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Introduction
Commutator theory is a part of universal algebra, which generalizes group-theoretic def-
initions such as the commutator of two subgroups, abelianess, or nilpotence to arbitrary
algebras. Its development started in 1970s with results of Gumm [7] and Smith [10] and
it proved to be very useful not only in varieties closely related to groups, but also in al-
gebras that are very far from them. The work of Freese and McKenzie [5] shows that the
commutator theory works particularly well in congruence modular varieties, and hence,
in particular, Mal’tsev varieties.

As the name suggests, the binary commutator of two congruences plays central role
in the theory. The commutator is defined by a condition for terms of an algebra. In [4],
Bulatov generalized the term condition that defines commutator of two congruences to
any number of congruences and introduced higher commutators of arbitrary arity. Using
these, it is possible to define a new notion of supernilpotence. In Mal’tsev algebras,
supernilpotence implies nilpotence and can be defined in different ways, which provide
various methods for studying properties of supernilpotent algebras.

Loops are algebras with a binary operation ·, which is uniquely divisible from both
sides, and has a neutral element 1. They naturally generalize groups dropping associativ-
ity from the axioms (see Subsection 1.1.1). Therefore, it is not surprising that many group
definitions were generalized for loops, such as normal subloops, center or nilpotence. On
the other hand, loops are Mal’tsev algebras and hence a lot of universal-algebraic concepts
such as commutator theory work well in loops. The arising definitions coincide with the
ones based on the group theory and hence we can use universal-algebraic tools to study
loop properties.

The binary commutator and related properties for loops were already studied by
Stanovský and Vojtěchovský in [12, 11]. Most importantly, they defined a commutator
of two normal subloops based on the binary commutator of congruences and described it
in loop-theoretical notions, using the inner mapping group of a loop (see Definition 1.2)
and a similar notion of total inner mapping group.

In this thesis, we continue to study commutator theory in loops, in particular, we
focus on supernilpotent loops. We use three different equivalent definitions of higher
commutators for Mal’tsev algebras due to Bulatov [4], Aichinger and Mudrinski [2], and
Opršal [9], which allow us to use diverse approaches to study commutators of higher arity
and supernilpotence in loops.

In the first chapter, we introduce basic notions and important results from loop theory
(Section 1.1) and commutator theory (Section 1.2), which will be used throughout the
thesis or which motivated the research. For two results that were particularly significant
for us, we also give proofs in modern notation and with more details than in the original
papers. The first of them is Bruck’s theorem that states that a loop with a k-nilpotent
multiplication group is k-nilpotent (Theorem 1.10) and the second is Wright’s theorem
that shows that a finite loop is supernilpotent if and only if its multiplication group is
nilpotent (Theorem 1.13, after reformulation in universal-algebraic notions).

The second chapter is devoted to theoretical results achieved in the thesis. In Section
2.1, we give a simple proof of the fact that supernilpotent loops are nilpotent, since the
general proof for Mal’tsev algebras is fairly technical. In Section 2.2, we study the iden-
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tities that give necessary or sufficient conditions for loops to be supernilpotent based on
the inner mappings. In Section 2.3, we prove a stronger version of the forward implication
of Wright’s theorem [14], i. e., a k-supernilpotent loop has a k-nilpotent multiplication
group.

In the third chapter we use Opršal’s definition of supernilpotence [9] to develop an
algorithm for testing k-supernilpotence in finite loops. In Section 3.1 and 3.2 we de-
scribe the algorithm and data representation used in the implementation. We focused
on testing 3-supernilpotence, since 1- and 2-supernilpotent loops are shown to be groups
in Section 2.2. We ran the 3-supernilpotence test on all non-associative 8-element loops
with multiplication group of nilpotence class 3 and all non-associative 9-element loops.
The results are summarized in Section 3.3. In Section 3.4, we draw conclusions from
them and discuss the implications for further research.

The thesis contains original results (Proposition 2.1, Theorem 2.4) that are presented
in Chapter 2 including necessary conditions for 3-supernilpotent loops based on inner
mappings and a necessary condition for k-supernilpotent loops based on the nilpotence
class of their multiplication group. Furthermore, in Chapter 3 we present an algorithm
for testing supernilpotence and the results of the tests performed by the implemented
algorithm.
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1. Preliminaries
The purpose of the thesis is to study properties that arise from the universal-algebraic
commutator theory in context of loops. In the first chapter we introduce the loop-
theoretical and universal-algebraic notions that are going to be used throughout the text
and present the well-known results which we build on or which motivated the research.

1.1 Loops
In this section we deal with basic loop-theoretical notions, including nilpotence, which
is generalized from the well-known notion in groups. We list some basic properties and
present detailed proofs of two theorems (Theorem 1.10 and 1.13) that motivated us to
study the connection between supernilpotence of a loop and nilpotence of its multiplica-
tion group.

1.1.1 Basic notions
Definition 1.1 (loop). Let Q be a set equipped with a binary operation · : Q × Q → Q.
We call (Q, ·) a quasigroup if for every a, b ∈ Q there exist unique x, y ∈ Q such that
a · x = b and y · a = b. We denote these by a\b and b/a respectively.

If there is an element 1 ∈ Q such that for every a ∈ Q it holds that a · 1 = 1 · a = a,
then we say that (Q, ·, 1) is a loop.

Note that every group is a loop and a loop is a group if and only if the binary operation
· is associative.

Observe that \ and / can be understood as binary operations on Q. Using this, a loop
can be alternatively defined as a universal algebra (Q, ·, \, /, 1) satisfying the identitities

x\(x · y) = y, x · (x\y) = y, (y · x)/x = y, (y/x) · x = y, x · 1 = x = 1 · x.

It is easy to see that the two definitions are equivalent.

Definition 1.2. Let Q be a loop. For every x ∈ Q, let Lx, Rx, be permutations of Q
defined by

Lx(y) = xy, Rx(y) = yx.

The mappings Lx and Rx are called left and right translations.
The group generated by left and right translations of Q is called the multiplication

group of Q and denoted Mlt(Q). The stabilizer of 1 in Mlt(Q) is called the inner mapping
group of Q and denoted Inn(Q).

Observe that we have L−1
x (y) = x\y and R−1

x (y) = y/x.
Let us consider the following mappings

Lx,y = L−1
xy LxLy, Rx,y = R−1

yx RxRy, Tx = R−1
x Lx.

The following well-known proposition shows why the mentioned mappings are inte-
resting. The proof can be found for example in [12].
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Proposition 1.3. Let Q be a loop. Then

Inn(Q) = ⟨Lx,y, Rx,y, Tx : x, y ∈ Q⟩.

Next we define a normal subloop, which is analogous to the concept of normal sub-
group of a group.

Definition 1.4 (normal subloop). A subloop N of a loop Q is said to be normal, if

xN = Nx, x(yN) = (xy)N, N(xy) = (Nx)y,

for all x, y ∈ Q.

Observe that the sets xN , x ∈ Q have the same size and form a partition of Q, hence
for a finite Q, |N | divides |Q|.

Normal subloops of Q correspond to congruences of Q in a natural way. If N is a
normal subloop of Q, then we can define a binary relation αN by

a αN b iff a/b ∈ N

or, equivalently, a\b ∈ N , b/a ∈ N or b\a ∈ N (the equivalence is clear after observing
that any of these conditions is equivalent to aN = Na = Nb = bN). Using the mentioned
observation, it is straightforward to verify that αN is a congruence. Similarly, if α is a
congruence on Q, we define a subset

Nα = {a ∈ Q | a α 1},

which can be easily shown to be a normal subloop of Q using that, for a ∈ Q, the α-block
of a is precisely aNα = Nαa. Maps N ↦→ αN and α ↦→ Nα give a bijective correspondence
between normal subloops and congruences of Q.

Another well-known characterization of normal subloops uses inner mapping group.

Proposition 1.5. Let N be a subloop of a loop Q. The following conditions are equiva-
lent:

1. N is normal,

2. f(N) ⊆ N for every f ∈ Inn(Q),

3. f(N) = N for every f ∈ Inn(Q),

4. N is the block containing 1 of some congruence of Q.

1.1.2 Nilpotence
Similarly as in the group theory, nilpotence in loops is defined using the center of a loop.

Definition 1.6 (center of a loop). Let Q be a loop. The center of Q is the set Z(Q) of
all elements a ∈ Q such that for all x, y ∈ Q the following holds:

• a(xy) = (ax)y,
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• x(ay) = (xa)y,

• x(ya) = (xy)a,

• ax = xa.

Z(Q) is clearly a normal subloop of Q.

Definition 1.7 (nilpotent loop). Let Q be a loop. We define the iterated centers of
Q as normal subloops Zi(Q), i = 0, 1, . . . such that Z0(Q) = 1 and Zi+1(Q)/Zi(Q) =
Z(Q/Zi(Q)). Q is said to be k-nilpotent if Zk(Q) = Q for some k ≥ 0. The class of
nilpotence is the smallest k satisfying that Q is k-nilpotent.

Observe that Zi(Q) is a normal subloop for every i ≥ 0 (this is proved by induction
since Zi+1(Q) is the preimage of a normal subloop under projection on Q/Zi(Q)) and
hence the definition is correct. Moreover, observe that if a loop is k-nilpotent for some
k, then it is l-nilpotent for any l ≥ k.

We say that a loop is nilpotent of class k, if it is k-nilpotent, but not (k −1)-nilpotent.
If there exists a k such that a loop is k-nilpotent, we say that it is nilpotent.

We prove a very useful equivalent definition of loop nilpotence in the following propo-
sition. First we need an auxiliary lemma.

Lemma 1.8. Let Q be a loop and N1 ⊆ N2 be two of its normal subloops. For every
a ∈ Q, if aN1 ∈ Z(Q/N1), then aN2 ∈ Z(Q/N2).

Proof. It suffices to prove the claim for normal subloops 1 ⊆ N , then by the choice
Q = Q/N1, N = N2/N1 and using that

(aN1)N2/N1 ∈ Z((Q/N1)/(N2/N1)) iff aN2 ∈ Z(Q/N2),

the general claim follows.
Consider a ∈ Z(Q) and a normal subloop N in Q. We want to prove that aN ∈

Z(Q/N). Consider xN, yN ∈ Z(Q/N). Then

(aN)((xN)(yN)) = a(xy)N = (ax)yN = ((aN)(xN))(yN).

The other conditions are proved similarly.

Proposition 1.9. A loop is 1-nilpotent if and only if it is an abelian group and if k > 1,
a loop Q is k-nilpotent if and only if the loop Q/Z(Q) is (k − 1)-nilpotent.

Proof. A loop Q is 1-nilpotent if and only if Q = Z(Q), which is if and only if it is
associative and commutative, that is, an abelian group.

To deal with the general case, we start with a reformulation of the definition of
nilpotence with slightly relaxed condition on the series.

Claim. A loop Q is k-nilpotent if and only if there exist normal subloops of Q

1 = Q0 ≤ Q1 ≤ · · · ≤ Qk = Q

such that Qi+1/Qi ≤ Z(Q/Qi), i = 0, . . . k − 1.
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Proof. Nilpotent loops clearly satisfy the condition with a choice Qi = Zi(Q). For
the other implication, it suffices to show that Qi ≤ Zi(Q), i = 0, 1, . . . , k. This is true for
i = 0. Suppose that Qi ≤ Zi(Q) for some i ≥ 0, then for a ∈ Qi+1, we have by Lemma
1.8 that

aQi ∈ Qi+1/Qi ⊆ Z(Q/Qi) ⇒ aZi(Q) ∈ Z(Q/Zi(Q)) = Zi+1(Q)/Zi(Q)

and hence a ∈ Zi+1(Q), so the claim follows by induction.
Now we are ready to prove the proposition. Suppose first that we have a k-nilpotent

loop Q, k > 1. Let us have series of normal subloops

1 = Q0 ≤ Q1 ≤ · · · ≤ Qk = Q

such that Qi+1/Qi ≤ Z(Q/Qi), i = 0, . . . k − 1. Then Q1 ≤ Z(Q), let j > 1 be the
smallest such that Qj > Z(Q). We claim that

Z(Q)/Z(Q) ≤ Qj/Z(Q) ≤ Qj+1/Z(Q) ≤ · · · ≤ Qk/Z(Q) = Q/Z(Q)

is a series certifying that nilpotence class of Q/Z(Q) is at most k − 1. We need to verify
that the quotient of two consecutive members of the series is included in the corresponding
center. Using second isomorphism theorem, this condition is equivalent to

Qj/Z(Q) ≤ Z(Q/Z(Q)) and Qi+1/Qi ≤ Z(Q/Qi) for i = j, . . . , k − 1.

The former follows from Lemma 1.8 for normal subloops Qj−1 ≤ Z(Q) using Qj/Qj−1 ≤
Z(Q/Qj−1) and the latter follows from the definition of the series Q0 ≤ Q1 ≤ · · · ≤ Qk.

For the reverse implication, suppose that Q/Z(Q) is (k − 1)-nilpotent. Then there is
a series

Z(Q)/Z(Q) = Q0/Z(Q) ≤ Q1/Z(Q) ≤ · · · ≤ Qk−1/Z(Q) = Q/Z(Q),

such that by second isomorphism theorem Qi+1/Qi ≤ Z(Q/Qi), i = 0, . . . , k − 2. The
series

1 ≤ Z(Q) = Q0 ≤ Q1 ≤ · · · ≤ Qk−1 = Q

then certifies that Q is k-nilpotent.

In groups, the loop definition of nilpotence coincides with the traditional definition.
Hence groups of prime power order are nilpotent and finite nilpotent groups decompose
as a direct product of groups of prime power order. Neither statement is true for loops
in general. For example,

• every non-associative loop of prime order is not nilpotent, since |Z(Q)| divides |Q|,

• there is a directly indecomposable nilpotent loop of order 6 [8, Sec. 5].

For a nilpotent loop Q, various interesting properties of Mlt(Q) have been proved by
Bruck [3]. It turns out that there is a strong connection between the nilpotence of a loop
and properties of its multiplication group.
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Theorem 1.10. [3, Chap. 8] Let Q be a loop. If Mlt(Q) is k-nilpotent, then Q is
k-nilpotent.

The theorem was originally presented by Bruck just for finite loops. However, his proof
does not use finiteness of the loop and hence it holds in general. We present here Bruck’s
proof translated to modern notation. The proof is based on the following proposition.

Proposition 1.11. [3, Theorem 8B] Let Q be a loop and Zi = Zi(Q), i = 0, 1, . . . ,
be its central series. Define an ascending series Ni of subgroups of Mlt(Q) as follows:
N0 = Inn(Q) and Ni+1 is the normalizer of Ni in Mlt(Q), i = 0, 1, . . . Then, for every i,

Ni = {Raf | f ∈ Inn(Q), a ∈ Zi}.

In particular, Q is nilpotent of class k if and only if Nk = Mlt(Q) and Nk−1 ̸= Mlt(Q).

Proof. We prove the claim by induction on i. For i = 0, this is certainly true, so suppose
that the claim holds for some i ≥ 0 and we prove it for i + 1.

Let t ∈ Mlt(Q), then t = Rxh, where x = t(1) and h ∈ Inn(Q). Then, by the
induction hypothesis, t ∈ Ni+1 if and only if

∀a ∈ Zi, f ∈ Inn(Q) ∃b ∈ Zi, g ∈ Inn(Q) such that (Raf)(Rxh) = (Rxh)(Rbg) (1.1)

Suppose now that t ∈ Ni+1, we need to show that x ∈ Zi+1. Choose a and f and find
corresponding b and g. By applying (1.1) on 1 ∈ Q, we obtain

f(x) · a = h(b) · x.

Since b ∈ Zi and h ∈ Inn(Q), h(b) ∈ Zi. Since a ∈ Zi was arbitrary, it follows from the
normality of Zi that f(x)Zi = xZi. By setting f to suitable inner mappings (namely
Ly,z, Ry,z, [Ly, Rz] and Ty), we obtain that xZi ∈ Z(Q/Zi), that is, x ∈ Zi+1.

To prove the reverse inclusion, let t = Rxh, f ∈ Inn(Q), x ∈ Zi+1 and consider a ∈ Zi,
f ∈ Inn(Q). Then Raft = Ryh1, where h1 ∈ Inn(Q) and y = Raft(1) = f(x) · a. Since
x ∈ Zi+1, f(x)Zi = xZi = Zix (it holds for f = Ly,z, Ry,z, Ty from the definition of a
center and, by Proposition 1.3, this implies that it holds for all f ∈ Inn(Q)). Therefore,
y = f(x) · a = cx for some c ∈ Zi.

Now, for h2 = R−1
c R−1

x Rcxh1 ∈ Inn(Q),

Raft = Rcxh1 = RxRch2 = (Rxh)(h−1Rch2) = (Rxh)(Rbg),

for b = h−1(c) ∈ Zi and some g ∈ Inn(Q). It follows that t ∈ Ni+1.
Now it is straightforward to verify that, for every i, Zi = Q if and only if Ni = Mlt(Q),

which completes the proof.

Proof of Theorem 1.10. Let us denote Zi(Q) = Zi and Zi(Mlt(Q)) = Zi, i = 0, 1, . . . By
Proposition 1.11, it suffices to show that, for every i, Ni ≥ Zi. We proceed by induction
on i, for i = 0, this is trivial. Let Ni ≥ Zi for some i, we show that then Ni+1 ≥ Zi+1.

Let f ∈ Zi+1, then fZi ∈ Z(Mlt(Q)/Zi) and for every g ∈ Ni,

fgf−1Zi = gZi ⇒ fgf−1Ni = gNi = Ni ⇒ fgf−1 ∈ Ni.

It follows that f is in the normalizer of Ni, i.e., Ni+1. The claim now follows.
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For finite loops, there is even more than can be proved.

Theorem 1.12. [3, Chap. 8][8, Sec. 2] Let Q be a finite loop.

1. If Q is nilpotent, then Mlt(Q) is solvable.

2. If Q is nilpotent, then all primes dividing |Mlt(Q)| also divide |Q|.

3. Let p be a prime number. Then Q is nilpotent of p-power size if and only if Mlt(Q)
is a p-group.

The claim (3) was originally formulated in a weaker version: A necessary and sufficient
condition for a finite loop Q of p-power size to be nilpotent is that the group Mlt(Q) is a
p-group. However, since Mlt(Q) acts transitively on Q, Q itself is an orbit of this action
and hence, |Q| divides |Mlt(Q)|.

The following theorem by Wright will be interpreted in universal-algebraic context in
Section 2.3, where we prove a stronger version of the forward implication.

Theorem 1.13. [14, Theorem 1] A finite loop Q is a direct product of nilpotent loops of
prime power order if and only if Mlt(Q) is nilpotent.

It follows from the theorem that nilpotent loops do not need to have nilpotent multi-
plication group, consider, for example, the mentioned directly indecomposable nilpotent
loop of order 6.

We present here a slightly simplified proof of the theorem in modern notation and
including more details. We start with two simple lemmas.

Lemma 1.14. Let I be a set and Q be a direct product of loops Qi, i ∈ I. Then Mlt(Q)
is a direct product of groups Mlt(Qi).

Proof. For every x = (xi : i ∈ I) ∈ Q, the left translation Lx is of the form (Lxi
: i ∈ I)

and similarly for the right translation Rx. Since Mlt(Q) is generated by left and right
translations, the claim now follows.

For a subgroup G of Mlt(Q), we denote

G(1) = {g(1) | g ∈ G}.

If G is normal in Mlt(Q), then for every f ∈ Inn(Q) and every g ∈ G

f(g(1)) = fgf−1(f(1)) = fgf−1(1) ∈ G(1),

hence G(1) is a normal subloop by Proposition 1.5 (2).
For a normal subloop N of Q, we denote

N∗ = {f ∈ Mlt(Q) | ∀x ∈ Q : f(x) ∈ Nx}.

Lemma 1.15. [14, Proposition 5] Let Q be a loop and let Mlt(Q) ≃ P × R where
P(1) ∩ R(1) = 1. Then (P(1))∗ = P and (R(1))∗ = R.
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Proof. First observe that P and R are normal in Mlt(Q) and hence P(1) and R(1) are
normal subloops of Q. Moreover, P ⊆ (P(1))∗, since for every f ∈ P

f(x)/x = R−1
x fRx(1) ∈ P(1).

Similarly, R ⊆ (R(1))∗.
Let f ∈ (P(1))∗ ∩ (R(1))∗, then for every x ∈ Q

f(x) ∈ P(1)x ∩ R(1)x ⇒ f(x)/x ∈ P(1) ∩ R(1) = 1.

It follows that (P(1))∗ ∩ (R(1))∗ = 1.
Since Mlt(Q) = P × R, if P ⊊ (P(1))∗ or R ⊊ (R(1))∗, we would find a non-identity

element of (P(1))∗ ∩ (R(1))∗ = 1. Hence P = (P(1))∗ and R = (R(1))∗.

Proof of Theorem 1.13. (⇒) If Q = ∏︁
i∈I Qi, where Qi is nilpotent of prime power order

for every i, then Mlt(Qi) is a p-group by Theorem 1.12 (3), and Mlt(Q) is a direct product
of these p-groups by Lemma 1.14. Hence Mlt(Q) is nilpotent.

(⇐) Proceed by induction on |Q|. For |Q| = 1 this is trivial. Let Mlt(Q) ≃ P × R
with P a non-trivial Sylow p-subgroup of Mlt(Q). Since Mlt(Q) is nilpotent, P and R
are also nilpotent.

If R = 1, then Mlt(Q) is a p-group and the claim follows by Theorem 1.12 (3). Hence
for the rest of the proof, we assume R ≠ 1.

Let P = P(1) and R = R(1) be the orbits of 1. Both P and R are normal subloops
of Q. The size of |P | is a power of p since it divides |P| and p ∤ |R| since it divides |R|.
In particular, P ∩ R = 1.

We are going to prove that Q = PR. Since P and R are normal in Q, PR is a subloop
of Q. Hence it is enough to show |Q| = |PR| = |P | · |R|, where the second equality follows
from P ∩ R = 1.

Lemma 1.15 implies that P ∗ = P and R∗ = R. In particular, P, R ̸= 1. It is
straightforward to show

Mlt(Q/P ) ≃ Mlt(Q)/P ∗ ≃ R,

which is a nilpotent group, and thus Q/P decomposes as a direct product of nilpotent
loops of prime power sizes by the induction assumption. Moreover, none of the primes in
the decomposition is equal to p, since this would imply by Theorem 1.12 (3) and Lemma
1.14 that p divides R. Likewise,

Mlt(Q/R) ≃ Mlt(Q)/R∗ ≃ P ,

which is a p-group, and thus Q/R is nilpotent and of p-power size.
Finally, let |Q| = pkr, p ∤ r. Since p ∤ |Q/P | and P is of p-power size, we must

have |P | = pk. Since Q/R is of p-power size, |R| ≥ r. Altogether, we must have
|PR| = |P | · |R| = pkr.

Now, Q = PR ≃ P × R by an isomorphism

f : P × R → PR

(p, r) ↦→ pr

Since P, R ̸= 1, the claim follows from the induction hypothesis.
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1.2 Commutator theory
In this section we introduce the notion of a higher commutator of congruences and use it
to define supernilpotent algebras. Moreover, we give a definition of a nilpotent algebra,
whose definition uses just binary commutators, and present the most important results
that show the connection between these two notions.

1.2.1 Higher commutator
In this subsection, we present three different definitions of a higher commutator of congru-
ences. Higher commutators rise as a generalization of widely studied binary commutators
and are fundamental for the definition of supernilpotence.

The following property has strong consequences on the properties of algebras not only
in commutator theory.

Definition 1.16 (Mal’tsev algebra). An operation m : A → A on a set A is said to be
Mal’tsev, if it satisfies the identity

m(y, x, x) = m(x, x, y) = y.

An algebra A is said to be Mal’tsev, if it possess a Mal’tsev term, that is, a ternary term
that induces a Mal’tsev operation on A.

Every loop is Mal’tsev with a term x(y\z). Many of the universal-algebraic results
that we build upon were generalized beyond Mal’tsev algebra, but this is not important
for us.

There are several definitions of the higher commutator, which are equivalent for
Mal’tsev algebras: the original term condition of Bulatov [4], its reformulation by Opršal
[9] using forks in certain relations and a bound on essential arity of absorbing polynomials
by Aichinger and Mudrinski [2]. Here we introduce these three approaches, since all of
them will be used throughout the thesis to study supernilpotence in loops.

Definition 1.17 (Bulatov’s term condition). [4] Let A be an algebra, α1, . . . , αn, β, δ its
congruences. We say that α1, . . . , αn centralize β modulo δ if, for every term operation t
and all pairs of tuples ai αi bi, u β v,

∀(x1, ..., xn) ∈{a1, b1} × ... × {an, bn} ∖ {(b1, ..., bn)}
t(x1, ..., xn, u) δ t(x1, ..., xn, v)

⇓
t(b1, ..., bn, u) δ t(b1, ..., bn, v).

It turns out that for Mal’tsev algebras, it is enough to consider Bulatov’s term con-
dition for single elements instead of tuples.

Proposition 1.18. [2, Proposition 5.4] Let A be a Mal’tsev algebra, α1, . . . , αn, β, δ
its congruences. Then α1, . . . , αn centralize β modulo δ if and only if for every term
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operation t and all elements ai αi bi, u β v,

∀(x1, ..., xn) ∈{a1, b1} × ... × {an, bn} ∖ {(b1, ..., bn)}
t(x1, ..., xn, u) δ t(x1, ..., xn, v)

⇓
t(b1, ..., bn, u) δ t(b1, ..., bn, v).

The following observation is needed in order to define the commutator.

Observation 1.19. Let A be an algebra, α1, . . . , αn, β, δi, i ∈ I, its congruences. If
α1, . . . , αn centralize β modulo δi, i ∈ I, then α1, . . . , αn centralize β modulo ⋀︁

i∈I δi.

Definition 1.20 (commutator of congruences). Let A be an algebra, α1, . . . , αn, β its
congruences. The (n + 1)-ary commutator [α1, . . . , αn, β] is defined as the smallest con-
gruence δ of A such that α1, . . . , αn centralize β modulo δ.

Next we introduce a syntactic reformulation of the term condition due to Opršal
[9], which is good for algorithmic calculation of commutators and which will be used in
Chapter 3.

Definition 1.21 (fork). Let A be a set. A fork in a relation R ⊆ An in coordinate i is
a pair (a, b) such that there are u, v ∈ R satisfying that uj = vj for all j ̸= i, ui = a,
vi = b.

In the next definition will use the following notation. For a positive integer k, let k(i)
denote (i + 1)-th digit from the right of the binary expansion of k. For a pair (a, b) we
will denote a = (a, b)(0) and b = (a, b)(1).

Definition 1.22. [9, Def. 3.1] Let A be an algebra, and α0, . . . , αn−1 congruences of A.
For a, b ∈ A, we define

cn
i (a, b) = ((a, b)(k(i)) | k < 2n).

Then let
∆(α0, . . . αn−1) = Sg{cn

i (a, b) | i < n, a αi b}.

Example 1.23. The relation ∆(α0, α1, α2) is generated by the tuples c3
i (a, b), i = 0, 1, 2,

that have one of the following forms: (a, b, a, b, a, b, a, b), where a α0 b; (a, a, b, b, a, a, b, b),
where a α1 b; or (a, a, a, a, b, b, b, b), where a α2 b.

Proposition 1.24. [9, Theorem 1.2] Let A be a Mal’tsev algebra and α1, . . . , αn, β its
congruences. Then [α1, ..., αn, β] is the set of all forks in ∆(α1, ..., αn, β) in the last
coordinate.

An alternative approach to higher commutators uses the notion of absorbing polyno-
mials.

Definition 1.25. Let A be an algebra, a, e ∈ A. A polynomial operaton f of A is called
absorbing at a into e if f(u) = e whenever there is i such that ui = ai.

12



Proposition 1.26. [2, Lemma 6.9] Let A be a Mal’tsev algebra and α1, . . . , αn+1 its
congruences. Then [α1, . . . , αn+1] is equal to

Cg{(f(b), e) : f is a (n + 1)-ary polynomial absorbing at a with value e, ∀i : bi αi ai}.

We list here elementary properties of higher commutators in Mal’tsev algebras. They
can be found with proofs in [2] as conditions (HC1)-(HC8).

Proposition 1.27. Let A be an algebra and α1, α2, . . . αk, k ≥ 2 be congruences of A.
Then the following hold:

1. [α1, . . . , αk] ≤ ⋀︁k
i=1 αi;

2. if β1, . . . βk are congruences of A such that αi ≤ βi for i = 1, . . . , k then

[α1, . . . αk] ≤ [β1, . . . βk];

3. [α1, . . . , αk] ≤ [α2, . . . , αk].

Furthermore, if A is a Mal’tsev algebra, then we have:

4. for every permutation π of {1, . . . , k}, [α1, . . . , αk] = [απ(1), . . . , απ(k)];

5. if δ is a congruence of A, then [α1, . . . αk] ≤ δ if and only if α1, . . . αk−1 centralize
αk modulo δ;

6. if β is a congruence of A, β ≤ α1, . . . , αk, then in A/β we have

[α1/β, . . . , αk/β] = ([α1, . . . , αk] ∨ β)/β;

7. if I is a nonempty set, j ∈ {1, . . . , k} and βi, i ∈ I are congruences of A, then

[α1, . . . , αj−1,
⋁︂
i∈I

βi, αj+1, . . . , αk] =
⋁︂
i∈I

[α1, . . . , αj−1, βi, αj+1, . . . , αk];

8. for all j ∈ {2, . . . , k}

[α1, . . . , αj−1, [αj, . . . , αk]] ≤ [α1, . . . , αk].

The following proposition follows easily by induction from (8) in the preceding propo-
sition.

Proposition 1.28. Let A be a Mal’tsev algebra, α1, ..., αn+1 its congruences. Then

[α1, [α2, [..., [αn, αn+1] . . . ]]] ≤ [α1, ..., αn+1].

13



1.2.2 Nilpotence and supernilpotence
In rest of the text we focus on the notion of nilpotence and supernilpotence. In this sub-
section, we introduce universal-algebraic definitions of the notions and present theorems
and propositions that illustrate the connection between them.

We will use the following notation: For an algebra A, denote its largest conguence
A × A by 1A and its smallest congruence {(a, a) | a ∈ A} by 0A. Observe that for a loop
Q, the corresponding normal subloops are respectively Q and 1.

Definition 1.29 (nilpotent algebra). An algebra A is said to be k-nilpotent if

[1A, [1A, [..., [1A, 1A] . . . ]]]⏞ ⏟⏟ ⏞
k+1

= 0A.

A loop is k-nilpotent in the sense of universal algebra if and only if it is k-nilpotent
in the sense of loop theory as in Definition 1.7 [12, 11].

An algebra satisfying the equivalent conditions of Theorem 1.30 is called k-supernil-
potent.

Theorem 1.30. The following are equivalent for a Mal’tsev algebra A:

1. [1A, ..., 1A⏞ ⏟⏟ ⏞
k+1

] = 0A (in the sense of Bulatov’s term condition),

2. ∆(1A, ..., 1A⏞ ⏟⏟ ⏞
k+1

) contains no fork in the last coordinate,

3. every absorbing polynomial of arity k + 1 is constant.

Condition (2) comes from Opršal’s fork approach, see Proposition 1.24. Condition
(3) comes from Aichinger and Mudrinski, see Proposition 1.26. We say that an algebra
is supernilpotent of class k, if it is k-supernilpotent, but not (k − 1)-supernilpotent. If
there exists a k such that an algebra is k-supernilpotent, we say that it is supernilpotent.

1-supernilpotent algebras are called abelian and have strong properties, especially
under Mal’tsev assumption.

The following observation is useful for the absorbing polynomial approach to su-
pernilpotence.

Observation 1.31. Assume that every k-absorbing polynomial of algebra A is constant.
Then, for all l > k, every l-absorbing polynomial of A is constant.

In the finite case, there is another useful characterization, which will be used to
reformulate Theorem 1.13.

Theorem 1.32. [2, Sec. 7] The following are equivalent for a finite Mal’tsev algebra A
of finite signature:

1. A is supernilpotent,

2. A is a direct product of nilpotent algebras of prime power size.
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For Mal’tsev algebras, supernilpotence is a stronger notion than nilpotence.

Proposition 1.33. [2] If a Mal’tsev algebra is k-supernilpotent then it is k-nilpotent.

Proof. Follows from Proposition 1.28.

For groups, the converse also holds.

Theorem 1.34. [1] A group is k-supernilpotent if and only if it is k-nilpotent.

This is not true for loops, see Example 2.2.
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2. Supernilpotence in loops
In this chapter, we present our results regarding supernilpotent loops. In Section 2.1,
we present a simple proof of Proposition 1.33 for loops. In Section 2.2, we characterize
1- and 2-supernilpotent loops and prove some necessary conditions for 3-supernilpotent
loops using inner mappings. In Section 2.3 we prove a stronger version of the forward
implication in Theorem 1.13. We will use two different approaches to supernilpotence
coming from Theorem 1.30 (1) and (3).

In order to use the absorbing polynomials approach, note that in loops all absorbing
polynomials can be without loss of generality considered to be absorbing at (1, ..., 1) into
1. This is because a loop polynomial f(x1, ..., xn) is absorbing at a ∈ Q into e ∈ Q if and
only if the polynomial f ∗(x1, ..., xn) = f(x1a1, ..., xnan)/e is absorbing at (1, ..., 1) into 1.
Hence, a loop is k-supernilpotent if and only if all these canonical absorbing polynomials
of arity k+1 are constantly equal to 1. From now on, when we say that a loop polynomial
is absorbing, we mean that it is absorbing at (1, ..., 1) into 1.

2.1 Proof of nilpotence of supernilpotent loops
In some cases, the situation can get much clearer, when we interpret the universal-
algebraic notion in the context of a particular algebraic structure. Consider Proposition
1.33. The general proof, which is essentially the proof of Proposition 1.27 (8), is rather
technical, however, there is a simple proof for groups or loops, which we present in this
section.

In the group case, it suffices to observe that the term [x1, [x2, . . . , [xk, xk+1] . . . ] is
absorbing for every k ≥ 1 and hence, by Theorem 1.30 (3), constant in every k-supernil-
potent group, which implies that the group is k-nilpotent. Using a similar approach, we
can prove the proposition also for loops.

Proof of Proposition 1.33 for loops. Let Q be a loop. First we define the elementwise
commutator and associator in loops. Let [x, y] = Tx(y)/y, [x, y, z] = Lx,y(z)/z. These
are absorbing terms in any loop. Notice that q ∈ Z(Q) if and only if

[q, u] = [u, q] = [q, u, v] = [u, q, v] = [u, v, q] = 1 for all u, v ∈ Q. (2.1)

Let us fix a set of variables X. We define c-terms over the variable set X recursively:
all terms of the form [x, y], [x, y, z], where x, y, z ∈ X are c-terms of depth 1, and if t is
a c-term of depth k, then [x, t], [t, x], [t, x, y], [x, t, y],[x, y, t], where x, y ∈ X, are c-terms
of depth k + 1. Observe that all c-terms are absorbing.

We prove by induction on k that a loop Q is k-nilpotent if and only if t(a) = 1 for
every c-term t of depth k and every tuple a ∈ Q. For k = 1, the condition is equivalent
to associativity and commutativity, which is equivalent to Q being an abelian group. Let
k > 1, then by Proposition 1.9 Q is k-nilpotent if and only if Q/Z(Q) is (k −1)-nilpotent,
which, by the induction assumption, happens if and only if t(a) ∈ Z(Q) for every c-term
t of depth k − 1 and every tuple a ∈ Q, which happens if and only if (2.1) holds for
q = t(a), which is the same condition as s(b) = 1 for every c-term s of depth k and every
tuple b ∈ Q.
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Finally, assume that Q is k-supernilpotent. Every c-term is absorbing, hence every
c-term with at least k +1 variables is constant. In particular, this applies to every c-term
of depth k, hence Q is k-nilpotent.

2.2 Identities defining supernilpotence
Nilpotence in loops is defined by certain commutator and associator identities (a possible
way how to do it can be extracted from the proof in Section 2.1). This motivates a similar
approach to supernilpotence. In this section, we derive some identities that are satisfied
in supernilpotent loops using the characterization via absorbing polynomials.

Proposition 2.1.

1. A loop is 1-supernilpotent (i.e., abelian) if and only if it is an abelian group.

2. A loop is 2-supernilpotent if and only if it is a 2-nilpotent group.

3. In a 3-supernilpotent loop Q, for every x, y, u, v ∈ Q the following is true:

• Lx,y, Rx,y and [Lx, Ry] are automorphisms of Q,
• [Lx,y, Lu,v] = [Lx,y, Ru,v] = [Rx,y, Ru,v] = [Lx,y, Tu] = [Rx,y, Tu] = 1.

Proof. (⇐) in the first two cases follows from Theorem 1.34.
(1) (⇒) Consider a binary term t(x, y) = Tx(y)/y and a ternary term l(x, y, z) =

Lx,y(z)/z. They are both absorbing, hence constant, therefore a 1-supernilpotent loop
needs to be commutative and associative, which implies that it is an abelian group.

(2) (⇒) The absorbing term l from the previous point is constant, hence 2-supernil-
potent loops are associative and therefore groups. The rest is by Theorem 1.34.

(3) Observe that for all x, y ∈ Q the mappings Lx,y, Rx,y, Tx and [Lx, Ry] satisfy
that L1,y = Lx,1 = R1,y = Rx,1 = T1 = [L1, Ry] = [Lx, R1] is the identity mapping and
Lx,y(1) = Rx,y(1) = Tx(1) = [Lx, Ry](1) = 1.

For the first claim, let fx,y : Q → Q, x, y ∈ Q be a bijective mapping and define a
term

tf (x, y, u, v) = fx,y(uv)/(fx,y(u)fx,y(v)).
If we set fx,y to be Lx,y, Rx,y or [Lx, Ry], respectively, the resulting term will be absorbing
and, if Q is 3-supernilpotent, constant, which implies that fx,y is an automorphism.

For the second claim, consider mappings fx,y, gx,y : Q → Q, x, y ∈ Q and a term

t(x, y, u, v, z) = [fx,y, gu,v](z)/z.

If we set (fx,y, gu,v) to be any of (Lx,y, Lu,v), (Lx,y, Ru,v), (Rx,y, Ru,v), then the result-
ing term is absorbing and, if Q is 3-supernilpotent, constant. For the pairs (Lx,y, Tu),
(Rx,y, Tu), the claim is proved similarly, we just need to consider mapping gx instead of
gx,y in order to get an absorbing term.

In the following example, we use the proposition to show that the analogy of Theorem
1.34 for loops does not hold.
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Example 2.2. For an odd prime p, consider the set Zp2 equipped with a binary operation
∗ defined x ∗ y = x + y + px2y, where addition and multiplication are modulo p2. Then
(Zp2 , ∗) is a loop of nilpotence class 2, which is supernilpotent of class greater than 2.

Proof. Observe that it is enough to show that Q = (Zp2 , ∗) is a non-associative loop of
nilpotence class 2. Then since Q is of prime power order, it needs to be supernilpotent
(Theorem 1.32), but the supernilpotence class is by Proposition 2.1 (2) greater than 2.

It is straightforward to check that Q is a loop with neutral element 0 and that for all
x, y, z ∈ Q

(x ∗ y) ∗ z = x ∗ (y ∗ z) iff pxyz ≡ 0 (mod p2) iff p|xyz (2.2)

(we use that p ̸= 2). This is clearly not satisfied for example for (x, y, z) = (1, 1, 1), hence
Q is not associative. In particular, Q is not 1-nilpotent.

Now we prove that Q is 2-nilpotent. By Proposition 1.9, this is equivalent to proving
that Q/Z(Q) is 1-nilpotent, that is, an abelian group. Recall that Z(Q) is a set of
elements of Q that commute and associate with all elements of Q. It follows from (2.2)
that if a ∈ Z(Q), then p|a (choose the remaining two elements equal to 1). It easy to see
that for all x, y ∈ Q

x ∗ y = y ∗ x iff p(x2y − y2x) ≡ 0 (mod p2) iff p|xy(x − y). (2.3)

Combining (2.2) and (2.3), we see that Z(Q) = {a ∈ Q | p|a}.
To prove that Q/Z(Q) is associative, we need to verify that

((x ∗ y) ∗ z) ∗ Z(Q) = (x ∗ (y ∗ z)) ∗ Z(Q),

which is equivalent to
(x ∗ (y ∗ z))\((x ∗ y) ∗ z) ∈ Z(Q).

Observe that for all a, b ∈ Q, we have a\b = b−a
1+pa2 (the division is modulo p2 and the

denominator is clearly invertible). We compute

(x ∗ (y ∗ z))\((x ∗ y) ∗ z) = 2pxyz

1 + p(x + y + z)2

and we see that the result is divisible by p, hence belongs to Z(Q).
To prove that Q/Z(Q) is commutative, we verify that

(x ∗ y) ∗ Z(Q) = (y ∗ x) ∗ Z(Q),

equivalently,
(y ∗ x)\(x ∗ y) = p(x2y − y2x)

1 + p(x + y)2 ∈ Z(Q),

which again follows from the divisibility by p.
It follows that Q/Z(Q) is an abelian group and hence Q is 2-nilpotent.
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2.3 Connection with the multiplication group
In this section we prove a stronger version of the forward implication in Theorem 1.13
without the finiteness assumption. Using Theorem 1.32, we can reformulate Theorem
1.13 in the following way: A finite loop Q is supernilpotent if and only if Mlt(Q) is
nilpotent. The following Theorem 2.4 generalizes the forward implication of the theorem
for all loops and includes the degrees of supernilpotence, resp. nilpotence.

Firstly, we observe that terms over the multiplication group of a loop can be naturally
converted to terms over the corresponding loop. For this transition, we need the following
terminology.

Definition 2.3 (m-word). Let X be a fixed set of variables. Formal expressions of the
form

(U (1)
x1 )k1 ...(U (n)

xn
)kn ,

where U (i) ∈ {L, R}, xi ∈ X and ki ∈ {±1}, will be called m-words of length n.

Observe that every m-word W can be converted naturally into a loop term W (z),
z ∈ X, by interpreting Lxi

(z) = xiz, L−1
xi

(z) = xi\z, Rxi
(z) = zxi and R−1

xi
(z) = z/xi

recursively. Every m-word W can also be converted naturally into a mapping Wq1,...,qn ∈
Mlt(Q), by replacing xi by qi ∈ Q and interpreting the word as a product in Mlt(Q).

Indeed, since Mlt(Q) is generated by left and right translations, for every h ∈ Mlt(Q)
there is an m-word W and a tuple q such that h = Wq. Moreover, every pair of mappings
h1, h2 ∈ Mlt(Q) can be derived from the same word: if h1 = Wq and h2 = Vr, then
h1 = (WV )q,1,...,1 and h2 = (WV )1,...,1,r.

Now we are ready to prove the theorem. The proof shows how to translate Bulatov’s
term condition for Mlt(Q) into a term condition for Q.

Theorem 2.4. Let Q be a k-supernilpotent loop. Then Mlt(Q) is k-nilpotent.

Proof. Let Q be a k-supernilpotent loop. We will show that Mlt(Q) is k-supernilpotent
by verifying Bulatov’s term condition. Then, by Theorem 1.34, Mlt(Q) is k-nilpotent.
Since groups are Mal’tsev, Proposition 1.18 allows us to consider only single elements
instead of tuples in the term condition.

Let t(x1, . . . , xk+1) be a group term and f1 . . . , fk, g1, . . . , gk, u, v ∈ Mlt(Q). Suppose
that

t(h1, . . . , hk, u) = t(h1, . . . hk, v)
for all (h1, . . . , hk) ∈ {f1, g1} × · · · × {fk, gk} \ {(g1, . . . , gk)}. We will show that then

t(g1, . . . gk, u) = t(g1, . . . , gk, v).

For every i = 1, . . . , k, consider an m-word W i and tuples ai, bi ∈ Qli such that
fi = W i

ai
and gi = W i

bi
. We consider the letters of W i

ai
ordered in a tuple and denote the

tuple by Fi. The elements of Fi are now from the set {Lx, L−1
x , Rx, R−1

x : x ∈ Q} and
their product is equal to fi when we interpret them as elements of Mlt(Q). Similarly, we
form a tuple Gi of the letters of W i

bi
. Observe that the tuples Fi, Gi ∈ Mlt(Q)li .

In the same way, we express u and v obtaining an m-word W k+1 and tuples c, d ∈ Qlk+1

such that u = W k+1
c and v = W k+1

d . Then we form tuples U, V ∈ Mlt(Q)lk+1 similarly as
Fi and Gi.
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We now consider a new group term, t′(x1
1, . . . xl1

1 , . . . , x1
k+1, . . . , x

lk+1
k+1 ), which is obtained

from t by replacing each occurrence of the variable xj by the product x1
j . . . x

lj
j , j =

1, . . . , k + 1. We observe that

t′(H1, . . . , Hk, U) = t′(H1, . . . Hk, V), and hence
t′(H1, . . . , Hk, U)(q) = t′(H1, . . . Hk, V)(q)

for all (H1, . . . , Hk) ∈ {F1, G1} × · · · × {Fk, Gk} \ {(G1, . . . , Gk)} and for every q ∈ Q.
Since elements of the tuples Fi, Gi, U, V are from the set {Lx, L−1

x , Rx, R−1
x : x ∈ Q} and

t′ is a group term, the second set of equalities can be expressed as

s(q1, . . . , qk, c, q) = s(q1, . . . qk, d, q),

for all (q1, . . . , qk) ∈ {a1, b1}×· · ·×{ak, bk}\{(b1, . . . , bk)} and for every q ∈ Q, where
s is a suitable loop term. Since Q is k-supernilpotent, we obtain that for every q

s(b1, . . . , bk, c, q) = s(b1, . . . bk, d, q), which implies
t′(G1, . . . , Gk, U)(q) = t′(G1, . . . Gk, V)(q) and hence

t(g1, . . . gk, u) = t(g1, . . . , gk, v),

as we wanted to prove.

Example 2.5. We illustrate the key ideas of the proof on an example. Let us have the
following:

• 2-supernilpotent loop Q, a, b, c ∈ Q,

• a group term t(x1, x2, x3) = x2x3x
−1
1 ,

• f1 = LaLb, g1 = Lb = L1Lb,

• f2 = RcL
−1
a = RcL

−1
a R−1

1 , g2 = RbR
−1
a = RbL

−1
1 R−1

a ,

• u = R−1
c = R−1

c R1R1, v = RbRa = R−1
1 RbRa.

We have the elements of Mlt(Q) expressed in m-words, for example, W 2 = Rx1L−1
x2 R−1

x3 ,
a2 = (c, a, 1), b2 = (b, 1, a), F2 = (Rc, L−1

a , R−1
1 ) and G2 = (Rb, L−1

1 , R−1
a ).

We have l1 = 2, l2 = 3 and l3 = 3. The term t′ will be defined as

t′(x1
1, x2

1, x1
2, x2

2, x3
2, x1

3, x2
3, x3

3) = x1
2x

2
2x

3
2x

1
3x

2
3x

3
3(x1

1x
2
1)−1.

We will illustrate the translation of one equation t(f1, f2, u) = t(f1, f2, v). The following
are equivalent:

t(f1, f2, u) = t(f1, f2, v)
t(LaLb, RcL

−1
a , R−1

c ) = t(LaLb, RcL
−1
a , RbRa)

t(LaLb, RcL
−1
a R−1

1 , R−1
c R1R1) = t(LaLb, RcL

−1
a R−1

1 , R−1
1 RbRa)

t′(La, Lb, Rc, L−1
a , R−1

1 , R−1
c , R1, R1) = t′(La, Lb, Rc, L−1

a , R−1
1 , R−1

1 , Rb, Ra)
RcL

−1
a R−1

1 R−1
c R1R1L

−1
b L−1

a = RcL
−1
a R−1

1 R−1
1 RbRaL−1

b L−1
a

∀q ∈ Q : RcL
−1
a R−1

1 R−1
c R1R1L

−1
b L−1

a (q) = RcL
−1
a R−1

1 R−1
1 RbRaL−1

b L−1
a (q)

∀q ∈ Q : s(a, b, c, a, 1, c, 1, 1, q) = s(a, b, c, a, 1, 1, b, a, q)
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for a loop term

s(y1
1, y2

1, y1
2, y2

2, y3
2, y1

3, y2
3, y3

3, z) = Ry1
2
L−1

y2
2

R−1
y3

2
R−1

y1
3

Ry2
3
Ry3

3
L−1

y2
1

L−1
y1

1
(z).

If we assume that the equations t(f1, f2, u) = t(f1, f2, v), t(g1, f2, u) = t(g1, f2, v),
t(f1, g2, u) = t(f1, g2, v) hold in Mlt(Q), using this translation for all three equations we
derive three loop equations in Q with the term s (same for all equations) and then using
2-supernilpotence of Q, we derive the last equation first in Q and then translate it to
Mlt(Q).
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3. Algorithmic testing of
supernilpotence
In this chapter we present results from algorithmic testing of supernilpotence of concrete
examples of loops. We used the relational description of supernilpotence from Theorem
1.30 (2) to create an algorithm for testing supernilpotence in loops.

Our purpose was to test supernilpotence in finite loops that are known to be supernil-
potent of some class. By Theorem 1.32, this involves all nilpotent loops of prime power
size. The loops of prime size are either abelian groups or are not nilpotent (since |Z(Q)|
divides |Q|) and all loops of order 4 are abelian groups, hence the first interesting exam-
ples are of order 8 and 9. The primary goal was to test the hypothesis that the reverse
implication in Theorem 2.4 also holds or to find examples that violate it.

We used LOOPS package [6] for GAP [13] to generate the multiplication tables and
compute the parameters of multiplication groups of the tested loops, i.e. non-associative
nilpotent loops of order 8 and 9.

3.1 Description of the algorithm
The algorithm is based on the relational description of higher commutators by Opršal [9]
in terms of Proposition 1.24. The purpose of the algorithm is, for a given positive integer
k and a given finite loop Q, to generate the relation

∆ = ∆(1Q, . . . , 1Q⏞ ⏟⏟ ⏞
k+1

) = Sg{ck+1
i (a, b) | i < k + 1, a, b ∈ Q}

and check whether there appear forks in the last coordinate. If the algorithm detects a
non-trivial fork in ∆, it stops and outputs that Q is not k-supernilpotent. Otherwise, it
generates the whole algebra ∆ and outputs that Q is k-supernilpotent. The algorithm was
implemented in the programming language C#. The program is attached to the thesis,
see Attachment A.1.

In the generating process, we divide the tuples in ∆ into two collections, in the program
they are called Delta and Generators. The tuples in Delta correspond to “old” tuples,
which were already used for generating another tuples, and the tuples in Generators
correspond to “new” tuples, which will be used to generate new tuples later on. When
we use a tuple for generating, we move the tuple from the collection Generators to Delta.

Outline of the generating process:

1. Initialize the collection Delta consisting of all tuples ck+1
i (a, a) = (a, . . . , a) (we can

do this since a product of two constant tuples is again a constant tuple, and hence
we would just obtain duplicates, if we instead put them in the collection Generators)
and the collection Generators consisting of all tuples ck+1

i (a, b), a ̸= b.

2. While the collection Generators is non-empty and no non-trivial fork was found
among all the tuples, perform the following:
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i. Consider the first tuple from the collection Generators, denote it by c.
ii. For every tuple d in Delta compute the tuples c · d, d · c and c · c. Check if

the tuples are not already included in the collection Delta or Generators and
if they do not create a fork with any of the tuples in the collections. If none of
these happens, add the tuples to Generators. If a fork is found, halt and return
false.

iii. Remove the tuple c from Generators and add it to Delta.

3. Return true (in this case the generating process ended because of the collection
Generators being empty and hence we generated whole Delta).

Since ∆ ≤ Q2k+1 , it is a finite loop. Therefore, when generating ∆, it is enough to use
the operation ·, since in every finite loop L we have for all x, y ∈ L, y\x = y · · · · · y · x,
where the number of factors y on the righthand side is equal to the order of Ly in the
finite group Mlt(L) diminished by one and similarly for x/y.

In the implementation of the algorithm, the test of k-supernilpotence of a given loop
Q starts with reading a text file corresponding to Q. The text file contains the following
information about the loop: size, nilpotence class of Mlt(Q) (just for comparison with the
result) and the multiplication table of Q. An example of a text file used in the program
is in the Figure 3.1. The information from the file is stored in the program in a variable
loop of class Loop. After extracting the information from the file, we run the function
TestKSupernilpotence with parametres k and loop, which generates ∆ for the given loop
and tests the existence of forks in the way outlined above.

8
4
1 2 3 4 5 6 7 8
2 1 4 3 6 5 8 7
3 4 5 6 7 8 1 2
4 3 6 5 8 7 2 1
5 6 7 8 1 2 3 4
6 5 8 7 2 1 4 3
7 8 1 2 3 4 6 5
8 7 2 1 4 3 5 6

Figure 3.1: Text file for 8-element nilpotent loop no. 1

3.2 Data representation
So far we referred to collections Delta and Generators without specifying any represen-
tation of the tuples in the memory. However, this is a significant aspect of the algorithm
implementation, since we need to be able to check existence of duplicates and forks ef-
fectively. In our case, this is extremely important, since we are not aware of any tighter
upper bound on the size of the generated relation ∆ than the naive bound |Q|2k+1 . Af-
ter testing the program with a straightforward representation of the collections as List
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2 4 3

5 7 3 1

2 1 1 4 6 1

Figure 3.2: A tree of collection {(2, 5, 2), (2, 5, 1), (4, 7, 1), (4, 7, 4), (4, 3, 6), (3, 1, 1)}

classes, it turned out that the running time in this case is not satisfactory. Therefore, we
switched to a representation of the collections in a tree structure.

The idea is the following: Every collection corresponds to a rooted tree. Vertices
of the tree will be called nodes, every node except for the root has an assigned value
from Q (in the implementation Q = {1, 2, . . . |Q|} and the root has a value > |Q| to be
distinguished) and there are no nodes with the same parent and the same value. We say
that a root is on level 0 and if a node is on a level l, then all of its children are said to
be on level l + 1. All leaves of the tree are on the same level and this level is equal to
the length of the tuples in the collection. An example of a tree of a collection is given in
Figure 3.2.

To write it down formally, every tuple c in the collection corresponds to exactly one
path on the way from the root to a leaf, that is, ci is equal to the value of the node on
the level i on the path. Therefore we could define the tree of the collection of tuples C
as a rooted tree satisfying the following conditions:

• the values of children of the root are precisely the values in the set

{c1 : c ∈ C},

• if the root = N0, N1, . . . Nm is a path from the root to a non-leaf node Nm, and the
value of Ni is vi, then the values of children of Nm are precisely the elements of

{cm+1 : ∃c ∈ C such that ci = vi, i = 1, . . . , m}.

In the algorithm implementation, for a given collection, we represented its tree using
a class Node. An instance of this class contains information about the parent node, the
list of the children nodes (the list is not ordered by values) and the value of the node. A
collection is then represented by its root, which is an instance of this class.

Consider now a collection containing tuples of length m and its tree. Suppose we want
to add a tuple c to the collection. We start in the root and look for its child with a value
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c1. If we find such, we move to this node. In general, if we are at a node N on level l < m,
we look for a child of a value cl+1 and if we succeed, we move to it. Otherwise, we create
a node with this value as a child of the node N and move to it (from this moment on we
of course create new nodes in every step without the search). Observe that this process
can be naturally modified to or even performed together with the check for duplicates
and forks.

In a similar manner we remove a given tuple c from the tree. If we are given the
corresponding leaf in the tree, we follow the way from the leaf to the root through the
nodes with values cj, where j is the level of the node. On the way, we remove the leaf
and all following nodes that have just one child (which corresponds to a component of
the tuple), stopping at the first node with more children.

The tree representation of the collection allows us to perform a check for duplicates
and forks (optionally together with addition to the tree) in time O(|Q| · 2k+1), when
testing k-supernilpotence of a loop Q. This is because if we consider a tuple c of length
2k+1 and a tree of the collection, where we want to perform the check, then for every
j = 1, . . . , 2k+1, we search for a child of a corresponding node on level j with value cj+1.
Since there are |Q| possible values of children, we perform O(|Q| · 2k+1) steps. Compared
to the list representation of the collection, where adding a tuple is straightforward, but
the check for duplicates and forks involves comparing with every tuple in the collection
individually, this approach significantly reduces the running time of the program. In the
list representation, such check takes O(2k+1s), where s is a size of a collection, which grows
rapidly and for which we do not know a better upper bound than |Q|2k+1 . However, as is
discussed in the Section 3.4, it turns out that even with this representation, our program
is not fast enough.

3.3 Results
Since we know from Proposition 2.1 that 2-supernilpotent loops are precisely 2-nilpotent
groups, 2-supernilpotence does not bring anything new in loops. Therefore, we focused
on testing 3-supernilpotence, where the relation ∆ consists of tuples of length 16.

According to Theorem 2.4, no loop with a multiplication group of nilpotence class
greater than 3 is 3-supernilpotent. Therefore, we ran the algorithm on the non-associative
8-element nilpotent loops whose multiplication group has nilpotence class 3 and all non-
associative 9-element nilpotent loops (since they all have multiplication group of nilpo-
tence class 3). We also used non-associative 8-element loops whose multiplication group
has nilpotence class 4, the cyclic groups of orders 4 and 8 and the quaternion group to
test the program. All tests were run on a standard personal computer.

3.3.1 8-element loops
All non-associative 8-element nilpotent loops are of nilpotence class 2, since the size of the
center divides the size of the loop and all loops of order ≤ 4 are abelian groups. According
to data from LOOPS package for GAP [6], their multiplication groups are either of size 64
or 32 and the nilpotence class of the groups is either 3 or 4. We tested 3-supernilpotence
in those with multiplication group of nilpotence class 3.
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The results are summarized in Table 3.1, which includes the number of the loop in
GAP (that is, the loop with number n is listed in GAP as NilpotentLoop(8,n)), nilpotence
class of its multiplication group, size of its multiplication group, the output from the 3-
supernilpotence test and running time. We can see that out of 62 tested 8-element loops,
there are 34 that the program proved to have class of supernilpotence greater than 3, for
the rest, the computation did not finish in the given time. In both of these categories
we can found loops with multiplication groups of both sizes (64 and 32) with no evident
pattern.

The given computation time varies among the loops. We started testing the loops
with a time limit of few hours and after running some tests on 8- and 9-element loops (see
first rows of Table 3.1 and Table 3.2) we observed that the computation either finished in
about a minute, or the time limit did not suffice. Therefore, we changed the time limit
to 10 minutes.

number nilp. cl. Mlt(Q) |Mlt(Q)| 3-supernilp. running time
27 3 32 NO 73797 ms
42 3 32 ? 3 hrs
48 3 32 NO 75259 ms
58 3 32 NO 73581 ms
73 3 32 NO 75809 ms
75 3 32 ? 2 hrs
79 3 64 NO 73797 ms
80 3 64 NO 70767 ms
81 3 64 ? 10 min
82 3 64 ? 10 min
83 3 64 NO 62379 ms
84 3 64 ? 10 min
85 3 32 ? 10 min
86 3 64 NO 64218 ms
87 3 64 ? 10 min
88 3 64 NO 75757 ms
89 3 64 NO 70813 ms
90 3 64 ? 10 min
91 3 32 ? 10 min
92 3 64 NO 65362 ms
93 3 64 ? 10 min
94 3 64 NO 67078 ms
95 3 64 NO 73878 ms
96 3 64 ? 10 min
97 3 64 NO 75967 ms
98 3 64 ? 10 min
99 3 64 ? 10 min
100 3 64 NO 72434 ms
101 3 64 ? 10 min
102 3 64 NO 75128 ms
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number nilp. cl. Mlt(Q) |Mlt(Q)| 3-supernilp. running time
103 3 64 NO 73318 ms
104 3 32 ? 10 min
105 3 64 ? 10 min
106 3 64 NO 73160 ms
107 3 64 ? 10 min
108 3 64 NO 70051 ms
109 3 64 NO 63173 ms
110 3 64 ? 10 min
111 3 64 NO 61275 ms
112 3 64 NO 62917 ms
113 3 64 NO 62300 ms
114 3 64 ? 10 min
115 3 32 ? 10 min
116 3 64 NO 71378 ms
117 3 64 ? 10 min
118 3 64 ? 10 min
119 3 64 NO 67014 ms
120 3 64 NO 70587 ms
121 3 64 NO 59952 ms
122 3 32 ? 10 min
123 3 64 ? 10 min
124 3 64 NO 63441 ms
125 3 64 NO 72973 ms
126 3 64 NO 68741 ms
127 3 64 ? 10 min
128 3 64 NO 72573 ms
129 3 64 NO 66641 ms
130 3 64 NO 67719 ms
131 3 64 ? 10 min
132 3 64 NO 67114 ms
133 3 32 ? 10 min
134 3 64 ? 10 min

Table 3.1: Results of testing 8-element nilpotent loops

3.3.2 9-element loops
All relevant 9-element loops are of nilpotence class 2, since they are non-associative and
nilpotent, hence their center is of size 3 and all 3-element loops are already abelian groups.
According to information from the LOOPS package [6], each of them has multiplication
group of order 81 with nilpotence class 3, so they all could be 3-supernilpotent. We
therefore tested all these loops for 3-supernilpotence.

The results are summarized in Table 3.2 (the loop with number n is the loop listed
in GAP as NilpotentLoop(9,n)). Our computation did not finish for any of the tested
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number nilp. cl. Mlt(Q) |Mlt(Q)| 3-supernilp. running time
1 3 81 ? 3 hrs
2 3 81 ? 3 hrs
3 3 81 ? 3 hrs
4 3 81 ? 3 hrs
5 3 81 ? 3,5 hrs
6 3 81 ? 3 hrs
7 3 81 ? 2 hrs
8 3 81 ? 3 hrs

Table 3.2: Results of testing 9-element nilpotent loops

9-element loops in a given time of at least 2 hours. The computation time for individual
loops varies only due to time options at the time of the computation.

3.3.3 Groups
In order to compare, we tested k-supernilpotence in the cyclic groups Z4 and Z8, and the
quaternion group Q8 (a smallest non-abelian nilpotent group) for k = 2, 3, 4. The results
are summarized in Table 3.3. The computation time “> x hrs” means that in x hours,
the computation did not finish and we stopped it. These times are arbitrary and differ
only due to time options at the time of the test.

group run. time for k = 2 run. time for k = 3 run. time for k = 4
Z4 39 ms 908 ms 22225 ms
Z8 7630 ms 18 min > 4 hrs
Q8 10 min > 7 hrs did not run

Table 3.3: Results of testing groups

3.4 Conclusions
Counterexamples to reverse implication in Theorem 2.4: We found a number
of 8-element nilpotent loops which have a multiplication group of nilpotence class 3 and
are not 3-supernilpotent. Therefore, the reverse implication to Theorem 2.4 is not true.
Moreover, this provides numerous examples that can be studied to understand the reasons
that lead to existence of nontrivial forks in ∆ relation and therefore prevent loop from
being 3-supernilpotent.

Computation time: Even after the modifications of data representation that sig-
nificantly reduce running time, we did not manage to obtain a result confirming 3-
supernilpotence of any of these loops in 10 minutes of computation (and for some of
the loops in more than 3 hours of computation). The results obtained from testing su-
pernilpotence in groups contribute to a belief that a positive result for a 3-supernilpotent
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non-associative loop would take a long time, since the computation for the group Q8 did
not finish in more than 7 hours.

Does ? mean YES?: We can observe that in every loop, which was proved by the
computation not to be 3-supernilpotent, it took less than 90 seconds to get the result.
This leads to a conjecture that the remaining loops are 3-supernilpotent, especially for
the 8-element case. Also this might indicate that if there is a nontrivial fork in ∆ relation,
there exist many of them and hence there might be a way to decide faster, whether a
loop is k-supernilpotent or not.

Testing for k > 3: Naturally, testing k-supernilpotence for k > 3 in loops does not
seem to be promising at the moment. Clearly, positive answers cannot be achieved in
a reasonable time. Furthermore, obtaining a negative answer does not seem realistic at
the moment as well, since we did not get any output from the tested loops for k = 4
in 20 minutes (we tested more than a half of the loops, which were proved not to be
3-supernilpotent) and from some of the loops in more than 7 hours. Therefore, there are
probably needed significant improvements in the algorithm in order to enable its wider
use in testing supernilpotence.
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Conclusion
The purpose of the thesis was to study properties of higher commutators in loops and
in particular, to study supernilpotent loops. Our original plan was to build on results in
group theory, since it is known that in groups supernilpotence and nilpotence coincide,
and to search for a description of the higher commutator (at least in special cases) using
a similar approach to the one that was used to describe the binary commutator in loops
in [12]. Moreover, we focused on the theorem of Wright from [14] that shows that, for
a finite loop, supernilpotence is equivalent to nilpotence of its multiplication group. In
particular, we tried to find a syntactic proof, possibly without the finiteness assumption.

However, a closer study of the group case showed that the proof of the key theorem
which states that k-nilpotent groups are k-supernilpotent [1, Theorem 6.8] is based on a
detailed syntactic analysis of polynomial functions on groups and rewriting them using
the group commutators. Therefore, it did not seem feasible to try to modify the proof
in order to obtain some non-trivial results about loops, where the analysis would also
require considering associators.

Regarding the description of the higher commutator, we observed that the general case
is quite hard to approach and hence, we focused on the special case of supernilpotence.
In Proposition 2.1 we characterize 1- and 2-supernilpotent loops and give a number of
necessary conditions for 3-supernilpotent loops. We were inspired by the mentioned
description of the binary commutator of two normal subloops from [12].

The most successful was the study of Wright’s theorem. In Section 2.3 we present a
syntactic proof of the forward implication without the finiteness assumption in a stronger
version, since we showed that a k-supernilpotent loop has a k-nilpotent multiplication
group.

Nonetheless, it turned out that it is difficult to find non-trivial sufficient conditions
for k-supernilpotence even for the k = 3. This motivated us to study 3-supernilpotence
on concrete examples. In order to do this, we created and implemented an algorithm
for testing k-supernilpotence in finite loops based on Opršal’s relational description of
supernilpotence. The results of the tests showed, among other things, that k-nilpotence
of a multiplication group does not imply k-supernilpotence of the loop, even in the cases
when we know that the loop is supernilpotent of some class. The results of this algorithmic
testing provide a number of examples that can be used in further research.

The thesis still leaves a lot of questions regarding higher commutators and supernilpo-
tence in loops open. It would be desirable, for example, to characterize 3-supernilpotent
loops (and possibly k-supernilpotent loops in general) in a loop-theoretical fashion, or to
examine the remaining implication of Wright’s theorem using universal-algebraic tools.
Also, the actual version of the algorithm from Chapter 3 seems to be unable to confirm
3-supernilpotence (and of course also supernilpotence of a greater class) in a reasonable
time limit in non-associative loops, even if they are of small orders. However, the run-
ning time of the test in non-3-supernilpotent loops indicates that there might be a way
to decide faster, whether a loop is 3-supernilpotent or not. These questions could be a
subject of further studies.

30



Bibliography
[1] E. Aichinger and J. Ecker. Every (k + 1)-affine complete nilpotent group of class k

is affine complete. Internat. J. Algebra Comput., 16(2):259–274, 2006.

[2] E. Aichinger and N. Mudrinski. Some applications of higher commutators in Mal’cev
algebras. Algebra Universalis, 63(4):367–403, 2010.

[3] R. H. Bruck. Contributions to the theory of loops. Trans. Amer. Math. Soc., 60:245–
354, 1946.

[4] A. Bulatov. On the number of finite Mal’tsev algebras. In Contributions to general
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A. Attachments

A.1 Program Algorithmic testing of supernilpotence
A compressed folder with a Visual Studio project Algorithmic testing of supernilpotence,
which contains the program from Chapter 3.
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