
MASTER THESIS

Jan Václavek

On search complexity of discrete
logarithm

Computer Science Institute of Charles University

Supervisor of the master thesis: Mgr. Pavel Hubáček, Ph.D.
Study programme: Mathematics

Study branch: Mathematical Structures

Prague 2021

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to thank my supervisor Pavel for his professional guidance, valuable
advice and enthusiasm for the topic even in the unfavourable situation given by
the current pandemic. I would also like to thank my family, my girlfriend and
my friends for their support and care during my studies.

ii

Title: On search complexity of discrete logarithm

Author: Jan Václavek

Institute: Computer Science Institute of Charles University

Supervisor: Mgr. Pavel Hubáček, Ph.D., Computer Science Institute of Charles
University

Abstract: In this thesis, we study the discrete logarithm problem in the con-
text of TFNP – the complexity class of search problems with a syntactically
guaranteed existence of a solution for all instances. Our main results show that
suitable variants of the discrete logarithm problem, which we call Index and
DLog, are complete for the classes PPP and PWPP, respectively. Addition-
ally, our reductions provide new structural insights into PWPP by establishing
two new PWPP-complete problems. First, the problem Dove, a relaxation of
the PPP-complete problem Pigeon. Dove is the first PWPP-complete problem
not defined in terms of an explicitly shrinking function. Second, the problem
Claw, a total search problem capturing the computational complexity of break-
ing claw-free permutations. In the context of TFNP, the PWPP-completeness of
Claw matches the known intrinsic relationship between collision-resistant hash
functions and claw-free permutations established in the cryptographic literature.

Keywords: discrete logarithm problem, TFNP, PPP, PWPP, complexity theory

iii

Contents

Introduction 3

1 Preliminaries 4
1.1 Notation . 4
1.2 Complexity Theory . 4

1.2.1 Subclasses of TFNP . 5
1.3 Groupoid structure . 6

1.3.1 Index function . 7

2 Index is PPP-complete 9
2.1 Index lies in PPP . 9
2.2 Index is PPP-hard . 10

3 DLog is PWPP-complete 18
3.1 DLog lies in PWPP . 19
3.2 DLog is PWPP-hard . 23
3.3 New characterizations of PWPP 28

4 Ensuring the totality of search problems in number theory 30
4.1 DLP . 30
4.2 Blichfeldt . 31

Conclusion 34

Bibliography 35

1

Introduction
Computational complexity theory focuses on classifying computational problems
according to their inherent computational complexity, which led to the birth
of various complexity classes such as P and NP, to mention the most famous
ones. In 1989, Megiddo and Papadimitriou [1] introduced the class TFNP, which
contains search problems whose decision version lies in NP and which are total,
i.e., where each instance is guaranteed to have a solution.

In order to improve our understanding of the seemingly disparate problems
in TFNP, Papadimitriou in 1994 [2] suggested to classify the problems in TFNP
according to the underlying combinatorial principles ensuring the existence of
a solution. His approach proved to be extremely fruitful and it gave rise to various
subclasses of TFNP such as PPP and PWPP that cluster many important total
search problems from domains such as algorithmic game theory, computational
number theory, and combinatorial optimization, to name but a few.

Following the classification rule based on the underlying combinatorial princi-
ple, the class PPP formalizes the pigeonhole principle. Concretely, it captures the
complexity of finding a collision or a preimage of a zero element in a function from
a set to itself and is defined as problems reducible to a problem called Pigeon.

Similarly, the class PWPP formalizes the weak pigeonhole principle, i.e., it
captures the complexity of finding a collision in a shrinking function and is defined
as problems reducible to a problem called Collision. As its definition suggests,
the class PWPP has profound connections to cryptography as finding a collision
in a shrinking function on average corresponds to breaking collision-resistant hash
functions.

The discrete logarithm problem (DLP), which lies at the foundation of many
practical schemes in modern cryptography, seems to naturally fit the TFNP land-
scape: given a generator g of a cyclic group (G, ⋆), we know that a solution x
for DLP exists for any target element t = gx of the group (G, ⋆). Nevertheless,
despite being a prominent search problem, DLP was not extensively studied in
the context of TFNP so far. Only recently, in 2018, Sotiraki, Zampetakis, and
Zirdelis [3] presented a total search problem motivated by DLP, which they called
discrete logarithm problem over general groups and where the group is represented
by a Boolean circuit. Since one cannot efficiently verify that the input instance
really represents a valid group, an additional type of a solution in the form of
distinct x, y such that gx = gy was added to ensure the totality. They showed
that the discrete logarithm problem over general groups lies in the complexity
class PPP and asked and left open whether it is complete for that class.

In this thesis, we take a closer look at the DLP in the context of the classes
PPP and PWPP. First, we observe that the discrete logarithm problem over gen-
eral groups as defined in [3] is not total, which means it does not even lie in the
class TFNP. Hence, we slightly modify the definition from [3] to make the discrete
logarithm problem over general groups lie in the class PPP. Moreover, the dis-
crete logarithm problem over general groups allows for remarkably unstructured
instances being very far from a valid group, making the connection with DLP
rather loose. Therefore, we refer to the modified problem as Index and call the
underlying structure groupoid instead of general group.

2

As our first result, we answer the open problem from [3] in the affirmative
as we show that Index is indeed PPP-complete. The corresponding reduction
from Pigeon to Index showing that Index is PPP-hard is arguably the most
technical part of the thesis. It involves a careful construction of the instance of
Index such that the exponentiation gx in the groupoid emulates the computation
of the circuit C given by the instance of Pigeon.

Next, we focus on DLP in the context of the class PWPP. Given that DLP
can be used to construct collision-resistant hash functions [4], it seems natural
to think about modifications of Index such that the resulting variant lies in the
class PWPP. Motivated by the known constructions of collision-resistant hash
functions from DLP, which crucially rely on the homomorphic properties of the
function gx, we introduce additional types of a solution in the Index problem
to enforce sufficient structure on the groupoid induced by the instance of Index.
We refer to this new version of Index as DLog as it is, in our opinion, close
enough to the standard DLP in cyclic groups.

We show that DLog indeed lies in the class PWPP. Since DLog is a relax-
ation of Index obtained by allowing additional types of a solution, it could be
the case that DLog lies in PWPP simply because DLog is trivial. Nevertheless,
we disprove this surmise as we prove that DLog is in fact PWPP-complete.

Additionally, our reductions showing that DLog is PWPP-complete give rise
to two new PWPP-complete problems. The first one, Dove, is a relaxation
of the PPP-complete problem Pigeon and, as far as we know, it is the first
PWPP-complete problem not defined in terms of an explicitly shrinking function.
The second one, Claw, is a search problem capturing the complexity of breaking
claw-free pseudopermutations known from cryptographic literature [5].

We conclude by discussing some of the issues that arise when defining total
search problems corresponding to actual problems in computational number the-
ory. First, we highlight the distinction between DLog as defined in our thesis
and the discrete logarithm problem in any specific group Z∗

p. Second, we note that
both our reductions establishing PWPP-hardness of DLog and PPP-hardness of
Index result in instances that are far from being a valid group. In other words,
the resulting instances do not really correspond to DLP in any group. Finally, we
revisit the problem Blichfeldt introduced in [3] and show that it also exhibits
a similar phenomenon.

3

1. Preliminaries

1.1 Notation
We denote by [m] the set {0, 1, . . . , m − 1}. We denote the natural numbers by
N, i.e., N = {1, 2, 3, . . . }. We denote the non-negative integers by Z+

0 , i.e., Z+
0 =

{0, 1, 2, . . . }. For two strings u, v ∈ {0, 1}∗, u || v stands for the concatenation of
u and v. When it is clear from the context, we omit the operator ||, e.g., we write
0x instead of 0 ||x. The standard XOR function on binary strings of equal lengths
is denoted by ⊕. All logarithms log() use base 2. Moreover, we set log(1) = 1 for
the purposes of this thesis in order to capture also the case when the size of the
groupoid is one.1

Bit composition and decomposition. Throughout the paper, we often make
use of bit composition and bit decomposition functions between binary strings of
length k and the set [2k] of non-negative integers less then 2k. We denote these
functions bck and bdk. Concretely, bck : {0, 1}k → [2k] and bdk : [2k]→ {0, 1}k.
Formally, for x = x1x2 . . . xk ∈ {0, 1}k, we define

bck(x) =
k−1∑︂
i=0

xk−i2i.

The function bck is bijective and we define the function bdk as its inverse, i.e.,
for a ∈ [2k], bdk(a) computes the unique binary representation of a with leading
zeros such that its length is k. When k is known from the context and there is no
risk of ambiguity, we omit k and write simply bc and bd to improve readability.
Sometimes, we would like to have the output of bdk without the leading zeros. We
denote this modification by bd0, which is independent of the length k, i.e., bd0 :
Z+

0 → {0, 1}∗ is the standard function which computes the binary representation
without the leading zeros.

1.2 Complexity Theory
We formally define the class FNP and its subclass TFNP, which was introduced
in 1989 by Megiddo and Papadimitriou [1]. Consider a binary relation R ⊆
{0, 1}∗ × {0, 1}∗ such that

• there is a polynomial p such that (x, y) ∈ R implies |y| ≤ |p(x)|,

• there is a polynomial-time algorithm that on input x, y determines whether
(x, y) ∈ R.

We say that such a relation R is polynomially balanced polynomial-time recog-
nizable. The relation R defines the following search problem: given x, find y
satisfying (x, y) ∈ R if such y exists, and reply NO otherwise. We call this
x an instance of the given search problem and y a solution to this instance x.

1We need ⌈log(m)⌉ bits to binary represent the set [m].

4

Throughout the rest of the thesis, we use the notions of a relation and of the un-
derlying search problem interchangeably. Now we can proceed with the definition
of the class FNP.

Definition 1 (The class FNP). The class FNP is the class of all search problems
defined by a polynomially balanced polynomial-time recognizable relation.

Furthermore, we say that a polynomially balanced polynomial-time recog-
nizable relation R is total, if for every x, there exists y such that (x, y) ∈ R.
A search problem defined by a total relation is guaranteed to have a solution for
each instance. We say that such a problem is total. Now we can proceed with
the definition of the class TFNP, which is a subclass of FNP.

Definition 2 (The class TFNP). The class TFNP is the class of all search prob-
lems defined by a polynomially balanced polynomial-time recognizable total rela-
tion.

There are different types of reductions between search problems, e.g., Karp
reductions and Cook reductions. In our thesis, we are only interested in Karp
reductions, which can be found also under the name polynomial-time many-one
reductions. Hence, when we mention a reduction, we mean a Karp reduction
as defined next. Moreover, we consider only problems from the class TFNP as
needed for our thesis.

Definition 3 (Reduction between total search problems). Let S, T ⊆ {0, 1}∗ ×
{0, 1}∗ be total search problems. A reduction from S to T is a pair of polynomial-
time computable functions f, g : {0, 1}∗ → {0, 1}∗ such that for all x, y ∈ {0, 1}∗,
if (f(x), y) ∈ T then (x, g(y)) ∈ S.

In words, the function f constructs an instance f(x) of the problem T from the
original instance x of the problem S and the function g computes a solution g(y)
to the original instance x from the solution y to the instance f(x).

In case there exists a reduction from S to T , we say that S is reducible to T .
In the rest of the thesis, we describe search problems less formally and in a more
convenient way as pairs (Instance, Solution) instead of directly using relations as
it is a common practice in complexity theory. The pair (Instance, Solution) then
implicitly determines the underlying relation.

Similarly, in reductions, we typically first describe how the new instance f(x)
looks like based on the original instance x, which implicitly determines the func-
tion f . Then, we describe how to construct a solution g(y) to the original in-
stance x from the solution y to the new instance f(x), which implicitly determines
the function g. We need to make sure that both f, g are polynomial-time com-
putable.

1.2.1 Subclasses of TFNP
In this subsection, we define the subclasses of TFNP called PPP and PWPP, which
are relevant to our thesis. The class PPP is defined via a total search problem
called Pigeon.

Definition 4 (Pigeon problem and PPP [2]).

5

Instance: A Boolean circuit C with n inputs and n outputs.

Solution: One of the following:
1. a string u ∈ {0, 1}n such that C(u) = 0n,
2. strings u, v ∈ {0, 1}n such that u ̸= v and C(u) = C(v).

The class of all total search problems reducible to Pigeon is called PPP.

We say that a total search problem S is PPP-hard if there is a reduction from
Pigeon to S. Moreover, we say that S is PPP-complete if it simultaneously lies
in PPP and is PPP-hard.

The class PWPP is defined in similar fashion via a total search problem called
Collision.

Definition 5 (Collision problem and PWPP [6]).

Instance: A Boolean circuit C with n inputs and m outputs with m < n.

Solution: Strings u, v ∈ {0, 1}n such that u ̸= v and C(u) = C(v).
The class of all total search problems reducible to Collision is called PWPP.

PWPP-hardness and completeness is defined analogously as for PPP, but using
the problem Collision instead of Pigeon.

1.3 Groupoid structure
In this section, we describe the structure which we work with and use to define
the search problems motivated by DLP. Our starting point is a general group as
introduced in [3] in the context of the discrete logarithm problem over general
groups.

Similarly to [3], given the order s ∈ N, we consider a representation of a binary
operation on G = [s] by a Boolean circuit f : {0, 1}l × {0, 1}l → {0, 1}l, where
l = ⌈log(s)⌉. Given such a representation (s, f), we define a binary operator
fG : [s]× [s]→ [2l] for all x, y ∈ [s] using the bit decomposition and composition
functions as follows:

fG(x, y) = bc(f(bd(x), bd(y))).

In words, the binary operator fG first takes the binary representation of the
elements x, y ∈ G, then evaluates the circuit f on the resulting strings, and maps
the value back to [2l]. Observe that we let the possible outputs of fG to be the
whole [2l] and not just [s] as one could assume. The reason is that we have no
guarantee on the range of the outputs of the circuit f and it could happen that
the output of fG is outside of [s].

We denote by (G, ⋆) the structure induced by f , where ⋆ : [s] × [s] → [s] is
the binary operation closed on [s] obtained by extending the operator fG in some
fixed way, e.g., by defining for all x, y ∈ [s],

x ⋆ y =
⎧⎨⎩fG(x, y) if fG ∈ [s],

1 otherwise.
(1.1)

6

Algorithm 1 Computation of the x-th power of the generator g ∈ [s] in
a groupoid (G, ⋆) of size s ∈ N induced by f : {0, 1}2⌈log(s)⌉ → {0, 1}⌈log(s)⌉ with
the identity id ∈ [s].

1: procedure IG(x)
2: (x1, . . . , xm)← bd0(x)
3: r ← bd(id)
4: g ← bd(g)
5: for i from 1 to m do
6: r ← f(r, r)
7: if xi = 1 then
8: r ← f(g, r)
9: end if

10: end for
11: return bc(r)
12: end procedure

Since the binary operation ⋆ induced on G by f in this way might not satisfy
the group axioms, we decided to refer to (G, ⋆) as the induced groupoid instead of
general group adopting the terminology for a set with a binary operation common
in universal algebra.

We stress that the second case in the equation 1.1 could be defined arbitrarily
and has no impact on the problems defined in the thesis, but only justifies the
name groupoid as we need that ⋆ is closed. Skipping ahead, in the corresponding
computational problems based on the induced groupoid, we make use of the
operator fG instead of directly working with the binary operation ⋆ and one type
of a solution would correspond to finding x, y such that fG(x, y) /∈ [s].

1.3.1 Index function
If the induced groupoid (G, ⋆) was a cyclic group, then it is natural to consider
the indices of the identity element id ∈ [s] and of a generator g ∈ [s] of G.
Moreover, we could use g to index the elements of the group (G, ⋆), e.g, in the
order of increasing powers of g, where the corresponding index function IG : [s]→
[2l] would on input x return simply the x-th power of the generator g. We fix
a canonical way of computing the x-th power using the standard square-and-
multiply method as defined in Algorithm 1, where (x1, x2, . . . , xm) = bd0(x) is
the binary representation of x without the leading zeros with m ≤ l.

We can observe that, by the definition of IG, the circuit f is only applied on
specific types of inputs during the computation of IG(x):

• In each loop, f(r, r) is computed for some r ∈ {0, 1}l. In the rest of the
thesis, we denote f restricted to this type of inputs by f0, i.e., f0(r) =
f(r, r). Since the binary group operation is defined by f , f0 corresponds to
squaring in G.

• If the corresponding bit of x is one in the given loop, then also f(g, r) is
computed with a fixed g ∈ {0, 1}l and some r ∈ {0, 1}l. In the rest of

7

the thesis, we denote f restricted to this type of inputs by f1, i.e., f1(r) =
f(g, r). This corresponds to multiplication by g in G.

Hence, using the above notation, the computation of IG(x) simply corresponds
to an iterated composition of functions f0 and f1 depending on the binary repre-
sentation bd0(x) of x evaluated on id.
Example. IG(5) = IG(bc(101)) = bc(f1 ◦ f0 ◦ f0 ◦ f1 ◦ f0(bd(id))).

We point out that the index function IG is well-defined for an arbitrary in-
duced groupoid with arbitrary indices id, g ∈ [s] and not only for cyclic groups.
That is also the reason why we need to consider the outputs of IG to be the whole
[2l] as we have no guarantee on the outputs of f similarly as in the definition of
fG. Nevertheless, for a general induced groupoid, the index function IG is not
necessarily a bijection.

8

2. Index is PPP-complete
In [3], a total search problem associated with DLP was presented. In this chapter,
we define Index, a slightly modified variant of the problem from [3], and show
that it is PPP-complete. We start with the definition of Index.

Definition 6 (Index problem).

Instance: A size parameter s ∈ N and a Boolean circuit f : {0, 1}2⌈log(s)⌉ →
{0, 1}⌈log(s)⌉ representing a groupoid (G, ⋆) and indices g, id, t ∈ [s].

Solution: One of the following:
1. x ∈ [s] such that IG(x) = t,
2. x, y ∈ [s] such that fG(x, y) ≥ s,
3. x, y ∈ [s] such that x ̸= y and IG(x) = IG(y).

Compared to the problem from [3], we added the second type of a solution
to make the problem indeed lie in PPP. Without the second type of a solution,
the problem is not even total: Skipping ahead, it follows from the construction in
Section 2.2 that there exists a representation (s, f, id, g) of an induced groupoid
with s = 2n−1 for which it holds that IG(x) = x+1 for each x ∈ [s]. We can see
that on [s], such IG is injective and avoids the element 0. Hence, if we set t = 0,
then the underlying instance (s, f, id, g, t) of Index has no solutions of the first
and third type, meaning that the version from [3] is not total.

On a high level, the first type of a solution corresponds to the discrete log-
arithm of t. Since one cannot efficiently verify that the input instance really
represents a valid group, additional types of a solution had to be added in order
to guarantee that Index is total. Hence, these remaining types of a solution are
witnesses that the instance does not represent a valid group, since for a valid
group, these two types of a solution cannot happen. The main result of this
chapter establishes PPP-completeness of Index, which we prove in the rest of
this chapter.

Theorem 1. Index is PPP-complete.

We show that Index lies in PPP in Section 2.1, and we show that Index is
PPP-hard in Section 2.2.

2.1 Index lies in PPP
To show that Index lies in PPP, we need to show a reduction from Index to
Pigeon. The main idea of our reduction from Index to Pigeon is analogous to
the reduction in [3] from their discrete logarithm problem over general groups to
Pigeon. Although, we need to handle the additional second type of a solution
for Index, which corresponds to fG outputting an element outside G.

Lemma 2. Index is reducible to Pigeon.

9

Proof. Let (s, f, id, g, t) be an arbitrary instance of Index. Then we know that
IG : [s]→ [2l], where l = ⌈log(s)⌉. We construct a circuit C : {0, 1}l → {0, 1}l as
follows:

C(x) =
⎧⎨⎩bd(IG(bc(x))− t mod s) if bc(x) < s,

x otherwise.

The construction is valid since the new circuit C can be constructed in polynomial
time with respect to the size of the original instance of Index. We show that any
solution to the above Pigeon instance C gives a solution to the original Index
instance. There are two possible cases:

1. The solution to C is x ∈ {0, 1}l such that C(x) = 0l. Then, from the
definition of the circuit C, it holds that C(x) = bd(IG(bc(x))−t mod s) = 0l

and bc(x) < s. Since the function bd is bijective and bd(0) = 0l, it must
hold that IG(bc(x)) − t mod s = 0. If IG(bc(x)) ≥ s, then, from the
definition of the function IG, we can find in polynomial time u, v ∈ [s] such
that fG(u, v) ≥ s. Hence, these u, v form a solution to the original Index
instance, case 2. Otherwise, IG(bc(x)) < s, and since t ∈ [s], i.e., t < s,
it must be that IG(bc(x)) = t. Hence, bc(x) is a solution to the original
Index instance, case 1.

2. The solution to C is a pair x, y ∈ {0, 1}l such that x ̸= y and C(x) = C(y).
Then, from the definition of the circuit C and the bijectivity of bd, it must
hold that bc(x) < s, bc(y) < s and

IG(bc(x))− t ≡ IG(bc(y))− t (mod s),

which implies that

IG(bc(x)) ≡ IG(bc(y)) (mod s).

If IG(bc(x)) ≥ s, then, similarly as in the previous case, we can find
u, v ∈ [s] such that fG(u, v) ≥ s, i.e., a solution to the original Index
instance, case 2. We proceed analogously if IG(bc(y)) ≥ s. Otherwise, both
IG(bc(x)), IG(bc(y)) ∈ [s], hence

IG(bc(x)) = IG(bc(y)).

Moreover, from x ̸= y and the bijectivity of bc, we get that bc(x) ̸= bc(y).
Hence, the pair bc(x), bc(y) is a solution to the original Index instance,
case 3.

2.2 Index is PPP-hard
In this section, we show that Index is PPP-hard, which is arguably the most
technical part of the thesis. First, we provide a high-level overview of the core
ideas of our reduction before proceeding with the formal proof.

10

Reducing Pigeon to Index. Given an instance C : {0, 1}n → {0, 1}n of
Pigeon, the main idea is to construct an instance G = (s, f, id, g, t) of Index in
which the index function IG “emulates” the computation of the circuit C, so that
any solution to G provides a solution to the original instance C of Pigeon. In
order to achieve this, we exploit the structure of the computation induced by IG
in terms of evaluations of the circuit f . Specifically, the computation of IG gives
rise to a tree labeled by the values output by IG and structured by two special
types of calls to f denoted by f0 and f1 (see section 1.3.1 for definition of f0 and
f1).

Our reduction constructs f inducing IG with the computation corresponding
to a sufficiently large such tree so that its leaves can represent all the possible
inputs for the instance C of Pigeon and the induced index function IG can output
the corresponding evaluation of C at each leaf. Moreover, for the remaining nodes
in the tree, IG results in a bijection in order to ensure there are no additional
solutions to the Index instance that would be unrelated to the original instance C
of Pigeon.

First, we start by describing two constructions of an induced groupoid (G, ⋆)
which are independent of the instance C of Pigeon but which will serve as a step
towards our reduction.

In the first construction, we define f0 and f1 and the elements id, g ∈ [s] such
that IG is the identity function, i.e., such that IG(a) = a for all a ∈ [s]. Our key
observation is that for all a, b ∈ [s] such that either

– bd0(a) is a prefix of bd0(b)

or

– bd0(a) = y0 and bd0(b) = y1 for some y ∈ {0, 1}∗,

the computation of IG(b) includes the whole computation of IG(a) as a prefix
(see Algorithm 1). Specifically, if bd0(a) = y0 then

IG(a) = bc(f0(bd(IG(bc(y))))), (2.1)

and if bd0(a) = y1 then

IG(a) = bc(f1(bd(IG(bc(y0))))). (2.2)

The Equation (2.1) and Equation (2.2) are a key observation which allows us
to construct the tree capturing the computation of IG successively based on
the length of bd0(a) of any input value a. We set the parameters inducing the
groupoid (G, ⋆) such that IG(0) = 0 and then we use Equation (2.1) and Equa-
tion (2.2) to define f0 and f1 such that IG(a) = a for all a ∈ [s]. In Figure 2.1,
we illustrate the corresponding tree induced by the computation of IG resulting
in this construction for a groupoid of order s = 16. Solid lines correspond to the
application of f0 and dashed lines to the application of f1. For each node, the
second value is the input a, which in this case equals also the output value IG(a),
and the first value is bd(a), i.e., the binary representation of a with the leading
zeros.

Then, the second construction is obtained by modifying the first one so that
it holds for all a ∈ [s] that IG(a) = a + b mod 2⌈log(s)⌉ for some fixed b ∈ [2⌈log(s)⌉].

11

This can be performed simply by carefully “shifting” the computation of f0 and
f1 by b.

Finally, we consider the second construction with s = 2n+2 and b = 2n and
we make additional adjustments using the instance C of Pigeon such that any
solution to the new instance G of Index produces a solution to the original
instance C. First, we set the target to t = 0. Then, we adjust the definition of f1
such that IG(a) = bc(C(h(a))) for values a from a suitable set Ao ⊆ [s] of size 2n

and some bijective function h. We set

Ao = {a : bdn+2(a) = 1y1}

since for these values a, the computation of IG(a) is not included in the computa-
tion of IG(b) for any b, i.e., these values correspond to leaves in the computational
tree of IG. Hence, modifying f1 such that IG(a) = bc(C(h(a))) for a ∈ Ao does
not break the relationship IG(a) = a + b for any a ∈ [s] \ Ao.

Finally, we use another set Ae ⊆ [s] and we modify the definition of f0 such
that IG restricted to [s] \ Ao is a bijection between [s] \ A0 and [s] \ [2n], i.e., it
avoids values corresponding to bit compositions of elements in the range of the
circuit C. On the other hand, IG restricted to Ao produces values in [2n]. Hence,
any collision in IG corresponds to a collision in C and the discrete logarithm of t
corresponds to a preimage of 0n in C.

We give the formal proof below.

Lemma 3. Pigeon is reducible to Index.

Proof of Lemma 3. For the purpose of this proof and only for s = 2m, we denote
by I ′

G : {0, 1}m → {0, 1}m the function

I ′
G(u) = bd(IG(bc(u))),

where IG is induced by a representation (s, f) of a groupoid (G, ⋆) and elements
id, g ∈ [s].

First, we describe two concrete constructions of a representation of an induced
groupoid independent of any instance of Pigeon, but which we leverage in our
reduction. Recall the terminology that f0(r) = f(r, r) and f1(r) = f(g, r) for all
r ∈ {0, 1}m. Additionally, recall that IG and I ′

G are fully determined by f0 and
f1 as discussed in Section 1.3.1.

For the first construction, we show how to define f0 and f1 such that for all
v ∈ {0, 1}m,

I ′
G(v) = v, (2.3)

which is equivalent to IG(a) = a for all a ∈ [2m]. Moreover, as it will be clear
from the construction, it is enough to define f0 and f1 only on some subset of its
potential inputs. We set s = 2m and id = 0. For all y ∈ {0, 1}m−1, we define

f0(0y) = y0 and f1(y0) = y1.

In other words, f0 shifts the input string by one position to the left and f1 changes
the last bit of the input from 0 to 1. Equivalently, if we interpret functions f0
and f1 as functions on the corresponding integers, then f0 represents multiplying
the input by two and f1 represents adding one to the input. We show that it

12

is enough to define f0 and f1 only on the inputs of the above special form to
determine the whole computation of functions IG and I ′

G.
We prove that Equation (2.3) holds for all v ∈ {0, 1}m by induction on the

length of bd0(bc(v)), i.e., on the length of v without the leading zeros. For v = 0m,
it holds that

I ′
G(v) = f0(bd(id)) = f0(bd(0)) = f0(0m) = 0m = v,

so Equation (2.3) holds. We first show the inductive step for all v of the form
v = v′0 and then for all v of the form v = v′1. For v = v′0, we have that

I ′
G(v) = f0(I ′

G(0v′)) = f0(0v′) = v′0 = v,

where the first equality follows from the definition of I ′
G, the second one from the

inductive hypothesis since the length of bd0(bc(0v′)) is smaller than the length of
bd0(bc(v′0)), and the third one from the definition of f0. Hence, Equation (2.3)
holds. Similarly, for v = v′1, we have that

I ′
G(v) = f1(I ′

G(v′0)) = f1(v′0) = v′1 = v,

where the first equality follows from the definition of I ′
G, the second one from the

inductive hypothesis since the case for v′0 was already proved, and the third one
from the definition of f1. Thus, for all v ∈ {0, 1}m, Equation (2.3) holds.

Figure 2.1 illustrates the tree corresponding to the computation of IG induced
by the above construction of (s, f, id, g) for s = [16]. Solid lines correspond to
applications of f0 and dashed lines to applications of f1. For each node, the
second value is the input a to IG, which in this case equals also the output IG(a),
and the first value is bd(a), i.e., the binary representation of a with the leading
zeros.

Now, we show how to adjust the above construction to define f ′
0 and f ′

1 such
that for a given fixed w ∈ {0, 1}m and for all v ∈ {0, 1}m,

I ′
G(v) = v + w, (2.4)

where I ′
G is now determined by f ′

0 and f ′
1, and by v + w we denote bd(bc(v) +

bc(w) mod 2m), i.e., the standard addition with the potential carry being ignored.
Observe that Equation (2.4) is equivalent to IG(a) = a + b mod 2m for a fixed
b = bc(w) ∈ [2m] and all a ∈ [2m]. We implement this property by shifting
the whole computation by w. To do so, we first change the identity element to
id = bc(w). In the computation of f ′

0 and f ′
1, we first subtract w then apply the

original f0 or f1 to the result, and, finally shift it back by adding w.
Formally, we define for all r ∈ {0, 1}m,

f ′
0(r) = f0(r − w) + w and f ′

1(r) = f1(r − w) + w,

where r−w is defined in the same manner as the addition, i.e., r−w = bd(bc(r)−
bc(w) mod 2m). We show that for all v ∈ {0, 1}m, Equation (2.4) holds by
induction on the length of bd0(bc(v)) similarly as for Equation (2.3). For v = 0m,
we have that

I ′
G(v) = f ′

0(bd(id))) = f ′
0(w) = f0(w − w) + w = f0(0m) + w = 0m + w = w,

13

so Equation (2.4) holds. We first show the inductive step for all v such that
v = v′0 and then for all v such that v = v′1. For v = v′0, we have that

I ′
G(v) = f ′

0(I ′
G(0v′)) = f ′

0(0v′ + w) = f0(0v′ + w − w) + w

= f0(0v′) + w = v′0 + w = v + w,

where the first equality comes from the definition of I ′
G, the second one from the

inductive hypothesis, the third one from the definition of f ′
0, and the fifth one

from the definition of f0. Hence, Equation (2.4) holds. Similarly, for v = v′1, we
have that

I ′
G(v) = f ′

1(I ′
G(v′0)) = f ′

1(v′0 + w) = f1(v′0 + w − w) + w

= f1(v′0) + w = v′1 + w = v + w,

for analogous reasons as before. This concludes the proof that Equation (2.4)
holds for all v ∈ {0, 1}m.

We can now proceed with the reduction from Pigeon to Index. Let C :
{0, 1}n → {0, 1}n be an arbitrary instance of Pigeon. We construct an instance
G = (s, f, id, g, t) of Index such that any solution to G gives a solution to the
original instance C of Pigeon. We utilize the second construction with m = n+2.
The rest of the proof is the only place in the thesis, where the function bdk is
used for two values of k, concretely for n + 2 and n. We shorten bdn+2 as bd,
whereas we use the full name bdn for the second case. In the rest of the proof,
we denote by Zeven the subset of Z consisting of even integers and, analogously,
by Zodd we denote the subset of odd integers.

We set s = 2n+2, g = 2n+2− 1, id = 2n and t = 0. The idea is to define f such
that

IG(a) =

⎧⎪⎪⎨⎪⎪⎩
a + 2n if a ∈ [2n+1],
2n+1 + a

2 if a ∈ [2n+1, . . . , 2n+2 − 1] ∩ Zeven =: Ae,

bc(C(bdn(a−1
2 − 2n))) if a ∈ [2n+1, . . . , 2n+2 − 1] ∩ Zodd =: Ao.

(2.5)
For the case n = 2, we illustrate the structure of the computation corre-

sponding to IG satisfying Equation (2.5) in Figure 2.2. Nodes with a solid edge
correspond to the set [2n+1] = [8], nodes with a dashed edge correspond to Ae

and nodes with a dotted edge correspond to Ao. The label of each node equals
the value IG(a), where a is the second value of the node at the same position in
the tree in Figure 2.1.

Suppose that we can define the circuit f such that the induced index function
IG satisfies Equation (2.5). Then [s] = [2n+2] = Ao ∪̇ ([2n+1] ∪̇ Ae), where ∪̇
denotes the disjoint union operation. By Equation (2.5), we get that IG restricted
to [2n+1] ∪̇ Ae is a bijection between [2n+1] ∪̇ Ae and [2n, . . . , 2n+2−1]. Moreover,
IG restricted to Ao outputs only values in [2n]. Hence, any collision in IG or any
preimage of t = 0 under IG can happen only for values from Ao. Furthermore, for
values from Ao, the output of the function IG corresponds to the output of the
circuit C, so any collision in IG or any preimage of t under IG give us a solution
to the original instance C of Pigeon. Formally, the oracle solving the above
instance of Index returns one of the following:

14

1. u ∈ [s] such that IG(u) = t = 0. From the above discussion, we know it
must be the case that u ∈ Ao. Hence, from Equation (2.5), we get that

0n = bdn(0) = bdn(t) = bdn(IG(u)) = bdn(bc(C(bdn(u−1
2 − 2n))))

= C(bdn(u−1
2 − 2n)),

and bdn(u−1
2 −2n) is a solution to the original instance C of Pigeon, case 1.

2. u, v ∈ [s] such that fG(u, v) ≥ s. Since s = 2n+2, this case cannot happen.

3. u, v ∈ [s] such that u ̸= v and IG(u) = IG(v). Similarly as for the first case,
it must hold that u, v ∈ Ao. Hence, from Equation (2.5), we get that

C(bdn(u−1
2 − 2n)) = C(bdn(v−1

2 − 2n)).

From the fact that u ̸= v and from the definition of the set Ao, it follows that
bdn(u−1

2 −2n) ̸= bdn(v−1
2 −2n), hence the pair bdn(u−1

2 −2n), bdn(v−1
2 −2n)

forms a non-trivial collision for C, i.e., a solution to the original instance C
of Pigeon, case 2.

It remains to define the circuit f such that the induced index function IG satisfies
Equation (2.5). Here, we make use of the second construction with m = n + 2
defined and analysed above, where we set w = bd(2n), i.e., for which it holds
that IG(a) = a + 2n mod 2n+2 and that I ′

G(v) = v + w. It remains to adjust the
definition of the corresponding f ′

0 and f ′
1 such that we get the desired output for

values from Ae and Ao. To this end, we set

f(u, v) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
11v′ if u = v ̸= bd(g) and v − w = 01v′,

f ′
0(v) if u = v ̸= bd(g) and v − w ̸= 01v′,

C(bdn(bc(v)− 2n − 2n+1)) if u = bd(g) and bc(v) ∈ B,

f ′
1(v) if u = bd(g) and bc(v) /∈ B,

(2.6)
where B = {2n+2n+1, . . . , 2n+2−1}. Note that f can be defined on the remaining
inputs arbitrarily since they are not used in the computation of IG.

Note that for a ∈ [2n+1], only cases 2 and 4 from the definition of f in
Equation (2.6) are used in the computation of IG(a). Since these cases 2 and 4
coincide with the previous construction, we have that

IG(a) = a + 2n mod 2n+2 = a + 2n

for all a ∈ [2n+1], which corresponds to the first case in Equation (2.5).
For a ∈ Ae, it holds that bd0(a) is of the form bd0(a) = bd(a) = 1v′0. Hence,

we get that

IG(a) = bc(f(I ′
G(01v′), I ′

G(01v′))) = bc(f(01v′ + w, 01v′ + w)) = bc(11v′),

where the first equality comes from the definition of IG, the second one from the
previous construction and the last one from the definition of f . Furthermore, we
have that bc(11v′) = 2n+1 + 2n + bc(v′) = 2n+1 + bc(01v′) = 2n+1 + a

2 , which
proves the second case in Equation (2.5).

15

For a ∈ Ao, it holds that bd0(a) is of the form bd0(a) = bd(a) = 1v′1. Hence,
we get that

IG(a) = bc(f(bd(g), bd(IG(bc(1v′0))))). (2.7)

Moreover, it holds that bc(bd(IG(bc(1v′0)))) = IG(bc(1v′0)) = 2n+1 + bc(1v′0)
2 ∈

[2n + 2n+1, 2n+2 − 1] = B from the already proved second part of Equation (2.5)
since bc(1v′0) ∈ Ae. Hence, the third case from the definition of f in Equa-
tion (2.6) applies to Equation (2.7) and we get that

IG(a) = bc(C(bdn(bc(bd(IG(bc(1v′0))))− 2n − 2n+1)))
= bc(C(bdn(IG(bc(1v′0))− 2n − 2n+1)))
= bc(C(bdn(bc(1v′0)

2 + 2n+1 − 2n − 2n+1)))
= bc(C(bdn(bc(1v′0)

2 − 2n)))
= bc(C(bdn(a−1

2 − 2n))),

which proves the last case in Equation (2.5) and concludes the whole proof.

16

id = 0

0000 = 0

0001 = 1

0010 = 2

0011 = 3

0110 = 6

0111 = 7

1110 = 14

1111 = 15

1100 = 12

1101 = 13

0100 = 4

0101 = 5

1010 = 10

1011 = 11

1000 = 8

1001 = 9

f0

f1

f0

f1

f0

f1

f0

f1

f0

f1

f0

f1

f0

f1

f0

f1

Figure 2.1: Tree induced by the computation of IG, IG(a) = a

id = 4

4

5

6

7

10

11

15

bc(C(11))

14

bc(C(10))

8

9

13

bc(C(01))

12

bc(C(00))

f0

f1

f0

f1

f0

f1

f0

f1

f0

f1

f0

f1

f0

f1

f0

f1

Figure 2.2: Tree induced by the computation of IG, C incorporated

17

3. DLog is PWPP-complete
In this chapter, we define DLog, another total search problem associated with
DLP, and we show that it is PWPP-complete. Our reductions give rise to two
additional new PWPP-complete problems called Dove and Claw, which we
discuss further in Section 3.3. We start with the definition of DLog.

Definition 7 (DLog problem).

Instance: A size parameter s ∈ N and a Boolean circuit f : {0, 1}2⌈log(s)⌉ →
{0, 1}⌈log(s)⌉ representing a groupoid (G, ⋆) and indices g, id, t ∈ [s].

Solution: One of the following:
1. x ∈ [s] such that IG(x) = t,
2. x, y ∈ [s] such that fG(x, y) ≥ s,
3. x, y ∈ [s] such that x ̸= y and IG(x) = IG(y),
4. x, y ∈ [s] such that x ̸= y and fG(t, IG(x)) = fG(t, IG(y)),
5. x, y ∈ [s] such that IG(x) = fG(t, IG(y)) and IG(x− y mod s) ̸= t.

It is immediate that DLog is a relaxation of Index due to the two additional
types of a solution. These last two types of a solution make DLog to lie in
the class PWPP and are motivated by the construction of collision-resistant hash
functions from DLP [4].

Motivation for DLog. The two additional types of a solution in DLog are
motivated by the construction of collision-resistant hash functions from DLP [4],
which, on a high-level, corresponds to showing that DLP lies in PWPP. Let g, t be
elements of some group and x, y ∈ Z. In the construction from [4], the following
properties of groups are used:

(a) (t · gx = t · gy) =⇒ (gx = gy),

(b) (gx = t · gy) =⇒ (gx−y = t).

The fourth type of a solution in DLog is a witness that the property (a) does
not hold in the induced groupoid and, similarly, the fifth type of a solution in
DLog is a witness that the property (b) does not hold in the induced groupoid.
Hence, these two additional types of a solution in DLog allow us to do the
manipulations described by (a) and (b) - either these manipulations are valid, or
we found a solution to the instance of DLog.

The main result of this chapter is the following theorem that we prove in the
rest of this chapter.

Theorem 4. DLog is PWPP-complete.

Specifically, we show that DLog lies in PWPP in Section 3.1 and we establish
that DLog is PWPP-hard in Section 3.2.

18

3.1 DLog lies in PWPP
In this section, we show that DLog lies in the class PWPP. Our reduction
from DLog to Collision is inspired by the standard construction of collision-
resistant hash functions from DLP by Damg̊ard [4]. The construction in [4] goes
through an intermediate object of claw-free permutations, which are sufficient for
collision-resistant hashing. A family of claw-free permutations is an efficiently
sampleable family of pairs of permutations such that given a “random” pair h0,
h1 of permutations from the family, it is computationally infeasible to find a claw
for these two permutations, i.e., inputs u and v such that h0(u) = h1(v). We
formalize the corresponding total search problem, which we call Claw, below.
Definition 8 (Claw problem).

Instance: Two Boolean circuits h0, h1 with n inputs and n outputs.

Solution: One of the following:
1. strings u, v ∈ {0, 1}n such that h0(u) = h1(v),
2. strings u, v ∈ {0, 1}n such that u ̸= v and h0(u) = h0(v),
3. strings u, v ∈ {0, 1}n such that u ̸= v and h1(u) = h1(v).

The first type of a solution in Definition 8 corresponds to finding a claw for
the pair of functions h0 and h1. As we cannot efficiently certify that both h0 and
h1 are permutations, we introduce the second and third type of a solution which
witness that one of these functions is not bijective. In other words, the second
and third type of a solution ensure the totality of Claw.

Similarly to [4], our high-level approach is to first give a reduction from DLog
to Claw and then a reduction from Claw to Collision. Although, we cannot
simply employ his analysis since we have no guarantee that 1) the groupoid in-
duced by an arbitrary DLog instance is a cyclic group and 2) that an arbitrary
instance of Claw corresponds to a pair of permutations. It turns out that the sec-
ond issue is not crucial. It was observed by Russell [5] that the notion of claw-free
pseudopermutations is sufficient for collision-resistant hashing. Our definition of
Claw corresponds exactly to the worst-case version of breaking claw-free pseu-
dopermutations as defined by [5]. As for the first issue, we manage to provide
a formal reduction from DLog to General-Claw, a variant of Claw defined
below.
Definition 9 (General-Claw problem).

Instance: Two Boolean circuits h0, h1 with n inputs and n outputs and s ∈ Z
such that 1 ≤ s < 2n.

Solution: One of the following:
1. strings u, v ∈ {0, 1}n such that bc(u) < s, bc(v) < s

and h0(u) = h1(v),
2. strings u, v ∈ {0, 1}n such that u ̸= v and h0(u) = h0(v),
3. strings u, v ∈ {0, 1}n such that u ̸= v and h1(u) = h1(v),
4. a string u ∈ {0, 1}n such that bc(u) < s and bc(h0(u)) ≥ s,
5. a string u ∈ {0, 1}n such that bc(u) < s and bc(h1(u)) ≥ s.

19

The motivation for the additional two types of a solution in General-Claw
compared with Claw is that the possible solutions to an instance of DLog are
not from the whole domain [2n], but they must lie in [s]. Additionally, note
that the last two types of a solution in our definition of DLog (Definition 7) are
used in the reduction from DLog to General-Claw to substitute the necessary
group axioms for the construction from [4].

Below, we give the formal reduction from DLog to General-Claw.

Lemma 5. DLog is reducible to General-Claw.

Proof. We start with an arbitrary instance G = (s, f, id, g, t) of DLog. Let
n = ⌈log(s)⌉. We define h0 : {0, 1}n → {0, 1}n and h1 : {0, 1}n → {0, 1}n as
follows:

h0(u) =
⎧⎨⎩bd(IG(bc(u))) if bc(u) < s,

u otherwise,

and

h1(u) =
⎧⎨⎩f(bd(t), bd(IG(bc(u))) if bc(u) < s,

u otherwise,

where u ∈ {0, 1}n. We show that any solution to this instance (h0, h1, s) of
General-Claw gives a solution to the above instance G of DLog. Five cases
can occur:

1. The solution is u, v ∈ {0, 1}n such that bc(u) < s, bc(v) < s and h0(u) =
h1(v). Then, for x = bc(u), y = bc(v), it holds that x, y ∈ [s], so

h0(u) = bd(IG(bc(u))) = bd(IG(x))

and
h1(v) = f(bd(t), bd(IG(bc(v))) = bd(fG(t, IG(y))).

Putting these equalities together, we get that

bd(IG(x)) = bd(fG(t, IG(y))),

and hence
IG(x) = fG(t, IG(y)).

If IG(x− y mod s) = t, then x− y mod s ∈ [s] is the discrete logarithm of
t, i.e., a solution to the original instance G of DLog, case 1. Otherwise,
the pair x, y is a solution to the original instance G of DLog, case 5.

2. The solution is u, v ∈ {0, 1}n such that u ̸= v and h0(u) = h0(v). Let
x = bc(u), y = bc(v). If x ≥ s, then from the definition of h0 and the fact
that x ̸= y, we get that y < s and

u = h0(u) = h0(v) = bd(IG(y)),

so
x = bc(u) = IG(y)

20

with x ≥ s and y ∈ [s]. It means that after some step in the computation
of IG(y), it holds that bc(r) ≥ s. We consider the first such step. Since all
steps correspond to applying the circuit f , we have that

r = f(r′, r′′)

for some r′, r′′ such that bc(r′), bc(r′′) ∈ [s]. This rewrites to

s ≤ bc(r) = fG(bc(r′), bc(r′′)).

Hence, bc(r′), bc(r′′) is a solution to the original instance G of DLog, case
2. We proceed analogously if y ≥ s. Now assume that x, y ∈ [s]. Then we
get that

IG(x) = IG(y)
and since x ̸= y, we found a solution to the original instance G of DLog,
case 3.

3. The solution is u, v ∈ {0, 1}n such that u ̸= v and h1(u) = h1(v). Let
x = bc(u), y = bc(v). If x ≥ s, then from the definition of h1 and the fact
that x ̸= y, we get that y < s and

u = h1(u) = h1(v) = f(bd(t), bd(IG(y))),

so
x = bc(u) = bc(f(bd(t), bd(IG(y)))) = fG(t, IG(y))

with x ≥ s and y ∈ [s]. If IG(y) ≥ s, then we proceed as above in the
previous case. If IG(y) ∈ [s], then t, IG(y) is a solution to the original
instance G of DLog, case 2. We proceed analogously if y ≥ s. Now assume
that x, y ∈ [s]. Then we get that

f(bd(t), bd(IG(x))) = f(bd(t), bd(IG(y))),

so
fG(t, IG(x)) = fG(t, IG(y))

and since x ̸= y, we found a solution to the original instance G of DLog,
case 4.

4. The solution is u ∈ {0, 1}n such that bc(u) < s and bc(h0(u)) ≥ s. Let
x = bc(u). Then we have that

s ≤ bc(h0(u)) = IG(x)

with x ∈ [s]. Now we can proceed as in analogous situations in cases 2 and
3 above.

5. The solution is u ∈ {0, 1}n such that bc(u) < s and bc(h1(u)) ≥ s. Let
x = bc(u). Then we have that

s ≤ bc(h1(u)) = bc(f(bd(t), bd(IG(bc(u)))) = fG(t, IG(x))

with x ∈ [s]. Now we can proceed as in the same situation in case 3 above.

21

Now, we give the formal reduction from General-Claw to Collision.

Lemma 6. General-Claw is reducible to Collision.

Proof. We start with an arbitrary instance (h0, h1, s) of General-Claw, where
h0, h1 : {0, 1}n → {0, 1}n. We define a circuit C : {0, 1}n+1 → {0, 1}n as follows:

C(x) = hx0 ◦ hx1 ◦ · · · ◦ hxn(0n),

where x = (x0, x1, . . . , xn). The construction is valid since the circuit C can
be constructed in polynomial time in the size of the given instance (h0, h1, s) of
General-Claw. Now we show that any solution to this instance C of Collision
gives a solution to the original instance (h0, h1, s) of General-Claw. There is
only one type of a solution for Collision, so assume that C(x) = C(y) for x ̸= y,
where x = (x0, x1, . . . , xn) and y = (y0, y1, . . . , yn). If it holds that

bc(hxi
◦ · · · ◦ hxn(0n)) ≥ s

for some 0 ≤ i ≤ n, then consider the largest such i. We emphasize that we can
check this in polynomial time. We have that

bc(hxi
◦ hxi+1 · · · ◦ hxn(0n)) ≥ s

and
bc(hxi+1 ◦ · · · ◦ hxn(0n)) < s.

Then, for u = hxi+1 ◦ · · ·◦hxn(0n), it holds that bc(u) < s and bc(hxi
(u)) ≥ s. So,

u forms a solution to the original instance (h0, h1, s) of General-Claw, case 4
or 5 based on the bit xi. We proceed analogously if

bc(hyi
◦ · · · ◦ hyn(0n)) ≥ s

for some 0 ≤ i ≤ n. For the rest of the proof, we can assume that

bc(hxi
◦ · · · ◦ hxn(0n)) < s

and
bc(hyi

◦ · · · ◦ hyn(0n)) < s

for all 0 ≤ i ≤ n. Since x ̸= y, there is some i such that xi ̸= yi. If

hxi
◦ · · · ◦ hxn(0n) = hyi

◦ · · · ◦ hyn(0n),

then the pair u = hxi+1 ◦ · · · ◦ hxn(0n), v = hyi+1 ◦ · · · ◦ hyn(0n) satisfies bc(u) <
s, bc(v) < s and hxi

(u) = hyi
(v) with xi ̸= yi, hence the pair u, v forms a solution

to the original instance (h0, h1, s) of General-Claw, case 1. Otherwise, if

hxi
◦ · · · ◦ hxn(0n) ̸= hyi

◦ · · · ◦ hyn(0n),

then there must be some j < i, such that

hxj
◦ · · · ◦ hxn(0n) = hyj

◦ · · · ◦ hyn(0n),

22

and we consider the largest such j. Then, it holds that

hxj+1 ◦ · · · ◦ hxn(0n) ̸= hyj+1 ◦ · · · ◦ hyn(0n).

The pair u = hxj+1◦· · ·◦hxn(0n), v = hyj+1◦· · ·◦hyn(0n) satisfies u ̸= v, bc(u) < s,
bc(v) < s and hxj

(u) = hyj
(v). So, the pair u, v forms a solution to the original

instance (h0, h1, s) of General-Claw, case 1, 2, or 3 based on the bits xj and
yj.

The above Lemma 5 and Lemma 6 imply that DLog lies in PWPP and we
conclude this section with the corresponding corollary.
Corollary. DLog lies in PWPP.

3.2 DLog is PWPP-hard
In this section, we prove that DLog is PWPP-hard, which, together with the
previous section, shows that DLog is PWPP-complete.

Our reduction from Collision to DLog goes through an intermediate prob-
lem we call Dove, which is a variant of the PPP-complete problem Pigeon with
additional types of a solution. We start with the definition of Dove.

Definition 10 (Dove problem).

Instance: A Boolean circuit C with n inputs and n outputs.

Solution: One of the following:
1. a string u ∈ {0, 1}n such that C(u) = 0n,
2. a string u ∈ {0, 1}n such that C(u) = 0n−11,
3. strings u, v ∈ {0, 1}n such that u ̸= v and C(u) = C(v),
4. strings u, v ∈ {0, 1}n such that C(u) = C(v)⊕ 0n−11.

It is immediate that Dove is a relaxation of Pigeon (cf. Definition 4) with
two additional new types of a solution – the cases 2 and 4 in the above definition.
Similarly to case 1, case 2 corresponds to a preimage of a fixed element in the
range. Case 4 corresponds to a pair of strings such that their images under C
differ only on the last bit.

Permutations for which it is computationally infeasible to find inputs with
evaluations differing only on a prescribed index appeared in the work of Zheng,
Matsumoto, and Imai [7] under the term distinction-intractable permutations.
In [7], they showed that distinction-intractable permutations are sufficient for
collision-resistant hashing. Note that we employ distinction-intractability in a dif-
ferent way than [7]. In particular, their construction of collision-resistant hash
from distinction-intractable permutations could be leveraged towards a reduction
from Dove to Collision (proving Dove is contained in PWPP) – whereas we
use Dove as an intermediate problem when reducing from Collision to DLog
(proving PWPP-hardness of DLog).

First, we provide a high-level idea of the reduction from Dove to DLog,
which also motivates the definition of Dove.

23

Reducing Dove to DLog. Let C : {0, 1}n → {0, 1}n be an arbitrary instance
of Dove. Our goal is to construct an instance G = (s, f, id, g, t) of DLog such
that any solution to G provides a solution to the original instance C of Dove.

The key step in the construction of G is a suitable choice of the circuit f since
it defines both IG and fG. The main issue with the reduction is the third type of
a solution in DLog, i.e., defining f such that we can find a solution to the Dove
instance C from any non-trivial collision IG(x) = IG(y).

As we know, the computation of IG(x) simply corresponds to an iterated
composition of the functions f0 and f1 depending on the binary representation
bd0(x) of x and evaluated on id. The straightforward option would be to set
f0(r) = f1(r) = C(r) for all r ∈ {0, 1}n. Unfortunately, such an approach fails
since for all distinct u, v ∈ [s] such that the number of zeros plus twice the number
of ones in bd0(u) is same as in bd0(v), there would be easy to find non-trivial
collisions IG(x) = IG(y), which do not provide any useful information about the
circuit C.
Example. IG(5) = IG(bc(101)) = bc(f1 ◦ f0 ◦ f0 ◦ f1 ◦ f0(bd(id))) = C5(bd(id)) =
bc(f0 ◦ f0 ◦ f0 ◦ f1 ◦ f0(bd(id))) = IG(bc(1000)) = IG(8).

Hence, we define f0 and f1 such that f0 ̸= f1. On a high level, we set f0(r) =
C(r) and f1(r) = C(h(r)) for some function h : {0, 1}n → {0, 1}n that is not the
identity as in the flawed attempt above. Then, except for some special cases,
a non-trivial collision IG(x) = IG(y) corresponds to

C(C(u)) = C(h(C(v)))

for some u, v ∈ {0, 1}n, which are not necessarily distinct. If C(u) ̸= h(C(v)) then
C(u), h(C(v)) forms a non-trivial collision for C. Otherwise, we found a pair u, v
such that C(u) = h(C(v)), which, for the choice h(y) = y⊕0n−11, translates into

C(u) = C(v)⊕ 0n−11, (3.1)

i.e., a pair of inputs breaking distinction-intractability of C, and corresponds
to the last type of a solution in Dove. Finally, the second type of a solution
(together also with the first one and the third one) in Dove captures the special
case when there is no pair u, v such that C(C(u)) = C(h(C(v))) and also the other
types of a solution in DLog.

We give the formal reduction from Dove to DLog below.

Lemma 7. Dove is reducible to DLog.

Proof. Let C : {0, 1}n → {0, 1}n be an arbitrary instance of Dove. We construct
the corresponding instance G = (s, f, id, g, t) of DLog. Set s = 2n, g = 0, id =
1, t = 1 and define the circuit f : {0, 1}2n → {0, 1}n as follows:

f(x, y) =

⎧⎪⎪⎨⎪⎪⎩
C(x) if x = y,

C(y ⊕ 0n−11) if x = bd(g) and y ̸= bd(g),
x⊕ y otherwise,

where x, y ∈ {0, 1}n. Then the groupoid representation (s, f) with the indices
g, id, t form an instance of DLog. We emphasize that we can access all interme-
diate results in the computation of IG since the whole computation is performed
in polynomial time in the size of the input instance C.

24

Now we show that any solution to this DLog instance gives a solution to the
original Dove instance C. Five cases can occur:

1. The solution is x ∈ [s] such that IG(x) = t. For our DLog instance, t = 1,
hence IG(x) = 1. From the definition of the function IG, it holds that
bd(IG(x)) = f(r, r) = C(r) or bd(IG(x)) = f(g, r) = C(r⊕ 0n−11) for some
r ∈ {0, 1}n. Putting these equalities together, we get that

0n−11 = bd(1) = bd(IG(x)) = C(y),

where y = r or y = r⊕ 0n−11. So this y ∈ {0, 1}n is a preimage of 0n−11 in
C, i.e., it is a solution to the original Dove instance C, case 2.

2. The solution is a pair x, y ∈ [s] such that fG(x, y) ≥ s. But since s = 2n

and fG : [s]× [s]→ [2n], this case cannot happen.

3. The solution is a pair x, y ∈ [s] such that x ̸= y and IG(x) = IG(y). First,
we can assume that in the computation of IG(x) and IG(y), r ̸= bd(g) for
all iterations. If that was the case, then for the first such occurrence it holds
that

0n = bd(0) = bd(g) = r =
⎧⎨⎩f(r′, r′) = C(r′),

f(g, r′) = C(r′ ⊕ 0n−11).

In both cases, we found a preimage of 0n in C, i.e., a solution to the original
Dove instance C, case 1.
Further, let (xk, . . . , x0) = bd0(x) and (yl, . . . , y0) = bd0(y) be the binary
representations of x and y, respectively, where x0 and y0 are the least sig-
nificant bits and k, l < n. We use the following notation: by rzi

we denote
the value of the variable r in the computation of IG(z) after the loop corre-
sponding to the bit zi. Since x ̸= y, their binary representations are distinct
as well.
Hence, there are three possible cases:

(a) There is some i such that xi ̸= yi. Let j denote the smallest such i.
Without loss of generality, assume that xj = 0 and yj = 1. Hence, it
holds that rxj

= C(a) and ryj
= C(C(b)⊕0n−11) for some a, b ∈ {0, 1}n.

i. If j = 0, then it holds that bc(rxj
) = IG(x) = IG(y) = bc(ryj

),
which means that

C(a) = C(C(b)⊕ 0n−11). (3.2)

If x = 0, then a = bd(id) = bd(1) = 0n−11, so

C(0n−11) = C(C(b)⊕ 0n−11).

Now, either 0n−11 ̸= C(b)⊕ 0n−11, which means a non-trivial col-
lision in C, i.e., a solution to the original instance C, case 3, or
0n−11 = C(b)⊕0n−11, which implies 0n = C(b) and b is a preimage
of 0n in C, i.e., a solution to the original instance C, case 1.

25

If x ̸= 0, then j < k and a = C(c) for some c ∈ {0, 1}n. Substitut-
ing to the above equality 3.2, we get that

C(C(c)) = C(C(b)⊕ 0n−11).

Now, either C(c) ̸= C(b) ⊕ 0n−11, which means a non-trivial col-
lision in C, i.e., a solution to the original instance C, case 3, or
C(c) = C(b)⊕ 0n−11, so the pair b, c forms a solution to the origi-
nal instance C, case 4.

ii. Now suppose that j ̸= 0. If rxj
= ryj

, then the proof can be re-
duced to the previous case j = 0. Otherwise, since j is the small-
est index where xj and yj differ, we know that (xj−1, . . . , x0) =
(yj−1, . . . , y0) and, hence, the computation of IG(x) and of IG(y)
uses exactly same steps starting from rxj

, ryj
. Since rxj

̸= ryj
and

IG(x) = IG(y), there must be a collision after some step. Since
all these steps correspond to applying the circuit C, we can find
a non-trivial collision in C, i.e., a solution to the original instance
C, case 3.

(b) It holds that (xl, . . . , x0) = (yl, . . . , y0) and k > l. We know that
rxl+1 = C(a) for some a. In the computation of IG, the variable r is
initialized to bd(id) at the beginning. Since (xl, . . . , x0) = (yl, . . . , y0),
the computation of IG(x) starting from rxl+1 uses the same steps as the
whole computation of IG(y), which starts from r = bd(id) = bd(1) =
0n−11. If 0n−11 = rxl+1 = C(a), then a is a preimage of 0n−11 in C, i.e.,
a solution to the original instance C, case 2. If 0n−11 ̸= rxl+1 , then there
must be a non-trivial collision after some step since IG(x) = IG(y).
Since all these steps correspond to applying the circuit C, we can find
a non-trivial collision in C, i.e., a solution to the original instance C,
case 3.

(c) It holds that (xk, . . . , x0) = (yk, . . . , y0) and k < l. Then the proof
proceeds analogously as for the case k > l only with the roles of x and
y switched.

4. The solution is a pair x, y ∈ [s] such that x ̸= y and fG(t, IG(x)) =
fG(t, IG(y)). If t = IG(x) or t = IG(y), we can proceed as in the case
1. above. Otherwise, since t ̸= g, it holds that fG(t, IG(x)) = bc(bd(t) ⊕
bd(IG(x))) and that fG(t, IG(y)) = bc(bd(t) ⊕ bd(IG(y))). By combining
these equalities, we obtain that

bc(bd(t)⊕ bd(IG(x))) = bc(bd(t)⊕ bd(IG(y))),

which implies that
IG(x) = IG(y),

and since x ̸= y, we proceed as in the case 3. above.

5. The solution is a pair x, y ∈ [s] such that

IG(x) = fG(t, IG(y)) (3.3)

26

and IG(x− y mod s) ̸= t. If t = IG(y), then we can proceed as in the case
1. above. Otherwise, since t ̸= g, we have that

fG(t, IG(y)) = bc(bd(t)⊕ bd(IG(y))). (3.4)

By combining equations 3.3 and 3.4, we get that

IG(x) = bc(bd(t)⊕ bd(IG(y))).

Moreover, we know that IG(x) = bc(C(r)) for some r ∈ {0, 1}n and that
IG(y) = bc(C(r′)) for some r′ ∈ {0, 1}n. Substituting to the previous
relationship and using the fact the bc and bd are bijections inverse to each
other, we get that

C(r) = bd(t)⊕ C(r′) = bd(1)⊕ C(r′) = 0n−11⊕ C(r′).

Hence, the pair r, r′ forms a solution to the original instance C, case 4.

In the next lemma, we show that, by introducing additional types of a solution
into the definition of Pigeon, we do not make the corresponding search problem
too easy – Dove is at least as hard as any problem in PWPP.

Lemma 8. Collision is reducible to Dove.

Proof. We start with an arbitrary instance C : {0, 1}n → {0, 1}m with m < n of
Collision. Moreover, we can assume that m = n− 1 because otherwise we can
pad the output with zeros, which preserves the collisions. We construct a circuit
V : {0, 1}2n → {0, 1}2n, considered as an instance of Dove, as follows:

V(x1, . . . , x2n) = (C(x1, . . . , xn), C(xn+1, . . . , x2n), 1, 1),

where xi ∈ {0, 1}. The construction is valid since the new circuit V can be
constructed in polynomial time with respect to the size of C. Now we show that
any solution to the above instance V of Dove gives a solution to the original
Collision instance C. Four cases can occur:

1. The solution to V is (x1, . . . , x2n) ∈ {0, 1}2n such that V(x1, . . . , x2n) = 02n.
From the definition of the circuit V, the last bit of the output is always 1,
hence this case cannot happen.

2. The solution to V is (x1, . . . , x2n) ∈ {0, 1}2n such that V(x1, . . . , x2n) =
0n−11 = (0, 0, . . . , 0, 1). From the definition of the circuit V, the next-to-last
bit of the output is always 1, hence this case cannot happen.

3. The solution to V is x = (x1, . . . , x2n), y = (y1, . . . , y2n) ∈ {0, 1}2n such that
x ̸= y and V(x) = V(y). From the definition of the circuit V, it holds that

C(x1, . . . , xn) = C(y1, . . . , yn)

and
C(xn+1, . . . , x2n) = C(yn+1, . . . , y2n).

Moreover, we know that, since x ̸= y, either (x1, . . . , xn) ̸= (y1, . . . , yn)
or (xn+1, . . . , x2n) ̸= (yn+1, . . . , y2n). In both cases, we found a non-trivial
collision in C, i.e., a solution to the original instance C.

27

4. The solution to V is x, y ∈ {0, 1}2n such that V(x) = V(y)⊕0n−11, i.e., their
evaluations differ only on the last bit. From the definition of the circuit V,
the last bit of the output is always 1, hence this case cannot happen.

The above Lemma 7 and Lemma 8 imply that DLog is PWPP-hard and we
conclude this section with the corresponding corollary.
Corollary. DLog is PWPP-hard.

3.3 New characterizations of PWPP
Our results in Section 3.1 and Section 3.2 establish two new PWPP-complete
problems besides DLog.

Dove. The chain of reductions in Chapter 3 shows, in particular, that Dove
is PWPP-complete. As a relaxation of Pigeon, it is the first PWPP-complete
problem not defined in terms of an explicitly shrinking function. Nevertheless,
it is equivalent to Collision and, thus, it inherently captures some notion of
compression. Given its different structure than Collision, we were able to
leverage it in our proof of PWPP-hardness of DLog, and it might prove useful
in attempts at proving PWPP-hardness of other problems.

Claw. In [5], Russell showed that a weakening of claw-free permutations is
sufficient for collision-resistant hashing. Specifically, he leveraged claw-free pseu-
dopermutations, i.e., functions for which it is also computationally infeasible to
find a witness refuting their bijectivity. Our definition of Claw ensures totality
by an identical existential argument – a pair of functions with identical domain
and range either has a claw or some of the functions is not bijective.

Claw trivially reduces to the PWPP-complete problem General-Claw and,
thus, it is contained in PWPP. Below, we also show a reduction from Collision
to Claw establishing that it is PWPP-hard.

Lemma 9. Collision is reducible to Claw.

Proof. We start with an arbitrary instance C : {0, 1}n → {0, 1}m of Collision
with m < n. Without loss of generality, we can suppose that m = n − 1 since
otherwise we can pad the output with zeros, which preserves collisions. We
construct an instance of Claw as follows:

h0(x) = C(x)0

and
h1(x) = C(x)1.

We show that any solution to this instance (h0, h1) of Claw gives a solution to
the original instance C of Collision. Three cases can occur:

1. u, v ∈ {0, 1}n such that h0(u) = h1(v). Since the last bit of h0(u) is zero
and the last bit of h1(v) is one, this case cannot happen.

28

2. u, v ∈ {0, 1}n such that u ̸= v and h0(u) = h0(v). From the definition
of h0, we get that C(u)0 = h0(u) = h0(v) = C(v)0, which implies that
C(u) = C(v). Hence, the pair u, v forms a solution to the original Collision
instance C.

3. u, v ∈ {0, 1}n such that u ̸= v and h1(u) = h1(v). We can proceed analo-
gously as in the previous case to show that the pair u, v forms a solution to
the original Collision instance C.

29

4. Ensuring the totality of search
problems in number theory
In this section, we discuss some of the issues that arise when defining total search
problems corresponding to actual problems in computational number theory.

4.1 DLP
In this section, we present a formalization of the discrete logarithm problem in
Z∗

p, i.e., the multiplicative group of integers modulo a prime p. Our goal is to
highlight the distinction between the general DLog as defined in Definition 7 and
the discrete logarithm problem in any specific group Z∗

p. In particular, we argue
that the latter is unlikely to be PWPP-complete. We start with the definition of
DLogp.

Definition 11 (DLogp).

Instance: Distinct primes p, p1, . . . , pn ∈ N, natural numbers k1 . . . , kn ∈ N,
and g, y ∈ Z∗

p such that

1. p− 1 = ∏︁n
i=1 pki

i and
2. g(p−1)/pi ̸= 1 for all i ∈ {1, . . . , n}.

Solution: An x ∈ {0, . . . , p− 2} such that gx = y.

The second condition in the previous definition ensures that g is a generator
of Z∗

p due to the Lagrange theorem. If g was not a generator, then there would
be a q ∈ {1, . . . , p− 2} such that gq = 1. We consider the smallest such q. Then
(g, g2, g3, . . . , gq) forms a subgroup of Z∗

p, and, from the Lagrange theorem, we
get that q = pl1

1 · . . . ·pln
n such that at least one li < ki. Then g(p−1)/pi is a power of

gq, implying that g(p−1)/pi = 1, which would be a contradiction with the second
condition in Definition 11. Hence, g is a generator of Z∗

p.
Our first observation is a straightforward upper bound for DLogp that follows

by showing its inclusion in PWPP.

Lemma 10. DLogp is reducible to DLog.

Proof. Given an instance (p, p1, . . . , pn, k1, . . . , kn, g, y) of DLogp, we first fix
a representation of Z∗

p by [p − 1], i.e, we represent an element a ∈ Z∗
p by a − 1.

Then, we construct the natural instance (s, f, id, g′, t) of DLog, where

• s = p− 1,

• f implements multiplication in Z∗
p w.r.t. the fixed representation of Z∗

p,

• id is the representation of 1 ∈ Z∗
p as an element of [s], i.e, id = 0,

• g′ is the representation of the given generator g of Z∗
p as an element of [s],

• t is the representation of y ∈ Z∗
p as an element of [s].

30

Now, we show that any solution to this instance (s, f, id, g′, t) of DLog gives
a solution to the original instance of DLogp. There are five types of a solution
in DLog:

1. a ∈ [s] such that IG(a) = t. Since f corresponds to a valid group operation,
it holds that IG(a) = ga. Hence, ga = t = y and a ∈ [s] = {0, . . . , p− 2} is
a solution to the original instance of DLogp.

2. a, b ∈ [s] such that fG(a, b) ≥ s. Since f corresponds to a valid group
operation, this case cannot happen.

3. a, b ∈ [s] such that a ̸= b and IG(a) = IG(b). Since f corresponds to a valid
group operation, we get that ga = IG(a) = IG(b) = gb. Suppose without
loss of generality that a > b. Then, the previous relationship implies that
ga−b = 1, where a− b ̸= 0 and a− b < p− 1. This would be a contradiction
with the fact the g is a generator of Z∗

p. Hence, this case cannot happen.

4. a, b ∈ [s] such that a ̸= b and fG(t, IG(a)) = fG(t, IG(b)). Since f cor-
responds to a valid group operation, the previous equality implies that
y · ga = y · gb. By cancelling y, we get that ga = gb with a ̸= b and a, b ∈ [s].
For the same reason as in the previous case, this case cannot happen.

5. a, b ∈ [s] such that IG(a) = fG(t, IG(b)) and IG(a − b mod s) ̸= t. Since
f corresponds to a valid group operation, we get that ga = y · gb and
ga−b = ga−b mod s ̸= y, which is impossible. Hence, this case cannot happen.

Note that the proof of Lemma 10 shows that the index function defined by
taking the respective powers of g is a bijection and any instance of DLogp has
a unique solution. Thus, there is a stronger upper bound on the complexity of
DLogp in terms of containment in the class TFUP, i.e., the subclass of TFNP
of total search problems with syntactically guaranteed unique solution for every
instance.
Corollary. DLogp ∈ TFUP.

Even though the class TFUP was not extensively studied, the existence of
a reduction of an arbitrary instance of Collision to a search problem with
a unique solution for all instances seems implausible. Thus, we conjecture that
DLogp cannot be PWPP-complete.

4.2 Blichfeldt
Both our reductions establishing PWPP-hardness of DLog and PPP-hardness
of Index result in instances that induce groupoids unlikely to satisfy the group
axioms. In other words, the resulting instances do not really correspond to DLP
in any group. It is natural to ask whether this property is common to other PWPP
and PPP hardness results. In this section, we revisit the problem Blichfeldt
introduced in [3] and show that it also exhibits a similar phenomenon.

Below, we use the natural extension of the bit composition and decomposition
functions when applied to vectors. We start with the definition of Blichfeldt.

31

Definition 12 (Blichfeldt).

Instance: An n-dimensional basis B ∈ Zn×n, s ∈ N and a Boolean circuit
V with k = ⌈log(s)⌉ binary inputs and l outputs defining a set of vectors
S ⊆ Zn as S = {bc (V (bd (i))) , i ∈ [s]}.

Solution: If s < det(L(B)), then the vector 0n. Otherwise, one of the follow-
ing:

1. strings u, v ∈ {0, 1}n such that u ̸= v and V(u) = V(v),
2. a vector x such that x ∈ S ∩ L(B),
3. vectors x ̸= y such that x, y ∈ S and x− y ∈ L(B).

In their work, [3] showed that Blichfeldt is PPP-hard by a reduction from
Pigeon that relies on some non-trivial properties of q-ary lattices. We show
that this is unnecessary and give a more direct reduction that exploits the cir-
cuit V in the definition of Blichfeldt. One particularly interesting property of
our reduction is that it completely bypasses the solutions in Blichfeldt corre-
sponding to the Blichfeldt’s theorem. Specifically, all the instances produced by
our reduction are defined w.r.t. the same basis B.
Lemma 11. Blichfeldt is PPP-hard.
Proof. We show a reduction from Pigeon to Blichfeldt. We start with an
arbitrary instance C : {0, 1}n → {0, 1}n of Pigeon. If C(0n) = 0n, then we
output 0n as a solution to this instance C without invoking the Blichfeldt
oracle. Otherwise, we construct an instance of Blichfeldt as follows:

• We define B = 2 · In, i.e., the n×n diagonal matrix with 2’s on its diagonal
and 0’s elsewhere.

• We set s = 2n.

• We define the circuit V : {0, 1}n → {0, 1}n as follows:

V(x) =
⎧⎨⎩C(x) if C(x) ̸= 0n,

C(0n) otherwise.

Note that for the set S corresponding to this instance of Blichfeldt, bc
maps any binary string x = (x1, . . . , xn) output by V to an identical vector
(x1, . . . , xn)T in Zn. In particular, all coordinates are either 0 or 1 for any vector
from the set S defined by s and V from the above instance of Blichfeldt.

We now show that any solution to the above Blichfeldt instance gives
a solution to the original Pigeon instance C. First, notice that det(B) = 2n = s,
so a solution satisfies one of the cases 1, 2, or 3 from Definition 12:

1. The solution is u, v ∈ {0, 1}n such that u ̸= v and V(u) = V(v). If C(u) =
0n, then u is a solution to the original Pigeon instance C, case 1. Similarly,
if C(v) = 0n, then v is a solution to the original Pigeon instance C, case 1.
Otherwise, it holds that C(u) ̸= 0n ̸= C(v). Hence, from the definition of
V, we get that

C(u) = V(u) = V(v) = C(v),

and the pair u, v is a solution to the original Pigeon instance C, case 2.

32

2. The solution is a vector x such that x ∈ S ∩ L(B). From the definition of
the set S, it holds that x ∈ {0, 1}n. Moreover, from the definition of V and
the fact that C(0n) ̸= 0n, we get that 0n /∈ S, but 0n is the only vector in
{0, 1}n ∩ L(B). Hence, this case cannot happen.

3. The solution is a pair of vectors x, y such that x ̸= y, x, y ∈ S and x− y ∈
L(B). But we know that all vectors in S have coefficients in {0, 1}, so all
coefficients of x − y would lie in {−1, 0, 1}, but the only such vector also
contained in L(B) is 0n, which would imply x = y. Hence, this case cannot
happen.

33

Conclusion
In our work, we focused on the discrete logarithm problem in the context of
classes PPP and PWPP as suggested in [3] in 2018. Concretely, motivated by
[3] and the known construction of collision-resistant hash functions from [4], we
introduced two computational problems called Index and DLog.

In the second chapter, we answered the open problem from [3] as we showed
that Index is PPP-complete. The reduction from Index to Pigeon showing
that Index lies in PPP was the more straightforward part, whereas the reduc-
tion from Pigeon to Index showing PPP-hardness of Index was arguably the
most technical part of the thesis. We had to carefully define the circuit f de-
termining the instance of Index such that the index function IG “emulates” the
computation of the circuit C of the Pigeon instance.

In the third chapter, we showed that DLog, which is a relaxation of Index, is
PWPP-complete. The reduction from DLog to Collision showing that DLog
lies in PWPP was inspired by the construction of collision-resistant hash functions
from the discrete logarithm problem via claw-free permutations from [4]. Here,
we had to use the homomorphic properties of the induced groupoid ensured by
the additional types of a solution in DLog. On the other hand, the reduction
from Collision to DLog showing PWPP-hardness of DLog is completely new
and goes through an intermediate problem we call Dove.

Additionally, the reductions showing PWPP-completeness of DLog provide
new structural insights into PWPP by establishing two new PWPP-complete
problems. First, the problem Dove, a relaxation of the PPP-complete prob-
lem Pigeon. Dove is the first PWPP-complete problem not defined in terms of
an explicitly shrinking function. Second, the problem Claw, a total search prob-
lem capturing the computational complexity of breaking claw-free permutations.
In the context of TFNP, the PWPP-completeness of Claw matches the known
intrinsic relationship between collision-resistant hash functions and claw-free per-
mutations established in the cryptographic literature.

In the last chapter, we focused on the discrete logarithm problem in Z∗
p

called DLogp and the problem motivated by the Blichfeldt’s theorem called
Blichfeldt [3] in the context of TFNP. We showed that DLogp lies in PWPP
by presenting a reduction from DLogp to DLog and we gave evidence that
DLogp is not PWPP-hard. We also revisited the proof of PPP-hardness of
Blichfeldt from [3]. We provided a more straightforward reduction from
Pigeon to Blichfeldt which does not rely on any non-trivial properties of
q-ary lattices and which completely bypasses the solutions in Blichfeldt cor-
responding to the underlying Blichfeldt’s theorem.

34

Bibliography
[1] Nimrod Megiddo and Christos H. Papadimitriou. On total functions, existence

theorems and computational complexity. Theor. Comput. Sci., 81(2):317–324,
1991.

[2] Christos H. Papadimitriou. On the complexity of the parity argument and
other inefficient proofs of existence. J. Comput. Syst. Sci., 48(3):498–532,
1994.

[3] Katerina Sotiraki, Manolis Zampetakis, and Giorgos Zirdelis. PPP-
completeness with connections to cryptography. In Mikkel Thorup, editor,
59th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2018, Paris, France, October 7-9, 2018, pages 148–158. IEEE Computer So-
ciety, 2018.

[4] Ivan Damg̊ard. Collision free hash functions and public key signature schemes.
In David Chaum and Wyn L. Price, editors, Advances in Cryptology - EU-
ROCRYPT ’87, Workshop on the Theory and Application of of Cryptographic
Techniques, Amsterdam, The Netherlands, April 13-15, 1987, Proceedings,
volume 304 of Lecture Notes in Computer Science, pages 203–216. Springer,
1987.

[5] Alexander Russell. Necessary and sufficient condtions for collision-free hash-
ing. J. Cryptol., 8(2):87–100, 1995.

[6] Emil Jeřábek. Integer factoring and modular square roots. J. Comput. Syst.
Sci., 82(2):380–394, 2016.

[7] Yuliang Zheng, Tsutomu Matsumoto, and Hideki Imai. Duality between two
cryptographic primitives. In Shojiro Sakata, editor, Applied Algebra, Alge-
braic Algorithms and Error-Correcting Codes, 8th International Symposium,
AAECC-8, Tokyo, Japan, August 20-24, 1990, Proceedings, volume 508 of
Lecture Notes in Computer Science, pages 379–390. Springer, 1990.

35

	Introduction
	Preliminaries
	Notation
	Complexity Theory
	Subclasses of TFNP

	Groupoid structure
	Index function

	Index is PPP-complete
	Index lies in PPP
	Index is PPP-hard

	DLog is PWPP-complete
	DLog lies in PWPP
	DLog is PWPP-hard
	New characterizations of PWPP

	Ensuring the totality of search problems in number theory
	DLP
	Blichfeldt

	Conclusion
	Bibliography

