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Abstract

In this study we analyze the effect of DST on the traffic accidents in the short
run period and the effect of darkness in the long run period. Applying Regres-
sion Discontinuity Design and Negative Binomial Regression Model we estimate
that the impact of DST increases by 7% the number of total accidents in the
short run period and the effect of darkness significantly increases all types of
accidents in the long run period in the Czech Republic. The change to the
all-year DST regime could decrease the number of all types of accidents.
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Abstrakt

V této prace analyzujeme vliv střídání zimního a letního času, DST, na do-
pravní nehody v krátkém období a efekt tmy v dlouhodobém období. Použitím
modelu regresní diskontinuity a negativního binomického regresního modelu
odhadujeme, že dopad DST zvyšuje o 7 % počet celkových nehod v krátkodobém
období a efekt temnoty významně zvyšuje všechny typy nehod v dlouhodobém
období v České republice. Výsledek práce ukazuje, že letní čas během celého
roku by mohl snížit počet všech typǔ nehod.
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in the last Sunday of September. Since 1996 according to the Directive 94/21/EC
of the European Parliament, the summer time ends in the last Sunday of October.
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Chapter 1

Introduction

Many countries around the world use summertime arrangements to save energy
and to improve the leisure activities by having longer daylight hours in the
evening. However, the recent research indicates that Daylight Saving Time
(DST) does not save energy (Kellogg & Wolff (2008)) and even increase energy
use (Kotchen & Grant (2011)).

Kellogg & Wolff (2008) examined actual data from a natural experiment
that took place in Australia in 2000. Typically, three of Australia’s six states
start DST in October but two of them began DST two months earlier than usual
to accommodate the Sydney Olympics. Based on the difference-in-difference
the framework estimated that the extension of DST in Australia did not reduce
the overall electricity consumption but it did cause a substantial intraday shift
in demand consistent with activity patterns.

Since energy savings are no longer considered a sufficient rationale for the
DST policy, researches turning their attention towards its more imminent ef-
fects like road safety, crime, tourism, health and carbon emission.

There are two main categories of daylight saving time effects: domestic
and trans-boundary. Summertime arrangements have positive impact on the
tourism and leisure sector (Hillman (2008); Wolff & Makino (2012)). The effect
on the agricultural sector is considered to be less than it was historically because
the need for daylight was reduced due to modern agricultural techniques. There
is no definite evidence of DST impact on cross-border business, trade and
investment but EU governments believe that asynchronous arrangements would
have a negative impact. The trans-boundary effects of DST are expected to
be felt in the transport sector, especially in the air and rail services. It is also
may be felt in the business and finance sectors for the firms which work across
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borders but it is difficult to detect. The costs of a shift in DST are significant
for the software and IT-dependent economic sectors.1

The general concept of DST was suggested by Benjamin Franklin (1784)
in a satirical essay. Europe had the first experience of daylight saving time
during the First World War, when Germany, Austria-Hungary, the UK, France
introduced summertime to reduce the fuel needed to produce electric power
and to allow better of the daylight hours (Reincke et al. (1999)). After the
end of the war, DST was abandoned by many countries. The DST got a wide
extension during the 1970s. The main factors for the application of summertime
were (Reincke et al. (1999)): energy savings due to the energy crisis of the
1970s, improving the matching of daylight hours with the people’s activities,
harmonization, and synchronization with neighboring countries.

The Czech Republic started to use summer time yearly since 1979 accord-
ing to the next rule: the summer time was set in the last Sunday of March
and ended in the last Sunday of September. Since 1996 according to the Di-
rective 94/21/EC of the European Parliament, the summer time ends in the
last Sunday of October. The transition of DST is characterized by the rule: to
put clocks forward one hour in the spring and then change them back to the
Standard Time in the autumn. According to this rule there is 1 "extra" hour
during the summer in the evening.

This thesis will focus on the impact of DST on traffic incidents in the Czech
Republic.

There are two primary mechanisms of DST impacts. First, under daylight
saving time we observe darker mornings and lighter evenings time. This addi-
tional hour light in evenings can have major consequences, for example, it can
reduce crime (Doleac & Sanders (2015)) and increase outdoor activity (Wolff
& Makino (2012)). Second, circadian rhythm disruptions which change the
quality and amount of sleep following the spring transition. These short-term
disruptions can lead to different symptoms such as headache or loss of atten-
tion. Monk & Folkard (1976) estimated that measurable changes in pattern
keep up to five days after each time transition.

Previous studies of the impact of DST on the traffic incidents investigated
the ambient light mechanism (Ferguson et al. (1995)), sleep deprivation mech-
anism (Coren (1996)) and both of them (Sood & Ghosh (2007)).

1The application of summertime in Europe. A report to the European Commis-
sion Directorate - General for Mobility and Transport (DG MOVE), 2014. Available
at https://ec.europa.eu/transport/sites/transport/files/facts-fundings/studies/doc/2014-09-
19-the-application-of-summertime-in-europe.pdf.

https://ec.europa.eu/transport/sites/transport/files/facts-fundings/studies/doc/2014-09-19-the-application-of-summertime-in-europe.pdf
https://ec.europa.eu/transport/sites/transport/files/facts-fundings/studies/doc/2014-09-19-the-application-of-summertime-in-europe.pdf
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To identify the overall impact of DST on the traffic incidents, I am planning
on using detailed records of every incidents occurring in the Czech Republic
from 2006 to 2019.

The thesis is structured as follows: Chapter 2 comprises the literature review
on the effect of the transition into and out of daylight saving time on road
safety. Chapter 3 introduces the hypothesis and describes the methodology.
Chapter 4 introduces data and describes the models. Chapter 5 provides the
results. Chapter 6 summarizes our findings.



Chapter 2

Literature review

This chapter presents a comprehensive review of the existing evidence of day-
light saving time effects mainly focusing on the effects on vehicle motor crashes.

2.1 Previous studies

Recent literature review Carey & Sarma (2017) summarizes the existent ev-
idence of daylight saving time effect. This review includes 24 studies from
different countries, 17 studies were from the USA, 2 studies were based on
DST in the UK. Other 5 studies were based on data from Canada, Finland,
Sweden, Israel and Ireland. Most of the studies (71%) estimated the short run
effects of DST using 1 or 2 weeks period before and after the transition into
and out the DST. Half of the studies examined the long run effects of DST
using the time range from 3 to 13 weeks around the DST shift. Only 5 studies
investigated both short run and long run effects. Existing evidence of daylight
saving time effect on road safety is focused on a sleep effect, ambient light and
both of these mechanisms.

2.1.1 Studies focusing on the impact of a sleep disruption

Monk & Folkard (1976) and Monk & Alpin (1980) studied individual subjects
before and after daylight saving time shift trying to find some evidence about
significant disruptions in the sleep cycle, performance efficiency, and mood.

A small disruption in the cycle of sleep can lead to significant changes in
sleep patterns for up to five days after both Spring and Autumn time shift
(Monk & Folkard (1976)).
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Using Canadian data for the years 1991 and 1992, Coren (1996) appraised
the short run effect of the shift to and out DST on traffic incidents. He restricted
data to the Monday preceding, the Monday immediately after and the Monday
one week after the change for both spring and autumn time shifts. The author
observed that the spring shift to daylight saving time increased the risk of
road incidents of approximately 8% due to insufficient sleep. The autumn shift
resulted in a decrease in traffic incidents of approximately 7%.

This estimation has been criticized by Vincent (1998). Using the extended
Canadian data from 1984 to 1993 the author did not determine a significant
effect of time change on traffic incidents.

The same results were observed by Lambe & Cummings (2000). The re-
searches used the data of motor vehicle crashes from 1984 to 1995 that occurred
in Sweden state roads to examine whether the DST transition has short run ef-
fects on the traffic incidents. Three Mondays in the spring and in autumn: the
Monday preceding, the Monday immediately after DST shift and the Monday
one week after the change was controlled for the analysis. The authors hy-
pothesized that traffic crashes would be higher on Monday immediately after
spring shift due to sleep cycle disturbances and less on Monday immediately
after the autumn shift. The incidence rate ratio (1.04) for a Monday when
drivers were expected to sleep one hour less compared with other Mondays
was estimated using the negative binomial regression. In the spring shift, the
crash rate ratio was 1.11 for Mondays after the DST change compared to other
spring Mondays, for the autumn shift this ratio was 0.98. Based on the results
Lambe & Cummings (2000) concluded that there are no measurable important
immediate effects on motor vehicle crashes into and from daylight savings time
shift.

Varughese & Allen (2001) received contradictory results. Using the United
States data for 21 years from 1975 to 1995 period they investigated the impact
of sleep loss and behavioral changes on fatal traffic crashes in the shift to
daylight saving time. Comparing the mean number of incidents on the days
at the time transition (Saturday, Sunday and Monday) to the average of the
corresponding mean number of incidents on the matching day of the weeks
before and weeks after the DST shift Varughese & Allen (2001) estimated
a significant increase of the number of fatal crashes on Monday for the spring
change to DST but there was no measurable change for fatal crashes on Sunday.
For the autumn transition from DST, there was a significant increase in the
number of fatal crashes for Sunday and a non-significant decrease on Monday.
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Thus, the small effect of sleep loss was significant for the first working day after
the spring DST shift. The behavioral effects decreasing the risk of incidents
were observed neither Saturday nor Sunday data in the spring transition. The
increase in Sunday incidents after the autumn shift supports Varughese & Allen
(2001) the hypothesis of a behavioral adaptation. One ’extra’ hour of sleep the
next day may translate drivers into staying out longer and driving later with
probable increasing sleepiness or more alcohol consumption.

Lahti et al. (2010) investigated the impact of DST shift on the number of
road incidents one week before and one week after DST transitions using the
data from Finnish Motor Insurers’ Center the period from 1981 to 2006. They
hypothesized that circadian rhythm disruption can lead to an increase in road
accidents. According to the received results, there is no significant increase
in number of traffic collisions. Additionally, it was found that the proportion
of personal injuries was higher in spring, but it remained at the same level in
autumn.

2.1.2 Studies focusing on the impact of ambient light

Ferguson et al. (1995) estimated the effect of light conditions on fatal motor
vehicle crashes using the data from the USA in the 5-years from 1987 to 1991.
They found that a change from daylight to twilight led to a 300% increase
in fatal crashes for pedestrians, this effect was much smaller (about 15%) for
vehicle occupants. They approximated that the extension of DST to the full
calendar year would have reduced fatal pedestrian crashes by 727 and fatal
vehicle occupants’ crashes by 174. This policy would save for an average of
about 180 fatal collisions per year. The authors explain that the continuation
of daylight saving time throughout the year increases road safety because there
is more traffic during the evening hours. The smaller effect for vehicle occu-
pants is explained by the presence of vehicle headlights and taillights, which
makes it more visible during periods of twilight and darkness. Despite the fact
that linear models are not the best choice for modeling count data, authors
have got the results that were expected, showing the inverse relationship be-
tween lighting conditions and the number of pedestrian and motor vehicle fatal
crashes.

Using the data in the 11-years from 1983 to 1993 Whittaker (1996) in-
vestigated the effect of British summertime (BST) on vehicle and pedestrian
incidents for short run period. He chose one week periods before and one week
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after the BST change with daily time intervals from 5 a.m. to 9 a. m. and 3
p.m. to 7 p.m. which corresponded with the hours around sunrise and sunset.
The author estimated that there is a reduction in the total number of road
incidents in both morning and evening periods in the spring. In the autumn
there is a reduction in the morning (6.25%) but a 3.9% increase in numbers
in the evening, mainly vehicle 5% and pedestrian 8% accidents. He observed
that there is a reduction in the spring morning and evening periods for pedes-
trian crashes. The reduction in the darker morning is explained by the trend
of diminishing walking as a method of getting to work or school. There is
a reduction in the autumn morning period, but there is a significant (7.6%)
increase in the evening period.

Broughton et al. (1999) in their study used the new statistical methods,
based on solar altitudes, for analyzing the influence of daylight level and time
changes on the traffic crashes. Using the official database for Great Britain
(1969 - 1973) and the USA (1991 - 1995) for the analysis, they observed that
twilight and darkness increase the risk of fatal crashes and serious injury in road
incidents and retaining DST throughout the year would save lives. Authors
confirmed previous findings that year-round DST could have prevented up to
833 pedestrian crashes and 140 motor vehicle crashes between 1987 and 1991
(in comparison to 727 and 174 in the research of Ferguson et al. (1995)).

Using the fatal crashes data from the United States between 1987 and 1997,
Sullivan & Flannagan (2001), Sullivan & Flannagan (2002) investigated the
pedestrian’s risk in darkness and the influence of ambient light level on fatal
pedestrian and motor vehicle crashes. Analyzing pedestrians and motor vehicle
collisions, it was estimated 4.1 times as many pedestrian fatalities in darkness as
in daylight, and 1.3 times as many motor vehicle collisions in darkness compared
to the daylight. Dark effects were also found for incidents with parked vehicles
and incidents with railway trains. Sullivan & Flannagan (2001) concluded that
pedestrians are at greater risk in darkness and the situation is also deteriorating
with traffic speed due to the driver’s inability to successfully perform avoidance
maneuvers successfully. Sullivan & Flannagan (2002) estimated that 78% of the
fatal pedestrian crashes and 52% of the fatal non-pedestrians’ crashes during
the daylight saving time shift periods occurred in the dark. Accordingly, the
fatal pedestrians’ crashes were three to four times more likely in darkness than
during the daylight.

The impact of ambient light was also confirmed by Coate & Markowitz
(2004). They estimated the effects of daylight and DST using the 2-week
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periods in 1998 and 1999. They have also discovered that the effects of shifting
an hour of daylight from the morning to the evening in the period of standard
time would reduce fatal crashes involving pedestrians by 171 per year. It is
13% of all pedestrians’ crashes in the morning hours from 5:00 to 10:00 and
in the evening hours from 16:00 to 21:00. During the same periods of time,
fatal crashes of the motor vehicle occupants would be reduced by 195 per year
or by 3%. The smaller percentage change in a motor vehicle is explained by
vehicle lights. These results are similar to the results which were obtained by
Ferguson et al. (1995). Coate & Markowitz (2004) noticed that there are lower
pedestrian fatalities and higher motor vehicle fatal crashes in rural areas. The
mentioned effect is explained by the less supply of pedestrian activity in rural
areas.

The safety effects of DST on collisions involving child pedestrians were inves-
tigated by Adams et al. (2005) using 15 years of police data between November
1988 and March 2003 from north-east England. Using sunrise and sunset tables
in England, the light conditions were examined for each crash affecting a child.
The results indicated that operating daylight saving time year-round would
reduce the number of serious and fatal traffic crashes involving children. Based
on these results, Adams et al. (2005) concluded that the transition to DST
year-round would prevent around 7 serious or fatal accidents in the studied
area. It is equivalent to a reduction of 0.5% per year.

Bünnings & Schiele (2018) investigated the data from England, Scotland
and Wales from 1996 to 2016 and estimated that the darkness increases colli-
sions number by around 7% per hour. As a result, the extension of daylight
saving time year-round could prevent 25 fatal, 100 seriously injured and 350
slightly injured crashes per year.

2.1.3 Studies focusing on the impact of both ambient light

and sleep disruption

Sood & Ghosh (2007) focused their research not only an ambient light but
also a sleep disruption. The researches used 28 years of data of automobile
crashes (1976 - 2003) from the United States to find the short run and long run
effects of DST on automobile crashes. The analysis they have performed relies
on a natural experiment resulting from a 1986 USA federal law. According to
the low, all states switch to daylight saving time on the first Sunday of April
starting from 1987. Sood & Ghosh (2007) included a set of control years with
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the absence of DST in the analysis to compare the accidents in the absence of
DST. Using difference - to - difference estimator, they observed that DST has a
significant saving effect in the long run. There is an 8-11% decline in collisions
involving pedestrians, and a 6-10% decline in crashes in vehicular accidents
after the spring shift to DST. Sood & Ghosh (2007) results are consistent with
the previous studies. DST has a significant saving effect in pedestrian accidents,
it saves lives for pedestrians and vehicle occupants by reducing the number of
motor vehicle crashes. Sood & Ghosh (2007) did not find any significant effect
on automobile crash incidents in the short run.

The most previous studies investigated the impact of DST looked only at
the traffic incidents for the whole day, but they do not provide the understand-
ing of the effects of daylight saving time on different periods of a day. Therefore,
Huang & Levinson (2010) studied crashes in different periods of times of a day
to test the hypothesis of their reasons. Also, they assumed that DST may
change traffic flow patterns near sunrise and sunset, which can increase the
number of crashes. Huang & Levinson (2010) evaluated a short run and long
run effects of DST on daily vehicle collisions based on data in Minnesota from
2001 to 2007. They investigated weekly crashes during the sixteen weeks cross-
ing the time change from standard time to DST in the spring and from DST
to standard time in the autumn. The four periods of the day were categorized:
3 a.m. - 9 a.m., 9 a.m. - 3 p.m., 3 p.m. - 9 p.m., 9 p.m. - midnight. Using
2SLS model Huang & Levinson (2010) divided their results into three parts -
traffic, crashes, and fatal crashes. They found that one ’extra’ hour daylight
in the afternoon in DST increases the number of vehicles on the road due to
outdoor activities. According to their results, a 1% increase in traffic volume
is associated with 2.2% more incidents, therefore the benefit of better visibility
during dusk may be reduced an increase in traffic. Huang & Levinson (2010)
did not find any measurable effect in the short run period. The overall effect
of DST on fatal motor crashes specifies that the day in DST has about 0.008%
fewer fatal crashes than the day in standard time.

By the Energy Policy Act of 2005, daylight saving time was extended in
the United States by 1 month beginning in 2007. According to the legislation,
four weeks were added to DST starting it on the second Sunday in March
and ending on the first Sunday in November. This natural experiment, similar
to the conduction in 1987 observed by Sood & Ghosh (2007), allowed Crawley
(2012) to investigate the day of the month and seasonal effects. Crawley (2012)
replicated Sood & Ghosh (2007) findings for the 1976 - 2003 time periods and
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studied crash data from 2004 to 2010. It was estimated that daylight saving
time has significant fatal crash-saving effects in the long run due to higher
evening visibility. Sleep disruption has no significant effect in the short run.

Smith (2016) obtained contradictory results. Shifting ambient light does
not contribute to the increase in collisions and only reallocates the fatal crashes
to additional morning accidents and fewer evening accidents during the DST.
These effects are neutralized and Smith (2016) suggests that sleep deprivation
is a reason for increase in fatal crashes in the spring transition. Using the
United States data of the fatal crashes (2002-2011) he applied two identification
strategies: regression discontinuity method for changes between Standard Time
and DST and Day-of-Year Fixed Effects for dates that are included in DST in
some years and Standard Time in other years. The data was adjusted in the
following way: the 3-4 am hour was counted twice for the initial Sunday of the
DST shift (the day is 23 hours long) and the crashes from 1-2 am were divided
by two in the autumn shift (the day is 25 hours long). The holidays were
omitted from the investigation. It also was discovered that the effect of DST
rises the fatal crash risk 5-6.5% in the spring shift and there is no measurable
impact in the autumn shift. To determine the reason for the collisions Smith
(2016) applied four tests. In the first test and the second test, he isolated the
light/sleep mechanism in the autumn/spring transition and determined the net
impact. In the third test,the author examined the sleep impacted days (up to
first two weeks of daylight saving time) with the other days of spring DST. In
the final test, he studied crash factors of accidents provided by the investigating
officer. According to these tests, ambient light does not have an impact on the
increase in crashes.

2.2 Summary

Existing evidence of the impact of DST on vehicle crashes is contradictory. All
previous studies can be divided into three groups. One set of studies focuses
only on a sleep disruption comparing the counts of crashes on the Monday
preceding, the Monday immediately after DST shift, and the Monday one week
after the change (short run impact). These studies suggest either an increase in
incidents (Coren (1996); Varughese & Allen (2001)) or no impact due to DST
(Vincent (1998); Lambe & Cummings (2000); Lahti et al. (2010)).

The second set of studies focuses on the impact of ambient light mechanism.
The researches estimate the effect of light conditions (Ferguson et al. (1995);
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Coate & Markowitz (2004); Bünnings & Schiele (2018)) on traffic crashes and
then simulate the effect of DST on the rest of the year. All the mentioned
studies suggest a reduction in traffic crashes.

The third set of studies focuses on the impact of both ambient light and
sleep disruption. The first research was performed by Sood & Ghosh (2007)
where they have discovered that DST has no significant effect on automobile
crash incidents in the short run, but it has a significant saving effect in the
long run. Smith (2016) estimated that the transition into DST reduces fatal
crashes and sleep disruption increases their risk in the spring.



Chapter 3

Methodology

This chapter describes the theoretical methodology used to examine the short
run and long run effects of daylight saving time on traffic accidents.

3.1 Assumptions and Hypothesis

Following the discussion on the effect of transition into and out DST, we can
divide our hypotheses for two periods of time - short run period and long run
one and two mechanisms - ambient light and circadian rhythm disruption. The
results from previous studies are contradictory therefore we cannot choose what
would have a higher impact on motor vehicle crashes.

We suggest that Daylight saving time has no significant effect on traffic
accidents in the short period and can reduce traffic accidents and decline fatal
crashes in the long run period. These hypotheses may be explained by the
suggestion that the ambient light and better visibility have higher effect than
sleep disruption. As was mentioned in the Literature review the short term
sleep deprivation or disruptions in the circadian rhythm keep up to five days.
The light time of the day increases during the spring period and decreases in
the autumn period.

In order to valuate our hypotheses two different approaches will be applied.
The long run period will be estimated by Generalized Linear Model such as
Poisson regression model or Negative Binomial regression model. The models
will be selected based on overdispertion. The short run period will be estimated
based on Regression Discontinuity Design.

The theoretical background of the menitoned approaches will be discussed
in the following paragraphes.
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3.2 Generalized Linear Models

Using the Linear Regression Model for count variables can lead to inefficient
and biased estimates. Following Long (1997), Cameron & Trivedi (1998) the
most suitable model for accident count data is the Poisson Regression Model
which is a Generalized Linear Model. The probability of a count for this model
is determined by Poisson distribution, the mean of the distribution is a function
of the independent variables.

3.2.1 The Poisson Distribution

Let Y be a discrete random variable which indicates the number of the times
that during an interval of time, the event has happened, Y has a Poisson
distribution with intensity or rate parameter µ, µ >0 if

Pr(Y = y) = e−µ · µy

y! for y = 0, 1, 2, ...

The Poisson distribution has the following properties:

1. The variance is equal to the mean:

V ar(Y ) = E(Y ) = µ

2. Additivity:

If Yi ∼ P (µi),i= 1, 2, .. are independent random variables and ∑︁
µi< ∞

then ∑︂
Yi ∼ P (

∑︂
µi)

3. The Poisson distribution approximates to a Normal distribution if the
parameter µ increases.

The Poisson distribution can be obtained from a simple stochastic Poisson
process, where the outcome is the number of times that the event has occurred.
The events must be independent, it means that the probability that one event
occurs does not affect the probability of another event occurring.

3.2.2 The Poisson Regression Model

The Poisson Regression Model is derived from the Poisson distribution by al-
lowing the rate parameter µ to depend on regressors. The typical application
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of the Poisson Regression is to cross-sectional data which consists of n inde-
pendent observations (yi, xi). The scalar dependent variable yi is the number
of events, xi is the vector of linearly independent regressors. yi has a Poisson
distribution with a conditional mean, µi >0

The probability of a count yi given xi is

Pr(yi|xi) = e−µi · µyi
i

yi!
The most common formulation for µi is the log-linear model.

ln µi = x
′

i · β

By the property of the Poisson V ar(yi|xi) = E(yi|xi) that means that the
variance is not a constant, therefore the regression is heteroscedastic.

∂E(yi|xi)
∂xi

= µiβ

The maximum likelihood techniques is usually used for the estimation of
the parameters of the Poisson Regression Model.

The likelihood function is

L(β|y, X) =
N∏︂

i=1
Pr(yi|µi) =

N∏︂
i=1

e−µi · µyi
i

yi!

Given independent observations, the log-likelihood function is

ln L(β|y, X) =
N∑︂

i=1
(−µi + yix

′

iβ − ln yi!)

The Poisson MLE ˆ︂βP is the solution to the first order conditions. Differen-
tiating with respect to β, we obtain the likelihood equations

∂ ln L

∂β
=

N∑︂
i=1

(yi − µi)xi = 0

The Hessian is

∂2 ln L

∂β∂βi
= −

n∑︂
i=1

µixix
′

i

The Hessian is negative definite for all x and β. There is no analytical
solution for β̂. The standard computation algorithm for this model is Newton-
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Raphson iterative method because it usually converges rapidly. At convergence,[︂∑︁n
i=1 µixix

′
i

]︂−1
provides an estimator of the asymptotic covariance matrix for

the parameter estimates.
Using maximum likelihood theory, we obtain

β̂P
a∼ N(β, VML[β̂P ])

where

VML[β̂P ] =
[︄

n∑︂
i=1

µixix
′

i

]︄−1

Given the estimates, the prediction for observation i is µ̂i = exp(x′
iβ̂P )

Following Cameron & Trivedi (1998), the Poisson MLE has the properties:

1. Consistency does not require the Poisson distribution for the dependent
variable y. It requires the correct specification of the conditional mean.

2. Valid statistical inference using computed maximum likelihood standard
errors and t statistics does not require the Poisson distribution for the
dependent variable y. It requires the correct specification of the condi-
tional mean and variance, in other words, equidispersion, the equality of
conditional variance, and mean.

3. If the conditional mean is correctly specified, the valid statistical inference
using appropriately modified maximum likelihood output is possible for
data that are not equidispersed.

4. If data are not overdispersed, the more efficient estimators than Poisson
MLE can be obtained.

The condition of the equidispersion in the Poisson model is analogous to
homoscedasticity in the linear model. In practice, the Poisson regression model
(PRM) rarely fits due to overdispersion, that is, the conditional variance is
greater than the conditional mean. In this case, the estimates from the Poisson
regression model are consistent but inefficient, standard errors are biased.

3.2.3 The Negative Binomial Regression Model

The assumed equidispersion is typically taken to be the disadvantage of the
Poisson regression model. According to Long (1997),Greene (2002), we extend
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the model adding a parameter that allows the conditional variance of yi to
exceed the conditional mean. This model is the negative binomial regression
model that is the most common one in terms of unobserved heterogeneity.

We generalize the Poisson model by replacing the mean µi with the random
variable λi.

λi = exp(xiβ + ϵi)

where the disturbance ϵi reflects either a random error as in the classical
regression model that is assumed to be uncorrelated with xi or the kind of
cross-sectional heterogeneity.

λi = exp(xiβ)exp(ϵi) = µiui

ln λi = ln µi + ln ui

According to Long (1997), the negative binomial regression model is not
identified without the assumption about the mean and error term. The appro-
priate assumption is that the expected value of ui is equal to 1.

E(ui) = 1

This assumption implies that after adding the parameter the expected count
is the same as it was for the Poisson regression model.

E(λi) = E(µiui) = µiE(ui) = µi

The distribution of observations yi conditioned on xi and ui is still Poisson
with conditional mean and variance λi:

Pr(yi|xi, ui) = e−λi · λyi
i

yi!
= e−µiui · µiu

yi
i

yi!
Since ui is unknown we cannot compute Pr(yi|xi, ui). Instead of that we

can compute the distribution of yi given only xi without conditioning on ui. In
this case we average Pr(yi|xi, ui) by the probability of each value of ui.

Pr(yi|xi) =
∫︂ ∞

0

e−µiui · (µiui)yi

yi!
· g(ui)dui

For solving the equation we have to specify the probability density function
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for ui. According to Long (1997), Greene (2002), the most common assumption
is that ui has a gamma distribution with a parameter θi.

g(ui) = θθi
i

Γ(θi)
· θui−1

i · e−θiui

where Γ(θ) =
∫︁∞

0 tθ−1e−tdt

3.2.4 Testing for overdispersion

The condition of the equidispersion in Poisson model is analogous to homoscedas-
ticity in the linear model therefore a failure of the assumption of the equidisper-
sion has similar qualitative effects to failure of the assumption of homoscedas-
ticity in the linear regression model.

Data are overdispersed if the conditional variance is greater than the con-
ditional mean. Comparing the sample mean and variance of the dependent
count variable we can obtain an indication of the magnitude of overdispersion.
The subsequent Poisson regression reduces the conditional variance of the de-
pendent count variable. Following Cameron & Trivedi (1998), if the sample
variance is more than twice the sample mean, then data are probably to be
overdispersed even after the inclusion of regressors because, for example for
cross-section data, regressors usually explain less than half the variation in the
data.

The test based on regression approach, the conditional moment test, and
Lagrange multiplier test are three statistical techniques for testing hypotheses.
Following Greene (2002), the simple regression based procedure for testing the
null hypothesis and alternative hypothesis

H0 : V ar[yi] = E[yi]

Ha : V ar[yi] = E[yi] + αg(E[yi])

is carried out by regressing

zi = (yi − ˆ︂µi)2 − yi√
2 · ˆ︂µi)2

,

where ˆ︂µi is the predicted value from the regression.
According to Greene (2002), the another regression based test for the overdis-
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persion can be formulated around the alternative hypothesis:

H0 : V ar[yi] = E[yi]

Ha : V ar[yi] = E[yi] + g(E[yi])

It is a specific type of overdispersion because the variance V ar[yi] is completely
given by E[yi]. E[yi] is equal to exp(xiβ) = µi, thus the null hypothesis is
V ar[yi] = µi. This hypothesis can be tested by using the conditional moment
test. The expected first derivatives and moments are the following:

E[xi(yi − µi)] = 0

E
{︂
zi[(yi − µi)2 − µi]

}︂
= 0

Let ei = yi − µi and zi = xi without the constant term. According to
Greene (2002), to perform the test we need to do the steps below:

• Compute the Poisson regression by maximum likelihood.

• Based on the maximum likelihood, to compute r = ∑︁n
i=1 zi[e2

i − ˆ︂µi] =∑︁n
i=1 zivi

• Compute M
′
M = ∑︁n

i=1 zizi
iv2

i , D
′
D = ∑︁n

i=1 xixi
ie2

i and M
′
D =∑︁n

i=1 zixi
iviei

• Compute S = M
′
M − M

′
D(D′

D)−1D
′
M .

• C = r
′
S−1r is the chi-squared statistic with K degrees of freedom.

If an alternative distribution for which the Poisson model is obtained as
a parametric restriction can be defined, the Lagrange multiplier statistic can
be computed. The negative binomial model is a parametric restriction of the
Poisson model therefore the Lagrange multiplier test can be computed. The
LM statistic is

LM =
⎡⎣∑︁n

i=1 ˆ︂wi[(yi − ˆ︂µi)2 − yi]√︂
2∑︁n

i=1 ˆ︂wiµ2
i

⎤⎦2

, where weight ˆ︂wi depends on the assumed alternative distribution. It is equal
to one for the Negative binomial regression model, hence, under this alternative,
the LM statistic can be computed as:
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LM = (e′
e − ny)2

2ˆ︁µ′ ˆ︁µ
The Lagrange multiplier test statistic has the advantage that the only esti-

mation of the Poisson model is needed to compute it. Under the hypothesis of
the Poisson model, the limiting distribution of the LM statistic is chi-squared
with one degree of freedom (Greene (2002)).

3.3 Regression Discontinuity Design

3.3.1 Overview of the Regression Discontinuity methodology

The Regression Discontinuity RD is one of the most credible non-experimental
strategies for the analysis of the casual effects of the treatment on outcomes of
interest.

RD was first introduced by Thistlethwaite and Campbell in 1960 as an alter-
native method for evaluating social programs and formalized by Hahn, Todd,
and van der Klaauw in 2001. During the last decades, this approach has been
used for such evaluation as the impact of unionization, anti-discrimination, so-
cial assistance programs, limits on unemployment insurance, etc (Jacob et al.
(2012)). Now it is frequently used in Economics, Political Science, Educa-
tion, Epidemiology, Criminology, and many other disciplines (Cattaneo et al.
(2020)).

In the RD design, all elements have a score. The Regression Discontinuity
analysis applies to the situations in which observations are selected for the
treatment based on whether their value for the rating variable is above or
below of known threshold or cutoff. The key feature of the analysis is that the
probability of receiving the treatment changes sharply at the known threshold.
The discontinuous change in this probability can be used for learning the local
casual effect of the treatment on an outcome of interest. The elements with
the scores below the cutoff can be used as a control group for elements with
the scores above (Cattaneo et al. (2020)).

There are three fundamental features - a score, a threshold, and a treatment
in the RD methodology which must exist and be well defined. The directly
testable condition is that the probability of treatment assignment as a function
of the score changes discontinuously at the threshold. The RD cannot be applied
in practice to the real data without it.
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There are two basic designs of the Regression Discontinuity: Sharp and
Fuzzy. Following Cattaneo et al. (2020), the Sharp design has the following
features:

• the score is continuously distributed and has only one dimension

• there is only one threshold (cutoff)

• all elements with the score equal to the threshold or greater than one
receive the treatment, all elements with the score below the threshold
receive the control condition. To summarize, all elements receive their
assignment treatment or control condition.

The Fuzzy design is characterized by the fact that some elements from
treatment group does not receive treatment and/or some elements from the
control group receive treatment, in other words, the compliance is imperfect.
According to Cattaneo et al. (2020), there are some different RD designs such as
RD designs with multiple cutoffs, RD designs with multiple scores, geographic
RD designs, and RD designs with discrete running variables.

The Regression Discontinuity is a non-experimental approach therefore it
has to have plenty of conditions to provide the unbiased estimates of the im-
pact. According to Jacob et al. (2012), the following conditions for the internal
validity of RD approach are specified:

• the rating variable (score) cannot be caused by or influenced by the treat-
ment.

• the threshold (cutoff) is exogenous, that should be determined indepen-
dently of the rating variable. The assignment to the treatment group is
based on the ratings (score) and the threshold (cutoff).

• only the treatment status is discontinuous in the analysis interval, in other
words the observation on the one side of the cutoff should be treated the
same as the observation on the other side of the cutoff.

• the functional form representing the relationship between the rating vari-
able and the outcome should be continuous throughout the analysis inter-
val absent the treatment. If there are other discontinuities in the analysis
interval, the range of the data should be restricted: only the discontinuity
that identifies the impact of interest should be included in the interval.
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There are two main frameworks for RD analysis: one is based on continuity
and another one is based on the local randomization assumptions. The first
framework focuses on the smoothness of the regression functions. This men-
tioned framework is commonly applied in practice. The second framework is
based on the premise that the treatment can be assigned randomly to the ele-
ments near the threshold. According to Cattaneo et al. (2020), the frameworks
are distinguished by the formalization of the comparability. The comparabil-
ity is designed as a continuity of the average potential outcomes close to the
threshold in the continuity-based framework and it is designed as conditions
that imitate a randomized experiment around the threshold in the local ran-
domization framework.

3.3.2 The Sharp Regression Discontinuity Design

Based on Cattaneo et al. (2020) let assume that there are n elements indexed
by i = 1, 2, ..., n. Each element has a rating variable(score) Xi and c is a known
cutoff. Elements with Xi >= c are assigned to the treatment condition and
elements with Xi < c are assigned to the control condition. The treatment
assignment Ti is defined as Ti = 1 for Xi >= c. 1(·) is the function that
indicates that the probability of treatment assignment as a function of the
score changes discontinuously at the threshold.

Let assume that each element has two potential outcomes, Yi(1) and Yi(0)
which correspond to the outcomes observed by treatment and control conditions
respectively. The treatment effect is defined as the contrast between features
of both potential outcomes, such as their means, variances, or quantiles. The
outcomes are called potential because only one of them is observed. If element
i receives the treatment, the outcome Yi(1) will be observed. Identically, if
element i receives the control condition, the outcome Yi(0) will be observed.
To summarize, the observed outcome is

Yi = (1 − Ti) · Yi(0) + Ti · Yi(1) =

⎧⎪⎨⎪⎩Yi(0) if Xi < c

Yi(1) if Xi >= c
(3.1)

The observed average outcome given the score is

E [Yi| Xi] =

⎧⎪⎨⎪⎩E [Yi(0)| Xi] if Xi < c

E [Yi(1)| Xi] if Xi >= c
(3.2)
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The average treatment effect E [Yi(1)| Xi = x] − E [Yi(0)| Xi = x] is the
vertical distance between two regression curves at the value of score. The
distance cannot be directly estimated because both curves cannot be observed
for the same value of x except the situation when the cutoff occurs, x = c.

The Sharp Regression Discontinuity treatment effect can be defined

τSRD ≡ E [Yi(1) − Yi(0)| Xi = c] (3.3)

Figure 3.1: Regression Discontinuity treatment effect in the Sharp
Regression Discontinuity design

Source: Cattaneo et al. (2020).A Practical Introduction to Regression Discontinuity Designs:
Foundations.

According to the definition of the Sharp RD design, all elements with Xi = c

are treated, therefore τSRD can be interpreted an average treatment effect on
the treated. Regression Discontinuity designs are based on the assumption of
the comparability between elements with very similar values of the score on
both sides of the cutoff (Cattaneo et al. (2020)). It was shown that if the
regression functions as functions of x, E [Yi(1)| Xi = x] and E [Yi(0)| Xi = x],
are continuous at x = c then the equation below is valid for the Sharp RD

design:

E [Yi(1) − Yi(0)| Xi = c] = lim
x↓c

E [Yi| Xi = x] − lim
x↑c

E [Yi| Xi = x] (3.4)

In other words, if the average potential outcomes are continuous functions
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of the score at c, the average treatment effect is equal to the difference between
the limits of the average observed outcomes of both groups. The continuity
near the cutoff c means that if the score x is getting closer to the cutoff c, the
functions of the average potential outcome are getting closer to their value at
the cutoff E [Yi(·)| Xi = c]. Take into account the continuity assumption, the
Sharp RD effect can be estimated in a small neighborhood around the cutoff,
focusing on the observation above and below. Based on the fact that the
observations in the small neighborhood are very close to the cutoff, they will
have very similar score values and due to the continuity, their average potential
outcomes will also be similar. Thus, the observations just below the cutoff can
be approximated by the average outcome of the elements just above the cutoff
if they had received the control condition instead of the treatment (Cattaneo
et al. (2020)).

3.3.3 The Continuity-Based Approach to Regression Discon-

tinuity Analysis

The continuity-based RD approach uses methodological tools that directly rely
on continuity assumptions and define τSRD as the parameter of interest. The
estimation typically proceeds by polynomial methods to approximate the re-
gression function E [Yi| Xi = x] independently on each side of the cutoff.

One of the basic features of the RD design is that there are no observations
for which the score Xi is exactly equal to cutoff value c, therefore the local
extrapolation is necessary in general. In order to estimate the average control
response at the cut- off E [Yi(0)| Xi = c] and the average treatment response
at the cutoff E [Yi(1)| Xi = c], the observations further away from the cutoff
should be considered. As shown in Figure 3.1, the treatment effect in the Sharp
RD design is a vertical distance between E [Yi(1)| Xi = x] and E [Yi(0)| Xi = x]
which can be estimated by first approximating these unknown regression func-
tions, and then computing the estimated treatment effect and/or the statistical
inference procedure of interest (Cattaneo et al. (2020)).

Modern Regression Discontinuity empirical work applies local polynomial
method as opposed to the early empirical approach where the idea of polyno-
mial approximation globally (usually of fourth or fifth order polynomials) was
applied. The modern local polynomial methods are focusing on the approx-
imation of the regression functions near the cutoff and usually the linear or
quadratic polynomials are used. The statistical properties of the local polyno-
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mial are controlled by the size of the neighborhood near the cutoff where the
local polynomial is fit, separately for the treatment and control group. This
approach uses observations from the interval (c − h; c + h), where h > 0 is
a bandwidth which defines the size of the neighborhood near the cutoff. The
weighting scheme is usually applied to ensure that the weights for the observa-
tions which are closer to the cutoff c are higher than the weights for observations
that are further away. The weights are defined by a kernel function K(·)

According to Cattaneo et al. (2020), the local polynomial estimation is
based on the following steps:

1. To choose a polynomial order p and a kernel function K(Âů).

2. To choose a bandwidth h.

3. For observations above the cutoff (Xi >= c), to fit a weighted least
squares regression of the outcome Yi on a constant and (Xi −c), (Xi −c)2,
..., (Xi − c)p with weight K

(︂
Xi−c

h

)︂
for each observation, where p is a

chosen polynomial order. ˆ︂µ+ is the estimated intercept from the local
weighted regression.

µ+ = [Yi(1)| Xi = c]

ˆ︂µ+: ˆ︂Yi = ˆ︂µ+ + ˆ︃µ+,1 · (Xi − c) + ˆ︃µ+,2 · (Xi − c)2 + ... + ˆ︃µ+,p · (Xi − c)p

4. For observations below the cutoff (Xi < c), to fit a weighted least squares
regression of the outcome Yi on a constant and (Xi − c), (Xi − c)2, ...,
(Xi − c)p with weight K

(︂
Xi−c

h

)︂
for each observation, where p is a chosen

polynomial order. ˆ︂µ− is the estimated intercept from the local weighted
regression.

µ− = [Yi(0)| Xi = c]

ˆ︂µ−: ˆ︂Yi = ˆ︂µ− + ˆ︃µ−,1 · (Xi − c) + ˆ︃µ−,2 · (Xi − c)2 + ... + ˆ︃µ−,p · (Xi − c)p

5. To calculate the Sharp RD parameter τSRD = ˆ︂µ+ − ˆ︂µ−

To summarize the points above, there are three main ingredients should be
chosen for the local polynomial estimation: kernel function K(·), bandwidth h

and order of the polynomial p.
Based on Cattaneo et al. (2020), the kernel function K(·) is a function which

assigns non-negative weights to each transformed observations Xi−c
h

based on
the distance between the observation’s score Xi and the cutoff c. There are
three different types of kernel functions which can be used for estimation:



3. Methodology 25

• Triangular kernel K(u) = (1 − u)1(u <= 1)

• Uniform kernel K(u) = 1(u <= 1)

• Epanechnikov kernel K(u) = (1 − u)2
1(u <= 1)

The triangular kernel function can lead to a point estimator with optimal prop-
erties but in practice, the estimation and inference results are not very sensitive
to the choice of kernel.

The choice of the local polynomial order is based on various factors. The
polynomial of order zero (a constant) can be unfitted at the boundary points.
The increasing order of polynomial for a given bandwidth provides the more
precise approximation but also increasing the variability of the treatment effect
estimator. Moreover, it usually leads to the overfitting and unreliable results
at the boundary. Thus, the local linear RD estimator is preferred.

The choice of the bandwidth h, that regulates the width of the neighbor-
hood near the cutoff, has influence on the properties of the local polynomial
estimation. The accuracy of the approximation can be improved by cutting
the bandwidth. The smaller h will decrease a misspecification error (smooth-
ing bias) but in the same time it leads to the increasing of the variance of the
estimated coefficients because the number of observations to be used for the
estimation is smaller. The larger h will decrease the variance but will result in
more smoothing bias.

According to Cattaneo et al. (2020), the most popular approach for choosing
the optimal bandwidth h is to minimize the mean squared error (MSE) of the
local polynomial RD point estimator ˆ︁τSRD, given the kernel function and a
choice of polynomial order. The general form of the approximate MSE for the
Regression Discontinuity treatment effect is

MSE(ˆ︁τSRD) = Bias2(ˆ︁τSRD) + V ariance(ˆ︁τSRD) = h2(p+1)B + 1
nh

V

,
where quantities B and V are the bias and variance of the RD point estimator

ˆ︁τSRD, not including the rates controlled by the sample size and bandwidth
choice.

The general form of the bias is determined by the bandwidth h and quan-
tities:

B = B+ − B−
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,
B+ ≈ µp+1

+ B+ and B− ≈ µp+1
− B−

,
where the known constants B+ and B− are related to the kernel function,

the derivatives below are related to the unknown regression function.

µp+1
+ = lim

x↓c

dp+1E [Yi(1)| Xi = x]
dxp+1

µp+1
− = lim

x↑c

dp+1E [Yi(0)| Xi = x]
dxp+1

.
The variance depends on the sample size and involves the quantities:

V = V− + V+

,

V− ≈
σ2

−
f

V− and V+ ≈
σ2

+
f

V+

,
where

σ2
+ = lim

x↓c
V [Yi(1)| Xi = x]

,
σ2

− = lim
x↑c

V [Yi(0)| Xi = x]

capture the conditional variability of the outcome given the score at the
cutoff for treatment and control units, f is the density of the score variable at
the cutoff.

The bandwidth h that estimates the MSE approximation is equal to

min
h>0

(︃
h2(p+1)B2 + 1

nh
V
)︃

The MSE-optimal bandwidth is

hMSE =
(︄

V
2(p + 1)B2

)︄ 1
2p+3

· n
−1

2p+3

The RD treatment effect τSRD = µ+ − µ− is the difference of two estimates
thus two different bandwidths can be chosen considering an MSE approximation
for each estimate separately (Cattaneo et al. (2020).
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hMSE,− =
(︄

V−

2(p + 1)B−
2

)︄ 1
2p+3

· n−
−1

2p+3

hMSE,+ =
(︄

V+

2(p + 1)B+
2

)︄ 1
2p+3

· n+
−1

2p+3

Given the choice of the polynomial order p and the kernel function K(·),
the bandwidth h can be chosen. The common MSE-optimal bandwidth or two
different MSE-optimal bandwidths leads to the RD point estimator ˆ︁τSRD =ˆ︂µ− − ˆ︂µ+ which is consistent and MSE optimal.



Chapter 4

Empirical Framework

This chapter describes the data and models used for estimation.

4.1 Data Description

The main data for this research has been obtained from the Czech Traffic Police
for the period from January 2006 to December 2019. The data contains detailed
records of all traffic accidents for each region of the Czech Republic. During the
2006-2009 two important changes were made in the Czech Road Traffic law.
Starting from 1.7.2006 the minimum damage below which the police should
not be notified raised from 20000 CZK to 50000 CZK, starting from 1.1.2009
the minimum damage amount has been increased to 100000 CZK. All incidents
involving affected people must be notified to police in any case.

Due to the fact since the method for data reporting has been changed, we
cannot compare the data from year to year. Therefore the data for all traffic
accidents will be studied starting from 1.1.2009.

Figure 4.1 presents the total number of accidents per year starting from
2006. The changes in the Czech Road Traffic law reduced the number of re-
ported accidents significantly in 2009. All fatal traffic accidents must be re-
ported to the police, therefore based on that condition, we can study the data
for these types of accidents starting from 2006. Figure 4.2 presents the total
amount of fatal road accidents over the years starting from 2006.

It is important to note that the police report of traffic crashes contains one
record per crash with all details including the time of the accidents thus we
can calculate the number of crashes per hour, day, and week. The Police did
not know the accurate time for some of the crashes therefore the signs ’25’ for
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an hour and ’60’ for minutes were used in the report. The record with the
sign ’60’ in the minutes was included to the defined hour, for example, the
accident happened at ’260’ was calculated to 2-3 a.m. hour. The crashes with
the unknown hour (the sign ’25’) were excluded from the dataset.

Figure 4.1: Total number of accidents per year
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Figure 4.2: The number of fatal accidents per year
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4.1.1 Explanatory variables constructed from the police re-

port

Based on the report provided by the police the different dummy variables for
non-aggregated dataset were constructed.

Using the type of an road accident the following variables were created:

• Crash_into_solid_obstacle is equal to one if the driver crashed a solid
barrier and zero if otherwise.
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Using the condition on the road surface and cause of the accident, the
variables below were created:

• Cause_damaged_road is equal to one if the cause of the accident was a
bad road and zero if otherwise.

• Cause_car_defect is equal to one if the cause of the accident was a
technical failure of the car and zero if otherwise.

• Good_road_surface is equal to one if the road surface is dry and clean
and zero if it is wet, muddy, there is snow, ice, sand, oil spilled or other
external conditions endangering the driver.

Using the data regarding the drug and alcohol influence from the police
report the variable Cause_intoxication will be constructed.

• Cause_intoxication which is equal to one if the drugs or alcohol were
involved and zero if otherwise.

The police report contains detailed information on the level of individual
accidents. The number of slightly, seriously, and fatally injured casualties is
provided for each accident. In order to receive the hourly accidents counts
the data of individual accidents was aggregated. The following variables were
obtained:

• total accidents per hour,

• the number of slightly injured accidents per hour,

• the number of seriously injured accidents per hour,

• the number of fatal accidents per hour,

The summary statistics for all type of accidents are presented in the Ta-
ble 4.1. Taking into account the fact that the length of the day of the DST
transition in the spring is 23 hours instead of 24 hours and the length of the
day of the DST transition in the autumn is 25 hours the dataset was adjusted.
Following Smith (2016) and Bünnings & Schiele (2018), the accidents between
3-4 a.m. in the spring were counted twice and added to the proxy hour 2-3
a.m. The half of accidents during 2 a.m. in the 25 hours day transition in the
autumn was dropped because this hour occurred twice.
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Table 4.1: Summary statistics of the different type of traffic accidents
in the Czech Republic per year.

Year Total number of
accedents

Total number of
fatal accidents

Total number of
seriously

injured accidents

Total number of
slightly

injured accidents

2006 187965 853 3568 18946
2007 182736 1021 3505 19877
2008 160375 908 3403 19372
2009 74815 779 3206 18830
2010 75522 695 2584 17240
2011 75137 650 2790 17971
2012 81403 632 2729 17975
2013 84398 540 2545 17993
2014 85859 571 2518 18761
2015 93067 601 2299 19389
2016 98864 499 2346 19262
2017 103825 472 2129 19334
2018 104764 509 2221 19884
2019 106240 492 1853 18753

4.1.2 Meteorological variables

The hourly meteorological data was downloaded from the National Oceanic
and Atmospheric Administration National Oceanic and Atmospheric Adminis-
trations (NOAAs) website 1. The data measured by the meteorological station
Praha-Kbely was used for this study. The Czech Republic is not too wide ge-
ographically stretched, therefore we assume that the meteorological conditions
are not much distinguished between different regions thus the meteorological
data from the station Praha-Kbely can be used as an average meteorological
data for the whole country. The data contains the observations of the air tem-
perature, wind speed rate, sky condition observations, precipitations and much
other information. All of the times in the weather dataset are recorded in
UTC (Coordinated Universal Time) time zone. Coordinated Universal Time is
equivalent to Greenwich Mean Time therefore the time was transformed to the
CET time zone (Central European Time) which is one hour ahead of Greenwich
Mean Time (GMT) during the winter period (starting from the last Sunday of
October till the last Sunday of March) and two hours ahead of GMT during the

1NOAA National Centers for Environmental Information: Global Surface Hourly [station
ID 11567099999]. https://gis.ncdc.noaa.gov/maps/ncei/cdo/hourly
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summer period (starting from the last Sunday of March till the last Sunday of
October).

In some cases, there was more than one element at the same observa-
tion time, therefore the duplicates were removed. The precipitation was often
recorded for multiple hour periods instead of one hour. If the precipitation was
missed for the previous hours, the aggregate value of precipitation was split.
The missing values of the meteorological data were linearly interpolated.

Using the meteorological data and following Bünnings & Schiele (2018) and
Huang & Levinson (2010) the dummy variables were constructed:

• Temperature_less_zero, which is equal to one if the air temperature is
less than zero degrees Celsius and zero otherwise,

• Temperature_less_five, which is equal to one if the air temperature is
more than zero degrees Celsius and less than five degrees Celsius and zero
otherwise,

• Temperature_less_ten, which is equal to one if the air temperature is
more than five degrees Celsius and less than ten degrees Celsius and zero
otherwise,

• Temperature_less_fifteen which is equal to one if the air temperature
is more than ten degrees Celsius and less than fifteen degrees Celsius and
zero otherwise,

Using the present weather observation from the meteorological data which
describe the weather conditions at the time of the observation, the additional
dummy variables fog, mist, rain, drizzle and snow were created. The men-
tioned variables are equal to one if the atmospheric condition was reported and
zero otherwise.

4.1.3 Dark

The daylight length can have a significant impact on the road accidents there-
fore the variable relating to the light has to be constructed. Huang & Levinson
(2010) in their research calculated the daylight length as the period of time in
hours between the rising and setting of the sun. It is known that the darkness
does not come immediately after sunset. There is a period of time before sun-
rise and after sunset in which the atmosphere is partially illuminated by the
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sun and the artificial light is not needed. Based on Sun’s position astronomers
define three stages of twilight - civil, nautical, and astronomical which follow
each other2.

Civil twilight occurs when the geometric center of the sun is six degrees
below the horizon. Morning civil twilight (civil dawn) begins when the sun is
six degrees below the horizon in the morning and ends at sunrise. Similarly,
evening civil twilight (civil dusk) starts at sunset and ends when the sun is
six degrees below the horizon in the evening. Civil twilight is the brightest
form of twilight. In many cases, except such weather conditions as fog or other
restrictions, the human eye is sufficient to distinguish the objects and artificial
lighting is not needed.

Nautical twilight occurs in the morning and the evening when the geometric
center of the sun is between six and twelve degrees below the horizon. During
this period of time the horizon is still visible but the artificial lighting is needed
for detailed outdoor activities.

Astronomical twilight occurs in the morning and the evening, when the
geometric center of the sun is eighteen degrees below the horizon. During the
astronomical twilight, the horizon is not visible, and most casual observers
would consider the sky as fully dark.

Following the Bünnings & Schiele (2018) the variable dark based on the
onset and offset of morning and evening twilight was constructed. Taking
into account the fact that the Czech Republic is not too wide geographically
stretched and has the same time on the whole territory, the geographical co-
ordinates (longitude and latitude) of Praha-Kbely were used to obtain the
information regarding the exact time of starting and ending of civil twilight on
the day d for the year t. The exact time of the transition into (out of) civil
twilight was calculated using the package ’Suncalc’ in the software R.

darkhdt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if h < hour(bdt) or h > hour(edt)

min(bdt)/60 if h = hour(bdt)

(60 − min(edt))/60 if h = hour(edt)

0 if h > hour(bdt) and h < hour(edt)

where
2https://www.weather.gov/fsd/twilight
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• hour(bdt) indicates the hour of day when civil twilight begins in the morn-
ing on day d for year t.

• hour(edt) indicates the hour of day when civil twilight ends in the evening
on day d for year t.

• min(bdt) indicates the minute of civil twilight transition in the morning.

• min(edt) indicates the minute of civil twilight transition in the evening.

The treatment variable dark takes on the value zero if the hour of obser-
vation is after the hour of the transition when the civil twilight starts in the
morning and before the hour of the transition when the civil twilight ends in
the evening, in other words, when the amount of light is sufficient to distinguish
the objects. It takes on the value one if the hour of the observation is before the
the hour of the transition between nautical and civil twilight in the morning
and after the hour of the transition between civil and nautical twilight in the
evening. If the hour of observation is equal to the hour of transition from or
into the civil twilight, the variable darkhdt is equal to the values between zero
and one and indicates the fraction of the darkness. The exact value of darkhdt

depends on the exact time (minutes) of the transition. If the transition into the
darkness is at the beginning of the hour of observation then darkhdt will take
the value closed to one and correspondingly, if the transition into the darkness
is at the end of the hour of observation, then darkhdtwill take the value closed
to zero. Accordingly, if the transition out of the darkness is at the beginning
of the hour of observation, then darkhdt will take the value closed to zero and
if the transition into the darkness is at the end of the hour of observation, then
darkhdtwill take the value closed to one.

4.1.4 Daylight Saving Time

DST is a dummy variable that is equal to one if the observation belongs to
the period of time when the daylight saving policy was implemented. The
transition of DST is characterized by the rule: to put clocks forward one hour
in the last Sunday of March and then change them back to the Standard Time
in the last Sunday of October. The transition into (out of)DST takes place at 2
a.m. in the morning therefore the variable DST switches the value from zero to
one (or one to zero) at 2 a.m. on the day of transition for the hourly dataset.
The dates of transition the Daylight Saving Time are presented in Table A.1
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4.1.5 Holidays

The number of traffic accidents can be changed during the National holidays at
least because the traffic volume can be shifted. The dummy variable holiday

was created to capture the potential effect on the accidents. The variable is
equal to one if the day of observation is a national holiday and zero if otherwise.

The main aim of this study is to examine the impact of daylight saving time
on traffic accidents in the short run and long run period. The short run period
is mostly estimated by the amount of the accidents during the one week before
and after transition (Lahti et al. (2010), Coren (1996)) or Mondays before,
Mondays of and Mondays after the transition (Sood & Ghosh (2007), Crawley
(2012)). The long run period is mostly estimated by the number of accidents
during the range of 8 - 13 weeks. Following Huang & Levinson (2010) the
subset of eight weeks before and after the DST transition will be used for long
run period.

The descriptive statistics for the outcome variables and some of control
variables for the subsample of eight weeks before and after the DST transition
in spring period starting from 2009 are presented in Table 4.2. The descriptive
statistics for the DST transition in the autumn period are presented in Table
4.3

4.2 Estimation

The Negative Binomial Regression Model will be used to obtain the effect of
DST in the long-run period.

4.2.1 Generalized Linear Model

The one of the main assumptions which can have influences on the number of
the traffic accidents is the light conditions therefore the effect of darkness on
accidents counts will be investigated.

Following Bünnings & Schiele (2018), we estimate the regressions based on
the following equations:

accidentshdwy =f(β0 + β1darkhdwy + αh + γd + δw + λy + ϵhdwy) (4.1)
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Table 4.2: Descriptive statistics of traffic incidents and fatal crashes
for hourly data during the eight weeks before and after the spring
DST transition for the period of time starting from 2009

Variable Mean St.dev. Min Max

Dependent variables
All accidents 8.493 6.106 0 62
Fatal accidents 0.053 0.229 0 3
Serious accidents 0.244 0.532 0 8
Slight accidents 1.813 1.954 0 17
Crash into solid obstacle 1.855 1.751 0 24
Cause damaged road 0.038 0.200 0 3
Cause car defect 0.049 0.229 0 3
Cause intoxication 0.507 0.784 0 6
Darkness:
Dark proportion of the hour 0.427 0.480 0 1
Weather:
Temperature (◦C) <0 0.162 0.369 0 1
0<Temperature (◦C) < 5 0.236 0.425 0 1
5 <= Temperature (◦C)<10 0.270 0.444 0 1
10 <= Temperature (◦C)<15 0.200 0.400 0 1
Positive precipitation 0.086 0.281 0 1
Mist 0.105 0.307 0 1
Fog 0.005 0.073 0 1
Drizzle 0.003 0.055 0 1
Rain 0.070 0.255 0 1
Snow 0.027 0.161 0 1
Relative humidity 72.62 17.589 17 100
Sea level pressure (hectopascals) 1016 10.546 960 1047
DST 0.504 0.500 0 1
Holiday 0.030 0.170 0 1
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Table 4.3: Descriptive statistics of traffic incidents and fatal crashes
for hourly data during the eight weeks before and after the autumn
DST transition for the period of time starting from 2009

Variable Mean St.dev. Min Max

Dependent variables
All accidents 9.914 6.926 0 54
Fatal accidents 0.074 0.274 0 3
Serious accidents 0.274 0.563 0 5
Slight accidents 2.209 2.205 0 17
Crash into solid obstacle 2.157 1.878 0 19
Cause damaged road 0.032 0.191 0 6
Cause car defect 0.051 0.232 0 5
Cause intoxication 0.574 0.831 0 7
Good road surface 6.558 5.910 0 36
Darkness:
Dark proportion of the hour 0.525 0.486 0 1
Weather:
Temperature (◦C) <0 0.102 0.302 0 1
0<Temperature (◦C) < 5 0.217 0.413 0 1
5 <= Temperature (◦C)<10 0.296 0.456 0 1
10 <= Temperature (◦C)<15 0.231 0.421 0 1
Positive precipitation 0.091 0.287 0 1
Mist 0.151 0.358 0 1
Fog 0.038 0.192 0 1
Drizzle 0.009 0.093 0 1
Rain 0.087 0.282 0 1
Snow 0.019 0.136 0 1
Relative humidity 82.61 14.609 22 105
Sea level pressure (hectopascals) 1018 8.854 975 1041
DST 0.496 0.500 0 1
Holiday 0.032 0.179 0 1
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Adding the weather and explanatory variables we estimate

accidentshdwy =f(β0 + β1darkhdwy + β2holidaydwy +

+ β3TMP_less_0hdwy + β4TMP_less_5hdwy +

+ β5TMP_less_10hdwy + β6TMP_less_15hdwy +

+ β7misthdwy + β8foghdwy +

+ β9drizzlehdwy + β10rainhdwy + β11snowhdwy +

+ β12precipitationhdwy + β13RHhdwy + β14SLP hdwy +

+ β15cause_intoxicationhdwy +

+ β16cause_damaged_roadhdwy +

+ β17cause_car_defecthdwy +

+ β18cause_solid_obstaclehdwy +

+ αh + γd + δw + λy + ϵhdwy)

(4.2)

where

• accidentshdwy is the number of the accidents of the certain type during
the hour h, day of week d, week of year w and year y.

• darkhdwy is the dark share in hour h, day d, week w and year t.

• holidaydwy is a dummy variable which is equal to one if the day is a bank
holiday and zero otherwise.

• TMP_less_ is a dummy variable which is equal to one if the temperature
is less than indicated value and more the indicated value minus five.

• misthdwy, foghdwy, drizzlehdwy, rainhdwy, snowhdwy are dummy variables
which are equal to one if the natural phenomena were indicated.

• precipitationhdwy is equal to one if the precipitation are positive.

• RHhdwy is a relative humidity.

• SLP hdwy is a sea level pressure.

• cause_intoxicationhdwy is a number of accidents caused by driver’s in-
toxication.
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• cause_damaged_roadhdwy is a number of accidents caused by damaged
road.

• cause_car_defecthdwy is a number of accidents caused by the defect of
the car.

• cause_solid_obstaclehdwy is a number of accidents caused by the crash
by solid obstacle

• αh is a hour of the day.

• γd is a day of week.

• δw is a week of year.

• λy is a year.

• ϵhdwy is an error term.

The parameter β1 is the parameter of interest which gives the impact of
darkness on the number of the accidents during the hour. We assume that
the variable dark is exogenous, the number of accidents and dark are unevenly
distributed during the hour.

The Equations 4.1 and 4.2 were estimated for total accidents per hor,
slightly injured accidents, seriously injured accidents and fatal accidents.

4.2.2 Regression Discontinuity Design

The Regression Discontinuity Design exploits the discrete change from Stan-
dard Time to Daylight Saving Time in spring and from DST to Standard Time
in autumn (Smith (2016), Bünnings & Schiele (2018)). The approach is based
on the intuition that if there is a significant impact of DST on traffic crashes,
there should be a shock (sharp increase or decrease) in the number of accidents
around the transition date. Measuring the discontinuity at the transition allows
us to estimate the immediate impact of the DST policy. The general estimation
equation is the following:

ln accidentsdy =β0 + β1 · DSTdy + f(DaysToTrandy) +

+ f(DSTdy × DaysToTrandy) + ϵdy

(4.3)

where:
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• accidentsdy is the total number of different types of accidents at the day
d and year y. Following Smith (2016) and Bünnings & Schiele (2018), the
residuals from a regression of logged daily total numbers of accidents on
day of the week and year fixed effects as dependent variables were used
to avoid the persistent day-of-week effects and long-term time trends.

• DSTdy is a dummy variable which is equal to one for the day d in a year
y after the DST transition.

• DaysToTrandy is the running variable which measures the time in days
before and after DST transition (either in spring or in autumn). The
variable is centered at the transition date in each year.

• ϵdy is an error term.

• β1 is a coefficient of interest which gives the aggregate effect of the tran-
sition into or out of DST on accident counts.

The interaction DSTdy × DaysToTrandy is included based on the fact that
the treatment can impact not only the intercept, but also the slope of the
regression line, the slope can vary at both sides of the cut-off (Jacob et al.
(2012)).

It is required for β1 to be consistently estimated, ln accidents and all other
factors which can affect the accidents risk besides DST should be continuous
at the transition date. If this assumptions holds, the Regression Discontinuity
design will provide a consistent estimate of the short- run effect of DST on
road safety. The numbers of days to be used at both sides of the cut-off, will
be chosen by mean squared error optimal bandwidth selectors.

Based on the type of accidents, the following equations were estimated:

ln (total accidents)dy =β0 + β1 · DSTdy + f(DaysToTrandy) +

+ f(DSTdy × DaysToTrandy) + ϵdy

(4.4)

ln (slightly injured accidents)dy =β0 + β1 · DSTdy + f(DaysToTrandy) +

+ f(DSTdy × DaysToTrandy) + ϵdy

(4.5)
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Due to the fact that the number of fatal and seriously injured accidents was
equal to zero for some of days, the two different types of the transformation
were used: log-transformation with adding a small constant and square-root
transformation.

ln (seriously injured accidents + 0.45)dy =β0 + β1 · DSTdy + f(DaysToTrandy) +

+ f(DSTdy × DaysToTrandy) + ϵdy

(4.6)

ln (fata accidents + 0.45)dy =β0 + β1 · DSTdy + f(DaysToTrandy) +

+ f(DSTdy × DaysToTrandy) + ϵdy

(4.7)

sqrt(seriously injured accidents)dy =β0 + β1 · DSTdy + f(DaysToTrandy) +

+ f(DSTdy × DaysToTrandy) + ϵdy

(4.8)

sqrt(fatal accidents)dy =β0 + β1 · DSTdy + f(DaysToTrandy) +

+ f(DSTdy × DaysToTrandy) + ϵdy

(4.9)

The Regression Discontinuity Design provides casual estimates of the effect
of DST transition on the road accidents. The estimates is valid very locally,
just a few days from and after the day of the transition (short-run period).



Chapter 5

Results

In this section we confirm the validation on statistical assumptions, interpret
the models estimates and discuss the obtained results.

5.1 Validation of assumptions

5.1.1 Stationarity

The stationary is an important statistical assumption in the analysis of time
series. The mean, variance and autocorrelation structure are stable over time
for the stationary time series process.

We have tested the stationarity of the series including into the model speci-
fications using the Augmented Dickey-Fuller (ADF) test and the Phillips-Perron
test (PP).

The Augmented Dickey-Fuller test (ADF) tests the null hypothesis that a
unit root is present in a time series sample (data series are not stationary). The
alternative hypothesis is that the data is stationary. To confirm the results, we
did the Phillips-Perron test (PP) which is an alternative to ADF and it is robust
to the unspecified autocorrelation and heteroscedasticity. The null hypothesis
of PP test is the same as ADF test. The p-value is less than 0.01 for all series,
so we can reject the null hypothesis that data are not stationary and accept
the alternative hypothesis that data are stationary. The results of both tests
are present in the table A.2.
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5.1.2 Heteroscedasticity

The homoscedasticity assumption means that the variance of structural error
cannot depend on any of the explanatory variables (Wooldridge (2013)). This
assumption is a key assumption for OLS regression. Generalized linear models
(GLM) like Poisson regression or Negative binomial regression do not fulfill it
because there is no assumption of constant variance. We consider that the
variance is equal to the mean for the Poisson regression model and the vari-
ance is greater than the mean for the Negative binomial regression model. The
overdispersion / underdispersion should be checked in GLM. Heteroscedasticity
in Poisson or the Negative binomial model can mean that the level of overdis-
persion / underdispersion depends on another parameter.

5.1.3 Autocorrelation

Autocorrelation (serial correlation) is a characteristic of data which shows the
degree of similarity between the values of the same variables across time. We
have tested the serial correlation of residuals using Durbin-Watson test. The
test uses the null hypothesis that there is no correlation between residuals and
the alternative hypothesis that the residuals are autocorrelated. We did not
obtain the p − value less than 0.05 therefore we can consider that our models
do not have the serial correlation.

5.1.4 Overdispersion

Overdispersion in count models describes the observation that the variation
is larger than the mean. Different distributions are used in order to fix the
overdispersion issue. The possible solutions are the Quasi-Poisson model or
the Negative binomial regression model.

The simple test of overdispersion is the following :

H0 : V ar[yi] = E[yi]

Ha : V ar[yi] = E[yi] + αg(E[yi])

If the p − value is less than 0.05 we reject the hypothesis of equidispersion.
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5.2 Generalized Linear Models

To estimate the impact of DST in the long-run period, the eight weeks from both
sides of the spring and autumn transition were chosen. Due to the fact that we
have a count data, we have to check what type of generalized linear model will
be appropriate for the model evaluation. All the data have been divided by
two periods, spring and autumn, and five types of accidents: number of fatal
accidents per hour, number of seriously injured accidents per hour, number of
slightly injured accidents per hour and number of total accidents per hour.

Due to the fact that fatal crashes should be always reported to the police,
we operate with all available observations during 2006-2019 years. Other types
of accidents are tested starting from the 2009 year.

To find the impact of the variable dark, we have tested the two types of
regression models, the simple model without weather variables and the model
with the weather and constructed explanatory variables. We have estimated
every model using the Poisson regression model, the Quasi-Poisson regression
model and the Negative binomial regression model. Due to the fact that our
dataset contains a lot of zeros in the response variables we have checked the
Zero-inflated regression model but this model was not well fitted to our data.
The model with the smallest Akaike information criterion AIC was considered
as the best-fitted model. The full results of the estimated models for the spring
and autumn periods are present in Appendix.

The descriptive statistics of dependent variables in the spring and autumn
periods are present in Table 5.1 and Table 5.2.

Table 5.1: Descriptive statistics for number of accidents in the spring
period

Variable Min 1st Q. Median Mean 3rd Q. Max St. Dev. Var
# fatal 0.00 0.00 0.00 0.061 0.00 4.00 0.249 0.062
# serious 0.00 0.00 0.00 0.244 0.00 8.00 0.532 0.283
# slightly 0.00 0.00 1.00 1.813 3.00 17.00 1.954 3.818
# total 0.00 4.00 7.00 8.493 12.00 62.00 6.106 37.29

5.2.1 Regression results in the spring period

The densities of the fatal, seriously injured, slightly injured and total accidents
in the spring period are illustrated in the Figures 5.1 - 5.4.
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Table 5.2: Descriptive statistics of number of accidents in autumn
period.

Variable Min 1st Q. Median Mean 3rd Q. Max St. Dev. Var
# fatal 0.00 0.00 0.00 0.083 0.00 3.00 0.292 0.085
# serious 0.00 0.00 0.00 0.274 0.00 5.00 0.563 0.317
# slightly 0.00 0.00 2.00 2.209 3.00 17.00 2.206 4.864
# total 0.00 4.00 9.00 9.914 15.00 54.00 6.927 47.98

The results of our main analysis are presented in the Table 5.3. The first
column gives the results of the model without the weather variables. The
second column provides us the outcome of the model with additional weather
and explanatory variables. The model with the weather variables presents the
results with the preferred specification. The results of the estimation of the
variable dark are significant with the large negative effect for both models, the
number of the observations is the same therefore we can suggest that results
are robust to the adding of the weather and explanatory variables.

The effect of darkness increases the number of fatal accidents for a given
hour by 61.6 percent, the number of the seriously injured accidents by 31 per-
cent, the slightly injured accidents by 15.6 percent. According to the obtained
results, the darkness not only increases the number of crashes but also increases
their severity. The total number of traffic accidents per hour is increased by 20.3
percent. The obtained results have the similar behavior of the dark variable
with the results obtained by Bünnings & Schiele (2018).

Following Bünnings & Schiele (2018) we estimate how many accidents have
been caused by darkness for our dataset under the current regime GMT/DST,
under the hypothetical situation when the all hours are light, under the all-year
GMT regime and under the all-year DST regime. In order to find the number
of predicted accidents under the all-year DST and GMT regime, we determine
sunrise and sunset times for this situation. We add one hour to the sunrise and
sunset time under the GMT regime to obtain the all-year DST and accordingly
subtract one hour from the sunrise and sunset time under the DST regime to
get all-year GMT time. After deriving the new time for sunrise and sunset, we
adjust the variable dark and then predict the number of accidents using the
estimation results of our model.

The Table 5.4 presents the total accident counts by different time regime.
The column Observed gives the observed number of accidents, the second col-
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Figure 5.1: The density of
fatal accidents.
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Figure 5.2: The density of
seriously injured accidents.

Histogram of slightly injured accidents
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Figure 5.3: The density of
slightly injured accidents.

Histogram of total accidents
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Figure 5.4: The density of
total accidents.

umn GMT/DST presents the predicted number of accidents under the current
regime with spring and autumn time transition, the third column All hours
light presents the predicted number of accidents in the hypothetical situation
when all hours are light, the column GMT presents the predicted number of
accidents under all-year GMT regime and column DST under all-year DST
regime.

The difference between predicted values and hypothetical situations when
all hours are light gives the effect of the darkness. According to our results,
282 of fatal, 331 seriously injured, 1250 slightly injured and 10049 total traffic
accidents have been caused by darkness in the period of 8 weeks from both side
of the spring time transition during the 2006-2019 years for fatal accidents and
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2009-2019 for the other types of accidents. Moreover, there are 13 less fatal
accidents, 21 less serious injured accidents, 54 less slightly injured accidents and
546 less total accidents under all-year DST regime than under all-year GMT
regime.

Table 5.3: The estimation of the darkness in the spring period.

Model without Model with
weather variables weather variables

Coef. S.E. IRR Coef. S.E. IRR
dark

# fatal 0.448∗∗∗ (0.069) 1.565 0.482∗∗∗ (0.117) 1.616
# serious 0.207∗∗∗ (0.069) 1.230 0.270∗∗∗ (0.069) 1.310
# slight 0.099∗∗∗ (0.029) 1.104 0.145∗∗∗ (0.027) 1.156
# total 0.165∗∗∗ (0.015) 1.179 0.184∗∗∗ (0.014) 1.203

Obs. fatal 37,968 37,968
Obs. others 29,832 29,832

Table 5.4: Total accident counts by different Time Regime, spring
period.

Observed GMT/DST All hours light GMT DST
Fatal with weather 2308 2308 2026 2320 2307
Serious with weather 7275 7278 6947 7301 7280
Slight with weather 54074 54164 52914 54236 54182
Total with weather 253367 253871 243822 253871 253325

5.2.2 Regression results in the autumn period

The densities of the fatal, seriously injured, slightly injured and total accidents
in the autumn period are illustrated on the Figures 5.5 - 5.8.

The results of the estimation of the dark variable in the autumn period are
presented in the Table 5.5. The same as in the spring period, the results of
the estimation are significant with the large negative effect for both models,
without weather variables and including the weather variables.

The effect of darkness increases the number of fatal accidents for a given
hour by 88.5 percent, the number of the seriously injured accidents by 37.1 per-
cent, the slightly injured accidents by 23.2 percent. According to the obtained
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Figure 5.5: The density of
fatal accidents.
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Figure 5.6: The density of
seriously injured accidents.

Histogram of slightly injured accidents
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Figure 5.7: The density of
slightly injured accidents.
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Figure 5.8: The density of
total accidents.

results, the darkness not only increases the number of crashes but also increases
their severity. The total number of traffic accidents per hour is increased by
32.6 percent. We can notice that the negative impact of darkness is larger in
the autumn period when the length of the day becoming smaller.

In order to estimate the impact of darkness and compare it with the different
time regimes in the autumn period we implement the same simulation as in
the spring period.

The Table 5.6 presents the total accident counts by different time regime.
Based on obtained results, 689 of fatal, 707 of seriously injured, 3600 of slightly
injured and 24839 of total traffic accidents have been caused by darkness in the
period of 8 weeks from both side of the time transition during the 2006-2019
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Table 5.5: The estimation of the darkness in the autumn period.

Model without Model with
weather variables weather variables

Coef. S.E. IRR Coef. S.E. IRR
dark

# fatal 0.611∗∗∗ (0.096) 1.843 0.634∗∗∗ (0.097) 1.885
# serious 0.298∗∗∗ (0.060) 1.347 0.316∗∗∗ (0.060) 1.371
# slight 0.182∗∗∗ (0.024) 1.200 0.209∗∗∗ (0.023) 1.232
# total 0.283∗∗∗ (0.024) 1.327 0.282∗∗∗ (0.013) 1.326

Obs. fatal 37,968 37,968
Obs. others 29,832 29,832

years for fatal accidents and 2009-2019 for the other types of accidents. We
estimate that there are 21 less fatal accidents, 48 less serious injured accidents,
169 less slightly injured accidents and 1202 less total accidents under all-year
DST regime than under all-year GMT regime.

Table 5.6: Total accident counts by different Time Regime, autumn
period.

Observed GMT/DST All hours light GMT DST
Fatal with weather 3158 3158 2469 3168 3147
Serious with weather 8182 8184 7477 8210 8162
Slight with weather 65890 65973 62373 66082 65913
Total with weather 295748 295703 270864 296426 295224
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5.3 Regression Discontinuity Results

Based on the assumption that the Regression Discontinuity estimates are valid
very locally, the dataset was reduced to 90 days from the both side of the
transition date.

The Figure 5.9 illustrates the estimation impact of DST on the total acci-
dents in the Czech Republic starting from 2009. The average residuals from a
regression of logged daily total numbers of accidents on day of the week and
year fixed effects as dependent variables are plotted centered by the transition
date in the spring and the fall period. If DST has an impact on the number
of total accidents there should be a shock right at the transition date. The
spring transition is associated with 7.1% increase in the total accidents. The
estimation results are provided in the Table 5.7 for the transition from the ST

to the DST in the spring period, where the time is forwarded for one hour ahead
and the day has only 23 hours. The Table A.3 illustrates the results for the fall
transition, when the hour is forwarded back and the transition date contains
25 hours.

((a)) Spring transition ((b)) Fall transition

Figure 5.9: Residuals plot of the total number of accidents.

The average residuals generated by the regression of logged daily
accident counts on day of the week and year fixed effects as dependent
variable.

The first-order polynomial and two different types of kernel functions were
used for the estimation. According to Cattaneo et al. (2020) the triangular
kernel function is preferred but in the same time, the estimation and infer-
ence results are not very sensitive to the choice of kernel. The uniform kernel
function is widespread in the practice therefore the two functions were used to
compare the results. Also the two different types were used for the bandwidth
selection. The MSE option one imposes the same bandwidth h on the both side
of the cutoff. The MSE option two is the optimal bandwidth selector that can
be different on the each side of the cutoff.
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Taking into account that the number of fatal and seriously injured accidents
were equal to zero for some observations, the log-transformation with adding
of the small constant and square-root transformation were used instead of log-
transformation. Comparing the results on the Figure A.3 and Figure A.4 there
is no significant changes for seriously injured accidents and fatal accidents,
which results are presented in the Figure A.1 and the Figure A.2. Despite the
fact that the rules for the registering the road accidents were change in the
beginning of 2009, we assume that the fatal crashes have to be reported in any
case therefore the fatal crashes were estimated starting from 2006.

Based on the results provided in Table A.3 there is no clear evidence that
the transition out of the DST increases the number of all types of accidents,
all estimates are not significant. Looking at the Table 5.7 which represents
the results from the spring transition, there are two significant estimations at
the significance level 5%, thus the spring transition into DST is associated with
a 7.1% increase in the total accidents and 12.4% increase in slightly injured
accidents. Other choices of kernel function and bandwidth selection are not
significant for the number of slightly injured accidents, the impact of the DST

transition is also not visible on Figure 5.10 therefore this estimation could be
obtained due to inconsistency or the random error.

Figure 5.10: Residuals plot of the slightly injured number of acci-
dents.

((a)) Spring Transition. ((b)) Fall Transition.

The average residuals generated by the regression of logged daily
accident counts on day of the week and year fixed effects as dependent
variable

Taking into account that the real dataset was adjusted by adding a proxy
hour and due to the fact that the estimator for the total number of the accidents
during the spring time transition is also significant at 10% level for triangular
kernel function and MSE option two, following Smith (2016), the two different
adjustment of the dataset were made. Instead of counting two times the number
of accidents at 3-4 a.m., the total number of accidents at the transition date was
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multiplied by 24/23. The results for this adjustment is present in the Table 5.8
and on the Figure 5.11. The second adjustment is to throw out the transition
date. The result are in the Table 5.9 and on the Figure 5.12. The same logic was
implemented for slightly injured accidents. The result of 24/23 adjustment is
present in the Table A.4 and on the Figure A.5, due to insignificance we cannot
consider the result of this estimation. The result of drop out the date of the
transition is present in the Table A.5 and on the Figure A.6. We obtained the
significant impact of DST based on the estimation for the 24/23 adjustment
model. We will not consider this result because it can be due to the presence
of the random error in the dataset.

Figure 5.11: Residuals plot of the total number of accidents with the
adjustment 24/23 at the transition date.

.

Figure 5.12: Residuals plot of the total number of accidents without
the accidents at the transition date.

.

Taking into account that impact of DST in the spring transition was signifi-
cant for three different adjustments of the dataset, we can make an assumption
that the transition to the DST can increase the number of total accidents per
day in the short-run period.
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Table 5.7: Regression Discontinuity estimates of DST transition.

Spring Transition
Bandwidth selector one two
Kernel Uniform Triangular Uniform Triangular
ln all accidents 0.028 0.071 0.016 0.059
st. error 0.028 0.036 0.026 0.034
Obs. 451 363 539 551
p-value 0.329 0.047∗∗ 0.542 0.079∗

ln slightly injured accidents 0.052 0.124 0.059 0.066
st. error 0.054 0.063 0.051 0.058
Obs. 363 341 440 550
p-value 0.342 0.048∗∗ 0.244 0.252
ln seriously injured accidents 0.058 0.052 0.057 0.048
st. error 0.094 0.096 0.095 0.094
Obs. 583 715 572 759
p-value 0.536 0.587 0.548 0.609
ln fatal accidents -0.173 -0.168 -0.169 -0.174
st. error 0.158 0.142 0.137 0.136
Obs. 350 518 476 588
p-value 0.274 0.237 0.215 0.203
sqrt seriously injured accidents 0.086 0.081 0.086 0.071
st. error 0.110 0.113 0.110 0.109
Obs. 561 693 581 737
p-value 0.432 0.473 0.432 0.512
sqrt fatal accidents -0.143 -0.143 -0.143 -0.150
st. error 0.134 0.121 0.116 0.117
Obs. 350 518 476 588
p-value 0.286 0.237 0.218 0.197
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Table 5.8: Regression Discontinuity estimates of DST transition for
the total number of accidents, 24/23 adjustment.

Spring Transition
Bandwidth selector one two
Kernel Uniform Triangular Uniform Triangular
ln all accidents 0.030 0.075 0.020 0.065
st. error 0.028 0.036 0.027 0.034
Obs. 451 363 517 429
p-value 0.282 0.036∗∗ 0.459 0.056∗∗

Table 5.9: Regression Discontinuity estimates of DST transition for
the total number of accidents without the accidents at the transition
date.

Spring Transition
Bandwidth selector one two
Kernel Uniform Triangular Uniform Triangular
ln all accidents 0.023 0.073 0.015 0.051
st. error 0.031 0.039 0.027 0.034
Obs. 418 352 528 551
p-value 0.465 0.060∗ 0.568 0.133



Chapter 6

Conclusion

Many countries use the Daily Saving Time (DST) in order to save energy and
to improve the matching of daylight hours with the people’s activities. The
continuous debates regarding the efficiency of DST policy lead to the further
investigation and contradictory results in this field.

This thesis aimed to determine the effect of DST policy on traffic safety in
the Czech Republic and contribute to the existing literature on this topic. All
previous studies can be divided into three groups. One group focuses only on
sleep disruption, the second group focuses on the impact of ambient light and
the third group focuses on the impact of both, sleep disruption, and ambient
light. Following the discussion on the effect of transition into and out of DST,
we divided our hypotheses for two periods of time - short run period and long
run period. The effect of DST policy in the short run period was estimated by
the Regression Discontinuity Design. The approach was based on the intuition
that if there is a significant impact of DST there should be a shock around the
transition date. The long run period was estimated by the Poisson regression
model and the Negative Binomial regression model. In the long run period,
we estimated how darkness affects the number of traffic accidents and then the
estimates were used to simulate the impact of darkness under the different time
regimes.

We find that the transition from standard time to DST can increase the to-
tal number of accidents per day by 7.1 percent in the short run period. We find
that darkness has a significant impact on traffic safety in the long run period.
We notice that the negative impact of darkness is larger in the autumn period
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than the length of day is small. The darkness caused 282 fatal, 331 seriously
injured, 1250 slightly injured and 10049 total traffic accidents in the period 8
weeks from both sides of spring transition during 2009-2019. The change to
the all-year DST regime could decrease the number of crashes by 13 for fatal
accidents, by 21 for seriously injured accidents, by 54 for slightly injured ac-
cidents and by 546 for total accidents during 2009-2019 (2006 - 2019 for fatal
crashes).

The number of accidents caused by darkness in the autumn period is al-
most three times higher than in the spring period and equal to 689 fatal, 707
seriously injured, 3600 slightly injured and 24839 total traffic accidents. We
estimate that there are 21 fewer fatal accidents, 48 fewer serious injured acci-
dents, 169 fewer slightly injured accidents and 1202 fewer total accidents under
all-year DST regime than under all-year GMT regime in the period 8 weeks
from both sides of autumn transition during 2009-2019 (2006 - 2019 for fatal
crashes).

The findings of this study can be used in further researches and the results
can be compared. The estimated model might be improved by including such
explanatory variables as a volume of road traffic, price of gasoline. The future
researcher might consider the full dataset without limitation to the spring and
autumn period.
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Appendix A

Title of Appendix A

A.1 Supplementary tables

Table A.1: Dates of Daylight Saving Time in the Czech Republic

Year Spring(DSTbegins) Autumn(DSTends)
2006 26/03 29/10
2007 25/03 28/10
2008 30/03 26/10
2009 29/03 25/10
2010 28/03 31/10
2011 27/03 30/10
2012 25/03 28/10
2013 31/03 27/10
2014 30/03 26/10
2015 29/03 25/10
2016 27/03 30/10
2017 26/03 29/10
2018 25/03 28/10
2019 31/03 27/10
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Table A.2: Stationarity assumption. Result of Augmented Dickey-
Fuller test and Philips-Perron test test.

Augmented Phillips-Perron
Dickey-Fuller test test

Variable Dickey-Fuller p-value Dickey-Fuller p-value
Z(alpha)

Number of -31.762 0.01 -38190 0.01
fatal accidents
Number of seriously -26.257 0.01 -36702 0.01
injured accidents
Number of slightly -24.396 0.01 -18992 0.01
injured accidents
Number of total -16.489 0.01 -5374.9 0.01
accidents
Pedestrian crashes -24.799 0.01 -23133 0.01
Dark -4.5954 0.01 -2688.7 0.01
Relative Humidity -20.225 0.01 -1771.2 0.01
Sea Level Pressure -12.64 0.01 -313.63 0.01
Precipitation -27.907 0.01 -26044 0.01
cause intoxication -23.19 0.01 -35664 0.01
cause car defect -28.42 0.01 -29385 0.01
cause damaged road -30.63 0.01 -30020 0.01
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A.2 RDD

Figure A.1: Residuals plot of the fatal accidents, log transformation.

((a)) Spring Transition. ((b)) Fall Transition.

The average residuals generated by the regression of logged daily
accident counts with a small constant on day of the week and year
fixed effects as dependent variable

Figure A.2: Residuals plot for the fatal accidents, square-root trans-
formation.

((a)) Spring Transition. ((b)) Fall Transition.

The average residuals generated by the regression of square-root
transformation of daily accident counts on day of the week and year
fixed effects as dependent variable
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Table A.3: Regression Discontinuity estimates of DST transition in
the autumn period.

Fall Transition
Bandwidth selector one two
Kernel Uniform Triangular Uniform Triangular
ln all accidents -0.008 -0.022 -0.025 -0.024
st. error 0.049 0.052 0.045 0.050
Obs. 253 297 275 319
p-value 0.871 0.669 0.582 0.631
ln slightly injured accidents -0.047 -0.065 -0.059 -0.064
st. error 0.070 0.075 0.066 0.070
Obs. 253 299 275 330
p-value 0.505 0.387 0.370 0.355
ln seriously injured accidents -0.003 -0.028 -0.109 -0.097
st. error 0.121 0.116 0.096 0.094
Obs. 231 319 320 440
p-value 0.977 0.807 0.256 0.304
ln fatal accidents 0.017 0.046 -0.029 -0.012
st. error 0.152 0.146 0.137 0.127
Obs. 406 518 476 700
p-value 0.909 0.752 0.833 0.925
sqrt seriously injured accidents -0.066 -0.019 -0.186 -0.126
st. error 0.137 0.140 0.117 0.114
Obs. 275 319 352 451
p-value 0.632 0.894 0.112 0.269
sqrt fatal accidents 0.009 0.035 -0.028 -0.012
st. error 0.132 0.127 0.119 0.110
Obs. 406 518 476 700
p-value 0.946 0.780 0.814 0.914
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Figure A.3: Residuals plot of the seriously injured accidents, log
transformation.

((a)) Spring Transition. ((b)) Fall Transition.

The average residuals generated by the regression of logged daily
accident counts with a small constant on day of the week and year
fixed effects as dependent variable

Figure A.4: Residuals plot for the seriously injured accidents, square-
root transformation.

((a)) Spring Transition. ((b)) Fall Transition.

The average residuals generated by the regression of square-root
transformation of daily accident counts on day of the week and year
fixed effects as dependent variable

Table A.4: Regression Discontinuity estimates of DST transition for
slightly injured accidents, 24/23 adjustment.

Spring Transition
Bandwidth selector one two
Kernel Uniform Triangular Uniform Triangular
ln slightly injured accidents -1.363 -2.211 -2.073 -2.678
st. error 0.109 0.173 0.070 0.080
Obs. 121 99 220 198
p-value 0.317 0.153 0.407 0.369
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Table A.5: Regression Discontinuity estimates of DST transition for
the slightly injured accidents without the accidents at the transition
date.

Spring Transition
Bandwidth selector one two
Kernel Uniform Triangular Uniform Triangular
ln slightly injured accidents 0.062 0.122 0.058 0.055
st. error 0.057 0.069 0.057 0.061
Obs. 374 330 385 473
p-value 0.283 0.076∗ 0.309 0.369

Figure A.5: Residuals plot of the slightly injured accidents with the
adjustment 24/23 at the transition date.

.

Figure A.6: Residuals plot of the slightly injured accidents without
the accidents at the transition date.

.
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A.3 The results of GLM for fatal crashes

Table A.6: The results of regression models for fatal accidents without
weather variables in the spring period.

Dependent variable:

fatal_crashes

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

dark 0.448∗∗∗ 0.448∗∗∗ 0.448∗∗∗

(0.114) (0.114) (0.115)

hour01 0.134 0.134 0.133
(0.196) (0.196) (0.196)

hour02 0.007 0.007 0.007
(0.202) (0.202) (0.202)

hour03 0.033 0.033 0.033
(0.200) (0.200) (0.200)

hour04 0.069 0.069 0.069
(0.200) (0.200) (0.200)

hour05 0.665∗∗∗ 0.665∗∗∗ 0.664∗∗∗

(0.186) (0.186) (0.187)

hour06 1.176∗∗∗ 1.176∗∗∗ 1.177∗∗∗

(0.195) (0.195) (0.196)

hour07 1.066∗∗∗ 1.066∗∗∗ 1.067∗∗∗

(0.211) (0.211) (0.211)
Continued on next page
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Dependent variable:

fatal_crashes

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

hour08 1.141∗∗∗ 1.141∗∗∗ 1.141∗∗∗

(0.209) (0.209) (0.209)

hour09 1.089∗∗∗ 1.089∗∗∗ 1.089∗∗∗

(0.210) (0.210) (0.211)

hour10 1.229∗∗∗ 1.229∗∗∗ 1.229∗∗∗

(0.207) (0.207) (0.207)

hour11 1.067∗∗∗ 1.067∗∗∗ 1.067∗∗∗

(0.211) (0.211) (0.211)

hour12 1.110∗∗∗ 1.110∗∗∗ 1.110∗∗∗

(0.210) (0.210) (0.210)

hour13 1.446∗∗∗ 1.446∗∗∗ 1.447∗∗∗

(0.202) (0.202) (0.203)

hour14 1.619∗∗∗ 1.619∗∗∗ 1.619∗∗∗

(0.199) (0.200) (0.200)

hour15 1.580∗∗∗ 1.580∗∗∗ 1.580∗∗∗

(0.200) (0.200) (0.201)

hour16 1.431∗∗∗ 1.431∗∗∗ 1.431∗∗∗

(0.203) (0.203) (0.203)

Continued on next page
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Dependent variable:

fatal_crashes

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

hour17 1.473∗∗∗ 1.473∗∗∗ 1.472∗∗∗

(0.199) (0.199) (0.200)

hour18 1.320∗∗∗ 1.320∗∗∗ 1.319∗∗∗

(0.183) (0.183) (0.184)

hour19 1.151∗∗∗ 1.151∗∗∗ 1.151∗∗∗

(0.178) (0.178) (0.178)

hour20 0.766∗∗∗ 0.766∗∗∗ 0.765∗∗∗

(0.182) (0.182) (0.182)

hour21 0.589∗∗∗ 0.589∗∗∗ 0.589∗∗∗

(0.179) (0.179) (0.179)

hour22 0.465∗∗ 0.465∗∗ 0.465∗∗

(0.182) (0.182) (0.183)

hour23 0.235 0.235 0.235
(0.191) (0.191) (0.191)

day1 0.032 0.032 0.032
(0.080) (0.080) (0.080)

day2 0.067 0.067 0.067
(0.079) (0.079) (0.079)

day3 −0.114 −0.114 −0.114
Continued on next page
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Dependent variable:

fatal_crashes

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

(0.083) (0.083) (0.083)

day4 0.057 0.057 0.057
(0.079) (0.079) (0.079)

day5 0.177∗∗ 0.177∗∗ 0.177∗∗

(0.077) (0.077) (0.077)

day6 0.252∗∗∗ 0.252∗∗∗ 0.253∗∗∗

(0.075) (0.075) (0.076)

week6 0.080 0.080 0.080
(0.150) (0.151) (0.151)

week7 −0.086 −0.086 −0.086
(0.155) (0.155) (0.156)

week8 0.093 0.093 0.093
(0.151) (0.151) (0.151)

week9 0.088 0.088 0.088
(0.151) (0.152) (0.152)

week10 0.152 0.152 0.153
(0.150) (0.150) (0.151)

week11 0.124 0.124 0.124
(0.152) (0.152) (0.152)

Continued on next page
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Dependent variable:

fatal_crashes

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

week12 0.290∗∗ 0.290∗ 0.291∗

(0.148) (0.148) (0.148)

week13 0.137 0.137 0.138
(0.152) (0.152) (0.153)

week14 0.308∗∗ 0.308∗∗ 0.308∗∗

(0.149) (0.149) (0.150)

week15 0.459∗∗∗ 0.459∗∗∗ 0.459∗∗∗

(0.147) (0.147) (0.147)

week16 0.401∗∗∗ 0.401∗∗∗ 0.401∗∗∗

(0.148) (0.148) (0.149)

week17 0.337∗∗ 0.337∗∗ 0.337∗∗

(0.150) (0.150) (0.150)

week18 0.343∗∗ 0.343∗∗ 0.343∗∗

(0.150) (0.150) (0.151)

week19 0.400∗∗∗ 0.400∗∗∗ 0.400∗∗∗

(0.149) (0.150) (0.150)

week20 0.478∗∗∗ 0.478∗∗∗ 0.478∗∗∗

(0.148) (0.148) (0.149)

Continued on next page
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Dependent variable:

fatal_crashes

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

week21 0.355∗∗ 0.355∗∗ 0.355∗∗

(0.168) (0.168) (0.169)

year2007 0.083 0.083 0.083
(0.090) (0.090) (0.090)

year2008 0.011 0.011 0.011
(0.091) (0.091) (0.092)

year2009 −0.203∗∗ −0.203∗∗ −0.204∗∗

(0.096) (0.096) (0.097)

year2010 −0.532∗∗∗ −0.532∗∗∗ −0.532∗∗∗

(0.106) (0.106) (0.107)

year2011 −0.379∗∗∗ −0.379∗∗∗ −0.379∗∗∗

(0.101) (0.101) (0.102)

year2012 −0.415∗∗∗ −0.415∗∗∗ −0.415∗∗∗

(0.103) (0.103) (0.103)

year2013 −0.537∗∗∗ −0.537∗∗∗ −0.537∗∗∗

(0.106) (0.106) (0.107)

year2014 −0.528∗∗∗ −0.528∗∗∗ −0.528∗∗∗

(0.106) (0.106) (0.106)

year2015 −0.526∗∗∗ −0.526∗∗∗ −0.526∗∗∗

Continued on next page
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Dependent variable:

fatal_crashes

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

(0.106) (0.106) (0.106)

year2016 −0.591∗∗∗ −0.591∗∗∗ −0.591∗∗∗

(0.108) (0.108) (0.109)

year2017 −0.794∗∗∗ −0.794∗∗∗ −0.794∗∗∗

(0.116) (0.116) (0.116)

year2018 −0.721∗∗∗ −0.721∗∗∗ −0.721∗∗∗

(0.113) (0.113) (0.113)

year2019 −0.658∗∗∗ −0.658∗∗∗ −0.658∗∗∗

(0.111) (0.111) (0.111)

Constant −3.869∗∗∗ −3.869∗∗∗ −3.870∗∗∗

(0.243) (0.243) (0.243)

Observations 37,968 37,968 37,968
Log Likelihood −8,565.546 −8,566.238
θ 12.093 (15.953)
Akaike Inf. Crit. 17,251.090 17,252.480

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.7: IRR of the best-fitted regression model for the fatal acci-
dents without weather variables in the spring period.

Estimate Robust SE Pr(>|z|) IRR

(Intercept) -3.869 0.170 0 0.021
dark 0.448 0.069 0 1.565

hour01 0.134 0.162 0.409 1.143
hour02 0.007 0.167 0.965 1.007
hour03 0.033 0.186 0.860 1.033
hour04 0.069 0.165 0.676 1.072
hour05 0.665 0.138 0 1.944
hour06 1.176 0.142 0 3.243
hour07 1.066 0.143 0 2.905
hour08 1.141 0.145 0 3.130
hour09 1.089 0.144 0 2.970
hour10 1.229 0.144 0 3.417
hour11 1.067 0.144 0 2.906
hour12 1.110 0.143 0 3.034
hour13 1.446 0.142 0 4.248
hour14 1.619 0.141 0 5.046
hour15 1.580 0.141 0 4.855
hour16 1.431 0.142 0 4.184
hour17 1.473 0.142 0 4.360
hour18 1.320 0.134 0 3.742
hour19 1.151 0.134 0 3.161
hour20 0.766 0.137 0 2.151
hour21 0.589 0.139 0 1.803
hour22 0.465 0.143 0.001 1.592
hour23 0.235 0.157 0.133 1.265
day1 0.032 0.048 0.501 1.033
day2 0.067 0.048 0.166 1.069
day3 -0.114 0.047 0.016 0.892
day4 0.057 0.047 0.229 1.059
day5 0.177 0.046 0 1.193

Continued on next page
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Estimate Robust SE Pr(>|z|) IRR

day6 0.252 0.048 0 1.287
week6 0.080 0.097 0.409 1.083
week7 -0.086 0.096 0.370 0.918
week8 0.093 0.097 0.339 1.098
week9 0.088 0.097 0.364 1.092
week10 0.152 0.095 0.107 1.165
week11 0.124 0.095 0.192 1.132
week12 0.290 0.094 0.002 1.337
week13 0.137 0.094 0.146 1.147
week14 0.308 0.094 0.001 1.361
week15 0.459 0.094 0 1.582
week16 0.401 0.093 0 1.493
week17 0.337 0.092 0 1.401
week18 0.343 0.093 0 1.409
week19 0.400 0.092 0 1.492
week20 0.478 0.092 0 1.613
week21 0.355 0.096 0 1.426

year2007 0.083 0.054 0.126 1.086
year2008 0.011 0.052 0.831 1.011
year2009 -0.203 0.053 0 0.816
year2010 -0.532 0.054 0 0.588
year2011 -0.379 0.053 0 0.684
year2012 -0.415 0.055 0 0.661
year2013 -0.537 0.054 0 0.585
year2014 -0.528 0.057 0 0.590
year2015 -0.526 0.056 0 0.591
year2016 -0.591 0.058 0 0.554
year2017 -0.794 0.170 0 0.452
year2018 -0.721 0.069 0 0.486
year2019 -0.658 0.162 0 0.518
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Table A.8: The results of the regression models for fatal accidents
with weather and explanatory variables in the spring period.

Dependent variable:

fatal_crashes

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

dark 0.482∗∗∗ 0.482∗∗∗ 0.482∗∗∗

(0.115) (0.114) (0.115)

holiday1 0.063 0.063 0.062
(0.123) (0.122) (0.124)

TMP_less_zero1 −0.470∗∗∗ −0.470∗∗∗ −0.470∗∗∗

(0.116) (0.115) (0.116)

TMP_less_five1 −0.465∗∗∗ −0.465∗∗∗ −0.465∗∗∗

(0.094) (0.094) (0.095)

TMP_less_ten1 −0.384∗∗∗ −0.384∗∗∗ −0.384∗∗∗

(0.078) (0.077) (0.078)

TMP_less_fifteen1 −0.320∗∗∗ −0.320∗∗∗ −0.321∗∗∗

(0.070) (0.069) (0.070)

mist1 −0.097 −0.097 −0.097
(0.081) (0.080) (0.081)

fog1 −0.195 −0.195 −0.195
(0.307) (0.304) (0.307)

drizzle1 0.295 0.295 0.295
Continued on next page
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Dependent variable:

fatal_crashes

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

(0.358) (0.354) (0.358)

rain1 0.159 0.159 0.159
(0.102) (0.101) (0.102)

snow1 −0.115 −0.115 −0.115
(0.152) (0.151) (0.152)

precipitation1 −0.070 −0.070 −0.070
(0.097) (0.096) (0.097)

crash_into_solid_obstacle 0.089∗∗∗ 0.089∗∗∗ 0.089∗∗∗

(0.010) (0.010) (0.010)

cause_intoxication 0.135∗∗∗ 0.135∗∗∗ 0.135∗∗∗

(0.023) (0.023) (0.023)

cause_damaged_road −0.049 −0.049 −0.049
(0.079) (0.079) (0.079)

cause_car_defect −0.142∗ −0.142∗ −0.141∗

(0.074) (0.073) (0.074)

hour01 0.165 0.165 0.165
(0.196) (0.194) (0.196)

hour02 0.059 0.059 0.059
(0.202) (0.200) (0.202)
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Dependent variable:

fatal_crashes

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

hour03 0.098 0.098 0.098
(0.200) (0.198) (0.200)

hour04 0.160 0.160 0.160
(0.201) (0.199) (0.201)

hour05 0.719∗∗∗ 0.719∗∗∗ 0.719∗∗∗

(0.186) (0.185) (0.187)

hour06 1.201∗∗∗ 1.201∗∗∗ 1.201∗∗∗

(0.196) (0.194) (0.196)

hour07 1.070∗∗∗ 1.070∗∗∗ 1.070∗∗∗

(0.213) (0.211) (0.214)

hour08 1.154∗∗∗ 1.154∗∗∗ 1.155∗∗∗

(0.211) (0.209) (0.212)

hour09 1.089∗∗∗ 1.089∗∗∗ 1.090∗∗∗

(0.212) (0.210) (0.212)

hour10 1.187∗∗∗ 1.187∗∗∗ 1.187∗∗∗

(0.209) (0.207) (0.209)

hour11 0.996∗∗∗ 0.996∗∗∗ 0.996∗∗∗

(0.212) (0.210) (0.213)
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Dependent variable:

fatal_crashes

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

hour12 1.026∗∗∗ 1.026∗∗∗ 1.027∗∗∗

(0.211) (0.209) (0.211)

hour13 1.317∗∗∗ 1.317∗∗∗ 1.317∗∗∗

(0.204) (0.202) (0.204)

hour14 1.445∗∗∗ 1.445∗∗∗ 1.445∗∗∗

(0.201) (0.199) (0.202)

hour15 1.399∗∗∗ 1.399∗∗∗ 1.399∗∗∗

(0.202) (0.200) (0.202)

hour16 1.232∗∗∗ 1.232∗∗∗ 1.232∗∗∗

(0.204) (0.202) (0.205)

hour17 1.291∗∗∗ 1.291∗∗∗ 1.291∗∗∗

(0.200) (0.199) (0.201)

hour18 1.159∗∗∗ 1.159∗∗∗ 1.159∗∗∗

(0.185) (0.183) (0.185)

hour19 1.003∗∗∗ 1.003∗∗∗ 1.003∗∗∗

(0.179) (0.177) (0.179)

hour20 0.664∗∗∗ 0.664∗∗∗ 0.664∗∗∗

(0.182) (0.180) (0.182)

hour21 0.488∗∗∗ 0.488∗∗∗ 0.488∗∗∗
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Dependent variable:

fatal_crashes

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

(0.180) (0.178) (0.180)

hour22 0.401∗∗ 0.401∗∗ 0.401∗∗

(0.182) (0.181) (0.183)

hour23 0.189 0.189 0.189
(0.191) (0.189) (0.191)

day1 0.035 0.035 0.035
(0.081) (0.080) (0.081)

day2 0.087 0.087 0.087
(0.080) (0.079) (0.080)

day3 −0.086 −0.086 −0.086
(0.083) (0.083) (0.084)

day4 0.066 0.066 0.067
(0.080) (0.079) (0.080)

day5 0.147∗ 0.147∗ 0.148∗

(0.077) (0.076) (0.077)

day6 0.194∗∗ 0.194∗∗∗ 0.194∗∗

(0.076) (0.075) (0.076)

week6 0.009 0.009 0.009
(0.152) (0.150) (0.152)
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Dependent variable:

fatal_crashes

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

week7 −0.126 −0.126 −0.126
(0.156) (0.155) (0.156)

week8 0.052 0.052 0.052
(0.153) (0.151) (0.153)

week9 0.035 0.035 0.036
(0.154) (0.153) (0.155)

week10 0.086 0.086 0.086
(0.154) (0.152) (0.154)

week11 0.044 0.044 0.044
(0.156) (0.154) (0.156)

week12 0.193 0.193 0.193
(0.153) (0.151) (0.153)

week13 0.009 0.009 0.010
(0.160) (0.158) (0.160)

week14 0.155 0.155 0.155
(0.158) (0.157) (0.158)

week15 0.265∗ 0.265∗ 0.265∗

(0.158) (0.156) (0.158)
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Dependent variable:

fatal_crashes

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

week16 0.182 0.182 0.182
(0.160) (0.159) (0.160)

week17 0.053 0.053 0.053
(0.165) (0.163) (0.165)

week18 0.054 0.054 0.054
(0.166) (0.164) (0.166)

week19 0.074 0.074 0.075
(0.168) (0.167) (0.168)

week20 0.131 0.131 0.131
(0.165) (0.164) (0.165)

week21 −0.021 −0.021 −0.021
(0.184) (0.183) (0.185)

year2007 0.084 0.084 0.084
(0.093) (0.092) (0.093)

year2008 0.062 0.062 0.062
(0.094) (0.093) (0.094)

year2009 −0.092 −0.092 −0.092
(0.100) (0.099) (0.100)

year2010 −0.354∗∗∗ −0.354∗∗∗ −0.354∗∗∗
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Dependent variable:

fatal_crashes

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

(0.109) (0.108) (0.109)

year2011 −0.250∗∗ −0.250∗∗ −0.250∗∗

(0.104) (0.103) (0.105)

year2012 −0.298∗∗∗ −0.298∗∗∗ −0.298∗∗∗

(0.105) (0.104) (0.105)

year2013 −0.380∗∗∗ −0.380∗∗∗ −0.380∗∗∗

(0.108) (0.107) (0.108)

year2014 −0.412∗∗∗ −0.412∗∗∗ −0.412∗∗∗

(0.110) (0.109) (0.110)

year2015 −0.366∗∗∗ −0.366∗∗∗ −0.366∗∗∗

(0.109) (0.108) (0.109)

year2016 −0.451∗∗∗ −0.451∗∗∗ −0.451∗∗∗

(0.112) (0.111) (0.112)

year2017 −0.667∗∗∗ −0.667∗∗∗ −0.667∗∗∗

(0.119) (0.118) (0.119)

year2018 −0.655∗∗∗ −0.655∗∗∗ −0.655∗∗∗

(0.116) (0.115) (0.116)

year2019 −0.562∗∗∗ −0.562∗∗∗ −0.562∗∗∗

(0.114) (0.113) (0.114)
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Dependent variable:

fatal_crashes

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

Constant −3.682∗∗∗ −3.682∗∗∗ −3.683∗∗∗

(0.266) (0.264) (0.267)

Observations 37,968 37,968 37,968
Log Likelihood −8,481.533 −8,482.478
θ 29.610 (90.126)
Akaike Inf. Crit. 17,113.070 17,114.960

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A.9: IRR of the best-fitted regression model for the fatal acci-
dents with weather and explanatory variables in the spring period.

Estimate Robust SE Pr(>|z|) IRR

(Intercept) -3.682 0.266 0 -97.484
dark 0.482 0.117 0 61.914

holiday1 0.063 0.122 0.606 6.500
TMP_less_zero1 -0.470 0.117 0 -37.518
TMP_less_five1 -0.465 0.095 0 -37.162
TMP_less_ten1 -0.384 0.080 0 -31.898

TMP_less_fifteen1 -0.320 0.070 0 -27.416
mist1 -0.097 0.080 0.224 -9.255
fog1 -0.195 0.328 0.553 -17.695

drizzle1 0.295 0.345 0.392 34.344
rain1 0.159 0.099 0.110 17.203
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Estimate Robust SE Pr(>|z|) IRR

snow1 -0.115 0.153 0.452 -10.837
precipitation1 -0.070 0.092 0.448 -6.758

crash_into_solid_obstacle 0.089 0.010 0 9.347
cause_intoxication 0.135 0.023 0 14.458

cause_damaged_road -0.049 0.077 0.530 -4.741
cause_car_defect -0.142 0.074 0.054 -13.196

hour01 0.165 0.194 0.395 17.981
hour02 0.059 0.202 0.771 6.074
hour03 0.098 0.197 0.617 10.327
hour04 0.160 0.199 0.421 17.352
hour05 0.719 0.183 0 105.188
hour06 1.201 0.194 0 232.276
hour07 1.070 0.211 0 191.417
hour08 1.154 0.211 0 217.140
hour09 1.089 0.210 0 197.272
hour10 1.187 0.207 0 227.881
hour11 0.996 0.211 0 170.637
hour12 1.026 0.212 0 179.042
hour13 1.317 0.202 0 273.282
hour14 1.445 0.200 0 324.028
hour15 1.399 0.201 0 304.991
hour16 1.232 0.203 0 242.821
hour17 1.291 0.201 0 263.634
hour18 1.159 0.185 0 218.730
hour19 1.003 0.176 0 172.625
hour20 0.664 0.181 0 94.273
hour21 0.488 0.181 0.007 62.901
hour22 0.401 0.180 0.026 49.334
hour23 0.189 0.189 0.317 20.855
day1 0.035 0.080 0.661 3.590
day2 0.087 0.079 0.274 9.092
day3 -0.086 0.085 0.308 -8.259
day4 0.066 0.080 0.405 6.871
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Estimate Robust SE Pr(>|z|) IRR

day5 0.147 0.078 0.058 15.881
day6 0.194 0.076 0.011 21.380
week6 0.009 0.152 0.955 0.871
week7 -0.126 0.156 0.420 -11.823
week8 0.052 0.154 0.737 5.303
week9 0.035 0.153 0.817 3.608
week10 0.086 0.154 0.577 8.951
week11 0.044 0.157 0.779 4.502
week12 0.193 0.154 0.210 21.239
week13 0.009 0.161 0.953 0.953
week14 0.155 0.158 0.328 16.747
week15 0.265 0.158 0.095 30.310
week16 0.182 0.161 0.259 19.939
week17 0.053 0.166 0.752 5.393
week18 0.054 0.165 0.744 5.555
week19 0.074 0.171 0.665 7.696
week20 0.131 0.165 0.430 13.943
week21 -0.021 0.185 0.909 -2.103

year2007 0.084 0.096 0.382 8.747
year2008 0.062 0.097 0.522 6.414
year2009 -0.092 0.102 0.367 -8.795
year2010 -0.354 0.109 0.001 -29.806
year2011 -0.250 0.105 0.018 -22.114
year2012 -0.298 0.106 0.005 -25.802
year2013 -0.380 0.110 0.001 -31.603
year2014 -0.412 0.112 0 -33.752
year2015 -0.366 0.114 0.001 -30.644
year2016 -0.451 0.115 0 -36.274
year2017 -0.667 0.119 0 -48.650
year2018 -0.655 0.116 0 -48.049
year2019 -0.562 0.116 0 -42.985
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Table A.10: The results of regression model for fatal accidents with-
out weather variables in the autumn period.

Dependent variable:

fatal_crashes

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

dark 0.611∗∗∗ 0.611∗∗∗ 0.611∗∗∗

(0.097) (0.098) (0.098)

hour01 −0.000 −0.000 −0.00004
(0.174) (0.175) (0.174)

hour02 −0.047 −0.047 −0.046
(0.176) (0.177) (0.176)

hour03 −0.201 −0.201 −0.201
(0.183) (0.184) (0.184)

hour04 −0.015 −0.015 −0.015
(0.175) (0.175) (0.175)

hour05 0.808∗∗∗ 0.808∗∗∗ 0.808∗∗∗

(0.148) (0.149) (0.148)

hour06 1.380∗∗∗ 1.380∗∗∗ 1.380∗∗∗

(0.145) (0.145) (0.145)

hour07 1.290∗∗∗ 1.290∗∗∗ 1.290∗∗∗

(0.177) (0.177) (0.177)

hour08 1.175∗∗∗ 1.175∗∗∗ 1.175∗∗∗
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Dependent variable:

fatal_crashes

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

(0.182) (0.183) (0.183)

hour09 1.242∗∗∗ 1.242∗∗∗ 1.242∗∗∗

(0.181) (0.181) (0.181)

hour10 1.274∗∗∗ 1.274∗∗∗ 1.274∗∗∗

(0.180) (0.181) (0.180)

hour11 1.274∗∗∗ 1.274∗∗∗ 1.274∗∗∗

(0.180) (0.181) (0.180)

hour12 1.363∗∗∗ 1.363∗∗∗ 1.363∗∗∗

(0.178) (0.179) (0.178)

hour13 1.540∗∗∗ 1.540∗∗∗ 1.540∗∗∗

(0.175) (0.175) (0.175)

hour14 1.620∗∗∗ 1.620∗∗∗ 1.620∗∗∗

(0.174) (0.174) (0.174)

hour15 1.569∗∗∗ 1.569∗∗∗ 1.569∗∗∗

(0.174) (0.175) (0.175)

hour16 1.725∗∗∗ 1.725∗∗∗ 1.724∗∗∗

(0.166) (0.167) (0.166)

hour17 1.538∗∗∗ 1.538∗∗∗ 1.538∗∗∗

(0.146) (0.147) (0.147)
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Dependent variable:

fatal_crashes

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

hour18 1.327∗∗∗ 1.327∗∗∗ 1.327∗∗∗

(0.147) (0.148) (0.147)

hour19 0.931∗∗∗ 0.931∗∗∗ 0.931∗∗∗

(0.149) (0.149) (0.149)

hour20 0.803∗∗∗ 0.803∗∗∗ 0.803∗∗∗

(0.148) (0.149) (0.148)

hour21 0.343∗∗ 0.343∗∗ 0.343∗∗

(0.161) (0.161) (0.161)

hour22 0.425∗∗∗ 0.425∗∗∗ 0.425∗∗∗

(0.158) (0.159) (0.158)

hour23 0.114 0.114 0.114
(0.169) (0.170) (0.169)

day1 0.073 0.073 0.073
(0.068) (0.068) (0.068)

day2 0.023 0.023 0.023
(0.069) (0.069) (0.069)

day3 0.098 0.098 0.098
(0.068) (0.068) (0.068)

Continued on next page



A. Title of Appendix A XXX

Dependent variable:

fatal_crashes

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

day4 0.050 0.050 0.050
(0.069) (0.069) (0.069)

day5 0.191∗∗∗ 0.191∗∗∗ 0.191∗∗∗

(0.066) (0.066) (0.066)

day6 0.205∗∗∗ 0.205∗∗∗ 0.205∗∗∗

(0.066) (0.066) (0.066)

week36 0.095 0.095 0.095
(0.257) (0.258) (0.258)

week37 0.304 0.304 0.304
(0.254) (0.255) (0.254)

week38 0.209 0.209 0.209
(0.255) (0.255) (0.255)

week39 0.157 0.157 0.157
(0.255) (0.256) (0.255)

week40 0.234 0.234 0.234
(0.254) (0.255) (0.255)

week41 0.123 0.123 0.123
(0.255) (0.256) (0.256)

week42 0.092 0.092 0.092
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Dependent variable:

fatal_crashes

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

(0.256) (0.256) (0.256)

week43 −0.002 −0.002 −0.002
(0.257) (0.257) (0.257)

week44 0.061 0.061 0.061
(0.256) (0.257) (0.256)

week45 −0.029 −0.029 −0.029
(0.257) (0.258) (0.257)

week46 0.015 0.015 0.016
(0.257) (0.257) (0.257)

week47 −0.007 −0.007 −0.007
(0.257) (0.258) (0.257)

week48 0.013 0.013 0.013
(0.257) (0.257) (0.257)

week49 −0.014 −0.014 −0.014
(0.257) (0.258) (0.257)

week50 0.003 0.003 0.003
(0.257) (0.258) (0.257)

week51 −0.055 −0.055 −0.055
(0.258) (0.259) (0.258)
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Dependent variable:

fatal_crashes

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

week52 −0.378 −0.378 −0.377
(0.317) (0.318) (0.317)

year2007 0.062 0.062 0.062
(0.078) (0.078) (0.078)

year2008 −0.061 −0.061 −0.061
(0.080) (0.081) (0.081)

year2009 −0.191∗∗ −0.191∗∗ −0.191∗∗

(0.083) (0.084) (0.084)

year2010 −0.239∗∗∗ −0.239∗∗∗ −0.239∗∗∗

(0.085) (0.085) (0.085)

year2011 −0.420∗∗∗ −0.420∗∗∗ −0.420∗∗∗

(0.089) (0.089) (0.089)

year2012 −0.408∗∗∗ −0.408∗∗∗ −0.408∗∗∗

(0.089) (0.089) (0.089)

year2013 −0.599∗∗∗ −0.599∗∗∗ −0.599∗∗∗

(0.094) (0.094) (0.094)

year2014 −0.484∗∗∗ −0.484∗∗∗ −0.484∗∗∗

(0.091) (0.091) (0.091)
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Dependent variable:

fatal_crashes

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

year2015 −0.405∗∗∗ −0.405∗∗∗ −0.405∗∗∗

(0.089) (0.089) (0.089)

year2016 −0.612∗∗∗ −0.612∗∗∗ −0.613∗∗∗

(0.095) (0.095) (0.095)

year2017 −0.684∗∗∗ −0.684∗∗∗ −0.684∗∗∗

(0.097) (0.097) (0.097)

year2018 −0.586∗∗∗ −0.586∗∗∗ −0.586∗∗∗

(0.094) (0.094) (0.094)

year2019 −0.656∗∗∗ −0.656∗∗∗ −0.656∗∗∗

(0.096) (0.096) (0.096)

Constant −3.610∗∗∗ −3.610∗∗∗ −3.610∗∗∗

(0.292) (0.293) (0.292)

Observations 37,968 37,968 37,968
Log Likelihood −10,748.050 −10,749.000
θ 39.737 (125.932)
Akaike Inf. Crit. 21,618.100 21,620.000

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.11: IRR of the best-fitted regression model for the fatal
accidents without weather variables in the autumn period.

Estimate Robust SE Pr(>|z|) exp

(Intercept) -3.610 0.294 0 0.027
dark 0.611 0.096 0 1.843

hour01 0 0.173 1 1
hour02 -0.047 0.178 0.794 0.955
hour03 -0.201 0.185 0.278 0.818
hour04 -0.015 0.172 0.929 0.985
hour05 0.808 0.147 0 2.243
hour06 1.380 0.144 0 3.974
hour07 1.290 0.175 0 3.634
hour08 1.175 0.181 0 3.239
hour09 1.242 0.179 0 3.463
hour10 1.274 0.179 0 3.574
hour11 1.274 0.180 0 3.574
hour12 1.363 0.176 0 3.909
hour13 1.540 0.172 0 4.663
hour14 1.620 0.172 0 5.054
hour15 1.569 0.173 0 4.803
hour16 1.725 0.164 0 5.610
hour17 1.538 0.145 0 4.654
hour18 1.327 0.147 0 3.770
hour19 0.931 0.148 0 2.537
hour20 0.803 0.148 0 2.232
hour21 0.343 0.161 0.033 1.409
hour22 0.425 0.157 0.007 1.530
hour23 0.114 0.170 0.501 1.121
day1 0.073 0.068 0.281 1.076
day2 0.023 0.069 0.741 1.023
day3 0.098 0.068 0.149 1.103
day4 0.050 0.069 0.473 1.051
day5 0.191 0.067 0.004 1.210
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Estimate Robust SE Pr(>|z|) exp

day6 0.205 0.067 0.002 1.228
week36 0.095 0.264 0.720 1.099
week37 0.304 0.261 0.244 1.355
week38 0.209 0.261 0.424 1.233
week39 0.157 0.262 0.548 1.170
week40 0.234 0.261 0.370 1.263
week41 0.123 0.262 0.639 1.131
week42 0.092 0.263 0.726 1.097
week43 -0.002 0.263 0.993 0.998
week44 0.061 0.263 0.817 1.063
week45 -0.029 0.263 0.912 0.971
week46 0.015 0.263 0.953 1.015
week47 -0.007 0.264 0.979 0.993
week48 0.013 0.263 0.961 1.013
week49 -0.014 0.265 0.957 0.986
week50 0.003 0.263 0.992 1.003
week51 -0.055 0.265 0.836 0.947
week52 -0.378 0.327 0.248 0.685

year2007 0.062 0.078 0.428 1.064
year2008 -0.061 0.081 0.451 0.941
year2009 -0.191 0.084 0.023 0.826
year2010 -0.239 0.085 0.005 0.787
year2011 -0.420 0.089 0 0.657
year2012 -0.408 0.089 0 0.665
year2013 -0.599 0.094 0 0.550
year2014 -0.484 0.091 0 0.616
year2015 -0.405 0.089 0 0.667
year2016 -0.612 0.095 0 0.542
year2017 -0.684 0.096 0 0.505
year2018 -0.586 0.094 0 0.557
year2019 -0.656 0.097 0 0.519
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Table A.12: The results of the regression models for the fatal acci-
dents with weather and explanatory variables in the autumn period.

Dependent variable:

fatal_crashes

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

dark 0.634∗∗∗ 0.634∗∗∗ 0.634∗∗∗

(0.098) (0.098) (0.098)

holiday1 −0.180 −0.180 −0.180
(0.119) (0.118) (0.119)

TMP_less_zero1 −0.460∗∗∗ −0.460∗∗∗ −0.460∗∗∗

(0.112) (0.112) (0.112)

TMP_less_five1 −0.313∗∗∗ −0.313∗∗∗ −0.313∗∗∗

(0.088) (0.088) (0.088)

TMP_less_ten1 −0.262∗∗∗ −0.262∗∗∗ −0.262∗∗∗

(0.074) (0.074) (0.074)

TMP_less_fifteen1 −0.178∗∗∗ −0.178∗∗∗ −0.178∗∗∗

(0.062) (0.062) (0.062)

mist1 −0.022 −0.022 −0.022
(0.055) (0.054) (0.055)

fog1 0.107 0.107 0.107
(0.101) (0.101) (0.101)

drizzle1 −0.255 −0.255 −0.255
Continued on next page
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Dependent variable:

fatal_crashes

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

(0.229) (0.227) (0.229)

rain1 −0.009 −0.009 −0.009
(0.087) (0.086) (0.087)

snow1 −0.204 −0.204 −0.204
(0.160) (0.159) (0.160)

precipitation1 0.046 0.046 0.046
(0.082) (0.081) (0.082)

crash_into_solid_obstacle 0.080∗∗∗ 0.080∗∗∗ 0.080∗∗∗

(0.009) (0.008) (0.009)

cause_intoxication 0.126∗∗∗ 0.126∗∗∗ 0.126∗∗∗

(0.019) (0.019) (0.019)

cause_damaged_road 0.028 0.028 0.028
(0.070) (0.070) (0.070)

cause_car_defect 0.082 0.082 0.082
(0.057) (0.057) (0.057)

hour01 0.030 0.030 0.030
(0.174) (0.173) (0.174)

hour02 −0.002 −0.002 −0.002
(0.176) (0.175) (0.176)
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Dependent variable:

fatal_crashes

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

hour03 −0.122 −0.122 −0.122
(0.184) (0.183) (0.184)

hour04 0.069 0.069 0.069
(0.175) (0.174) (0.175)

hour05 0.845∗∗∗ 0.845∗∗∗ 0.845∗∗∗

(0.149) (0.148) (0.149)

hour06 1.354∗∗∗ 1.354∗∗∗ 1.354∗∗∗

(0.146) (0.145) (0.146)

hour07 1.253∗∗∗ 1.253∗∗∗ 1.253∗∗∗

(0.178) (0.178) (0.179)

hour08 1.135∗∗∗ 1.135∗∗∗ 1.135∗∗∗

(0.184) (0.183) (0.184)

hour09 1.191∗∗∗ 1.191∗∗∗ 1.191∗∗∗

(0.183) (0.182) (0.183)

hour10 1.204∗∗∗ 1.204∗∗∗ 1.204∗∗∗

(0.181) (0.181) (0.182)

hour11 1.196∗∗∗ 1.196∗∗∗ 1.196∗∗∗

(0.181) (0.180) (0.181)
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Dependent variable:

fatal_crashes

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

hour12 1.285∗∗∗ 1.285∗∗∗ 1.285∗∗∗

(0.179) (0.178) (0.179)

hour13 1.420∗∗∗ 1.420∗∗∗ 1.420∗∗∗

(0.176) (0.175) (0.176)

hour14 1.451∗∗∗ 1.451∗∗∗ 1.451∗∗∗

(0.175) (0.174) (0.175)

hour15 1.402∗∗∗ 1.402∗∗∗ 1.402∗∗∗

(0.175) (0.174) (0.175)

hour16 1.569∗∗∗ 1.569∗∗∗ 1.569∗∗∗

(0.167) (0.166) (0.167)

hour17 1.372∗∗∗ 1.372∗∗∗ 1.372∗∗∗

(0.147) (0.147) (0.147)

hour18 1.207∗∗∗ 1.207∗∗∗ 1.207∗∗∗

(0.148) (0.147) (0.148)

hour19 0.816∗∗∗ 0.816∗∗∗ 0.816∗∗∗

(0.149) (0.149) (0.149)

hour20 0.712∗∗∗ 0.712∗∗∗ 0.712∗∗∗

(0.149) (0.148) (0.149)

hour21 0.267∗ 0.267∗ 0.267∗

Continued on next page
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Dependent variable:

fatal_crashes

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

(0.161) (0.160) (0.161)

hour22 0.378∗∗ 0.378∗∗ 0.378∗∗

(0.158) (0.158) (0.158)

hour23 0.083 0.083 0.083
(0.169) (0.168) (0.169)

day1 0.065 0.065 0.065
(0.069) (0.069) (0.069)

day2 0.045 0.045 0.045
(0.070) (0.069) (0.070)

day3 0.113∗ 0.113∗ 0.113∗

(0.069) (0.068) (0.069)

day4 0.048 0.048 0.048
(0.069) (0.069) (0.069)

day5 0.142∗∗ 0.142∗∗ 0.142∗∗

(0.067) (0.067) (0.067)

day6 0.143∗∗ 0.143∗∗ 0.143∗∗

(0.066) (0.066) (0.066)

week36 0.117 0.117 0.118
(0.257) (0.256) (0.257)
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Dependent variable:

fatal_crashes

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

week37 0.326 0.326 0.326
(0.254) (0.253) (0.254)

week38 0.270 0.270 0.270
(0.255) (0.254) (0.255)

week39 0.259 0.259 0.259
(0.257) (0.255) (0.257)

week40 0.348 0.348 0.348
(0.256) (0.254) (0.256)

week41 0.249 0.249 0.249
(0.258) (0.256) (0.258)

week42 0.240 0.240 0.240
(0.259) (0.258) (0.259)

week43 0.163 0.163 0.163
(0.261) (0.259) (0.261)

week44 0.291 0.291 0.291
(0.262) (0.260) (0.262)

week45 0.173 0.173 0.173
(0.262) (0.260) (0.262)
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Dependent variable:

fatal_crashes

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

week46 0.255 0.255 0.255
(0.262) (0.261) (0.262)

week47 0.228 0.228 0.228
(0.263) (0.262) (0.263)

week48 0.262 0.262 0.262
(0.265) (0.263) (0.265)

week49 0.236 0.236 0.236
(0.264) (0.263) (0.265)

week50 0.257 0.257 0.257
(0.265) (0.264) (0.265)

week51 0.195 0.195 0.195
(0.267) (0.266) (0.267)

week52 0.022 0.022 0.022
(0.327) (0.326) (0.327)

year2007 0.083 0.083 0.083
(0.080) (0.080) (0.080)

year2008 −0.009 −0.009 −0.009
(0.082) (0.081) (0.082)

year2009 −0.045 −0.045 −0.045
Continued on next page
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Dependent variable:

fatal_crashes

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

(0.085) (0.085) (0.085)

year2010 −0.042 −0.042 −0.042
(0.088) (0.087) (0.088)

year2011 −0.291∗∗∗ −0.291∗∗∗ −0.291∗∗∗

(0.090) (0.090) (0.090)

year2012 −0.264∗∗∗ −0.264∗∗∗ −0.264∗∗∗

(0.090) (0.090) (0.090)

year2013 −0.452∗∗∗ −0.452∗∗∗ −0.452∗∗∗

(0.095) (0.095) (0.095)

year2014 −0.360∗∗∗ −0.360∗∗∗ −0.360∗∗∗

(0.092) (0.091) (0.092)

year2015 −0.286∗∗∗ −0.286∗∗∗ −0.286∗∗∗

(0.090) (0.089) (0.090)

year2016 −0.480∗∗∗ −0.480∗∗∗ −0.480∗∗∗

(0.096) (0.095) (0.096)

year2017 −0.566∗∗∗ −0.566∗∗∗ −0.566∗∗∗

(0.098) (0.097) (0.098)

year2018 −0.499∗∗∗ −0.499∗∗∗ −0.500∗∗∗

(0.094) (0.094) (0.094)
Continued on next page



A. Title of Appendix A XLIV

Dependent variable:

fatal_crashes

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

year2019 −0.555∗∗∗ −0.555∗∗∗ −0.555∗∗∗

(0.097) (0.096) (0.097)

Constant −3.885∗∗∗ −3.885∗∗∗ −3.885∗∗∗

(0.293) (0.292) (0.293)

Observations 37,968 37,968 37,968
Log Likelihood −10,659.170 −10,660.180
θ 339.095 (1,215.512)
Akaike Inf. Crit. 21,470.350 21,472.370

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A.13: IRR of the best-fitted regression model for the fatal acci-
dents with weather and explanatory variables in the autumn period.

Estimate Robust SE Pr(>|z|) exp

(Intercept) -3.885 0.294 0 -97.946
dark 0.634 0.097 0 88.468

holiday1 -0.180 0.128 0.159 -16.434
TMP_less_zero1 -0.460 0.112 0 -36.899
TMP_less_five1 -0.313 0.087 0 -26.907
TMP_less_ten1 -0.262 0.073 0 -23.048

TMP_less_fifteen1 -0.178 0.062 0.004 -16.294
mist1 -0.022 0.053 0.687 -2.131
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Estimate Robust SE Pr(>|z|) exp

fog1 0.107 0.103 0.298 11.288
drizzle1 -0.255 0.223 0.253 -22.473
rain1 -0.009 0.082 0.913 -0.894
snow1 -0.204 0.157 0.192 -18.475

precipitation1 0.046 0.078 0.557 4.679
crash_into_solid_obstacle 0.080 0.008 0 8.304

cause_intoxication 0.126 0.019 0 13.376
cause_damaged_road 0.028 0.068 0.680 2.824

cause_car_defect 0.082 0.058 0.155 8.529
hour01 0.030 0.172 0.863 3.003
hour02 -0.002 0.177 0.990 -0.220
hour03 -0.122 0.185 0.509 -11.465
hour04 0.069 0.172 0.687 7.176
hour05 0.845 0.147 0 132.686
hour06 1.354 0.144 0 287.409
hour07 1.253 0.177 0 250.192
hour08 1.135 0.183 0 211.168
hour09 1.191 0.181 0 229.009
hour10 1.204 0.180 0 233.486
hour11 1.196 0.181 0 230.683
hour12 1.285 0.177 0 261.535
hour13 1.420 0.173 0 313.915
hour14 1.451 0.174 0 326.851
hour15 1.402 0.173 0 306.341
hour16 1.569 0.165 0 380.023
hour17 1.372 0.146 0 294.442
hour18 1.207 0.147 0 234.473
hour19 0.816 0.148 0 126.235
hour20 0.712 0.147 0 103.854
hour21 0.267 0.161 0.096 30.657
hour22 0.378 0.157 0.016 45.889
hour23 0.083 0.169 0.624 8.649
day1 0.065 0.068 0.344 6.692
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Estimate Robust SE Pr(>|z|) exp

day2 0.045 0.070 0.523 4.565
day3 0.113 0.068 0.098 11.931
day4 0.048 0.070 0.488 4.954
day5 0.142 0.067 0.034 15.238
day6 0.143 0.067 0.033 15.426

week36 0.117 0.264 0.656 12.468
week37 0.326 0.260 0.210 38.557
week38 0.270 0.261 0.301 31.022
week39 0.259 0.262 0.323 29.592
week40 0.348 0.261 0.183 41.610
week41 0.249 0.264 0.344 28.295
week42 0.240 0.265 0.364 27.178
week43 0.163 0.266 0.539 17.749
week44 0.291 0.268 0.278 33.723
week45 0.173 0.267 0.516 18.938
week46 0.255 0.268 0.341 29.007
week47 0.228 0.269 0.398 25.573
week48 0.262 0.270 0.332 30.008
week49 0.236 0.271 0.383 26.672
week50 0.257 0.271 0.342 29.355
week51 0.195 0.273 0.476 21.483
week52 0.022 0.340 0.949 2.190

year2007 0.083 0.080 0.300 8.694
year2008 -0.009 0.081 0.916 -0.856
year2009 -0.045 0.086 0.603 -4.354
year2010 -0.042 0.088 0.631 -4.151
year2011 -0.291 0.090 0.001 -25.233
year2012 -0.264 0.091 0.004 -23.189
year2013 -0.452 0.095 0 -36.351
year2014 -0.360 0.092 0 -30.236
year2015 -0.286 0.089 0.001 -24.893
year2016 -0.480 0.096 0 -38.094
year2017 -0.566 0.098 0 -43.208
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Estimate Robust SE Pr(>|z|) exp

year2018 -0.499 0.095 0 -39.316
year2019 -0.555 0.098 0 -42.617

A.4 The results of GLM for seriously injured acci-

dents

Table A.14: The results of regression models for seriously injured
accidents without weather variables in the spring period.

Dependent variable:

seriously_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

dark 0.207∗∗∗ 0.207∗∗∗ 0.207∗∗∗

(0.067) (0.069) (0.069)

hour01 0.092 0.092 0.093
(0.162) (0.166) (0.163)

hour02 0.008 0.008 0.009
(0.166) (0.170) (0.166)

hour03 −0.469∗∗ −0.469∗∗ −0.469∗∗

(0.188) (0.193) (0.189)

hour04 0.108 0.108 0.109
(0.162) (0.166) (0.163)
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Dependent variable:

seriously_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

hour05 1.287∗∗∗ 1.287∗∗∗ 1.288∗∗∗

(0.137) (0.140) (0.138)

hour06 1.631∗∗∗ 1.631∗∗∗ 1.635∗∗∗

(0.142) (0.145) (0.143)

hour07 1.912∗∗∗ 1.912∗∗∗ 1.915∗∗∗

(0.144) (0.148) (0.146)

hour08 1.794∗∗∗ 1.794∗∗∗ 1.795∗∗∗

(0.145) (0.149) (0.147)

hour09 1.765∗∗∗ 1.765∗∗∗ 1.766∗∗∗

(0.145) (0.149) (0.147)

hour10 1.816∗∗∗ 1.816∗∗∗ 1.817∗∗∗

(0.145) (0.148) (0.146)

hour11 1.848∗∗∗ 1.848∗∗∗ 1.850∗∗∗

(0.144) (0.148) (0.146)

hour12 1.915∗∗∗ 1.915∗∗∗ 1.917∗∗∗

(0.144) (0.148) (0.146)

hour13 2.058∗∗∗ 2.058∗∗∗ 2.059∗∗∗

(0.143) (0.146) (0.144)

hour14 2.260∗∗∗ 2.260∗∗∗ 2.261∗∗∗
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Dependent variable:

seriously_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

(0.141) (0.145) (0.143)

hour15 2.235∗∗∗ 2.235∗∗∗ 2.235∗∗∗

(0.141) (0.145) (0.143)

hour16 2.233∗∗∗ 2.233∗∗∗ 2.232∗∗∗

(0.141) (0.145) (0.143)

hour17 2.161∗∗∗ 2.161∗∗∗ 2.160∗∗∗

(0.141) (0.144) (0.143)

hour18 2.009∗∗∗ 2.009∗∗∗ 2.009∗∗∗

(0.135) (0.138) (0.136)

hour19 1.647∗∗∗ 1.647∗∗∗ 1.647∗∗∗

(0.135) (0.138) (0.136)

hour20 1.175∗∗∗ 1.175∗∗∗ 1.175∗∗∗

(0.138) (0.142) (0.139)

hour21 0.918∗∗∗ 0.918∗∗∗ 0.919∗∗∗

(0.139) (0.142) (0.140)

hour22 0.727∗∗∗ 0.727∗∗∗ 0.727∗∗∗

(0.143) (0.146) (0.144)

hour23 0.354∗∗ 0.354∗∗ 0.354∗∗

(0.153) (0.157) (0.154)
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Dependent variable:

seriously_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

day1 0.174∗∗∗ 0.174∗∗∗ 0.176∗∗∗

(0.045) (0.047) (0.047)

day2 0.158∗∗∗ 0.158∗∗∗ 0.159∗∗∗

(0.046) (0.047) (0.047)

day3 0.170∗∗∗ 0.170∗∗∗ 0.171∗∗∗

(0.045) (0.046) (0.046)

day4 0.132∗∗∗ 0.132∗∗∗ 0.133∗∗∗

(0.046) (0.047) (0.047)

day5 0.307∗∗∗ 0.307∗∗∗ 0.310∗∗∗

(0.044) (0.045) (0.045)

day6 0.183∗∗∗ 0.183∗∗∗ 0.186∗∗∗

(0.045) (0.046) (0.046)

week6 0.133 0.133 0.134
(0.096) (0.099) (0.098)

week7 0.189∗∗ 0.189∗ 0.190∗

(0.096) (0.098) (0.097)

week8 0.168∗ 0.168∗ 0.169∗

(0.096) (0.098) (0.098)
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Dependent variable:

seriously_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

week9 0.090 0.090 0.091
(0.097) (0.100) (0.099)

week10 0.265∗∗∗ 0.265∗∗∗ 0.267∗∗∗

(0.095) (0.097) (0.097)

week11 0.243∗∗ 0.243∗∗ 0.244∗∗

(0.095) (0.098) (0.097)

week12 0.347∗∗∗ 0.347∗∗∗ 0.348∗∗∗

(0.094) (0.097) (0.096)

week13 0.464∗∗∗ 0.464∗∗∗ 0.463∗∗∗

(0.093) (0.096) (0.095)

week14 0.479∗∗∗ 0.479∗∗∗ 0.477∗∗∗

(0.093) (0.096) (0.095)

week15 0.512∗∗∗ 0.512∗∗∗ 0.512∗∗∗

(0.093) (0.095) (0.095)

week16 0.566∗∗∗ 0.566∗∗∗ 0.565∗∗∗

(0.093) (0.095) (0.094)

week17 0.699∗∗∗ 0.699∗∗∗ 0.699∗∗∗

(0.091) (0.094) (0.093)

week18 0.651∗∗∗ 0.651∗∗∗ 0.651∗∗∗
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Dependent variable:

seriously_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

(0.092) (0.094) (0.094)

week19 0.705∗∗∗ 0.705∗∗∗ 0.702∗∗∗

(0.092) (0.094) (0.094)

week20 0.716∗∗∗ 0.716∗∗∗ 0.718∗∗∗

(0.092) (0.094) (0.094)

week21 0.883∗∗∗ 0.883∗∗∗ 0.882∗∗∗

(0.097) (0.099) (0.099)

year2010 −0.240∗∗∗ −0.240∗∗∗ −0.238∗∗∗

(0.051) (0.052) (0.052)

year2011 −0.158∗∗∗ −0.158∗∗∗ −0.156∗∗∗

(0.050) (0.051) (0.051)

year2012 −0.185∗∗∗ −0.185∗∗∗ −0.185∗∗∗

(0.050) (0.051) (0.052)

year2013 −0.369∗∗∗ −0.369∗∗∗ −0.367∗∗∗

(0.052) (0.054) (0.054)

year2014 −0.242∗∗∗ −0.242∗∗∗ −0.240∗∗∗

(0.050) (0.052) (0.052)

year2015 −0.417∗∗∗ −0.417∗∗∗ −0.416∗∗∗

(0.053) (0.055) (0.055)
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Dependent variable:

seriously_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

year2016 −0.326∗∗∗ −0.326∗∗∗ −0.325∗∗∗

(0.052) (0.053) (0.053)

year2017 −0.446∗∗∗ −0.446∗∗∗ −0.444∗∗∗

(0.054) (0.056) (0.056)

year2018 −0.385∗∗∗ −0.385∗∗∗ −0.384∗∗∗

(0.053) (0.055) (0.055)

year2019 −0.532∗∗∗ −0.532∗∗∗ −0.531∗∗∗

(0.055) (0.056) (0.056)

Constant −3.362∗∗∗ −3.362∗∗∗ −3.366∗∗∗

(0.167) (0.172) (0.170)

Observations 29,832 29,832 29,832
Log Likelihood −16,907.080 −16,892.900
θ 6.230∗∗∗ (1.239)
Akaike Inf. Crit. 33,928.170 33,899.810

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.15: IRR of the best-fitted regression model for the seriously
injured accidents without weather variables in the spring period.

Estimate Robust SE Pr(>|z|) IRR

(Intercept) -3.366 0.170 0 0.035
dark 0.207 0.069 0.003 1.230

hour01 0.093 0.162 0.567 1.097
hour02 0.009 0.167 0.958 1.009
hour03 -0.469 0.186 0.012 0.626
hour04 0.109 0.165 0.511 1.115
hour05 1.288 0.138 0 3.627
hour06 1.635 0.142 0 5.127
hour07 1.915 0.143 0 6.789
hour08 1.795 0.145 0 6.022
hour09 1.766 0.144 0 5.849
hour10 1.817 0.144 0 6.153
hour11 1.850 0.144 0 6.359
hour12 1.917 0.143 0 6.797
hour13 2.059 0.142 0 7.839
hour14 2.261 0.141 0 9.597
hour15 2.235 0.141 0 9.351
hour16 2.232 0.142 0 9.321
hour17 2.160 0.142 0 8.674
hour18 2.009 0.134 0 7.455
hour19 1.647 0.134 0 5.194
hour20 1.175 0.137 0 3.237
hour21 0.919 0.139 0 2.506
hour22 0.727 0.143 0 2.070
hour23 0.354 0.157 0.024 1.424
day1 0.176 0.048 0 1.192
day2 0.159 0.048 0.001 1.172
day3 0.171 0.047 0 1.187
day4 0.133 0.047 0.005 1.143
day5 0.310 0.046 0 1.363
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Estimate Robust SE Pr(>|z|) IRR

day6 0.186 0.048 0 1.204
week6 0.134 0.097 0.168 1.143
week7 0.190 0.096 0.047 1.209
week8 0.169 0.097 0.082 1.184
week9 0.091 0.097 0.349 1.095
week10 0.267 0.095 0.005 1.306
week11 0.244 0.095 0.010 1.277
week12 0.348 0.094 0 1.416
week13 0.463 0.094 0 1.590
week14 0.477 0.094 0 1.611
week15 0.512 0.094 0 1.669
week16 0.565 0.093 0 1.759
week17 0.699 0.092 0 2.011
week18 0.651 0.093 0 1.918
week19 0.702 0.092 0 2.018
week20 0.718 0.092 0 2.050
week21 0.882 0.096 0 2.415

year2010 -0.238 0.054 0 0.788
year2011 -0.156 0.052 0.003 0.856
year2012 -0.185 0.053 0 0.831
year2013 -0.367 0.054 0 0.693
year2014 -0.240 0.053 0 0.787
year2015 -0.416 0.055 0 0.660
year2016 -0.325 0.054 0 0.722
year2017 -0.444 0.057 0 0.642
year2018 -0.384 0.056 0 0.681
year2019 -0.531 0.058 0 0.588
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Table A.16: The results of the regression models for seriously in-
jured accidents with weather and explanatory variables in the spring
period.

Dependent variable:

seriously_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

dark 0.268∗∗∗ 0.268∗∗∗ 0.270∗∗∗

(0.068) (0.068) (0.068)

holiday1 0.083 0.083 0.083
(0.064) (0.064) (0.066)

TMP_less_zero1 −0.739∗∗∗ −0.739∗∗∗ −0.741∗∗∗

(0.066) (0.066) (0.067)

TMP_less_five1 −0.693∗∗∗ −0.693∗∗∗ −0.694∗∗∗

(0.053) (0.053) (0.054)

TMP_less_ten1 −0.610∗∗∗ −0.610∗∗∗ −0.610∗∗∗

(0.042) (0.042) (0.043)

TMP_less_fifteen1 −0.310∗∗∗ −0.310∗∗∗ −0.310∗∗∗

(0.036) (0.036) (0.037)

mist1 0.014 0.014 0.013
(0.045) (0.045) (0.045)

fog1 −0.051 −0.051 −0.054
(0.189) (0.189) (0.191)

Continued on next page
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Dependent variable:

seriously_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

drizzle1 0.041 0.041 0.040
(0.238) (0.238) (0.241)

rain1 0.028 0.028 0.030
(0.063) (0.063) (0.064)

snow1 0.082 0.082 0.081
(0.086) (0.086) (0.087)

precipitation1 −0.071 −0.071 −0.072
(0.057) (0.057) (0.058)

crash_into_solid_obstacle 0.088∗∗∗ 0.088∗∗∗ 0.089∗∗∗

(0.006) (0.006) (0.006)

cause_intoxication 0.163∗∗∗ 0.163∗∗∗ 0.165∗∗∗

(0.014) (0.014) (0.014)

cause_damaged_road −0.032 −0.032 −0.031
(0.053) (0.053) (0.054)

cause_car_defect −0.003 −0.003 −0.003
(0.044) (0.044) (0.045)

hour01 0.129 0.129 0.130
(0.162) (0.162) (0.162)

hour02 0.070 0.070 0.072
Continued on next page
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Dependent variable:

seriously_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

(0.166) (0.166) (0.166)

hour03 −0.358∗ −0.358∗ −0.357∗

(0.188) (0.188) (0.189)

hour04 0.237 0.237 0.238
(0.162) (0.162) (0.163)

hour05 1.399∗∗∗ 1.399∗∗∗ 1.401∗∗∗

(0.137) (0.137) (0.137)

hour06 1.721∗∗∗ 1.721∗∗∗ 1.724∗∗∗

(0.142) (0.142) (0.143)

hour07 1.970∗∗∗ 1.970∗∗∗ 1.973∗∗∗

(0.145) (0.145) (0.146)

hour08 1.831∗∗∗ 1.831∗∗∗ 1.834∗∗∗

(0.146) (0.146) (0.147)

hour09 1.762∗∗∗ 1.762∗∗∗ 1.766∗∗∗

(0.146) (0.146) (0.147)

hour10 1.756∗∗∗ 1.756∗∗∗ 1.759∗∗∗

(0.146) (0.146) (0.147)

hour11 1.738∗∗∗ 1.738∗∗∗ 1.741∗∗∗

(0.145) (0.145) (0.146)
Continued on next page
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Dependent variable:

seriously_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

hour12 1.784∗∗∗ 1.784∗∗∗ 1.788∗∗∗

(0.145) (0.145) (0.146)

hour13 1.876∗∗∗ 1.876∗∗∗ 1.879∗∗∗

(0.144) (0.144) (0.145)

hour14 2.033∗∗∗ 2.033∗∗∗ 2.036∗∗∗

(0.142) (0.142) (0.143)

hour15 1.987∗∗∗ 1.987∗∗∗ 1.989∗∗∗

(0.142) (0.142) (0.143)

hour16 1.981∗∗∗ 1.981∗∗∗ 1.982∗∗∗

(0.142) (0.142) (0.143)

hour17 1.934∗∗∗ 1.934∗∗∗ 1.935∗∗∗

(0.142) (0.142) (0.143)

hour18 1.789∗∗∗ 1.789∗∗∗ 1.790∗∗∗

(0.136) (0.136) (0.137)

hour19 1.454∗∗∗ 1.454∗∗∗ 1.455∗∗∗

(0.135) (0.135) (0.136)

hour20 1.043∗∗∗ 1.043∗∗∗ 1.044∗∗∗

(0.138) (0.138) (0.139)

Continued on next page



A. Title of Appendix A LX

Dependent variable:

seriously_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

hour21 0.793∗∗∗ 0.793∗∗∗ 0.794∗∗∗

(0.139) (0.139) (0.140)

hour22 0.647∗∗∗ 0.647∗∗∗ 0.647∗∗∗

(0.143) (0.143) (0.143)

hour23 0.301∗∗ 0.301∗∗ 0.301∗∗

(0.153) (0.153) (0.153)

day1 0.168∗∗∗ 0.168∗∗∗ 0.172∗∗∗

(0.046) (0.046) (0.047)

day2 0.144∗∗∗ 0.144∗∗∗ 0.148∗∗∗

(0.046) (0.046) (0.047)

day3 0.171∗∗∗ 0.171∗∗∗ 0.173∗∗∗

(0.046) (0.046) (0.046)

day4 0.114∗∗ 0.114∗∗ 0.117∗∗

(0.046) (0.046) (0.047)

day5 0.251∗∗∗ 0.251∗∗∗ 0.255∗∗∗

(0.044) (0.044) (0.045)

day6 0.122∗∗∗ 0.122∗∗∗ 0.124∗∗∗

(0.045) (0.045) (0.046)

week6 0.112 0.112 0.111
Continued on next page
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Dependent variable:

seriously_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

(0.097) (0.097) (0.098)

week7 0.145 0.145 0.146
(0.096) (0.096) (0.097)

week8 0.136 0.136 0.136
(0.097) (0.097) (0.098)

week9 0.088 0.088 0.088
(0.099) (0.099) (0.100)

week10 0.222∗∗ 0.222∗∗ 0.222∗∗

(0.097) (0.097) (0.098)

week11 0.151 0.151 0.151
(0.099) (0.099) (0.100)

week12 0.199∗∗ 0.199∗∗ 0.199∗∗

(0.098) (0.098) (0.099)

week13 0.276∗∗∗ 0.276∗∗∗ 0.275∗∗∗

(0.098) (0.098) (0.099)

week14 0.207∗∗ 0.207∗∗ 0.207∗∗

(0.099) (0.099) (0.100)

week15 0.222∗∗ 0.222∗∗ 0.222∗∗

(0.100) (0.100) (0.101)
Continued on next page
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Dependent variable:

seriously_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

week16 0.233∗∗ 0.233∗∗ 0.233∗∗

(0.100) (0.100) (0.101)

week17 0.283∗∗∗ 0.283∗∗∗ 0.283∗∗∗

(0.100) (0.100) (0.101)

week18 0.220∗∗ 0.220∗∗ 0.219∗∗

(0.101) (0.101) (0.103)

week19 0.200∗ 0.200∗ 0.199∗

(0.102) (0.102) (0.103)

week20 0.252∗∗ 0.252∗∗ 0.253∗∗

(0.101) (0.101) (0.102)

week21 0.312∗∗∗ 0.312∗∗∗ 0.311∗∗∗

(0.107) (0.107) (0.108)

year2010 −0.157∗∗∗ −0.157∗∗∗ −0.156∗∗∗

(0.051) (0.051) (0.052)

year2011 −0.155∗∗∗ −0.155∗∗∗ −0.154∗∗∗

(0.050) (0.050) (0.051)

year2012 −0.182∗∗∗ −0.182∗∗∗ −0.182∗∗∗

(0.050) (0.050) (0.051)
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Dependent variable:

seriously_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

year2013 −0.319∗∗∗ −0.319∗∗∗ −0.318∗∗∗

(0.053) (0.053) (0.054)

year2014 −0.253∗∗∗ −0.253∗∗∗ −0.252∗∗∗

(0.051) (0.051) (0.052)

year2015 −0.357∗∗∗ −0.357∗∗∗ −0.355∗∗∗

(0.054) (0.054) (0.055)

year2016 −0.282∗∗∗ −0.282∗∗∗ −0.282∗∗∗

(0.052) (0.052) (0.053)

year2017 −0.425∗∗∗ −0.425∗∗∗ −0.424∗∗∗

(0.055) (0.055) (0.055)

year2018 −0.453∗∗∗ −0.453∗∗∗ −0.453∗∗∗

(0.054) (0.054) (0.055)

year2019 −0.545∗∗∗ −0.545∗∗∗ −0.544∗∗∗

(0.056) (0.056) (0.056)

Constant −2.864∗∗∗ −2.864∗∗∗ −2.872∗∗∗

(0.177) (0.177) (0.178)

Observations 29,832 29,832 29,832
Log Likelihood −16,579.450 −16,575.990
θ 12.251∗∗∗ (4.312)
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Dependent variable:

seriously_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

Akaike Inf. Crit. 33,302.900 33,295.980

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A.17: IRR of the best-fitted regression model for the seri-
ously injured accidents with weather and explanatory variables in
the spring period.

Estimate Robust SE Pr(>|z|) IRR

(Intercept) -2.872 0.176 0 0.057
dark 0.270 0.069 0 1.310

holiday1 0.083 0.065 0.201 1.086
TMP_less_zero1 -0.741 0.067 0 0.477
TMP_less_five1 -0.694 0.053 0 0.500
TMP_less_ten1 -0.610 0.042 0 0.543

TMP_less_fifteen1 -0.310 0.036 0 0.733
mist1 0.013 0.044 0.760 1.013
fog1 -0.054 0.188 0.775 0.948

drizzle1 0.040 0.234 0.866 1.040
rain1 0.030 0.063 0.640 1.030
snow1 0.081 0.089 0.363 1.084

precipitation1 -0.072 0.058 0.212 0.931
crash_into_solid_obstacle 0.089 0.007 0 1.093

cause_intoxication 0.165 0.015 0 1.179
cause_damaged_road -0.031 0.053 0.553 0.969

cause_car_defect -0.003 0.044 0.938 0.997
hour01 0.130 0.160 0.415 1.139
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Estimate Robust SE Pr(>|z|) IRR

hour02 0.072 0.166 0.666 1.074
hour03 -0.357 0.184 0.053 0.700
hour04 0.238 0.164 0.146 1.269
hour05 1.401 0.135 0 4.059
hour06 1.724 0.139 0 5.608
hour07 1.973 0.143 0 7.195
hour08 1.834 0.144 0 6.261
hour09 1.766 0.144 0 5.850
hour10 1.759 0.143 0 5.807
hour11 1.741 0.143 0 5.705
hour12 1.788 0.142 0 5.976
hour13 1.879 0.141 0 6.547
hour14 2.036 0.140 0 7.662
hour15 1.989 0.140 0 7.311
hour16 1.982 0.141 0 7.256
hour17 1.935 0.141 0 6.925
hour18 1.790 0.134 0 5.989
hour19 1.455 0.133 0 4.285
hour20 1.044 0.136 0 2.840
hour21 0.794 0.138 0 2.212
hour22 0.647 0.142 0 1.909
hour23 0.301 0.155 0.052 1.352
day1 0.172 0.047 0 1.187
day2 0.148 0.048 0.002 1.159
day3 0.173 0.046 0 1.189
day4 0.117 0.047 0.012 1.124
day5 0.255 0.045 0 1.291
day6 0.124 0.047 0.009 1.132
week6 0.111 0.097 0.251 1.118
week7 0.146 0.096 0.129 1.157
week8 0.136 0.098 0.166 1.145
week9 0.088 0.099 0.374 1.092
week10 0.222 0.097 0.022 1.249
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Estimate Robust SE Pr(>|z|) IRR

week11 0.151 0.099 0.126 1.163
week12 0.199 0.099 0.043 1.221
week13 0.275 0.100 0.006 1.317
week14 0.207 0.101 0.041 1.230
week15 0.222 0.101 0.028 1.249
week16 0.233 0.101 0.022 1.262
week17 0.283 0.101 0.005 1.328
week18 0.219 0.102 0.032 1.245
week19 0.199 0.103 0.053 1.220
week20 0.253 0.103 0.014 1.288
week21 0.311 0.106 0.003 1.365

year2010 -0.156 0.054 0.004 0.856
year2011 -0.154 0.052 0.003 0.858
year2012 -0.182 0.052 0 0.833
year2013 -0.318 0.054 0 0.728
year2014 -0.252 0.053 0 0.777
year2015 -0.355 0.056 0 0.701
year2016 -0.282 0.054 0 0.754
year2017 -0.424 0.057 0 0.655
year2018 -0.453 0.056 0 0.636
year2019 -0.544 0.058 0 0.580
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Table A.18: The results of regression model for seriously injured ac-
cidents without weather variables in the autumn period.

Dependent variable:

seriously_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

dark 0.300∗∗∗ 0.300∗∗∗ 0.298∗∗∗

(0.058) (0.059) (0.059)

hour01 −0.023 −0.023 −0.023
(0.152) (0.155) (0.152)

hour02 −0.047 −0.047 −0.047
(0.153) (0.156) (0.153)

hour03 −0.400∗∗ −0.400∗∗ −0.400∗∗

(0.168) (0.172) (0.169)

hour04 −0.108 −0.108 −0.108
(0.155) (0.159) (0.155)

hour05 1.165∗∗∗ 1.165∗∗∗ 1.165∗∗∗

(0.122) (0.125) (0.123)

hour06 1.736∗∗∗ 1.736∗∗∗ 1.734∗∗∗

(0.119) (0.122) (0.120)

hour07 1.984∗∗∗ 1.984∗∗∗ 1.982∗∗∗

(0.129) (0.132) (0.130)

hour08 1.585∗∗∗ 1.585∗∗∗ 1.583∗∗∗
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Dependent variable:

seriously_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

(0.134) (0.137) (0.135)

hour09 1.799∗∗∗ 1.799∗∗∗ 1.797∗∗∗

(0.131) (0.135) (0.132)

hour10 1.789∗∗∗ 1.789∗∗∗ 1.786∗∗∗

(0.131) (0.135) (0.133)

hour11 1.816∗∗∗ 1.816∗∗∗ 1.814∗∗∗

(0.131) (0.134) (0.132)

hour12 1.744∗∗∗ 1.744∗∗∗ 1.742∗∗∗

(0.132) (0.135) (0.133)

hour13 2.047∗∗∗ 2.047∗∗∗ 2.044∗∗∗

(0.129) (0.132) (0.130)

hour14 2.278∗∗∗ 2.278∗∗∗ 2.275∗∗∗

(0.128) (0.131) (0.129)

hour15 2.239∗∗∗ 2.239∗∗∗ 2.237∗∗∗

(0.128) (0.131) (0.129)

hour16 2.355∗∗∗ 2.355∗∗∗ 2.354∗∗∗

(0.125) (0.128) (0.126)

hour17 2.244∗∗∗ 2.244∗∗∗ 2.243∗∗∗

(0.117) (0.120) (0.118)
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Dependent variable:

seriously_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

hour18 1.874∗∗∗ 1.874∗∗∗ 1.872∗∗∗

(0.119) (0.122) (0.120)

hour19 1.514∗∗∗ 1.514∗∗∗ 1.513∗∗∗

(0.119) (0.122) (0.120)

hour20 0.984∗∗∗ 0.984∗∗∗ 0.983∗∗∗

(0.125) (0.128) (0.126)

hour21 0.764∗∗∗ 0.764∗∗∗ 0.765∗∗∗

(0.129) (0.132) (0.130)

hour22 0.450∗∗∗ 0.450∗∗∗ 0.449∗∗∗

(0.136) (0.140) (0.137)

hour23 0.318∗∗ 0.318∗∗ 0.317∗∗

(0.140) (0.143) (0.141)

day1 0.155∗∗∗ 0.155∗∗∗ 0.153∗∗∗

(0.043) (0.044) (0.043)

day2 0.160∗∗∗ 0.160∗∗∗ 0.159∗∗∗

(0.043) (0.044) (0.043)

day3 0.109∗∗ 0.109∗∗ 0.107∗∗

(0.043) (0.044) (0.044)
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Dependent variable:

seriously_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

day4 0.177∗∗∗ 0.177∗∗∗ 0.176∗∗∗

(0.043) (0.044) (0.043)

day5 0.303∗∗∗ 0.303∗∗∗ 0.302∗∗∗

(0.041) (0.043) (0.042)

day6 0.177∗∗∗ 0.177∗∗∗ 0.179∗∗∗

(0.043) (0.044) (0.043)

week36 −0.185 −0.185 −0.185
(0.117) (0.119) (0.119)

week37 −0.055 −0.055 −0.057
(0.115) (0.117) (0.117)

week38 −0.153 −0.153 −0.154
(0.115) (0.118) (0.118)

week39 −0.186 −0.186 −0.188
(0.116) (0.118) (0.118)

week40 −0.221∗ −0.221∗ −0.223∗

(0.116) (0.119) (0.118)

week41 −0.296∗∗ −0.296∗∗ −0.298∗∗

(0.116) (0.119) (0.119)

week42 −0.208∗ −0.208∗ −0.208∗
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Dependent variable:

seriously_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

(0.116) (0.119) (0.118)

week43 −0.399∗∗∗ −0.399∗∗∗ −0.400∗∗∗

(0.117) (0.120) (0.120)

week44 −0.492∗∗∗ −0.492∗∗∗ −0.494∗∗∗

(0.118) (0.121) (0.121)

week45 −0.485∗∗∗ −0.485∗∗∗ −0.485∗∗∗

(0.118) (0.121) (0.121)

week46 −0.501∗∗∗ −0.501∗∗∗ −0.502∗∗∗

(0.119) (0.121) (0.121)

week47 −0.558∗∗∗ −0.558∗∗∗ −0.560∗∗∗

(0.119) (0.122) (0.122)

week48 −0.527∗∗∗ −0.527∗∗∗ −0.527∗∗∗

(0.119) (0.122) (0.121)

week49 −0.586∗∗∗ −0.586∗∗∗ −0.587∗∗∗

(0.120) (0.123) (0.122)

week50 −0.600∗∗∗ −0.600∗∗∗ −0.601∗∗∗

(0.120) (0.123) (0.122)

week51 −0.635∗∗∗ −0.635∗∗∗ −0.636∗∗∗

(0.121) (0.124) (0.124)
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Dependent variable:

seriously_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

week52 −1.178∗∗∗ −1.178∗∗∗ −1.178∗∗∗

(0.181) (0.186) (0.184)

year2010 −0.231∗∗∗ −0.231∗∗∗ −0.232∗∗∗

(0.048) (0.049) (0.048)

year2011 −0.156∗∗∗ −0.156∗∗∗ −0.157∗∗∗

(0.046) (0.048) (0.047)

year2012 −0.229∗∗∗ −0.229∗∗∗ −0.230∗∗∗

(0.047) (0.048) (0.048)

year2013 −0.227∗∗∗ −0.227∗∗∗ −0.230∗∗∗

(0.047) (0.048) (0.048)

year2014 −0.312∗∗∗ −0.312∗∗∗ −0.313∗∗∗

(0.048) (0.049) (0.049)

year2015 −0.426∗∗∗ −0.426∗∗∗ −0.428∗∗∗

(0.050) (0.051) (0.050)

year2016 −0.398∗∗∗ −0.398∗∗∗ −0.399∗∗∗

(0.050) (0.051) (0.051)

year2017 −0.497∗∗∗ −0.497∗∗∗ −0.497∗∗∗

(0.051) (0.052) (0.052)
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Dependent variable:

seriously_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

year2018 −0.426∗∗∗ −0.426∗∗∗ −0.428∗∗∗

(0.050) (0.051) (0.051)

year2019 −0.660∗∗∗ −0.660∗∗∗ −0.662∗∗∗

(0.054) (0.055) (0.054)

Constant −2.428∗∗∗ −2.428∗∗∗ −2.422∗∗∗

(0.161) (0.165) (0.163)

Observations 29,832 29,832 29,832
Log Likelihood −18,050.390 −18,045.430
θ 11.272∗∗∗ (3.440)
Akaike Inf. Crit. 36,216.770 36,206.850

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A.19: IRR of the best-fitted regression model for the seriously
injured accidents without weather variables in the autumn period.

Estimate Robust SE Pr(>|z|) IRR

(Intercept) -2.422 0.167 0 0.089
dark 0.298 0.060 0 1.347

hour01 -0.023 0.156 0.881 0.977
hour02 -0.047 0.158 0.768 0.954
hour03 -0.400 0.177 0.024 0.670
hour04 -0.108 0.157 0.493 0.898
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Estimate Robust SE Pr(>|z|) IRR

hour05 1.165 0.126 0 3.206
hour06 1.734 0.124 0 5.661
hour07 1.982 0.133 0 7.257
hour08 1.583 0.137 0 4.868
hour09 1.797 0.136 0 6.032
hour10 1.786 0.136 0 5.968
hour11 1.814 0.135 0 6.135
hour12 1.742 0.136 0 5.711
hour13 2.044 0.133 0 7.724
hour14 2.275 0.131 0 9.731
hour15 2.237 0.133 0 9.364
hour16 2.354 0.130 0 10.530
hour17 2.243 0.122 0 9.421
hour18 1.872 0.122 0 6.503
hour19 1.513 0.123 0 4.540
hour20 0.983 0.128 0 2.671
hour21 0.765 0.133 0 2.148
hour22 0.449 0.142 0.002 1.567
hour23 0.317 0.145 0.029 1.373
day1 0.153 0.044 0 1.166
day2 0.159 0.044 0 1.173
day3 0.107 0.045 0.017 1.113
day4 0.176 0.043 0 1.192
day5 0.302 0.042 0 1.353
day6 0.179 0.044 0 1.196

week36 -0.185 0.117 0.114 0.831
week37 -0.057 0.115 0.619 0.944
week38 -0.154 0.115 0.182 0.857
week39 -0.188 0.116 0.104 0.829
week40 -0.223 0.116 0.054 0.800
week41 -0.298 0.116 0.010 0.742
week42 -0.208 0.116 0.074 0.812
week43 -0.400 0.117 0.001 0.670
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Estimate Robust SE Pr(>|z|) IRR

week44 -0.494 0.119 0 0.610
week45 -0.485 0.119 0 0.616
week46 -0.502 0.118 0 0.605
week47 -0.560 0.119 0 0.571
week48 -0.527 0.120 0 0.590
week49 -0.587 0.121 0 0.556
week50 -0.601 0.121 0 0.548
week51 -0.636 0.120 0 0.529
week52 -1.178 0.181 0 0.308

year2010 -0.232 0.049 0 0.793
year2011 -0.157 0.048 0.001 0.855
year2012 -0.230 0.048 0 0.794
year2013 -0.230 0.048 0 0.795
year2014 -0.313 0.050 0 0.731
year2015 -0.428 0.051 0 0.652
year2016 -0.399 0.052 0 0.671
year2017 -0.497 0.052 0 0.608
year2018 -0.428 0.052 0 0.652
year2019 -0.662 0.055 0 0.516
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Table A.20: The results of the regression models for the seriously
injured accidents with weather and explanatory variables in the au-
tumn period.

Dependent variable:

seriously_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

dark 0.317∗∗∗ 0.317∗∗∗ 0.316∗∗∗

(0.058) (0.059) (0.059)

holiday1 −0.143∗ −0.143∗ −0.144∗

(0.074) (0.075) (0.075)

TMP_less_zero1 −0.418∗∗∗ −0.418∗∗∗ −0.418∗∗∗

(0.071) (0.071) (0.072)

TMP_less_five1 −0.329∗∗∗ −0.329∗∗∗ −0.329∗∗∗

(0.054) (0.054) (0.055)

TMP_less_ten1 −0.251∗∗∗ −0.251∗∗∗ −0.250∗∗∗

(0.045) (0.045) (0.045)

TMP_less_fifteen1 −0.233∗∗∗ −0.233∗∗∗ −0.233∗∗∗

(0.037) (0.037) (0.037)

mist1 −0.032 −0.032 −0.032
(0.035) (0.035) (0.035)

fog1 0.069 0.069 0.070
(0.066) (0.067) (0.067)

Continued on next page



A. Title of Appendix A LXXVII

Dependent variable:

seriously_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

drizzle1 −0.232∗ −0.232∗ −0.234∗

(0.133) (0.133) (0.134)

rain1 0.071 0.071 0.071
(0.056) (0.056) (0.056)

snow1 −0.040 −0.040 −0.042
(0.097) (0.097) (0.098)

precipitation1 0.096∗ 0.096∗ 0.095∗

(0.056) (0.056) (0.056)

crash_into_solid_obstacle 0.061∗∗∗ 0.061∗∗∗ 0.061∗∗∗

(0.006) (0.006) (0.006)

cause_intoxication 0.157∗∗∗ 0.157∗∗∗ 0.158∗∗∗

(0.013) (0.013) (0.013)

cause_damaged_road 0.041 0.041 0.041
(0.048) (0.049) (0.049)

cause_car_defect 0.061 0.061 0.061
(0.040) (0.040) (0.040)

hour01 0.002 0.002 0.001
(0.152) (0.152) (0.152)

hour02 −0.002 −0.002 −0.002
Continued on next page
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Dependent variable:

seriously_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

(0.153) (0.153) (0.153)

hour03 −0.320∗ −0.320∗ −0.320∗

(0.168) (0.169) (0.169)

hour04 −0.036 −0.036 −0.035
(0.155) (0.156) (0.155)

hour05 1.205∗∗∗ 1.205∗∗∗ 1.206∗∗∗

(0.122) (0.123) (0.123)

hour06 1.736∗∗∗ 1.736∗∗∗ 1.735∗∗∗

(0.119) (0.120) (0.120)

hour07 1.972∗∗∗ 1.972∗∗∗ 1.970∗∗∗

(0.129) (0.130) (0.130)

hour08 1.573∗∗∗ 1.573∗∗∗ 1.571∗∗∗

(0.135) (0.135) (0.135)

hour09 1.775∗∗∗ 1.775∗∗∗ 1.773∗∗∗

(0.132) (0.133) (0.133)

hour10 1.740∗∗∗ 1.740∗∗∗ 1.739∗∗∗

(0.132) (0.133) (0.133)

hour11 1.755∗∗∗ 1.755∗∗∗ 1.753∗∗∗

(0.132) (0.132) (0.132)
Continued on next page
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Dependent variable:

seriously_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

hour12 1.672∗∗∗ 1.672∗∗∗ 1.671∗∗∗

(0.132) (0.133) (0.133)

hour13 1.945∗∗∗ 1.945∗∗∗ 1.943∗∗∗

(0.130) (0.130) (0.130)

hour14 2.128∗∗∗ 2.128∗∗∗ 2.127∗∗∗

(0.128) (0.129) (0.129)

hour15 2.089∗∗∗ 2.089∗∗∗ 2.086∗∗∗

(0.128) (0.129) (0.129)

hour16 2.202∗∗∗ 2.202∗∗∗ 2.202∗∗∗

(0.125) (0.126) (0.126)

hour17 2.083∗∗∗ 2.083∗∗∗ 2.082∗∗∗

(0.118) (0.119) (0.119)

hour18 1.751∗∗∗ 1.751∗∗∗ 1.750∗∗∗

(0.119) (0.120) (0.120)

hour19 1.403∗∗∗ 1.403∗∗∗ 1.402∗∗∗

(0.119) (0.120) (0.120)

hour20 0.886∗∗∗ 0.886∗∗∗ 0.886∗∗∗

(0.125) (0.126) (0.126)

Continued on next page
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Dependent variable:

seriously_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

hour21 0.687∗∗∗ 0.687∗∗∗ 0.687∗∗∗

(0.129) (0.130) (0.130)

hour22 0.396∗∗∗ 0.396∗∗∗ 0.396∗∗∗

(0.136) (0.137) (0.137)

hour23 0.282∗∗ 0.282∗∗ 0.281∗∗

(0.140) (0.141) (0.141)

day1 0.151∗∗∗ 0.151∗∗∗ 0.150∗∗∗

(0.043) (0.043) (0.043)

day2 0.184∗∗∗ 0.184∗∗∗ 0.184∗∗∗

(0.043) (0.043) (0.043)

day3 0.115∗∗∗ 0.115∗∗∗ 0.115∗∗∗

(0.044) (0.044) (0.044)

day4 0.181∗∗∗ 0.181∗∗∗ 0.180∗∗∗

(0.043) (0.043) (0.043)

day5 0.276∗∗∗ 0.276∗∗∗ 0.277∗∗∗

(0.042) (0.042) (0.042)

day6 0.126∗∗∗ 0.126∗∗∗ 0.127∗∗∗

(0.043) (0.043) (0.043)

week36 −0.158 −0.158 −0.157
Continued on next page
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Dependent variable:

seriously_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

(0.117) (0.117) (0.118)

week37 −0.053 −0.053 −0.053
(0.115) (0.115) (0.116)

week38 −0.092 −0.092 −0.091
(0.116) (0.116) (0.117)

week39 −0.080 −0.080 −0.079
(0.117) (0.117) (0.118)

week40 −0.102 −0.102 −0.102
(0.117) (0.117) (0.118)

week41 −0.188 −0.188 −0.188
(0.118) (0.119) (0.120)

week42 −0.070 −0.070 −0.069
(0.118) (0.119) (0.120)

week43 −0.206∗ −0.206∗ −0.206∗

(0.121) (0.121) (0.122)

week44 −0.244∗∗ −0.244∗∗ −0.245∗∗

(0.123) (0.123) (0.125)

week45 −0.267∗∗ −0.267∗∗ −0.266∗∗

(0.122) (0.122) (0.124)
Continued on next page
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Dependent variable:

seriously_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

week46 −0.244∗∗ −0.244∗∗ −0.243∗

(0.123) (0.124) (0.125)

week47 −0.313∗∗ −0.313∗∗ −0.314∗∗

(0.124) (0.125) (0.126)

week48 −0.260∗∗ −0.260∗∗ −0.259∗∗

(0.126) (0.126) (0.127)

week49 −0.322∗∗ −0.322∗∗ −0.322∗∗

(0.126) (0.127) (0.128)

week50 −0.344∗∗∗ −0.344∗∗∗ −0.344∗∗∗

(0.127) (0.127) (0.128)

week51 −0.393∗∗∗ −0.393∗∗∗ −0.392∗∗∗

(0.129) (0.129) (0.130)

week52 −0.859∗∗∗ −0.859∗∗∗ −0.857∗∗∗

(0.188) (0.189) (0.190)

year2010 −0.188∗∗∗ −0.188∗∗∗ −0.189∗∗∗

(0.048) (0.048) (0.049)

year2011 −0.159∗∗∗ −0.159∗∗∗ −0.160∗∗∗

(0.047) (0.047) (0.047)
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Dependent variable:

seriously_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

year2012 −0.219∗∗∗ −0.219∗∗∗ −0.220∗∗∗

(0.047) (0.048) (0.048)

year2013 −0.204∗∗∗ −0.204∗∗∗ −0.205∗∗∗

(0.047) (0.048) (0.048)

year2014 −0.312∗∗∗ −0.312∗∗∗ −0.313∗∗∗

(0.049) (0.049) (0.049)

year2015 −0.436∗∗∗ −0.436∗∗∗ −0.437∗∗∗

(0.050) (0.050) (0.050)

year2016 −0.396∗∗∗ −0.396∗∗∗ −0.397∗∗∗

(0.050) (0.051) (0.051)

year2017 −0.505∗∗∗ −0.505∗∗∗ −0.506∗∗∗

(0.052) (0.052) (0.052)

year2018 −0.466∗∗∗ −0.466∗∗∗ −0.468∗∗∗

(0.051) (0.051) (0.051)

year2019 −0.692∗∗∗ −0.692∗∗∗ −0.693∗∗∗

(0.054) (0.054) (0.055)

Constant −2.563∗∗∗ −2.563∗∗∗ −2.563∗∗∗

(0.161) (0.162) (0.163)

Continued on next page



A. Title of Appendix A LXXXIV

Dependent variable:

seriously_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

Observations 29,832 29,832 29,832
Log Likelihood −17,853.690 −17,852.260
θ 18.181∗∗ (8.522)
Akaike Inf. Crit. 35,853.370 35,850.520

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A.21: IRR of the best-fitted regression model for the seriously
injured accidents with weather and explanatory variables in the au-
tumn period.

Estimate Robust SE Pr(>|z|) IRR

(Intercept) -2.563 0.165 0 0.077
dark 0.316 0.060 0 1.371

holiday1 -0.144 0.072 0.044 0.866
TMP_less_zero1 -0.418 0.072 0 0.658
TMP_less_five1 -0.329 0.054 0 0.719
TMP_less_ten1 -0.250 0.044 0 0.779

TMP_less_fifteen1 -0.233 0.037 0 0.792
mist1 -0.032 0.035 0.366 0.969
fog1 0.070 0.067 0.297 1.072

drizzle1 -0.234 0.126 0.064 0.791
rain1 0.071 0.057 0.208 1.074
snow1 -0.042 0.101 0.681 0.959

precipitation1 0.095 0.057 0.096 1.100
crash_into_solid_obstacle 0.061 0.006 0 1.063

cause_intoxication 0.158 0.013 0 1.171
Continued on next page
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Estimate Robust SE Pr(>|z|) IRR

cause_damaged_road 0.041 0.049 0.404 1.042
cause_car_defect 0.061 0.041 0.135 1.063

hour01 0.001 0.154 0.993 1.001
hour02 -0.002 0.157 0.989 0.998
hour03 -0.320 0.175 0.068 0.726
hour04 -0.035 0.156 0.823 0.966
hour05 1.206 0.126 0 3.339
hour06 1.735 0.123 0 5.668
hour07 1.970 0.132 0 7.170
hour08 1.571 0.137 0 4.811
hour09 1.773 0.135 0 5.891
hour10 1.739 0.136 0 5.691
hour11 1.753 0.135 0 5.775
hour12 1.671 0.135 0 5.317
hour13 1.943 0.133 0 6.979
hour14 2.127 0.131 0 8.388
hour15 2.086 0.132 0 8.057
hour16 2.202 0.129 0 9.041
hour17 2.082 0.122 0 8.022
hour18 1.750 0.122 0 5.755
hour19 1.402 0.122 0 4.062
hour20 0.886 0.127 0 2.425
hour21 0.687 0.133 0 1.988
hour22 0.396 0.140 0.005 1.485
hour23 0.281 0.144 0.051 1.324
day1 0.150 0.044 0.001 1.162
day2 0.184 0.044 0 1.202
day3 0.115 0.045 0.011 1.121
day4 0.180 0.043 0 1.198
day5 0.277 0.042 0 1.319
day6 0.127 0.044 0.004 1.135

week36 -0.157 0.116 0.174 0.855
week37 -0.053 0.114 0.642 0.949
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Estimate Robust SE Pr(>|z|) IRR

week38 -0.091 0.114 0.423 0.913
week39 -0.079 0.115 0.489 0.924
week40 -0.102 0.115 0.375 0.903
week41 -0.188 0.116 0.107 0.829
week42 -0.069 0.117 0.554 0.933
week43 -0.206 0.119 0.082 0.813
week44 -0.245 0.121 0.044 0.783
week45 -0.266 0.120 0.027 0.767
week46 -0.243 0.121 0.044 0.784
week47 -0.314 0.122 0.010 0.731
week48 -0.259 0.125 0.038 0.772
week49 -0.322 0.126 0.010 0.725
week50 -0.344 0.126 0.006 0.709
week51 -0.392 0.126 0.002 0.676
week52 -0.857 0.186 0 0.424

year2010 -0.189 0.049 0 0.828
year2011 -0.160 0.047 0.001 0.852
year2012 -0.220 0.048 0 0.802
year2013 -0.205 0.048 0 0.814
year2014 -0.313 0.050 0 0.731
year2015 -0.437 0.051 0 0.646
year2016 -0.397 0.052 0 0.672
year2017 -0.506 0.052 0 0.603
year2018 -0.468 0.052 0 0.626
year2019 -0.693 0.055 0 0.500

A.5 The results of GLM for slightly injured acci-

dents
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Table A.22: The results of regression models for slightly injured ac-
cidents without weather variables in the spring period.

Dependent variable:

slightly_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

dark 0.102∗∗∗ 0.102∗∗∗ 0.099∗∗∗

(0.026) (0.029) (0.028)

hour01 −0.145∗∗ −0.145∗∗ −0.144∗∗

(0.064) (0.072) (0.065)

hour02 −0.246∗∗∗ −0.246∗∗∗ −0.246∗∗∗

(0.065) (0.074) (0.067)

hour03 −0.281∗∗∗ −0.281∗∗∗ −0.281∗∗∗

(0.066) (0.075) (0.067)

hour04 −0.002 −0.002 −0.001
(0.061) (0.070) (0.063)

hour05 1.121∗∗∗ 1.121∗∗∗ 1.119∗∗∗

(0.051) (0.058) (0.053)

hour06 1.541∗∗∗ 1.541∗∗∗ 1.537∗∗∗

(0.053) (0.060) (0.055)

hour07 1.917∗∗∗ 1.917∗∗∗ 1.913∗∗∗

(0.053) (0.060) (0.056)

hour08 1.733∗∗∗ 1.733∗∗∗ 1.730∗∗∗

Continued on next page
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Dependent variable:

slightly_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

(0.054) (0.061) (0.057)

hour09 1.739∗∗∗ 1.739∗∗∗ 1.733∗∗∗

(0.054) (0.061) (0.057)

hour10 1.768∗∗∗ 1.768∗∗∗ 1.763∗∗∗

(0.054) (0.061) (0.057)

hour11 1.786∗∗∗ 1.786∗∗∗ 1.781∗∗∗

(0.054) (0.061) (0.057)

hour12 1.814∗∗∗ 1.814∗∗∗ 1.807∗∗∗

(0.054) (0.061) (0.057)

hour13 2.013∗∗∗ 2.013∗∗∗ 2.006∗∗∗

(0.053) (0.060) (0.056)

hour14 2.254∗∗∗ 2.254∗∗∗ 2.244∗∗∗

(0.052) (0.059) (0.056)

hour15 2.272∗∗∗ 2.272∗∗∗ 2.262∗∗∗

(0.052) (0.059) (0.056)

hour16 2.195∗∗∗ 2.195∗∗∗ 2.183∗∗∗

(0.053) (0.060) (0.056)

hour17 2.041∗∗∗ 2.041∗∗∗ 2.031∗∗∗

(0.052) (0.059) (0.055)
Continued on next page
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Dependent variable:

slightly_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

hour18 1.871∗∗∗ 1.871∗∗∗ 1.866∗∗∗

(0.050) (0.057) (0.053)

hour19 1.444∗∗∗ 1.444∗∗∗ 1.439∗∗∗

(0.051) (0.057) (0.053)

hour20 1.049∗∗∗ 1.049∗∗∗ 1.044∗∗∗

(0.052) (0.058) (0.054)

hour21 0.812∗∗∗ 0.812∗∗∗ 0.810∗∗∗

(0.052) (0.059) (0.054)

hour22 0.618∗∗∗ 0.618∗∗∗ 0.615∗∗∗

(0.054) (0.061) (0.055)

hour23 0.164∗∗∗ 0.164∗∗ 0.161∗∗∗

(0.059) (0.067) (0.060)

day1 0.341∗∗∗ 0.341∗∗∗ 0.328∗∗∗

(0.017) (0.019) (0.019)

day2 0.265∗∗∗ 0.265∗∗∗ 0.253∗∗∗

(0.017) (0.019) (0.019)

day3 0.283∗∗∗ 0.283∗∗∗ 0.271∗∗∗

(0.017) (0.019) (0.019)

Continued on next page
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Dependent variable:

slightly_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

day4 0.305∗∗∗ 0.305∗∗∗ 0.294∗∗∗

(0.017) (0.019) (0.019)

day5 0.441∗∗∗ 0.441∗∗∗ 0.431∗∗∗

(0.016) (0.019) (0.018)

day6 0.195∗∗∗ 0.195∗∗∗ 0.204∗∗∗

(0.017) (0.020) (0.019)

week6 0.010 0.010 0.009
(0.033) (0.037) (0.036)

week7 0.072∗∗ 0.072∗ 0.071∗∗

(0.033) (0.037) (0.036)

week8 0.034 0.034 0.036
(0.033) (0.037) (0.036)

week9 −0.036 −0.036 −0.038
(0.033) (0.038) (0.037)

week10 0.068∗∗ 0.068∗ 0.065∗

(0.033) (0.037) (0.036)

week11 0.120∗∗∗ 0.120∗∗∗ 0.120∗∗∗

(0.033) (0.037) (0.036)

week12 0.198∗∗∗ 0.198∗∗∗ 0.196∗∗∗

Continued on next page
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Dependent variable:

slightly_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

(0.032) (0.037) (0.036)

week13 0.240∗∗∗ 0.240∗∗∗ 0.234∗∗∗

(0.032) (0.036) (0.036)

week14 0.248∗∗∗ 0.248∗∗∗ 0.241∗∗∗

(0.032) (0.036) (0.036)

week15 0.290∗∗∗ 0.290∗∗∗ 0.283∗∗∗

(0.032) (0.036) (0.036)

week16 0.401∗∗∗ 0.401∗∗∗ 0.391∗∗∗

(0.032) (0.036) (0.035)

week17 0.440∗∗∗ 0.440∗∗∗ 0.428∗∗∗

(0.032) (0.036) (0.035)

week18 0.385∗∗∗ 0.385∗∗∗ 0.380∗∗∗

(0.032) (0.036) (0.036)

week19 0.456∗∗∗ 0.456∗∗∗ 0.446∗∗∗

(0.032) (0.036) (0.035)

week20 0.467∗∗∗ 0.467∗∗∗ 0.459∗∗∗

(0.032) (0.036) (0.035)

week21 0.572∗∗∗ 0.572∗∗∗ 0.567∗∗∗

(0.034) (0.039) (0.038)
Continued on next page
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Dependent variable:

slightly_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

year2010 −0.135∗∗∗ −0.135∗∗∗ −0.139∗∗∗

(0.020) (0.023) (0.023)

year2011 −0.078∗∗∗ −0.078∗∗∗ −0.085∗∗∗

(0.020) (0.023) (0.023)

year2012 −0.090∗∗∗ −0.090∗∗∗ −0.098∗∗∗

(0.020) (0.023) (0.023)

year2013 −0.123∗∗∗ −0.123∗∗∗ −0.130∗∗∗

(0.020) (0.023) (0.023)

year2014 −0.025 −0.025 −0.032
(0.020) (0.022) (0.022)

year2015 −0.040∗∗ −0.040∗ −0.050∗∗

(0.020) (0.022) (0.023)

year2016 −0.047∗∗ −0.047∗∗ −0.056∗∗

(0.020) (0.023) (0.023)

year2017 −0.028 −0.028 −0.038∗

(0.020) (0.022) (0.023)

year2018 0.037∗ 0.037∗ 0.025
(0.020) (0.022) (0.022)

Continued on next page
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Dependent variable:

slightly_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

year2019 −0.052∗∗∗ −0.052∗∗ −0.063∗∗∗

(0.020) (0.022) (0.023)

Constant −1.412∗∗∗ −1.412∗∗∗ −1.386∗∗∗

(0.061) (0.069) (0.065)

Observations 29,832 29,832 29,832
Log Likelihood −46,691.430 −46,346.520
θ 8.749∗∗∗ (0.409)
Akaike Inf. Crit. 93,496.860 92,807.040

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A.23: IRR of the best-fitted regression model for the slightly
injured accidents without weather variables in the spring period.

Estimate Robust SE Pr(>|z|) IRR

(Intercept) -1.386 0.070 0 0.250
dark 0.099 0.029 0.001 1.104

hour01 -0.144 0.070 0.039 0.866
hour02 -0.246 0.072 0.001 0.782
hour03 -0.281 0.073 0 0.755
hour04 -0.001 0.067 0.984 0.999
hour05 1.119 0.057 0 3.061
hour06 1.537 0.060 0 4.651
hour07 1.913 0.060 0 6.776

Continued on next page
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Estimate Robust SE Pr(>|z|) IRR

hour08 1.730 0.060 0 5.643
hour09 1.733 0.059 0 5.656
hour10 1.763 0.059 0 5.830
hour11 1.781 0.059 0 5.935
hour12 1.807 0.059 0 6.092
hour13 2.006 0.058 0 7.432
hour14 2.244 0.058 0 9.430
hour15 2.262 0.058 0 9.602
hour16 2.183 0.058 0 8.874
hour17 2.031 0.058 0 7.620
hour18 1.866 0.055 0 6.462
hour19 1.439 0.055 0 4.215
hour20 1.044 0.056 0 2.841
hour21 0.810 0.056 0 2.248
hour22 0.615 0.059 0 1.849
hour23 0.161 0.063 0.011 1.174
day1 0.328 0.019 0 1.388
day2 0.253 0.020 0 1.288
day3 0.271 0.020 0 1.312
day4 0.294 0.020 0 1.342
day5 0.431 0.019 0 1.539
day6 0.204 0.020 0 1.226
week6 0.009 0.040 0.816 1.009
week7 0.071 0.040 0.074 1.074
week8 0.036 0.039 0.355 1.037
week9 -0.038 0.039 0.327 0.963
week10 0.065 0.039 0.097 1.067
week11 0.120 0.039 0.002 1.127
week12 0.196 0.038 0 1.216
week13 0.234 0.038 0 1.263
week14 0.241 0.038 0 1.272
week15 0.283 0.037 0 1.327
week16 0.391 0.037 0 1.478
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Estimate Robust SE Pr(>|z|) IRR

week17 0.428 0.037 0 1.534
week18 0.380 0.038 0 1.463
week19 0.446 0.037 0 1.562
week20 0.459 0.037 0 1.583
week21 0.567 0.040 0 1.762

year2010 -0.139 0.023 0 0.870
year2011 -0.085 0.023 0 0.918
year2012 -0.098 0.023 0 0.907
year2013 -0.130 0.023 0 0.878
year2014 -0.032 0.022 0.148 0.968
year2015 -0.050 0.023 0.027 0.951
year2016 -0.056 0.022 0.013 0.946
year2017 -0.038 0.023 0.097 0.963
year2018 0.025 0.023 0.268 1.025
year2019 -0.063 0.022 0.005 0.939

Table A.24: The results of the regression models for slightly injured
accidents with weather and explanatory variables in the spring pe-
riod.

Dependent variable:

slightly_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

dark 0.142∗∗∗ 0.142∗∗∗ 0.145∗∗∗

(0.026) (0.027) (0.027)

holiday1 −0.198∗∗∗ −0.198∗∗∗ −0.200∗∗∗

(0.026) (0.027) (0.028)
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Dependent variable:

slightly_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

TMP_less_zero1 −0.370∗∗∗ −0.370∗∗∗ −0.372∗∗∗

(0.024) (0.024) (0.025)

TMP_less_five1 −0.384∗∗∗ −0.384∗∗∗ −0.385∗∗∗

(0.019) (0.020) (0.020)

TMP_less_ten1 −0.394∗∗∗ −0.394∗∗∗ −0.393∗∗∗

(0.016) (0.016) (0.017)

TMP_less_fifteen1 −0.235∗∗∗ −0.235∗∗∗ −0.235∗∗∗

(0.014) (0.014) (0.014)

mist1 −0.013 −0.013 −0.013
(0.016) (0.017) (0.017)

fog1 −0.132∗ −0.132∗ −0.131∗

(0.070) (0.072) (0.073)

drizzle1 −0.010 −0.010 −0.010
(0.086) (0.089) (0.090)

rain1 0.024 0.024 0.026
(0.022) (0.023) (0.023)

snow1 0.063∗∗ 0.063∗∗ 0.055∗

(0.030) (0.031) (0.032)
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Dependent variable:

slightly_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

precipitation1 0.058∗∗∗ 0.058∗∗∗ 0.057∗∗∗

(0.020) (0.020) (0.021)

crash_into_solid_obstacle 0.095∗∗∗ 0.095∗∗∗ 0.097∗∗∗

(0.002) (0.002) (0.002)

cause_intoxication 0.183∗∗∗ 0.183∗∗∗ 0.191∗∗∗

(0.005) (0.005) (0.006)

cause_damaged_road 0.012 0.012 0.011
(0.019) (0.019) (0.020)

cause_car_defect 0.060∗∗∗ 0.060∗∗∗ 0.063∗∗∗

(0.015) (0.016) (0.016)

hour01 −0.117∗ −0.117∗ −0.116∗

(0.064) (0.065) (0.064)

hour02 −0.202∗∗∗ −0.202∗∗∗ −0.200∗∗∗

(0.066) (0.067) (0.066)

hour03 −0.200∗∗∗ −0.200∗∗∗ −0.197∗∗∗

(0.066) (0.068) (0.067)

hour04 0.091 0.091 0.095
(0.061) (0.063) (0.062)

hour05 1.173∗∗∗ 1.173∗∗∗ 1.176∗∗∗
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Dependent variable:

slightly_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

(0.051) (0.053) (0.052)

hour06 1.548∗∗∗ 1.548∗∗∗ 1.550∗∗∗

(0.053) (0.054) (0.054)

hour07 1.889∗∗∗ 1.889∗∗∗ 1.890∗∗∗

(0.054) (0.055) (0.055)

hour08 1.704∗∗∗ 1.704∗∗∗ 1.708∗∗∗

(0.054) (0.056) (0.056)

hour09 1.692∗∗∗ 1.692∗∗∗ 1.699∗∗∗

(0.054) (0.056) (0.055)

hour10 1.691∗∗∗ 1.691∗∗∗ 1.699∗∗∗

(0.054) (0.056) (0.055)

hour11 1.677∗∗∗ 1.677∗∗∗ 1.684∗∗∗

(0.054) (0.056) (0.055)

hour12 1.700∗∗∗ 1.700∗∗∗ 1.706∗∗∗

(0.054) (0.055) (0.055)

hour13 1.856∗∗∗ 1.856∗∗∗ 1.863∗∗∗

(0.053) (0.055) (0.055)

hour14 2.052∗∗∗ 2.052∗∗∗ 2.058∗∗∗

(0.053) (0.054) (0.054)
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Dependent variable:

slightly_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

hour15 2.056∗∗∗ 2.056∗∗∗ 2.062∗∗∗

(0.053) (0.054) (0.054)

hour16 1.977∗∗∗ 1.977∗∗∗ 1.979∗∗∗

(0.053) (0.054) (0.054)

hour17 1.845∗∗∗ 1.845∗∗∗ 1.848∗∗∗

(0.053) (0.054) (0.054)

hour18 1.682∗∗∗ 1.682∗∗∗ 1.686∗∗∗

(0.051) (0.052) (0.052)

hour19 1.276∗∗∗ 1.276∗∗∗ 1.277∗∗∗

(0.051) (0.052) (0.052)

hour20 0.936∗∗∗ 0.936∗∗∗ 0.936∗∗∗

(0.052) (0.053) (0.053)

hour21 0.702∗∗∗ 0.702∗∗∗ 0.702∗∗∗

(0.052) (0.054) (0.053)

hour22 0.542∗∗∗ 0.542∗∗∗ 0.541∗∗∗

(0.054) (0.055) (0.055)

hour23 0.112∗ 0.112∗ 0.111∗

(0.059) (0.061) (0.060)
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Dependent variable:

slightly_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

day1 0.326∗∗∗ 0.326∗∗∗ 0.326∗∗∗

(0.017) (0.018) (0.018)

day2 0.238∗∗∗ 0.238∗∗∗ 0.239∗∗∗

(0.017) (0.018) (0.018)

day3 0.260∗∗∗ 0.260∗∗∗ 0.260∗∗∗

(0.017) (0.018) (0.018)

day4 0.274∗∗∗ 0.274∗∗∗ 0.273∗∗∗

(0.017) (0.018) (0.018)

day5 0.381∗∗∗ 0.381∗∗∗ 0.380∗∗∗

(0.017) (0.017) (0.017)

day6 0.120∗∗∗ 0.120∗∗∗ 0.122∗∗∗

(0.017) (0.018) (0.018)

week6 0.014 0.014 0.013
(0.033) (0.034) (0.035)

week7 0.039 0.039 0.037
(0.033) (0.034) (0.034)

week8 0.037 0.037 0.037
(0.033) (0.034) (0.035)

week9 0.024 0.024 0.024
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Dependent variable:

slightly_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

(0.034) (0.035) (0.035)

week10 0.092∗∗∗ 0.092∗∗∗ 0.090∗∗

(0.034) (0.035) (0.035)

week11 0.123∗∗∗ 0.123∗∗∗ 0.124∗∗∗

(0.034) (0.035) (0.035)

week12 0.172∗∗∗ 0.172∗∗∗ 0.172∗∗∗

(0.034) (0.035) (0.035)

week13 0.212∗∗∗ 0.212∗∗∗ 0.212∗∗∗

(0.034) (0.035) (0.036)

week14 0.187∗∗∗ 0.187∗∗∗ 0.188∗∗∗

(0.034) (0.035) (0.036)

week15 0.211∗∗∗ 0.211∗∗∗ 0.212∗∗∗

(0.035) (0.036) (0.036)

week16 0.279∗∗∗ 0.279∗∗∗ 0.279∗∗∗

(0.034) (0.035) (0.036)

week17 0.264∗∗∗ 0.264∗∗∗ 0.264∗∗∗

(0.035) (0.036) (0.036)

week18 0.239∗∗∗ 0.239∗∗∗ 0.240∗∗∗

(0.035) (0.036) (0.037)
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Dependent variable:

slightly_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

week19 0.256∗∗∗ 0.256∗∗∗ 0.258∗∗∗

(0.035) (0.036) (0.037)

week20 0.238∗∗∗ 0.238∗∗∗ 0.239∗∗∗

(0.035) (0.036) (0.037)

week21 0.276∗∗∗ 0.276∗∗∗ 0.279∗∗∗

(0.038) (0.039) (0.040)

year2010 −0.077∗∗∗ −0.077∗∗∗ −0.077∗∗∗

(0.020) (0.021) (0.022)

year2011 −0.073∗∗∗ −0.073∗∗∗ −0.075∗∗∗

(0.020) (0.021) (0.021)

year2012 −0.099∗∗∗ −0.099∗∗∗ −0.102∗∗∗

(0.020) (0.021) (0.021)

year2013 −0.130∗∗∗ −0.130∗∗∗ −0.132∗∗∗

(0.021) (0.021) (0.022)

year2014 −0.021 −0.021 −0.022
(0.020) (0.020) (0.021)

year2015 −0.014 −0.014 −0.016
(0.020) (0.021) (0.021)
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Dependent variable:

slightly_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

year2016 −0.023 −0.023 −0.024
(0.020) (0.021) (0.021)

year2017 −0.017 −0.017 −0.019
(0.020) (0.021) (0.021)

year2018 −0.030 −0.030 −0.033
(0.020) (0.020) (0.021)

year2019 −0.067∗∗∗ −0.067∗∗∗ −0.069∗∗∗

(0.020) (0.021) (0.021)

Constant −1.252∗∗∗ −1.252∗∗∗ −1.265∗∗∗

(0.065) (0.066) (0.067)

Observations 29,832 29,832 29,832
Log Likelihood −44,394.650 −44,333.240
θ 23.145∗∗∗ (2.253)
Akaike Inf. Crit. 88,933.300 88,810.470

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.25: IRR of the best-fitted regression model for the slightly in-
jured accidents with weather and explanatory variables in the spring
period.

Estimate Robust SE Pr(>|z|) exp

(Intercept) -1.265 0.068 0 0.282
dark 0.145 0.027 0 1.156

holiday1 -0.200 0.028 0 0.819
TMP_less_zero1 -0.372 0.025 0 0.690
TMP_less_five1 -0.385 0.020 0 0.681
TMP_less_ten1 -0.393 0.016 0 0.675

TMP_less_fifteen1 -0.235 0.014 0 0.790
mist1 -0.013 0.017 0.455 0.987
fog1 -0.131 0.084 0.116 0.877

drizzle1 -0.010 0.093 0.915 0.990
rain1 0.026 0.024 0.285 1.026
snow1 0.055 0.032 0.088 1.057

precipitation1 0.057 0.022 0.008 1.059
crash_into_solid_obstacle 0.097 0.002 0 1.102

cause_intoxication 0.191 0.006 0 1.210
cause_damaged_road 0.011 0.020 0.562 1.011

cause_car_defect 0.063 0.016 0 1.065
hour01 -0.116 0.065 0.073 0.891
hour02 -0.200 0.066 0.003 0.818
hour03 -0.197 0.068 0.004 0.821
hour04 0.095 0.062 0.125 1.100
hour05 1.176 0.053 0 3.242
hour06 1.550 0.055 0 4.714
hour07 1.890 0.056 0 6.618
hour08 1.708 0.056 0 5.518
hour09 1.699 0.056 0 5.466
hour10 1.699 0.055 0 5.466
hour11 1.684 0.055 0 5.386
hour12 1.706 0.055 0 5.508
hour13 1.863 0.055 0 6.445
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Estimate Robust SE Pr(>|z|) exp

hour14 2.058 0.054 0 7.828
hour15 2.062 0.054 0 7.865
hour16 1.979 0.054 0 7.233
hour17 1.848 0.054 0 6.347
hour18 1.686 0.052 0 5.396
hour19 1.277 0.052 0 3.586
hour20 0.936 0.052 0 2.549
hour21 0.702 0.052 0 2.018
hour22 0.541 0.054 0 1.717
hour23 0.111 0.059 0.060 1.117
day1 0.326 0.018 0 1.386
day2 0.239 0.018 0 1.270
day3 0.260 0.018 0 1.297
day4 0.273 0.018 0 1.314
day5 0.380 0.017 0 1.463
day6 0.122 0.019 0 1.130
week6 0.013 0.037 0.715 1.013
week7 0.037 0.036 0.300 1.038
week8 0.037 0.036 0.301 1.038
week9 0.024 0.037 0.510 1.024
week10 0.090 0.037 0.015 1.094
week11 0.124 0.037 0.001 1.132
week12 0.172 0.037 0 1.188
week13 0.212 0.037 0 1.236
week14 0.188 0.038 0 1.207
week15 0.212 0.038 0 1.236
week16 0.279 0.037 0 1.322
week17 0.264 0.038 0 1.302
week18 0.240 0.038 0 1.271
week19 0.258 0.039 0 1.294
week20 0.239 0.038 0 1.270
week21 0.279 0.041 0 1.322

year2010 -0.077 0.022 0 0.926
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Estimate Robust SE Pr(>|z|) exp

year2011 -0.075 0.021 0 0.928
year2012 -0.102 0.021 0 0.903
year2013 -0.132 0.021 0 0.876
year2014 -0.022 0.021 0.308 0.979
year2015 -0.016 0.021 0.442 0.984
year2016 -0.024 0.021 0.264 0.976
year2017 -0.019 0.021 0.382 0.981
year2018 -0.033 0.021 0.111 0.967
year2019 -0.069 0.021 0.001 0.933

Table A.26: The results of regression model for slightly injured acci-
dents without weather variables in the autumn period.

Dependent variable:

slightly_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

dark 0.197∗∗∗ 0.197∗∗∗ 0.182∗∗∗

(0.021) (0.024) (0.024)

hour01 −0.249∗∗∗ −0.249∗∗∗ −0.250∗∗∗

(0.060) (0.067) (0.061)

hour02 −0.237∗∗∗ −0.237∗∗∗ −0.238∗∗∗

(0.059) (0.067) (0.061)

hour03 −0.411∗∗∗ −0.411∗∗∗ −0.412∗∗∗

(0.062) (0.071) (0.064)
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Dependent variable:

slightly_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

hour04 −0.058 −0.058 −0.059
(0.057) (0.064) (0.058)

hour05 1.236∗∗∗ 1.236∗∗∗ 1.230∗∗∗

(0.045) (0.051) (0.046)

hour06 1.694∗∗∗ 1.694∗∗∗ 1.679∗∗∗

(0.044) (0.050) (0.046)

hour07 2.041∗∗∗ 2.041∗∗∗ 2.016∗∗∗

(0.047) (0.053) (0.050)

hour08 1.823∗∗∗ 1.823∗∗∗ 1.802∗∗∗

(0.048) (0.054) (0.051)

hour09 1.875∗∗∗ 1.875∗∗∗ 1.857∗∗∗

(0.048) (0.054) (0.051)

hour10 1.900∗∗∗ 1.900∗∗∗ 1.881∗∗∗

(0.048) (0.054) (0.051)

hour11 1.857∗∗∗ 1.857∗∗∗ 1.839∗∗∗

(0.048) (0.054) (0.051)

hour12 1.905∗∗∗ 1.905∗∗∗ 1.887∗∗∗

(0.048) (0.054) (0.051)

hour13 2.083∗∗∗ 2.083∗∗∗ 2.065∗∗∗
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Dependent variable:

slightly_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

(0.047) (0.054) (0.050)

hour14 2.274∗∗∗ 2.274∗∗∗ 2.253∗∗∗

(0.047) (0.053) (0.050)

hour15 2.312∗∗∗ 2.312∗∗∗ 2.288∗∗∗

(0.047) (0.053) (0.050)

hour16 2.310∗∗∗ 2.310∗∗∗ 2.293∗∗∗

(0.046) (0.052) (0.049)

hour17 2.151∗∗∗ 2.151∗∗∗ 2.139∗∗∗

(0.043) (0.049) (0.045)

hour18 1.845∗∗∗ 1.845∗∗∗ 1.835∗∗∗

(0.044) (0.050) (0.046)

hour19 1.438∗∗∗ 1.438∗∗∗ 1.432∗∗∗

(0.044) (0.050) (0.046)

hour20 1.017∗∗∗ 1.017∗∗∗ 1.014∗∗∗

(0.046) (0.052) (0.048)

hour21 0.695∗∗∗ 0.695∗∗∗ 0.691∗∗∗

(0.048) (0.055) (0.050)

hour22 0.563∗∗∗ 0.563∗∗∗ 0.560∗∗∗

(0.049) (0.056) (0.051)
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Dependent variable:

slightly_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

hour23 0.207∗∗∗ 0.207∗∗∗ 0.203∗∗∗

(0.053) (0.060) (0.054)

day1 0.343∗∗∗ 0.343∗∗∗ 0.331∗∗∗

(0.015) (0.017) (0.017)

day2 0.242∗∗∗ 0.242∗∗∗ 0.230∗∗∗

(0.016) (0.018) (0.017)

day3 0.302∗∗∗ 0.302∗∗∗ 0.289∗∗∗

(0.015) (0.017) (0.017)

day4 0.333∗∗∗ 0.333∗∗∗ 0.321∗∗∗

(0.015) (0.017) (0.017)

day5 0.426∗∗∗ 0.426∗∗∗ 0.417∗∗∗

(0.015) (0.017) (0.017)

day6 0.148∗∗∗ 0.148∗∗∗ 0.157∗∗∗

(0.016) (0.018) (0.018)

week36 −0.072 −0.072 −0.077
(0.045) (0.051) (0.051)

week37 −0.011 −0.011 −0.015
(0.044) (0.050) (0.051)
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Dependent variable:

slightly_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

week38 −0.077∗ −0.077 −0.082
(0.044) (0.050) (0.051)

week39 −0.116∗∗∗ −0.116∗∗ −0.118∗∗

(0.044) (0.050) (0.051)

week40 −0.136∗∗∗ −0.136∗∗∗ −0.142∗∗∗

(0.045) (0.050) (0.051)

week41 −0.125∗∗∗ −0.125∗∗ −0.128∗∗

(0.044) (0.050) (0.051)

week42 −0.141∗∗∗ −0.141∗∗∗ −0.141∗∗∗

(0.045) (0.050) (0.051)

week43 −0.241∗∗∗ −0.241∗∗∗ −0.240∗∗∗

(0.045) (0.051) (0.051)

week44 −0.357∗∗∗ −0.357∗∗∗ −0.355∗∗∗

(0.045) (0.051) (0.051)

week45 −0.366∗∗∗ −0.366∗∗∗ −0.366∗∗∗

(0.045) (0.051) (0.051)

week46 −0.321∗∗∗ −0.321∗∗∗ −0.317∗∗∗

(0.045) (0.051) (0.051)

week47 −0.356∗∗∗ −0.356∗∗∗ −0.354∗∗∗
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Dependent variable:

slightly_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

(0.045) (0.051) (0.052)

week48 −0.356∗∗∗ −0.356∗∗∗ −0.353∗∗∗

(0.045) (0.051) (0.052)

week49 −0.308∗∗∗ −0.308∗∗∗ −0.303∗∗∗

(0.045) (0.051) (0.051)

week50 −0.277∗∗∗ −0.277∗∗∗ −0.271∗∗∗

(0.045) (0.051) (0.051)

week51 −0.248∗∗∗ −0.248∗∗∗ −0.245∗∗∗

(0.045) (0.051) (0.052)

week52 −0.591∗∗∗ −0.591∗∗∗ −0.578∗∗∗

(0.061) (0.069) (0.067)

year2010 −0.103∗∗∗ −0.103∗∗∗ −0.102∗∗∗

(0.019) (0.021) (0.021)

year2011 −0.015 −0.015 −0.016
(0.018) (0.021) (0.021)

year2012 −0.053∗∗∗ −0.053∗∗ −0.054∗∗∗

(0.018) (0.021) (0.021)

year2013 −0.040∗∗ −0.040∗ −0.041∗∗

(0.018) (0.021) (0.021)
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Dependent variable:

slightly_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

year2014 −0.035∗ −0.035∗ −0.035∗

(0.018) (0.021) (0.021)

year2015 0.060∗∗∗ 0.060∗∗∗ 0.059∗∗∗

(0.018) (0.020) (0.020)

year2016 −0.009 −0.009 −0.012
(0.018) (0.021) (0.021)

year2017 0.024 0.024 0.020
(0.018) (0.020) (0.020)

year2018 0.037∗∗ 0.037∗ 0.034∗

(0.018) (0.020) (0.020)

year2019 −0.024 −0.024 −0.029
(0.018) (0.021) (0.021)

Constant −0.888∗∗∗ −0.888∗∗∗ −0.860∗∗∗

(0.061) (0.069) (0.067)

Observations 29,832 29,832 29,832
Log Likelihood −50,048.210 −49,722.090
θ 10.871∗∗∗ (0.515)
Akaike Inf. Crit. 100,212.400 99,560.180
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Dependent variable:

slightly_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A.27: IRR of the best-fitted regression model for the slightly
injured accidents without weather variables in the autumn period.

Estimate Robust SE Pr(>|z|) IRR

(Intercept) -0.860 0.069 0 0.423
dark 0.182 0.024 0 1.200

hour01 -0.250 0.068 0 0.779
hour02 -0.238 0.067 0 0.788
hour03 -0.412 0.070 0 0.662
hour04 -0.059 0.062 0.336 0.942
hour05 1.230 0.050 0 3.422
hour06 1.679 0.051 0 5.362
hour07 2.016 0.054 0 7.505
hour08 1.802 0.054 0 6.064
hour09 1.857 0.054 0 6.402
hour10 1.881 0.054 0 6.561
hour11 1.839 0.054 0 6.293
hour12 1.887 0.054 0 6.596
hour13 2.065 0.053 0 7.886
hour14 2.253 0.053 0 9.518
hour15 2.288 0.053 0 9.854
hour16 2.293 0.052 0 9.903
hour17 2.139 0.049 0 8.492
hour18 1.835 0.049 0 6.264
hour19 1.432 0.049 0 4.185
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Estimate Robust SE Pr(>|z|) IRR

hour20 1.014 0.051 0 2.756
hour21 0.691 0.053 0 1.996
hour22 0.560 0.054 0 1.751
hour23 0.203 0.059 0.001 1.225
day1 0.331 0.018 0 1.392
day2 0.230 0.018 0 1.258
day3 0.289 0.018 0 1.335
day4 0.321 0.018 0 1.379
day5 0.417 0.017 0 1.518
day6 0.157 0.019 0 1.170

week36 -0.077 0.048 0.111 0.926
week37 -0.015 0.048 0.756 0.985
week38 -0.082 0.048 0.090 0.921
week39 -0.118 0.049 0.015 0.888
week40 -0.142 0.049 0.004 0.868
week41 -0.128 0.049 0.008 0.880
week42 -0.141 0.049 0.004 0.869
week43 -0.240 0.049 0 0.787
week44 -0.355 0.050 0 0.701
week45 -0.366 0.049 0 0.694
week46 -0.317 0.049 0 0.728
week47 -0.354 0.050 0 0.702
week48 -0.353 0.050 0 0.703
week49 -0.303 0.049 0 0.738
week50 -0.271 0.049 0 0.762
week51 -0.245 0.050 0 0.783
week52 -0.578 0.069 0 0.561

year2010 -0.102 0.021 0 0.903
year2011 -0.016 0.021 0.426 0.984
year2012 -0.054 0.021 0.008 0.947
year2013 -0.041 0.020 0.043 0.960
year2014 -0.035 0.020 0.080 0.965
year2015 0.059 0.020 0.004 1.060
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Estimate Robust SE Pr(>|z|) IRR

year2016 -0.012 0.021 0.561 0.988
year2017 0.020 0.021 0.333 1.021
year2018 0.034 0.020 0.097 1.035
year2019 -0.029 0.021 0.162 0.972

Table A.28: The results of the regression models for the slightly in-
jured accidents with weather and explanatory variables in the autumn
period.

Dependent variable:

slightly_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

dark 0.214∗∗∗ 0.214∗∗∗ 0.209∗∗∗

(0.021) (0.022) (0.023)

holiday1 −0.296∗∗∗ −0.296∗∗∗ −0.294∗∗∗

(0.028) (0.029) (0.029)

TMP_less_zero1 −0.334∗∗∗ −0.334∗∗∗ −0.335∗∗∗

(0.025) (0.026) (0.026)

TMP_less_five1 −0.278∗∗∗ −0.278∗∗∗ −0.279∗∗∗

(0.019) (0.020) (0.021)

TMP_less_ten1 −0.267∗∗∗ −0.267∗∗∗ −0.267∗∗∗

(0.016) (0.017) (0.017)

TMP_less_fifteen1 −0.198∗∗∗ −0.198∗∗∗ −0.197∗∗∗
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Dependent variable:

slightly_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

(0.013) (0.014) (0.014)

mist1 −0.038∗∗∗ −0.038∗∗∗ −0.037∗∗∗

(0.012) (0.013) (0.013)

fog1 0.042∗ 0.042∗ 0.043∗

(0.023) (0.024) (0.025)

drizzle1 0.003 0.003 0.002
(0.041) (0.043) (0.044)

rain1 0.079∗∗∗ 0.079∗∗∗ 0.078∗∗∗

(0.019) (0.020) (0.020)

snow1 0.056∗ 0.056∗ 0.055
(0.032) (0.034) (0.034)

precipitation1 0.068∗∗∗ 0.068∗∗∗ 0.067∗∗∗

(0.019) (0.020) (0.020)

crash_into_solid_obstacle 0.078∗∗∗ 0.078∗∗∗ 0.081∗∗∗

(0.002) (0.002) (0.002)

cause_intoxication 0.155∗∗∗ 0.155∗∗∗ 0.162∗∗∗

(0.005) (0.005) (0.005)

cause_damaged_road 0.009 0.009 0.010
(0.017) (0.018) (0.019)
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Dependent variable:

slightly_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

cause_car_defect 0.031∗∗ 0.031∗∗ 0.033∗∗

(0.014) (0.015) (0.015)

hour01 −0.221∗∗∗ −0.221∗∗∗ −0.220∗∗∗

(0.060) (0.063) (0.060)

hour02 −0.192∗∗∗ −0.192∗∗∗ −0.191∗∗∗

(0.059) (0.062) (0.060)

hour03 −0.328∗∗∗ −0.328∗∗∗ −0.324∗∗∗

(0.062) (0.066) (0.063)

hour04 0.015 0.015 0.018
(0.057) (0.059) (0.057)

hour05 1.259∗∗∗ 1.259∗∗∗ 1.259∗∗∗

(0.045) (0.047) (0.046)

hour06 1.664∗∗∗ 1.664∗∗∗ 1.657∗∗∗

(0.044) (0.046) (0.045)

hour07 1.987∗∗∗ 1.987∗∗∗ 1.977∗∗∗

(0.047) (0.050) (0.049)

hour08 1.765∗∗∗ 1.765∗∗∗ 1.758∗∗∗

(0.048) (0.051) (0.050)
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Dependent variable:

slightly_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

hour09 1.809∗∗∗ 1.809∗∗∗ 1.805∗∗∗

(0.048) (0.051) (0.050)

hour10 1.814∗∗∗ 1.814∗∗∗ 1.810∗∗∗

(0.048) (0.050) (0.050)

hour11 1.764∗∗∗ 1.764∗∗∗ 1.760∗∗∗

(0.048) (0.051) (0.050)

hour12 1.805∗∗∗ 1.805∗∗∗ 1.800∗∗∗

(0.048) (0.050) (0.050)

hour13 1.950∗∗∗ 1.950∗∗∗ 1.946∗∗∗

(0.047) (0.050) (0.049)

hour14 2.090∗∗∗ 2.090∗∗∗ 2.084∗∗∗

(0.047) (0.049) (0.049)

hour15 2.133∗∗∗ 2.133∗∗∗ 2.125∗∗∗

(0.047) (0.049) (0.049)

hour16 2.132∗∗∗ 2.132∗∗∗ 2.129∗∗∗

(0.046) (0.048) (0.048)

hour17 1.968∗∗∗ 1.968∗∗∗ 1.965∗∗∗

(0.044) (0.046) (0.045)

hour18 1.703∗∗∗ 1.703∗∗∗ 1.700∗∗∗
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Dependent variable:

slightly_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

(0.044) (0.046) (0.045)

hour19 1.318∗∗∗ 1.318∗∗∗ 1.315∗∗∗

(0.044) (0.047) (0.045)

hour20 0.905∗∗∗ 0.905∗∗∗ 0.905∗∗∗

(0.046) (0.048) (0.047)

hour21 0.608∗∗∗ 0.608∗∗∗ 0.606∗∗∗

(0.048) (0.051) (0.049)

hour22 0.497∗∗∗ 0.497∗∗∗ 0.495∗∗∗

(0.049) (0.052) (0.050)

hour23 0.163∗∗∗ 0.163∗∗∗ 0.160∗∗∗

(0.053) (0.056) (0.054)

day1 0.324∗∗∗ 0.324∗∗∗ 0.322∗∗∗

(0.015) (0.016) (0.016)

day2 0.251∗∗∗ 0.251∗∗∗ 0.250∗∗∗

(0.016) (0.016) (0.017)

day3 0.292∗∗∗ 0.292∗∗∗ 0.291∗∗∗

(0.016) (0.016) (0.016)

day4 0.320∗∗∗ 0.320∗∗∗ 0.318∗∗∗

(0.015) (0.016) (0.016)
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Dependent variable:

slightly_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

day5 0.388∗∗∗ 0.388∗∗∗ 0.386∗∗∗

(0.015) (0.016) (0.016)

day6 0.090∗∗∗ 0.090∗∗∗ 0.094∗∗∗

(0.016) (0.017) (0.017)

week36 −0.039 −0.039 −0.039
(0.045) (0.047) (0.048)

week37 −0.003 −0.003 −0.002
(0.044) (0.046) (0.048)

week38 −0.008 −0.008 −0.010
(0.044) (0.047) (0.048)

week39 0.013 0.013 0.013
(0.045) (0.047) (0.048)

week40 −0.015 −0.015 −0.016
(0.045) (0.047) (0.048)

week41 −0.014 −0.014 −0.014
(0.045) (0.047) (0.048)

week42 −0.014 −0.014 −0.013
(0.045) (0.048) (0.049)
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Dependent variable:

slightly_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

week43 −0.045 −0.045 −0.045
(0.046) (0.048) (0.049)

week44 −0.089∗ −0.089∗ −0.089∗

(0.047) (0.049) (0.050)

week45 −0.135∗∗∗ −0.135∗∗∗ −0.136∗∗∗

(0.046) (0.049) (0.050)

week46 −0.060 −0.060 −0.059
(0.047) (0.049) (0.050)

week47 −0.120∗∗ −0.120∗∗ −0.120∗∗

(0.047) (0.049) (0.050)

week48 −0.130∗∗∗ −0.130∗∗∗ −0.129∗∗

(0.048) (0.050) (0.051)

week49 −0.092∗ −0.092∗ −0.091∗

(0.048) (0.050) (0.051)

week50 −0.067 −0.067 −0.067
(0.048) (0.050) (0.051)

week51 −0.066 −0.066 −0.067
(0.048) (0.050) (0.051)

week52 −0.274∗∗∗ −0.274∗∗∗ −0.264∗∗∗
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Dependent variable:

slightly_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

(0.063) (0.066) (0.067)

year2010 −0.071∗∗∗ −0.071∗∗∗ −0.071∗∗∗

(0.019) (0.020) (0.020)

year2011 −0.017 −0.017 −0.018
(0.018) (0.019) (0.020)

year2012 −0.052∗∗∗ −0.052∗∗∗ −0.053∗∗∗

(0.019) (0.019) (0.020)

year2013 −0.021 −0.021 −0.021
(0.018) (0.019) (0.020)

year2014 −0.038∗∗ −0.038∗ −0.037∗

(0.018) (0.019) (0.020)

year2015 0.047∗∗∗ 0.047∗∗ 0.047∗∗

(0.018) (0.019) (0.019)

year2016 −0.012 −0.012 −0.014
(0.018) (0.019) (0.020)

year2017 0.002 0.002 −0.001
(0.018) (0.019) (0.020)

year2018 −0.014 −0.014 −0.017
(0.018) (0.019) (0.020)
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Dependent variable:

slightly_injured_accidents

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

year2019 −0.057∗∗∗ −0.057∗∗∗ −0.059∗∗∗

(0.018) (0.019) (0.020)

Constant −1.032∗∗∗ −1.032∗∗∗ −1.036∗∗∗

(0.061) (0.064) (0.064)

Observations 29,832 29,832 29,832
Log Likelihood −48,115.050 −48,021.140
θ 21.957∗∗∗ (1.761)
Akaike Inf. Crit. 96,376.100 96,188.290

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A.29: IRR of the best-fitted regression model for the slightly
injured accidents with weather and explanatory variables in the au-
tumn period.

Estimate Robust SE Pr(>|z|) IRR

(Intercept) -1.036 0.065 0 0.355
dark 0.209 0.023 0 1.232

holiday1 -0.294 0.031 0 0.745
TMP_less_zero1 -0.335 0.026 0 0.715
TMP_less_five1 -0.279 0.020 0 0.756
TMP_less_ten1 -0.267 0.017 0 0.766

TMP_less_fifteen1 -0.197 0.014 0 0.821
mist1 -0.037 0.013 0.004 0.964
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Estimate Robust SE Pr(>|z|) IRR

fog1 0.043 0.025 0.083 1.044
drizzle1 0.002 0.044 0.963 1.002
rain1 0.078 0.021 0 1.081
snow1 0.055 0.036 0.124 1.056

precipitation1 0.067 0.021 0.001 1.069
crash_into_solid_obstacle 0.081 0.002 0 1.084

cause_intoxication 0.162 0.005 0 1.175
cause_damaged_road 0.010 0.018 0.587 1.010

cause_car_defect 0.033 0.015 0.033 1.033
hour01 -0.220 0.063 0 0.802
hour02 -0.191 0.062 0.002 0.826
hour03 -0.324 0.066 0 0.723
hour04 0.018 0.058 0.760 1.018
hour05 1.259 0.047 0 3.522
hour06 1.657 0.047 0 5.243
hour07 1.977 0.051 0 7.218
hour08 1.758 0.051 0 5.800
hour09 1.805 0.051 0 6.078
hour10 1.810 0.050 0 6.111
hour11 1.760 0.050 0 5.814
hour12 1.800 0.050 0 6.052
hour13 1.946 0.050 0 6.998
hour14 2.084 0.050 0 8.039
hour15 2.125 0.050 0 8.375
hour16 2.129 0.049 0 8.404
hour17 1.965 0.046 0 7.133
hour18 1.700 0.046 0 5.476
hour19 1.315 0.046 0 3.725
hour20 0.905 0.047 0 2.471
hour21 0.606 0.049 0 1.833
hour22 0.495 0.050 0 1.641
hour23 0.160 0.054 0.003 1.174
day1 0.322 0.017 0 1.380
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Estimate Robust SE Pr(>|z|) IRR

day2 0.250 0.017 0 1.284
day3 0.291 0.017 0 1.338
day4 0.318 0.017 0 1.375
day5 0.386 0.016 0 1.471
day6 0.094 0.018 0 1.099

week36 -0.039 0.047 0.403 0.961
week37 -0.002 0.047 0.966 0.998
week38 -0.010 0.047 0.830 0.990
week39 0.013 0.047 0.781 1.013
week40 -0.016 0.047 0.730 0.984
week41 -0.014 0.048 0.762 0.986
week42 -0.013 0.048 0.788 0.987
week43 -0.045 0.048 0.352 0.956
week44 -0.089 0.050 0.073 0.915
week45 -0.136 0.049 0.006 0.873
week46 -0.059 0.049 0.228 0.942
week47 -0.120 0.050 0.016 0.887
week48 -0.129 0.050 0.010 0.879
week49 -0.091 0.050 0.071 0.913
week50 -0.067 0.050 0.184 0.936
week51 -0.067 0.051 0.187 0.935
week52 -0.264 0.068 0 0.768

year2010 -0.071 0.020 0 0.932
year2011 -0.018 0.020 0.352 0.982
year2012 -0.053 0.020 0.007 0.948
year2013 -0.021 0.020 0.285 0.979
year2014 -0.037 0.019 0.054 0.963
year2015 0.047 0.019 0.015 1.048
year2016 -0.014 0.020 0.477 0.986
year2017 -0.001 0.020 0.944 0.999
year2018 -0.017 0.019 0.374 0.983
year2019 -0.059 0.020 0.003 0.943
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A.6 The results of GLM for total accidents

Table A.30: The results of regression models for total accidents with-
out weather variables in the spring period.

Dependent variable:

total_accidents_per_hour

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

dark 0.159∗∗∗ 0.159∗∗∗ 0.165∗∗∗

(0.011) (0.016) (0.015)

hour01 −0.146∗∗∗ −0.146∗∗∗ −0.144∗∗∗

(0.024) (0.033) (0.027)

hour02 −0.234∗∗∗ −0.234∗∗∗ −0.233∗∗∗

(0.025) (0.034) (0.028)

hour03 −0.281∗∗∗ −0.281∗∗∗ −0.281∗∗∗

(0.025) (0.034) (0.028)

hour04 −0.031 −0.031 −0.038
(0.024) (0.032) (0.026)

hour05 0.784∗∗∗ 0.784∗∗∗ 0.767∗∗∗

(0.021) (0.028) (0.024)

hour06 1.145∗∗∗ 1.145∗∗∗ 1.128∗∗∗

(0.021) (0.029) (0.026)

hour07 1.493∗∗∗ 1.493∗∗∗ 1.476∗∗∗

(0.022) (0.030) (0.027)
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Dependent variable:

total_accidents_per_hour

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

hour08 1.533∗∗∗ 1.533∗∗∗ 1.517∗∗∗

(0.022) (0.030) (0.027)

hour09 1.545∗∗∗ 1.545∗∗∗ 1.533∗∗∗

(0.022) (0.030) (0.027)

hour10 1.558∗∗∗ 1.558∗∗∗ 1.549∗∗∗

(0.022) (0.030) (0.027)

hour11 1.526∗∗∗ 1.526∗∗∗ 1.517∗∗∗

(0.022) (0.030) (0.027)

hour12 1.485∗∗∗ 1.485∗∗∗ 1.475∗∗∗

(0.022) (0.030) (0.027)

hour13 1.557∗∗∗ 1.557∗∗∗ 1.548∗∗∗

(0.022) (0.030) (0.027)

hour14 1.721∗∗∗ 1.721∗∗∗ 1.710∗∗∗

(0.021) (0.029) (0.027)

hour15 1.733∗∗∗ 1.733∗∗∗ 1.723∗∗∗

(0.021) (0.029) (0.027)

hour16 1.661∗∗∗ 1.661∗∗∗ 1.653∗∗∗

(0.022) (0.029) (0.027)
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Dependent variable:

total_accidents_per_hour

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

hour17 1.550∗∗∗ 1.550∗∗∗ 1.546∗∗∗

(0.021) (0.029) (0.026)

hour18 1.429∗∗∗ 1.429∗∗∗ 1.430∗∗∗

(0.020) (0.027) (0.024)

hour19 1.120∗∗∗ 1.120∗∗∗ 1.120∗∗∗

(0.020) (0.027) (0.024)

hour20 0.953∗∗∗ 0.953∗∗∗ 0.950∗∗∗

(0.020) (0.027) (0.024)

hour21 0.778∗∗∗ 0.778∗∗∗ 0.767∗∗∗

(0.020) (0.027) (0.023)

hour22 0.520∗∗∗ 0.520∗∗∗ 0.506∗∗∗

(0.021) (0.029) (0.024)

hour23 0.236∗∗∗ 0.236∗∗∗ 0.225∗∗∗

(0.022) (0.030) (0.025)

day1 0.453∗∗∗ 0.453∗∗∗ 0.398∗∗∗

(0.008) (0.011) (0.011)

day2 0.432∗∗∗ 0.432∗∗∗ 0.378∗∗∗

(0.008) (0.011) (0.011)

day3 0.457∗∗∗ 0.457∗∗∗ 0.401∗∗∗
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Dependent variable:

total_accidents_per_hour

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

(0.008) (0.011) (0.010)

day4 0.465∗∗∗ 0.465∗∗∗ 0.414∗∗∗

(0.008) (0.011) (0.010)

day5 0.526∗∗∗ 0.526∗∗∗ 0.480∗∗∗

(0.008) (0.011) (0.010)

day6 0.187∗∗∗ 0.187∗∗∗ 0.188∗∗∗

(0.008) (0.012) (0.011)

week6 −0.021 −0.021 −0.015
(0.014) (0.019) (0.019)

week7 0.031∗∗ 0.031∗ 0.032∗

(0.014) (0.019) (0.019)

week8 −0.035∗∗ −0.035∗ −0.025
(0.014) (0.019) (0.019)

week9 −0.122∗∗∗ −0.122∗∗∗ −0.121∗∗∗

(0.014) (0.019) (0.019)

week10 −0.031∗∗ −0.031 −0.024
(0.014) (0.019) (0.019)

week11 −0.029∗∗ −0.029 −0.020
(0.014) (0.019) (0.019)
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Dependent variable:

total_accidents_per_hour

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

week12 0.017 0.017 0.024
(0.014) (0.019) (0.019)

week13 0.036∗∗∗ 0.036∗ 0.042∗∗

(0.014) (0.019) (0.019)

week14 0.010 0.010 0.016
(0.014) (0.019) (0.019)

week15 0.056∗∗∗ 0.056∗∗∗ 0.070∗∗∗

(0.014) (0.019) (0.019)

week16 0.131∗∗∗ 0.131∗∗∗ 0.146∗∗∗

(0.014) (0.019) (0.019)

week17 0.151∗∗∗ 0.151∗∗∗ 0.171∗∗∗

(0.014) (0.019) (0.019)

week18 0.128∗∗∗ 0.128∗∗∗ 0.163∗∗∗

(0.014) (0.019) (0.019)

week19 0.155∗∗∗ 0.155∗∗∗ 0.184∗∗∗

(0.014) (0.019) (0.019)

week20 0.202∗∗∗ 0.202∗∗∗ 0.231∗∗∗

(0.014) (0.019) (0.019)
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Dependent variable:

total_accidents_per_hour

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

week21 0.220∗∗∗ 0.220∗∗∗ 0.245∗∗∗

(0.015) (0.021) (0.021)

year2010 0.016 0.016 0.004
(0.010) (0.014) (0.013)

year2011 −0.025∗∗ −0.025∗ −0.033∗∗

(0.010) (0.014) (0.013)

year2012 0.089∗∗∗ 0.089∗∗∗ 0.077∗∗∗

(0.010) (0.014) (0.013)

year2013 0.135∗∗∗ 0.135∗∗∗ 0.125∗∗∗

(0.010) (0.013) (0.013)

year2014 0.123∗∗∗ 0.123∗∗∗ 0.115∗∗∗

(0.010) (0.013) (0.013)

year2015 0.209∗∗∗ 0.209∗∗∗ 0.199∗∗∗

(0.010) (0.013) (0.013)

year2016 0.264∗∗∗ 0.264∗∗∗ 0.258∗∗∗

(0.010) (0.013) (0.013)

year2017 0.307∗∗∗ 0.307∗∗∗ 0.299∗∗∗

(0.009) (0.013) (0.013)

year2018 0.331∗∗∗ 0.331∗∗∗ 0.321∗∗∗
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Dependent variable:

total_accidents_per_hour

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

(0.009) (0.013) (0.013)

year2019 0.367∗∗∗ 0.367∗∗∗ 0.367∗∗∗

(0.009) (0.013) (0.013)

Constant 0.324∗∗∗ 0.324∗∗∗ 0.364∗∗∗

(0.025) (0.035) (0.032)

Observations 29,832 29,832 29,832
Log Likelihood −81,498.860 −78,853.010
θ 11.529∗∗∗ (0.243)
Akaike Inf. Crit. 163,111.700 157,820.000

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A.31: IRR of the best-fitted regression model for the total
accidents without weather variables in the spring period.

Estimate Robust SE Pr(>|z|) IRR

(Intercept) 0.364 0.036 0 1.439
dark 0.165 0.015 0 1.179

hour01 -0.144 0.034 0 0.866
hour02 -0.233 0.035 0 0.792
hour03 -0.281 0.034 0 0.755
hour04 -0.038 0.031 0.215 0.963
hour05 0.767 0.028 0 2.154
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Estimate Robust SE Pr(>|z|) IRR

hour06 1.128 0.030 0 3.088
hour07 1.476 0.031 0 4.373
hour08 1.517 0.031 0 4.559
hour09 1.533 0.030 0 4.630
hour10 1.549 0.029 0 4.708
hour11 1.517 0.029 0 4.559
hour12 1.475 0.029 0 4.372
hour13 1.548 0.029 0 4.703
hour14 1.710 0.029 0 5.531
hour15 1.723 0.029 0 5.599
hour16 1.653 0.029 0 5.220
hour17 1.546 0.029 0 4.691
hour18 1.430 0.027 0 4.178
hour19 1.120 0.027 0 3.066
hour20 0.950 0.027 0 2.586
hour21 0.767 0.028 0 2.153
hour22 0.506 0.027 0 1.659
hour23 0.225 0.029 0 1.253
day1 0.398 0.012 0 1.489
day2 0.378 0.012 0 1.460
day3 0.401 0.012 0 1.494
day4 0.414 0.011 0 1.513
day5 0.480 0.011 0 1.616
day6 0.188 0.013 0 1.207
week6 -0.015 0.021 0.469 0.985
week7 0.032 0.022 0.152 1.032
week8 -0.025 0.021 0.225 0.975
week9 -0.121 0.021 0 0.886
week10 -0.024 0.021 0.254 0.976
week11 -0.020 0.021 0.337 0.980
week12 0.024 0.020 0.249 1.024
week13 0.042 0.021 0.043 1.043
week14 0.016 0.020 0.434 1.016
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Estimate Robust SE Pr(>|z|) IRR

week15 0.070 0.020 0.001 1.073
week16 0.146 0.020 0 1.158
week17 0.171 0.020 0 1.186
week18 0.163 0.021 0 1.177
week19 0.184 0.021 0 1.202
week20 0.231 0.020 0 1.260
week21 0.245 0.023 0 1.277

year2010 0.004 0.014 0.765 1.004
year2011 -0.033 0.013 0.014 0.968
year2012 0.077 0.014 0 1.080
year2013 0.125 0.014 0 1.134
year2014 0.115 0.013 0 1.122
year2015 0.199 0.013 0 1.220
year2016 0.258 0.013 0 1.294
year2017 0.299 0.013 0 1.349
year2018 0.321 0.013 0 1.378
year2019 0.367 0.013 0 1.443

Table A.32: The results of the regression models for total accidents
with weather and explanatory variables in the spring period.

Dependent variable:

total_accidents_per_hour

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

dark 0.178∗∗∗ 0.178∗∗∗ 0.184∗∗∗

(0.012) (0.015) (0.014)

holiday1 −0.404∗∗∗ −0.404∗∗∗ −0.375∗∗∗
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Dependent variable:

total_accidents_per_hour

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

(0.014) (0.017) (0.016)

TMP_less_zero1 −0.053∗∗∗ −0.053∗∗∗ −0.013
(0.014) (0.018) (0.014)

TMP_less_five1 −0.128∗∗∗ −0.128∗∗∗ −0.084∗∗∗

(0.013) (0.016) (0.012)

TMP_less_ten1 −0.144∗∗∗ −0.144∗∗∗ −0.098∗∗∗

(0.011) (0.014) (0.010)

TMP_less_fifteen1 −0.097∗∗∗ −0.097∗∗∗ −0.056∗∗∗

(0.010) (0.013) (0.009)

TMP_less_twenty1 −0.043∗∗∗ −0.043∗∗∗

(0.010) (0.013)

mist1 0.006 0.006 0.013
(0.008) (0.010) (0.009)

fog1 0.023 0.023 0.025
(0.030) (0.038) (0.037)

drizzle1 0.069∗ 0.069 0.101∗∗

(0.038) (0.048) (0.047)

rain1 0.048∗∗∗ 0.048∗∗∗ 0.047∗∗∗

(0.010) (0.013) (0.013)
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Dependent variable:

total_accidents_per_hour

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

snow1 0.355∗∗∗ 0.355∗∗∗ 0.359∗∗∗

(0.013) (0.016) (0.017)

precipitation1 0.133∗∗∗ 0.133∗∗∗ 0.123∗∗∗

(0.009) (0.012) (0.012)

RH −0.001∗∗∗ −0.001∗∗ −0.001∗∗∗

(0.0002) (0.0002) (0.0002)

SLP −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗

(0.0002) (0.0003) (0.0003)

cause_intoxication 0.153∗∗∗ 0.153∗∗∗ 0.173∗∗∗

(0.003) (0.003) (0.003)

cause_damaged_road 0.140∗∗∗ 0.140∗∗∗ 0.150∗∗∗

(0.008) (0.011) (0.011)

cause_car_defect 0.110∗∗∗ 0.110∗∗∗ 0.120∗∗∗

(0.007) (0.009) (0.010)

hour01 −0.138∗∗∗ −0.138∗∗∗ −0.135∗∗∗

(0.024) (0.031) (0.026)

hour02 −0.221∗∗∗ −0.221∗∗∗ −0.219∗∗∗

(0.025) (0.031) (0.027)

Continued on next page



A. Title of Appendix A CXXXVII

Dependent variable:

total_accidents_per_hour

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

hour03 −0.251∗∗∗ −0.251∗∗∗ −0.246∗∗∗

(0.025) (0.032) (0.027)

hour04 0.004 0.004 0.009
(0.024) (0.030) (0.026)

hour05 0.813∗∗∗ 0.813∗∗∗ 0.813∗∗∗

(0.021) (0.026) (0.023)

hour06 1.178∗∗∗ 1.178∗∗∗ 1.176∗∗∗

(0.021) (0.027) (0.025)

hour07 1.530∗∗∗ 1.530∗∗∗ 1.525∗∗∗

(0.022) (0.028) (0.026)

hour08 1.573∗∗∗ 1.573∗∗∗ 1.571∗∗∗

(0.022) (0.028) (0.025)

hour09 1.580∗∗∗ 1.580∗∗∗ 1.583∗∗∗

(0.022) (0.028) (0.025)

hour10 1.589∗∗∗ 1.589∗∗∗ 1.597∗∗∗

(0.022) (0.028) (0.025)

hour11 1.538∗∗∗ 1.538∗∗∗ 1.547∗∗∗

(0.022) (0.028) (0.025)

hour12 1.497∗∗∗ 1.497∗∗∗ 1.505∗∗∗
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Dependent variable:

total_accidents_per_hour

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

(0.022) (0.028) (0.026)

hour13 1.554∗∗∗ 1.554∗∗∗ 1.565∗∗∗

(0.022) (0.028) (0.025)

hour14 1.701∗∗∗ 1.701∗∗∗ 1.709∗∗∗

(0.022) (0.027) (0.025)

hour15 1.701∗∗∗ 1.701∗∗∗ 1.711∗∗∗

(0.022) (0.027) (0.025)

hour16 1.624∗∗∗ 1.624∗∗∗ 1.632∗∗∗

(0.022) (0.027) (0.025)

hour17 1.501∗∗∗ 1.501∗∗∗ 1.512∗∗∗

(0.022) (0.027) (0.025)

hour18 1.375∗∗∗ 1.375∗∗∗ 1.388∗∗∗

(0.020) (0.026) (0.023)

hour19 1.065∗∗∗ 1.065∗∗∗ 1.074∗∗∗

(0.020) (0.026) (0.023)

hour20 0.916∗∗∗ 0.916∗∗∗ 0.921∗∗∗

(0.020) (0.025) (0.023)

hour21 0.740∗∗∗ 0.740∗∗∗ 0.737∗∗∗

(0.020) (0.025) (0.022)
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Dependent variable:

total_accidents_per_hour

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

hour22 0.491∗∗∗ 0.491∗∗∗ 0.485∗∗∗

(0.021) (0.026) (0.023)

hour23 0.216∗∗∗ 0.216∗∗∗ 0.210∗∗∗

(0.022) (0.028) (0.024)

day1 0.484∗∗∗ 0.484∗∗∗ 0.451∗∗∗

(0.008) (0.010) (0.010)

day2 0.449∗∗∗ 0.449∗∗∗ 0.419∗∗∗

(0.008) (0.010) (0.010)

day3 0.474∗∗∗ 0.474∗∗∗ 0.444∗∗∗

(0.008) (0.010) (0.010)

day4 0.476∗∗∗ 0.476∗∗∗ 0.447∗∗∗

(0.008) (0.010) (0.010)

day5 0.530∗∗∗ 0.530∗∗∗ 0.502∗∗∗

(0.008) (0.010) (0.010)

day6 0.145∗∗∗ 0.145∗∗∗ 0.141∗∗∗

(0.008) (0.011) (0.010)

week6 0.024∗ 0.024 0.028
(0.014) (0.018) (0.018)
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Dependent variable:

total_accidents_per_hour

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

week7 0.047∗∗∗ 0.047∗∗∗ 0.042∗∗

(0.014) (0.018) (0.017)

week8 −0.008 −0.008 −0.002
(0.014) (0.018) (0.018)

week9 −0.057∗∗∗ −0.057∗∗∗ −0.054∗∗∗

(0.014) (0.018) (0.018)

week10 0.035∗∗ 0.035∗ 0.035∗

(0.014) (0.018) (0.018)

week11 0.030∗∗ 0.030 0.036∗

(0.015) (0.018) (0.018)

week12 0.063∗∗∗ 0.063∗∗∗ 0.068∗∗∗

(0.015) (0.018) (0.018)

week13 0.108∗∗∗ 0.108∗∗∗ 0.110∗∗∗

(0.015) (0.019) (0.019)

week14 0.083∗∗∗ 0.083∗∗∗ 0.087∗∗∗

(0.015) (0.019) (0.019)

week15 0.112∗∗∗ 0.112∗∗∗ 0.121∗∗∗

(0.015) (0.019) (0.019)

week16 0.172∗∗∗ 0.172∗∗∗ 0.184∗∗∗
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Dependent variable:

total_accidents_per_hour

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

(0.015) (0.019) (0.019)

week17 0.167∗∗∗ 0.167∗∗∗ 0.187∗∗∗

(0.015) (0.019) (0.019)

week18 0.197∗∗∗ 0.197∗∗∗ 0.224∗∗∗

(0.015) (0.019) (0.019)

week19 0.217∗∗∗ 0.217∗∗∗ 0.244∗∗∗

(0.016) (0.020) (0.020)

week20 0.210∗∗∗ 0.210∗∗∗ 0.238∗∗∗

(0.015) (0.019) (0.019)

week21 0.206∗∗∗ 0.206∗∗∗ 0.234∗∗∗

(0.017) (0.022) (0.022)

year2010 0.041∗∗∗ 0.041∗∗∗ 0.033∗∗∗

(0.010) (0.013) (0.013)

year2011 −0.003 −0.003 −0.005
(0.010) (0.013) (0.013)

year2012 0.119∗∗∗ 0.119∗∗∗ 0.113∗∗∗

(0.010) (0.013) (0.012)

year2013 0.135∗∗∗ 0.135∗∗∗ 0.129∗∗∗

(0.010) (0.013) (0.012)
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Dependent variable:

total_accidents_per_hour

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

year2014 0.174∗∗∗ 0.174∗∗∗ 0.169∗∗∗

(0.010) (0.013) (0.012)

year2015 0.252∗∗∗ 0.252∗∗∗ 0.246∗∗∗

(0.010) (0.012) (0.012)

year2016 0.319∗∗∗ 0.319∗∗∗ 0.319∗∗∗

(0.010) (0.012) (0.012)

year2017 0.360∗∗∗ 0.360∗∗∗ 0.359∗∗∗

(0.010) (0.012) (0.012)

year2018 0.356∗∗∗ 0.356∗∗∗ 0.353∗∗∗

(0.010) (0.012) (0.012)

year2019 0.426∗∗∗ 0.426∗∗∗ 0.431∗∗∗

(0.010) (0.012) (0.012)

Constant 0.819∗∗∗ 0.819∗∗∗ 0.954∗∗∗

(0.214) (0.270) (0.271)

Observations 29,832 29,832 29,832
Log Likelihood −77,991.910 −76,623.600
θ 17.372∗∗∗ (0.456)
Akaike Inf. Crit. 156,131.800 153,393.200
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Dependent variable:

total_accidents_per_hour

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A.33: IRR of the best-fitted regression model for the total ac-
cidents with weather and explanatory variables in the spring period.

Estimate Robust SE Pr(>|z|) IRR

(Intercept) 0.954 0.275 0.001 2.595
dark 0.184 0.014 0 1.203

holiday1 -0.375 0.021 0 0.687
TMP_less_zero1 -0.013 0.015 0.379 0.987
TMP_less_five1 -0.084 0.012 0 0.920
TMP_less_ten1 -0.098 0.010 0 0.906

TMP_less_fifteen1 -0.056 0.008 0 0.945
mist1 0.013 0.010 0.188 1.013
fog1 0.025 0.042 0.555 1.025

drizzle1 0.101 0.052 0.055 1.106
rain1 0.047 0.014 0.001 1.049
snow1 0.359 0.022 0 1.432

precipitation1 0.123 0.013 0 1.131
RH -0.001 0 0.005 0.999
SLP -0.001 0 0.001 0.999

cause_intoxication 0.173 0.003 0 1.189
cause_damaged_road 0.150 0.010 0 1.162

cause_car_defect 0.120 0.008 0 1.128
hour01 -0.135 0.032 0 0.873
hour02 -0.219 0.032 0 0.804
hour03 -0.246 0.032 0 0.782
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Estimate Robust SE Pr(>|z|) IRR

hour04 0.009 0.029 0.770 1.009
hour05 0.813 0.026 0 2.254
hour06 1.176 0.028 0 3.241
hour07 1.525 0.029 0 4.597
hour08 1.571 0.028 0 4.813
hour09 1.583 0.028 0 4.868
hour10 1.597 0.028 0 4.938
hour11 1.547 0.027 0 4.697
hour12 1.505 0.027 0 4.505
hour13 1.565 0.027 0 4.784
hour14 1.709 0.027 0 5.522
hour15 1.711 0.027 0 5.533
hour16 1.632 0.028 0 5.115
hour17 1.512 0.027 0 4.538
hour18 1.388 0.026 0 4.007
hour19 1.074 0.025 0 2.928
hour20 0.921 0.026 0 2.511
hour21 0.737 0.026 0 2.091
hour22 0.485 0.026 0 1.624
hour23 0.210 0.027 0 1.233
day1 0.451 0.011 0 1.570
day2 0.419 0.011 0 1.520
day3 0.444 0.011 0 1.558
day4 0.447 0.011 0 1.564
day5 0.502 0.011 0 1.651
day6 0.141 0.012 0 1.151
week6 0.028 0.019 0.156 1.028
week7 0.042 0.020 0.032 1.043
week8 -0.002 0.019 0.899 0.998
week9 -0.054 0.019 0.005 0.947
week10 0.035 0.020 0.075 1.036
week11 0.036 0.020 0.069 1.036
week12 0.068 0.020 0.001 1.070
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Estimate Robust SE Pr(>|z|) IRR

week13 0.110 0.020 0 1.116
week14 0.087 0.020 0 1.091
week15 0.121 0.020 0 1.128
week16 0.184 0.020 0 1.202
week17 0.187 0.020 0 1.205
week18 0.224 0.021 0 1.251
week19 0.244 0.021 0 1.276
week20 0.238 0.020 0 1.268
week21 0.234 0.023 0 1.264

year2010 0.033 0.013 0.009 1.034
year2011 -0.005 0.012 0.704 0.995
year2012 0.113 0.013 0 1.120
year2013 0.129 0.013 0 1.138
year2014 0.169 0.012 0 1.184
year2015 0.246 0.012 0 1.279
year2016 0.319 0.012 0 1.376
year2017 0.359 0.012 0 1.432
year2018 0.353 0.012 0 1.424
year2019 0.431 0.012 0 1.538

Table A.34: The results of regression model for total accidents with-
out weather variables in the autumn period.

Dependent variable:

total_accidents_per_hour

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

dark 0.303∗∗∗ 0.303∗∗∗ 0.283∗∗∗

(0.010) (0.014) (0.014)
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Dependent variable:

total_accidents_per_hour

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

hour01 −0.140∗∗∗ −0.140∗∗∗ −0.140∗∗∗

(0.024) (0.032) (0.026)

hour02 −0.223∗∗∗ −0.223∗∗∗ −0.224∗∗∗

(0.024) (0.032) (0.026)

hour03 −0.292∗∗∗ −0.292∗∗∗ −0.296∗∗∗

(0.025) (0.033) (0.027)

hour04 −0.041∗ −0.041 −0.048∗

(0.023) (0.031) (0.025)

hour05 0.824∗∗∗ 0.824∗∗∗ 0.804∗∗∗

(0.019) (0.026) (0.022)

hour06 1.398∗∗∗ 1.398∗∗∗ 1.362∗∗∗

(0.018) (0.025) (0.022)

hour07 1.758∗∗∗ 1.758∗∗∗ 1.707∗∗∗

(0.020) (0.027) (0.025)

hour08 1.713∗∗∗ 1.713∗∗∗ 1.669∗∗∗

(0.021) (0.028) (0.025)

hour09 1.751∗∗∗ 1.751∗∗∗ 1.713∗∗∗

(0.021) (0.028) (0.025)
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Dependent variable:

total_accidents_per_hour

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

hour10 1.772∗∗∗ 1.772∗∗∗ 1.736∗∗∗

(0.021) (0.028) (0.025)

hour11 1.730∗∗∗ 1.730∗∗∗ 1.695∗∗∗

(0.021) (0.028) (0.025)

hour12 1.694∗∗∗ 1.694∗∗∗ 1.658∗∗∗

(0.021) (0.028) (0.025)

hour13 1.779∗∗∗ 1.779∗∗∗ 1.745∗∗∗

(0.021) (0.028) (0.025)

hour14 1.901∗∗∗ 1.901∗∗∗ 1.865∗∗∗

(0.020) (0.027) (0.025)

hour15 1.917∗∗∗ 1.917∗∗∗ 1.880∗∗∗

(0.020) (0.027) (0.025)

hour16 1.966∗∗∗ 1.966∗∗∗ 1.932∗∗∗

(0.020) (0.027) (0.024)

hour17 1.823∗∗∗ 1.823∗∗∗ 1.800∗∗∗

(0.018) (0.024) (0.022)

hour18 1.567∗∗∗ 1.567∗∗∗ 1.550∗∗∗

(0.018) (0.025) (0.022)

hour19 1.297∗∗∗ 1.297∗∗∗ 1.287∗∗∗
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Dependent variable:

total_accidents_per_hour

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

(0.018) (0.025) (0.021)

hour20 0.980∗∗∗ 0.980∗∗∗ 0.971∗∗∗

(0.019) (0.025) (0.022)

hour21 0.704∗∗∗ 0.704∗∗∗ 0.696∗∗∗

(0.020) (0.026) (0.022)

hour22 0.532∗∗∗ 0.532∗∗∗ 0.520∗∗∗

(0.020) (0.027) (0.023)

hour23 0.264∗∗∗ 0.264∗∗∗ 0.254∗∗∗

(0.021) (0.029) (0.024)

day1 0.424∗∗∗ 0.424∗∗∗ 0.376∗∗∗

(0.007) (0.010) (0.010)

day2 0.357∗∗∗ 0.357∗∗∗ 0.313∗∗∗

(0.007) (0.010) (0.010)

day3 0.404∗∗∗ 0.404∗∗∗ 0.356∗∗∗

(0.007) (0.010) (0.010)

day4 0.421∗∗∗ 0.421∗∗∗ 0.378∗∗∗

(0.007) (0.010) (0.010)

day5 0.471∗∗∗ 0.471∗∗∗ 0.435∗∗∗

(0.007) (0.010) (0.010)
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Dependent variable:

total_accidents_per_hour

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

day6 0.169∗∗∗ 0.169∗∗∗ 0.181∗∗∗

(0.008) (0.010) (0.010)

week36 −0.067∗∗∗ −0.067∗∗ −0.079∗∗

(0.024) (0.032) (0.031)

week37 −0.007 −0.007 −0.019
(0.023) (0.032) (0.031)

week38 −0.025 −0.025 −0.033
(0.023) (0.032) (0.031)

week39 −0.045∗ −0.045 −0.049
(0.023) (0.032) (0.031)

week40 −0.027 −0.027 −0.039
(0.023) (0.032) (0.031)

week41 0.020 0.020 0.011
(0.023) (0.031) (0.031)

week42 0.009 0.009 0.004
(0.023) (0.032) (0.031)

week43 −0.048∗∗ −0.048 −0.054∗

(0.023) (0.032) (0.031)
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Dependent variable:

total_accidents_per_hour

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

week44 −0.124∗∗∗ −0.124∗∗∗ −0.132∗∗∗

(0.024) (0.032) (0.031)

week45 −0.141∗∗∗ −0.141∗∗∗ −0.151∗∗∗

(0.024) (0.032) (0.031)

week46 −0.115∗∗∗ −0.115∗∗∗ −0.119∗∗∗

(0.024) (0.032) (0.031)

week47 −0.140∗∗∗ −0.140∗∗∗ −0.149∗∗∗

(0.024) (0.032) (0.031)

week48 −0.074∗∗∗ −0.074∗∗ −0.079∗∗

(0.024) (0.032) (0.031)

week49 −0.073∗∗∗ −0.073∗∗ −0.077∗∗

(0.024) (0.032) (0.031)

week50 −0.051∗∗ −0.051 −0.058∗

(0.023) (0.032) (0.031)

week51 −0.023 −0.023 −0.023
(0.024) (0.032) (0.031)

week52 −0.276∗∗∗ −0.276∗∗∗ −0.275∗∗∗

(0.030) (0.040) (0.038)

year2010 −0.013 −0.013 −0.008
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Dependent variable:

total_accidents_per_hour

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

(0.009) (0.013) (0.012)

year2011 0.023∗∗ 0.023∗ 0.023∗

(0.009) (0.013) (0.012)

year2012 0.073∗∗∗ 0.073∗∗∗ 0.077∗∗∗

(0.009) (0.012) (0.012)

year2013 0.101∗∗∗ 0.101∗∗∗ 0.104∗∗∗

(0.009) (0.012) (0.012)

year2014 0.116∗∗∗ 0.116∗∗∗ 0.116∗∗∗

(0.009) (0.012) (0.012)

year2015 0.197∗∗∗ 0.197∗∗∗ 0.196∗∗∗

(0.009) (0.012) (0.012)

year2016 0.237∗∗∗ 0.237∗∗∗ 0.238∗∗∗

(0.009) (0.012) (0.012)

year2017 0.292∗∗∗ 0.292∗∗∗ 0.295∗∗∗

(0.009) (0.012) (0.012)

year2018 0.297∗∗∗ 0.297∗∗∗ 0.297∗∗∗

(0.009) (0.012) (0.012)

year2019 0.275∗∗∗ 0.275∗∗∗ 0.281∗∗∗

(0.009) (0.012) (0.012)
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Dependent variable:

total_accidents_per_hour

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

Constant 0.415∗∗∗ 0.415∗∗∗ 0.486∗∗∗

(0.029) (0.039) (0.037)

Observations 29,832 29,832 29,832
Log Likelihood −83,370.180 −81,037.410
θ 14.341∗∗∗ (0.314)
Akaike Inf. Crit. 166,856.400 162,190.800

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A.35: IRR of the best-fitted regression model for the total
without weather variables in the autumn period.

Estimate Robust SE Pr(>|z|) IRR

(Intercept) 0.486 0.069 0 1.626
dark 0.283 0.024 0 1.327

hour01 -0.140 0.068 0.039 0.869
hour02 -0.224 0.067 0.001 0.799
hour03 -0.296 0.070 0 0.744
hour04 -0.048 0.062 0.440 0.953
hour05 0.804 0.050 0 2.235
hour06 1.362 0.051 0 3.903
hour07 1.707 0.054 0 5.514
hour08 1.669 0.054 0 5.308
hour09 1.713 0.054 0 5.543
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Estimate Robust SE Pr(>|z|) IRR

hour10 1.736 0.054 0 5.676
hour11 1.695 0.054 0 5.447
hour12 1.658 0.054 0 5.251
hour13 1.745 0.053 0 5.726
hour14 1.865 0.053 0 6.453
hour15 1.880 0.053 0 6.555
hour16 1.932 0.052 0 6.902
hour17 1.800 0.049 0 6.047
hour18 1.550 0.049 0 4.711
hour19 1.287 0.049 0 3.621
hour20 0.971 0.051 0 2.642
hour21 0.696 0.053 0 2.005
hour22 0.520 0.054 0 1.683
hour23 0.254 0.059 0 1.289
day1 0.376 0.018 0 1.457
day2 0.313 0.018 0 1.367
day3 0.356 0.018 0 1.428
day4 0.378 0.018 0 1.459
day5 0.435 0.017 0 1.545
day6 0.181 0.019 0 1.198

week36 -0.079 0.048 0.101 0.924
week37 -0.019 0.048 0.697 0.981
week38 -0.033 0.048 0.491 0.967
week39 -0.049 0.049 0.318 0.953
week40 -0.039 0.049 0.425 0.962
week41 0.011 0.049 0.817 1.011
week42 0.004 0.049 0.928 1.004
week43 -0.054 0.049 0.265 0.947
week44 -0.132 0.050 0.008 0.876
week45 -0.151 0.049 0.002 0.860
week46 -0.119 0.049 0.016 0.888
week47 -0.149 0.050 0.003 0.862
week48 -0.079 0.050 0.115 0.924
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Estimate Robust SE Pr(>|z|) IRR

week49 -0.077 0.049 0.118 0.926
week50 -0.058 0.049 0.241 0.944
week51 -0.023 0.050 0.650 0.978
week52 -0.275 0.069 0 0.760

year2010 -0.008 0.021 0.689 0.992
year2011 0.023 0.021 0.257 1.024
year2012 0.077 0.021 0 1.080
year2013 0.104 0.020 0 1.109
year2014 0.116 0.020 0 1.123
year2015 0.196 0.020 0 1.217
year2016 0.238 0.021 0 1.268
year2017 0.295 0.021 0 1.344
year2018 0.297 0.020 0 1.346
year2019 0.281 0.021 0 1.325

Table A.36: The results of the regression models for the total acci-
dents with weather and explanatory variables in the autumn period.

Dependent variable:

total_accidents_per_hour

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

dark 0.295∗∗∗ 0.295∗∗∗ 0.282∗∗∗

(0.010) (0.013) (0.013)

holiday1 −0.341∗∗∗ −0.341∗∗∗ −0.324∗∗∗

(0.013) (0.017) (0.016)

TMP_less_zero1 0.017 0.017 0.069∗∗∗
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Dependent variable:

total_accidents_per_hour

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

(0.015) (0.019) (0.015)

TMP_less_five1 −0.054∗∗∗ −0.054∗∗∗ −0.002
(0.013) (0.017) (0.012)

TMP_less_ten1 −0.080∗∗∗ −0.080∗∗∗ −0.029∗∗∗

(0.012) (0.015) (0.010)

TMP_less_fifteen1 −0.059∗∗∗ −0.059∗∗∗ −0.010
(0.011) (0.013) (0.008)

TMP_less_twenty1 −0.055∗∗∗ −0.055∗∗∗

(0.010) (0.013)

mist1 −0.042∗∗∗ −0.042∗∗∗ −0.038∗∗∗

(0.006) (0.008) (0.007)

fog1 −0.014 −0.014 −0.008
(0.011) (0.014) (0.013)

drizzle1 0.040∗∗ 0.040∗ 0.045∗

(0.019) (0.024) (0.024)

rain1 0.095∗∗∗ 0.095∗∗∗ 0.093∗∗∗

(0.009) (0.011) (0.011)

snow1 0.212∗∗∗ 0.212∗∗∗ 0.217∗∗∗

(0.014) (0.018) (0.018)
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Dependent variable:

total_accidents_per_hour

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

precipitation1 0.114∗∗∗ 0.114∗∗∗ 0.115∗∗∗

(0.009) (0.011) (0.011)

RH 0.0003 0.0003
(0.0002) (0.0003)

SLP −0.002∗∗∗ −0.002∗∗∗ −0.002∗∗∗

(0.0002) (0.0003) (0.0003)

cause_intoxication 0.129∗∗∗ 0.129∗∗∗ 0.149∗∗∗

(0.002) (0.003) (0.003)

cause_damaged_road 0.103∗∗∗ 0.103∗∗∗ 0.114∗∗∗

(0.008) (0.010) (0.011)

cause_car_defect 0.102∗∗∗ 0.102∗∗∗ 0.111∗∗∗

(0.007) (0.008) (0.009)

hour01 −0.129∗∗∗ −0.129∗∗∗ −0.127∗∗∗

(0.024) (0.029) (0.025)

hour02 −0.208∗∗∗ −0.208∗∗∗ −0.205∗∗∗

(0.024) (0.030) (0.026)

hour03 −0.256∗∗∗ −0.256∗∗∗ −0.250∗∗∗

(0.025) (0.031) (0.026)
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Dependent variable:

total_accidents_per_hour

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

hour04 −0.007 −0.007 −0.002
(0.023) (0.029) (0.025)

hour05 0.852∗∗∗ 0.852∗∗∗ 0.848∗∗∗

(0.019) (0.024) (0.021)

hour06 1.414∗∗∗ 1.414∗∗∗ 1.399∗∗∗

(0.019) (0.023) (0.021)

hour07 1.767∗∗∗ 1.767∗∗∗ 1.741∗∗∗

(0.020) (0.026) (0.024)

hour08 1.725∗∗∗ 1.725∗∗∗ 1.705∗∗∗

(0.021) (0.026) (0.024)

hour09 1.774∗∗∗ 1.774∗∗∗ 1.759∗∗∗

(0.021) (0.026) (0.024)

hour10 1.790∗∗∗ 1.790∗∗∗ 1.778∗∗∗

(0.021) (0.026) (0.024)

hour11 1.749∗∗∗ 1.749∗∗∗ 1.738∗∗∗

(0.021) (0.026) (0.024)

hour12 1.711∗∗∗ 1.711∗∗∗ 1.699∗∗∗

(0.021) (0.026) (0.024)

hour13 1.784∗∗∗ 1.784∗∗∗ 1.773∗∗∗
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Dependent variable:

total_accidents_per_hour

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

(0.021) (0.026) (0.024)

hour14 1.892∗∗∗ 1.892∗∗∗ 1.880∗∗∗

(0.020) (0.026) (0.024)

hour15 1.897∗∗∗ 1.897∗∗∗ 1.883∗∗∗

(0.020) (0.026) (0.024)

hour16 1.926∗∗∗ 1.926∗∗∗ 1.915∗∗∗

(0.020) (0.025) (0.023)

hour17 1.773∗∗∗ 1.773∗∗∗ 1.766∗∗∗

(0.018) (0.023) (0.021)

hour18 1.528∗∗∗ 1.528∗∗∗ 1.524∗∗∗

(0.018) (0.023) (0.021)

hour19 1.258∗∗∗ 1.258∗∗∗ 1.255∗∗∗

(0.018) (0.023) (0.020)

hour20 0.947∗∗∗ 0.947∗∗∗ 0.947∗∗∗

(0.019) (0.024) (0.021)

hour21 0.678∗∗∗ 0.678∗∗∗ 0.676∗∗∗

(0.020) (0.025) (0.022)

hour22 0.505∗∗∗ 0.505∗∗∗ 0.500∗∗∗

(0.020) (0.025) (0.022)
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Dependent variable:

total_accidents_per_hour

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

hour23 0.242∗∗∗ 0.242∗∗∗ 0.236∗∗∗

(0.021) (0.027) (0.023)

day1 0.439∗∗∗ 0.439∗∗∗ 0.413∗∗∗

(0.007) (0.009) (0.009)

day2 0.379∗∗∗ 0.379∗∗∗ 0.357∗∗∗

(0.007) (0.009) (0.009)

day3 0.414∗∗∗ 0.414∗∗∗ 0.389∗∗∗

(0.007) (0.009) (0.009)

day4 0.435∗∗∗ 0.435∗∗∗ 0.413∗∗∗

(0.007) (0.009) (0.009)

day5 0.472∗∗∗ 0.472∗∗∗ 0.450∗∗∗

(0.007) (0.009) (0.009)

day6 0.142∗∗∗ 0.142∗∗∗ 0.147∗∗∗

(0.008) (0.010) (0.009)

week36 −0.015 −0.015 −0.035
(0.024) (0.030) (0.029)

week37 0.031 0.031 0.009
(0.024) (0.030) (0.029)
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Dependent variable:

total_accidents_per_hour

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

week38 0.028 0.028 0.004
(0.024) (0.030) (0.029)

week39 0.068∗∗∗ 0.068∗∗ 0.042
(0.024) (0.030) (0.029)

week40 0.043∗ 0.043 0.015
(0.024) (0.030) (0.029)

week41 0.072∗∗∗ 0.072∗∗ 0.046
(0.024) (0.030) (0.029)

week42 0.060∗∗ 0.060∗∗ 0.034
(0.024) (0.030) (0.029)

week43 0.041∗ 0.041 0.014
(0.024) (0.030) (0.030)

week44 0.002 0.002 −0.031
(0.025) (0.031) (0.030)

week45 −0.061∗∗ −0.061∗∗ −0.090∗∗∗

(0.024) (0.031) (0.030)

week46 −0.016 −0.016 −0.043
(0.025) (0.031) (0.030)

week47 −0.065∗∗∗ −0.065∗∗ −0.092∗∗∗
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Dependent variable:

total_accidents_per_hour

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

(0.025) (0.031) (0.030)

week48 −0.023 −0.023 −0.049
(0.025) (0.031) (0.030)

week49 −0.023 −0.023 −0.047
(0.025) (0.031) (0.030)

week50 −0.021 −0.021 −0.048
(0.025) (0.031) (0.030)

week51 −0.0005 −0.0005 −0.024
(0.025) (0.031) (0.031)

week52 −0.109∗∗∗ −0.109∗∗∗ −0.135∗∗∗

(0.031) (0.039) (0.038)

year2010 −0.025∗∗∗ −0.025∗∗ −0.023∗∗

(0.010) (0.012) (0.012)

year2011 0.054∗∗∗ 0.054∗∗∗ 0.054∗∗∗

(0.009) (0.012) (0.012)

year2012 0.088∗∗∗ 0.088∗∗∗ 0.089∗∗∗

(0.009) (0.012) (0.011)

year2013 0.137∗∗∗ 0.137∗∗∗ 0.139∗∗∗

(0.009) (0.012) (0.011)
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Dependent variable:

total_accidents_per_hour

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)

year2014 0.158∗∗∗ 0.158∗∗∗ 0.160∗∗∗

(0.009) (0.012) (0.011)

year2015 0.234∗∗∗ 0.234∗∗∗ 0.234∗∗∗

(0.009) (0.011) (0.011)

year2016 0.280∗∗∗ 0.280∗∗∗ 0.283∗∗∗

(0.009) (0.011) (0.011)

year2017 0.323∗∗∗ 0.323∗∗∗ 0.327∗∗∗

(0.009) (0.011) (0.011)

year2018 0.327∗∗∗ 0.327∗∗∗ 0.330∗∗∗

(0.009) (0.011) (0.011)

year2019 0.302∗∗∗ 0.302∗∗∗ 0.309∗∗∗

(0.009) (0.011) (0.011)

Constant 1.807∗∗∗ 1.807∗∗∗ 1.816∗∗∗

(0.242) (0.303) (0.306)

Observations 29,832 29,832 29,832
Log Likelihood −80,201.990 −78,895.690
θ 20.730∗∗∗ (0.550)
Akaike Inf. Crit. 160,554.000 157,937.400
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Dependent variable:

total_accidents_per_hour

Poisson glm: quasipoisson negative
link = log binomial

(1) (2) (3)
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A.37: IRR of the best-fitted regression model for the total acci-
dents with weather and explanatory variables in the autumn period.

Estimate Robust SE Pr(>|z|) IRR

(Intercept) 1.816 0.314 0 6.145
dark 0.282 0.013 0 1.326

holiday1 -0.324 0.018 0 0.723
TMP_less_zero1 0.069 0.015 0 1.072
TMP_less_five1 -0.002 0.012 0.838 0.998
TMP_less_ten1 -0.029 0.010 0.003 0.972

TMP_less_fifteen1 -0.010 0.008 0.203 0.990
mist1 -0.038 0.007 0 0.963
fog1 -0.008 0.014 0.586 0.992

drizzle1 0.045 0.025 0.067 1.046
rain1 0.093 0.012 0 1.097
snow1 0.217 0.021 0 1.242

precipitation1 0.115 0.012 0 1.121
SLP -0.002 0 0 0.998

cause_intoxication 0.149 0.003 0 1.160
cause_damaged_road 0.114 0.009 0 1.120

cause_car_defect 0.111 0.008 0 1.117
hour01 -0.127 0.031 0 0.881
hour02 -0.205 0.032 0 0.815
hour03 -0.250 0.032 0 0.778
hour04 -0.002 0.028 0.946 0.998
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Estimate Robust SE Pr(>|z|) IRR

hour05 0.848 0.025 0 2.335
hour06 1.399 0.026 0 4.051
hour07 1.741 0.028 0 5.701
hour08 1.705 0.027 0 5.502
hour09 1.759 0.027 0 5.807
hour10 1.778 0.026 0 5.916
hour11 1.738 0.026 0 5.685
hour12 1.699 0.026 0 5.469
hour13 1.773 0.026 0 5.887
hour14 1.880 0.026 0 6.551
hour15 1.883 0.026 0 6.572
hour16 1.915 0.026 0 6.786
hour17 1.766 0.024 0 5.849
hour18 1.524 0.024 0 4.592
hour19 1.255 0.024 0 3.509
hour20 0.947 0.024 0 2.578
hour21 0.676 0.024 0 1.965
hour22 0.500 0.025 0 1.649
hour23 0.236 0.026 0 1.267
day1 0.413 0.010 0 1.511
day2 0.357 0.010 0 1.429
day3 0.389 0.010 0 1.476
day4 0.413 0.010 0 1.511
day5 0.450 0.010 0 1.568
day6 0.147 0.011 0 1.158

week36 -0.035 0.029 0.227 0.965
week37 0.009 0.029 0.745 1.010
week38 0.004 0.029 0.901 1.004
week39 0.042 0.029 0.147 1.043
week40 0.015 0.029 0.616 1.015
week41 0.046 0.029 0.118 1.047
week42 0.034 0.030 0.247 1.035
week43 0.014 0.030 0.631 1.014
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Estimate Robust SE Pr(>|z|) IRR

week44 -0.031 0.030 0.305 0.970
week45 -0.090 0.030 0.003 0.914
week46 -0.043 0.030 0.159 0.958
week47 -0.092 0.031 0.003 0.912
week48 -0.049 0.031 0.115 0.953
week49 -0.047 0.031 0.127 0.954
week50 -0.048 0.031 0.117 0.953
week51 -0.024 0.031 0.444 0.977
week52 -0.135 0.041 0.001 0.874

year2010 -0.023 0.012 0.047 0.977
year2011 0.054 0.011 0 1.056
year2012 0.089 0.011 0 1.094
year2013 0.139 0.011 0 1.149
year2014 0.160 0.011 0 1.173
year2015 0.234 0.011 0 1.264
year2016 0.283 0.011 0 1.327
year2017 0.327 0.011 0 1.387
year2018 0.330 0.011 0 1.390
year2019 0.309 0.011 0 1.362
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