, by which the pressure can depend on the height only.

The other wave motions can be divided into two parts. In the first type of
wave motions, an initial perturbation is propagated as a consequence of the ro-
tation of the Earth. In the second type, the conditions for the propagation of
an initial perturbation are caused by the stratification of the fluid, i.e. its inho-
mogeneity. Regarding the waves driven by the Earth rotation, we will mention
inertial oscillations, Rossby waves and Kelvin waves.

The simplest type of the wave motion related to the Earth rotation are the
inertial oscillations [17] that describe a circular motion of a free particle on the
rotating Earth. The period and radius of the inertial oscillations is interconnected
with the period of Earth rotation.

Another important wave type are the Rossby waves [2]. In a simplified
setting, they result from the conservation of absolute vorticity and from the fact
that the Coriolis parameter depends on latitude. Rossby waves can arise in the
westerly flow only and they lead to horizontal meandering of the flow. They can
be easily observed as meanders of the tubes of very strong wind, of jet streams.
In case of strong amplitudes, Rossby waves can give rise to the cyclons and
anticyclones, which has a significant influence on the weather.

Kelvin waves are waves that also emerge because of the Coriolis effect.
Nevertheless, for these waves a lateral boundary is needed. Kelvin waves are
therefore often described for the ocean near coastlines. They can, however, also
appear in the equatorial zone of the atmosphere, where the equator plays the role
of the boundary [2].

As the first example of waves that emerge because of stratification, we can con-
sider a boundary between two air masses with different properties. If the bound-
ary contains discontinuity in the density and sufficiently large discontinuity in
the velocity, along the interface then originate waves called Kelvin-Helmholtz
waves [18]. In case the waves are accompanied by lifting of a moist so that the
water condense, characteristic clouds can be observed.
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1.2 Internal Gravity Waves
The waves propagating inside a fluid mass that are based on the stratification
are called the internal gravity waves. They are basically oscillations emerging as
a result of the buoyancy force from an initial perturbation.

The initial perturbation can occur in the atmosphere for different reasons, for
example because of the convection, wind shear or interaction with other waves
[3]. In this thesis, we deal with the internal gravity waves resulting from the flow
over topography.

Similarly to the sound waves, in the atmospheric models, the internal gravity
waves can be partially eliminated by the hydrostatic approximation. Because they
act on small scales, part of their spectrum is also not resolved by the models. Nev-
ertheless, the internal gravity waves significantly impact the middle atmosphere
by the momentum and energy transport and deposition and their effects must be
supplied to the models.

In the following sections, we first illustrate the mechanism of the internal
gravity waves on the stability description of vertical oscillation. Afterwards, we
derive the dispersion relation that shows the relation of gravity wave frequency
and wavenumbers in the frame of linear perturbation theory.

1.2.1 Vertical Oscillation
A simplified concept of the internal gravity waves can be presented by considering
the vertical oscillation of a fluid parcel [6].

First, we consider motionless fluid with density ρ̄(z) depending on the height
only. At the height z0, the density of the fluid is ρ0 = ρ̄(z0). Next, we select a
fluid parcel at the height z0 and move it up to the height z0 +∆z. A fluid particle
is a part of the fluid, which is sufficiently small so that it can be moved without
causing any motion of the surrounding fluid.

For simplicity, we assume that the density of the parcel ρ0 does not change
during the shifting. The density of the ambient fluid, however, changes to the
value ρ̄(z0 +∆z). This generates the difference of the fluid parcel and the ambient
flow ∆ρ̄ that can be approximated by writing

∆ρ̄ = ρ0 − ρ̄(z0 + ∆z) = ρ̄(z0) − ρ̄(z0 + ∆z) ≈ −dρ̄

dz

⏐⏐⏐⏐⏐
z=z0

∆z. (1.1)

The density difference further generates the buoyancy force per volume acting on
the particle, which equals −g∆ρ̄. By the second Newton’s law, the time evolution
of the vertical displacement ∆z is given by equation

ρ0
d2(∆z)

dt2 = −g∆ρ̄. (1.2)

After inserting the term ∆ρ̄ from equation (1.1), we immediately get

d2(∆z)
dt2 − g

ρ0

dρ̄

dz

⏐⏐⏐⏐⏐
z=z0

∆z = 0. (1.3)

This equation can be written in the form
d2(∆z)

dt2 + N2(z0)∆z = 0, (1.4)
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which is the harmonic oscillator equation for a fluid parcel starting at the height
z0 that starts oscillating with the frequency N given by the formula

N2 = −g

ρ̄

dρ̄

dz
. (1.5)

The spring equation is an equation that could have been anticipated for the
motion of a fluid parcel deflected from its equilibrium position. However, for the
motion of the air in the atmosphere, the assumption on the density of the particle
being constant during the motion is rather unrealistic.

Instead, it is reasonable to assume that the air parcel moves adiabatically.
In this case, we can assume the conservation of a quantity called the potential
temperature instead of the conservation of the density, because the potential
temperature is defined as the temperature of a fluid parcel that was brought
adiabatically to a certain pressure level.

Such a change affects the definition of the frequency N in equation (1.4). After
expressing the dependence of background density on the background potential
temperature θ̄ in the hydrostatic balance [6], it is possible to get the same spring
equation as before with the frequency given by the formula

N2 = g

θ̄

dθ̄

dz
. (1.6)

The frequency N defined by equation (1.6) is called the Brunt-Väisälä fre-
quency. It is a basic quantity for the description of the atmospheric stability of
stratification. If it holds that N2 > 0, i.e. the potential temperature increases
with height, the atmosphere is said to be atmospheric stable. In this case, in view
of equation (1.4), the internal gravity waves can be present in the atmosphere. On
the other hand, if N2 < 0, the atmosphere is unstable, and the internal gravity
waves cannot exist in this part of the atmosphere.

1.2.2 Dispersion and Polarization Relations
To understand the propagation of the internal gravity waves, following [3], we
derive their dispersion relation, which is an equation that relates the wave fre-
quency to its spatial characteristics. Also, we show an example of a polarization
relation, which connects the amplitudes of different quantities.

Similarly to above, we divide the flow to the horizontal uniform basic flow in
hydrostatic equilibrium and a linear perturbation. The problem is here neverthe-
less studied in the Eulerian frame.

The flow of the air in the atmosphere without external forcing can be described
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by equations

du

dt
= −1

ρ

∂p

∂x
+ fv, (1.7a)

dv

dt
= −1

ρ

∂p

∂y
− fu, (1.7b)

dw

dt
= −1

ρ

∂p

∂z
− g, (1.7c)

dρ

dt
= −ρ

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
, (1.7d)

dθ

dt
= 0. (1.7e)

The first three equations represent conservation of linear momentum, where u,
v and w are the velocity components, p is the pressure and f is the Coriolis
parameter. The fourth equation for the density ρ is the continuity equation.
The last equation is the thermodynamic equation claiming the conservation of
the potential temperature θ, as used in the previous section. The coordinates in
which the equations are written are described in Attachment A. The system of
equations is completed by adding the equation

θ = p

ρR

(
p0

p

)κ

(1.8)

that connects the potential temperature with the pressure and density. The
constant p0 is a reference pressure value, R is the ideal gas constant and κ = R/cp

with cp the specific heat at constant pressure.
We assume the basic flow in the form (ū(t, z), v̄(t, z), 0), the potential temper-

ature θ̄(t, z), the pressure p̄(t, z) and the density ρ̄(t, z). The governing equations
(1.7) for the basic flow therefore take form

∂ū

∂t
= fv̄, (1.9a)

∂v̄

∂t
= −fū, (1.9b)

0 = −1
ρ̄

∂p̄

∂z
− g, (1.9c)

∂ρ̄

∂t
= 0, (1.9d)

∂θ̄

∂t
= 0, (1.9e)

θ̄ = p̄

ρ̄R

(
p0

p̄

)κ

. (1.9f)

We further assume that the density ρ̄ satisfies the equation

ρ̄ = ρ0e− z−z0
H , (1.10)

where ρ0 is the value of density corresponding to a reference altitude z0 and H is
a constant parameter.
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The perturbation of the basic flow is characterized by its velocity components
u′, v′ and w′, pressure p′, density ρ′ and potential temperature θ′. The decom-
position of the flow into the basic flow and perturbation part can therefore be
written as

u(t, x, y, z) = ū(t, z) + u′(t, x, y, z), (1.11a)
v(t, x, y, z) = v̄(t, z) + v′(t, x, y, z), (1.11b)
w(t, x, y, z) = w′(t, x, y, z), (1.11c)
p(t, x, y, z) = p̄(t, z) + p′(t, x, y, z), (1.11d)
ρ(t, x, y, z) = ρ̄(t, z) + u′(t, x, y, z), (1.11e)
θ(t, x, y, z) = θ̄(t, z) + θ′(t, x, y, z). (1.11f)

Using the linear perturbation theory, we substitute the decomposition (1.11)
into equation (1.7). The aim is to get linear equations for the variables u′, v′,
w′, p′/ρ̄, ρ′/ρ̄ and θ′/ρ̄, assuming that all the terms that are quadratic in the
perturbation variables are negligible compared to the terms that are linear in the
variables.

For example, for the first equation in (1.7), it is possible to write

0 = du

dt
+ 1

ρ

∂p

∂x
− fv = ∂ (ū + u′)

∂t
+ (ū + u′) ∂ (ū + u′)

∂x

+ (v̄ + v′) ∂ (ū + u′)
∂y

+ w′ ∂ (ū + u′)
∂z

+ 1
ρ̄ + ρ′

∂ (p̄ + p′)
∂x

− fv̄ − fv′

= ∂u′

∂t
+ ū

∂u′

∂x
+ v̄

∂u′

∂y
+ w′ ∂ū

∂z
+ 1

ρ̄

∂p′

∂x
− fv′

(1.12)

where we subtracted the first equation in (1.9) and used the fact that the basic
flow does not depend on x and y.

Because the structure of derivatives that appeared in (1.12) will also reappear
in other equations, it is reasonable to introduce a new derivative similar to the
material derivative,

D
Dt

= ∂

∂t
+ ū

∂

∂x
+ v̄

∂

∂y
. (1.13)

The zonal momentum equation linearized in (1.12) can therefore be written
compactly as

Du′

Dt
+ w′ ∂ū

∂z
+ 1

ρ̄

∂p′

∂x
− fv′ = 0. (1.14)

In the same way, we can find the linearized version of the second governing
equation in (1.7),

Dv′

Dt
+ w′ ∂v̄

∂z
+ 1

ρ̄

∂p′

∂y
+ fu′ = 0. (1.15)

In the third equation in (1.7), it is necessary to transform also the pressure
gradient term, so that it contains the variable p′/ρ̄:

0 = dw

dt
+ 1

ρ

∂p

∂z
+ g =Dw′

Dt
+ 1

ρ̄ + ρ′
∂ (p̄ + p′)

∂z
+ g

=Dw′

Dt
− ρ̄

ρ̄ + ρ′ g + 1
ρ̄ + ρ′

∂p′

∂z
+ g.

(1.16)
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Using the density profile (1.10), the linearized equation is

Dw′

Dt
+ ρ′

ρ̄
g + ∂

∂z

(
p′

ρ̄

)
− 1

H

p′

ρ̄
= 0. (1.17)

Similarly, the continuity equation and the equation for evolution of the po-
tential temperature can be modified to

D
Dt

(
ρ′

ρ̄

)
+ ∂u′

∂x
+ ∂v′

∂y
+ ∂w′

∂z
− 1

H

ρ′

ρ̄
= 0, (1.18)

D
Dt

(
θ′

θ̄

)
+ w′

g
N2 = 0, (1.19)

with the Brunt-Väisälä frequency N defined consistently with the previous section
as

N2 = g

θ̄

∂θ̄

∂z
. (1.20)

Finally, we rewrite equation (1.8). After subtracting the formula for the basic
flow (1.9f) from the formula

θ̄ + θ′ = p̄ + p′

(ρ̄ + ρ′) R

(
p0

p̄ + p′

)κ

, (1.21)

we get

θ′ = pκ
0

R

(
(p̄ + p′)1−κ

ρ̄ + ρ′ − p̄1−κ

ρ̄

)
= pκ

0
R

p̄1−κ

ρ̄ + ρ′

(
(p̄ + p′)1−κ

p̄1−κ
− ρ̄ + ρ′

ρ̄

)

= pκ
0

R

p̄1−κ

ρ̄ + ρ′

⎛⎝(1 + p′

p̄

)1−κ

−
(

1 + ρ′

ρ̄

)⎞⎠ ≈ θ̄

(
(1 − κ) p′

p̄
− ρ′

ρ̄

)
.

(1.22)

Using the notation for the speed of sound

c2
s = p̄

(1 − κ)ρ̄ , (1.23)

we can therefore write the linearised version of equation (1.8) as

θ′

θ̄
= 1

c2
s

p′

ρ̄
− ρ′

ρ̄
. (1.24)

We now seek for a wave solution to the system of these six linearised equations.
We proceed by assuming the form of the solution(

u′, v′, w′,
θ′

θ̄
,
p′

ρ̄
,
ρ′

ρ̄

)
=
(
ũ, ṽ, w̃, θ̃, p̃, ρ̃

)
exp

[
i (kx + ly + mz − ωt) + z

2H

]
.

(1.25)
The imaginary part of the exponential corresponds to the wave part of the solu-
tion, k, l and m are the components of the wave vector and ω is the frequency of
the waves. The real part of the exponential balance the decrease of the density
of the basic flow with height. The quantities with tilde denote the amplitudes of
the solution.
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By substituting the wave form in the linearised equations, we get a system of
six linear equations for the solution amplitudes that can be written in the matrix
form ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−iω̂ −f 0 0 ik 0
f −iω̂ 0 0 il 0
0 0 −iω̂ 0 im − 1

2H
g

0 0 N2

g
−iω̂ 0 0

ik il im − 1
2H

0 0 −iω̂
0 0 0 1 − 1

c2
s

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ũ
ṽ
w̃

θ̃
p̃
ρ̃

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (1.26)

where ω̂ = ω − ūk − v̄l is the frequency of the waves observed in a reference frame
that moves with the basic flow.

The system of equation has a non-trivial solution if and only if the determinant
of the matrix is zero. This condition therefore provide us an equation relating
the quantities contained in the matrix, which is the sought dispersion relation.

By evaluating the determinant of the matrix, we get

0 = mω̂
(
ω̂2 − f 2

)( g

c2
s

− 1
H

+ N2

g

)
+ iω̂

[
ω̂2 − f 2

2H

(
g

c2
s

− 1
2H

+ N2

g

)

−N2(k2 + l2) + ω̂2
(
k2 + l2 + m2

)
−
(
ω̂2 − f 2

) ω̂2

c2
s

− m2f 2
]
.

(1.27)

The equality is satisfied if it holds for both the real and the imaginary part.
To be able to divide the equation into these parts, we can multiply it by the
complex conjugate of ω̂ and we divide the vertical wavevector component into
the real and imaginary part m = mr + imi.

We assume that the wave does not propagate only horizontally, so it holds
mr ̸= 0, and that |ω̂| ≠ |f |, where the equality would correspond to a wave
motion driven by the rotation of Earth rather than by the stratification. The real
part of the equation is then satisfied if and only if it holds

g

c2
s

− 1
H

+ N2

g
= 0. (1.28)

This equality can be further used to simplify the relation given by the imaginary
part of equation (1.27) to the form

ω̂2
(

k2 + l2 + m2 + 1
4H2 − ω̂2 − f 2

c2
s

)
= N2

(
k2 + l2

)
+ f 2

(
m2 + 1

4H2

)
. (1.29)

This relation still contains both the gravity waves and the sound waves. To get
an equation just for the gravity waves, we make use of the fact that the speed of
propagation of the sound waves is high and we take cs → ∞.

The limit step finally transforms the equation to the quadratic equation in ω̂,

ω̂2 =
N2 (k2 + l2) + f 2

(
m2 + 1

4H2

)
k2 + l2 + m2 + 1

4H2
, (1.30)

that shows the relation of the frequency of the gravity waves to its wavevector
components.
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Moreover, after expressing the vertical wavenumber

m2 = (N2 − ω̂2) (k2 + l2)
ω̂2 − f 2 − 1

4H2 , (1.31)

the relation indicates the bounds on the wave frequency: If the vertical component
of the wave vector is real, then the left-hand side of equation (1.31) is positive.
Consequently, the right-hand side of equation (1.31) also has to be positive. This
can be ensured only if the signs of the terms N2 − ω̂2 and ω̂2 − f 2 are the same,
assuming that the horizontal wavevector components are also real. Because in
the stably stratified atmosphere it usually holds that f 2 < N2, the previous
conditions on signs imply that N2 > ω̂2 > f 2. In other words, the frequency of
the gravity waves cannot be larger than the Brunt-Väisälä frequency and smaller
then the size of the Coriolis parameter.

The derivation of the dispersion relation was based on the assumption that
the matrix in equation (1.26) is singular. This is equivalent to the statement
that zero is an eigenvalue of the matrix. The dispersion relation can then be
understood as a condition on the frequency ω̂, such that the matrix in equation
(1.26) admits a zero eigenvalue.

For such ω̂, assuming the validity of the dispersion relation, it is possible to
find at least one eigenvector corresponding to the zero eigenvalue of the matrix.
These eigenvectors form a basis of the kernel of the matrix. By the description of
the non-zero kernel, we can therefore find relations between the amplitudes of the
solution ũ, ṽ, w̃, θ̃, p̃ and ρ̃. These relations, expressed in terms of the quantities
that appear in the matrix equation (1.26), are called the polarization relations
[6]. In particular, if the eigenvector is unique, the polarization relations connect
pairs of the amplitude quantities.

The general evaluation of the kernel of the six by six matrix defined in (1.26)
represents a tedious computation and it is not presented here. Instead, we only
state the polarization relation connecting the amplitudes ũ and w̃, which can be
obtained by a few simple manipulations of the matrix. It reads

w̃ =
(

ω̂2 − f 2

ω̂2 − N2

)⎛⎝m + i
2H

− i g
c2

s

ω̂k + ifl

⎞⎠ ω̂ ũ. (1.32)

If we again assume the absence of sound waves by taking cs → ∞, the polarization
relation for the gravity waves only can be simplified to

w̃ =
(

ω̂2 − f 2

ω̂2 − N2

)(
m + i

2H

ω̂k + ifl

)
ω̂ ũ. (1.33)

The polarization relation connecting the zonal and vertical velocity ampli-
tudes (1.33) is of particular interest, as the product of the zonal and vertical
velocity constitutes an important component of the momentum flux (see Section
2.2). Assuming that the frequency ω̂ is real, the factor before ũ in (1.33) is not
imaginary, unless m = l = 0 and k is real. Therefore, the real component of the
product ũw̃ in the momentum flux is generally zero only for strictly zonal waves
or if one of the amplitudes ũ, w̃ is zero.

In the polarization relation (1.33), we can see that if k, l, m and ω̂ are all real
and positive, the term in the second bracket has positive real part. Moreover, the

12



sign of the first bracket is always negative due to the derived relation N2 > ω̂2 >
f 2. This implies that, under the assumptions above, the zonal velocity of GWs
should have the opposite sign than the vertical velocity. The momentum flux
component based on the product ũw̃ is thus (in this approximation) negative.

Nevertheless, in the derivation, we used the linear theory only. In general, the
dispersion relation and the polarization relations can be violated because of the
dependence of the background flow on the wave activity.
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2. Methodology

2.1 GW Detection Methods
In the context of this thesis, we want to study GW interactions and for this, GWs
have to be identified in the data. The methods of separation of the gravity waves
are mostly based on the linear perturbation theory – the data are divided into the
small wave perturbations and the background. This is usually done by statistical
methods such as fitting polynomials into the data [19] or by applying Fourier or
Hilbert transform [20], [21]. Also, some more complex methods based on mode
decomposition can be applied [22]. Finally, the gravity waves can be obtained
from the data as deviations from some theoretical state of rest of the atmosphere
[23]. In this chapter, we present some of the methods.

2.1.1 High-pass Filter Method
As a first separation method, we implement the high-pass filter method intro-
duced in [20]. The method uses Gaussian filter, which modulates given fields of
velocity components by convolution with a Gaussian function [24].

In the first step, a low pass filter is applied on the data to separate the GW
related part. The frequencies of GWs to be filtered out are set by choosing a
cutoff parameter L corresponding to the variance of the Gaussian function in
the Fourier space. The gravity waves are subsequently obtained as a difference
between the modulated and the original velocity fields.

In practice, the Fast Fourier transform (FFT) algorithm is used instead of
convolution. To filter GWs from the data, FFT is first applied to the data. The
Fourier coefficients are then multiplied by so-called response function

r̂(k, l) = e−(k2+l2) L2
4π2 , (2.1)

where k and l are zonal and meridional wavenumbers, respectively. Finally, the
inverse FFT algorithm is applied to the result of the multiplication.

The exponential function in formula (2.1) is, up to a scaling factor, a Gaussian
function with variance σ2 given by

σ2 = 2π2

L2 . (2.2)

As 95 % of the filtered waves will have wavenumber smaller then 2σ = 2π
√

2/L,
the wavelengths λ̃ that are filtered out fulfil

λ̃ >
L√
2

. (2.3)

After choosing an appropriate value to the parameter L, the waves with the
wavelengths λ̃ that are filtered out by application of the response function (2.1)
are commonly assumed to consist exclusively of GWs.

The complete procedure with subtraction of the filtered field from the initial
one is equivalent to the filtering with response function

r̂hp(k, l) = 1 − e−(k2+l2) L2
4π2 , (2.4)
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instead of (2.1). Therefore, we are effectively applying a high-pass filter method.
Before the FFT step, no periodization step is being applied, as the boundary

effect is assumed to be small [20]. Instead, we only subtract global linear trend
in the data. The periodization procedures will be discussed in Section 2.3.3.

2.1.2 Active Wind Method
The second method we present in more detail is a theory-based method introduced
by Gassmann in article [25]. It divides the flow onto so-called active and inactive
part. Unlike the standard GW separation methods, this method is not based on
linear theory and can be used without any need for averaging and resulting wave
mean separation.

In a coordinate system that rotates with the Earth, the equations of motion
can be written in the form

∂tv + (v · ∇) v = −1
ρ

∇p − ∇φ − 2Ω × v + Fr, (2.5)

where v is the velocity, ρ is the density, p is the pressure. The gradient of
geopotential ∇φ describes the gravity force. The term 2Ω×v is the Coriolis force
with angular velocity of the Earth Ω = (0, Ω cos ϕ, Ω sin ϕ), where Ω = 1/24 h−1

and ϕ is the latitude. The force Fr is the frictional force. Further, we assume
the validity of the state equation in the form for the ideal gas

p

ρ
= RdT. (2.6)

The constant Rd is specific gas constant for dry air, Rd = 287.04 J kg−1 K−1, and
T is the temperature of the fluid.

We need to rewrite the equations of motion into a form more convenient for
our study. To this end, we introduce several additional quantities. First, we
define the Exner pressure Π,

Π =
(

p

p0

)Rd/cp

. (2.7)

Constant p0 denotes reference pressure level p0 = 1000 hPa, and cp is specific
heat at constant pressure for dry air, cp = 1004 J kg−1 K−1. The Exner pressure
can further be expressed using potential temperature θ, which is defined as the
temperature of a fluid parcel if it was adiabatically brought to the pressure level
p0. It holds

Π = T

θ
. (2.8)

Using potential temperature, the thermodynamic equation supplementing the
equations of motion takes the elegant form

∂tθ + v · ∇θ = Q, (2.9)

for diabatic heating Q.
Next, the Bernoulli function B, which represents the sum of kinetic, internal

and potential energy of the fluid, is defined as

B = |v|2

2 + cpT + φ. (2.10)
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Finally, we define the vector of absolute vorticity

ωa = 2Ω + ∇ × v. (2.11)

To transform the equation (2.5), we first calculate the gradient of the Exner
pressure

∇Π = ΠRd

cp

1
p

∇p = 1
cp

Π
ρT

∇p = 1
cp

1
ρθ

∇p, (2.12)

where we used the definition of the Exner pressure (2.7), state equation (2.6) and
formula (2.8).

Together with the vector calculus identity

1
2∇|v|2 = (v · ∇) v + v × (∇ × v) , (2.13)

the gradient of the Exner pressure can be used to express the gradient of the
Bernoulli function

∇B =∇|v|2

2 + cp∇ (Πθ) + ∇φ

= (v · ∇) v + v × (∇ × v) + cpΠ∇θ + 1
ρ

∇p + ∇φ

= (v · ∇) v + v × ωa + 2Ω × v + cpΠ∇θ + 1
ρ

∇p + ∇φ.

(2.14)

In the last equality, we used the definition of the absolute vorticity.
We rearrange equation (2.5) to

∂tv =
(

− (v · ∇) v − v × ωa − 2Ω × v − cpΠ∇θ − 1
ρ

∇p − ∇φ

)
+v × ωa + cpΠ∇θ + Fr

(2.15)

with the bracket equal to −∇B. Consequently, the governing equation (2.5) is
equivalent to

∂tv = −∇B + v × ωa + cpΠ∇θ + Fr, (2.16)

which is the form we aimed at.
In the atmosphere, it is useful to describe the dynamical problems using the

potential vorticity, as it interconnects the effects of rotation and stratification.
Under certain conditions, the potential vorticity is conserved, which, together
with the conservation of the Bernoulli function, enables the development of so-
called Energy-Vorticity Theory [26].

This hydrodynamic theory has many advantages. One of them is the pos-
sibility to solve a system of non-linear differential equations for a general wind
solution [27]

v = ∇θ × ∇B

ρP
(2.17)

analytically. The quantity P is the Ertel’s potential vorticity defined as

P = 1
ρ

ωa · ∇θ. (2.18)
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The solution (2.17) describes the part of the flow that streams along the
intersection lines of planes with constant potential temperature and planes with
constant Bernoulli function. The generality of the solution is based on the fact
that it covers all the processes connected with both the energy and the potential
vorticity conservation.

The balance (2.17) was used in [26] to introduce an index characterizing the
dynamical state of the atmosphere, and subsequently in [25], the general wind
solution was used for the definition of the inactive wind

via ≡ ∇θ × ∇B

ρP
, (2.19)

which is a part of a flow that blows along the intersection lines as in the balanced
case.

To further motivate the form of the inactive wind definition, we show a simple
derivation of the balanced part of the flow. Since we try to find some kind of
solution to a stationary flow, we need to be able to express the velocity from the
governing equation with zero time derivative. For that reason, we take the cross
product of equation (2.16) with ∇θ. After rearranging the terms, using the fact
that ∇θ × ∇θ = 0, this yields

∇θ × (∂tv − Fr) = −∇θ × ∇B + ∇θ × (v × ωa) (2.20)

Using the vector identity a × (b × c) = b (a · c) − c (a · b) and the prognostic
equation for potential temperature (2.9), the second term on the right-hand side
becomes

∇θ × (v × ωa) =v (ωa · ∇θ) − ωa (v · ∇θ)
=v (ωa · ∇θ) + ωa (∂tθ − Q) .

(2.21)

Therefore, we have

∇θ × (∂tv − Fr) − ωa (∂tθ − Q) = −∇θ × ∇B + v (ωa · ∇θ) (2.22)

To simplify the notation, we use the definition of Ertel’s potential vorticity. The
last equation then reads

∇θ × (∂tv − Fr) − ωa (∂tθ − Q) = −∇θ × ∇B + ρvP. (2.23)

The active wind method divides the flow into active and inactive part, where
the inactive part describes stationary frictionless adiabatic flow. For the inactive
flow, we therefore have ∂t ≡ 0, Fr ≡ 0 and Q ≡ 0, which implies that the left-
hand side of equation (2.23) is zero. For the situations with P ̸= 0, the inactive
wind can be thus defined by equation (2.19).

The definition of the active wind does not provide us the solution to equation
(2.23) with zero left-hand side, since the Bernoulli function B and Ertel’s potential
vorticity P still depend on the full velocity. On the other hand, it is justifiable
thanks to the consistency with the Energy-Vorticity Theory.

The active wind corresponding to the perturbation to the balance flow is
consequently defined as the complement of the inactive wind

va ≡ v − via = v − ∇θ × ∇B

ρP
. (2.24)
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The active wind concept makes the wave effects on transport [25] and dy-
namics [23] explicit. Nevertheless, it include both the waves resulting from the
rotation of Earth and the waves connected to stratification.

The separation of these two parts is in principle possible using the Helmholtz-
Hodge decomposition. In the local domain, this is, however, complicated due to
the assumption of the decomposition methods on the boundary conditions [28].

To be able to quantify the gravity wave activity using the active wind method,
we apply procedure introduced in article [23] as a replacement of the Helmholtz-
Hodge decomposition. The procedure utilizes the active wind velocity to evaluate
the forcing in the equation of divergence and vorticity. We now present the
procedure.

For the derivation of the forcing terms, we start by dividing the right-hand
side of equation (2.16) on terms corresponding to the active wind and to the
inactive wind,

∂tv = − ∇B + (via + va) × ωa + cpΠ∇θ + Fr

= − ∇B + va × ωa + ∇θ × ∇B

ρP
× ωa + cpΠ∇θ + Fr

= − ∇B + va × ωa + ∇B (∇θ · ωa) − ∇θ (ωa · ∇B)
ρP

+ cpΠ∇θ + Fr

=va × ωa + cp

(
Π − ωa · ∇B

cpρP

)
∇θ + Fr

(2.25)

where we used the definition of the inactive wind, the vector triple product iden-
tity and the definition of the Ertel’s potential vorticity. After introducing a new
quantity Πa representing the Exner pressure for the active wind,

Πa = Π − ωa · ∇B

cpρP
, (2.26)

the previous equation can be written as

∂tv = va × ωa + cpΠa∇θ + Fr. (2.27)

We further rearrange equation (2.27) by eliminating the active wind Exner
pressure Πa, so that the equation can be transformed to the equations of hori-
zontal divergence and vertical vorticity, in which we could evaluate the forcing.

For the next computations, we use the z-coordinate system. We denote the
components of the absolute vorticty by ωx, ωy and ωz, the components of velocity
u, v, w and the components of the frictional force Fr,x, Fr,y and Fr,z. The subscript
a after a velocity component again refers to the active wind part of the flow.

The z component of equation (2.27)

∂tw = −ωxva + ωyua + cpΠa∂zθ + Fr,z (2.28)

can be used to eliminate the Exner pressure in (2.27). We have

∂tv = −ωa × va + ∇θ

∂zθ
(∂tw + ωxva − ωyua − Fr,z) + Fr. (2.29)
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When we introduce the horizontal velocity vector vh = (u, v, 0), horizontal fric-
tion force Fr,h = (Fr,x, Fr,y, 0) and the horizontal gradient ∇h = (∂x, ∂y, 0), the
previous equation is equivalent to

∂tvh − ∇hθ

∂zθ
∂tw = −ωa × va + ∇θ

∂zθ
(ωxva − ωyua) + Fr,h − ∇hθ

∂zθ
Fr,z. (2.30)

Now, we focus on the first two terms on the right-hand side of equation (2.30).
Using the component notation, they can be rearranged as follows,

−ωa × va+ ∇θ

∂zθ
(ωxva − ωyua)

=

⎛⎜⎝−ωywa + ωzva + ∂xθ
∂zθ

(ωxva − ωyua)
−ωzua + ωxwa + ∂yθ

∂zθ
(ωxva − ωyua)

−ωxva + ωyua + (ωxva − ωyua)

⎞⎟⎠

=

⎛⎜⎜⎝
−ωy

(
wa + ∂xθ

∂zθ
ua + ∂yθ

∂zθ
va

)
+ va

(
ωz + ∂xθ

∂zθ
ωx + ∂yθ

∂zθ
ωy

)
+ωx

(
wa + ∂xθ

∂zθ
ua + ∂yθ

∂zθ
va

)
− ua

(
ωz + ∂xθ

∂zθ
ωx + ∂yθ

∂zθ
ωy

)
0

⎞⎟⎟⎠
=w∗ (k × ωh) − ζ∗

a (k × va,h) .

(2.31)

In the last equality, we introduced the vector of horizontal absolute vorticity
ωh = (ωx, ωy, 0), the vector of horizontal active wind velocity va,h = (ua, va, 0), the
unit vector in the z-direction k = (0, 0, 1) and quantities w∗ and ζ∗

a . The quantity
w∗ represents the vertical velocity of the wind that blows along isentropes and it
is defined by formula

w∗ = va · ∇θ

∂zθ
. (2.32)

Similarly, the quantity ζ∗
a is related to the absolute vorticity by the formula

ζ∗
a = ωa · ∇θ

∂zθ
. (2.33)

We can therefore rewrite equation (2.30) to

∂tvh − ∇hθ

∂zθ
∂tw = w∗ (k × ωh) − ζ∗

a (k × va,h) + Fr,h − ∇hθ

∂zθ
Fr,z. (2.34)

To simplify the notation, we further introduce the vectors

g1 = va,hζ∗
a , g2 = −w∗ωh. (2.35)

The vector g1 characterizes the motions connected with the horizontal advection
of vorticity, the vector g2 describes rather the vertical advection of vorticity.
Using these definitions, we can reformulate the previous equation for velocity
evolution to

∂tvh − ∇hθ

∂zθ
∂tw = −k × (g1 + g2) + Fr,h − ∇hθ

∂zθ
Fr,z. (2.36)

Finally, by applying the horizontal divergence operator ∇h· to the equation
(2.36), it is possible to get the equation for evolution of the horizontal divergence
δ = ∂xu + ∂yv,

∂tδ = −∇h · (k × (g1 + g2)) + ∇h · Fr,h + ∇h ·
(

∇hθ

∂zθ
(∂tw − Fr,z)

)
. (2.37)
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Because the vector k is constant and its only non-zero component is the z-
component, the first term on the right-hand side can be reformulated. We get
the equation

∂tδ = k · ∇ × (g1 + g2) + ∇h · Fr,h + ∇h ·
(

∇hθ

∂zθ
(∂tw − Fr,z)

)
. (2.38)

Similarly, we apply the z-component of the curl operator to equation (2.36)
to obtain the equation for the vertical component ζ of the vorticity vector,

∂tζ = k · ∇ × [k × (g1 + g2)] + k · ∇ × Fr,h + k · ∇ ×
(

∇hθ

∂zθ
(∂tw − Fr,z)

)
. (2.39)

Using the fact that the vectors g1 and g2 are already horizontal and that k is a
constant vector, this is equivalent to the equation

∂tζ = ∇ · (g1 + g2) + k · ∇ × Fr,h + k · ∇ ×
(

∇hθ

∂zθ
(∂tw − Fr,z)

)
. (2.40)

As proposed in article [23], we now consider only terms in equations (2.38)
and (2.40) that are not related to the dissipation. Also, we do not consider the
term containing the time derivative of the vertical velocity. Then the evolution of
divergence and vorticity driven by the non-dissipative forces only can be written
as

∂tδ = k · ∇ × (g1 + g2) , (2.41a)
∂tζ = ∇ · (g1 + g2) . (2.41b)

By evaluating the vector g = g1 + g2, we can get the forcing to the equations.
In particular, by this procedure, the right-hand side of the divergence equation

describes the gravity wave dynamics only, as the curl applied to the vector g filters
out the rotational part of the vector. The assumption on the non-linear balance
defined by (2.19) successfully removes the terms related to the balance from the
divergence equation.

2.1.3 Other GW Separation Methods
Another theoretical method for GW separation is the method based on the omega
equation described in article [29]. The omega equation is an equation describing
vertical motion in the pressure coordinate system on a sphere. The separation
method considers the second-order asymptotic expansion of the balanced vertical
velocity in Rossby number. Basically, the omega equation is divided into parts
corresponding to different powers of the Rossby number and numerically solved
for the components of the balanced vertical velocity corresponding to the same
powers. The wave perturbations of the vertical velocity are obtained as a dif-
ference between the balanced and original flow. The method was introduced for
global model but nothing seems to prevent its utilization in regional domains.

A separation method developed by using a completely different principle is the
multi-dimensional ensemble empirical mode decomposition method introduced in
article [22]. The method fundamentally divides the data into different modes by
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repetitively computing the minimal and maximal envelopes and subtracting them
from the data. It is similar to the decomposition into Fourier series but the basis
functions are not a priori given but they are found by the computations. The ad-
vantage of this method is that it can, unlike methods that use Fourier transform,
describe well even very localized effects. For the space and time limitations we
let those two diagnostics for future work.

Further, there are other GW separation methods that are suitable only for
a global domain. For instance, the method described in article [30] decomposes
the data into Fourier series with Hough harmonics as the basis functions. Hough
harmonics are a natural choice of basis functions as they are eigenfunctions of
the general se of equations on a sphere for an unforced atmosphere [31].

Besides the theoretical methods, there exist several statistical approaches for
GW separations [21], [32], [33]. They rely on various assumptions, typically on
monochromaticity.

2.2 GW Momentum Fluxes and Drag
As the wind blows against a mountainside, it exerts pressure force on the moun-
tain surface. In accordance with Newton’s third law, this gives rise to a drag
force acting in the opposite direction on the air, which is called a mountain drag.
The mountain drag is deposited not only locally in the vicinity of the mountain,
but is also propagated by the mountain waves (alternatively called lee waves,
a special type of GWs) to the free atmosphere, where the mountain wave drag
(MWD) is deposited at the level of their dissipation. Hence, the mountain waves
get the momentum flux (MF) and propagate it further in the atmosphere [34].
Estimating the drag exerted by freely propagating GWs is a complex task for
which various methodologies exist. Below we detail a method based on linear
theory and spatial averaging.

We start by considering compressible inviscid flow on a rotating sphere. Using
the standard scale-analysis argumentation [17], it is possible to write governing
equation for the horizontal velocity components in the corotating coordinate sys-
tem in the form

∂tu + u∂xu + v∂yu + w∂zu = −1
ρ

∂xp + fv (2.42a)

∂tv + u∂xv + v∂yv + w∂zv = −1
ρ

∂yp − fu, (2.42b)

where u, v and w are zonal, meridional and vertical wind components, p is the
pressure and f is the Coriolis parameter.

We apply a linear perturbation method, assuming that the velocity compo-
nents can be decomposed into a slowly varying mean flow and a small perturbation
corresponding to the wave motion,

u = ⟨u⟩ + u′, (2.43a)
v = ⟨v⟩ + v′, (2.43b)
w = w′, (2.43c)
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where the mean vertical velocity component is taken zero. We further assume
that the density is a function of altitude only. In computations, this is achieved
by taking integral mean value of density ρ̂(z) over respective levels.

Next, we demonstrate the derivation for zonal momentum equation (2.42a)
only, the steps for the meridional component are analogous. With use of the
continuity equation

∂tρ + ∂x(ρu) + ∂y(ρv) + ∂z(ρw) = 0, (2.44)

it is possible to pass from (2.42a) to the equation in the flux form

∂t(ρu) + ∂x(ρu2) + ∂y(ρuv) + ∂z(ρuw) = −∂xp + fv (2.45)

Substituting the decomposition (2.43) and the assumption on density, we get

∂t(⟨u⟩ + u′) + ∂x

(
(⟨u⟩ + u′)2)+∂y ((⟨u⟩ + u′) (⟨v⟩ + v′))

+1
ρ̂

∂z (ρ̂ (⟨u⟩ + u′) w′)

= −1
ρ̂

∂xp + f (⟨v⟩ + v′)

(2.46)

At this stage, we average (2.46) over area A of the selected horizontal domain,
which will be denoted by line over the quantities.

The selected domain should not be too small, so that we can assume that
u′ = 0. Otherwise, we might capture more ridges or troughs of some distinct
waves and the assumption would be violated. On the other hand, we need to
assume that ⟨·⟩ (·)′ = 0, which is possible only if the domain is not too broad and
so the mean flow variables ⟨·⟩ do not change much.

With the assumption that the perturbations of velocity components have zero
average over the domain at every altitude and that the velocity field is such that
the interchange of derivative and integral is possible, the first term is averaged to

∂t(⟨u⟩ + u′) = ∂t⟨u⟩ (2.47)
Using the fundamental theorem of calculus, the averages of the second and the
third term in (2.46) are

∂x

(
(⟨u⟩ + u′)2

)
= 1

A

[∫
(⟨u⟩ + u′)2 dy

]x2

x1

, (2.48)

∂y ((⟨u⟩ + u′) (⟨v⟩ + v′)) = 1
A

[∫
(⟨u⟩ + u′) (⟨v⟩ + v′) dx

]y2

y1

. (2.49)

For the last integral on the left-hand side of (2.46), we have

1
ρ̂

∂z (ρ̂ (⟨u⟩ + u′) w′) = 1
A

1
ρ̂

∂z

∫∫
ρ̂ (⟨u⟩ + u′) w′ dx dy (2.50)

If we further consider the average of ⟨·⟩ (·)′ over faces to be zero, the previous
three averaged terms can be thus simplified to

∂x

(
(⟨u⟩ + u′)2

)
= 1

A

[∫ (
⟨u⟩2 + (u′)2) dy

]x2

x1

, (2.51)
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∂y ((⟨u⟩ + u′) (⟨v⟩ + v′)) = 1
A

[∫
(⟨u⟩ ⟨v⟩ + u′v′) dx

]y2

y1

, (2.52)

1
ρ̂

∂z (ρ̂ (⟨u⟩ + u′) w′) = 1
A

1
ρ̂

∂z

∫∫
ρ̂u′w′ dx dy. (2.53)

To deal with the right-hand size of equation (2.46), we write the velocity
as a sum of velocities of geostrophic and ageostrophic flow, u = ug + ua, v =
vg + va. Geostrophic flow is an idealized stationary flow described by the balance
of pressure and Coriolis force, considering advective terms to be negligible. From
equations (2.42), we have

ug = −∂yp

ρf
, vg = ∂xp

ρf
. (2.54)

Therefore, averaged right-hand side of equation (2.46) can be written as

−1
ρ̂

∂xp + f (⟨v⟩ + v′) = −fvg + fv = fva. (2.55)

Altogether, the averaged equation (2.46) has the form

∂t ⟨u⟩ = − 1
A

[∫ (
⟨u⟩2 + (u′)2) dy

]x2

x1

− 1
A

[∫
(⟨u⟩ ⟨v⟩ + u′v′) dx

]y2

y1

− 1
A

1
ρ̂

∂z

∫∫
ρ̂u′w′ dx dy + fva.

(2.56)

The terms on the right-hand side can be divided into terms corresponding to
the wave motion and terms corresponding to motions on larger scale. In partic-
ular, it is possible to identify three terms that add up to the zonal component of
MWD,

MWDxx = − 1
A

[∫
(u′)2 dy

]x2

x1

, (2.57a)

MWDyx = − 1
A

[∫
u′v′ dx

]y2

y1

, (2.57b)

MWDzx = − 1
A

1
ρ̂

∂z

∫∫
ρ̂u′w′ dx dy. (2.57c)

The quantity MWDxx is zonal derivative of zonal flux of zonal wave momentum,
MWDyx is meridional derivative of meridional flux of zonal wave momentum and
MWDzx is vertical derivative of vertical flux of zonal wave momentum.

Analogously, for the meridional velocity component, it is possible to get equa-
tion

∂t ⟨v⟩ = − 1
A

[∫
(⟨u⟩ ⟨v⟩ + u′v′) dy

]x2

x1

− 1
A

[∫ (
⟨v⟩2 + (v′)2) dx

]y2

y1

− 1
A

1
ρ̂

∂z

∫∫
ρ̂v′w′ dx dy − fua.

(2.58)
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We get terms of the meridional component of MWD,

MWDxy = − 1
A

[∫
u′v′ dy

]x2

x1

, (2.59a)

MWDyy = − 1
A

[∫
(v′)2 dx

]y2

y1

, (2.59b)

MWDzy = − 1
A

1
ρ̂

∂z

∫∫
ρ̂v′w′ dx dy. (2.59c)

However, we only got results in the local Cartesian system. To be able to
compute MWD in larger domains, we need to use spherical coordinates. In that
case, it is necessary to proceed more carefully in steps using fundamental theorem
of calculus, such as (2.48). We illustrate it on examples of MWDxx and MWDyx,
modifying slightly their definition.

We denote the Earth radius by re, radial coordinate by r, latitude by ϕ and
longitude by λ. Assuming that altitudes of the domain are much smaller than
the radius of Earth, we have

MWDxx = − 1
A

∫∫
∂x

(
u′2
)

r2 cos ϕ dλ dϕ

= − r2

A

∫∫
∂λ

(
u′2
)

(∂xλ) cos ϕ dλ dϕ

= − r

A

∫∫
∂λ

(
u′2
)

dλ dϕ ≈ −re

A

[∫
u′2 dϕ

]λ2

λ1

,

(2.60)

where the area A bounded by latitudes ϕ1 and ϕ2 and longitudes λ1 and λ2 is
given by

A =
∫∫

r2 cos ϕ dλ dϕ ≈ r2
e (λ2 − λ1) (sin ϕ1 − sin ϕ2) . (2.61)

For MWDyx, the integration by parts is needed. It holds

MWDyx = − 1
A

∫∫
∂y (u′v′) r2 cos ϕ dλ dϕ

= − r2

A

∫∫
∂ϕ (u′v′) (∂yϕ) cos ϕ dλ dϕ

= − r

A

∫∫
∂ϕ (u′v′) cos ϕ dλ dϕ

≈ − re

A

[∫
u′v′ cos ϕ dλ

]ϕ2

ϕ1

− re

A

∫∫
u′v′ sin ϕ dλ dϕ.

(2.62)

In the same way, one can get

MWDyy ≈ −re

A

[∫
v′2 cos ϕ dλ

]ϕ2

ϕ1

− re

A

∫∫
v′2 sin ϕ dλ dϕ, (2.63)

MWDxy ≈ −re

A

[∫
u′v′ dϕ

]λ2

λ1

, (2.64)

MWDzx ≈ −r2
e

A

1
ρ̂

∂r

∫∫
ρ̂u′w′ cos ϕ dλ dϕ − 2re

A

1
ρ̂

∫∫
ρ̂u′w′ cos φ dλ dφ, (2.65)
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MWDzy ≈ −r2
e

A

1
ρ̂

∂r

∫∫
ρ̂v′w′ cos ϕ dλ dϕ − 2re

A

1
ρ̂

∫∫
ρ̂v′w′ cos φ dλ dφ. (2.66)

Also, we consider the vertical fluxes of zonal and meridional momentum

MF zx ≈ r2
e

A

∫∫
ρ̂u′w′ cos ϕ dλ dϕ, (2.67)

MF zy ≈ r2
e

A

∫∫
ρ̂v′w′ cos ϕ dλ dϕ. (2.68)

The considered approximation re ≈ r is well justifiable, since the altitudes in
the troposphere and stratosphere are about 1000 times smaller than the Earth
radius. By the substitution of r for re and the substitution of r2 for r2

e , we thus
make an error in the third or in the sixth digit, respectively. The approximation in
the factor 1/A is also reasonable, since, in view of equation (2.61), for a constant
c it holds

1
A

= cr−2 = c (re + z)−2 ≈ c (re − 2z) (2.69)

by the Taylor expansion.

2.3 Effective Resolution and GW Spectra

2.3.1 Horizontal Energy Spectrum
In this section, we describe the methods of computation of the horizontal spec-
trum of specific kinetic energy at a given altitude.

Total kinetic energy at an altitude z with a unitary density is given by formula

Ez =1
2

∫ ∫ (
u2(x, y, z) + v2(x, y, z)

)
dx dy (2.70)

≈1
2

N−1∑
i=0

N−1∑
j=0

(
u2

i,j + v2
i,j

)
(∆x)2, (2.71)

where ui,j = u(xi, yj) and vi,j = v(xi, yj) are the components of velocity at
individual grid points, N denotes number of grid point in each direction and ∆x
is the horizontal distance between grid points.

To get the spectrum, it is convenient to describe the energy in the Fourier
space. We use the definition of the two-dimensional discrete Fourier transform
(DFT)

âk,l =
N−1∑
n=0

N−1∑
m=0

an,me−2πi nk
N e−2πi ml

N , k, l = 0, . . . , N − 1, (2.72)

with its inverse

am,n = 1
N2

N−1∑
k=0

N−1∑
l=0

âk,le2πi nk
N e2πi ml

N , m, n = 0, . . . , N − 1. (2.73)
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By the Parseval theorem for two-dimensional DFT given by equation (2.72)
[35], it holds

N−1∑
i=0

N−1∑
j=0

(
u2

i,j + v2
i,j

)
= 1

N2

N−1∑
k=0

N−1∑
l=0

(
ûk,lû

∗
k,l + v̂k,lv̂

∗
k,l

)
(2.74)

with ûk,l and v̂k,l obtained by the DFT of velocity components. The symbol ∗
denotes the complex conjugate. The latter expression can already be used to
compute specific kinetic energy for individual numbers k and l as

Ez
k,l = 1

2N2

(
ûk,lû

∗
k,l + v̂k,lv̂

∗
k,l

)
. (2.75)

In the atmosphere, it is useful to decompose the energy into the vortical
and divergent part to distinguish between waves governed by the two dominant
mechanisms, rotation and stratification.

The vorticity ζ and divergence δ at given altitude z at a grid point i, j is
defined as

ζz
i,j = ζ(xi, yj, z) =

(
∂v(x′, y′, z′)

∂x
− ∂u(x′, y′, z′)

∂y

) ⏐⏐⏐⏐⏐
(x′,y′,z′)=(xi,yj ,z)

, (2.76)

δz
i,j = δ(xi, yj, z) =

(
∂u(x′, y′, z′)

∂x
+ ∂v(x′, y′, z′)

∂y

) ⏐⏐⏐⏐⏐
(x′,y′,z′)=(xi,yj ,z)

. (2.77)

By the analogy with continuous Fourier transform with the same scaling as in
equation (2.72), realizing that xm ∼ m∆x, these formulas can be transformed to

ζ̂z
k,l = 2πi

N∆x
(kv̂k,l − lûk,l) , (2.78)

δ̂z
k,l = 2πi

N∆x
(kûk,l + lv̂k,l) . (2.79)

These equations imply that

ζ̂z
k,l(ζ̂z

k,l)∗ + δ̂z
k,l(δ̂z

k,l)∗ =
( 2π

N∆x

)2 (
k2 + l2

) (
ûk,lû

∗
k,l + v̂k,lv̂

∗
k,l

)
(2.80)

Therefore, formula (2.75) for the specific horizontal kinetic energy can be rewrit-
ten to the final form

Ez
k,l = 1

2N2
ζ̂z

k,l(ζ̂z
k,l)∗ + δ̂z

k,l(δ̂z
k,l)∗(

2π
N∆x

)2
(k2 + l2)

(2.81)

for k, l = 0, . . . , N − 1. The term in the denominator

K2 ≡
( 2π

N∆x

)2 (
k2 + l2

)
(2.82)

represent the square of the size of horizontal wave vector corresponding to the
horizontal wavelength λ = 2π/K.
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As we need the spectrum with respect to the horizontal wavelength, we sum
up the values Ez

k,l of specific energy with similar values of K [36]. More precisely,
we consider the sequence of wavenumbers

Kn = 2π
N∆x

n, n = 1, 2, . . . ,
[
N

2

]
− 1 (2.83)

with the upper bound corresponding to the Nyquist frequency. We further denote

∆K = 2π
N∆x

(2.84)

the difference between two consecutive wavenumbers of this sequence. The spe-
cific horizontal kinetic energy for the wavenumbers in the sequence can then be
computed by the formula

Ez(Kn) =
∑

|(k,l)|∈In

Ez
k,l, (2.85)

where In = (Kn − ∆K/2, Kn + ∆K/2) is an interval around Kn.
By the theory, it is possible to expect that the horizontal kinetic energy spec-

trum is proportional to K−5/3 for smaller scales and it is proportional to K−3

for larger scales [37],[38]. The former dependence is known as the Kolmogorov
spectrum. It follows from the assumption that the energy spectrum depends
on the dissipation of the energy. The latter dependence, based on the quasi
two-dimensional theory of turbulence at large scales, is related to the vorticity.
Such theoretical proportionates were repeatedly confirmed by the studies of high-
resolution simulations [36],[39] or by processing of aircraft measurement [40],[41].

2.3.2 Vertical Energy Spectrum
More information about the gravity waves in the model can be obtained by study-
ing the vertical spectrum of the potential energy. In this subsection, we describe
the formula we use for the potential energy.

An illustrative derivation of the formula can be performed using a fluid par-
cel reasoning [6]. At an arbitrary altitude, we set the vertical coordinate z to
zero, and we denote the density at the level by ρ0. Since the pressure generally
decreases with altitude, we assume that the density near the level z = 0 can
be approximated by ρ̄ ≈ ρ0 (1 − z/H), where H is a constant value characteriz-
ing the density profile at the altitude z = 0. This corresponds to the fact that
the Brunt-Väisälä frequency N0 defined by the formula (1.5) is around the level
approximately constant, N2

0 = g/H.
In this setting, the potential energy can be calculated by considering the

energy needed for the exchange of two fluid parcels that are located at levels
z = −δ and z = δ. When the particles are in their original positions, the
potential energy with respect to the level z = 0 for the two parcels is

E1 = gρ0

(
1 + δ

H

)
(−δ) + gρ0

(
1 − δ

H

)
δ, (2.86)

where we applied the standard formula for the potential energy computation with
the considered density profile. After the exchange of the two parcels, their total
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potential energy is

E2 = gρ0

(
1 − δ

H

)
(−δ) + gρ0

(
1 + δ

H

)
δ. (2.87)

For the energy difference, we can write

∆E = E2 − E1 = 4ρ0δ
2 g

H
. (2.88)

To get the energy associated with just one of the parcels, we take ∆E/2. To
rewrite the formula for the definition of potential energy in more general situation,
we further denote the fraction g/H by N2

0 and the total vertical displacement 2δ
by ξ. Subsequently, the potential energy can be defined as

Ep = 1
2ρ0N

2
0 ξ2. (2.89)

To be able to evaluate the formula, it is necessary to rewrite the displacement
ξ into a more convenient form. This can be done by the assumption that for
a small displacement, the total displacement corresponds to the fluctuation of
density ρ′. More precisely, we can write

ρ′ = −dρ̄

dz
ξ ≈ ρ0

H
ξ, (2.90)

which is the approximation by Taylor polynomial for small ξ. The negative sign
ensures that ξ and ρ′ have the same sign, even though density ρ̄ decreases with
height. The last expression was obtained using the assumed approximative profile
of ρ̄.

The application of relation between the density perturbation and the displace-
ment (2.90) in the potential energy formula (2.89), using the equality N2

0 = g/H,
finally leads to the potential energy formula

Ep = 1
2ρ0

g2

N2
0

(
ρ′

ρ0

)2

. (2.91)

The potential energy definition (2.91) (related to unit mass) was used for
example in the study [42] of GWs observed by lidar. However, a great portion
of the remote measurement techniques such as the Doppler radars or GPS radio
occultation sounding rely on the refractive properties of the emitted signal on the
inhomogeneities in the temperature field [43]. For this reason, many studies apply
definition (2.91) with the relative perturbations of temperature T ′/T0 instead of
relative perturbations of density ρ′/ρ0 [44],[45],

Ep = 1
2ρ0

g2

N2
0

(
T ′

T0

)2

(2.92)

or they study the GW spectra by calculating the power spectrum density of the
relative temperature perturbations only [46].

The justification for the use of temperature perturbation is based on the per-
turbation form of the state equation for ideal gas in the linear perturbation theory.
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If we divide the pressure, temperature and density field to the basic state p0, T0
and ρ0 and a perturbation p′, T ′ and ρ′, we can write the state equation for both
the basic and perturbed flow:

p0 = ρ0RT0, (2.93a)
p0 + p′ = (ρ0 + ρ′) R (T0 + T ′) (2.93b)

with R being the specific gas constant. When we subtract the first equation from
the second, after a few algebraic manipulations, assuming that the product ρ′T ′

can be neglected, we get the state equation

p′

p0
= T ′

T0
+ ρ′

ρ0
. (2.94)

In view of the previous state equation, it is clear that the density pertur-
bations in (2.91) can be replaced by the temperature perturbations in (2.92), if
the pressure perturbations are much smaller than the density and temperature
perturbations. This does not have to be true in general. Therefore, we rather
consider the potential energy in formula (2.92) just as a new definition motivated
by the derivation above.

The vertical spectrum of the GW fluctuations has been studied also theo-
retically. The studies use the saturated spectrum theory, which assumes that a
monochromatic wave becomes unstable if it causes negative potential temperature
[47]. The spectra were analysed for fluctuations of different quantities. For the
perturbations of temperature, which are relevant for the studies of the potential
energy (2.92), the theoretical power spectral density of temperature perturbations
has approximately the form

ET (m) = N4
0

10g2m3 , (2.95)

where g is the acceleration of gravity, N0 is a typical value of Brunt-Väisälä
frequency and m is the vertical wavenumber [44]. Less specified part of this theo-
retical spectrum is the factor 1/10, which, as well as the Brunt-Väisälä frequency,
may vary with the altitude [48].

As we use the dependence on the inverse vertical wavelength λz instead of the
vertical wavenumber m in the thesis, we need to modify the previous formula to

ET (1/λz) = 1
(2π)2

N4
0

10g2 (1/λz)3 , (2.96)

The denominator contains the second power of 2π and not the third, as one
might expect, since the spectral density scales also by 2π when changing from
the wavenumber notation to the notation with 1/λz.

The last formula (2.96) still describes the power spectral density of tempera-
ture perturbation. By comparison with (2.92), rescaled by the density, we finally
obtain the theoretical potential energy spectrum density,

ET,p(1/λz) = 1
(2π)2

N2
0

20 (1/λz)3 . (2.97)
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For the spectrum evaluation, we also apply the non-equispaced Fourier trans-
form, which is a generalization of the Fourier transform aimed at transforming
data on non-uniform grids. In analogy with (2.72), the transform of a sequence
of values an for n = 0, . . . , M − 1 corresponding to the sequence of points xn,
n = 0, . . . , M − 1, is defined by

âk =
M−1∑
n=0

ane−2πikxn (2.98)

for an arbitrary frequency k.

2.3.3 Periodization Methods
For the computation of energy spectrum, we used DFT. However, DFT assumes
that the data are periodic, which is not true for a local domain. Removal of these
aperiodicities is essential to get correct, undistorted spectrum [49].

There are different approaches to this problem. The method we implemented
for the spectrum computation is a detrending method presented by Errico in [50].
It is based on subtracting linear trend from each row and column of the data,
where the slope is computed using the boundary values only. If the data values
are denoted by ai,j, i = 1, . . . , N , j = 1, . . . , M , we can write the slope of a line
connecting the first and the last element in j-th column as

sj = aN,j − a1,j

N − 1 (2.99)

The values along the line are then modified by a line with the slope sj so that
the resulting column is periodic,

a′
i,j = ai,j − isj + 1

2 (aN,j − a1,j) (2.100)

The same procedure is applied also on rows.
This method can be generalized to subtract not only a linear function but

also quadratic functions [51]. Another approaches are based on extension of the
domain and multiplication of the data with a smooth function with zero on the
boundary or to use the discrete cosine transform instead of DFT [52]

2.3.4 Effective Resolution
Numerical models do not correctly simulate effects in the atmosphere with scales
similar to the grid size. In particular, it is not possible to resolve wave motions
with frequency higher than Nyquist frequency, which is equal to the half of the
sampling frequency. Moreover, in accordance with the dispersion relation derived
in the Section 1.2.2, the frequency and the horizontal and vertical wave char-
acteristics are interconnected. The limit of horizontal wavelengths that can be
simulated by the models therefore does not depend only on the horizontal grid
resolution, but also on the vertical grid resolution and on the time step. Instead
of resolution of the model given by the mesh size, it is therefore necessary to use
a so-called effective resolution, which is a limit value such that the smaller scales
are not simulated correctly.
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(a) Horizontal domain with marked subdo-
mains. Line segment AB displays the cross-
section depicted in Fig. 2.1(b).

(b) Vertical coordinates of the model data.
The plot displays every tenth level.

Figure 2.1: Domain visualisation

Due to the numerical diffusion, error in interpolation and other numerical
methods, kinetic energy at small scales is dissipated. As a result, the effective
resolution can be recognized in the energy spectra as the scale where the spectrum
starts to deviate steeply from the theoretical development [53].

2.4 Data
In the thesis, we test the methods on data from experimental simulations of
Weather Research and Forecasting (WRF) Model, which solves fully compressible
nonhydrostatic equations.

The data are given for a local domain covering parts of Southern America,
Antarctica and the south-east of the Atlantic Ocean. For the majority of com-
putations, we divide the domain into three GW hotspots, see Fig. 2.1(a). We
will refer to the subdomains as Southern Andes, Antarctic Peninsula and South
Georgia.

The used simulations, so far not published (a paper is in preparation [54]),
have unusually high resolution. The horizontal resolution of the model is 3 km
on the domain of about 3900 km in both horizontal directions. The simulation
results are saved in simplified Lambert Conformal map projection on a sphere
with radius 6370 km.

Vertical levels are defined using hybrid sigma-pressure vertical coordinate,
which means that the levels follow the terrain at lower altitudes. At higher alti-
tudes, the coordinate describes the pressure levels. The height of the simulated
atmosphere is about 80 km and it is divided into 179 levels. The vertical coordi-
nates are depicted in Fig. 2.1(b).

The data from simulation cover the period from 8th October to 19th October
2010 with the time step of 15 minutes.
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2.5 Implementation
The scripts were implemented partly in Python and partly in NCAR Command
Language (NCL). They were parallelized using the Python multiprocessing pack-
age and the program GNU parallel [55]. The scripts are enclosed with the thesis
(see Attachment B for a brief description).

Because it is difficult to work with the non-equidistant vertical coordinate, for
the majority of computations, the data are first interpolated on equidistant ver-
tical levels with the distance 1 km. For this purpose, we use linear interpolation.

To be able to compute horizontal derivatives, in cases specified in the next
subsections, we interpolate the data also horizontally to create a regular grid
defined by values of latitude and longitude. This regridding is performed using
the ESMF_regridding package in NCL in two steps. First, an interpolation matrix
with weights that quantify impact of individual points in the source grid on the
points in the destination grid is created. Because the horizontal grid does not vary
in time, it suffices to apply this step for one time instant only. Second, the data
are multiplied by the weight matrix to obtain the values on the destination grid.
As the interpolation method, we use bilinear interpolation. Since the destination
grid is defined by a maximal and minimal value of latitude and longitude, after
the interpolation, we can work with a subdomain of the original domain only.

In several situations, we applied the two-dimensional Fourier transform even
though the considered data are spherical and a more appropriate procedure would
be to use the windowed spherical harmonics transform. The first reason is that in
the atmospheric community, the usual approach is to use the Fourier transform
for local domains [20], [56]. Since our aim is to compare our results with these
studies, we do not change this methodology here. The second reason is that our
aim is to study also the gravity waves with short wavelengths, for which we would
need spherical harmonics with higher degree [57]. Using spherical harmonics, the
problem would be therefore more computationally expensive. The transition to
the spherical-harmonics approach will be subject of future studies.

2.5.1 High-pass Filter Method
The first method of the gravity wave separation we applied is the high-pass filter
method described in Section 2.1.1.

The algorithm was implemented in both NCL and Python. It assumes that
the data are vertically interpolated to the levels of constant altitudes. For each
time step and for each vertical level, the following procedure is applied:

input: var, cutoff

var = SubtractPlane(var)
coef = Apply2DFFT(var)
coef = MultiplyByResponseFunction(coef,cutoff)
smooth = ApplyInverse2DFFT(coef)
result = var - smooth

In the first step, a plane is fitted to the two-dimensional variable (var) and
the fit is subtracted from the variable. The fitting uses the least squares method.
In NCL, this is implemented by solving the system of normal equations, while
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using every second point in both directions for the fitting only. The Python
implementation uses the least-square solver in the package NumPy, which is based
on the singular value decomposition.

The two-dimensional FFT in the second step and its inverse in the next-to-last
step relies on build-in functions for real FFT in NCL or, in the Python script,
on functions for real FFT in the package NumPy. We use real FFT, because the
input data do not contain complex value and the real Fourier transform therefore
provides the same information as the complete Fourier transform.

In the third step, the Fourier coefficients are multiplied by the response func-
tion defined by equation (2.1). Finally, we apply the inverse Fourier transform
and subtract the smoothed data from the original data.

2.5.2 Active Wind Method
The algorithm for the method of active winds introduced in Section 2.1.2 was
implemented in Python.

Just as in the high-pass filter method, the computation requires that the data
are vertically interpolated on levels of a constant height. Additionally, an inter-
polation must be applied also in the horizontal directions, so that the rows and
columns in the data represent the directions of constant latitudes and longitudes,
as described above.

Using the vertically and horizontally interpolated data, the algorithm for com-
putation of the active wind is a straight-forward evaluation of the right-hand side
of equation (2.23). It can be written as follows:

input: p, theta, u, v, w, z, lat, lon

omega_a = AbsoluteVorticity(u,v,w,lat,lon)
T = Temperature(p,theta)
rho = Density(p,T)
P = ErtelsPotentialVorticity(rho,theta,omega_a,lat,lon)
phi = z*9.81
B = BernoulliFunction(u,v,w,T,phi)
uia, via, wia = InactiveWind(rho,P,B,theta,lat,lon)
active = [u-uia,v-via,w-wia]

The input of the algorithm is the pressure p, the potential temperature theta,
velocity components u, v and w, the altitude z, the latitude lat and the longitude
lon. It evaluates first the absolute vorticity using definition (2.11) and the formula
for angular speed of Earth Ω = (0, Ω cos ϕ, Ω sin ϕ). Then the temperature is
evaluated using the combination of equations (2.7) and the relation (2.8). For
the computation of density, we apply the ideal gas equation (2.6). The Ertel’s
potential vorticity is computed using its definition (2.18). Afterwards, we evaluate
the geopotential and apply it to the computation of the Bernoulli function by the
formula (2.10). Finally, the inactive wind component can be obtained using its
definition (2.19), and the active part from (2.24).

The latitude and longitude values were used to evaluate the derivatives using
formulas derived in the Attachment A. Further, we assumed that the altitude is
much smaller than the radius of the Earth, so that we can approximate the radial
coordinate in the derivatives by the radius of the Earth.
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To avoid the problem with the change of the number of grid points in a direc-
tion after application of finite differences, we use central differences supplemented
by the forward and backward differences at the edges.

Next, we describe how we compute forcing to the equations describing evolu-
tion of divergence and vorticity. Using the previous results and the same variable
names, we can proceed by the following script.

input: active, theta, omega_a, lat, lon, z

wstar = VelocityAlongIsentropes(active,theta,lat,lon,z)
zetastar = VorticityAlongIsentropes(omega_a,theta,lat,lon,z)
g1 = CalculateVectorG1(active,zetastar)
g2 = CalculateVectorG2(wstar,omega_a)
g = g1 + g2
forcdiv = Product([0,0,1],Curl(g,lat,lon))
forcvort = Div(g,lat,lon)

The first two quantities in the algorithm are computed using equations (2.32)
and (2.33). For the computation of vectors g1 and g2, we use equations (2.35).
Finally, the forcings are computed as the right-hand sides of (2.41).

2.5.3 Momentum Fluxes and Drag
The computation of the momentum fluxes and drag, implemented in NCL, also
works with data for a subdomain defined by a range of latitudes and longitudes
that are both vertically and horizontally interpolated.

The algorithm first evaluates the area of the subdomain using formula (2.61).
For every altitude, the individual components are then computed using equations
(2.60) and (2.62) – (2.66). The zonal drag can be then obtained as a sum of the
components MWDxx, MWDyx and MWDzx, the meridional drag is the sum of the
components MWDxy, MWDyy and MWDzy. Finally, the vertical flux of the zonal
and meridional momentum is obtained using (2.67) and (2.68). The integration is
performed as a sum of the values in respective horizontal direction(s) multiplied
by the length of the step in latitudes or longitudes.

The algorithm therefore provides a value of the total drag and fluxes for the
whole area of the domain at a given altitude and time instant.

2.5.4 Horizontal Energy Spectrum
Next, we describe our Python implementations of the computation of specific
horizontal kinetic energy spectrum.

We start with data that are vertically interpolated to the levels of constant
altitudes.

The first implementation is based on the Fourier transform of the velocity field.
For simplicity, we assume to have two-dimensional fields of horizontal velocity
components u and v with resolution dx at given altitude and time instant. The
basic algorithm reads:

input: u, v, dx
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Periodize(u,v)
ut,vt = Apply2DFFT(u,v)
deltat,zetat = ExpressFFTOfDivergenceAndVorticity(ut,vt)
K = WaveNumberSize(dx,u.dimension[0])
Eklz = EnergyFor2dWavenumbers(zetat,deltat,K)
EKz = SumEnergyForWavenumbers(Eklz,K)

First, it computes the Fourier transform of periodized velocity components, pro-
ceeds using equations (2.78) and (2.79) to get the DFT of vorticity and divergence
and prepares the two-dimensional array of the horizontal wave-number size us-
ing (2.82). Then it computes Ez

k,l using equation (2.81) and finally sums it up
employing equation (2.85).

The periodization technique applied on the velocity components in the first
step is described in Section 2.3.3. For a two-dimensional variable, the structure
of the procedure is

input: var

for c in columns(var):
s=CalculateSlope(c)
SubtractSlope(c,s)

for r in rows(var):
s=CalculateSlope(r)
SubtractSlope(r,s)

The slope is obtained from formula (2.99) and the subtraction is described by
equation (2.100).

The second algorithm for the spectrum computation is a slight modification
of the previous one:

input: u, v, dx

delta,zeta = DivergenceAndVorticity(u,v)
deltat,zetat = Apply2DFFT(delta,zeta)
K = WaveNumberSize(dx,u.dimension[0])
Eklz = EnergyFor2dWavenumbers(zetat,deltat,K)
EKz = SumEnergyForWavenumbers(Eklz,K)

Instead of starting by the Fourier transform of velocity components, it evaluates
the divergence (2.77) and vorticity (2.76) using a finite difference scheme.

As for the finite differences in the first step of the algorithm, we compare
three different schemes, the forward differences, the central differences and the
five-point difference scheme. For a sequence {fk}, these difference schemes can
be defined as

∆fk = fk+1 − fk, (2.101a)

∆cfk = 1
2 (fk+1 − fk−1) , (2.101b)

∆ffk = 1
12 (−fk+2 + 8fk+1 − 8fk−1 + fk−2) . (2.101c)

To be able to compare the different methods even though the differences are
not defined for a few rows and columns near the boundary, we evaluate all the
spectra for the common inner part only.
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2.5.5 Vertical Energy Spectrum
The evaluation of the vertical spectrum of the specific potential energy was also
performed in Python.

We first compute the temperature from the definition of potential temperature
(for instance combination of equations (2.7) and (2.8)), express the Brunt-Väisälä
frequency from equation (1.6) and evaluate the specific potential energy using the
definition (2.92) divided by ρ0, so as to be able to compare our results with other
studies.

The filtration of the temperature field to the basic state and perturbation,
which is needed for the formula evaluation, is done by fitting polynomials to
the subsets of data obtained from individual air columns. The same filtering
is performed also on the potential temperature needed for the computation of
Brunt-Väisälä frequency, as, because of the absence of hydrostasy assumption, it
cannot be obtained from the background field of temperature.

After the potential temperature is evaluated in every point, we apply the one-
dimensional FFT to the square root of the potential energy values in individual
air columns. The vertical spectrum is then obtained by multiplication of the
Fourier transform result with its complex conjugate. In the last step, the result
is multiplied by the considered altitude range and divided by the square of the
number of points within the range, so that it does not depend on these variables.

This procedure can be written in a simplified way, starting with the potential
temperature theta, the pressure p and the altitude z, as follows:

input: theta, p, z

T=Temperature(theta,p)
T_b=FitPolynomial(T)
theta_b=FitPolynomial(theta)
T_p=T-T_b
N2=BruntVaisalaSquared(theta_b,z)
Ep=SpecificPotentialEnergy(N2,T_p,T_b)
Epst=Apply1DFFT(sqrt(Ep))
Ept=Epst*conjugate(Epst)
Ept_dens=PSD(Ept)

The previous procedure with the Fourier transform can be applied only if the
data are equidistant in the vertical direction. This property can be reached by
linear interpolation of the non-equidistant data to a regular grid. However, such
procedure might modify the spectrum by smoothing the perturbations. For this
reason, we also test the previous algorithm with application of the non-equispaced
Fourier transform instead of the Fourier transform.

As for the implementation of the Fourier transform generalization, we use
the Non-equispaced fast Fourier transform (NFFT) algorithm described as Algo-
rithm 3 in article [58]. It is based on the FFT and on approximations based on
a window function. We used its implementation in the Python package nfft [59].

2.5.6 Effective Resolution and GW Range
The scripts searching for the effective resolution and the range of the GW wave-
lengths were both implemented in Python.
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As their input, we use the horizontal kinetic energy spectra EkzAll found by
the first algorithm in Section 2.5.4, the vector of horizontal wavenumbers k and
the time in which we evaluate the effective resolution or the GW range.

The effective resolution of the data in a given time step at a studied altitude
is found by the following simple algorithm described in detail below:

input: EkzAll, k, time

EksAll= SmoothenOverTime(EkzAll)
Eks = log(EksAll[time])
ks = log(k)
line = FitLineToSpectrum(Eks,ks,(30,80))
sigma = StandardDeviation(line,Eks,ks,(30,80))
j = IndexOf(k,30)+1
while (abs(line.evaluate(ks[j]) - Eks[j])<4*sigma):

j=j+1
effk = k[j-1]

In the first step, the specific horizontal horizontal kinetic energy spectra at a given
altitude are smoothed over the time interval of 15 hours using the moving mean.
This interval length corresponds to the lower bound on gravity wave frequency,
as derived in Section 1.2.2 and removes a part of the oscillations from the spectra.
These averages are characterized by the time specification in the middle of the
interval.

Next, we take the smoothed spectrum at a given time and we fit a line to the
part of the spectrum in the log-log plot corresponding to the wavelength range 30
– 80 km. We further evaluate the standard deviation of the interpolated line from
the original spectrum, which we then use as a threshold to determine the point
in which the fitted line starts to depart from the spectrum values. We assume
that this point is the sought effective resolution.

In the remainder of the chapter, we deal with the algorithm for the specifica-
tion of the upper bound for wavelengths at which are GW dominant, written as
a pseudocode at the end of the chapter. It can be divided into two parts.

In the first part, we preprocess the energy spectra to obtain uniform sampling.
The energy spectra are again smoothed over time. To simplify the explanation,
we then take just one of these spectra. Because the upper bound on the GW
wavelengths cannot be smaller than the effective resolution, only the part of the
spectra with wavelengths above the effective resolution is considered. Within the
preparatory work, we further evaluate the logarithm of wave-numbers and the en-
ergy spectrum to represent the values in the log-log plot. This, however, changes
the distribution of the values of the wave-numbers to non-uniform. We therefore
apply linear interpolation to the logarithmic values. Finally, we resample the
values uniformly by linear interpolation.

The second part contains the main loop of the algorithm. It divides the sam-
pled points into two sequences of consecutive points, each starting at one end of
the array containing the interpolated wavenumbers. The algorithm initializes the
left sequence with the leftmost array point, the right sequence with the rightmost
array and iteratively adds points to one of the sequences until all points belong
to one of the sequences. At each step, it is necessary to choose, whether we add
a point to the left sequence or to the right one. To this end, we try to add a
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neighbouring point to both sequences and using the new sequences, we fit two
lines to the energy values. For the right sequence, we fix the slope of the fitted
line to −5/3, a constant introduced in Section 2.3.1, to ensure the right part is
dominated by GWs. We evaluate the distance of the lines from the energy values
at the added points. We compare this error for the right and the left sequence,
and we decide to add a point to the sequence for which the error is smaller. When
there are no points left, the position between the sequences is considered to be
the upper bound of GWs.

The main structure of the algorithm is written compactly below. Apart from
the horizontal specific kinetic energy spectra at all times EkzAll, vector of wavenu-
mers k and a selected time time as in the previous algorithm, the input of the
algorithm is also the effective resolution effk.

input: EkzAll, k, time, effk

EksAll= SmoothenOverTime(EkzAll)
Eks = EksAll[time][0:Index(effk)]
ks = k[0:Index(effk)]
Ek_un,k_un = InterpolateToUniform(log(Eks),log(ks))

l_edge = 1
r_edge = (length(ks)-1)-1
slope = -5/3
while (l_edge<r_edge):

l_line =Interpolate(Ek_un[0:l_edge+1],k_un[0:l_edge+1])
r_line =Interpolate(Ek_un[r_edge-1:end],k_un[r_edge-1:end],slope)
l_error=ErrorAtNewPoint(l_line,Ek_un,k_un,l_edge+1)
r_error=ErrorAtNewPoint(r_line,Ek_un,k_un,r_edge-1)
if (l_error<r_error):

l_edge = l_edge+1
else:

r_edge = r_edge-1

kmin = l_edge
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3. Results
In this chapter, we begin by presenting the properties of the data – the horizontal
and vertical energy spectra, derive effective resolution of the model and the upper
range of the GW wavelengths (i.e. the longest GW wavelenghts) that are present
in the data. Then we focus on the high-pass filter method, its dependence on the
cutoff length and we present an improved method that uses the GW range based
on the results of our analysis. Finally, we show all the results for two specific
time instants, including the results from the active wind method.

3.1 Effective Resolution and GW spectra

3.1.1 Horizontal Energy Spectrum
We calculated the spectra by four methods – a method using the Fourier trans-
form of the velocity components and, to be able to verify the results, three meth-
ods based on Fourier transforms of divergence and vorticity calculated by finite
difference schemes: forward differences, central differences and five-point differ-
ences. The resulting spectra of the methods differ slightly for short and long
wavelengths, see Fig. 3.1(a).

For smaller wavenumbers, all the spectra calculated by finite differences co-
incide and their energy are slightly higher than by the method without finite
differences. A similar result was presented in article [36], Figure 3, where, con-
trary to our results, the method without finite differences has higher energy. The
difference between the methods decreases with decreasing wavelength.

We assume that the differences at high wavenumbers are caused by two effects.
The first one is the effect of the boundary. In the processed WRF simula-

tion, boundary conditions cause abrupt changes of gradient of velocity field at
the boundary. This makes it less reasonable to use the detrending method de-
scribed in Section 2.3.3 and, using the method that calculates FFT of velocity
components, it leads to oscillations in spectrum for the short wavelengths (Fig.
3.12(a)). The other methods are not so affected by this phenomenon as the vor-
ticity and divergence that are transformed to the Fourier space are near zero both
in wave-less parts of the domain and near the boundaries, and no detrending is
being applied. The oscillations vanish if we consider only a subdomain inside the
original domain.

The second effect explains the differing results of finite differences for shorter
wavelengths. It is grounded in the smoothing properties of certain finite-difference
schemes. Specifically, the central differences can be computed as arithmetic mean
of two subsequent values of forward differences. The five-point method cannot
be expressed as a mean of forward differences so easily, but as it considers more
points for computations, it also causes some smoothing. The central-difference
scheme and the five-point scheme thus smooth out small-scale patterns that are
contained in the results of the forward differences and consequently, the methods
show lower energy at shorter horizontal wavelengths.

Further, we dealt with the decomposition of the horizontal kinetic energy into
the divergent and rotational component. An example of the decomposition for
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(a) Comparison of different methods
of horizontal spectra computation. The
dotted lines display the theoretical slopes
-3 and -5/3.

(b) Decomposition of the spectrum into
the divergent and vortical part. The spec-
trum was evaluated by the method that
uses properties of FFT (red line in Fig.
3.1(a)).

Figure 3.1: Horizontal spectrum at the altitude 40 km. Solid line denotes the
median value over the time period, filled regions denote the regions between the
lower and upper quartile.

the altitude of 40 km can be shown in Fig. 3.1(b) evaluated again using the entire
domain. As expected, the dominant component of energy in the studied range of
wavelengths is the divergent one connected with the presence of GWs. However,
the rotational component of energy connected probably mainly with geostrophic
modes [5] is present in the full range of wavelenghts and, as expected, it dominates
the spectrum for wavelenghts longer than about 1000 km. It also dominates the
spectrum at shortest wavelenghts, which may be connected with the fact that
the ability of the model to resolve those modes does not depend critically on the
vertical resolution of the model.

Apart from evaluating the spectra for the whole domain, we also visualized
it for the subregions around the Southern Andes, South Georgia and Antarctic
Peninsula (figure not shown). Even though, for example, the region of South
Georgia is relatively small, the resulting spectra are similar to the spectra for the
whole domain.

3.1.2 Vertical Energy Spectrum
Before presenting the results regarding the vertical specific potential energy spec-
trum observed in the data, we start by studying the theoretical relation (2.97).

As already mentioned, the major problem with the relation (2.97) is the de-
pendence of the Brunt-Väisälä frequency N0 on the altitude. In other studies
dealing with the spectrum computation, the spectra are usually computed using
data from smaller altitude range due to the availability of such data and the
Brunt-Väisälä frequency is considered to be constant at this range (e.g. [44],
[60]).

However, in our data, N0 changes significantly (Fig. 3.2(a)). It first increases
from values around zero in the lower levels to the maximal value, approximately
0.025 s−1 in the middle stratosphere. From this level, it decreases back to values
around 0.015 s−1 in the middle mesosphere. Above, it is approximately constant.
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(a) Vertical profile of the squared Brunt-
Väisälä frequency.

(b) Dependence of the theoretical poten-
tial energy spectral density (2.97) on the
altitude via the vertical profile of Brunt-
Väisala frequency for different reciprocal
vertical wavelengths.

Figure 3.2: Dependence of theoretical potential energy of the basic flow on alti-
tude at a time step, averaged over the Antarctic Peninsula subdomain. Pertur-
bations were separated from the profile by fitting polynomials to the potential
temperature.

To understand the effect of the variability of N0, we studied the dependence
of the theoretical energy given by (2.97) on the altitude, using the vertical profile
of the Brunt-Väisälä frequency observed in the data (Fig. 3.2(b)). For a constant
vertical wavenumber, the theoretical potential energy changes rapidly near the
levels of zero N0. These very steep changes stop about the level of approximately
10 km. In the higher altitudes, the theoretical energy first increases with altitude
up to the maximal value at approximately 20 km, after which it decreases. Even
though the magnitude of the changes is much smaller for the logarithm of the
energy in the altitudes above 10 km, the value of the energy can still change by
a half of order of magnitude. For the power spectrum of temperature fluctua-
tion, the dependence of the theoretical spectral density (2.96) on the altitude is
even more significant due to the presence of fourth power of the Brunt-Väisälä
frequency.

The motivation of the potential energy definition (2.92) similarly assumes
nearly constant Brunt-Väisälä frequency. Therefore, we cannot evaluate the ver-
tical spectra using all model levels at once, although the model data contain
information about seventy-kilometre altitude range. Instead, we divide the levels
into three altitude ranges, 10 – 25 km, 25 – 50 km and 50 – 73 km. The restriction
of the lower level to 10 km is necessary due to the quick increase of N0 below this
level.

Within these ranges, the Brunt-Väisälä frequency still cannot be considered
constant. However, because the vertical resolution of the model is about 400 m,
we cannot use much shorter ranges in order to have enough values at each range.

The scaling used for computation of the spectrum density from the square of
the Fourier transform of the square root of potential energy is for the implemen-
tation that uses NFFT instead of FFT not entirely correct, since the levels are
not equidistant. On the other hand, if we consider only a range of the levels,
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Figure 3.3: Vertical spectrum averaged over the Antarctic Peninsula subdomain.

their distances do not vary significantly (see Fig. 2.1), and an approximation by
the mean distance seems reasonable. Even though this approximation reduces
the benefit of using NFFT over the linear interpolation, the method based on the
linear approximation might cause larger errors by interpolating levels that are far
away from the model levels. A better method for the estimation of the spectral
density without similar assumptions is to use a periodogram method [61], which
we plan to use in future research.

Vertical specific potential energy spectrum averaged over time and over the
subdomain Antarctic Peninsula is depicted in Fig. 3.3. The plot contains the
spectra computed from three different altitude ranges, using the non-equidistant
data with the NFFT method and the linearly interpolated data with the FFT.
We visualised also the theoretical slope (2.97) for N0 = 0.02 s−1. However, as
discussed above, the slope contains a significant uncertainty connected with the
dependence of the Brunt-Väisälä frequency on the altitude. Therefore, we cannot
rely on the correctness of this line.

For the shortest vertical wavenumbers, the spectral density of potential energy
increases with the wavelengths. The slope in this part of the spectra approxi-
mately corresponds to the slope of the theoretical dependence for GWs. The
increase is interrupted by the drop of the potential energy for motions with ver-
tical wavelengths of about 5 km.

Further, note the change of the vertical potential energy spectra shape for the
longest wavenumbers. Similarly to the concept of effective resolution introduced
for the horizontal spectra, this deviation from the theoretical slope could be
related with the model to simulate waves with short vertical wavelengths. For
Antarctic Peninsula subdomain, in Fig. 3.3, this vertical effective resolution can
be determined as approximately 1.2 km for all the altitude ranges.

The next observation that can be done in Fig. 3.3 is that the energy evaluated
from the non-equidistant data is higher than the energy evaluated after the linear
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interpolation. This is consistent with the assumption that the linear interpolation
causes apparent decrease of the wave activity. On the other hand, we consider
the wavy shape of the spectra computed by the NFFT method to be rather an
artefact of the method, as the structure does not change much in time. The NFFT
method evaluated the spectra also for smaller wavenumbers. Nevertheless, as we
are not interested in the contributions to the potential energy by effects with
approximately zero frequency, we do not plot this part of the spectra.

The difference between the spectra computed using FFT and NFFT can also
be partially explained as a consequence of polynomial fitting, which is necessary
for division of the temperature and the potential temperature into the mean
values and perturbation field. For the NFFT method using the non-equidistant
data, we always used all the levels of the model for the fitting. For the method
with FFT, we interpolated the levels at the range 6 – 73 km and the polynomial
fitting was therefore applied on this range only. The method working with non-
equidistant data might therefore specify the perturbation field at the edges of the
intervals more correctly due to the access to the information from outside the
intervals. This could explain the fact that in Fig. 3.3, the two method are close
to each other in the middle altitude range, whereas they differ significantly for
the bottom and top altitude ranges.

Finally, the figure indicates the dependence of the energy on the altitude range.
Apart from the NFFT computation in the lowest range, the spectra evaluated at
higher altitudes have generally higher energy than the spectra evaluated at lower
altitudes. This could be caused either by the increase of wave amplitudes due to
the decrease of density with altitude, or it can be an effect of the vertical profile
of the Brunt-Väisälä frequency.

Spectra averaged over other subdomains (Fig. 3.4) look very similar to spectra
in Fig. 3.3. Again, the energy computed by the FFT method is in the part of the
spectra that corresponds to GWs lower in lower altitudes. The difference between
the FFT and NFFT method is also qualitatively the same as for the Antarctic
Peninsula subdomain.

On the other hand, one can observe a difference between the subdomains in
the spectrum for the lowest altitude range. Either the vertical effective resolution
corresponds to a much longer wavelength (around 2 km), or the resolution is
the same, but the GW spectrum is not saturated for wavelengths approximately
between 1 and 2 km.

3.1.3 Effective Resolution and GW Range
Next, we study the time evolution of the effective resolution and the upper bound
of the saturated part of the GW spectrum in the heights of 5 km, 20 km and 40
km.

As for the effective resolution, determining it was generally simple, as the
expected decrease of the horizontal kinetic energy for small scales was generally
well distinguishable. This is the reason why we did not apply a more involved
algorithm for the recognition of the value. On the other hand, in some cases the
change of the spectrum is more gradual (e.g. bottom middle plot in Fig. 3.5)
and the specification therefore contains some uncertainty.

Even though the effective resolution should theoretically be constant for the
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(a) Southern Andes subdomain. (b) South Georgia subdomain.

Figure 3.4: Vertical energy spectra averaged over other subdomains.

Figure 3.5: GW range and effective resolution at 20 km. Example of spectra from
nine randomly chosen time instants. The black vertical line denotes the effective
resolution, the orange vertical line denotes the upper bound of the horizontal
wavelengths with dominant GW.
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(a) Altitude 20 km. (b) Altitude 5 km.

Figure 3.6: Time evolution of the GW range. The orange line is the upper bound
of the horizontal wavelengths with dominant GW, the blue line represents the
time evolution of the effective resolution.

simulation settings, the determined value can vary in time not only due to the
imprecise algorithm, but also due to the absence of small-scale waves in the given
time step or conversely, due to the presence of unusually large portion of small-
scale waves that compensate for the decrease of energy. The time evolution of the
effective resolution is plotted in Fig. 3.6. For the altitude of 5 km, the variations
of the effective resolution are nicely visible. The flat maximum in the plot is
caused by the fact that the algorithm seeking the effective resolution assumes
that GW with wavelengths 30 – 80 km are always present, which is not satisfied
in these time instants and it therefore fits a line to a spectrum with a different
slope.

The time mean of the effective resolution further depends on the height. For
the altitude of 5 km, the effective resolution was determined as (20 ± 3) km,
whereas the effective resolution at 20 km and 40 km are (26 ± 2) km and (25 ±
1) km, respectively. A possible reason might be that the model has a better
vertical resolution in the lower levels than in the upper ones (Fig. 2.1), which
can cause that more waves are resolved in the bottom levels.

The effective resolution of the WRF model was estimated, for example, in
article [39] to approximately seven times the horizontal grid resolution. More
recently, it was studied in article [62]. The authors determined that the effective
resolution for a simulation with the horizontal grid resolution 3600 m is approxi-
mately 30 km. Both these results are consistent with our results.

The reason why determining of the upper bound on the GW part of the spec-
trum is more complicated can be seen in Fig. 3.5. The problem is that the
horizontal kinetic energy spectra are not smooth in the wavelengths for which
the bound is sought. Therefore, if we applied a similar algorithm as for the deter-
mining of the effective resolution, based on fitting a line to a part of the spectrum
with GWs, the found wavelength would be much smaller than the correct wave-
length, as the algorithm would terminate on the first random departure. These
bumps in the spectra can be caused partly by the insufficient number of points
for longer wavelengths due to the logarithmic scale. On the other hand, they
could also indicate the presence of GWs with a dominant wavelengths and they
should, in such a case, be included in the part of the spectra with GWs.
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The results regarding the decomposition of energy into the divergent and
rotational part in Section 3.1.1 suggest an alternative method of the upper bound
specification that would look for an intersection of the two parts of the energy
spectrum. The intersections seems to correspond well to the wavelengths found by
our algorithm. However, due to the problematic determination of the intersection
of the rough parts of the spectra, this method would face the same difficulties as
the method we applied.

Apart from the effective resolution, Fig. 3.6 also visualizes the time evolution
of the upper bound at the altitudes of 5 km and 20 km. Clearly, at the altitude
of 5 km, the wavelengths at which GWs lose their dominance are much shorter
than at the altitude of 20 km. This is a consequence of the fact that at 5 km,
the atmosphere is generally not stable, which is a necessary condition for the
preservation of an initial vertical perturbation and subsequently for the creation
of GWs.

3.2 High-pass Filter Method
In this section, we demonstrate the high-pass filter method, its properties and we
propose a new, improved, method.

The procedure of the high-pass filter method is illustrated in Fig. 3.7. The
part 3.7(b) was obtained from 3.7(a) by subtracting a fitted plane. Subsequent
filtering in the Fourier space leads to the part 3.7(c).

At first sight, the method successfully reveals a wave-structure in the mid-
dle of the domain. As we consider the data in the computation as a flat square
domain, not respecting its spherical character, and we do not apply any peri-
odization technique, the method creates incorrect values of the perturbation field
near boundaries. However, this is not a problem for our computations since we
subsequently study only the values from the subdomains marked in Fig. 2.1,
which do not contain the incorrect boundary parts of the domain.

3.2.1 Sensitivity to Cutoff
To verify the reliability of the high-pass filter method, we study its dependence
on the cutoff length.

To this end, the high-pass filter method was applied to the data at the altitudes
5 km, 20 km and 40 km for cutoff lengths between 250 km and 1550 km with the
step of 50 km. The resulting fields were used to evaluate the momentum fluxes
and mountain wave drags, as described in Section 2.5.3, for the three subdomains.

The high-pass filter method is a suitable method, if the values of the MWDs
and MFs do not depend on the cutoff length, i.e. if their derivatives with respect
to the cutoff length equal zero. We thus computed the derivative of the quantities
with respect to the cutoff length using finite differences. Finally, these derivatives
were rescaled by the median of the quantities over the time and cutoff length, so
that the significant dependence on the cutoff length is easily recognizable from
the values.

In Figure 3.8, we show the time evolution of the dependence of the zonal and
meridional component of the MWD on the cutoff length at the altitude of 20 km
for the three subdomains. In the plots, we would like to see a band of white color
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(a) Pressure field at the altitude of 40 km. (b) Pressure field from Fig. 3.7(a) after
subtraction of a fitted plane.

(c) Perturbation of the pressure obtained
by the high-pass filter method with cutoff
length 500 km.

Figure 3.7: Illustration of the high-pass filter method on the pressure field at the
altitude of 40 km.
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indicating that it is possible to determine a range of cutoff lengths, such that the
method does not depend on the parameter at any time instant.

For the Southern Andes subdomain, the method indeed seems to be indepen-
dent on the cutoff for some intermediate values of the cutoff range in the period
between 14th and 17th October. Nevertheless, it does depend on the cutoff length
significantly for other days and all cutoff lengths.

As for the subdomain of South Georgia, the dependence is similar to the
dependence at Southern Andes. Between approximately 15th and 17th October,
the method does not depend on the cutoff length so substantially for a range of
smaller cutoff lengths. Outside this range and for other days, the sensitivity is,
however, much higher than in the case of Southern Andes.

The last pair of plots in Fig. 3.8 for the Antarctic Peninsula subdomain looks
differently. In this case, the sensitivity is rather lower for smaller wavelengths
up to 15th October, after which there is no cutoff range that could be considered
to be the correct one. Nevertheless, the values differ less than for the previous
subdomains.

Considering other altitudes, the results can be summarized as follows.
For most subdomains and altitudes, both the zonal and meridional MFs ap-

pear to be dependent on the cutoff length for smaller cutoff values only (up to
600 km). Strong dependence on the cutoff even for higher cutoff values can be
observed in all cases at the altitude of 5 km and for the zonal component, and
also for some subdomains at the altitude of 20 km.

The dependence of the MWD components on the cutoff length vary also with
the altitude. Just as for the MFs, the dependence is generally more significant
at lower altitudes. Again, at the altitude of 40 km, it is reasonable not to use
cutoff lengths up to 600 km, due to higher dependence on the cutoff length.
Unlike the MFs, for certain time instants, the MWD is slightly dependent on
the cutoff length also for higher cutoff lengths. For the altitudes 5 km and 20
km, the MWD components exhibit dependence on the cutoff length for the whole
considered range of the cutoff lengths for all considered subdomains.

Assuming that the behaviour of the high-pass filter method depends on the
wavelength of the waves present in the subdomain, the very slight similarity
between the plots for Southern Andes and South Georgia in Fig. 3.8, shifted
in time, might be related to the observation that the longest waves from the
Southern Andes subdomain propagate into the subdomain of South Georgia. In
contrast, the subdomain of Antarctic Peninsula stays interconnected to the other
subdomains by shorter waves.

A more detailed examination of the situations with high and low sensitivity
to the cutoff length for the Southern Andes subdomain at the altitude 20 km will
be presented in Section 3.4.

3.2.2 Improved Method
To overcome the problem of the discovered dependence of the high-pass filter
method, we propose an improved version of the method. The idea is to use
the information obtained from the horizontal kinetic energy spectra to specify a
correct value of the cutoff length at each time step.

The first option for the improved algorithm is to use the upper bound of the
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(a) Derivative of MWDx with respect to
the cutoff, rescaled by the median. Evalu-
ated for the Southern Andes subdomain.

(b) Derivative of MWDy with respect to
the cutoff, rescaled by the median. Evalu-
ated for the Southern Andes subdomain.

(c) Derivative of MWDx with respect to
the cutoff, rescaled by the median. Evalu-
ated for the South Georgia subdomain.

(d) Derivative of MWDy with respect to
the cutoff, rescaled by the median. Evalu-
ated for the South Georgia subdomain.

(e) Derivative of MWDx with respect to
the cutoff, rescaled by the median. Eval-
uated for the Antarctic Peninsula subdo-
main.

(f) Derivative of MWDy with respect to the
cutoff, rescaled by the median. Evaluated
for the Antarctic Peninsula subdomain.

Figure 3.8: Dependence of MWD at the altitude of 20 km on the cutoff length.
The colours code the relative MWD change with respect to the median of the
absolute value of MWD computed over time and cutoff length. The two colours
close to white represent the change of the MWD component smaller than 10 %
of the median if the cutoff length is increased by 100 km.
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(a) Perturbation field of the pressure ob-
tained by high-pass filter method with the
cutoff length computed from the horizontal
kinetic energy spectrum.

(b) Perturbation field of the pressure ob-
tained by combination of high-pass filter
and low-pass filter with the same cutoff
length for high-pass filter as in Fig. 3.9(a)
and the cutoff length for the low-passed fil-
ter set on the basis of the effective resolu-
tion.

Figure 3.9: Comparison of high-pass filter and a combination of high-pass and
low pass filter, displayed on a detail of the pressure field from Fig. 3.7(a).

GW wavelength and the effective resolution of the model obtained in Section
3.1.3 to specify the cutoff lengths to the high-pass filter and to a low-pass filter.
The definition of the low pass filter is completely analogous to the definition of
the high-pass filter, using the response function (2.1).

However, we argue that the removal of the wavelengths shorter than the effec-
tive resolution is not appropriate. Although the effective resolution means that
the waves with wavelengths shorter than this threshold are not correctly resolved
by the model, it does not necessarily mean that there are no such waves. The
effective resolution is evaluated from the data from the entire domain. Locally,
there might be present waves with horizontal wavelength smaller than the deter-
mined effective resolution that are resolved by the model due to the sufficiently
long vertical wavelength. By application of the low-pass filter, we would lose the
information from these waves.

This is illustrated in Fig. 3.9 by comparing a detail from the pressure field
from Fig. 3.7(a). In Fig. 3.9(a), only the high-pass filter with the cutoff found
on the basis of the horizontal kinetic energy spectrum is applied. Fig. 3.9(b)
uses both the high-pass filter and the low-pass filter. The images show that
the pressure field after applying only the high-pass filter method contains some
wave-like structures that are undesirably removed by the low-pass filter.

For this reason, the only modification of the original high-pass filter method
is that we set the cutoff value dynamically, using the wavelength at which GWs
lose their dominance.

To avoid confusion, recall that we do not use the term cutoff length exactly
for the shortest wavelength that is removed from the data in the high-pass filter
method. Instead, these two values must be in our notation converted from one
to another in view of formula (2.3).

The improved method is compared with the original high-pass filter method
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for a constant value of the cutoff length 500 km. This value of the constant is
chosen so that it lies in the range of the cutoff lengths that is assumed to be
applicable in the study [20], similar to the constant cutoff values repeatedly used
in literature [63], [64], [65].

These two methods, evaluated again using MFs and MWDs on the subdomains
at different altitudes, in the majority of situations coincide or the time evolutions
of the studied quantities are at least similar.

For the altitude 5 km, the quantities computed by the improved method are
generally closer to zero, as the method takes into account the fact that GWs are
dominant for much shorter wavelengths only. For the altitudes 20 km and 40
km, the values are rather further from zero, which can be explained by the same
reasoning. However, due to the stronger variations of the GW range in time, this
effect is not so pronounced.

In Fig. 3.10, these two methods are compared using the values of the zonal and
meridional component of MWD in the altitude 20 km on different subdomains.
These plots are consistent with Fig. 3.8 and the range of GW wavelengths at the
altitude 20 km in Fig. 3.6(a).

One of the most noticable differences between the methods can be seen on 12th

October for the zonal MWD component in Southern Andes (Fig. 3.10(a)). The
high-pass filter method in this case computed values of the drag slightly below
zero, whereas the improved method found values up to 2 m s−1day−1, which is
the largest value of the zonal component of MWD in the subdomain. Regarding
the meridional MWD in Southern Andes (Fig. 3.10(b)), one of the more visible
differences between the methods is also for this day, even though the difference
is not so significant as for the zonal component.

For the subdomain of South Georgia (Figs. 3.10(c) and 3.10(d)), a similar,
significant discrepancy between the methods can be identified for a latter period,
rather on 12th October in the evening. As already mentioned in the previous
section, this time shift could correspond to the time necessary for the wave prop-
agation between the subdomains.

The magnitude of the difference around 12th October can be so large due to
the long horizontal wavelengths considered to belong to GWs (Fig. 3.6(a)), as the
methods then use completely different cutoff values. However, for the Antarctic
Peninsula subdomain, the cutoff difference for computation of the meridional
component of MWD (Fig. 3.10(f)) on this day does not have an impact on the
results of the methods. The results of the methods for zonal component of MWD
for Antarctic Peninsula (Fig. 3.10(e)) are not the same, it is nevertheless smaller
than for the other subdomains.

For other days, the cutoff length derived from the wavelength is for nearly
all the time steps also larger than the constant cutoff 500 km. Nonetheless, the
difference between the methods is generally not so large. We mention for example
the time period between 15th and 17th October, when the methods produce the
same results for nearly all cases in Fig. 3.10. This is consistent with the time
period of weaker sensitivity identified in Fig. 3.8.

In the previously mentioned time period of less pronounced sensitivity, the
magnitudes of MWD were relatively small. This is, however, not a necessary
condition for the methods to produce similar results. A counterexample is for
example the end of the simulation, at which both the methods consistently end
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(a) Zonal drag component, Southern An-
des.

(b) Meridional drag component, Southern
Andes.

(c) Zonal drag component, South Georgia. (d) Meridional drag component, South
Georgia.

(e) Zonal drag component, Antarctic
Peninsula.

(f) Meridional drag component, Antarctic
Peninsula.

Figure 3.10: Comparison of the improved method and high-pass filter method
with constant cutoff. The orange lines visualize the time evolution of MWD
computed using the wave perturbation from the improved method. The blue lines
describe the evolution of MWD using the high-pass filter method with constant
cutoff length 500 km. The filled blue regions represent the possible values of
MWD in individual times for the cutoff range 250 – 1550 km.
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(a) Vorticity forcing computed by the ac-
tive wind method.

(b) Divergence forcing computed by the ac-
tive wind method.

(c) Vertical derivative of the potential tem-
perature.

Figure 3.11: Illustration of the active wind method – vertical cross-section along
a segment of 58th parallel south, above the Drake Passage.

with relatively large values of MWD.
Altogether, in the comparison of the methods, there are time intervals, at

which the values are approximately the same, and time intervals, at which they
differ completely. These cases will be studied in Section 3.4 in more detail.

3.3 Active Wind Method
In this section, we will show some properties of the active wind method.

Since we were not able to separate the velocity perturbations corresponding to
GWs from the perturbation fields, we cannot compare the MF and MWD resulting
from the active wind method with the high-pass filter methods. Instead, we use
the active wind method to help explaining the difference between the original
high-pass filter method and its improved version in Section 3.4.

Examples of vertical cross-sections of the divergence and vorticity forcing are
depicted in Fig. 3.11. Up to the altitude of about 45 km, the vorticity forcing
exhibit a weak small-scale structure. In the divergence forcing, sections with
positive and negative values form backward slanted stripes that are supposed to
be related to GWs. The size of the forcing generally grows with the altitude.

Cross-sections from different regions of the domain look very similarly. The
largest difference is that the vertical section in Fig. 3.11 is above the sea surface
only. Therefore, we cannot see any GWs generated over orography, as for example
in Fig. 3.13(b), but only their horizontal propagation. The second difference is
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in the altitude of the level at which the structure of the results notably changes.
To explain the behaviour of the method in the upper atmosphere, vertical

profile of the vertical derivative of potential temperature for the same cross-
section as the divergence and vorticity forcing is shown in Fig. 3.11(c). We
can see that the quantity significantly changes with the altitude in the upper
levels and its value is often very close to zero. The layers with zero potential
temperature gradient can be a sign of evolving vertical overturning turbulence
due to the GW dissipation. However, in the derivation of the forcing terms, we
assumed it is non-zero (see definitions (2.32) and (2.33)).

In the lower atmosphere, the values of the vertical derivative of the potential
temperature are also very small. Nevertheless, this does not cause problems since
their gradient is much smaller.

Comparison of the derivative of potential temperature with the vorticity forc-
ing in Fig. 3.11(a) reveals that the nearly horizontal bands of the vorticity forc-
ing with greater magnitude indeed correspond to the bands of very small vertical
derivative of the potential temperature. A similar structure is visible also in Fig.
3.11(b), where the similarity with the plot of vertical derivative of the potential
temperature is, however, not so apparent due to the generally larger values of the
divergence forcing in the upper levels.

We therefore consider the different behaviour of the method at higher altitudes
to be an error due to the unsatisfied assumption. The performance of the method,
in the regions with near zero potential temperature gradients has to be tested in
the future work and it is of particular interest due to the link to GW dissipation.
In the next section, we plot only the lower altitudes.

3.4 Case Study
In this section, we study in detail two time instants of the simulation, using
the previous results. The first represents the situation when the high-pass filter
method with constant cutoff length 500 km and the improved method give very
similar results, and the high-pass filter method does not depend on the cutoff
length. The second example is chosen such that the methods differ significantly.

For the choice of these time instants, we utilized the results depicted in
Figs. 3.10(a), 3.10(b), 3.8(a) and 3.8(b). We therefore focus on the situation
in the subdomain of Southern Andes for the MWD. To avoid the trivial case, in
which the improved method uses the same cutoff length as the original one, we
do not choose the days with the lowest upper bound of the GW wavelength in
Fig. 3.6(a).

To understand the differences between these situations, we study the horizon-
tal and vertical spectra and the results obtained from the active wind method.

Even though we focus on a subdomain only, the horizontal kinetic energy
spectrum is always evaluated for the whole domain, as the subdomain is too
small and the spectrum computed purely from the data on the subdomain would
not represent the longest GW wavelengths correctly. This is not a problem,
because for the chosen cases, the agreement or disagreement of the methods on a
subdomain approximately corresponds to the agreement or disagreement in other
subdomains. Also, the studied Southern Andes locality represents one of the
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larger hotspots in the domain, so the spectrum for the entire domain reflects the
wave activity on this subdomain.

In the next subsections, we are refering to a single time step with better cor-
respondence of the high-pass filter methods and a single time step with worse
correspondence. Nevertheless, we observed the general properties of the spec-
tra described in the next subsections also in other time instances with similar
differences between the high-pass filter methods.

3.4.1 Example 1
The first selected time instant is from 15th October 2010, 00:00. In this case, the
results of the high-pass filter methods are very similar. The plots characterizing
this situation are depicted in Fig. 3.12.

First, we focus on the horizontal specific kinetic energy spectrum in 3.12(a).
The shape of the spectrum is quite similar to the average spectrum at the altitude
20 km. Note the fast transition between the part of the spectra with dominant
rotational energy and the part with dominant divergent energy. This enables
relatively good specification of the wavelength bound that is used for the improved
high-pass filter method. The found wavelength is approximately 650 km, which
corresponds to the cutoff length slightly smaller than 920 km. Fig. 3.12(a)
suggests that the utilization of the cutoff length 500 km, denoted by solid grey
vertical line in the plot, instead of the found cutoff length, denoted by black line,
leads to the inclusion of smaller portion of the spectrum, in which GWs dominate.
However, this difference does not seem to have a significant impact on the hight-
pass method results. The majority of MF is probably carried by the part of the
spectrum at shorter wavelengths.

In the vertical specific potential energy spectrum density in Fig. 3.12(b),
we do not see a straight part corresponding to the saturated part of the GW
spectrum. In comparison with the average vertical spectrum 3.3, its changes
with the wavenumber are gradual. The theoretical spectrum does not fit onto
the computed spectrum quantitatively, either. This could, however, be caused
by the incorrect specification of the multiplicative parameters in the formula for
the theoretical spectrum. Considering only the slope of the theoretical spectrum,
it seems that GWs with shorter wavelengths (smaller than 2 km) are rather
missing. The maximal wavelength that might be attributed to GWs is about
5 km. Together with the hypothesis from above that the MFs are dominated
by waves with shorter horizontal wavelengths this is suggesting that the waves
will have rather vertical phase line orientation, an expectable result for mountain
waves over a steep terrain. Nevertheless, these numeric wavelength specifications
are not very clear due to the discrepancy with the theoretical spectrum.

The vertical structure of the waves can be also viewed in the vertical cross-
section of the divergence forcing field, evaluated using the active wind method
(Fig. 3.12(d)). Above mountains, slightly slanted columns of positive and neg-
ative values of the divergence forcing are generated. Even though one vertical
cross-section cannot represent the whole domain, the near vertical alignment of
the phase lines supports the above made hypothesis about the shorter horizontal
wavelengths. In the altitude about 10 km, the forcing is attenuated, suggesting
dissipation of the primer GWs. Higher up the forcing is pronounced again with
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(a) Horizontal spectrum of kinetic energy
at the whole domain at the altitude of 20
km. Grey line denotes the wavelength cor-
responding to the cutoff 500 km, black line
corresponds to the cutoff of the improved
method. The region between the dotted
lines is the range of wavelengths at which
we tested the dependence on the cutoff.

(b) Vertical spectrum of potential energy
evaluated at the altitude range 10 – 25 km
, averaged over the subdomain of Southern
Andes. Theoretical line corresponds to the
Brunt-Väisälä frequency 0.02 s−1.

(c) Horizontal intersection of the forcing to
the divergence equation, evaluated by the
active wind method at the altitude of 20
km.

(d) Vertical cross-section of the forcing to
the divergence equation, evaluated by the
active-wind method at the cross-section de-
noted in Fig. 3.12(c). Blue line at the bot-
tom represents the topography.

(e) Vertical velocity at the altitude of
20 km.

Figure 3.12: Situation on 15th October 2010, 00:00, at the subdomain of South-
ern Andes. The length of the line segment AB in Figs. 3.12(c) and 3.12(e) is
approximately 440 km.
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possible contribution of secondary generated GWs.
The attenuation of GWs’ structure in the altitude range 10 – 25 km can explain

the specific shape of the vertical spectrum, since the spectrum is computed using
exactly this altitude range. Moreover, from Fig. 3.12(d), the vertical wavelength
of the wave motion can be estimated to be 5 km, which is in accordance with the
information obtained from spectral analysis.

In the horizontal cross-section of the divergence forcing (Fig. 3.12(c)), evalu-
ated by active wind method, a small-scale structure apparent particularly above
the mountain ranges is visible. On the other hand, the method does not pro-
vide us any waves with longer horizontal wavelengths. Such waves are, however,
confirmed to be present in the data by the horizontal kinetic energy spectrum.
This so far unpublished fact that the short waves dominate the forcing has a
logical reasoning. Namely, it can be anticipated that the time derivative of the
divergence at a point is higher if the divergence changes faster for shorter waves
with shorter frequencies.

To obtain waves with longer wavelengths from the forcing terms, a spatial
or temporal averaging would be necessary. This property might nevertheless
become very useful for future research, as exactly the shortest waves are the waves
that must be parametrised in weather prediction models. Using the forcing to
the divergence equation, it seems to be possible to study their propagation and
distribution in the domain in detail.

In our case, using a detail of Fig. 3.12(c), the forcing to the divergence
equation can be used to confirm the effective resolution of the model around
25 km.

To visualize also waves with longer wavelengths, the horizontal cross-section of
the vertical velocity is shown in Fig. 3.12(e). Apart from the small-scale structure
above the mountains similar to the structure obtained by the active wind method,
the vertical velocity plots makes visible also waves with horizontal wavelengths
roughly estimated 100 km to 300 km, situated at the south of the subdomain.
However, as these wavelengths correspond to the cutoff length smaller than the
considered value 500 km, they will be treated by the two high-pass filter methods
similarly and they are not expected to cause any difference between the results.

3.4.2 Example 2
The second time instant that we study, in which the high-pass filter methods
provide different results, is 12th October 2010 at 00:00. For the study of this
situation, we use plots in Fig. 3.13.

Again, we start by the horizontal specific kinetic energy spectrum, visualized
in Fig. 3.13(a). In contrast to the previous case (Fig. 3.12(a)), there is a range
of wavelengths at which the divergent and rotational part have similar energy.
This might cause problems, since we either do not include a significant part of the
divergent spectrum, assumed to belong to GWs, or we work with the rotational
part of the spectrum.

On the other hand, the effect of the rotational part of the spectrum on the MFs
and MWDs is not so clear. It is natural to assume that the vortical modes produce
smaller vertical velocity perturbations than GWs. From this, one could deduce
that, for example for the zonal drag component in view of equations (2.57), the
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(a) Horizontal spectrum of kinetic energy
at the whole domain at the altitude of 20
km. Vertical lines have the same meaning
as in Fig. 3.12(a).

(b) Vertical spectrum of potential energy
evaluated at the altitude range 10 – 25 km,
averaged over the subdomain of Southern
Andes. Theoretical line corresponds to the
Brunt-Väisälä frequency 0.02 s−1

(c) Horizontal intersection of the forcing to
the divergence equation, evaluated by the
active wind method at the altitude of 20
km.

(d) Vertical cross-section of the forcing to
the divergence equation, evaluated by the
active-wind method at the cross-section de-
noted in Fig. 3.13(c). Blue line at the bot-
tom represents the topography.

(e) Vertical velocity at the altitude of
20 km.

Figure 3.13: Situation on 12th October 2010, 00:00, at the subdomain of South-
ern Andes. The length of the line segment AB in Figs. 3.13(c) and 3.13(e) is
approximately 440 km.
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dominant MWDx components for these modes are the components MWDxx and
MWDyx. In the observed MWDx, the component MWDzx has, however, larger
magnitude than the other two. Admitting also that GWs can contribute to some
extent to all three parts, this consideration suggests that the effect of vortical
modes on MWD components could be relatively small. A further research in this
direction is needed.

Returning to the studied situation in Fig. 3.13, the horizontal wavelength
specified by our algorithm as the upper bound of the spectrum part with domi-
nant GWs is 980 km, which corresponds to the the cutoff length approximately
1390 km. The difference in the cutoff lengths is therefore relatively big. Never-
theless, as can be deduced from Fig. 3.8, this cannot be the only reason for which
the improved method provides different results than the original high-pass filter
method in this time instant and not so different results in the time instant in the
previous section.

One of the most notable differences between the plots in Fig. 3.12 and Fig.
3.13 is in the vertical potential energy spectral densities, because the vertical
spectrum in Fig. 3.13(b) indeed follows the line for the theoretical spectrum.

Therefore, we can specify the maximal vertical wavelength to be between 5 km
and 7 km. A more exact specification of the maximal vertical wavelength is not
possible due to the sparsity of points in this part of the spectrum; this could be
improved by taking larger altitude range for the spectrum computation.

The minimal vertical wavelength that can be associated with GWs that are
correctly simulated by the model is in this case slightly above 1 km, which is
smaller than this wavelength in the previous case.

The different form of the vertical spectra in Fig. 3.12 and Fig. 3.13 can be also
anticipated from the vertical cross-section of the divergence forcing (Fig. 3.13(d)).
The backward slanted stripes of positive and negative divergence forcing are in
this case above the mountains more pronounced and there is no attenuation in
the lower stratosphere.

The broader parts of the vertical cross-section of the divergence forcing might
indicate that only the waves with longer wavelengths are present in this part of
the domain. This hypothesis is consistent with Fig. 3.13(e), where the wave
motion changes from the small-scale waves to waves with slightly larger scales
around the point B. In the horizontal cross-section of the divergence forcing, this
transfer is expressed as a decrease of the magnitude of the forcing.

As for the horizontal cross-section of the divergence forcing in general, the two
time instants also differ. In particular, in Fig. 3.13(c), there is more divergence
forcing also near the mountain ranges, not only above them. That is, the second
chosen time instant contains more wave activity with horizontal propagation of
short waves. Similarly to the previous time instant, this plot further confirms the
previously determined effective resolution.

In this case, the plot of vertical velocity (Fig. 3.13(e)) is very interesting.
First, as in the divergence forcing, we can see a variety of waves with smaller
scales in the south part of the domain, even with slightly modified direction
compared to Fig. 3.13(e). This is attributed to the generally chaotic situation
with high wave activity and mixing of the wavelengths in the vertical velocity
plot.

The most interesting part are, however, the waves in the east, which are well
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pronounced and have relatively long wavelengths that could be approximated up
to 500 km. With such a wavelength, the wave would be considered to belong
to gravity waves by the improved high-pass filter method, but by the original
method with cutoff length 500 km, the wave would be added to the mean flow.
Assuming a significant part of the MF is carried by this wave, it could cause the
discrepancy between the high-pass filter methods.
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Conclusion
Internal gravity waves (GWs) are wave-like motions within a stably stratified
fluid. Impacting the middle atmosphere by interactions with other motions and
by the energy and momentum transport and deposition, they constitute an im-
portant component of the atmospheric dynamics.

As GWs act even on very small scales, considerable part of their spectrum
is not resolved by the global circulation models. Hence, their effects must be
supplied to the models by parametrizations, for which it is necessary to estimate
the contribution of GWs to the momentum and energy budget.

This could be achieved by thorough observations of GWs in the atmosphere.
However, observations of GWs in the atmosphere also face several difficulties. In
addition, to calculate the quantities for the parametrizations, the GWs’ pertur-
bations to all the velocity components must be specified. Specifically, we cannot
settle for a perturbation field of temperature or vertical velocity, which would be
sufficient for visualization of GWs.

The objective of the thesis was to study the GW diagnostic methods in
data obtained from high-resolution simulations, as high-resolution models resolve
larger portion of the GW spectrum and so they can be used to estimate the
quantities for the parametrizations.

In the theoretical introduction, we first introduced GWs and their properties,
the dispersion relation and an example of a polarization relation. Subsequently,
we re-derived the methods applied in the thesis in detail. A special care was
dedicated to the derivation of the active wind with the identification of the forcing
terms in the equation of divergence and vorticity and to the derivation of the
formulas for momentum flux and mountain wave drag computation in spherical
coordinates.

In the practical part of the thesis, we worked with a large dataset from an
experimental simulation of the WRF model with the horizontal resolution of 3 km.

First, we studied the properties of the data. To specify, which GWs are present
in the simulation, we studied the horizontal and the vertical spectra. In the hori-
zontal spectra, we identified the effective resolution and the maximum horizontal
wavelength, at which GWs dominate. The determined effective resolution of the
model lies approximately between 20 and 25 km, depending mostly on the alti-
tude. In the altitude of 5 km, GWs dominate up to horizontal wavelengths only
about 100 km. In higher altitudes, the maximum dominant horizontal wavelength
ranges between 400 and 1300 km. The vertical spectra revealed that the data
contain GWs with vertical wavelengths in average up to 5 km.

Next, we dealt with the high-pass filter method. By evaluation of the momen-
tum flux and mountain wave drag for GWs filtered from the data using different
values of the cutoff length, we determined the sensitivity of the method to the
parameter. The results showed that in most situations, the results change signif-
icantly with the cutoff length, proving that the constant cutoff adds considerable
uncertainty to the momentum flux and mountain wave drag estimates. The sen-
sitivity is less pronounced for higher altitudes.

Based on the results of the cutoff sensitivity, we implemented a new, improved
version of the high-pass filter method. It uses the maximum wavelength with
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dominant GWs, obtained from the horizontal spectra.
Further, we applied a method for visualisation of GWs, the active wind

method. The output of the method, up to the altitude about 40 – 60 km, seems
to describe the wave structure of GWs realistically at small scales by showing
their non-dissipative contribution to the forcing of the divergence of the flow.
The performance of this method in the range of GW dissipation is left for future
research.

In the final part of the thesis, all the previous approaches were utilized to
study two selected time instants. The situations, in which the original high-pass
filter method with constant cutoff length and the improved version give similar
and different results, were compared. We observed the differences mainly in the
different shape of the vertical spectrum and the size of the maximal horizontal
wavelength, for which GWs dominate. Consequently, it seems that the original
high-pass filter method is consistent with the improved method for time instants
with lower wave activity with lower contributions from horizontally propagating
GWs into the domain only.

The possible further research in this area includes studying other methods
for local domain and the GW diagnostic methods suitable for the global data.
The ability to correctly distinguish GWs from the background further enables us
to study the physical mechanisms of the internal gravity waves, their interaction
with background or with other wave-type motion.
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A. Coordinate systems
The physical processes in the atmosphere can be described using different coor-
dinate systems.

The mathematically simplest form of equation of motions can be obtained in
an inertial coordinate system, that does not rotate with the Earth. Using such
an absolute coordinate system, an interpretation of the resulting air motion is,
however, more complicated.

The most commonly used description of the position of points in the atmo-
sphere is by means of local Cartesian systems rotating with the Earth. The
xy-plane of these systems is taken as the plane parallel to the tangential plane
to the sphere approximating the shape of the Earth. The x-axis is considered
to point from the west to the east and it is called the zonal direction. The y-
axis represents the meridional direction from the south to the north. The z-axis
points from the centre of the sphere upwards. In this thesis, we always use this
coordinate system.

The specification of the units on the vertical axis is also variable. In so-
called z-system, the axis measures the altitude. Other options are, for example,
the pressure vertical coordinate, which is determined by the levels of constant
pressure, or vertical coordinates that follow the terrain at least in the lower levels.

Further, we focus on the z-system, which we employ in the thesis. Because the
Cartesian coordinate systems change between points, we have to derive formulas
for spatial derivatives. More precisely, we will express partial derivatives of the
spherical coordinates with respect to the local coordinates. Using chain rule, we
can then pass from the derivatives in local coordinate system to the derivatives
in the global spherical coordinates.

We denote the spherical coordinates by (r, λ, ϕ), where r ∈ (0, ∞) is the radial
coordinate, ϕ ∈ (−90◦, 90◦) corresponds to the latitude and λ ∈ (−180◦, 180◦)
corresponds to the longitude. For a fixed pair (λ, ϕ), we denote the local Cartesian
coordinates by (x, y, z).

First, it is clear that the derivative in the vertical direction remains unmod-
ified, as the vertical differentiation does not operate with multiple local coordi-
nate systems. For the derivative evaluation, we can use the fact that the vertical
coordinate in the local coordinate system at a point coincides with the radial
coordinate of the spherical coordinates. Mathematically, we can write

∂r

∂x
= 0,

∂r

∂y
= 0,

∂r

∂z
= 1 (A.1)

for every point in the space.
Because the local coordinates are similar to the spherical coordinates, we also

easily see that
∂ϕ

∂z
= 0,

∂λ

∂z
= 0,

∂ϕ

∂x
= 0,

∂λ

∂y
= 0. (A.2)

The only non-trivial components of the gradient are the zonal derivative of the
longitude and meridional derivative of the latitude.

We start with the meridional derivative of the latitude. The simplest deriva-
tion of the derivative is based on the understanding of the derivative as a reaction
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to the infinitesimal change of a parameter. If the latitude is increased by a small
angle ∆ϕ, at a constant distance r in a direction of constant longitude, the coor-
dinate y increases by ∆y = r∆ϕ. Therefore, it holds

∂ϕ

∂y
= lim

∆y→0

∆ϕ

∆y
= 1

r
. (A.3)

The evaluation of the derivative of the longitude is a bit more complicated.
After a small change ∆λ of the longitude, the coordinate x again changes by
∆x = R∆λ. The parameter R is, however, not the distance from the centre of
the sphere as before, but the distance from an axis connecting the poles of the
sphere. By the geometry, it can be expressed as R = r cos ϕ. It holds,

∂λ

∂x
= lim

∆x→0

∆λ

∆x
= lim

∆x→0

1
R

= 1
r cos ϕ

. (A.4)

Altogether, for a function F (x, y, z) = f(λ(x), ϕ(y), r(z)), we have

∂

∂x
F (x, y, z) = 1

r(z) cos ϕ(y)
∂f

∂λ

⏐⏐⏐⏐⏐
λ=λ(x)

, (A.5a)

∂

∂y
F (x, y, z) = 1

r(z)
∂f

∂ϕ

⏐⏐⏐⏐⏐
ϕ=ϕ(y)

, (A.5b)

∂

∂z
F (x, y, z) = ∂f

∂r

⏐⏐⏐⏐⏐
r=r(z)

. (A.5c)

Next, after the substitution of the Lamé coefficients r and r cos φ into the
general form of divergence and curl in the orthogonal coordinates, we have, for a
vector-valued function F =

(
fλ, fϕ, f r

)
,

∇ · F = 1
r cos ϕ

(
∂fλ

∂λ
+ ∂

∂ϕ
(fϕ cos ϕ)

)
+ ∂f r

∂r
, (A.6)

∇ × F =

⎛⎜⎜⎜⎝
1
r

(
∂fr

∂ϕ
− ∂

∂r
(rfϕ)

)
1

r cos ϕ

(
∂
∂r

(
fλr cos ϕ

)
− ∂fr

∂λ

)
1

r cos ϕ

(
∂fϕ

∂λ
− ∂

∂ϕ

(
fλ cos ϕ

))
⎞⎟⎟⎟⎠ . (A.7)

As in the definition of the function F, the first component of the curl corresponds
to the longitude coordinate, the second to the latitude and the third to the radial
coordinate.
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B. Electronic Attachment
Complete scripts used for the analysis are attached to the thesis. The enclosed
.zip file has the following structure.

• The directory spectra contains scripts concerning the evaluation of horizon-
tal and vertical spectra and the identification of wavelength range of GWs.
The central computations apply functions in files horizontalspectrum.py,
verticalspectrum.py and locateGW-run.py.

• Results regarding the sensitivity of the high-pass filter method were ob-
tained using the files in directory sensitivity_to_cutoff. The computa-
tions are run using the script filter_calculate_parallel.sh. The main
parts of the computations are done in files procfiltpara-levels.ncl and
procsubdom-levels.ncl.

• The scripts concerning the improved high-pass filter method are located in
directory improved_filter. The primary functions are written in the files
filter_range.py and dragflux.ncl.

• The directory active_flow contains scripts to the active wind method. The
central part of the computation is provided by the function funfilteractive

in the file filteractive.py. Apart from files for plotting, the remaining files
serve for data preprocessing and derivative evaluation.
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