
MASTER THESIS

Parth Mittal

Pseudorandom walks and chip firing
games

Computer Science Institute of Charles University

Supervisor of the master thesis: Prof. Mgr. Michal Koucký, PhD

Study programme: Master of Computer Science

Study branch: Theoretical Computer Science

Prague 2021

I declare that I carried out this master thesis independently, and only with the

cited sources, literature and other professional sources. It has not been used to

obtain another or the same degree.

I understand that my work relates to the rights and obligations under the Act

No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the

Charles University has the right to conclude a license agreement on the use of this

work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .

Author’s signature

i

ii

I would like to thank my supervisor Prof. Michal Koucký for his patience, con-

stant motivation, and consistently asking the right questions.

I would also like to thank my friends and family for their support, and my

parents in particular for always encouraging my education.

iii

iv

Title: Pseudorandom walks and chip firing games

Author: Parth Mittal

Institute: Computer Science Institute of Charles University

Supervisor: Prof. Mgr. Michal Koucký, PhD, Computer Science Institute of

Charles University

Abstract: We study two deterministic analogues of random walks. The first is the

chip-firing game, a single player game played by moving chips around a directed

graph, popularised by Björner and Lovász. We find an efficient simulation of

boolean circuits and Turing machines using instances of the chip-firing game –

after assigning a fixed strategy to the player. The second is the Propp machine,

or the rotor router model, a quasirandom model introduced by Priezzhev. We

improve results of Kijima et al. and show a bound of O(m) on the discrepancy

of this process from a random walk on d-regular graphs with m edges.

Keywords: random walks chip firing games rotor-router computation discrep-

ancy

v

vi

Contents

Introduction 3

1 Computing using the chip-firing game 5
1.1 Preliminaries . 6

1.2 Computing boolean circuits . 7

1.2.1 The natural choice . 8

1.2.2 Bigger bits are better . 10

1.3 From circuits to Turing machines 13

1.4 Hardness considerations . 16

2 Discrepancy bounds for Propp machine 19
2.1 Preliminaries . 20

2.2 Tighter bounds for special cases 26

2.3 Towards combinatorial proofs 30

Bibliography 33

1

2

Introduction

In this thesis, we study two deterministic analogues of random walks. In Chap-

ter 1 we study the chip-firing game, which is a single-player game played on

a (directed) graph G, with a non-negative integer number of “chips” on each

vertex. While a prototype of the game on the infinite line was used in a paper

of Spencer about balancing vectors [1], the general game was popularised by

Björner, Lovász and Shor [2], and is of independent interest. Our focus is on the

computational power of this game. We show effective simulations of boolean

circuits and Turing machines with instances of the game on directed graphs.

In Chapter 2 we look at the Propp machine, or the rotor-router model, which

is a quasirandom model proposed by [3], and rediscovered several times in var-

ious areas. Our focus is on the effort to use Propp machines to derandomize

randomized algorithms; we improve known bounds on the discrepancy of this

process from random walks in some special cases.

Concurrent work

During the final days of preparing this thesis, while doing a further literature

search we encountered a paper by Goles and Margenstern [4] which proves es-

sentially the same results as contained in Chapter 1. They use similar techniques,

except that their constructions are on undirected graphs, while we use directed

graphs. Our Theorem 1.7 and Theorem 1.9 are not in their paper, and can be

seen as new. Further, our Theorem 1.8 is more general, since it does not fix the

strategy of the player. We obtained our results independently.

3

4

Chapter 1

Computing using the chip-firing
game

We consider the following single player chip-firing game: A directed graph G =
(V, A) is given, with an initial distribution c0 : V → N of chips at each vertex.

A legal move consists of selecting a vertex with at least as many chips as its

outdegree, and then “firing” one chip along each of its outgoing edges.

Björner, Lovász and Shor [2] showed (for undirected graphs) that the player

strategy has no effect on whether the game is finite, or the terminating con-

figuration if it is finite; these properties are decided entirely by the graph and

the starting configuration. These results were extended to directed graphs by

Björner and Lovász in [5].

Our approach to the game was motivated by (at least surface level) similarities

between Conway’s Game of Life and the chip-firing game. In particular, our

synchronous strategy for the player is inspired by the parallel nature of the Game

of Life.

Our main results are simulations of boolean circuits and Turing machines us-

ing instances of the chip-firing game. While the boolean circuit simulation is not

sensitive to player strategy (this is proved and used in Theorem 1.8), the Turing

machine simulation works only for the synchronous strategy. Accompanying the

simulations are hardness results – we construct an undecidable language over in-

finite instances of the chip-firing game, and a PSPACE-hard language over finite

instances.

Section 1.1 contains basic notation and definitions. Section 1.2 contains the

boolean circuit simulation, and Section 1.3 contains the Turing machine simu-

lation. Finally, Section 1.4 contains the hardness results corresponding to each

simulation.

5

1.1 Preliminaries
For much of this chapter, we will be concerned with the following player strategy

for the chip-firing game.

Definition 1.1 (Synchronous strategy). If no vertex can be fired, there is nothing
to be done. Otherwise, compute for each vertex v, the value f(v) = ⌊c(v)/ deg+(v)⌋
– the number of times it can be fired without receiving any additional chips. And
now fire each vertex v f(v) times (in any order). Repeat this until no vertex can be
fired (or forever if the game is infinite).

Note that the order in which we fire the vertices within a single step does not

matter, since at each vertex we only use chips that were available at the beginning

of the step. Hence, one can think of this strategy as simultaneously firing all the

vertices that can be fired, which is why we call it the synchronous strategy.

Throughout this chapter we draw several diagrams of chip-firing games in

action using the following notation:

For a directed graph G = (V, A) with initial configuration c0 : V → N, we

define ci(v) for all i ≥ 1 as the number of chips at v at time-step i, for some fixed

strategy of the player. In diagrams we represent vertices with rectangles with

the vertex label inside and {ci(v)}i as a string next to the vertex v. Whenever

ci(v) ≥ deg+(v), it is colored red, to signify that it will fire in the next time-step.

To avoid clutter, if ci+1(v) = ci(v), we replace it with a -.

Next, we define the notion of a gadget, which intuitively corresponds to a

small unit of computation.

Definition 1.2 (d-gadget). A directed (sub)graph H = (V, A), and a partial con-
figuration of chips c on it is a length-d gadget, or simply a d-gadget if it can be
partitioned into layers V0, . . . , Vd such that:

• There is a path from V0 to Vd. More formally, there is at least one pair of
vertices (u, v) with u ∈ V0, and v ∈ Vd such that H has a path from u to v.

• Edges can only go from one layer to the next. That is, if (u, v) is an edge of
H , there must exist an i such that u ∈ Vi and v ∈ Vi+1.

• The partial configuration c is defined on V1, . . . , Vd−1, and it forms a stable
configuration of H if it is extended to be 0 everywhere else. That is, each
vertex of H has strictly fewer chips than its out-degree (and hence no vertex
can fire). Intuitively, this means H doesn’t compute anything until it receives
some input.

6

Further, we call V0 and Vd the input and output of H respectively. Throughout

this chapter, we will give input to a gadget by extending its partial configuration

to the input layer in some way, and extending it to 0 on the output layer.

Note that this doesn’t lose any generality over requiring a gadget to be a

directed acyclic graph, with at least one source-sink path. In particular, let G be

a DAG with maximum source-sink distance d. Then we can partition the graph G
such that a vertex v is in layer i if the longest path from a source to v is of length

i. To satisfy the requirement that edges do not skip layers, we can extend any

such edge into a path by inserting vertices on it. See Figure 1.1 for an example.

u0 u1 u2 u3 u4

v1 v2 v3

Figure 1.1 Converting a DAG to a d-gadget: The red edge is dropped, the blue edges
and vertices are added.

A consequence of this definition is that if there is a path from u to v, with

u ∈ Vi and v ∈ Vj respectively, the path has length j − i. Intuitively, a d-

gadget is a unit of computation which takes d steps of the synchronous strategy

to compute its output from its input.

1.2 Computing boolean circuits
In this section, we consider the problem of representing boolean circuits using

instances of the chip firing game. Recall that boolean circuits are a non-uniform

model of computation where for each natural number n, we have a directed

acyclic graph Cn where each vertex is either

• a logical AND, OR, or NOT gate with incoming edges from each of its inputs

• or an input vertex.

Cn has exactly n input vertices, whose value can be specified to be 0 or 1, and

every other vertex computes its value from its inputs. m vertices of Cn are iden-

tified as its output, and Cn(x) is the string of values of these vertices on the input

x ∈ {0, 1}n
. We will show the following theorem:

7

Theorem 1.3. For any family of boolean circuits {Cn}, there exists a family of
gadgets {(Gn, cn)} such that:

• |Gn| ≤ p(|Cn|) for some polynomial p.

• For each natural number n, and each input x ∈ {0, 1}n, the partial config-
uration cn can be extended to the input layer such that the chip firing game
with the synchronous player strategy on this instance computes Cn(s). Fur-
ther, each input vertex receives either xi or 1 − xi chips, where xi is the cor-
responding bit of the input (see Figure 1.5 and Figure 1.6). The output Cn(x)
is given by the number of chips on the output layer vertices of Gn after the
chip-firing stops (in atmost D steps), in the same encoding as the input.

• Gn is an D-gadget for D = O(d(n) · log(s(n))) where d(n) and s(n) are
the depth and size of Cn respectively.

1.2.1 The natural choice
On the way to Theorem 1.3, we consider a few ways to represent 0s and 1s as

chips – the first attempt is to use a single chip to represent a 1, and no chip to rep-

resent a 0. At first sight, this might seem strange, since 0 chips cannot move. We

step around this by imagining the computation as a wave, which moves forward

one layer of the gadget at a time.

Consider the fundamental gadget in Figure 1.2. Note that technically it isn’t

a gadget, since we did not specify an initial configuration on its inner vertices

(there is only one, g). It turns out that by varying c(g), the fundamental gadget

computes different boolean functions.

a

b

g

discard

x . . .

Figure 1.2 The fundamental gadget.

In particular, setting c(g) to 0 yields an AND gate (see Figure 1.3 and Fig-

ure 1.4).

On the other hand, if c(g) = 1, we have an OR gate (to see this, look at

Figure 1.4 and note that g would fire after receiving one token if c(g) was 1).

8

a
10-

b

10-
∧

020

discard

(a ∧ b)
0-1

Figure 1.3 With c(g) = 0, and both the
inputs set to 1, the output is 1.

a
10

b

0-
∧
01

discard

(a ∧ b)
0-

Figure 1.4 With only one of the inputs
set to 1, the output is 0.

However, we cannot make NOT gates with this graph, or even this model. In

particular, we have the following lemma:

Lemma 1.4 (Monotonicity). Let H = (V, E) be any d−gadget with input V0 and
output Vd, and partial initial configuration c. Suppose that when the inputs S ⊂ V0
are set to 1, the outputs T ⊂ Vd become 1 (after d steps). Then for any superset S ′

of S, if the inputs S ′ are set to 1, the outputs T still become 1.
Or, in simpler language, making additional inputs 1 cannot flip any outputs from
1 to 0.

Proof. Let c0 and c′
0 be initial configurations corresponding to the inputs S and

S ′
respectively, or more formally:

c0(v) =

⎧⎪⎪⎨⎪⎪⎩
c(v), v ∈ ⋃︁d−1

i=1 Vi

1, v ∈ S

0, otherwise

And c′
0 defined similarly for S ′

. Further for t ≥ 1 let ct and c′
t denote the con-

figuration of chips after t steps of the synchronous strategy from the respective

starting configurations.

First, note that neither computation can “run ahead”. That is, after t steps of

operation, for k > t, ct and c′
t are equal on all vertices in Vk. This follows from

the restriction that d-gadgets may not have edges that skip layers.

We will show by induction that for each v ∈ Vt, ct(v) ≤ c′
t(v). The base case

follows from the fact that S ⊆ S ′
. Suppose the induction holds until the k-th

layer. Then note that for u ∈ Vk, ck(u) ≥ deg+(u) implies c′
k(u) ≥ deg+(u).

And hence if u fires at the k-th step with the initial inputs S, it also fires at the

k-th step with the inputs S ′
. Hence each vertex v ∈ N(u) receives at least as

many chips under c′
k as it does under ck. This gives us ck+1(v) ≤ c′

k+1(v) for

each v ∈ Vk+1, as desired.

9

1.2.2 Bigger bits are better
This brings us to our second attempt. We use two vertices to represent a single

bit, as follows:

A1

1

A0

0
. . .

. . .

Figure 1.5 This is a 1.

A1

0

A0

1
. . .

. . .

Figure 1.6 This is a 0.

We will call this two vertex representation a full-bit, and the two vertices that

are part of it will be called half-bits. NOT gates are now easy – all we have to do

is swap adjacent half-bits (see Figure 1.7).

By examining each half-bit in the tables for AND (see Table 1.1), we can easily

design this gate over the full-bit representation. In particular, the upper half-bit

of the output is the AND of the upper half-bits of the input, and the lower half-bit

is the OR of the lower half-bits of the input. Hence we can combine the previously

described gates to compute the AND over full-bits (see Figure 1.8). By following

the same procedure for the OR gate we see that the upper bit of the output is the

OR of the upper bits of the input, and the lower bit is the AND of the lower bits.

It is almost time to claim that we have a proof for Theorem 1.3; the final

barrier is fanout. In particular, our designs are limited to a fanout of 1. We can

fix this with a copy gadget that copies a half-bit (see Figure 1.9). Naturally, we

combine two of these in parallel to copy a full bit, and many of them in a binary

tree if we need larger fanout.

Synchronization: a brief interlude

We would like that all outputs of each layer of Gn are available at the same time-

step. While this requirement follows directly from the last condition of Theo-

rem 1.3, the real reason to have it is that it helps us simulate Turing machines

A1

1-

A0

0-

(¬A)1

0-

(¬A)0

01

Figure 1.7 A NOT gate.

01 10

01 01 01

10 01 10

Table 1.1 Table for AND.

10

A1

0--

A0

10-

B1

10-

B0

0--

∧
01-

∨
120

discard
(A ∧ B)1

0--

(A ∧ B)0

0-1

Figure 1.8 An AND gate over full-bits in action, with the inputs 0 and 1.

a
10-

copy
120

a
0-1

a
0-1

Figure 1.9 A half-bit copy gadget in action.

easily in the next section. As we shall see, it is not difficult to achieve.

In particular, note that the AND and OR gates (see Figure 1.8) over full-bits are

2-gadgets, while the NOT gate is a 1-gadget. Hence we will add a delay of 1 unit to

each output of the NOT gate by replacing its outgoing edge with a path of length

2 (like in Figure 1.1).

Note also that gates of a circuit within the same layer may have different

fanout, and hence different delay due to copy gadgets when we translate them

to chip-firing instances. For some fixed layer, let m be the maximum fan-out of

all gates in this layer. Then we will build a binary tree with 2k
leaves, where

2k−1 < m ≤ 2k
, of copy gadgets at each gate’s output, with the extra copies all

routed to the universal discard vertex.

The discard vertex

The fundamental gadget (Figure 1.2) and hence the logic gates over full-bits (Fig-

ure 1.8) feature a discard vertex, where extra chips are sent. While it would

suffice to have a separate copy of this vertex for every logic gate for Theorem 1.3,

we will eventually reuse discarded chips in the next section. Hence, we introduce

a universal discard vertex, which will collect all such chips.

11

Proof of Theorem 1.3. We describe the mapping from Cn to (Gn, cn) for some

fixed n. Before we translate the circuit itself, we will partition it into layers. In

particular, each gate will go into the layer i such that its furthest distance from

an input bit that it uses is i (i.e. its depth in the circuit).

First, the input layer contains 2n vertices, where each consecutive pair of

vertices represents a single bit of the input to Cn (using the encoding in Figure 1.5

and Figure 1.6). This is the extension to cn which is different for each input x to

Cn.

Now, for each subsequent layer, we replace each gate in the boolean circuit

with its corresponding gadget in the graph, adding edges from the outputs of

gadgets (or their copies) from previous layers as required. Next we add the copy

gadget binary tree to the output of each vertex to achieve the fanout we want.

Note that there may be edges arising from Cn that skip layers in this con-

struction – we deal with them as in Figure 1.1, by extending them into paths of

suitable length. Similarly, there may be edges to the universal discard vertex

from vertices in different layers. We extend edges from earlier layers by the same

method.

And now by induction each layer of Cn becomes a gadget which matches its

computation, and hence Gn computes the same function as Cn. It remains to

show that Gn is of size polynomial in s(n), the size of Cn. The gadgets for NOT,

AND and OR all have constant size, and each occurrence of one of these gadgets

corresponds to a gate in the boolean circuit. The fanout of each gate is atmost

s(n) and we use atmost 2s(n) copy-gadgets to achieve this fanout. Hence there

are O(s(n)) vertices in Gn due to the logic gates of Cn, and O(s(n)2) vertices in

the copy-gadgets due to the fanout.

Before we count the vertices added due to extending edges into paths, we

need to bound the length of the gadget (Gn, cn). Gn has length at most D =
O(d(n) · log s(n)), since the copy gadget trees have length O(log s(n)), the gad-

gets for the logic gates have constant length, and there are d(n) layers in Cn (by

definition, since d(n) is the depth of Cn).

Extending edges of Cn into paths can add at most D vertices per edge. Since

there are O(s(n)2) edges in Cn, atmost O(s(n)4) vertices are added to Gn for

extending these edges to paths (since d(n) ≤ s(n), log s(n) ≤ s(n)). Similarly,

the edges to the discard vertices may be extended to paths of length O(d(n) ·
log s(n)), adding O(s(n)3) vertices in total across all the logic gates of Cn (since

the gadget corresponding to each logic gate has atmost 2 edges going to the

discard vertex). Combining all of the bounds above, Gn has O(s(n)4) vertices,

and coupled with cn forms a gadget of length O(d(n) log s(n)).

12

1.3 From circuits to Turing machines

In this section, we extend our simulation of boolean circuits to Turing machines.

The main result of this section is Theorem 1.7.

Recall that computation with Turing machines is local, in the sense that the

contents of some tape cell at some time-step depend only on the contents of 3

cells in its neighbourhood, the state of the machine, and the head position at the

previous time-step. Suppose that we locally encode both the state of the machine

and the head position in the standard way – for example, by enhancing the al-

phabet of the machine’s tape – then all the information needed to compute the

contents of a tape cell is available in its neighbourhood. Further, if we interpret

each letter of the alphabet as a fixed-width binary string, then each bit of the

tape cell is a boolean function of the 3 neighbouring cells in the previous time-

step. Note that boolean functions over b bits can be represented by circuits of

size O(b · 2b), and hence we can build a boolean circuit of size O(s) and constant

depth that simulates one step of a given s-space single-tape Turing machine’s

operation. This construction is standard, see Sipser’s book [6] for more details.

Now we can stack together t copies of this circuit (with the outputs of each

copy wired up to the inputs of the next copy) to get a circuit which simulates

t steps of the Turing machine. Hence by using Theorem 1.3 we can construct a

graph G and an initial configuration c such that the chip-firing game played with

the synchronous strategy simulates t steps of the Turing machine. Note that the

size of this graph is Ω(s× t), even if the machine does nothing. In the rest of this

section, we will show a modified construction that can simulate s-space Turing

machines with graphs of size poly(s).
Consider the circuit Cn corresponding to a single step of the Turing machine

M , and the gadget Gn from Theorem 1.3 corresponding to Cn. The main idea

is to wire up the outputs of Gn to its inputs. The hope is that Gn simulates a

step of the Turing machine M , and then its output passes through to the input

again, simulating another step, and so on. This is almost enough, except for the

slight problem that the gadgets for individual gates do not always return to their

initial configuration after inputs pass through them. For example, in Figure 1.8,

neither of the vertices labeled ∧ and ∨ return to their initial configuration. The

solution is to (yet again) enhance our representation of a bit: we will send the

complement of a bit right behind it.

More precisely, we will aim to maintain the invariant that each half-bit is

followed by its complement after each layer of computation. Intuitively, it helps

to think of this complement bit as a cleanup wave following the computation

wave closely. In the next lemma, we prove that this approach returns gates based

on the fundamental gadget to their initial configuration.

13

¬A1

0

¬A0

1

A1

1

A0

0

. . .

. . .

Figure 1.10 This is a 1.

¬A1

1

¬A0

0

A1

0

A0

1

. . .

. . .

Figure 1.11 This is a 0.

Lemma 1.5 (Cleanup Signal). Let (G, c) be an AND or OR gadget over half-bits, i.e.
the fundamental gadget with c(g) = 0, and c(g) = 1 respectively. Then after any
pair of inputs (a, b) followed by (¬a, ¬b), the gadget returns to its initial configu-
ration. Further, the cleanup signal propagates, i.e., if the gadget outputs f(a, b), it
outputs ¬f(a, b) at the next time-step.

Proof. The vertex g receives exactly 2 chips for any pair (a, b) and its complement

(¬a, ¬b). Since it has out-degree 2, it fires exactly once, and returns to c(g) chips

at the end of the process.

To see the second part of the lemma, note that since g fires exactly once, if

f(a, b) = 1 it cannot fire again in the next step, and outputs 0. On the other hand

if f(a, b) = 0, it must fire in the next step, and hence outputs 1.

Now since our construction for AND and OR gates was based on combining

fundamental gadgets, it works as is, and the cleanup signal resets these gadgets

to their initial configuration (except for the universal discard vertex, which we

will address separately). Note that since the NOT gate merely switches its inputs,

it is unaffected by any input passing through it.

Copy gadgets and synchronization, part II

The only thing left to do is consider how copy gadgets behave with the cleanup

signal. Indeed, on the input a followed by ¬a, they produce the output a and

¬a on both edges leaving the copy vertex, but the vertex does not return to its

initial configuration. The advantage the cleanup signal gives us is that it ensures

that the copy gadget is “broken”, and hence we need to deliver one additional

chip to each half-bit copy gadget to “repair” it after the computation and cleanup

waves pass. The only challenge is to somehow generate these required extra

chips – we claim that the discarded chips from the computation gadgets suffice.

In particular:

Lemma 1.6. The number of half-bit copy gadgets exactly equals the total number
of chips sent to the discard vertex by all vertices in the graph.

14

Proof. Note that the number of chips coming into the graph via the input and

those leaving the graph via the output is balanced, as the number of inputs and

outputs is equal, and we use the same number of chips to encode a 0 or a 1.

Further, every internal vertex except the copy vertex inside each copy gadget

returns to its initial configuration. Since no chips are created during the process,

any missing chips must end up at the discard vertex.

So we add an edge from the discard vertex to the copy vertex of each copy

gadget. We want to ensure that the computation wave has already passed the

copy gadget by the time the repair chip arrives, so we add a delay of D steps

on this edge, where D is the length of the gadget G corresponding to the whole

computation. Finally, we wire up the outputs of G to its inputs, each with a delay

of D steps, to allow enough time for the copy gadgets to reset in the background.

Finally, we are ready to claim our theorem, with the following caveat: The

chip-firing game on the instance described above is clearly infinite. Even for

inputs x where the Turing machine M halts, the game runs forever – to recognise

that the machine has halted, one must observe that the output of Gn did not

change after simulating a full step of the Turing machine. Alternatively, we note

that any s-space Turing machine must halt within 2O(s(n))
steps if it halts at all, so

we can just let Gn simulate enough rounds of M to ensure that the final state (if it

exists) has been computed. The first approach requires an “observer” to compare

the output to the input, and has only a polynomial slowdown, whereas the second

has no external requirement, but can have an exponential slowdown in the worst

case (for example, if M is a trivial machine which immediately accepts all inputs).

Theorem 1.7. For any Turing machine M that uses at most s(n) cells on its work
tape on inputs of size n, there exists a family of graphs {Gn} and partial configu-
rations cn such that:

• |Gn| ≤ p(s(n)) for some polynomial p.

• Gn can be partitioned into two graphs Hn and Ln on the same vertex set such
that (Hn, cn) is a gadget which computes a single step of the Turing machine
M , and Ln contains paths from each output layer vertex to each input layer
vertex, and paths from the universal discard vertex to the copy vertex of
each half-bit copy gadget.

• For each input x ∈ {0, 1}n, there exists a corresponding input (with encoding
as in Figure 1.10 and Figure 1.11) to Gn such that it computes M(x).

The proof follows from the previous discussion.

15

1.4 Hardness considerations
In this section we look at what the simulation results imply for the hardness of

the chip-firing game. First, we have an undecidable language of chip-firing game

instances.

Theorem 1.8. We define the language INF-REACH to contain (G, c, v), where G
is an infinite graph, c is an initial configuration of chips on V (G), and v is a vertex
of G such that at least one chip reaches v during the chip-firing game played on
(G, c) under any player strategy. Then INF-REACH is undecidable.

Before we look at a proof, it is important to talk about an encoding of G and c.

With a bad encoding, it may be the case that the difficulty in deciding instances

of INF-REACH lies in simply decoding the graph. We will restrict ourselves to a

tiling encoding, where (except a finite number of exceptions) G is specified by

repeated finite subgraphs tiled in an infinite grid.

Proof. We will reduce HALT to INF-REACH. Consider an arbitrary Turing machine

M and an input x. First, we modify M by adding an extra cell to the left side

of its tape, such M writes 1 to this cell iff it halts (for example, this can be done

by adding extra halting states which travel to the left until they reach this cell

and then write 1 to it). Then consider the boolean circuit C which computes the

value of a cell given the values of the cells in its neighbourhood in the previous

step of the Turing machine. We will tile an infinite grid with copies of C, with

the outputs of each layer wired up to the inputs of the previous layer (essentially

an infinite analogue of the t-step s-space circuit described in Section 1.3). And

finally, we use Theorem 1.3 to convert this circuit into a chip-firing instance

(G, c). We introduce an additional vertex v into G which receives a chip iff the

leftmost cell of M ’s tape becomes 1 at any time-step. This is equivalent to adding

an edge from each node corresponding to the tape cell in the circuit to the (new)

node corresponding to v (and hence equivalent to an edge in G, modulo copy

gadgets added for fan-out).

Hence, if the player is restricted to the synchronous strategy, v receives a

chip iff M halts on the input x. To get the theorem from here, we need to do two

things. First, we want to show that (G, c) can be effectively tiled.

The first layer of G contains the input. We will encode x (the input to the

Turing machine) here, using the full-bit encoding from Section 1.2. Note that

this means we specify c(·) for a finite number of vertices. The remaining (in-

finitely many) vertices in the input layer can be tiled, since they all represent the

binary encoding of an empty cell. We will tile the rest of G (roughly) with tiles

corresponding to copies of C. In particular, note that the chip-firing instance cor-

responding to a single copy of C almost suffices, except that by stitching multiple

16

copies together in a grid, we may need additional copy gadgets (since an input

bit may be used by two different copies of C). Let us be more precise – suppose

a copy of C computes a tape cell i at time-step t. Suppose further that it uses

the value of the tape cells (i − 1), i, and (i + 1) at time (t − 1). Then we will

put the copy gadgets required for the fanout of the (i − 1)-th tape cell in the

tile corresponding to the (i − 1)-th cell, and similarly for the i-th and (i + 1)-th
tape cell. Since the copies of C to the left and the right will interact with their

neighbours in the same manner, placing these copy gadgets in the same manner

suffices. The exception is the copy of C corresponding to the first tape cell, since

it does not have a neighbour to the left (and in addition, there is an extra edge

going to v). However, we note that all such copies for different time steps are

indeed the same, and so can be tiled along that direction. Hence (G, c) can be

effectively tiled.

Next, we need to show that (G, c) simulates M on the input x under any
player strategy. We will sneakily use the fact that if the game is finite and ends

in configuration c′
under some strategy, it does so under any strategy (see [5]

for a proof). Note that if we take any prefix of the layers of G, we obtain a D-

gadget for some D. Note also that since G is a directed acyclic graph, we can

decide if any vertex of this prefix receives a chip simply by examining the (finite)

chip-firing instance induced by (G, c) on it. Suppose M halts on x after t steps,

then we know that if we consider a prefix of G corresponding to t steps of M ,

a chip reaches v under the synchronous strategy. Hence a chip reaches v in this

prefix under any player strategy, which implies it reaches v under any player

strategy on G itself. For the other direction, suppose M does not halt on x. Then

for any finite prefix of G, no chip reaches v under the synchronous strategy,

which means no chip reaches v under any player strategy on this prefix, and by

induction no chip reaches v under any player strategy on G.

It is tempting to look for a similar result from the Turing machine simulation

of Theorem 1.7, for example by simulating an arbitrary PSPACE machine. How-

ever, the Theorem 1.7 is reliant on the synchronization strategy in a fundamental

manner. In particular, if the player is allowed an arbitrary strategy, they can fire

the chips corresponding to the cleanup layer first, effectively changing the input

to the machine. Hence we have the following weaker theorem:

Theorem 1.9. Consider the problem REACH of determining whether some config-
uration c′ is reachable in the chip-firing game played on G with the initial config-
uration c, under the synchronous strategy. REACH is PSPACE-hard.

Proof. Suppose L is any language in PSPACE, and M is a PSPACE machine such

that L(M) = L. Then we modify M so that if it accepts it writes 0 to all but

the first cell of its work tape, and 0 everywhere if it rejects. Then for any input

17

x to M , the graph and initial configuration corresponding to (M, x) from Theo-

rem 1.7 serve as G and c, and c′
corresponds to the accepting configuration of M

described above. Hence we have a reduction from an instance of L to an instance

of REACH.

18

Chapter 2

Discrepancy bounds for Propp
machine

The Propp machine, or the rotor-router model, is a quasirandom process on

graphs, where instead of sending tokens to a random neighbour, each vertex

v sends tokens one-by-one to its neighbours in a fixed order. In particular, we

have a graph G, and N indistinguishable tokens initially distributed arbitrarily.

Associated with each vertex v is a permutation ρv of its neighbours, and a rotor

which moves through this permutation. At each time-step, each vertex fires all

of its tokens, with the i-th token to be fired from vertex v overall going to ρv(i),
with i ≥ δ(v) wrapping around and mapping to ρv(i mod δ(v)), where δ(v) is

the out-degree of v.

Consider for any vertex v, the number of tokens χ(T)
v at v at time-step T .

We are interested primarily in bounding the discrepancy of this quantity from

µ(T)
v : the expected number of tokens at v after T steps of each token walking

randomly. We are interested in the machine’s behaviour when N – the number

of tokens – is large.

Cooper and Spencer [7] were the first to analyse this discrepancy; they

showed for the special case where G = Zd
(the infinite hypercube) that the

discrepancy is at most a constant. Kijima et al. [8] generalised their techniques

and showed that on a finite graph G where the associated random walk is lazy

and reversible, the discrepancy between the two processes is O(mn), where m
and n denote the number of edges and vertices in G respectively. Our main

contribution is to tighten their bound in some special cases – in particular we

show that when the transition matrix P corresponding to the random walk

on G is diagonalizable, the discrepancy is O(m
√

n), and if G is d-regular, the

discrepancy is O(m). This matches a lowerbound on discrepancy in d-regular

graphs, also shown by [8].

In the first section of this chapter, we present the tools we need from pre-

19

vious work. In the second section we show the tighter bounds for special cases

described above. In the third section we show a new approach to analyse the

behaviour of the Propp machine in a “mixed” state (as opposed to at an arbitrary

time-step). We prove that after mixing, the Propp machine matches a random

walk exactly on average.

2.1 Preliminaries
In this section we import the results we need from [8].

We define sv(i) as the time-step when the vertex v fires its i-th token overall.

Note that sv(i) is often equal to sv(i + 1), since a vertex typically fires many

tokens at each time-step. Let P denote the transition matrix of the random walk

associated with G.

We want to bound |χT
w − µT

w| for each vertex w of G, and every time-step T .

We begin with the following “untelescoping” idea:

Proposition 2.1 ([8]).

χT
w − µT

w =
∑︂
v∈V

X
(T −1)
v −1∑︂

i=0
(P T −sv(i)−1(ρv(i), w) − P T −sv(i)(v, w))

Where X(T −1)
v := ∑︁T −1

t=0 χ(t)
v , or all the tokens that visit the vertex v in the

first T − 1 steps.

Before we see the proof, we expose why this idea is useful. The discrepancy

on the left side is between two (seemingly) very different processes – in the first

each token follows some “fixed” path whereas in the second each token walks

randomly. However, each term of the sum on the right side corresponds (as we

shall see during the proof) to processes which are very similar. In particular, the

tokens walk sv(i)(+1) steps on some fixed path, and the remaining T −sv(i)(−1)
steps randomly.

Proof. Consider an arbitrary token, which starts at some vertex u, and ends at a

vertex u′
, taking the path u = u0, u1, . . . , uT = u′

in the Propp Machine. Note

that if u′ = w, this token contributes 1 to χT
w, and otherwise it contributes 0.

What is the probability that this token is at w after T steps in a random

walk? It is P T (u, w). This is also the contribution of this token to µT
w. We will

untelescope this value along the path u0, . . . uT , by imagining a process where

the token proceeds along the path for t steps, and then walks randomly for the

remaining T − t steps. In particular, we have:

P T (u, w) − P 0(u′, w) =
T −1∑︂
i=0

(P T −i(ui, w) − P T −i−1(ui+1, w))

20

v

u

w

t −
1

t

Figure 2.1 fv,w(u, t); the blue path rep-
resents a fixed step and a random walk of
t − 1 steps, the red path represents a ran-
dom walk of t steps.

v

ρv(i)

w

T −
s
v (i) −

1

T − sv(i)

Figure 2.2 fv,w(ρv(i), T − sv(i))

Note that P 0
is simply the identity matrix, and hence P 0(u′, w) is 1 iff the

token is at w in the Propp Machine after T steps. Finally to get the proposition,

let P be the multiset of paths taken by each token in the Propp Machine’s first

T steps, and observe:

µT
w − χT

w =
∑︂

(u0,...uT)∈P
P T (u, w) − P 0(u′, w)

=
∑︂

(u0,...uT)∈P

T −1∑︂
i=0

(P T −i(ui, w) − P T −i−1(ui+1, w))

And finally, by first summing over vertices, and then tokens passing through

them, we get:

µ(T)
w − χ(T)

w =
∑︂
v∈V

X
(T −1)
v −1∑︂

i=0
(P T −sv(i)(v, w) − P T −sv(i)−1(ρv(i), w))

We now define a “single-step discrepancy”, for v, w any pair of vertices, u a

neighbour of v, and t > 0 (see Figure 2.1).

fv,w(u, t) = P t−1(u, w) − P t(v, w)

This is the discrepancy between a random walk for t steps from v to w, and

a walk with a fixed first step from v to u, and (t − 1) random steps. Note that

21

each term inside the sum from Proposition 2.1 is equal to fv,w(ρv(i), T − sv(i))
(see Figure 2.2).

If we take an average over the choice of this fixed first step, then by definition

we are walking randomly, and hence we get:

∑︂
u∈N(v)

(P t−1(u, w) − P t(v, w)) = |N(v)| ·

⎛⎝ ∑︂
u∈N(v)

P t−1(u, w)
|N(v)| − P t(v, w)

⎞⎠
= |N(v)| · (P t(v, w) − P t(v, w))
= 0

Rewriting with the notation fv,w we have:

Proposition 2.2 ([8]). ∑︂
u∈N(v)

fv,w(u, t) = 0

And the straightforward corollary:

Corollary 2.3. For any permutation ρv of N(v)

fv,w(ρv(0), t) = −
δ(v)−1∑︂

r=1
fv,w(ρv(r), t)

Where δ(v) is the out-degree of the vertex v.

We also define:

gw(v) =
X

(T −1)
v −1∑︂

i=0
fv,w(ρv(i), T − sv(i))

Intuitively, gw(v) is the discrepancy between χ(T)
w and µ(T)

w contributed by to-

kens as they pass through the vertex v. Using Proposition 2.1, and the definition

of fv,w and gw(v) we have:

µ(T)
w − χ(T)

w =
∑︂
v∈V

X
(T −1)
v −1∑︂

i=0
fv,w(ρv(i), T − sv(i)) =

∑︂
v∈V

gw(v)

The following lemma is our main tool in bounding gw(v) (and hence the dis-

crepancy):

Lemma 2.4 ([8]). For any pair of vertices v and w, there exist δ(v) − 1
non-decreasing sequences {z

(1)
j }, {z

(2)
j }, . . . , {z

(δ(v)−1)
j } and a constant cv,w in

[−δ(v), δ(v)] such that

gw(v) =
δ(v)−1∑︂

r=1

τr−1∑︂
j=0

(︃
(−1)jP z

(r)
j −1(ρv(r), w) + (−1)j+1P z

(r)
j (v, w)

)︃
+ cv,w

22

Where ρv is the permutation of its neighbours followed by the rotor-router at v, and
τr is the length of the sequence z(r).

While the statement might be hard to digest, the important takeaway is to

see that we have 2δ(v) alternating “geometric” sums – in the sense that each

subsequent term is the same entry of a higher power of the transition matrix P .

Proof.

gw(v) =
X(T −1)−1∑︂

i=0
fv,w(ρv(i), T − sv(i))

Let Kr be one less than
1

the number of tokens fired from v to ρv(r) over time

[0, T), then by collecting the tokens sent to ρv(r) together, we have:

gw(v) =
δ(v)−1∑︂

r=0

Kr∑︂
h=0

fv,w(ρv(r), T − sv(δ(v) · h + r))

Next, we separate out the tokens sent to ρv(0), and apply Corollary 2.3 to them.

This step is where the alternating sum in the statement of the lemma comes from.

gw(v) =
δ(v)−1∑︂

r=1

Kr∑︂
h=0

fv,w(ρv(r), T − sv(δ(v) · h + r)) +
K0∑︂
h=0

fv,w(ρv(0), T − sv(δ(v) · h))

=
δ(v)−1∑︂

r=1

Kr∑︂
h=0

fv,w(ρv(r), T − sv(δ(v) · h + r)) −
δ(v)−1∑︂

r=1

K0∑︂
h=0

fv,w(ρv(r), T − sv(δ(v) · h))

We bring Kr + 1 of these pseudo-tokens back into the first sum, leaving K0 −
Kr ≤ 1 “error terms”.

gw(v) =
δ(v)−1∑︂

r=1

Kr∑︂
h=0

(︄
fv,w(ρv(r), T − sv(δ(v) · h + r)) − fv,w(ρv(r), T − sv(δ(v) · h))

)︄

−
δ(v)−1∑︂

r=1
(K0 − Kr)fv,w(ρv(r), T − sv(δ(v) · K0))

At this point, we can already see a decreasing sequence emerging in the second

input to fv,w; in particular for any r, the sequence t(r)
defined as

t
(r)
2h = T − sv(δ(v) · h)

t
(r)
2h+1 = T − sv(δ(v) · h + r)

1
For convenience of notation in sum-indices.

23

v

ρv(r)

w

t (r)2h+1 −
1

t
(r)
2h+1

v

ρv(r)

w

t (r)2h −
1

t
(r)
2h

v

ρv(r)

ρv(r)

w

t (r)2h+1 −
1

t
(r)

2h
−

1
v w

t
(r)
2h

t
(r)
2h+1

Figure 2.3 The main transformation in the proof of Lemma 2.4.

is non-increasing. Note also that fv,w is bounded between −1 and 1, so the error

terms add up to some number cv,w ∈ [−δ(v), δ(v)] Plugging all of this back in,

we have:

gw(v) =
δ(v)−1∑︂

r=1

Kr∑︂
h=0

(︄
fv,w(ρv(r), t

(r)
2h+1)) − fv,w(ρv(r), t

(r)
2h))

)︄
+ cv,w

We will rearrange the term inside the sum to obtain the statement of the lemma;

in particular, let

∆ = fv,w(u, t) − fv,w(u, t′)

By definition of fv,w, we have:

∆ = P t−1(u, w) − P t(v, w) − (P t′−1(u, w) − P t′(v, w))

Rearranging:

∆ = P t−1(u, w) − P t′−1(u, w) − (P t(v, w) − P t′(v, w))

24

Applying this transformation to the summand in the sum for gw(v) above,

we have (see Figure 2.3 for an illustration of what is happening):

gw(v) =
δ(v)−1∑︂

r=1

Kr∑︂
h=0

(︄
P t

(r)
2h+1−1(ρv(r), w) − P t

(r)
2h

−1(ρv(r), w)

− (P t
(r)
2h+1(v, w) − P t

(r)
2h (v, w))

)︄
+ cv,w

And finally, we have two alternating sums as promised:

gw(v) =
δ(v)−1∑︂

r=1

2Kr+1∑︂
j=0

(︄
(−1)j+1P t

(r)
j −1(ρv(r), w) + (−1)jP t

(r)
j (v, w)

)︄
+ cv,w

To get the statement of the lemma, we define z
(r)
j = t

(r)
2Kr+1−j to get a non-

decreasing sequence, and rewrite the sum above:

gw(v) =
δ(v)−1∑︂

r=1

2Kr+1∑︂
j=0

(︄
(−1)jP z

(r)
j −1(ρv(r), w) + (−1)j+1P z

(r)
j (v, w)

)︄
+ cv,w

We now shift our focus to bounding these alternating series. In particular we

have the following lemma:

Lemma 2.5 ([8]). Let G be a graph with transition matrix P such that P is diag-
onalizable, and the eigenvalues of P are λ1, λ2, . . . , λn. Let bi⃗ be an eigenvector of
norm 1 corresponding to λi such that B = {b1⃗, . . . , bn⃗} is a basis of Fn. For {zj} a
non-decreasing sequence of length τ and any pair of vertices v, w of G:

τ−1∑︂
j=0

(−1)jP zj (v, w) ≤
n∑︂

i=1
aibi,v

τ−1∑︂
j=0

(−1)jλ
zj

i

Where a⃗ is the coordinate vector of ew⃗ in the basis B.

Proof. Since P is diagonalizable, we can express ew⃗ (the standard basis vector

which is 1 at coordinate w and 0 everywhere else) as a linear combination of the

vectors in B. In particular, suppose ew⃗ = ∑︁n
i=1 aibi⃗. Then note that

∥ew⃗∥ =
n∑︂

i=1
a2

i

⃦⃦⃦
bi⃗

⃦⃦⃦
=

n∑︂
i=1

a2
i = 1

25

Now for any integer x, we can obtain the (v, w)-th entry of P x
:

P x(v, w) = ev⃗
T P xew⃗

= ev⃗
T P x

(︄
n∑︂

i=1
aibi⃗

)︄

Moving scalars to the front, and repeatedly using the fact that bi is an eigenvector

of P corresponding to eigenvalue λi:

P x(v, w) =
n∑︂

i=1
aiλ

z
i (ev⃗ · bi⃗)

ev⃗ just extracts the v-th coordinate of bi⃗, and we have:

P x(v, w) =
n∑︂

i=1
aiλ

z
i bi,v

Finally:

τ−1∑︂
j=0

(−1)jP zi(v, w) =
τ−1∑︂
j=0

(−1)j
n∑︂

i=1
aiλ

zj

i bi,v

And the lemma follows by reordering the sums.

2.2 Tighter bounds for special cases
This is finally where we diverge from previous work – while Kijima et al. gener-

alised the previous lemma to graphs where the transition matrix P is not diago-

nalizable, we will look for tighter bounds in the special case where it is. First, we

need the following elementary proposition about alternating geometric series.

Proposition 2.6. For 1 ≥ λ > −1 + c for some positive constant c, and any
non-decreasing sequence of positive integers {zj} of length τ⃓⃓⃓⃓

⃓⃓τ−1∑︂
j=0

(−1)jλj

⃓⃓⃓⃓
⃓⃓ ≤ 1

1 − c

Proof. For λ ≥ 0, the series alternates, so⃓⃓⃓⃓
⃓⃓τ−1∑︂
j=0

(−1)jλj

⃓⃓⃓⃓
⃓⃓ ≤ λz0 ≤ λ ≤ 1

26

For λ < 0, the signs of the terms λzj
and (−1)j

can match up, so we have:⃓⃓⃓⃓
⃓⃓τ−1∑︂
j=0

(−1)jλj

⃓⃓⃓⃓
⃓⃓ ≤

τ−1∑︂
j=0

|λzj | ≤
∑︂
j≥0

|λj| = 1
1 − |λ|

≤ 1
1 − c

Combining Lemma 2.5 and Proposition 2.6, we have:

Lemma 2.7. With the same notation and conditions as in Lemma 2.5, and in ad-
dition the smallest eigenvalue λn of P bounded below by (−1 + c):⃓⃓⃓⃓

⃓⃓τ−1∑︂
j=0

(−1)jP zj (v, w)

⃓⃓⃓⃓
⃓⃓ ≤ 1

1 − c

n∑︂
i=1

|aibi,v|

Proof. Immediate from bounding the inner-sum in Lemma 2.5 using Proposi-

tion 2.6.

Corollary 2.8. Under the conditions of Lemma 2.7:⃓⃓⃓⃓
⃓⃓τ−1∑︂
j=0

(−1)jP zj (v, w)

⃓⃓⃓⃓
⃓⃓ ≤

√
n

1 − c

Proof. From Lemma 2.7,⃓⃓⃓⃓
⃓⃓τ−1∑︂
j=0

(−1)jP zj (v, w)

⃓⃓⃓⃓
⃓⃓ ≤ 1

1 − c

n∑︂
i=1

|aibi,v|

= 1
1 − c

n∑︂
i=1

|ai||bi,v|

≤ 1
1 − c

n∑︂
i=1

∥ai∥
⃦⃦⃦
bi⃗

⃦⃦⃦
=

√
n

1 − c

Where the second last step is the Cauchy-Schwarz inequality applied to the vec-

tors (|a1|, . . . , |an|), and (|b1,v|, |b2,v|, . . . , |bn,v|). Each entry of bi⃗ is bounded by

1, and hence we can bound its L2 norm by

√
n.

Theorem 2.9. For a graph G with the corresponding random-walk transition ma-
trix P diagonalizable, and the smallest eigenvalue of P bounded below by (−1+c)
for some constant c, |gw(v)| = O(δ(v)

√
n) for every pair of vertices w, v. Hence,

the discrepancy |χ(T)
w − µ(T)

w | is bounded by O(m
√

n), where the constant in the O
depends on c.

27

Proof. We recall Lemma 2.4:

gw(v) =
δ(v)−1∑︂

r=1

τr−1∑︂
j=0

(︃
(−1)jP z

(r)
j −1(ρv(r), w) + (−1)j+1P z

(r)
j (v, w)

)︃
+ cv,w

Where for each r, {z
(r)
j } is a non-decreasing sequence, and cv,w is some constant

between [−δ(v), δ(v)].
Then the absolute value of each of the two series inside the sum can be

bounded using Corollary 2.8, to give us:

|gw(v)| ≤
δ(v)−1∑︂

r=1

(︄
2
√

n

1 − c

)︄
+ |cv,w|

And now recalling the bounds on cv,w, we have:

|gw(v)| = O
(︂
δ(v)

√
n
)︂

+ δ(v) = O
(︂
δ(v)

√
n
)︂

Now, we take a moment to recall the main condition of Lemma 2.5 (and hence

Lemma 2.7, and Theorem 2.9); P (the transition matrix corresponding to a ran-

dom walk walk on some graph G) must be diagonalizable. Note that this fact

is important in the proof, since we express the elementary basis vector ew⃗ as a

linear combination of the eigenvectors of P .

For an undirected graph G, its adjacency matrix A(G) is symmetric, and

hence diagonalizable. However, the corresponding transition matrix P need not

be diagonalizable.

We consider an important special case where P is indeed diagonlizable –

when G is d-regular; in particular we will show that the discrepancy is only

O(m) in this case.

Theorem 2.10. When G is d-regular, and the smallest eigenvalue of its transition
matrix P is at least (−1 + c) for some constant c, the discrepancy |χ(T)

w − µ(T)
w | is

O(m), where the constant in the O depends on c.

Proof. When G is d-regular, the transition matrix P of the random walk on it

is just A/d, where A is the adjacency matrix. Since A is symmetric, P is also

symmetric, and hence diagonalizable.

We will use Lemma 2.7 to bound the two series in Lemma 2.4; in particular,

recall that ai is the i-th coordinate of ew⃗ in the orthonormal basis of eigenvectors

28

of P , and bi,v is the v-th coordinate of the i-th eigenvector of this basis. As before,

we start with:

gw(v) =
d−1∑︂
r=1

τr−1∑︂
j=0

(︃
(−1)jP z

(r)
j −1(ρv(r), w) + (−1)j+1P z

(r)
j (v, w)

)︃
+ cv,w

Then, bounding the absolute value of the two series inside with Lemma 2.7, and

applying the triangle inequality on |gw(v)| we have:

|gw(v)| ≤
d−1∑︂
r=1

1
1 − c

(︄
n∑︂

i=1
|aibi,ρv(r)| +

n∑︂
i=1

|aibi,v|
)︄

+ |cv,w|

The plan is to consider |χ(T)
w − µ(T)

w | as a whole (instead of just bounding gw(v)).
Note that the

∑︁
v∈V |cv,w| = O(m), so by applying the triangle inequality to

|χ(T)
w − µ(T)

w | = |∑︁v∈V gw(v)|, we have:

|χ(T)
w − µ(T)

w | ≤
∑︂
v∈V

d−1∑︂
r=1

1
1 − c

(︄
n∑︂

i=1
|aibi,ρv(r)| +

n∑︂
i=1

|aibi,v|
)︄

+ O(m)

Reordering the sums, we have:

|χ(T)
w − µ(T)

w | ≤ 1
1 − c

n∑︂
i=1

d−1∑︂
r=1

∑︂
v∈V

(|aibi,ρv(r)| + |aibi,v|) + O(m)

= 1
1 − c

n∑︂
i=1

|ai|
∑︂
v∈V

d−1∑︂
r=1

(|bi,v| + |bi,ρv(r),|) + O(m)

Now, for each vertex u, we count the number of occurences of |bi,u| in the sum

above; the first term clearly contributes d − 1 occurences, and the second term

contributes at most once per edge going into u, and hence d occurences in total.

Hence the discrepancy is bounded by:

|χ(T)
w − µ(T)

w | ≤ 1
1 − c

n∑︂
i=1

|ai|
∑︂
v∈V

2d|bi,v| + O(m)

= 2d

1 − c

n∑︂
i=1

|ai|
∑︂
v∈V

|bi,v| + O(m)

And finally we note that bi⃗ and a⃗ are unit vectors, and hence their L1 norms are

bounded by

√
n (using Cauchy-Schwarz), to give us:

|χ(T)
w − µ(T)

w | ≤ 2dn

1 − c
+ O(m) = O(m)

29

u v

.

.

.

.

.

.

.

.

.

.

.

.

Figure 2.4 An example with Ω(m) discrepancy. The red edges are before the blue
edges in the permutations ρu and ρv .

This matches (in some sense) a lowerbound from [8]. Consider the graph in

Figure 2.4, with k tokens on u initially, and k self-loops and k edges going to the

other vertex. The random walk mixes instantly, while in the Propp machine the

tokens stay together forever, which gives a discrepancy of k/2 at any time-step.

Note that this still leaves room for a better upper-bound (for example, it does not

rule out a bound of O(δ(v)) on the discrepancy).

2.3 Towards combinatorial proofs
One of our motivations while studying the Propp machine was to find more intu-

itive or natural proofs for the discrepancy bounds in the previous section. While

we failed to do so, we found some intermediate results of independent interest,

which are documented in this section.

Let us define a configuration of the Propp machine on a graph G as a pair

(c, z) where c(v) is the number of tokens at the vertex v, and z(v) is the index

in the permutation ρv where at which the rotor is pointing. Then we show the

following Theorem:

Theorem 2.11. After a finite “mixing” time, the Propp machine on an undirected
graph G with any starting configuration cycles between a finite number of configu-
rations – the average of these configurations is equal to the stationary distribution
of a random walk on G (multiplied by the number of tokens N).

30

Proof. Note that the number of distinct configurations is finite, and the behaviour

of the machine is determined entirely by its current configuration. Hence the

machine reaches a cycle of configurations.

Let πv denote the stationary distribution of the random walk on G. Let C =
{(c0, z0), . . . , (ck, zk)} denote the configurations in the cycle. Now consider the

set S of vertices v that has more tokens than N ·πv on average over C. If S = ∅, we

are done, so assume S is non-empty. Further, assume that the subgraph induced

by S on G is connected (if not, we can work with a maximal such subset of S).

Now, consider the edges between S and V \ S; since each vertex u of S has

on average strictly more than N · πu tokens, and each neighbour v of u receives

an equal number of tokens over C (because the routers reset to the positions z0),

strictly more than |C| · N · πu/du tokens leave S via the edge {u, v} for v /∈ S.

By the same argument, fewer than |C| · N · πv/ degv tokens enter S via the same

edge.

Recall that for undirected graphs, πu ∼ degu, and hence S leaks tokens over

the cycle of configurations C and we have a contradiction.

Next, we can show that the maximum positive discrepancy cannot increase

once it falls below certain thresholds.

Theorem 2.12. Suppose that the number of tokens N is divisible by 2m. For some
configuration (c, z) define for each vertex v the “bucket” b(v) of discrepancy it falls
into as the unique integer z such that c(v) − N · πv ∈ (z · degv, (z + 1) · degv].
Then maxv b(v) is non-increasing with the operation of the Propp machine.

Proof. Each vertex u can supply at most b(u) + 1 additional tokens over the N ·
πu/ degu “expected” tokens to each of its neighbours. But this means each vertex

v receives at most degv · (b(v) + 1) extra tokens over its expected N · πv tokens,

and hence has discrepancy bracket at most b(v).

31

32

Bibliography

[1] J Spencer. “Balancing Vectors in the Max Norm”. In: Combinatorica 6.1 (Jan.

1986), 55–65. issn: 0209-9683.

[2] Anders Björner, László Lovász, and Peter W Shor. “Chip-firing games on

graphs”. In: European Journal of Combinatorics 12.4 (1991), pp. 283–291.

[3] Vyatcheslav B Priezzhev et al. “Eulerian walkers as a model of self-organized

criticality”. In: Physical Review Letters 77.25 (1996), p. 5079.

[4] Eric Goles and Maurice Margenstern. “Universality of the chip-firing game”.

In: Theoretical Computer Science 172.1 (1997), pp. 121–134. issn: 0304-3975.

[5] Anders Björner and László Lovász. “Chip-firing games on directed graphs”.

In: Journal of algebraic combinatorics 1.4 (1992), pp. 305–328.

[6] Michael Sipser. Introduction to the theory of computation. PWS Publishing

Company, 1997. isbn: 978-0-534-94728-6.

[7] Joshua N. Cooper and Joel Spencer. “Simulating a Random Walk with Con-

stant Error”. In: Combinatorics, Probability and Computing 15.6 (2006), 815–822.

[8] Shuji Kijima, Kentaro Koga, and Kazuhisa Makino. “Deterministic random

walks on finite graphs”. In: Random Structures & Algorithms 46.4 (2015),

pp. 739–761.

33

34

	Introduction
	Computing using the chip-firing game
	Preliminaries
	Computing boolean circuits
	The natural choice
	Bigger bits are better

	From circuits to Turing machines
	Hardness considerations

	Discrepancy bounds for Propp machine
	Preliminaries
	Tighter bounds for special cases
	Towards combinatorial proofs

	Bibliography

