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Study programme: Theoretical Physics, Astronomy

and Astrophysics
Study branch: Theoretical Physics, Astronomy

and Astrophysics

Prague 2020





I declare that I carried out this doctoral thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In . . . . . . . . . . . . . date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Author’s signature

i



ii



First, I would like to thank my supervisor Mgr. Roman Čuŕık, Ph.D. for all
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Author: Dávid Hvizdoš
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Introduction
The process wherein an ionised gas is neutralized by interacting with electrons
is called recombination. For atomic ions the only way to bind an electron and
get rid of excess energy (barring the presence of some third body) is photon
emission which makes recombination a slow and inefficient process for them. For
diatomic and larger molecular ions though, the energy can be channelled into
breaking chemical bonds and the excess becomes the kinetic energy of the breakup
products. This is called dissociative recombination (DR) and it is a highly efficient
and thus important pathway to neutralizing ionised gasses [1]. Symbolically, it is

AB+ + e− → A + B(n) ,

where one of the fragments is typically electronically excited.
Indeed, it is considered crucial to the understanding of both molecular plasma

dynamics within interstellar clouds and the neutralization of gasses inside the
Earth’s upper atmosphere. Despite its importance it is a poorly understood pro-
cess. This is due to the fact that accurate results and descriptions of DR are very
challenging from both an experimental and theoretical perspective. This stems
mostly from the fact that the Hamiltonian describing the overall interaction al-
ways contains a coulombic term for the long range electron-ion interaction. From
a theoretical standpoint, this makes asymptotic (in the electronic coordinate) so-
lutions more complicated and their connection to a short-range interaction region
needs to be treated carefully. The presence of infinite series of Rydberg states
accumulating energetically under each vibrational excitation (VE) threshold re-
sults in rich and dense resonance structures in cross section and rate coefficient
graphs [1].

This means that for a meaningful experimental study, which hopes to identify
these structures, a very high energetic resolution is needed. Experiments have
started reaching this level of accuracy only recently [2]. Historically, DR experi-
ments have been much less precise and have often shown only the correct order
of magnitude of cross sections or rate coefficients rather than any precise struc-
ture. For more information on the history of DR experiments and theoretical
description one should read the excellent book by Mats Larsson and Ann E. Orel
[1].

Similarly, due to the complexity of the problem, the previous theoretical stud-
ies of DR were often based on strongly approximative assumptions to facilitate
computation at the expense of accuracy (since comparisons with experiments
would only compare the correct order of magnitude and general shape of curves).

And so, with the advent of better experimental equipment, the main goal
of our work in the past years is the development of a more accurate theoretical
toolkit and its efficient implementation. However, since theoretical methods allow
for resolutions even finer than the accurate experiments, we first aim to develop
and implement multiple methods to benchmark and compare against each other.
For the sake of simplicity we mostly focus on the DR in the system H+

2 + e− with
the resulting technique also applied to HeH+ + e− for the eventual experimen-
tal comparisons. We thus start by developing and comparing three theoretical
approaches to computing the indirect mechanism (more on that in chapter 1) of
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H+
2 + e− DR on a two-dimensional model:

• A straightforward and numerically exact solution of the model (actually
developed as part of my master’s thesis [3]), which is rather slow compared
to the others but serves as a first benchmark.

• An approximative approach that employs the frame transformation (FT)
method first developed by Chang and Fano [4] combined with multichannel
quantum defect theory (MQDT - for more information on quantum defects
see Seaton’s work [5]). We expand the first highly approximative “energy-
independent” approach according to the theory laid out by Gao and Greene
[6, 7] and further extended by us.

• A two-dimensional R-matrix method that solves the problem exactly in
some limited two-dimensional box with significant electron-nuclear cou-
pling and connects these solutions on the box surface to analytical outer
region solutions via MQDT. This method can also be adjusted to a Born-
Oppenheimer approximation (BOA) form as first proposed by Schneider et
al. [8] to test the validity of this approximation for DR.

The expanded second approach is then used for the aforementioned experimental
comparison of DR of HeH+ + e−, and afterwards, we create a model describing
the direct mechanism (also explained in chapter 1) of H+

2 + e− DR and adapt one
of the approaches to treat this more complicated case.

In order to differentiate between citations which are not a direct part of this
work and our own publications, we will be using the letters [A], [B], [C] and [D]
to reference those that resulted from my Ph.D. work. Unless stated otherwise,
all of the physical values presented are in atomic units, so common constants
are ℏ = e = me = 4πϵ0 = 1. Distances are measured in units of the Bohr ra-
dius rBohr .= 5.291772 × 10−11 m, cross sections in bohr2 and energies in hartrees
Eh

.= 27.211386 eV .= 219474.63 cm−1 .= 4.359744×10−18 J. The final graphs de-
picting cross-section results often use electronvolts for energy units and vibronic
energy comparisons use wave numbers (cm−1). Whenever we type matrices with-
out indices they will be underlined (e.g. S) to differentiate them from scalar
quantities.

On a technical note, the numerical implementation of integrals over the elec-
tronic and nuclear coordinates and the description of corresponding wave func-
tions employed a basis of B splines [9]. The technical details (basis size and the
grid parameters) can be found inside our published papers [A], [B], [C], [D].
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1. Dissociative recombination
and molecular hydrogen
In general, we recognize two different pathways along which dissociative recombi-
nation can happen. They are called the direct and indirect mechanism of the DR.
The direct mechanism is depicted in Fig.1.1a and described thusly: An electron
collides with a molecular ion AB+ getting captured and converting its kinetic en-
ergy into electronic excitation and the system becomes AB∗∗. Though unstable,
if the curve of AB∗∗ is repulsive enough, the molecule will dissociate before it can
autoionize.

However, there are cases where no such “AB∗∗” resonance exists (for example
with H2 in the singlet ungerade symmetry). In such instances DR can still oc-
cur via the second, indirect mechanism. It is depicted in Fig.1.1b and described
thusly: the incoming electron converts its kinetic energy into vibrational excita-
tion of the molecule and gets captured in a Rydberg state which is a part of a
series of states accumulating under the AB+ potential curve. With sufficient in-
coming electron energy the system can dissociate via low enough Rydberg states.
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(a) Direct DR

A + B
+

A + B
Ry
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Internulear distance

(b) Indirect DR

Figure 1.1: A visualization of the types of dissociative recombination.

The series of Rydberg states is always present and causes the creation of
infinite series of resonances energetically accumulating under each vibrational
excitation threshold. It is apparent that even in the simple case of H+

2 DR becomes
a highly complex problem with many quirks and caveats.

1.1 Model of indirect DR for H+
2 + e−

Throughout the publications [A], [B], [C] we study the indirect DR on the model of
the singlet ungerade symmetry channels of H2. All the theoretical descriptions,
that we employ, start by choosing correct model Hamiltonians to describe the
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interaction between the target molecular ion and the incoming electron. Since
we have chosen to study simple systems with only one nuclear and one electronic
degree of freedom (after separating out the rotational parts), the model potentials
are just functions of two coordinates (R for the internuclear separation and r for
the electronic distance from the molecule’s center). The full Hamiltonian for the
indirect dissociative recombination model is thus

H(R, r) = H0(R, r) + V (R, r) = Hn(R) +H l
e(r) + V (R, r) , (1.1)

with

Hn(R) = − 1
2M

∂2

∂R2 + V0(R) , (1.2)

H l
e(r) = −1

2
∂2

∂r2 − 1
r

+ l(l + 1)
2r2 , (1.3)

V0(R) = D0
(︂
e−2α0(R−Re) − 2 e−α0(R−Re)

)︂
, (1.4)

V (R, r) = −α1

(︄
1 − tanh α2 −R − α3R

4

7

)︄
tanh4

(︃
R

α4

)︃
e−r

2/3

r
, (1.5)

where M = 918.076 a.u. denotes the reduced mass of H+
2 , l is the angular

momentum of the incoming electron1 and the potential parameters are α1 =
1.6435, α2 = 6.2, α3 = 0.0125, α4 = 1.15, D0 = 0.1027 hartree, α0 = 0.69
bohr−1 and Re = 2.0 bohr. The Morse potential V0(R) models the ground-state
potential curve of the target cation. The model potential V (R, r) describing the
interaction between the electron and the molecule was taken from E.L. Hamilton’s
thesis [10]. It is tailored to reproduce the exact e−+H+

2 coupling potential with
high accuracy. Something to note about this model interaction is that though it
reproduces the adiabatic potential curves of the 1Σ+

u states of H2 quite closely, the
lowest state potential curve coming from this model is actually quite unphysical.
Fortunately, it is energetically well below all the other curves (by cca. 37 eV) and
ends up not having any noticeable impact on the results of our studies (e.g. the
connected cross sections are many orders of magnitude below any physical ones).
This holds true for every single one of the approaches that we have used the
model interaction in. For more details on the potential itself refer to Hamilton’s
thesis [10]. The potentials have the following asymptotic limits

V (R, r) = 0 , for r ≥ r0 , (1.6)
V (R, r) = V (R0, r) , for R ≥ R0 , (1.7)
V0(R) = 0 , for R ≥ R0 , (1.8)

for some reasonably small r0 and R0. This naturally leads to a partitioning
of the configuration space (as shown in Fig. 1.2) into an inner (reaction zone)
and outer regions in such a way that nuclear and electronic Hamiltonians are
completely separable in the outer region. The studied outgoing channels in this
model are vibrational excitation and dissociative recombination. The upper right
part of Fig. 1.2 contains an additional “path to dissociative scattering” (no
recombination) but that is a process quite outside our studied range of energies
and thus not relevant in this work. The model for the direct DR of H+

2 + e− will
be described in chapter 6.

1In the indirect case we only consider the incoming electronic p-wave so l = 1. For this
reason the chapters treating the indirect DR of H+

2 omit writing the l and we just write He(r).
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Figure 1.2: Configuration space partitioning.

1.2 First two-dimensional method
Upon constructing the full Hamiltonian (1.1) we can write the Schrödinger equa-
tion

(E −H(R, r))ψE(R, r) = 0 . (1.9)

The method of solving this equation described in my master’s thesis [3] is our
first attempt at computing the indirect DR of the H+

2 + e− model. It was done
by solving (1.9) in a large 2D space without any further approximations. It is
based on the 2D numerical approach of Houfek, Rescigno and McCurdy [11],
originally used to get cross sections of vibrational excitation and dissociative
electron attachment. The method uses exterior complex scaling (ECS)2 in both
the electronic and the nuclear coordinate to achieve seamless boundary condi-
tion implementation for incoming and outgoing waves. The continuous variables
are represented using the finite element method (FEM) with discrete variable
representation (DVR). Because of this we call it the 2D FEM-DVR-ECS method.

A straightforward solution of the Schrödinger equation (1.9) with the aim
of computing both the VE and the DR cross sections requires a description of
not only the wave functions connected to the open and weakly closed outgoing
channels, but also all of the intermediate electronic Rydberg states to obtain
the corresponding closed-channel resonances. Since there is an infinite number
of these accumulating under each VE threshold and the higher states reach in-
creasingly farther in the electronic coordinate, a complete numerical description

2We will also use exterior complex scaling in the nuclear coordinate in chapter 4 to obtain our
nuclear vibrational basis. There, we will delve deeper into the exact nature of this coordinate
bending.
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within a finite space is impossible with this straightforward method. This means
that when using a finite grid to represent the 2D space, the cross sections will
always have energy windows under each vibrational threshold, where the method
is unconverged and will fail to describe all the resonances numerically. These
windows of inaccuracy can be theoretically shrunk down to any desired size but
at increasingly high computational cost. The implementation used by us had
an electronic grid length of 100000 bohrs and the inaccuracy windows were still
rather visible (you can see this in the cross-section comparison images in chapter
2). Since we made no further approximations, we consider the results given by
this method to be exact outside of the aforementioned inaccuracy windows and
they will be used as our first benchmark for later methods.

A more thorough description of the 2D FEM-DVR-ECS approach with all the
necessary mathematical rigour can be found in my master’s thesis [3] and (slightly
less thorough) in our first publication [A]. The approach is unfeasible for more
complicated real systems and may take several days of computation (if we desire
to really shrink the unconverged result windows) for the same amount of data
that an approximative method (like those in chapters 2 and 4) would produce
in minutes. A very symbolic comparison of the computation ranges used in our
approaches to the DR can be found in Fig. 1.3. It shows at first glance, how
the faster methods (used in the later chapters) need only to work in the reaction
zone while the 2D FEM-DVR-ECS method operates on a much larger area.

R (nuclei)

r
 (

el
ec

tr
o

n
)

R0

r0 

2D R-matrix method
computations

FT method computations

2D FEM-DVR-ECS method

Figure 1.3: A symbolic representation of the computation box sizes and ranges
of the three different approaches to computing DR.
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2. DR by frame transformation
Historically, one of the most common and successful methods of computing the
low-energy cross sections for the VE and the DR processes has been the frame
transformation method [4]. In practice the FT is an approach that can be imple-
mented in a computationally highly efficient manner. As opposed to the vibra-
tional excitation via FT, which can be done rather straightforwardly, application
of the frame transformation theory in the DR process requires several additional
non-trivial approximations and assumptions. Although the FT procedure has
been successfully used numerous times in the past (for example DR of H+

2 [12],
H+

3 [13], LiH+ [14, 15], NO+
2 [16], LiHe+ [17], LiH+

2 [18] and HeH+ [19, 20]), the
employed approximations and assumptions were never tested rigorously. Thus
the aim of our first [A] and third [C] studies was to more thoroughly test the
method’s approximations in a more strict numerical environment. In both cases
we have chosen DR of singlet ungerade H+

2 + e−.
The typical approximations and assumptions in the FT in the DR process are

as follows:

• FT methods use the Born-Oppenheimer quantum defects to compute the
short-range scattering matrix so one must always keep in mind the limita-
tions of the Born-Oppenheimer approximation. It is important to note here
that the FT methods only assume the Born-Oppenheimer approximation
to hold inside some limited box of the electronic r ≤ r0 coordinate.

• As opposed to the vibrational excitation, which is computed directly, the
DR cross sections are obtained by computing a subunitary scattering matrix
with indices corresponding to the open VE channels. Subunitarity means
that the sum of probabilities corresponding to these channels is less than
one. The main step that follows is to identify the missing probability flux
with the only other open pathway for the system which is the DR [12]. This
could be called a “physical reasoning” assumption.

• The subunitary scattering matrix is obtained by applying the FT procedure
with a basis set of bound and outgoing vibrational wave functions. His-
torically, a quite successful choice were the so-called Siegert pseudo-states
[21, 22] which hold a special orthogonality relation and boundary condition.
This results in a rather unintuitive form of frame-transformed ma-
trices which was at first guessed and even called ad hoc in previous studies
[19].

2.1 Energy-independent FT theory in the DR
model

In addition to the aforementioned typical FT assumptions, the previous works [12]
- [20] made several additional approximations to make the implementation of the
FT method simpler. The resulting procedure is called the energy-independent
frame transformation and our first study [A] follows this approach. The full
derivation of the energy-independent FT procedure follows.
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We start with the 2D Hamiltonian (1.1),(1.2),(1.3) with l = 1, using potentials
V (R, r) (1.5) and V0(R) (1.4). Our goal is to solve the 2D Schrödinger equation[︂

H l=1
e (r) +Hn(R) + V (R, r) − E

]︂
ψ(R, r) = 0 . (2.1)

We assume that inside some electronic sphere r ≤ r0 BOA holds and the in-
ternuclear distance R is a good quantum number within, while for r > r0 the
electron-ion interaction is purely Coulomb (thanks to (1.6)). Here the Eq. (2.1)
becomes separable in the nuclear and electronic coordinates. Let us denote fj′(r),
gj′(r) the regular and irregular Coulomb wave functions for rotational l = 1 eval-
uated at the body-frame momentum kj′ = √2ϵj′ =

√︂
2(E − Ej′) where Ej′ will

be the energy allocated to the nuclear part of the wave function3. The pair {f, g}
is equal to {s,−c} from Seaton’s work [5, 23]. Let us also denote

f∓j′ (r) ≡ 1√
2

(−gj′(r) ∓ ifj′(r)) , (2.2)

with i =
√

−1. These are the incoming-wave f− and outgoing-wave f+ Coulomb
functions. Assuming we have a complete vibrational basis ϕj(R) satisfying

Hn(R)ϕj′(R) = Ej′ϕj′(R) , (2.3)

we can write the j′-th independent BOA solution of the Schrödinger equation
(2.1) in the inner region r ≤ r0 at the boundary r = r0 as

ψj′(R, r0) = ϕj′(R)N(R, ϵj′)
[︂
f−j′ (r0) − f+

j′ (r0)e2πiµ(ϵj′ ,R)
]︂
, (2.4)

where µ(ϵj′ , R) is the body-frame quantum defect and N(R, ϵj′) is a normalization
factor. The normalization factor can be omitted for reasons that we will explain
further down in this chapter. In the outer region r > r0 the solution of (2.1) is a
general linear combination of ϕn(R)f−n (r) and ϕn(R)f+

n (r) due to the separability
of the Hamiltonian. A matching of the inner- and outer-region solutions at the
boundary gives

ϕj′(R)
[︂
f−j′ (r0) − f+

j′ (r0)e2πiµ(ϵj′ ,R)
]︂

=
∑︂
n

ϕn(R)
[︂
f−n (r0)Anj′ − f+

n (r0)Bnj′

]︂
.

(2.5)
A knowledge of the orthogonality relations of ϕj leads to the construction of
a linear one-index functional Fj[ . ] which acts on the space of R-dependent
functions satisfying

Fj[ϕj′ ] = δjj′ , for all j, j′ . (2.6)
This functional is crucial for extracting the scattering matrix from (2.5). Follow-
ing suit of previous studies, we used the basis ϕj′(R) of Siegert pseudo-states on
the interval 0 ≤ R ≤ R0. They satisfy the Eq. (2.3) with the following boundary
conditions

ϕj′(0) = 0 ,(︄
d

dR − iKj′

)︄
ϕj′(R)

⃓⃓⃓⃓
⃓
R=R0

= 0 , (2.7)

3Note that this notation is according to the latter publications [B], [C], [D] and that our
first publication [A] actually had the symbols ϵj and Ej swapped.
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where Kj′ =
√︂

2Ej′ is in general a complex quantity (it is purely imaginary for the
bound and anti-bound states). The non-trivial Siegert pseudo-state orthogonality
relations ∫︂ R0

0
ϕj(R)ϕj′(R)dR + i

ϕj(R0)ϕj′(R0)
Kj +Kj′

= δjj′ , (2.8)

lead to the following form of Fj[ . ]:

Fj[h(R)] =
∫︂ R0

0
dRϕj(R)h(R) + iϕj(R0)

⎡⎣(︄Kj − i
d

dR

)︄−1

h(R)
⎤⎦
R=R0

, (2.9)

where h(R) is now any smooth function of R. For more information about this
functional see the appendix in the publication [A] and more details on the Siegert
pseudo-states follow in section 2.3. By applying the functional (2.9) to both sides
of (2.5) we get

f−j′ (r0)δjj′ − f+
j′ Sjj′ = f−j (r0)Ajj′ − f+

j (r0)Bjj′ , (2.10)

where

Sjj′ =
∫︂ R0

0
dRϕj(R)e2πiµ(ϵj′ ,R)ϕj′(R)

+ iϕj(R0)
⎡⎣(︄Kj − i

d
dR

)︄−1

e2πiµ(ϵj′ ,R)ϕj′(R)
⎤⎦
R=R0

. (2.11)

The coefficient matrices A,B are then obtained by applying the Wronskian tech-
nique to (2.10). Let us denote [., .] the Wronskian of two functions of r and let us
also assume in the next step that f± are energy independent at r0, so f±j = f±j′

4.
We can then write

Bjj′ = −1
[f+
j , f

−
j ]
(︂
[f−j′ , f−j ]δjj′ − [f+

j′ , f−j ]Sjj′

)︂
energy−independent f+,f−
−−−−−−−−−−−−−−−−−→ Sjj′ ,

Ajj′ = 1
[f−j , f+

j ]
(︂
[f−j′ , f+

j ]δjj′ − [f+
j′ , f+

j ]Sjj′

)︂
energy−independent f+,f−
−−−−−−−−−−−−−−−−−→ δjj′ . (2.12)

Therefore, for the outer-region (r > r0) solution we get

ψj′(R, r) =
∑︂
j

ϕj(R)
[︂
f−j (r0)δjj′ − f+

j (r0)Sjj′

]︂
. (2.13)

Because of the assumption (1.7), the quantum defect is R-independent for R ≥ R0
and (2.11) reduces to

Sjj′ =
∫︂ R0

0
dRϕj(R)e2πiµ(ϵj′ ,R)ϕj′(R) + i

ϕj(R0)e2πiµ(ϵj′ ,R0)ϕj′(R0)
Kj +Kj′

. (2.14)

This is actually the ad hoc form of the frame-transformed S matrix mentioned
at the start of the chapter. It was previously successfully used even without

4This approximation is reasonable for a small r0.
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a rigorous mathematical derivation but we have found that it is indeed a valid
simplification of the more general form (2.11) and it is correct for any frame
transformation method using Siegert pseudo-states as long as the nuclear poten-
tial V0(R) is sufficiently negligible at R0 and the quantum defect µ(ϵj′ , R) is flat
for R ≥ R0 (for more mathematical rigor see the appendix to the publication
[A]). In this first study, we further simplified the form (2.14) by assuming that
µ(ϵj′ , R) is also energy-independent at all values of R.

As is, the form (2.13) still contains both open and closed channels and thus
the S matrix within cannot be called a true physical scattering matrix. It is some-
times called a short-range or body-frame scattering matrix. To get to the physical
scattering matrix we need to employ the MQDT elimination of closed channels
[5, 24]. The objective of this technique is finding such a linear combination of
solutions ψj′(R, r) where the exponentially growing parts of the closed-channel
components cancel out. This results in the physical scattering matrix Sphys de-
fined for only the open channels. After separating the short-range S matrix into
submatrices

S =
(︄
Soo Soc
Sco Scc

)︄
, (2.15)

according to which channels are open and closed at the given energy, the physical
scattering matrix satisfies

Sphys(E) = Soo − Soc
[︂
Scc − e−2iβ(E)

]︂−1
Sco , (2.16)

where β(E) is the matrix of effective Rydberg quantum numbers with respect to
the closed-channel thresholds Ej

β(E)jj′ = πδjj′√︂
2(Ej − E)

, for the closed-channel j, j′ only. (2.17)

Finally, as per the second point at the start of the chapter, the DR cross section
σDR
j′ (E) is obtained from the missing probability flux of the subunitary Sphys(E)

σDR
j′ (E) = π

2(E − Ej′)

⎡⎣1 −
∑︂
j

Sphys
jj′ (E)Sphys†

j′j (E)
⎤⎦ . (2.18)

It is important to note that this cross section is to be interpreted as a sum over
all the possible outgoing Rydberg channels for a given total energy E and for the
initial vibrational state j′. Naturally, inelastic VE cross sections into individual
channels can also be computed as

σVE
j←j′(E) = π

2(E − Ej′)
⃓⃓⃓
Sphys
jj′ (E)

⃓⃓⃓2
, forj ̸= j′ . (2.19)

A reader well versed in FT methods might also remember that a previous FT
paper [13] stresses that the conjugated matrix Sphys†

j′j (E) is to be computed sepa-
rately via a relation analogous to (2.16) with everything apart from the β matrix
complex-conjugated. In our implementation such an approach resulted in slightly
worse accuracy than simply complex conjugating the entire Sphys

jj′ (E) matrix.
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2.2 Method summary and results
As mentioned earlier, the described FT method is called the energy-independent
frame transformation. What this means is that though the MQDT elimination of
closed channels and computation of cross sections still contain explicit energy de-
pendence, several “softly” energy-dependent quantities were considered constant.
To summarize and reiterate:
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Figure 2.1: Comparison of the DR cross sections. The green line was obtained
with the energy-independent FT method and the blue line is the exact numeri-
cal 2D FEM-DVR-ECS result. The pink bands show energy windows just below
vibrational thresholds where the 2D FEM-DEV-ECS method results are not con-
verged (as described in section 1.2). The collision energies shown are around the
first and second vibrational threshold.

• The asymptotic Coulomb functions f±j (r) were chosen such that the Born-
Oppenheimer quantum defect µ(ϵj′ , R) had a rather small (but non-zero)
energy dependence at r0. In the study we considered the dependence to be
exactly zero in our range of energies (further simplifying (2.14)).

• The Coulomb functions themselves are energy-independent in the r → 0
limit. Our frame transformation is computed at the boundary of some small
non-zero electronic box but we already considered the Coulomb functions
to be energy-independent here. This led to the vanishing Wronskians in
(2.12).

• The normalization term N(R, ϵj′) formally behaves in such a way that it
explodes into infinity in the limit of energy-independent quantum defect
and asymptotic functions. For a complete nuclear vibrational basis it has
been shown by Gao and Greene [6] that the aforementioned energy indepen-
dence actually results in the omission of N(R, ϵj′) from (2.4). This omission
resulted in a significant simplification of the overall implementation.
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Figure 2.2: Comparison of the DR cross sections. Same colors as in Fig. 2.1 but
the energy window is chosen around the third DR channel opening.

Of the “three main assumptions” of our computational procedure, listed at
the start of this chapter, the last one was put on firmer grounds by purely an-
alytical means. The “physical reasoning” assumption about missing probability
flux cannot be proven analytically, therefore we attempt to justify this step with
numerical evidence. The numerical tests comparing the FT method to our bench-
marking model were done in a window of 0 to 2 eV collision energies. The results
mostly behaved as shown in Fig. 2.1 but around the DR channel openings the
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Figure 2.3: Comparison of the VE cross sections with multiple distinguished
output channels. Same colors as in Fig. 2.1 with a slightly wider energy window.
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accuracy becomes worse as shown in Fig. 2.2 (for more comparisons see the
publication [A]).

The numerical tests clearly show that the accuracy of the energy-independent
FT method is much better than just an order of magnitude. We observed that
the technique of the missing electronic flux (2.18) employed in this work requires
reasonably accurate VE transition matrix elements in the physical S matrix.
The expression (2.18) leads to a loss of digits when the missing flux (the DR
probability) is too low when compared to one. A comparison of VE cross sections
is in Fig. 2.3. The coordinate box sizes for our first study were r0 = 7 bohr and
R0 = 15 bohr.

2.3 Sources of error
To identify the possible sources of discrepancies we look to the remaining as-
sumptions that we have made (the energy-independent frame transforma-
tion and the Born-Oppenheimer approximation) as well as our choice of a
Siegert pseudo-state basis.

Firstly, a very clear indicator of the necessity of a full energy-dependent FT is
the last computational test at the end of our first publication where we show how
the calculated cross sections change significantly even if we artificially increase the
(so far energy-independent) quantum defect value by as little as 2% (Fig. 11 and
12 in Ref. [A]). This is also displayed in Fig. 2.4. The reason for this test is that
the positions and shapes of closed-channel resonances are mostly determined by
quantum defects at negative energies and Fig. 2.5 shows how the defect increases
slightly at these energies and thus the 2% increase test actually leads to better
agreement of the lineshapes.
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Figure 2.4: Comparison of the DR cross sections for the quantum defect test.
We use the same colors as in Fig. 2.1 with the added red curve for the artificially
increased quantum defect computation.
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Figure 2.5: The quantum defect µ(ϵ, R) of the ungerade model potential evalu-
ated at three energies ϵ = −2 eV, 0 eV,+2 eV.

Secondly, Siegert pseudo-states, though successfully and widely used[12, 13],
come with their own set of problems when one tries to use them as a basis for
scattering problems. Apart from the peculiar orthogonality relations (2.8) there
is also the matter of their completeness. Most commonly, in similar numerical
studies one would first create a complete basis set of vibrational states by di-
agonalizing the nuclear Hamiltonian with a chosen boundary condition. Then,
one would work with a large enough subset that is sufficiently complete on the
relevant part of the Hilbert space. In the case of Siegert pseudo-states, they
form a doubly complete basis (i.e. they “cover” the entire Hilbert space exactly
twice) due to the nature of their boundary conditions. The entire Siegert pseudo-
state basis consists of bound and anti-bound states (assuming the Schrödinger
equation at hand has bound state solutions) and outgoing- and incoming-wave
continuum states. The two continuum state branches’ energies and momenta
mirror each other exactly when plotted in the complex plane while the bound
and anti-bound states’ corresponding energies mostly overlap and momenta lie
on the opposite halves of the imaginary axis (shown in Fig. 2.6). To compute
the DR we need to use a basis of bound states and outgoing waves. If we simply
divide the Siegert pseudo-state basis into two parts, one containing the bound
states together with the outgoing-wave states and the other containing the rest
(anti-bound and incoming-wave states), we get two basis sets which are almost ex-
actly complete. Unfortunately, such splitting, while physically motivated, is not
mathematically exact and leads to small completeness deficiencies within parts of
the Hilbert space that are relevant to us. For example, some of the discrepancies
visible in Fig. 2.2 were caused by this completeness error (e.g. the energy window
from 1.14 eV to 1.16 eV is strongly affected by our chosen Siegert subset’s slight
over-completeness).

Finally, whether or not our use of BOA in the FT approach was valid was
tested in a more indirect way and is the focus of the next chapter 3. The following
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Figure 2.6: Siegert pseudo-state complex momenta example. The less relevant
incoming wave and anti-bound states are depicted with red points while bound
states are blue and outgoing wave states are green.

process of improving our FT approach is described in chapter 4.

2.4 Computation range clarification
The reader might notice that the explicit form of the coupling potential V (R, r)
makes no appearance throughout the Eqs. (2.2-2.18) and could question how
exactly the potential enters into the roundabout way of matching the inner and
outer solutions and if any effect of said potential is missing. The information is
in fact fully there and it is in the form of the BOA body-frame quantum defect,
which had been obtained by solving fixed-nuclei versions of the 2D Hamiltonian
(1.1) along the electronic coordinate in a 0 < r < r0 box. This also means that
the Fig. 1.3 can be slightly misleading regarding the computation range of FT.
The frame transformation itself only happens on the boundary r = r0 but we
need to have BOA information from the entire box beforehand (in the form of
µ(ϵj′ , R)).
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3. Two-dimensional R-matrix
approach
In our second DR study [B] we aimed for a closer look at the validity of the BOA in
those methods that involve the vibrational frame transformation. The processes
studied will be the VE and the DR, while the testing model remains as the singlet
ungerade channels of the e−+H+

2 system. The approximation is a crucial part of
all ab initio approaches describing elastic and inelastic collisions of electrons with
molecules and molecular cations including all the different frame transformation
methods that we based our first and third studies on. To test this we have chosen
a rather different approach which solves the Schrödinger equation inside a box
restricted by r0 and R0 and which matches to physically motivated solutions on
both the electronic and nuclear surfaces. Thus, it distinguishes between separate
DR channels as opposed to our missing flux approach used in the FT method. The
starting point of this approach can be traced to Edward Hamilton’s thesis [10],
where he developed the two-dimensional R-matrix method to model the photo-
dissociation and photo-ionization processes. We merely adapt it for use in our
DR study. The method is formulated in such a way that it can be easily switched
between a full and BOA approach within the box. A highly useful quality is that
when using the full solution the results are exact (if converged) and can also serve
as a benchmark for all the other DR computations for a given model. Compared
to the first 2D FEM-DVR-ECS method this one is harder to implement but much
faster and does not suffer from the “energy windows of unconverged Rydbergs”
(see e.g. Fig. 2.1).

3.1 The full treatment
Looking back to Fig. 1.2 let us denote the reaction zone V , the electronic fragmen-
tation surface Se and the nuclear fragmentation surface Sn (joined, the surfaces
are S). The boundaries r0, R0 are still chosen such that the Eqs. (1.6), (1.7),
(1.8) hold with a high accuracy. We then take the full 2D Hamiltonian Eq. (1.1)
and define a rescaled nuclear coordinate X = R

√
M (and also X0 = R0

√
M).

The Schrödinger equation (2.1) is altered to[︄
Hn (X) +He(r) + V

(︄
X√
M
, r

)︄
− E

]︄
ψ(X, r) = 0 , (3.1)

where
Hn (X) = −1

2
∂2

∂X2 + V0

(︄
X√
M

)︄
. (3.2)

For simplicity we will denote the potentials as V (X, r) and V0(X). The expres-
sion (3.1) is a more symmetric Schrödinger equation which formally describes
two interacting distinguishable particles with electronic mass. This means that
the eigenvalues b(E) of the two-particle logderivative operator B(E) satisfy the
following variational principle [25]:

b(E) = 2 stat
ψ

{︄
⟨ψ|H̄ − E|ψ⟩

(ψ|ψ)

}︄
, (3.3)
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where we define a symmetrized Hamiltonian H̄ via Bloch operators as

H̄ = H + 1
2

[︄
δ(X −X0)

∂

∂X
+ δ(r − r0)

∂

∂r

]︄
, (3.4)

H = Hn(X) +He(r) + V (X, r) , (3.5)

with ⟨ψ|ψ⟩ representing a scalar product in the reaction volume V = ⟨0, X0⟩ ×
⟨0, r0⟩ and (ψ|ψ) denoting a scalar product on the fragmentation surface S. By
defining δ(S) = δ(X −X0) + δ(r − r0) we can also write

(ψ|ψ) = ⟨ψ|δ(S)|ψ⟩ . (3.6)

The variational expression (3.3) leads to a Schrödinger equation for the eigenval-
ues bα(E)

2
(︂
H̄ − E

)︂
|ψα⟩ = bα |ψα) = bα δ(S)|ψα⟩ . (3.7)

The logderivative operator B(E) and its inverse R(E) = B−1(E) operate on
functions defined on the surface S. When acting upon functions obtained from
surface values of solutions ψ(X, r) of (3.1), the operators are hermitian [25]. The
functions ψα(X, r) are those solutions of (3.1) that also have a common outward
normal logarithmic derivative bα on the entire surface S. With them we can
formally decompose the operators B(E) and R(E)

B =
∑︂
α

|ψα) bα (ψα| , (3.8)

R =
∑︂
α

|ψα) b−1
α (ψα| . (3.9)

Since the δ(S) operator on the rhs of (3.7) lowers rank, the equation will generally
have many trivial (bα = 0) solutions [24]. These need to be omitted from (3.9)
for obvious reasons.

Let us now define a physically motivated orthonormal basis of channels on the
fragmentation surface S. The basis can be constructed from two sets of functions.
First, on the surface Se we define ϕje

Hn(X)ϕje(X) = Ejeϕje(X) , (3.10)

and second, on the surface Sn we define ρjn

[He(r) + V (X0, r)] ρjn(r) = Ejnρjn(r) . (3.11)

We then assemble the fragmentation channel basis |j) on the entire surface S by
uniting the two sets ( j = {je, jn} )

j ∈ je : |j) = |ϕje) on Se and |j) = 0 on Sn , (3.12)
j ∈ jn : |j) = |ρjn) on Sn and |j) = 0 on Se . (3.13)

In the present study we chose the channel functions to be continuous on S, which
leads to the boundary conditions ϕje(X0) = 0 and ρjn(r0) = 0. With this surface
basis we can now define the R matrix as matrix elements of the R operator in
the fragmentation channel basis. We get the eigenchannel expression

Rjj′ = (j|R|j′) =
∑︂
α

(j|ψα) b−1
α (ψα|j′) . (3.14)
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An alternative form of this equation is the Wigner-Eisenbud expansion [26]

Rjj′ = 1
2
∑︂
p

(j|ψp) (ψp|j′)
Ep − E

, (3.15)

where the eigenstates |ψp⟩ and eigenvalues Ep are defined by

H̄|ψp⟩ = Ep|ψp⟩ . (3.16)

More details about the resolvent form (not discussed here) of the R matrix and
the Wigner-Eisenbud expansion can be found in Ref. [B]. The form (3.15) is the
most convenient when we need to evaluate the R matrix for many different total
energies E. There is an important difference between the eigenstates |ψα⟩ and
|ψp⟩. First, |ψα⟩ solve the Schrödinger equation (3.1) for a given total energy E
while |ψp⟩ satisfy this equation only for discrete E = Ep. Second, these two sets
have different boundary conditions on the surface S and so they can differ even
with the choice E = Ep .

An R matrix computed this way has indices in both open and closed outgoing
channels. Due to our choice of ϕje(X0) = 0 and ρjn(r0) = 0 we automatically
omit the dissociative scattering in which r → ∞ and R → ∞ simultaneously
and so we only have to worry about one-particle asymptotics. Once again, the
MQDT technique is employed to eliminate closed channels. Let us first assume
that we have Ne channel functions ϕje(X) on the electronic surface Se and Nn
channel functions ρjn(r) on the nuclear surface Sn. Since the full 2D Hamilto-
nian is separable outside the reaction volume V , the outer region solutions are
formed as linear combinations of products of channel functions and asymptotic
solutions5. For the electronic fragmentation surface we use the real Coulomb
functions fje(r), gje(r) defined in the previous chapter. For the nuclear fragmen-
tation surface we use zero-field s-wave radial solutions F 0

jn(X), G0
jn(X) with the

following asymptotic behavior

F 0
jn(X) → (2/π)1/2K−1

jn sin(KjnX) , (3.17)
G0
jn(X) →−(2/π)1/2 cos(KjnX) , (3.18)

for positive ϵjn = E − Ejn = K2
jn/2 and

F 0
jn(X) → (1/2π)1/2κ−1

jn

(︂
eκjnX − e−κjnX

)︂
, (3.19)

G0
jn(X) →−(1/2π)1/2

(︂
eκjnX + e−κjnX

)︂
, (3.20)

for negative ϵjn = −κ2
jn/2 . If we construct diagonal matrices F ,G on the whole

surface S as

F = diag
[︂
f1(r0), ... ,fNe(r0), F 0

1 (X0), ... ,F 0
Nn(X0)

]︂
, (3.21)

G = diag
[︂
g1(r0), ... ,gNe(r0), G0

1(X0), ... ,G0
Nn(X0)

]︂
, (3.22)

5The R matrix itself is a general quantity independent of solutions in the outer region. Its
application to a model with the interaction of an ion and an electron is given by our specific
choice of asymptotic solutions.
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then the relation between the R matrix of (3.15) and short-range reaction matrix
K takes the familiar form

K = (F − F ′R) (G − G ′R)−1
. (3.23)

The independent solutions in the fragmentation regions are now

ψj′(X, r) =
Ne∑︂
je=1

ϕje(X) [fje(r)δjej′ − gje(r)Kjej′ ] (3.24)

+
Nn∑︂
jn=1

ρjn(r)
[︂
F 0
jn(X)δjnj′ −G0

jn(X)Kjnj′

]︂
, (3.25)

and they still contain exponentially growing terms in the closed channels. In
the R-matrix approach study we used the eigenchannel representation channel
elimination technique [27, 28, 6] (as opposed to the short-range S-matrix channel
elimination of our FT study [A]). In this case we diagonalize the K matrix

Kjj′ =
∑︂
γ

Ujγtan(πτγ)U †γj′ , (3.26)

and consider the eigenchannel solutions

ψγ(X, r) =
Ne∑︂
je=1

ϕje(X)Ujeγ[fje(r) cosπτγ−gje(r) sin πτγ]

+
Nn∑︂
jn=1

ρjn(r)Ujnγ
[︂
F 0
jn(X) cosπτγ −G0

jn(X) sin πτγ
]︂
, (3.27)

where πτγ is the eigenphase common for all the electronic and nuclear fragmen-
tation channels [29]. We then search for a coefficient set Aγ such that the com-
bination

ψ(X, r) =
∑︂
γ

ψγAγ (3.28)

decays exponentially in all the closed channels and has the same physical eigen-
phase shift δ on the surface S in all the open channels. Following previous
Coulomb and free-field procedures [28, 6], No

e and No
n denote the number of

open channels on the electronic and nuclear surfaces respectively. It is known
(Ref. [24]) that there are at most No

e +No
n independent coefficient sets Aγ, such

that the exponential growth is cancelled in Eq. (3.28). We denote them with a
second index Aγρ. Let us define matrices Γ and Λ

Γjγ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ujγ sin(βj + πτγ) , j ∈ Qe

Ujγ
(︂
κ−1
j cosπτγ + sin πτγ

)︂
, j ∈ Qn

Ujγ sin πτγ , j ∈ Pe

UjγK
1/2
j sin πτγ , j ∈ Pn

, (3.29)

Λjγ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 , j ∈ Qe
0 , j ∈ Qn

Ujγ cos πτγ , j ∈ Pe

UjγK
−1/2
j cosπτγ , j ∈ Pn

, (3.30)
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where Qe, Qn denote sets of closed electronic and nuclear channels and Pe, Pn
are sets of open electronic and nuclear channels. The coefficients Kj, κj are the
same as in (3.17) and (3.19) and βj is again the effective closed-channel quantum
number (2.17). The matrices Γ,Λ, A, δ satisfy6

ΓA = ΛA tan δ , (3.31)

which is a singular generalized eigenvalue problem for unknown Aγρ and δρ. After
solving this we can determine the energy-normalized physical solutions

ψρ(X, r) =
∑︂
j∈Pe

ϕj(X)Tjρ [fj(r) cosπδρ − gj(r) sin πδρ] (3.32)

+
∑︂
j∈Pn

ρj(r)Tjρ [Fj(X) cosπδρ −Gj(X) sin πδρ] , (3.33)

with the transformation matrix T

Tjρ =
∑︂
γ

Aγρ (Λjγ cosπδρ + Γjγ sin πδρ) . (3.34)

The physical scattering matrix is then

Sphys
jj′ =

∑︂
ρ

Tjρe
2iδρTj′ρ , j, j′ ∈ Pe ∪ Pn , (3.35)

and the DR cross section

σDR
j←j′ = π

2ϵ′j
|Sphys
jj′ |2 , j ∈ Pn , j

′ ∈ Pe . (3.36)

If we want to compute vibrational excitation we simply choose the outgoing chan-
nel on the electronic fragmentation surface instead

σVE
j←j′ = π

2ϵ′j
|Sphys
jj′ − δjj′ |2 , j, j′ ∈ Pe . (3.37)

As a sidenote to this approach, despite the visual representation of Fig. 1.3,
the electronic box size for this full approach is in practice noticeably larger than
the r0 value in the frame transformation computations. This is due to the fact
that now we actually need to explicitly compute the functions ρjn(r) of (3.11)
in all the open and weakly closed channels. To properly represent them while
satisfying the boundary condition ρjn(r0) = 0 we need a sizeable electronic box
(still much smaller than the 2D FEM-DVR-ECS method of section 1.2). In our
second study computations we used r0 = 50 bohr and R0 = 15 bohr.

3.2 Born-Oppenheimer variant
The BOA version of the 2D R-matrix approach follows the same steps with a
few adjustments. We split the symmetrized Hamiltonian of Eq. (3.4) into its
respective nuclear and electronic parts (without the interaction V )

H̄n(X) = Hn(X) + 1
2δ(X −X0)

∂

∂X
, (3.38)

H̄e(r) = He(r) + 1
2δ(r − r0)

∂

∂r
. (3.39)

6δ is now a diagonal matrix of all physical eigenphase shifts.
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We can then define fixed-nuclei electronic solutions as[︂
H̄e(r) + V (X, r)

]︂
ΨBO
k (r;X) = Ēk(X)ΨBO

k (r;X) , (3.40)

where X is now used as a parameter. With this we also define nuclear functions
ϕkp(X) solving the decoupled nuclear Schrödinger equations[︂

H̄n(X) + Ēk(X)
]︂
ϕBO
km(X) = Emϕ

BO
km(X) . (3.41)

In a full treatment the previous equation would contain additional coupling terms
on the rhs[︂

H̄n(X) + Ēk(X) − Em
]︂
ϕkm(X) = −1

2
∑︂
k′

[︂
V

(1)
kk′ (X) + V

(2)
kk′ (X)

]︂
ϕk′m(X) ,

(3.42)
where

V
(1)
kk′ (X) =

⃓⃓⃓⃓
∂

∂X

⟩︃
⟨ψk|ψ′k′⟩r + ⟨ψ′k|ψk′⟩r

⟨︃
∂

∂X

⃓⃓⃓⃓
, (3.43)

V
(2)
kk′ (X) = ⟨ψ′k|ψ′k′⟩r , (3.44)

and where ψ′k = ∂ψk(r;X)/∂X and the product ⟨.|.⟩r is carried out only in the
electronic coordinate r. In the BOA the coupling is neglected and the full wave
function is just the simple

ψBO
p (X, r) = ΨBO

k (r;X)ϕBO
km(X) , (3.45)

where p ≡ {k,m} represents a combined index of the electronic states (indexed
by k) and the nuclear states (indexed by m). The BOA R matrix is then

RBO
jj′ = 1

2
∑︂
p

(j|ψBO
p ) (ψBO

p |j′)
Ep − E

, (3.46)

which was introduced previously by Schneider et al. [8].
The electronic box size r0 for this approach needs to be smaller than for the full

approach in order to have any hope of satisfying the BOA. However, it is difficult
to match this small r-box R matrix to the outer channel functions, because the
electronic channel functions on the nuclear fragmentation surface may not fit. A
possible solution is to propagate the 2D R matrix in the interaction-free region to
some larger electronic distance. The R-matrix propagation was previously used
by Baluja et al. [30] for the one-dimensional case and Scott et al. [31] for two
indistinguishable particles. Our version for two distinguishable particles can be
found in the appendix of Ref. [B].

After computing the BOA R matrix and propagating it to a larger electronic
distance, the remaining steps towards computing the cross sections are the same
as in the full treatment. In summary, it is the transformation of R into K (3.23),
diagonalization of K into tan πτγ and Ujγ, finding the solution of (3.31) and
applying (3.34), (3.35) and (3.36) or (3.37).

We should also emphasize again that in the same way as was the case in
the FT method, this approach only ever assumes BOA in some restricted short-
range region defined by the extent of the electronic interaction and uses analytical
Schrödinger equation solutions for long ranges. Thus, we assume that any con-
clusions about the validity of the BOA in this method will be relevant to the
limitations of the frame transformation.
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3.3 2D R-matrix insights
Upon implementation, the converged results of the full R-matrix method are
just as accurate as the results of the 2D FEM-DVR-ECS approach (where it is
converged) and they do not suffer from the unconverged energy windows. Because
of this advantage, we have chosen to use them as the exact results in comparisons
going forward. As stated earlier the electronic box size of the full method was
r0 = 50 bohr to properly represent the relevant electronic states on the nuclear
fragmentation surface. We tested the validity of the BOA approach for three sizes
of the smaller box r0 = 6 bohr, 12 bohr and 20 bohr (always propagating the R
matrix up to the full 50 bohr afterwards), with 6 bohr being the smallest possible
distance still confining the interaction V (R, r). As expected the validity of BOA
quickly deteriorates for increasing electronic box sizes as shown in Figs 3.1 and
3.2. The index n is now used to denote the outgoing Rydberg channels.

The impact of the first-order nonadiabatic coupling V (1)
kk′ (X) can be easily de-

duced from Figs. 3.3 and 3.4. Seeing as the poles get much denser for increasing
electronic box size while the terms ⟨ψ′k|ψk′⟩r stay on the same order of magni-
tude the coupling will bear an increasingly large impact on (3.42) as its strength
becomes comparable with the spacing of the R-matrix poles.

The BOA results for the box size of 6 bohrs are quite close to the correct
value and enhancing them with the first order correction makes them visually
indistinguishable from the exact results. For the larger box sizes Figs. 3.5 and
3.6 show the improvement brought by including the first correction. A comparison
for inelastic vibrational excitation cross sections is also interesting and is shown
in Fig. 3.7. It is clear that the deterioration of BOA has a much smaller impact
on the VE cross sections.
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Figure 3.1: DR cross sections into the n = 1 lowest open Rydberg channel. The
black curve is the full method exact result and the rest are BOA results for r0 = 6
bohr, 12 bohr and 20 bohr. Remember that this channel is unphysical (a detailed
discussion can be found under Eq. (1.5)).
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4. Improvements of our
theoretical toolkit
The 2D R-matrix study has provided us with improved results that do not suffer
from the same convergence problems as the original benchmark model and thus
serve as the new “exact results” to compare against. It has also shown that the
BOA might actually be too strong of an assumption within the electronic box sizes
that we have chosen previously. The artificial quantum defect shift tests of the
first FT study (see Fig. 2.4) have shown that the various simplifying assumptions
regarding energy independence implemented in the theoretical derivation can have
a visible impact on the results. Finally, the Siegert pseudo-states form a basis
with various issues that also need to be addressed. The following sections detail
how our second FT study [C] (third DR study overall) tackled these various
issues in an attempt to improve the FT theory approach when applied to the DR
process.

4.1 Vibrational basis selection
To rectify the completeness issues of the Siegert pseudo-state basis (section 2.3),
in our second FT study, we switched to exterior complex scaling (ECS) to form
the nuclear vibrational basis. It is based on solving the nuclear vibrational Hamil-
tonian on a bent complex contour Z following

Z =
⎧⎨⎩R , for R ≤ R0 ,

R0 + eiθ(R −R0) , for R0 < R ≤ Rm ,
(4.1)

where R is the real parameter (length) of the nuclear coordinate, R0 = Z0 is the
ECS bending point, θ is the ECS bending angle, and Rm parametrizes the end of
the contour Zm. Generally, solving

Hn(Z)ϕj′(Z) = Ej′ϕj′(Z) , (4.2)

with the correct choice of θ, while imposing a zero value boundary condition
at Zm, yields states that behave as bound or outgoing-wave continuum states
for 0 < Z < Z0. For a well behaved Hamiltonian, in order to get outgoing-
wave eigenstates with well behaved eigenenergies the bending angle θ needs to be
between 0° and 45° and the expert reader will notice that whenever the nuclear
Hamiltonian contains a potential with terms proportional to higher powers of R
one might need to constrain the contour angle further. ECS basis orthogonality
relations are quite simple ∫︂ Zm

0
ϕj(Z)ϕj′(Z)dZ = δjj′ , (4.3)

or equivalently along the real parameter R∫︂ Rm

0
ϕj(R)ϕj′(R)q(R)dR = δjj′ , (4.4)
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with

q(R) =
⎧⎨⎩1 , for R ≤ R0 ,

eiθ , for R > R0 .
(4.5)

The Eqs. (4.3) or (4.4) also define normalization (equivalently). Fig. 4.1 shows
the spectrum of such ECS states compared with the bound and outgoing-wave
parts of the Siegert pseudo-state spectrum computed using the same nuclear
Hamiltonian (1.2) with R0 = 15 bohr, Rm = 40 bohr and θ = 40°. The outgoing
waves computed on an ECS grid split into three branches:

• States that oscillate on the real part of the contour and decay exponentially
on the complex part. Curiously, if we set the bending point R0 of (4.1) to
be equal to the point of the Siegert boundary condition (2.7) R0 and use the
normalization of (4.3), these states’ momenta will coincide with the Siegert
pseudo-state outgoing-wave momenta, as is apparent in Fig. 4.1. Further-
more, their corresponding wave functions are also identical on the interval
0 < R < R0 as is shown in Fig 4.2. This means that two different sets of
states (Siegert and ECS), with two different normalizations (2.8) and (4.3)
yield equal eigenstates on the real coordinate axis. Therefore, the surface
term in the Siegert normalization (2.8) represents the ECS normalization
integral (4.3) over the bent part of the complex contour.

• States, that are almost zero on most of the real part, then rise sharply at R0
and continue to oscillate with an almost constant amplitude on the interval
R0 < Z < Zm. They reach a node at Zm and thus behave like box states.
Their complex momenta lie almost exactly at the −θ line.

• A few states with momenta close to zero. Their wave functions behave
as a mixture of the previous two categories (oscillatory with exponential
amplitude changes on both parts of the contour).
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Figure 4.1: Siegert pseudo-state and ECS state complex eigenmomenta example.

For further details on the ECS see C. W. McCurdy’s and F. Mart́ın’s paper [32].

30



-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 12

 14

 0  5  10  15  20  25  30  35  40

W
av

e 
fu

n
ct

io
n

 (
at

o
m

ic
 u

n
it

s)

Real parameter R (bohr)

outgoing-wave Siegert pseudo-state
corresponding ECS state

Figure 4.2: Comparison of a selected outgoing-wave Siegert pseudo-state wave
function and the corresponding ECS basis wave function.

The change from Siegert pseudo-states to ECS states corrected the computed
cross sections in certain small energy windows (typically around DR channel
openings) and also simplified some parts of the implementation. The frame trans-
formation functional is now

Fj[h(Z)] =
∫︂ Zm

0
dZϕj(Z)h(Z) , (4.6)

and so the frame transformed matrices (like e.g. (2.14)) drop the surface term.
Overall though, apart from the problematic energy windows, this change alone
did not alter the earlier FT results.

4.2 Energy-dependent FT theory
Our naive simulation of the energy dependence of the quantum defect shown
in Fig. 2.4, has motivated us to improve the energy-independent theory along
the ideas presented by Gao and Greene [7]. The method is mostly analogous to
section 2.1 with some key changes.

We start with the same Schrödinger equation (2.1) (replacing R with Z when
using ECS) and definitions of vibrational basis and Coulomb functions. In this
study, we have chosen to use real asymptotics f, g instead of the complex f∓.
Thus, instead of (2.4) the inner-region BOA solution can be written at r0 as

ψj′(Z, r0) = ϕj′(Z)N(Z, ϵj′) [fj′(r0)cosπµ(ϵj′ , Z) − gj′(r0)sinπµ(ϵj′ , Z)] , (4.7)

where the normalization factor N(Z, ϵj′) is not neglected anymore. It can be
computed using only the electronic-surface properties [6, 33]

N(Z, ϵj′) =
[︄
∂µ(Z, ϵj′)
∂ϵj′

+ 1
2W (Z, ϵj′)

]︄−1/2

, (4.8)
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with

W (Z, ϵj′) =
(︂
[fj′ , g′j′ ] + [gj′ , f ′j′ ]

)︂
sin πµ(Z, ϵj′) cosπµ(Z, ϵj′)

− [fj′ , f ′j′ ] cos2 πµ(Z, ϵj′) − [gj′ , g′j′ ] sin2 πµ(Z, ϵj′) , (4.9)

where [., .] is again the Wronskian of two functions and f ′ ≡ ∂f/∂ϵ. The outer-
region solution is now a general linear combination of ϕn(Z)fn(r) and ϕn(Z)gn(r).
We then match the independent BOA solutions (4.7) evaluated at r = r0 with∑︂

n

ϕn(Z) [fn(r0)Inj′ − gn(r0)Jnj′ ] . (4.10)

By applying Fj[ . ] to both sides we get

fj′(r0)Cjj′ − gj′(r0)Sjj′ = fj(r0)Ijj′ − gj(r0)Jjj′ , (4.11)

where

Cjj′ =
∫︂ Zm

0
dZ ϕj(Z)N(Z, ϵj′) cosπµ(Z, ϵj′)ϕj′(Z) ,

Sjj′ =
∫︂ Zm

0
dZ ϕj(Z)N(Z, ϵj′) sin πµ(Z, ϵj′)ϕj′(Z) , (4.12)

are the frame-transformed sine and cosine matrices. We once again apply Wron-
skians of Coulomb functions to get the coefficient matrices

Ijj′ = 1
[fj, gj]

([fj′ , gj]Cjj′ − [gj′ , gj]Sjj′) ,

Jjj′ = 1
[gj, fj]

([fj′ , fj]Cjj′ − [gj′ , fj]Sjj′) . (4.13)

The short-range reaction matrix K is then

K = JI−1 . (4.14)

It can be Cayley-transformed into the short-range scattering matrix S

S = (1 + iK) (1 − iK)−1 , (4.15)

and the proceeding MQDT closed-channel elimination technique is the same as
before (2.16). The computation of cross sections (2.18) is also unchanged.

At first, the direct implementation of energy-dependent FT proved unfruitful
as the DR calculations actually yielded strongly decreased accuracy of results
when compared to the seemingly inferior energy-independent procedure. The
first thing this approach taught us, and which should serve as a letter of caution
for anyone attempting to use the full energy-dependent FT theory for DR, is that
the implementation can be very sensitive to properties like unitarity, subunitar-
ity and symmetry of various frame transformed matrices within the process. The
inclusion of energy-dependent quantum defects, normalization coefficients and
Coulomb function Wronskian terms will often make previously symmetric matri-
ces no longer such. Doubly so for someone using a slightly incomplete vibrational
basis (in the relevant part of the Hilbert space). This is also the reason why we
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switched from complex f∓ asymptotics to real f, g asymptotics and reformulated
our approach to compute the frame-transformed K matrix first and then Cayley
transform it into the S matrix. In addition and rather vexingly, we found that
we needed to artificially symmetrize the short-range K matrix (4.14) before we
could proceed to the MQDT channel elimination step. This is rather reminis-
cent of a K-matrix symmetrization step that was necessary in F. Robicheaux’s
energy-dependent FT treatment of the dissociative electron attachment to H2
[34]. In our case without this artificial step the VE cross sections gain a relative
error of about ∼ 1% which wholly breaks the accuracy of the “one minus” DR
cross-section computation. It is unnecessary only for energies below the first VE
threshold where there is only one open channel on the electronic fragmentation
surface and the physical S or K matrices are one-by-one and thus automatically
symmetric.

4.3 Electronic boundary backpropagation
After solving the K-matrix symmetry problems, the results were still less ac-
curate than the previous energy-independent calculations presented in our first
publication [A] (and in chapter 2). Thanks to the 2D R-matrix study of our
second publication [B] we knew that our electronic radius of r0 = 7 bohrs (cho-
sen for good convergence of quantum defect values) could already be too large
for the BOA to hold. Indeed as Fig. 4.3 shows, the electronic wave function
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Figure 4.3: The R-dependence of the BOA electronic wave functions ψj′(R, r0) at
the boundary r0. The black curves show this for j′ = 120 (indexing corresponds
to ascending real parts of electronic energies) and box sizes r0 = 3, 5, 7, 12, 20
bohr. The red dashed curve shows this for the largest box size and j′ = 2.

at the boundary r0 is rather sharply dependent on R for r0 values of 5 bohrs
and above, which increases importance of the first- and second-order correction
terms. From these tests stemmed the crucial idea that made the implementation
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of the energy-dependent FT method for DR possible. We call it the backprop-
agated frame transformation and it hinges on finding the correct and converged
quantum defect at some larger electronic radius but then on propagating (in-
teraction free) the electronic solution to some smaller electronic radius r1 where
BOA holds.The actual FT procedure is then carried out at r1 with the quan-
tum defect information obtained at larger r0. This approach is quite ad hoc and
has its own limitations (backpropagating too much may cause the wave function
normalization to explode) but finally yields much better results than the simple
energy-independent method. Without it the full energy-dependent implemen-
tation does not work well. Implementation-wise there are no new equations to
follow. We simply compute the BOA quantum defects for some larger r0 value
(e.g. 7 bohrs) where they are converged, but then we use a smaller r0 → r1 (e.g.
2 bohrs) to compute the normalization (4.8) and the I, J matrices (4.13). The
accuracy of these results is shown in Fig. 4.4 and also in Fig. 4.5 along with the
accuracy of the following simplified approach.

4.4 Simplified backpropagation
While coming up with the backpropagation solution we have also “stumbled
upon” another approach that improves upon the energy-independent results but
is simpler to implement than the full backpropagated procedure. If during the
backpropagation step r0 → r1(small) we again assume that fj, gj lose their energy
dependence, then Eq. (4.13) simplifies to

Ijj′ = Cjj′ ,

Jjj′ = Sjj′ , (4.16)

and K = SC−1. The normalization factor N(Z, ϵj′) from (4.12) will not exactly
cancel out in SC−1 due to right-index energy dependence. If we assume that it
does and then redefine S, C accordingly

Cjj′ =
∫︂ Zm

0
dZ ϕj(Z) cosπµ(Z, ϵj′)ϕj′(Z) ,

Sjj′ =
∫︂ Zm

0
dRϕj(Z) sin πµ(Z, ϵj′)ϕj′(Z) , (4.17)

then we completely avoid explicit evaluation of both the normalization factor and
the Coulomb functions f, g. This also means that no evaluation of any specific
electronic radius r0 or r1 appears any more in the implementation.

This approach is somewhere in-between the full energy-dependent method and
the simple energy-independent method and gives us better understanding of why
our direct application of the energy-dependent FT method [7] failed while the
energy-independent approach functions much better. The reason for the failure
is a poor accuracy of the inner-region BOA solutions (4.7) with high index j′ (as
we saw in the discussion surrounding Fig. 4.3). The inclusion of these high states
is only necessary for the computation of DR cross sections and not VE, which is
why previous applications of the energy-dependent FT theory did not suffer from
this problem. Now, the math of the simplified energy-dependent approach can be
interpreted as actually circumventing any BOA problems by “silently” applying
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r1 = 4.0 bohr and blue curve for r1 = 1.9 bohr.

r0 → 0. This also helps us to understand how the original energy-independent
method of chapter 2 does not exhibit problems with the BOA. It not only neglects
the energy dependence of the quantum defect in (2.14), but it also neglects the
entire energy dependence of the inner-region BOA solutions (2.4)7. Once again,
the energy independence of f∓j′ (r) coupled with the absence of any explicit r0 in
the energy-independent FT formulas, can be seen as “silently” applying r0 → 0
and circumventing all of the BOA problems.

The simplified backpropagation technique is also equivalent with the simplified
energy-dependent FT used to compute vibrational excitation of N2 by Gao and
Greene [7]. A comparison of accuracy for the different methods can be seen in
Fig. 4.5. The accuracy is now so high that the error |∆| is always within 0.1%
or 1% of the exact result for the full and simplified method, respectively. For
the sake of completeness we also compare the inelastic VE cross sections in Fig.
4.6. We can see that for the VE process even the non-propagated result (which
is catastrophic for the DR) exhibits good agreement with the exact one.

7In chapter 2 we only introduced the various energy-independence based omissions slowly,
as we went through the derivation, but one could formally immediately discard all energy
dependence back in (2.4) to get the same result.
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5. Comparison with an accurate
experiment
The results of the first three studies were rather satisfying in the sense that we
achieved good agreement among the multiple theoretical approaches that we im-
plemented and improved. Nonetheless, we were still only in possession of compar-
isons between theoretical models (and for the simplest symmetry of the simplest
molecule at that) and no experimental data. We wished to compare our methods’
results with a real measured system and fortunately in that time frame DR rate
coefficient data of very high accuracy featuring a simple enough molecule has
indeed been published.

5.1 The choice of HeH+

The HeH+ ion and its destruction via DR have a strong relevance to cosmological
studies. The HeH+ ion itself is probably the oldest molecule in the universe and
yet it has evaded detection by astrophysicists for decades. Recently, it was finally
detected in the NGC 7027 nebula by Güsten et al. [35]. To analyze their data
they created a simple reaction chain model with three main processes:

He+ + H → HeH+ + hν , (5.1)
HeH+ + e− → He + H , (5.2)
HeH+ + H → H+

2 + He , (5.3)

of which the third process (5.3) can be neglected at densities relevant to NGC
7027. They used estimated rate coefficients of the remaining processes to compute
the emissivity of the HeH+ N+ = 1 → 0 transition (here N+ is the molecular
rotational quantum number). The model predicted an integrated main beam
brightness temperature approximately four times lower than the observed quan-
tity. This implies that either the radiative association (5.1) rate underestimates
the production of HeH+ or the dissociative recombination (5.2) rate overestimates
their destruction.

At this point the (also recently) published experimental results [36] from the
state-of-the-art Cryogenic Storage Ring (CSR) in Heidelberg enter the picture.
These contain highly accurate measurements of rate constants for the DR of cold
HeH+ ions. Our fourth publication [D] thus details the application of the FT
method to model the DR of HeH+ and it compares the computed rates with the
experimental results from the CSR. Compared to the publication we use a slightly
different notation here to stay consistent throughout the thesis. We still use j to
denote the vibrational states as opposed to ν in the publication. The electronic
angular momentum quantum number is l (unchanged) and the cation’s rotational
quantum number is N+ (changed from j).
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5.2 Application of FT to HeH+ + e−

We apply the simplified version of the energy-dependent FT method described in
section 4.4 to the HeH+ + e− system. This means that compared to H+

2 + e− the
main changes are:

• The nuclear Hamiltonian (1.2) now contains a rotational term N+(N++1)
2MR2 , the

Morse potential V0(R) (1.4) is replaced by the ground-state 1Σ+
g potential

curve of HeH+ from Ref. [37] and the atom-ion reduced mass is now M =
1467.28 a.u.

• The body-frame quantum defect µΛ(ϵ, R) is now a set of three matrices of
(3 − Λ) × (3 − Λ) dimension with Λ being the projection of the Rydberg
electron angular momentum l onto the molecular axis (the matrix elements
correspond to angular momenta of the colliding electron). The limitation
lmax = 2 was previously proven sufficient [20] and it is used here.

• The computed DR cross section will now have indices for the initial vi-
brational state and angular momentum states, that is σj′N+′l′

J ′η(E). Here
J ′⃗ = N+′⃗ +l′⃗ is the total angular momentum and η(−1)J ′ is the parity of the
system. After computing σj′N+′l′

J ′η(E), the state-dependent cross section
is obtained as the following sum

σj′N+′(E) = 1
2N+′ + 1

∑︂
ηJ ′l′

(2J ′ + 1)σJ
′η

j′N+′l′(E) , (5.4)

and from that the initial-state-dependent DR rate is

αj′N+′(E) =
√︂

2(E − Ej′N+′)σj′N+′(E) . (5.5)

The quantum defect matrices were computed using the diatomic UK Molecular
R-matrix codes [38]8 with the boundary r0 = 20 bohrs. Bound electrons were de-
scribed in the Slater-type basis [39] of triple-zeta quality. The energy dependence
of matrices µΛ(ϵ, R) was linearly approximated

µΛ(R, ϵ) = µΛ(R) + ϵµ′
Λ(R) , (5.6)

from fixed-nuclei computations at two collision energies: ϵ1 = 20 meV and ϵ2 =
420 meV (this was determined to be stable and accurate enough by testing differ-
ent energy values). The nuclear basis was once again constructed with the ECS
technique with the bending point at R0 = 10 bohr, a bending angle of θ = 40◦
and the maximum length of the bent contour parametrized by Rm = 25 bohr.

To compare our output data with the CSR experiment we first have to con-
volve it over an electron energy distribution representing the experimental en-
vironment. For a storage-ring experiment the electron beam has an anisotropic
energy distribution. The electron ion beam parallel velocity spread is small and
the dominant divergence is in the perpendicular direction (∆E|| = 0.1 meV and
∆E⊥ = 2 meV in Ref. [36]). A detailed description of the anisotropic and ther-
mal convolutions used can be found in Refs. [13, 15]. Afterwards, one additional

8Which means that we do not have or need an explicit model interaction potential V (R, r).
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data processing step is needed and that is the toroidal correction [40, 41] which
accounts for the collisional events happening in the bending areas of the experi-
mental apparatus where the electronic and ionic beams may have higher relative
velocity. Collisional events occurring in these areas increase the energy spread.

Figs. 5.1, 5.2 and 5.3 compare our results for the low-energy DR of HeH+ +e−
with the CSR experiment (for three different starting values of N+′). They show
our results both with and without the toroidal correction. We try to estimate the
uncertainty of our calculations by implementing a random noise matrix δµΛ which
increased or decreased the original µΛ(R, ϵ) by up to 0.2% (this value was chosen
based on our observations of variations of the quantum defect matrix due to
electronic basis choice and extent of the space of configuration interaction). The
effect of this is more pronounced at lower energies. There’s a variation of 30%-
50% in the result at energies below 1 meV and by a factor of up to 3 for the highest
peak at around 45 meV (for N+′ = 0), 40 meV (N+′ = 1) and 20 meV (N+′ = 2).
As we have shown in chapter 4, using the energy-dependent quantum defects can
move closed-channel resonances around quite significantly. For example, a closed-
channel resonance previously (in an energy-independent FT treatment [20]) at 1
meV, which dominated the near-zero energy DR rate, now moves to negative
collision energies (becoming a bound state) and no longer affects the DR rate,
which results in the rate’s significant decrease at near-zero energies (compare
with Fig. 13 of Ref. [20]). Overall our results show improved agreement with
the experiment over previous energy-independent FT studies (especially in the
low-energy regions).
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Figure 5.1: Anisotropically averaged (for ∆E|| = 0.1 meV and ∆E⊥ = 2 meV)
DR rate of HeH+ + e− with initial vibrational state j′ = 0 and initial rotational
state N+′ = 0. The red curve are our results without the toroidal correction
and the black curve includes it. The light grey area is the estimated uncertainty
computed using the noise matrix δµΛ. The data points with error bars are the
measured DR rates from the CSR experiment.
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Figure 5.2: Same as Fig. 5.1 but for initial rotational state N+′ = 1.
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Figure 5.3: Same as Fig. 5.1 but for initial rotational state N+′ = 2.

We also computed plasma rate coefficients by averaging the state specific DR
rate over a Maxwellian distribution of colliding electrons. A comparison with
plasma rate coefficients computed from the CSR results can be seen in Fig. 5.4
for initial rotational states N+′ = 0, 1, 2. The figure also shows the plasma rate
coefficient used for the estimate of the emissivity of the N+ = 0 → 1 line of
HeH+ in NGC 7027 [35]. The agreement between our and the CSR plasma
rates is overall excellent for N+′ = 0 and quite good for N+′ = 1, 2 at higher
temperatures. The lower temperature discrepancies are related to the low energy
discrepancies seen in Figs. 5.1, 5.2 and 5.3. Our present estimate of the plasma
rate coefficient at 104 K (the temperature relevant to the NGC 7027 study) is
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slightly above 4.0 × 10−10 cm3/s, while the plasma rate coefficient used in Ref.
[35] was 3.0 × 10−10 cm3/s. This implies that the astrophysical simulations [35]
did not overestimate the rate of destruction of HeH+ ions through the DR and
the high brightness of the N+ = 1 → 0 transition in the first HeH+ detection
cannot be attributed to a slower DR process.
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line is the approximation used in the Güsten et al. NGC 7027 study [35].
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6. Coupled 2D model for the
gerade states of H2
Having tested and improved the various theoretical methods of computing indirect
DR for H+

2 + e− and even comparing one with the experiment for HeH+ + e−

we wish to continue to expand the methods to more complicated cases to later
describe other real systems. Our next goal is the application of the FT theory to
the direct mechanism of the DR. The benchmarking system will be a model of
the DR of H+

2 + e− in the singlet gerade symmetry. For this we have developed9

a model electronic-nuclear interaction potential with three angular-momentum
channels (including couplings) V ll′(R, r) with l = 0, 1, 2 (for the s-, p- and d-
channels). The full model Hamiltonian is

H ll′(R, r) =
[︂
H l

n(R) +H l
e(r)

]︂
δll′ + V ll′(R, r) , (6.1)

where δll′ is the Kronecker delta. The electronic Hamiltonian H l
e(r) is again

defined by (1.3) and the nuclear Hamiltonian H l
n (R) is

H l
n (R) = − 1

2M
∂2

∂R2 + V l
0 (R) . (6.2)

The nuclear potentials V l
0 (R) are now the target potentials for the singlet gerade

states of H+
2 + e−, with the Rydberg electron having the angular momentum l.

The the potentials are equal for the s and d partial waves, i.e. V 0
0 (R) = V 2

0 (R).
The potentials we use can be found in Madsen’s and Peek’s work [42]. The
potential V ll′(R, r) is comprised of three diagonal interaction terms V 00, V 11,
V 22 and two off-diagonal coupling terms V 01, V 12. The direct coupling of the s-
and d-channels (V 02) is neglected. All the interaction terms share the form

V ll′(R, r) = λll
′(R)e−r2/ω2

, (6.3)

and for all the potentials ω = 2 bohrs. For the diagonal interaction potentials,
the nuclear part is chosen as a sum of two Gaussian curves

λll(R) = αll1e
−
(︃

R−αll
2

αll
3

)︃2

+ αll4e
−
(︃

R−αll
5

αll
6

)︃2

. (6.4)

The first coupling potential V 01(R, r) contains a “quartic exponential”

λ01(R) = α01
1 e
−
(︂

R−α01
2

α01
3

)︂4

, (6.5)

and the second coupling potential V 12 contains a single Gaussian

λ12(R) = α12
1 e
−
(︂

R−α12
2

α12
3

)︂2

. (6.6)

9It might be more prudent to say “are developing” since the model is still subject to change.
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The Table 6.1 contains all the necessary coefficients. As noted in the introduc-
tion, the input distances are measured in bohrs and the output potential energy
is in hartrees. For a visual representation, Fig. 6.1 shows the R-dependence of
all the parts of λll′(R) = V ll′(R, r = 0) (the electronic coordinate dependence is
the same Gaussian scaling e

−r2
4bohr2 in all cases).

αll
′

1 αll
′

2 αll
′

3 αll
′

4 αll
′

5 αll
′

6
V 00 0.350802 4.53741 2.10017 0.168061 2.71464 1.17950
V 11 -0.744042 2.89011 3.05122 -0.327764 7.33829 3.40565
V 22 -1.13912 8.50097 7.04271 -1.61629 21.1034 14.3257
V 01 -0.1960 0 5.52884 - - -
V 12 -0.4 2.8 4.0 - - -

Table 6.1: Table of coefficients for potential modeling the singlet gerade case.
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Figure 6.1: The nuclear coordinate dependence of our model interaction potential
for H+

2 + e− in the singlet gerade symmetry.

The presented form of the coupling interaction potential V ll′(R, r) is a result of
the search for a model potential that reproduces the adiabatic potential curves of
excited 1Σ+

g states of the hydrogen molecule, namely the well known EF,GK and
HH̄ curves [43]. We compute such curves by solving the l-coupled Schrödinger
equation[︂

H l
e(r) + V l

0 (R) − Eadi
k (R)

]︂
ψlk(r;R) = −

∑︂
l′=0,1,2

V ll′(R, r)ψl′k (r;R) ,

for a fixed R . (6.7)

Solving (6.7) with the boundary condition ψl
′
k (r = r0;R) = 0 (for a large enough

r0, for all l′) and connecting the energies Eadi
k (R) over a range of R-values gives

us the adiabatic potential curves. These curves are shown in Fig. 6.2 which
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compares them to the EF,GK and HH̄ curves of L. Wolniewicz and K. Dressler
[44, 43] (the figure also shows parts of the O and P curves though the model was
not tailored to reproduce them). The curves V l

0 (R) of Madsen and Peek [42] are
also included for more clarity.
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Figure 6.2: Comparison of the lowest second through sixth adiabatic potential
curves computed with our model potential (red curves) and those of Wolniewicz
and Dressler (points). The black curves show the V l

0 (R) of Madsen and Peek [42].
Part of the bottom adiabatic curve is also shown but it quickly falls below the
range of the graph.

It is important to note here that V ll′(R, r) is not refined as the accurate model
potential for the singlet gerade hydrogen states. It is merely a tool that we plan
to use to compare our DR computational methods once we implement the 2D
R-matrix approach and the energy dependent FT approach (which will now be
a rovibrational frame transformation) for three coupled rotational channels. As
such, we deem the discrepancies visible in Fig. 6.2 between our and previous
results as acceptable even though adiabatic potential curves for hydrogen are
typically known with a much higher degree of accuracy. Interestingly, the model
was not at all tailored to reproduce the O and P curves, yet it does so decently
in the reaction zone. On the other hand (and not directly shown in the image),
the lowest adiabatic curve computed exhibits unphysical behavior at distances
of 2 - 10 bohr. Similarly to the model interaction potential from Hamilton’s
thesis [10] used for the ungerade case, we believe that the bottom unphysical
curve will have a negligible impact on the overall DR results (compare orders of
magnitude in Figures 3.1 and 3.2 or Fig. 4 of [A]). Looking back to Fig. 6.1,
we can see that the long-range character of the V 22(R, r = 0) term is responsible
for the reproduction of the wide second minimum of the HH̄ curve. Physically
speaking, the minimum should be related to the ion-pair curve and not generated
so “synthetically”. Ultimately, the main strength of this model is its analytical
simplicity (mostly the sum and multiplication of just a few Gaussian functions)
which makes it easy to insert into any method.
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6.1 Properties of the model
The aim of this section is to present three selected physical properties of the
model and to compare them with the known data. Although, as mentioned
above, the model Hamiltonian does not aim for an accurate reproduction of the
molecular hydrogen in the singlet gerade symmetry, it is still desired to have it
reasonably close to a real physical system. The quantities we will focus on are the
vibronic energies, the adiabatic resonance positions and widths, and the adiabatic
quantum defects.

6.1.1 Vibronic energies
The adiabatic potential curves of Fig. 6.2 can be used to obtain the BOA vi-
bronic energies by solving a one-dimensional nuclear Schrödinger equation with
the curves EF , GK, HH̄ used in place of the nuclear potential and with a bound
state boundary condition, so we solve (assuming rotational state N = 0)[︄

− 1
2M

∂2

∂R2 + Eadi
k (R)

]︄
ϕkm(R) = Evib

kmϕkm(R) ,

for ϕkm(R0) = 0 , (6.8)

for some large R0, where the k index corresponds to the EF , GK and HH̄ curves.
Additionally, during the computation of the adiabatic curves (6.7) we can easily
calculate the diagonal correction terms

V corr
k (R) =

∑︂
l=0,1,2

1
2M

⟨︃
∂

∂R
ψlk(r;R)

⃓⃓⃓⃓
∂

∂R
ψlk(r;R)

⟩︃
r
, (6.9)

where k is again chosen to correspond to the studied adiabatic curves and ⟨ . | . ⟩r
is integration only over the electronic coordinate. Adding these V corr

k (R) terms
to the energies Eadi

k (R) in the lhs of (6.9) is the second-order BOA correction.
We can then compare the vibronic energies Evib

km with experimental results as was
done by Jungen and Ross [45] for the real molecular hydrogen. This is shown
in Table 6.2 where the third column contains the experimental data of Ref. [45]
minus our BOA vibronic energy values (the units are now wave numbers (cm−1)
for an easier comparison with the reference). We do not expect to get nearly the
same amount of accuracy as Ross and Jungen with their MQDT method but it
is once again reassuring to see that our results generally hold a similar level of
accuracy as the BOA results in the cited work (our root mean square error is
about 118 cm−1, theirs was about 110 cm−1). Looking more closely at the results
there is a trend of GK and HH̄ vibronic states being below the experimental
results while EF states are both above and below their expected values.

46



Vibronic Vibronic Comparison Vibronic Vibronic Comparison
state energy to Ref. [45] state energy to Ref. [45]

(cm−1) (cm−1) (cm−1) (cm−1)
E0 98949.68 215.10 GK1 111546.31 266.36
F0 99328.61 35.31 EF19 112176.81 -70.72
F1 100500.70 58.23 H0 112782.32 175.25
E1 101366.27 128.48 EF20 112794.93 -83.13
F2 101642.30 56.63 GK2 113129.73 128.51
F3 102735.15 43.13 EF21 113397.40 -3.90
E3 103485.05 74.54 GK3 113822.54 222.12
F4 103820.07 18.47 EF22 113982.87 -121.47
F5 104719.16 11.45 EF23 114550.44 -39.90

EF9 105387.11 -2.21 GK4 115032.05 67.79
EF10 106011.85 -45.69 H1 115052.05 199.47
EF11 106768.25 -55.18 EF24 115098.71 -73.87
EF12 107495.45 -69.58 EF25 115625.20 -61.50
EF13 108186.65 -88.09 GK5 116025.12 139.69
EF14 108881.12 -87.57 EF26 116126.64 -85.05
EF15 109573.13 -79.23 EF27 116598.97 -90.73
EF16 110247.41 -84.03 GK6 116984.65 96.78
EF17 110903.03 -108.84 EF28 117037.32 -121.96
GK0 111381.77 247.04 H2 117180.12 116.91

Table 6.2: EF , GK and HH̄ curve vibronic energies. The first column identifies
the state, the second column contains the energies relative to the N = 0,m = 0
level of X̃ 1Σ+

g ground state and the third column is the difference between our
result and the observed value of Ref. [45] (observed - calculated).

6.1.2 Adiabatic 1Σ+
g resonance

Another physical test that we can subject our model to is a resonance search akin
to Ref. [46]. We first expand the Eq. (6.7) with an electronic Bloch operator
(and re-label Eadi

k (R) = Ek(R)) to get[︄
H l

e(r) + V l
0 (R) − Ek(R) + 1

2δ(r − r0)
∂

∂r

]︄
ψlk(r;R) = −

∑︂
l′=0,1,2

V ll′(R, r)ψl′k (r;R) ,

for a fixed R .
(6.10)

If we solve this without imposing the zero-boundary condition at r0, we can then
compute a short-range fixed-nuclei 3 × 3 R matrix via

Rll′(E,R) = 1
2
∑︂
k

ψlk(r = r0;R)ψl′k (r = r0;R)
Ek(R) − E

, (6.11)

for some given total energy E. We can transform this R matrix into the short-
range K matrix just like we did in section 3.1 (though the matrices are now
indexed by l)

K =
(︂
f − f ′R

)︂ (︂
g − g′R

)︂−1
, (6.12)
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where f , g, f ′ and g′ are now diagonal matrices of Coulomb functions indexed by
the quantum number l evaluated at r = r0

10 and momentum kl =
√︂
E − V l

0 (R).
The short-range matrix K ll′(E,R) is computed for total energies above the s- and
d- H+

2 potential curve V l=0
0 (R) and below the repulsive p-curve V l=1

0 (R). This
gives us two open channels (s and d) and one closed p-channel. The channel
elimination into the open-channel Rphys matrix is simply

K ll′,phys = K ll′ −K l 1

⎡⎣K1 1 + tan
⎛⎝ π√︂

2(V 1
0 (R) − E)

⎞⎠⎤⎦−1

K1 l′ ,

for l, l′ ∈ {0, 2} . (6.13)

Here we omitted (E,R) after each instance of K ll′ for the sake of brevity. The
eigenvalues of this new 2×2 Kphys matrix are tan(δi(E,R)) and we call δi(E,R)
the physical eigenphase shifts. Sampling these eigenphase shifts at a selected
nuclear R for a dense series of energies above the V 0

0 (R) curve results in ascending
curves like those shown in Fig. 6.3. The step-like structures in the sum of these
curves show the positions of resonances. The data can be compared with the work
of Greene and Yoo [46] along with the resonance widths obtained from the energy
derivative of δi(E,R). The table 6.3 shows the comparison for select values of R.

It is clear that the present model does not only reproduce the existence of the
resonance but it also places it reasonably close to the previously computed ab
initio values. Our model results have a tendency to be slightly higher in energy,
though for 2.6 bohr the studied lowest resonance curve has just passed under the
V 0

0 (R) potential curve (hence the empty entry in the table) in our case while in
Ref. [46] it is still closely above. The resonance widths Γr in our model tend to
be larger (up to two times).

R (bohr) Er (model) Γr (model) Er (Greene, Yoo) Γr (Greene, Yoo)
1.0 0.25171 0.028 0.23726 0.0229
1.2 0.05753 0.035 0.04158 0.0241
1.4 −0.09948 0.043 −0.10799 0.0251
1.6 −0.22494 0.052 −0.22886 0.0259
1.8 −0.32475 0.059 −0.32768 0.0265
2.0 −0.40663 0.068 −0.40912 0.0288
2.2 −0.47684 0.077 −0.47731 0.0335
2.6 - - −0.57388 0.0525

Table 6.3: Positions Er and widths Γr of the lowest 1Σg resonance in H2 for our
model compared with Ref. [46]. Results are given in hartrees.

10When working with closed-channel asymptotic solutions, r0 has to be chosen carefully. It
has to be large enough to encompass the model interaction potential but also not too large,
so that the f , g functions in closed-channels do not diverge too much (potentially causing loss
of accuracy in (6.12)). In our case r0 = 8 bohr proved to be sufficient for this test. On the
other hand, during the computation of the adiabatic curves we can extend r0 much farther to
describe the higher curves well.
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6.1.3 Adiabatic quantum defect matrix
In the last simple test the computed quantum defect matrix is compared with
the same data reported for the real molecular system previously [47]. At this
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Figure 6.4: R-dependence of the full quantum defect matrix at E = V 0
0 (R).

point, to coincide with the reference, we start to use a slightly different pair of
Coulomb functions when compared with the previous chapters. We can denote
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them {f 0, g0} and this pair is now equal to the pair {f,−h} from Seaton’s work
[5, 23]. The difference from the previous pair is that the new one has different
energy normalization but behaves better at negative energies. The quantum
defect computed against this new pair will be denoted η instead of µ. The steps
to get the adiabatic quantum defect matrix are now straightforward. At first, we
follow the same procedure as for the resonance search: we solve (6.10) without
a boundary condition at r0 and compute the 3 × 3 R matrix (6.11). Then the
short-range K matrix is computed from (6.12) but the pair {f, g} is replaced by
the {f 0, g0} pair. Let us denote this altered reaction matrix as K0. The closed
channels will not be eliminated, the short-range η matrix can be defined in open
and closed channels. We simply diagonalize the K0-matrix

K0 ll′ =
∑︂

i=0,1,2
U litan(πτ i)U † il′ . (6.14)

Knowing the eigenvalues11 and eigenvectors the quantum defect matrix ηll
′ can

be reconstructed as follows

ηll
′ =

∑︂
i=0,1,2

U liτ iU † il
′
. (6.15)

Fig. 6.4 shows the full η-defect matrix computed this way for R = 0 to 45
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Figure 6.5: Detailed zoom of Fig. 6.4 (full lines) compared with the data extracted
form the work of Jungen and Ross [47] (points).

bohr. The symmetrized electronic Schrödinger equation (6.10) was solved on a
grid up to r0 = 8 bohrs, with the total energy in (6.11) set equal to the bottom
H+

2 curve V 0
0 (R). Fig. 6.5 compares the matrix ηll

′(E,R) (with E = V 0
0 (R))

to data extracted from Ref. [47]. It is apparent that the extracted data bear
11To obtain a smooth τ l′′(E, R) one must of course keep in mind all the caveats of using

the arctangent function to reconstruct a continuous quantity that is not bound to a π-length
interval.
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a qualitative resemblance to our results but there is no quantitative agreement.
However, there are two important points about the data from Ref. [47] that need
to be mentioned here. Firstly, their coupling terms η01, η12 were arbitrarily set
to a constant value and then smoothly matched to zero between 5 and 7 bohr.
Secondly, the elements ηll′ were defined differently in Ref. [47], as they have been
related to the elements of the K matrix as follows:

K ll′ = tan(πηll′) , (6.16)

instead of (6.14) and (6.15).

6.2 Direct DR of H+
2 + e− (singlet gerade chan-

nel)
What follows are the yet unpublished results of our current project in which the
(full) two-dimensional R-matrix approach of chapter 3 is applied to our gerade
model potential. The implementation is similar to the ungerade case with a
few additions. The Schrödinger equation (3.1) is expanded into three angular
channels

[︂
H l

n (X) +H l
e(r) − E

]︂
ψl(X, r) = −

∑︂
l′=0,1,2

V ll′
(︄
X√
M
, r

)︄
ψl

′(X, r) , (6.17)

where
H l

n (X) = −1
2
∂2

∂X2 + V l
0

(︄
X√
M

)︄
, (6.18)

and H l
e(r) remains the same as in Eq. (1.3). Overall, all the Hamiltonians,

potentials and the wave functions now have an added l-indexing.

6.2.1 Construction of the surface channel functions
The physically motivated channel functions on the surfaces Se and Sn (see Fig.
6.6) are now

H l
n(X)ϕlje(X) = Ejeϕ

l
je(X) , (6.19)

[︂
H l

e(r) − Ejn
]︂
ρljn(r) = −

∑︂
l′=0,1,2

V ll′(X0, r)ρl
′

jn(r) . (6.20)

The boundary conditions ϕlje(X0) = 0 and ρljn(r0) = 0 are again imposed for
the respective channel functions. Note that since V l

0 (R0) ∼ 0 the Ejn here are
identical to the adiabatic Eadi

k (R0).
We now need to make the semantic distinction: an eigenfunction is a sin-

gle ϕlje(X) or ρljn(r) while a solution is a vector ϕje = {ϕ0
je , ϕ

1
je , ϕ

2
je} or ρjn =

{ρ0
jn , ρ

1
jn , ρ

2
jn}. Assembling the fragmentation channel basis is somewhat more

complicated now. The situation is simpler for the coupled part (6.20) where the
choice of jn immediately informs the behavior of ρljn(r) for all l and so the solution
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Figure 6.6: Configuration space partitioning and surface channel functions.

ρjn is uniquely defined. For (6.19), picking a je that corresponds to an eigenen-
ergy Eje of H l

n(X) usually means that ϕl′je(X) has to be a trivial zero for l′ ̸= l.
That is unless H l

n and H l′
n share the same eigenenergy. In that case we get two

solutions12 that contain an arbitrary orthonormal combination of the correspond-
ing eigenfunctions13. In our case, this will happen for all the eigenenergies of H0

n
and H2

n (identical s and d nuclear potential). The physically motivated choice of
channels is such that for each je only one part of the solution is non-trivial. We
can now unite the two index sets j = {je, jn} and assemble the fragmentation
channel basis |j) on the entire surface S

j ∈ je : |j) = |ϕje) on Se and |j) = 0 on Sn , (6.21)
j ∈ jn : |j) = |ρjn) on Sn and |j) = 0 on Se . (6.22)

The symmetrized version of the Hamiltonian (6.1) together with the substitution
R → X/

√
M reads as

H̄
ll′(X, r) = H ll′(X, r) + 1

2

[︄
δ(X −X0)

∂

∂X
+ δ(r − r0)

∂

∂r

]︄
δll′ , (6.23)

H ll′ =
[︂
H l

n(X) +H l
e(r)

]︂
δll′ + V ll′

(︄
X√
M
, r

)︄
. (6.24)

12Three solutions if all the three nuclear Hamiltonians share that eigenvalue.
13Orthonormal in the sense that if we have two normalized non-trivial eigenfunctions ϕ0

A, ϕ2
B

solving their respective parts of (6.19) with an identical energy, then we get solutions ϕje =
{a1ϕ0

A, 0, b1ϕ2
B} and ϕj′

e
= {a2ϕ0

A, 0, b2ϕ2
B} satisfying Eje = Ej′

e
and a1a2 + b1b2 = 0, a2

1 + b2
1 =

1 = a2
2 + b2

2. An equivalent applies for three identical eigenvalues, three eigenfunctions and
three solutions.
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All that is left before we define an R matrix is an analogue of (3.16), which will
now be a matrix equation

H̄|ψp⟩ = Ep|ψp⟩ . (6.25)

The Wigner-Eisenbud expansion of the R matrix is then

Rjj′ = 1
2
∑︂
p

(j|ψp) (ψp|j ′)
Ep − E

, (6.26)

with the surface channel states |j) defined by Eqs. (6.21) and (6.22) and the
terms (j|ψp) are now not only surface integrals but also projections over the
three vector elements.

6.2.2 Matching to asymptotic functions
The presence of the long-range (see Fig. 6.1) V 22(R, r) term in the full Hamilto-
nian means that to satisfy the asymptotic behavior (1.7) with a sufficient degree
of accuracy, we would require a very large nuclear box size R0 which results in
a very long computation time when solving (6.25). Fortunately, this problem
can be circumvented. Since the range of the off-diagonal coupling terms of the
potential is much shorter, it is possible to shrink the 2D computational box in
such a way that they still satisfy (1.7), while the missing part of the interaction
diagonal terms V ll will be included in a different way. Using a smaller 2D box we
will still follow the steps up to (6.26). The non-constant nature of the interaction
potential beyond R0 simply means that we can no longer just use Bessel functions
for the outer-region solutions in nuclear fragmentation channels. Instead, we have
to use functions that are the outgoing- and incoming-nuclear-wave solutions on
potentials corresponding to the adiabatic curves of Fig. 6.2. In other words,
whenever we solve (6.20) on the surface Sn we pair the solution ρjn(r) to one of
the adiabatic curves (the channel energy Ejn is equal to the value of one of these
curves at R = R0). The matching nuclear functions form the diagonal matrices
F ,G for some given total energy E. Instead of using the original F 0

jn(X), G0
jn(X)

from Eqs. (3.17)-(3.20), we need to find solutions of[︄
∂2

∂R2 + 2M
(︂
E − Eadi

jn (R)
)︂]︄
yjn(R,E) = 0 , for R ≥ R0 . (6.27)

For this we employ the Milne phase amplitude method described by Greene, Rau
and Fano in Ref. [48] in section IV. B. It is known that all the independent
solutions to (6.27) can be expressed through any particular solution of[︄

∂2

∂R2 + 2M
(︂
E − Eadi

jn (R)
)︂]︄
αjn(R,E) = 1

α3
jn(R,E) . (6.28)

With the introduction of14

θjn(R,E) =
∫︂ R

α−2
jn (R′, E)dR′ , (6.29)

14Other works usually denote this phase ϕ but we use θ to avoid confusion with nuclear wave
functions.
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the general solution yjn(R,E) can be expressed as

yjn(R,E) = aαjn(R,E)sin
(︄∫︂ R

α−2
jn (R′, E)dR′ + b

)︄
, (6.30)

with arbitrary constants a and b. Note also the arbitrarity within αjn since it
can be any solution of (6.28). Following Ref. [48] we use the boundary condition
αjn(R0, E) =

√︂
2M(E − Eadi

jn (R0)) . Thus, instead of F 0
jn(X), G0

jn(X) we will
simply use the new pair

F̃ jn(X) = (2M/π)1/2αjn

(︄
X√
M
,E

)︄
sin

[︄
θjn

(︄
X√
M
,E

)︄]︄
, (6.31)

G̃jn(X) = −(2M/π)1/2αjn

(︄
X√
M
,E

)︄
cos

[︄
θjn

(︄
X√
M
,E

)︄]︄
. (6.32)

Since our adiabatic curves arrive very close to their asymptotic limits at a rea-
sonable distance (let us denote it R1), we can define

Θjn(E) =
∫︂ R1

R0
α−2
jn (R′, E)dR′ , (6.33)

which is the additional phase shift that F̃ jn(X), G̃jn(X) accumulate before becom-
ing essentially Bessel functions. With these new quantities the matrix definitions
(3.29), (3.30) required for channel elimination are altered to the form

Γjγ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ujγ sin(βj + πτγ) , j ∈ Qe
Ujγ sin(Θj + πτγ) , j ∈ Qn

Ujγ sin πτγ , j ∈ Pe
Ujγ sin πτγ , j ∈ Pn

, (6.34)

Λjγ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 , j ∈ Qe
0 , j ∈ Qn

Ujγ cosπτγ , j ∈ Pe
Ujγ cosπτγ , j ∈ Pn

. (6.35)

In the case that our shrunk R0 value can still accommodate some of the adiabatic
curves (meaning they are effectively constant outside of it), we can use the original
Bessel functions for their corresponding channels, and Γjγ, Λjγ will use their old
definitions (3.29), (3.30) for those channels. The remaining path to DR cross
sections is the same as in chapter 3.

6.2.3 Preliminary results
The initial target channels for the DR process in the singlet gerade symmetry,
described in the body frame, contain only l = 0 and l = 2 partial waves. It is
because at these energies the l = 1 repulsive nuclear states leave the electronic
wave functions in the closed-channels regime (see Fig. 6.7). Fig. 6.8 shows our
first preliminary results for DR cross sections of H+

2 + e− in the gerade symmetry
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computed with the outlined two-dimensional R-matrix method with box sizes
r0 = 50 bohr, R0 = 12 bohr, R1 = 50 bohr. The “Milne treatment” was most
necessary for the channels connected to the EF , GK and HH̄ curves. As we
had hoped, the cross section connected to the lowest channel, which is badly
represented by our model, is many orders of magnitude below the others (not
shown in the image).
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Conclusions
The main focus of this thesis is the development of a theoretical toolkit for a
qualitative, as well as quantitative understanding of the two basic processes that
drive the dissociative recombination of small molecular cations.

The first of these processes, the indirect mechanism, is always present in DR
and it forms a dominant part of the thesis. The theoretical toolkit presented here
consists of the multichannel quantum defect theory (MQDT) in combination with
the vibrational frame transformation (FT) into the non-hermitian nuclear basis
of Siegert pseudo-states. The majority of this toolkit was not developed here
but its foundations were created in the pioneering works of Hamilton and Greene
[12], Kokoouline and Greene [13]. However, some of the theoretical steps used in
these methods were intuitive and there was not a clear theoretical nor numerical
evidence that the theory is correct. A comparison with experimental data was not
always conclusive as the experiments were not able to reproduce most of the fine
structures predicted by the theory due to the finite temperatures and resolutions
in the experimental measurements.

Therefore, in order to benchmark and judge this theoretical toolkit, we have
developed a “toy model” in the form of a minimal 2D model, in which one co-
ordinate represents the electronic degrees of freedom and the second coordinate
describes the nuclear motion. We proposed two methods to solve the model ex-
actly (up to a numerical precision), without making any physically motivated ap-
proximations (such as the Born-Oppenheimer approximation). The first method
employed the exterior complex scaling (ECS) of both coordinates and its imple-
mentation was the subject of my master’s thesis. The second method is based on
the 2D R-matrix method and it solves the 2D Hamiltonian in a small 2D box.
The inelastic cross sections are obtained by a matching of the solutions to the
analytic asymptotic functions.

In the first part of the thesis the 2D model is tailored to the indirect DR
process of H+

2 cations in the singlet ungerade symmetry. The comparison of the
exact DR cross sections with the results of the above-mentioned toolkit revealed
two weak points of our theory:

1. The positions and shapes of the closed-channel resonances were not accu-
rately reproduced due to an approximation in the theory that omits the
energy dependence of quantum defects.

2. The presence of collision energy windows (typically just under thresholds of
the outgoing electronic states) in which it was impossible to obtain results
converged with respect to the size of the nuclear basis of Siegert pseudo-
states.

Therefore, this benchmark of our theoretical toolkit resulted in the two following
improvements:

1. The implementation of the energy-dependent frame transformation theory
for the DR process. Unfortunately, the strict and accurate implementation
of the theory of Gao and Greene [6] has led to a deterioration of the results
when they were compared with the energy independent FT theory. We have
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identified the origin of this setback in the failure of the Born-Oppenheimer
approximation (BOA) even in small electronic boxes of 7-8 bohrs. The
energy independent FT, as used and implemented in the previous studies,
contained a silent correction to the BOA. However, we have found that if
the electronic wave function is interaction-free backpropagated to a shorter
electronic radius (e.g. 2 bohrs) the DR results are markedly improved and
the agreement with the exact results is within 0.1%. The simplified version
of the backpropagation procedure was then used in a practical application
of this modified toolkit: the DR of HeH+ cations. The demand for the ac-
curate DR data of HeH+ has strongly increased after the first astrophysical
observation of this presumably oldest molecule of the Universe (Güsten et
al. [35]). The resulting initial-state resolved DR cross sections computed
with the energy-dependent FT were in a very good agreement with the
pioneering experimental data from the Cryogenic Storage Ring (CSR) at
MPIK in Heidelberg (Novotný et al. [36]).

2. We identified that the problematic energy windows in the computed DR
cross sections are related to an ad hoc procedure in which the nuclear basis
was chosen from a doubly complete set of Siegert pseudo-states. It was
found that splitting this doubly complete set of states into two independent
complete sets is a very problematic procedure. The subset of the bound
and outgoing-wave states appeared to be slightly overcomplete and this,
albeit very small, error in the completeness was responsible for inaccurate
results in the examined energy windows. In order to improve this step,
we have implemented the complex nuclear basis from the exterior complex
scaling method. The completeness of the resulting nuclear basis is much
more accurate, however, the price for this accuracy is paid by the size of
the basis – it needs to be about two to three times larger than the basis of
the Siegert pseudo-states. The application of our theoretical toolkit to the
DR of HeH+ cations, mentioned above, already employs the nuclear basis
of ECS states.

In the second and smaller part of the thesis a possible application of the
toolkit to the direct mechanism of DR is explored. Following the indirect study,
a new “toy model” of the direct mechanism is proposed in the form of a coupled
set of three 2D models. This model is tailored to describe the DR process of
the H+

2 + e− via singlet gerade channels. The three 2D models represent the
three dominant partial waves l = 0, 1, 2 that govern, at low collision energies,
the electronic degrees of freedom, as well as the dissociation Rydberg channels.
The physical nature of the model was tested on the reproduction of some of the
known properties of the H2 molecule, namely

• the positions of the vibronic states,

• the adiabatic curves of the 2pσ2 closed-channel resonance,

• the adiabatic quantum defects.

These tests have shown that while the model is not quantitatively accurate, it
contains all the physical properties reasonably close to the real molecular system.
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The implementation of the model was finished and the stability of the computed
DR cross sections, with respect to various numerical parameters, was tested dur-
ing my Ph.D. studies. The resulting cross sections will serve as a benchmark for
an approximate theoretical toolkit that is being currently developed in the group.
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[C] Dávid Hvizdoš, Roman Čuŕık and Chris H. Greene. Backpropagated frame
transformation theory: A reformulation. Phys. Rev. A, 101:012709, 2020
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