
Charles University in Prague

Faculty of Mathematics and Physics

DIPLOMA THESIS

Tomáš Kohan

User-Defined XML-to-Relational

Mapping

Department of Software Engineering

Supervisor: RNDr. Irena Mlýnková
Field of Study: Informatics

I would like above all to thank my supervisor, RNDr. Irena Mlýnková, for
her guidance in shaping of my research, this continuous encouragement
and major advices.
I am very grateful to all the people who supported my work by their help
and advice too.

I declare that I completed this diploma programme by myself and I used
only aforementioned literature. I agree with using this diploma thesis.

Prague, August 13, 2007 Tomáš Kohan

Contents

1 Introduction 1
1.1 Goals . 2
1.2 Thesis overview . 2

2 Used technologies 4
2.1 XML . 4
2.2 XML Schema . 6
2.3 Relational system . 10

3 Overview of mapping techniques 14
3.1 Regular Document Example 14
3.2 Mixed Document Example 15
3.3 Properties of XML Data and Queries 16
3.4 Storage techniques . 17

3.4.1 Foreign keys . 18
3.4.2 Interval encoding 19
3.4.3 Dewey decimal classification 19
3.4.4 Paths . 20

4 Theoretical methods 21
4.1 MXM . 21

4.1.1 MXM grammar and examples 22
4.1.2 IMXM . 24

4.2 ShreX . 26
4.2.1 Architecture overview 26
4.2.2 Mapping definition 28

4.3 Pros and Cons . 30

5 Commercial systems 33
5.1 Oracle 10gR2 . 33

5.1.1 XML Schema annotations 36
5.2 DB2 . 38
5.3 MS SQL Server . 39
5.4 Pros and cons . 42

- i -

6 Solution design 43
6.1 Analysis . 43

6.1.1 Mapping definition 44
6.1.2 IXRM . 46

6.2 Solution overview . 46
6.2.1 XML schema loading process 48
6.2.2 XML document loading process 49
6.2.3 XPath query executing process 50
6.2.4 Annotation processor 50
6.2.5 Default rules . 51
6.2.6 Mapping repository 52
6.2.7 DB schema generator 53
6.2.8 Document processor 53
6.2.9 Data Input generator 54
6.2.10 Data repository 54
6.2.11 Query processor 55
6.2.12 Data Output generator 56

6.3 Mapping completeness 56

7 Implementation 57
7.1 Used technologies . 57
7.2 Architecture . 57
7.3 Control . 60
7.4 Implementation limitations 60

8 Experimental results 61

9 Conclusion 64

A XRM Annotations 69

B Default rules 70

C Internal document representation 71

D Internal XPath query representation 73

E CD-ROM content 75

- ii -

List of Figures

3.1 Example of regular XML document 15
3.2 Example of mixed XML document 16

4.1 MXM grammar . 23
4.2 Example of MXM mapping using KFO 24
4.3 Example of MXM mapping using CLOB 24
4.4 ShreX architecture . 27
4.5 Annotated XML schema 29

5.1 Syntax of creating a XMLType table 35
5.2 Example of specifying storage options 36

6.1 Example of annotated XML Schema 47
6.2 Example of fully annotated XML Schema 47
6.3 XRM architecture . 49
6.4 Annotation processor . 50
6.5 Mapping repository . 52
6.6 DB schema generator . 53
6.7 Document processor . 53
6.8 Data Input generator . 54
6.9 Data repository . 55
6.10 Query processor . 55
6.11 Data Output generator 56

8.1 XML Schema used in experiments 62

- iii -

Název práce: Uživatelsky definované mapováńı XML dat do relačńıch
databáźı
Autor: Tomáš Kohan
Katedra (ústav): Katedra softvérového inženýrstv́ı
Vedoućı bakalářské práce: RNDr. Irena Mlýnková
e-mail vedoućıho: irena.mlynkova@gmail.com

Abstrakt: V předložené práci studujeme možnosti mapovańı XML dat do
relačńıch systémů. V prvńı části poṕı̌seme základńı termı́ny použ́ıvané
v práci a následně také základńı techniky pro mapováńı XML dat do
relačńıch databáźı. V daľśı části se budeme zab́ıvat teoretickými meto-
dami jako MXM a ShreX, které byly navrženy na akademické p̊ude. V
třet́ı části poṕı̌seme metody mapováńı, které jsou použité v některých
komerčńıch systémech jako Oracle, DB2 a MS SQL. V druhé polovině
práce navrhneme novou mapovaćı metodu (XRM), která přinese několik
nových vlastnost́ı s t́ım, že p̊uvodńı pozitivńı vlastnosti zústanou za-
chovány. V záveru rozebereme prototypovou implmentaci navrhované
mapovaćı metody.

Kĺıčová slova: XML úložǐstě, mapováńı, XML do Relaćı, uživatelsky defi-
nované

Title: User-Defined XML-to-Relational Mapping
Author: Tomáš Kohan
Department: Department of Software Engineering
Supervisor: RNDr. Irena Mlýnková
Supervisor’s e-mail address: irena.mlynkova@gmail.com

Abstract: In the present work we study opportunities of mapping the
XML data into relational systems. In the first part we describe basic
terminology used in this work and subsequently also basic techniques for
mapping XML data into the relational database. In the next part we
engaged in theoretical methods like MXM and ShreX, which were pro-
posed on premises of a university or by a research group. In the third
part we describe mapping methods, that are used in some commercial
systems like Oracle, DB2 and MS SQL. In the whole second half of this
work we propose a new mapping method (XRM), which bring in several
new features, while the origin positive features are kept. At the end we
analyze the prototype implementation of the proposed mapping method.

Keywords: XML Storage, mapping, XML-to-Relation, user-defined

- iv -

Chapter 1

Introduction

Data storage, its exchange and effective processing are key areas of the
modern age. It is natural to use opportunities of computer technology and
computer networks for data management and communication (primarily
the worldwide network the Internet). There were proposed many meth-
ods and languages for presenting, sharing and exchanging information in
the past. As an example can be considered HTML1 language. This lan-
guage can be used to present information especially through web server
and the HTTP2 protocol. In the process the HTML language tends to be
used particularly to describe visual presentation of a document. Seman-
tic elements of the document structure became weaker. The expansion
of computer engineering, especially of internet network, and its extend-
ing among continuously growing base of users begin enormous growth of
number of documents using this language. In addition, users’ visual form
requests were growing along with opportunities of displays, and therefore
majority of these documents became more complicated, less transparent
and the amount of useful information in proportion to the whole doc-
ument size was still descending. The most important disadvantage of
HTML language for needs of electronic communication and information
management is fixed set of verbalization instruments and therefore low
extensibility and flexibility for particular usage.

The XML3 language was created as an reaction to this needs and in-
sufficiencies. The XML language is a subset of SGML4 language as well
as HTML language. Contrary to SGML the XML language is designed
with regard to simplicity. This language is easy to learn for users and also
electronic processing is easy and effective. Therefore XML documents can
be processed in mobile devices and other devices with restricted calcula-
tion capacity. On the other hand, the XML language is focused especially
on information structure description and their semantic meaning. Since

1HyperText Markup Language - http://www.w3.org/TR/REC-html40/
2HyperText Transfer Protocol
3eXtensible Markup Language - http://www.w3.org/TR/REC-xml
4Standardized General Markup Language

- 1 -

CHAPTER 1. INTRODUCTION

it is not possible to design an common language for semantic descrip-
tion of information from all fields of human activity, the XML language
was created as an extensible standard. Every user can create instruments
for description of information from each other’s field (problem domain).
However, two subjects can communicate and exchange information be-
tween them only by keeping joint document structure and joint set of
means of expression. The XML Schema is one of them. The document
schema not only support communication between subjects, but also sup-
ports much effective storing of these documents, eventually their com-
pression or information look-up in the data bases founding on the XML
language.

However, XML documents storage as files on file system and sub-
sequent looking up in these documents is rarely powerful enough. File
opening and random access to a certain part of this file is considered to
be the slowest operation in computer engineering. That is just the reason
why there were some different approaches to propose new methods. One
of these is using an relational system as a storage backend. It combines
database performance which is developing for a long time and simplicity,
flexibility, human readability and exchangeability of XML documents.
To take advantage of relational database, the XML document has to
be suitably mapped onto relations in database. This mapping can be
done using several methods. There are two groups of these methods. One
group maps XML documents which do not have assigned an document
with their structure and the second one uses this structure information.
First group uses only generic mapping techniques while it do not know
the structure of documents which are stored in the system. The later one
can take an advantage by using some special mapping techniques.

1.1 Goals

This diploma thesis has two main goals. The first one is to summarize
some mapping techniques and mapping algorithms. As well as the the-
oretical ones, also commercial ones. The second goal is to propose a
new mapping technique which should group some advantages of current
techniques and add some new interesting features. This proposal is then
implemented as a prototype which shows the basic functionality of pro-
posed method. The implementation uses already implemented libraries
for work with XML documents and database connections.

1.2 Thesis overview

In the introduction there is described the motivation for this thesis and
there are proposed goals which should be reached. In the second chapter

- 2 -

CHAPTER 1. INTRODUCTION

there are defined basic terms and technologies used in this book. Espe-
cially the XML language, XML Schema language for document structure
description and the basics of relational databases. In the third chapter
there are described mapping basics and several storage techniques. This
techniques are used by mapping techniques which are described in chap-
ter four (theoretical) and five (commercial). In the sixth chapter there
is proposed a new mapping technique. The prototype implementation
is described in the seventh chapter. The eight chapter describes exper-
imental results and practical previews of proposed mapping technique.
The last chapter contains final conclusion and opportunities of further
improvement. At the very end of this thesis are several appendices which
describes technical details of prototype implementation.

- 3 -

Chapter 2

Used technologies

In this chapter some basic technologies are introduced. It is necessary to
handle this problems to continue to next chapters of this book. As the
main topic is mapping XML to relational systems, sections describing
XML and relational systems can be found here. Most of these techniques
use XML Schema to define XML documents structure and additionally
to define mapping specification, thus XML Schema is also mentioned.

2.1 XML

Format XML (eXtensible Markup Language1) was defined by W3 Con-
sortium2 as a format for transmission of general documents (data). The
design came from older and more general SGML3 standard. Documents
in XML are automatically SGML documents too. The advantage of this
format is simplicity, strict syntax and flexibility. It is intended to be used
for publishing and exchanging data but also for its storing and searching.

The set of XML tags is not fixed. It can be additionally defined for
different collections of documents differently. Definition of the set of XML
tags can be included in XML document, referenced by a link or agreed
in advance. The XML tags have a form of common parenthesis:

<name>John</name>

Elements

Tags in XML have markup function for certain parts of a document.
Usually, tag is composed of two parts - start-tag (<name>) and end-tag
(</name>). These tags enclose an element. Tags enclosing an empty string
form an empty-element, e.g. <name/>. This implies that the element may

1http://www.w3.org/TR/REC-xml/
2World Wide Web consortium - http://www.w3.org
3Standard Generalized Markup Language - ISO 8879

- 4 -

CHAPTER 2. USED TECHNOLOGIES

be formed by two corresponding tags (and may enclose some content as
string or other elements) or by one azygous tag (and therefore cannot
contain content). Paired tags can be compared with common mathe-
matical parenthesis as they have to be well-parenthesized. Every XML
documents have to have single root element. The XML document which
satisfy all these rules is called well-formed.

Moreover if the document has assigned also description of its struc-
ture, it is called valid or more precisely the document is valid against
a given schemata, as long as its structure and content conform to this
schemata. The structure of an XML document describes its feasible ele-
ment names, content, attributes and permitted nesting of elements. This
structure can be described by languages as DTD or XML Schema. The
latter one is described later on.

Attributes

Every element can optionally contain attributes. Attributes are part of
the element tag. In case of paired elements they are part of the opening
tag. Attributes have a format of name="value" where the value is always
closed in quotation marks.

<person id="25">
<name>John</name>
<surname>Neumann</surname>
<scientist salary="80000"/>

</person>

Document schemata define not only which attributes are allowed but
also their optionality and in case of some languages (for example XML
Schema) also data type of the attribute.

Processing instructions

Processing instructions are instructions for superior application which
processes the document. They have no meaning for the document data,
they only influence the way the document is processed. Processing in-
structions are included in the document in the format

<?identificator data?>.

The most commonly used instruction for document processing is the
XML document declaration. This instruction should be used in the very
beginning of the XML document. Its format is

<?xml version="1.1" encoding="UTF-8" standalone="no"?>.

The first attribute defines the language version (nowadays it is version
1.1), second attribute encoding contains information about character set

- 5 -

CHAPTER 2. USED TECHNOLOGIES

used in the document and the last attribute defines whether the document
can be processed separately or it demands external definitions.

Entities

Entities are substituting artifacts of the XML language which are sub-
stituted by the content during the processing. For example, if very long
name of organization is often used in XML documents, an entity name
for the organization name can be defined and &orgName; can be used in
document instead. This entity would be substituted for defined text at
every place it is found. Entities format is &name;&. The definition looks
like <!ENTITY name "text">.

In XML there are three predefined entities for the character which
have special meaning. They are < for <, > for > and & for &.

Comments

Comment is a text enclosed between strings <!-- and -->. Everything
that is between these two tags is immune to process.

CDATA

Inside CDATA section the document processing does not proceed and
the content of this section is passed to output without processing. Within
this section the characters <, > and & lose their special meaning. The
section is enclosed into tags <![CDATA[and]]>. This XML fragment is
suitable in case that XML document contains large text which should not
be proceeded (it contains special characters, but with entirely different
meaning).

Tho more detailed description of XML language can be found on the
site of W3 Consortium [20].

2.2 XML Schema

XML Schema is language for describing structure of XML document. It
is possible to describe valid elements, for each element valid attributes
(incl. optionality and data type) and parent-child relationships. It enables
creation of user-defined data types, defines order of subelements and
also repetition rate of subelements. It provides the possibility to define
implicit values. As well as XML language, the XML Schema language is
also standardized by W3 Consortium.

- 6 -

CHAPTER 2. USED TECHNOLOGIES

Namespaces

A single document can contain tags from several schemata. In order to
avoid complicated agreeing between schemata authors on naming and to
avoid collisions of elements and attributes names, there were created so-
called namespaces. Each schema defines elements belonging to explicit
namespace. Within one namespace all names have to be unique (at-
tributes names only in the context of own element indeed). Every names-
pace is uniquely identified by its URI4. Namespace of the element and all
its subelements can be defined by the attribute xmlns:prefix="URI of

namespace". To use an element belonging to the specific namespace is
used <prefix:local-name-of-element>, to use an attribute is
used prefix:local-name-of-attribute="value". The implicit names-
pace can be defined in every XML document. It is defined without the
prefix and it is not necessary to write the prefix in front of neither ele-
ments nor attributes. Implicit namespace can be defined by xmlns="URL

of implicit namespace".

Assigning schema to document

The schema can be assigned to the document by using the attribute
schemaLocation in the element definition where the namespace is de-
fined. The content of the attribute schemaLocation is space-separated
list of pairs URI-of-namaspace schema-location. Items of the pair are
also separated by space. If there is no namespace defined for the schema, it
is assigned to the document by attribute noNamespaceSchemaLocation,
whose content is the schema location. Every document can have assigned
only one schema without specified namespace (otherwise name collisions
could come up). All names from schema without namespace assigned are
written without prefix, thus they belong to implicit namespace.

Syntax

XML Schema language is the specific usage of XML language. For the
description of schema of XML document therefore is no need to bring
about other language. Naturally there exists the structure definition for
the XML Schema language XML documents written in XML Schema
language. As XML Schema document is a XML document it has one
root element, namely element schema. As well as all the other elements
of XML Schema document, this element is also from namespace with
URI http://www.w3.org/2001/XMLSchema.

4Uniform Resource Identifier

- 7 -

CHAPTER 2. USED TECHNOLOGIES

Elements

Available elements in the document are defined by tag element. If the
tag element is the lineal descendant of the element schema, it defines
global element. Global element is accessible from whole schema and it
can be used as root element of the document. If the tag element is used
inside the definition of complex type, it defines local element. Contrary
to DTD XML Schema allows to define several different root elements.
Attribute name defines the name of the element. The most important
definition within element is the definition of its type. Type can be either
simple or complex. Type can be defined either by using attribute type

or as nesting element.

<xs:element name="person">
<xs:complexType>

<xs:sequence>
<xs:element name="name" type="TName" />
<xs:element name="surname" type="TSurname" />
<xs:element name="scientist" type="TScientist" />

</xs:sequence>
</xs:complexType>

</xs:element>

Attributes

Every element can have defined a set of available attributes. The indi-
vidual attributes are defined by the tag attribute. The name of the at-
tribute is defined by attribute name. The attribute occurrence is modified
by attribute use. It can take the value optional, prohibited or required.
As well as elements, attributes have to have specified data type. It can
be specified by attribute type or by specifying type as nested element.
Attribute ref can optionally refer to the globally defined attribute and
the attribute default specify implicit attribute value.

<xs:complexType name="TScientist" >
<xs:attribute name="salary" type="xs:positiveInteger" />

</xs:complexType>

Simple types

Simple data type cannot contain elements or attributes. The basic data
type in XML Schema is type string. XML Schema allows to derive type
by way of restricting the superior type. Simple types can be divided into
two groups - built-in and user-defined.

- 8 -

CHAPTER 2. USED TECHNOLOGIES

Complex types

Complex type is defined by element complexType. Complex type contains
a set of attribute definitions and definitions of simple or complex content.
The simple content is restriction of simple type or extension of simple
type by attributes. Complex content is restriction or extension of complex
type.

ã Sequence is a data type which selects a sequence of items in fixed
order, therefore all the items have to occur (depending on their own
repetition rate) and in fixed order exactly as they occur in element
sequence. The content of the element sequence can be element,
choice, sequence or all.

ã Choice is a data type for exclusive selection of item from a set.
Therefore the result is exactly one item from a set. The content of
the element choice can be element, choice, sequence or all.

ã All is a data type for occurrence of all elements from a set. Each
element has to occur exactly once. However, the order of elements is
not fixed. This element is an extension compared to DTD and can
significantly help to make schemata more readable and transparent.
The content of element all can be only the element element. This
restriction is accepted to ensure deterministic data model.

For example, the type

<xs:all>
<xs:element name="A" type="TA" />
<xs:element name="B" type="TB" />

</xs:all>

corresponds with the sequence of elements

<A /> and <A />

Other features of XML Schema

Other features of XML Schema language like substitutions, groups, u-
nique values of attributes, keys and foreign keys, tag for any element or
attribute, notation and others, are not important in scope of this book.
More detailed specification can be found on site of W3 Consortium [21].

Comparison with DTD

In this section important improvements XML Schema language against
DTD are highlighted. The DTD provides basic grammar for defining an

- 9 -

CHAPTER 2. USED TECHNOLOGIES

XML Document in terms of the metadata that comprise the shape of the
document. An XML Schema provides this, plus a detailed way to define
what the data can and cannot contain. It provides far more control for
the developer over what is legal, and it provides an Object Oriented
approach with all the benefits this entails.

2.3 Relational system

A relational database is a database that conforms to the relational model,
and could also be defined as a set of relations or a database built in an
Relational database management system.

A relational database management system (RDBMS) is a system that
manages data using the relational model. Frequently, the term ”RDBMS”
is inaccurately used as a generic label for the relational database concept.
Most current RDBMSs (for example: Oracle, Microsoft SQL Server, DB2,
MySQL, PostgreSQL) deviate significantly from the relational model and
are more accurately called SQL database management products (DBMS).

Strictly, a relational database is a collection of relations (frequently
called tables). Other items are frequently considered as part of the data-
base, as they help organize and structure the data, in addition to forcing
the database to conform to a set of requirements.

Relations or tables

A relation is defined as a set of tuples that all have the same attributes.
This is usually represented as a table, which is data organized in rows
and columns. In a relational database, all of the data stored in a column
should be in the same domain (i.e. data type). In the relational model, the
tuples should not have any ordering. This means both that there should
be no order to the tuples, and that the tuples should not impose an order
of the attributes. Put differently, neither the rows nor the columns should
have an order to them.

While this is the desired result, it is not universally achieved. The SQL
standard requires columns to have a defined order. All data stored in a
computer has to have an order, as the memory of a computer is linear.
Also, when the data is returned, there must be an order in which the data
is returned (because all transfer protocols are linear, and coincidentally
enough, humans read in a linear fashion). The point here is that this
order must never make a logical difference in the system. Frequently
orders are imposed, which impact performance, but they should never
change the result of a query on the database. In practice, several of the
DBMSs that are considered “relational” impose an order that makes a
logical difference.

- 10 -

CHAPTER 2. USED TECHNOLOGIES

Constraints

Constraints are a way of providing restrictions on the kinds of data that
can be stored in the relations. These are usually defined (formally) in the
form of expressions that result in a boolean value, indicating whether or
not the constraint holds. Constraints are a way of implementing business
rules into the database.

Under the strictest sense, constraints are not considered a part of the
relational database, but because of the integral role, which they play in
organizing data, they are usually considered a part of the database.

Data domain

A data domain (or usually just domain), is a set of possible values for a
given attribute. Because it does constrain the values the data can hold, it
could be considered as a constraint, but because attributes must specify
a domain, it could just be considered a part of the relation’s definition.
Mathematically, a domain can be expressed as “all values for this at-
tribute must be an element of the specified set.”

Keys

A tuple usually represents some object and its associated data, whether
that object is a physical object or a concept. A key is a kind of constraint
which requires that the object, or critical information about the object,
is not duplicated. For example, a family might like to have a constraint
such that no two people in the immediate family have the same name. If
information about family members were stored in a database, a key could
be placed over the family member’s name. In a University, they have no
such luxury. Each student is typically assigned a Student ID, which are
used as keys for individual students stored in the school database. Keys
can have more than one column, for example, a nation may impose a
restriction that a province cannot have two cities by the same name. So,
when cities are stored in a relation, there would be a key defined over
province and city name. This would allow for two different provinces to
have a town called Springfield (because their province would be different),
but not two cities with the same name in the same province. A key over
more than one attribute is called a compound key. Theoretically, a key
can even be over zero attributes. This would enforce that there cannot
be more than one tuple in the relation.

Most relations have at least one key defined on it. Because a relation
is defined in the relational model as being a set, it cannot have duplicate
rows. Some DBMSs do not enforce this. If a DBMS does enforce this, it
means that there is always at least one key on each relation, namely the
key involving all of the attributes of the relation.

- 11 -

CHAPTER 2. USED TECHNOLOGIES

A key could be defined formally by requiring that the cardinality of
the relation should be equal to the cardinality of the relation projected
over the columns of the key.

A key, in this context, refers to any set of attributes which uniquely
span the relation. In particular, this is called a superkey. A candidate key
is a minimal superkey, meaning that none of the attributes in the key
could be removed from the key and that attribute set would still be a key.
Many DBMSs have a concept of a primary key. The primary key (usually
a candidate key) is the key most often used to identify a tuple. In some
RDBMSs, the primary key of a base relvar is the storage key (sometimes
clustered key), meaning that that is how the data is stored physically. If
the value of the primary key is actual interesting data with logical ties
to the data (like a name) for the tuple, it is called a natural key. If the
key is generated and does not have any logical connection to the rest of
the data in the tuple, it is called a surrogate key. Other candidate keys
that were not chosen as the primary key are called alternate keys.

Foreign keys

A foreign key is not a key by the previous definition. Rather, a foreign
key is a reference to a key in another table. Meaning that the referencing
tuple has, as part of its attributes, the values of a key in the referenced
tuple that corresponds to the relationship.

A foreign key could be described formally as “For all tuples in the
referencing relation projected over the referencing attributes, there must
exist a tuple in the referenced relation projected over those same at-
tributes such that the values in each of the referencing attributes match
the corresponding values in the referenced attributes”.

Transition constraints

A transition constraint is a way of enforcing that the data does not enter
an impossible state because of a previous state. For example, it should
not be possible for a person to change from being “married” to being
“single, never married”. The only valid states after “married” might be
“divorced”, “widowed”, or “deceased”.

Other constraints

Other constraints of various different kinds can be created to enforce var-
ious kinds of business rules. They can be as simple as “the number of cars
an individual owns must be non-negative” or complex patterns like “If
the work that an employee performs is ’Hazardous Materials Transport’
then that employee’s age must be at least 18 years, and the employee’s

- 12 -

CHAPTER 2. USED TECHNOLOGIES

certifications must include ’Hazmat endorsement’, and company insur-
ance for that employee must include life insurance.”

- 13 -

Chapter 3

Overview of mapping
techniques

This chapter is devoted to the overview of XML document structure and
storage techniques.

From one point of view XML documents can be divided into two
groups by content type: regular and mixed. Regular documents resemble
“de-normalized” relational data. They have regular structure and uses
usually scalar values. Mixed documents are more flexible and their values
can be inter-leaved with XML markup. As an example can be taken any
catalog that has its items stored as XML documents and description of
each item is saved as XHTML text.

3.1 Regular Document Example

With the purpose of exchanging and processing healthcare documents,
Health Level Seven(HL7)[9] develops document standards for the health-
care industry. The Figure 3.1 describes medical report. A patient has
individual information such as family and given names, date of birth and
observations.

HL7 documents illustrates the flexibility in regular documents. The
patient’s driver license is optional. The number of observations is arbi-
trary. The relationship between parent and child is significant, but the
order is insignificant.

Queries that manipulate this documents are usually based on select-
project-join and sorting by value. A typical query might return all pa-
tients that were born before exact date, sorted by family name and first
name or patients that have particular observation. Also grouping opera-
tion may occur.

- 14 -

CHAPTER 3. OVERVIEW OF MAPPING TECHNIQUES

<HL7>
<PATIENT IDNum="PATID1234">

<PaNa>
<FaNa>Jones</FaNa>
<GiNa>William</GiNa>

</PaNa>
<DTofBi>

<date>1961-06-13</date>
</DTofBi>
<OBX>

<ObsVa>150</ObsVa>
<ObsId>Na</ObsId>
<AbnFl>Above high</AbnFl>

</OBX>
<OBX>
...

</PATIENT>
...

</HL7>

Figure 3.1: Example of regular XML document

3.2 Mixed Document Example

The Library of Congress put out congressional bills in form of XML
documents[12]. The bill contains information such as congress, session,
etc. and action description, which may embody annotated text.

The Figure 3.2 shows how annotated text can be involved in docu-
ment. Also the presence of white spaces and new lines in the annotated
text might be meaningful. Queries that operate on mixed documents can
be divided into three categories:

Queries on text only. These queries are similar to Information Re-
trieval (IR) full-text search queries [19, 8]. For example, keyword, stem-
ming and proximity search. A query, which returns all bills that have
words “English” and “Coyne” within eight words, is example of proxim-
ity search.

Queries on text and structure. These queries combine both search
for keywords within text and query the relative order of elements and
text. A query that returns text elements containing words “English”
and “Coyne” within eight words and their preceding text element is an
example of query on text and structure. Numerous proposals [19, 3, 16, 1]
have studied how to combine IR technique with document structure.

Queries that span structure. Here belong queries that ignore
markups at all. For example a query that returns all the bills that contain
text ”referred to the Committee on Financial Services”. This query must

- 15 -

CHAPTER 3. OVERVIEW OF MAPPING TECHNIQUES

<bill bill-stage="Introduction">
<congress>110th CONGRESS</congress>
<session>1st session</session>
<legis-num>H.R. 133</legis-num>
<current-chamber>IN THE HOUSE OF REPRESENTATIVES
</current-chamber>
<action date="June 5, 2008">

<action-desc>
<sponsor>Mr. English</sponsor> (for himself
and <co-sponsor>Mr. Coyne</co-sponsor>)
introduced the following bill; which was
referred to the <committee-name>Committee on
Financial Services</committee-name>...

</action-desc>
</action>

</bill>

Figure 3.2: Example of mixed XML document

ignore markup <committee-name> to be successful. In [24], the authors
present technique to process this kind of queries.

3.3 Properties of XML Data and Queries

XPath and XQuery strongly depends on XML document properties. Thus
these properties have strong impact on storage design.

Attributes vs. Elements. Attributes and elements might contain
similar values. Scalars or lists. The problem is whether to store attributes
and elements the same way or choose some different method. The only
difference between attributes and elements is that the order of attributes
is insignificant whereas order of elements is not and that elements might
contain some more complex structure. XPath and XQuery are designed
to query elements and attributes values as well as their relationship.

Heterogeneity. XML document might be heterogeneous due to rep-
etition and alternation. Two documents observing the same XML scheme
or DTD can have totally different structure. There are several proposals
[25], which study possibilities of involving these heterogeneity into rela-
tional systems. XPath 2.0[7] permits querying this heterogeneous docu-
ments (PATIENT/(SURGERY|CHECKUPS)).

Identity and structure. The element identity depends on element
position within the document. Element identity is essential for querying.
For example, it is used to define basic operations like element equality and
union, intersection and difference of element sequences in XPath. Identity
may be significant for some applications, but it is always significant for

- 16 -

CHAPTER 3. OVERVIEW OF MAPPING TECHNIQUES

mixed documents. XPath axes are defined in global document order.
Structure dependence. Parent-child relationship is defined for ele-

ments in XML documents. This relationship can include dependency as
well. Children are often accessed through parents or other ancestors. This
dependence can be used to determine whether “direct” access (e.g. index-
ing) to elements is necessary or not and decide to either inline dependent
elements with parents or not.

Presence of a schema. Although many existing XML documents do
not conform to a predefined XML schema, every XML document which
is used in data exchange application will have an associated schema that
specifies the type of terminal data and constraints on document structure.
Schema should be used whenever XML document is used for storage if
it exists.

3.4 Storage techniques

The various approaches differ in which meta-data they use (i.e., schema
or schemaless); how the relational configuration is generated; and which
information is preserved on the relational side. Next paragraphs describe
basic differences between these techniques.

Schema-aware versus schema-obvious. All mapping techniques
can be broadly classified into schema-aware and schema-obvious. Schema-
obvious techniques store XML documents into predefined generic rela-
tional tables. One of the first proposals for mapping XML documents
was Edge scheme which stores all the edges in a document tree. (see
Section 3.4.1).

On the other hand from generic mappings several specialized strate-
gies have been proposed which make use of schema information to gen-
erate efficient mappings. These techniques in general use inlining of ele-
ments into their parents whenever it is possible. This reduce the number
of joins needed for navigating and/or reconstructing the document.

Mapping primitives. Several techniques have been proposed, which
define a set of rules to map XML Schema primitives into their relational
counterparts. For example, shared inlining specifies that elements, which
have multiple occurrences, must be mapped into tables, while elements
with only one occurrence should be inlined into parents table as a column.
The LegoDB system[18] exploits a richer set of mapping primitives. It
allows to map also other schema constructs such as choice and repetition.
For example, through repetition split transformation it is possible to in-
line one or more occurrences of the repeated element into its parent table.
Note that while most techniques consider primitives that map XML con-
structs to pure relational systems, some [15, 22] leverage object-relational
features of relational systems.

- 17 -

CHAPTER 3. OVERVIEW OF MAPPING TECHNIQUES

Fixed versus cost-based schema design. Most mapping strate-
gies are fixed, i.e. they fix mapping function. In contrast, LegoDB [18, 13]
takes a cost-based approach to derive a mapping that best suits a given
application - characterized by a schema, query workload and sample doc-
uments. LegoDB creates several mapping possibilities according to the
given schema and uses cost for executing query workload on sample doc-
uments to work out the most appropriate mapping.

Automated-generation versus Manual-specification. Vast ma-
jority of mapping techniques that are proposed int the research literature
provide an automated means to derive mappings. Commercial systems
[10, 5] allow users to manually specify mappings between XML document
and relational schemata. Languages such as XSLT[33], XQuery[27], and
IBM’s DAD[10] can be used to define mappings that perform arbitrary
transformations over an XML document. These types of mappings are
very flexible, however they have their drawbacks. It is not easy to define
a good mapping. Especially if the schema is huge, it is difficult to manu-
ally construct mapping that maps all the elements in the document and
is efficient at once. This presses the developer to be well acquainted with
both, XML and relational technologies. Also, since arbitrary transfor-
mations are allowed, the actual shredding of the documents can be very
expensive, both in terms of processing and memory requirements; and
specialized query translation engines may be needed on a per-application
basis.

Preserving order and structure. The main focus of all methods to
map XML documents into relational databases is on capturing elements
identity, document structure and order. These information can be used
to reconstruct the original XML document (except comments, processing
instructions, etc.). Only a little research was done on documents with
mixed content.

All existing techniques rely on computing unique identifiers for each
node in XML document. These identifiers are computed and used dif-
ferently. In order to reconstruct XML documents multiple joins have to
be done. Some techniques use ordered structure of XML document and
optimize join algorithms such as sort-merge[23, 4].

Next sections mention some storage techniques to capture identity,
document structure and order.

3.4.1 Foreign keys

The simplest way to capture document structure is to use foreign keys to
preserve parent/child relationship. Child node holds the unique identifier
of its parents. If all nodes have some ordinal value assigned it can be used
to keep order. This method is called KFO (Key-Foreign key-Ordinal).
Key and foreign key hold structure while ordinal keeps order. Most of the

- 18 -

CHAPTER 3. OVERVIEW OF MAPPING TECHNIQUES

relational systems use this method. It preserves a tree structure of XML
document while there is no need to have XML schema of a document.
There are four alternatives for edge mapping and two for value mapping.
They are discussed in detail in [6]. Each node is assigned some unique
integer. Terminal values are either stored in separate table or inlined in
relation that stores edges. The edge alternatives are:

• There exists just one relation which holds all edges. Its structure
is [source,ordinal,name,flag,target]. source and target are
the identifiers of the edge end-points; name is the tag on the edge;
ordinal is an integer that captures the order of siblings and flag

indicates whether the target of an edge is a node or a value.

• The Attributes relations alternative is the result of horizontally
partitioning of the previous alternative. Here are created as many
relations as there is distinct names in the Edge alternative. It means
that all types of relations are captured in different relation. The
structure of this relations is the same except the name.

• Finally, the Universal and the Normalized Universal alterna-
tives result from applying full outer-join to the Attribute rela-
tions.

Of course, many other possible variations exist. Mixed documents
could be captured using special value “text” for text nodes and “element”
for element nodes in the text.

3.4.2 Interval encoding

Using this algorithm means to create an interval for each node of the
document. This interval include intervals of all nodes in its subtree. In-
terval borders should be unique through the whole XML document. The
left border is usually created by preorder traversal and the right one by
postorder traversal. In order to distinguish children from descendants the
level number is also stored. In [23, 4], the authors develop algorithm with
nice linearity properties for searching ancestors, children and descendants
of nodes.

3.4.3 Dewey decimal classification

Dewey decimal classification was developed for general knowledge clas-
sification[17]. The encoding is based on assigning unique integer to each
node and the id of nodes consists of these unique integer of current node
concatenated with the id of its parent. It means that each nodes id contain
whole path starting with current node and ending with root node.

- 19 -

CHAPTER 3. OVERVIEW OF MAPPING TECHNIQUES

As id of each node is composed of unique integer (which can be an
ordinal keeping node order) and id of parent node, Dewey is the most
complete encoding for capturing node identity, document structure and
order. However, in Interval encoding only four integer values for each
node are needed, in Dewey the deeper in the XML document tree is the
node placed, the longer the id of the node is.

3.4.4 Paths

In [31], the authors present XRel mapping method, which uses path stor-
ing into following relational schema.

Path[pathId,pathexp]

Element[docId,pathId,start,end,index,reindex]

Attribute[docId,pathId,start,end,value]

Text[docId,patchId,start,end,value]

There exists a single relation for each type of XML document node
(element, attribute, text). Additional relation Path is used to avoid path
redundancies. Each path is stored as a string and a sub-string matching
optimizes all queries. As path can be redundant it does not hold enough
information to reconstruct the document. Hence there are stored the start
point and end point of the region where the node occurs in the document.
Node order is captured by attribute index and for query optimalization
also reindex, which holds reverse node order.

By storing paths, Xrel reduces the number of join operations that
need to be performed to recover document structure. It also uses B+-
trees and R-trees.

- 20 -

Chapter 4

Theoretical methods

In this chapter there are described some theoretical methods that were
developed by research groups. Goal of these groups is to provide some
general methods to express XML-to-Relation mapping. Major database
vendors provide several means for database developers to describe how
to map XML documents into relational tables. However, the available
solutions are proprietary and tied to a particular database backend. In
addition, they are either limited with respect to expressivity and the
kinds of mappings they can represent, or they are too complex to use.

For these reasons several non-commercial approaches have been pro-
posed. They are database system independent, portable, expressive, and
easy to use.

4.1 MXM

The authors of MXM (My Xml Mapper) proposed in [2, 29] tried to
provide a declarative mechanism to express existing XML-to-Relational
mappings and offer an interface to query these mappings. MXM was de-
signed to be independent on whether DTD or XML Schema is used to
describe XML documents. In order to achieve these goals, some orthog-
onal aspects of mapping were identified:

Elements and attributes. Elements and attributes are mapped
similarly. Therefore, attribute outlining is allowed. Outlining of attributes
captures complex types more naturally. In this case, the relationship
between attribute and its containing element is captured in the same
manner as document structure except of attributes order.

Groups. The ability to map groups offers additional flexibility. For
example, when an XML schema is given, element attribute and group
names are used in the mapping. In DTDs, entities are assimilated to
groups and nonterminal nodes are used to specify the XML-to-relations
mapping.

Document structure. Users are allowed to choose how document

- 21 -

CHAPTER 4. THEORETICAL METHODS

structure is captured. This choice is then used uniformly across all XML
documents. Each possibility for mapping structure is identified by a
unique name, which is used in the mapping. The consequence of this
design is extensibility. For example, an external relation can be used to
map document structure by adding a reserved word in our system that
could be specified in the mapping.

Table names. Every table name can be defined by user, otherwise
it is automatically generated.

Defaults. In order to avoid hard-coding the semantics of default
mapping rules into each application, default mapping rules can be spec-
ified in a “configuration file” that is expressed in MXM. Hence, defaults
could be shared by multiple MXM mapping and applications built on
top of the XML store can query them. As a part of MXM specification
some standard default mapping rules were presented: (1) If not given,
table a nd CLOB names are system-generated. (2) Field names that
capture document structure (hierarchy and tag information) are always
system-generated. (3) Field names that capture inlined element and at-
tribute values are always system-generated. (4) When repeated elements
or complex type attributes are inlined, their values are concatenated into
a single field value. (5) If a table is not created for a source name (ele-
ment, attribute and group), it is inlined by default. (6) When elements
or attributes are inlined, the name of the field that contains their value is
their tag name concatenated to VALUE. (7) The Parent_Child table is
generated automatically when EXTREL is specified as a way to capture
document structure.

4.1.1 MXM grammar and examples

The grammar of MXM (see Figure 4.1) is expressed by XML schema.
Whole MXM mapping is defined as XtoRMapping as being composed of
a mapping of document structure, StructMap, a mapping of elements,
attributes and groups into tables, TableMap, and a mapping of elements
and attributes into CLOBs, CLOBMap.

StructMap indicates which mapping technique is used to capture doc-
ument structure between elements and outlined elements and attributes.
The attribute whichMap can have one of the following values: empty,
KFO, INTERVAL, DEWEY, PATH, EXTREL, EDGE, ATTRIBUTE,
UNIVERSAL, BASIC, SHARED, HYBRID. All of them refer to the
technique described in Section 3.4. EXTREL outlines KFO in an exter-
nal table.

TableMap is used to create tables from source elements, attributes
and groups (choice, sequence and allgroup). A table might be assigned a
name (otherwise it is automatically generated by concatenating all source
names together and tagField is used to distinguish between tuples cor-

- 22 -

CHAPTER 4. THEORETICAL METHODS

<xsd:schema>
<element name ="XtoRMapping">

<attribute name="from" type="string"/>
<attribute name="to" type="string"/>
<element name="StructMap">

<attribute name="whichMap" type="string"/>
</element>
<element name="TableMap">

<element name="table" minOccurs="1"
maxOccurs="unbounded">

<attribute name="whichTable" type="string"
use="optional"/>

<attribute name="tagField" type="string"
use="optional"/>

<element name="sourceName" type="string"
minoccurs="1" maxOccurs="unbounded"/>

</element>
</element>
<element name="CLOBMap">

<element name="CLOB" minOccurs="1"
maxOccurs="unbounded">

<attibute name="whichCLOB" type="String"
use="optional"/>

<element name="sourceName" type="string"
minOccurs="0"/>

</element>
</element>

</element>
</xsd:schema>

Figure 4.1: MXM grammar

responding to the same source name). Tag field is optional. In the case
input document are described by XML Schema, element, attribute and
group names can be used as source names. In the case DTD is used, any
non-terminal node name can be used as source name.

Finally, CLOBMap indicates the creation of a CLOB from a source
name. The CLOB name is either automatically generated or given. Cre-
ated CLOB consists of all substructure rooted at the specified source
name.

The Figure 4.2 illustrates MXM mapping example. It captures docu-
ment structure using KFO and explicitly defines user-given table names.

The name of table, which contains date of births, is auto-generated
since it is not defined by the user. The same is true for the table containing
observations. In this case, the tag field called ElemName is defined and

- 23 -

CHAPTER 4. THEORETICAL METHODS

<XtoRMapping from="HL7" to="RelSchema1">
<StructMap whichMap="KFO"/>
<TableMap>

<table whichTable="fullnameTable">
<sourceName> FaNa </sourceName>

</table>
<table whichTable="lastnameTable">

<sourceName> GiNa </sourceName>
</table>
<table>

<sourceName> DTofBi </sourceName>
</table>
<table tagField="ElemName">

<sourceName> OBX </sourceName>
</table>

</TableMap>
<CLOBMap/>

</XtoRMapping>

Figure 4.2: Example of MXM mapping using KFO

<XtoRMapping from="HL7" to="RelSchema2">
<CLOBMap>

<CLOB whichCLOB="PatientCLOB">
<sourceName> PATIENT </sourceName>

</CLOB>
</CLOBMap>

</XtoRMapping>

Figure 4.3: Example of MXM mapping using CLOB

stores the name of element to which the particular tuple corresponds.
The second example (Figure 4.3) shows the creation of a CLOB that

contains the whole document. A CLOB should be created only for a
fragment of input documents. The element whichMap is not specified in
this case.

4.1.2 IMXM

The IMXM is a simple interface defined by a set of functions that query
mappings and information on the generated relational schema. Example
of these functions are:

ã getStructMap()

ã isInlined(ElemName|AttName)

- 24 -

CHAPTER 4. THEORETICAL METHODS

ã getTableName(ElemName|AttName)

ã getCLOBName(ElemName|AttName)

ã getFields(TableName)

ã getFieldType(FieldName)

Additional functions are used to query defaults.

ã getDefTableNaming()

ã getDefValNaming()

ã isDefinline()

The interface could also by designed at multiple granularities. For ex-
ample, there can exist a function, which returns all mapping information
for specified element such as table name, attribute inlining, sub-elements
mapping, etc. The granularity of MXM depends on the application that
will make use of it.

MXM and IMXM are implemented on the top of a relational system.
IMXM is implemented as a library in C with ODBC calls to database and
thus it can use any backend relational system. Using IMXM, relational
schema generator as well as a set of loading programs that parse XML
documents and populate tables were developed.

The mapping repository conforms to the relational schema given bel-
low. In order to apply the default mapping rules described in Section
4.1, some information needs to be recorded on the input DTD or XML
Schema (if any). This is described in the first set of tables.

ElemGroup associates element names (tags) with groups they map to.
AttGroup associates attributes to groups. GroupInfo holds the informa-
tion about existing groups where whichGroup might have one of these
values: empty, choice, sequence or all. GroupGroup captures relation-
ship between parent groups and children groups.

ElemGroup[EName,GKey] StructInfo[whichMap]

AttGroup[AName,GKey] GroupTable[GKey,TKey]

GroupInfo[GKey,GName,whichGroup] GroupField[GKey,FKey]

GroupGroup[GPKey,GCKey] GroupCLOB[GKey,BKey]

TableInfo[TKey,TName]

FieldInfo[FKey,FName,TKey]

CLOBInfo[BKey,BName]

When the mapping is parsed, the remaining tables are created. The
table StructInfo contains information on structure mapping. Groups
are associated with tables by GroupTable. GroupField associates groups
with fields. GroupCLOB associates group with CLOBs. The last set of
tables describes the relational schema that is generated.

- 25 -

CHAPTER 4. THEORETICAL METHODS

4.2 ShreX

ShreX [30] is annotation-based framework. Annotated XML Schema is
used to define mapping. Various mapping dimensions are taken into ac-
count in design of ShreX annotations. As a result, different mapping
choices can be easily combined to create new mapping strategies. The
use of annotations makes ShreX very extensible, as new annotations can
be added to express new mapping techniques, and very portable, since
mapping definition is completely independent on the underlying rela-
tional system.

ShreX also provides an API to access mapping informations. It allows
define a set of generic functions for the mapping tasks, i.e. functions that
are not tied with specifics of a particular mapping strategy.

4.2.1 Architecture overview

Figure 4.4 shows the architecture of ShreX. Users can either manually
annotate an input schema, or use the interface provided by the system.
Annotation processor parses the input annotated XML Schema, checks
schema validity according to predefined validity rules and creates the
corresponding relational schema. Mapping repository is a persistent stor-
age of mapping information created by annotation processor. Validation
parser and Shredder accepts and validates input XML documents, uses
the mapping API to access mapping information and according to them
generates the tuples and loads them into Relational database. The map-
ping repository is also accessed by query translator, which generates SQL
queries from XML queries.

User interface. ShreX provides a graphical user interface, which
helps users to define and customize mappings. The interface displays
XML Schema and corresponding relational tables that allows users visu-
ally check the connections between the XML Schema elements and their
relational counterparts as well as interactively modify this connections.

Annotation processor. This module is in charge of parsing the
input annotated schema, generating mapping repository and produc-
ing CREATE TABLE SQL statements for creating corresponding relational
schema. The input schema is validated against the XML Schema for
annotations. Current version of ShreX supports some simple additional
checks. For example, checking whether all annotations are attached to
the suitable elements and whether table and attribute names are unique
in the mapping definition. More additional checks are possible, for exam-
ple, verifying whether a mapping is lossless - i.e. whether the document
can be reconstructed from the mapping tables.

Writing an annotation for every element attribute in XML Schema,
especially the large ones, can be tedious. Thus, ShreX provides a set of
default mapping rules that is used to complete mapping specifications.It

- 26 -

CHAPTER 4. THEORETICAL METHODS

Figure 4.4: ShreX architecture

means that each mapping specification explicitly defined in XML Schema
by annotations has higher priority and thus it overrides the default rule.
For example, single-occurrence elements, such as FIRSTNAME, are always
inlined into parent’s table by default. Users can define new default rules
by adding new annotations into the input XML schema.

Mapping repository and API. The mapping information extract-
ed by annotation processor is stored in a database - the mapping repos-
itory. By making this information persistent ShreX avoids re-parsing an
input XML schema each time a document is loaded into target database
or the XML query needs to by translated. ShreX provides an API for
querying the mapping repository. This set of functions is used when-
ever any information, such as: how elements and attributes are mapped
(isTable(ElemName|AttName)), which mapping is used to capture docu-
ment structure (getStructureScheme()) and which tables are available
in the relational schema (getTableInfo(TableName)), is needed. Table
4.1 summarizes the functions, which are provided by the API. This API
allows users develop mapping-independent code, which works regardless
of the specific features of a particular mapping.

Document shredder. This module is in charge of generating tuples,
field values and CLOBs from an input XML document. While document
is parsed, shredder uses mapping API to query mapping repository for
mapping information how a particular element or attribute is mapped
and generates the appropriate tuples accordingly.

ShreX uses the SAX interface of Xerces [32], which is both efficient

- 27 -

CHAPTER 4. THEORETICAL METHODS

and scalable. In the current implementation are all tuples firstly written
to a file and after parsing whole document, they are bulkloaded into the
relational backend. The shredder allows users to set various parameters
(e.g., target database system, login information, bulk loading options)
either through the command line or through configuration file.

Query translator. Query translation (to SQL) currently supports
only a subset of XPath. Child and descendant axes, position-based predi-
cates and simple path based expression predicates are implemented. The
algorithm consists of the following steps:1

Step 1: Resolve wildcards, so that a set of simple paths is
obtained

Step 2: For each simple path consult the mapping API and
bind XML-to-relational mapping information to
the nodes in the path

Step 3: Generate SQL query for the annotated path
Step 4: Union the SQL queries (each of them corresponds to

one path)

The query translator does not hard-code mapping choices, instead of
it it uses the mapping API to dynamically decide how to perform the
translation.

Database API. The mappings specifications are portable and in-
dependent on the selected relational backend. However, low-level func-
tions must deal with the peculiarities of different database systems. For
example, different databases provide different bulkloading options and
commands. Since ShreX must be able to invoke these commands, generic
database JAVA programming interface was designed, which allows users
to hook an RDBMS to ShreX by implementing the functions in the inter-
face. Plug-ins for DB2, Oracle and MySQL are available in the current
release of ShreX.

4.2.2 Mapping definition

Mappings are expressed by annotating an input XML schema. These
annotations define how elements or attributes should be mapped into
the relational model. Annotations are expressed using attributes from a
namespace called shrex and can be associated to elements, attributes or
groups. Table 4.2 lists all annotations supported by ShreX. The usage of
these annotations is illustrated in Figure 4.5. Using the special namespace
allows separate the validation of an input document against the XML
schema from the validation of the mapping specification.

Mapping identity, structure and order. As mentioned in Section
3.4, every mapping technique must preserve identity, structure and order

1For more details on the algorithm see [28].

- 28 -

CHAPTER 4. THEORETICAL METHODS

<element name="SHOW" shrex:structurescheme="Dewey" />
<sequence>

<element name="TITLE" type="string"
shrex:outline="true"
shrex:tablename="ShowTitlt" />

<element name="YEAR" type="integer"
shrex:outline="false"
shrex:columnname="Showyear"
shrex:sqltype="NUMBER(4)" />

<element name="REVIEW" type="ANYTYPE"
minOccurs="0" maxOccurs="unbounded"
shrex:edgemapping="true" />

<element name="AKA" type="string"
minOccurs="0" maxOccurs="unbounded" />

</sequence>
</element>

Figure 4.5: Annotated XML schema

to successfully reconstruct an XML document stored in relational system.
There exists a special annotation structurescheme (see Table 4.2) to
define which storage technique should be used. For example, in Figure 4.5,
the structure scheme selected for the document is Dewey (see annotation
in the root element). ShreX supports Dewey, KFO and interval encoding
storage techniques.

Outline, tablename, columnname and sqltype. Annotations are
used to specify how individual elements and attributes in a document are
represented in a relational schema. The annotation outline="true" in-
dicates that the element TITLE should be outlined into an external table.
This table should be named Showtitile according to the annotation
tablename="Showtitle". On the other hand the element YEAR should
be inlined in its parent’s table. The annotations columnname and sqltype

determine that the name of the column, to which element YEAR should
be mapped, is Showyrear and its type should be NUMBER(4).

Mapping schemaless documents. ShreX can also handle XML
document, which do not have an XML schema assigned. Annotation
edgemapping can be used for elements or whole documents if their struc-
ture is not known in advance. It is especially useful for elements of type
ANYTYPE. If this annotation is set to true, the element and all its descen-
dants are mapped using general Edge mapping technique.

Transformation-based mappings. Combination of schema anno-
tations with the schema transformations proposed in [18] provides addi-
tional mapping strategies. For example, if repetition split is applied to
AKA in the original schema, i.e. AKA∗ → AKA?, AKA∗, the first occurrence

- 29 -

CHAPTER 4. THEORETICAL METHODS

of AKA could be inlined in the table SHOW.
Mapping expressiveness. The mapping strategies basic inlining,

shared inlining and hybrid inlining proposed in [11] can be expressed us-
ing ShreX annotations. The sample schema describes information about
Movie and TV elements, where both have a TITLE element.

<element name="Movie">
<sequence>

<element name="TITLE" type="string"
shrex:tablename="MovieTitle"/>

</sequence>
</element>
<element name="TV">

<sequence>
<element name="TITLE" type="string"
shrex:tablename="TVTitle"/>

</sequence>
</element>

The XML schema above illustrates an example of mapping which
express basic inlining. Both, an element TITLE of a MOVIE and an element
TITLE of a TV, are mapped to two different tables separately (MovieTitle
and TVTitle). To illustrate the shared mapping the names of tables have
to change. They have to be the same (e.g. Title). This means that they
are mapped to the same table and each tuple has an flag whether it
corresponds to the Movie or TV. The hybrid inlining technique further
inlines the TITLE element and reduces the generated relational tables to
two. Hybrid inlining corresponds to the default mapping rules used in
ShreX, hence no annotation is needed.

4.3 Pros and Cons

MXM and ShreX mapping techniques are flexible and platform indepen-
dent. MXM uses an extra file for mapping information which separate
mapping information from the original XML Schema document, but it
also force user to use some graphic user interface because it is not obvious
which mapping information belong to certain document element, etc.

On the other hand ShreX uses annotated XML Schema documents,
which make it easier to pair the mapping information with document
node, but the XML Schema document become less readable.

From the technical point of view MXM and ShreX mapping are very
similar. They are both using mapping and data repository. The only
major difference is the mapping definition.

- 30 -

CHAPTER 4. THEORETICAL METHODS

API Functions Input Output Semantics
structMap KFO, Inter-

val, Dewey
returns which structure
mapping is used

isTable attribute
or element
name

true, false determines whether the
input has been mapped
to a table

isField attribute
or element
name

true, false determines whether the
input has been mapped
to a field

isCLOB attribute
or element
name

true, false determines whether the
input has been mapped
to a CLOB

isEdge element
name

true, false determines whether the
input has been mapped
using edge-mapping

getTableName attribute
or element
name

string returns the name of the
table used to map input

getFieldName attribute
or element
name

string returns the name of the
field used to map input

getCLOBName attribute
or element
name

string returns the name of the
CLOB used to map in-
put

getTableInfo table name table de-
scription

returns the table de-
scription in the rela-
tional schema

getFieldInfo field name field descrip-
tion

returns the field de-
scription in the rela-
tional schema

getCLOBInfo CLOB name CLOB de-
scription

returns the CLOB de-
scription in the rela-
tional schema

Table 4.1: Main functions of ShreX API

- 31 -

CHAPTER 4. THEORETICAL METHODS

Annotation
attributes Target Value Action
outline attribute or

element
true, false If value is true, a ratio-

nal table is created for
the attribute or element.
Otherwise, the attribute
or element is mapped to
one or multiple columns
in its containing table.

tablename attribute,
element or
group

string The string is used as the
table name.

columnname attribute or
element of
simple type

string The string is used as the
column name.

sqltype attribute or
element of
simple type

string The string overrides the
SQL type of a column.

structurescheme root element KFO, Inter-
val, Dewey

Specifies structure map-
ping.

edgemapping element true, false If value is true, the el-
ement and its descen-
dants are shredded ac-
cording to Edge map-
ping.

maptoclob attribute or
element

true, false If value is true, the el-
ement or attribute is
mapped to a CLOB col-
umn.

Table 4.2: Annotation attributes

- 32 -

Chapter 5

Commercial systems

Major database vendors, Oracle 10i[26], IBM DB2 XML Extender[10]
and Microsoft SQL Server[14] offer XML storage and publishing tools on
top of their storage system. Due to mismatch of the XML data model and
the data model of relational storage, a mapping between this two models
is needed. Each vendors offers own proprietary mapping interface to help
specify the mapping from XML to relations (and objects) using a declar-
ative mapping schema and special queries. In these systems, document
structure is mostly captured by KFO and mixed content is supported in
limited way.

This book’s main goal is to deal with mapping methods which are
independent on relational backend. Thus, these commercial solutions are
mentioned to be just and comprehensive. Some interesting features are
included in the proposed method described in the second part of this
book.

5.1 Oracle 10gR2

As many other database vendors, also Oracle started to explore the usage
of relational databases as XML documents storage. In the current ver-
sion of Oracle database all functionalities which help to maintain XML
documents are called Oracle XML DB. It includes tools, packages, object
types, etc. which process XML into and out of the database. They in-
clude: XML Parser, an XSLT Processor, an XML Schema Processor and
XML SQL Utility to generate XML documents, DTDs and schemas from
SQL queries. All these tools uses the datatypes for XML (XMLType) and
for logical pointers (URI-Ref), which were added into database kernel
with the previous version.

Oracle XML DB uses annotated XML Schemas as metadata, that is,
the standard XML Schema definitions along with several Oracle XML
DB-defined attributes. These attributes control how instance XML doc-
uments get mapped to the database. Because these attributes are in a

- 33 -

CHAPTER 5. COMMERCIAL SYSTEMS

different namespace from the XML Schema namespace, such annotated
XML Schemas are still legal XML Schema documents.

When using Oracle XML DB with XML Schema, you must first
register the XML schema. The XML schema URLs can then be used
while creating XMLType tables, columns, and views. The XML schema
URL, in other words, the URL that identifies the XML schema in the
database, is associated with parameter schemaurl of PL/SQL procedure
DBMS_XMLSCHEMA.registerSchema.

XMLType is a datatype that facilitates storing XMLType in tables and
columns in the database. XML schemas further facilitate storing XML
columns and tables in the database and they offer you more storage
and access options for XML data along with space- performance-saving
options. For example, you can use XML schemas to declare which ele-
ments and attributes can be used and what kinds of element nesting, and
datatypes are allowed in the XML documents being stored or processed.

Using XML Schema with Oracle XML DB provides a flexible setup
for XML storage mapping. For example:

• highly structured data (mostly XML) - each element in the XML
documents can be stored as a column in a table

• unstructured data (all or most is not XML data) - the data can be
stored in a Character Large Object (CLOB).

Which storage method to choose depends on how the data will be
used and depends on the queriability and requirements for querying and
updating the data. In other words, using XML Schema gives the user
more flexibility for storing highly structured or unstructured data.

As part of registering an XML schema, Oracle XML DB also performs
several tasks that facilitate storing, accessing, and manipulating XML
instances that conform to the XML schema. These steps include:

• Creating the appropriate SQL object types that enable the struc-
tured storage of XML documents that conform to this XML schema.
XML-schema annotations can be used to control how these object
types are named and generated.

• Creating default XMLType tables for all global elements. XML sche-
ma annotations can be used to control the names of the tables and
to provide column-level and table-level storage clauses and con-
straints for use during table creation.

All elements and attributes declared in the XML schema are mapped
to separate attributes in the corresponding SQL object type. However,

- 34 -

CHAPTER 5. COMMERCIAL SYSTEMS

some pieces of information in XML instance documents are not repre-
sented directly by these element or attributes, such as comments, names-
pace declarations, prefix information. To ensure the integrity and accu-
racy of this data, for example, when regenerating XML documents stored
in the database, Oracle XML DB uses a data integrity mechanism called
DOM fidelity. DOM fidelity refers to how similar the returned and orig-
inal XML documents are, particularly for purposes of DOM traversals.

In order to provide DOM fidelity, Oracle XML DB has to maintain
instance-level metadata. This metadata is tracked at a type level using
the system-defined binary attribute SYS_XDBPD$. This attribute is re-
ferred to as the positional descriptor, or PD for short. The PD attribute
is intended for Oracle XML DB internal use only. Users should never
directly access or manipulate this column.

The positional descriptor attribute stores all information that cannot
be stored in any of the other attributes. PD information is used to ensure
the DOM fidelity of all XML documents stored in Oracle XML DB.
Examples of such information include: ordering information, comments,
processing instructions, and namespace prefixes.

If DOM fidelity is not required, it can be suppressed in the XML
schema definition by setting the attribute maintainDOM=FALSE at the
type level.

Using Oracle XML DB, developers can create XMLType tables and
columns that are constrained to a global element defined by a regis-
tered XML schema. After an XMLType column has been constrained to
a particular element and a particular XML schema, it can only contain
documents that are compliant with the schema definition of that ele-
ment. An XMLType table column is constrained to a particular element
and a particular XML schema by adding the appropriate XMLSCHEMA and
ELEMENT clauses to the CREATE TABLE operation. Figure 5.1 shows the
syntax of creating a XMLType table.

CREATE [GLOBAL TEMPORARY] TABLE [schema.] table OF XMLType
[(object_properties)] [XMLType XMLType_storage]
[XMLSchema_spec] [ON COMMIT {DELETE | PRESERVE} ROWS]
[OID_clause] [OID_index_clause] [physical_properties]
[table_properties];

Figure 5.1: Syntax of creating a XMLType table

When structured storage is selected, collections (elements which have
maxOccurs > 1, allowing them to appear multiple times) are mapped
into SQL varray values. By default, the entire contents of such a varray
is serialized using a single LOB column. This storage model provides
for optimal ingestion and retrieval of the entire document, but it has
significant limitations when it is necessary to index, update, or retrieve

- 35 -

CHAPTER 5. COMMERCIAL SYSTEMS

individual members of the collection. A developer may override the way
in which a varray is stored, and force the members of the collection to be
stored as a set of rows in a nested table. This is done by adding an explicit
VARRAY STORE AS clause to the CREATE TABLE statement. Developers can
also add STORE AS clauses for any LOB columns that will be generated
by the CREATE TABLE statement.

The collection and the LOB column must be identified using object-
relational notation.

Figure 5.2 shows an example of how to create an XMLType table and
a table with an XMLType column, where the contents of the XMLType are
constrained to a global element defined by a registered XML schema,
and the contents of the XMLType are stored using as a set of SQL objects.
The example also shows how to specify that the collection of Action

elements and the collection of LineItem elements are stored as rows in
nested tables, and how to specify LOB storage clauses for the LOB that
will contain the content of the Notes element.

CREATE TABLE purchaseorder_as_table
OF XMLType (UNIQUE ("XMLDATA"."Reference"),

FOREIGN KEY ("XMLDATA"."User")
REFERENCES hr.employees (email))

ELEMENT
"http://xmlns.oracle.com/xdb/documentation/

purchaseOrder.xsd#PurchaseOrder"
VARRAY "XMLDATA"."Actions"."Action"

STORE AS TABLE action_table1
((PRIMARY KEY (NESTED_TABLE_ID, SYS_NC_ARRAY_INDEX$))
ORGANIZATION INDEX OVERFLOW)

VARRAY "XMLDATA"."LineItems"."LineItem"
STORE AS TABLE lineitem_table1
((PRIMARY KEY (NESTED_TABLE_ID, SYS_NC_ARRAY_INDEX$))
ORGANIZATION INDEX OVERFLOW)

LOB ("XMLDATA"."Notes")
STORE AS (TABLESPACE USERS ENABLE STORAGE IN ROW
STORAGE(INITIAL 4K NEXT 32K));

Figure 5.2: Example of specifying storage options for Schema-based
XMLType tables and columns

5.1.1 XML Schema annotations

Oracle XML DB gives application developers the ability to influence the
objects and tables that are generated by the XML schema registration
process by annotation mechanism.

- 36 -

CHAPTER 5. COMMERCIAL SYSTEMS

Annotation involves adding extra attributes to the complexType, el-
ement and attribute definitions that are declared by the XML schema.
The attributes used by Oracle XML DB belong to the special namespace
http://xmlns.oracle.com/xdb. In order to simplify the process of an-
notationing an XML schema, it is recommended that a namespace prefix
is declared in the root element of the XML schema.

Most commonly used annotations are listed in Table 5.1.
The registered version of an XML schema will contain a full set of

XDB annotations. The location of the registered XML schema depends
on whether the schema is local or global. This document can be queried
to find out the values of the annotations that were supplied by the user,
or added by the schema registration process. For instance, the following
query shows the set of global complexType definitions declared by the
XMLSchema and the corresponding SQL object types.

SELECT extractValue(value(ct),
’/xs:complexType/@name’,
’xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xdb="http://xmlns.oracle.com/xdb"’)

XMLSCHEMA_TYPE_NAME,
extractValue(value(ct),

’/xs:complexType/@xdb:SQLType’,
’xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xdb="http://xmlns.oracle.com/xdb"’)

SQL_TYPE_NAME,
FROM RESOURCE_VIEW,

table(
XMLSequence(

extract(
res,
’/r:Resource/r:Contents/xs:schema/xs:complexType’,
’xmlns:r="http://xmlns.oracle.com/xdb/XDBResource.xsd"
xmlns:po=

"http://xmlns.oracle.com/xdb/documentation/
purchaseOrder"

xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xdb="http://xmlns.oracle.com/xdb"’))) ct

WHERE
equals_path(
res,
’/sys/schemas/SCOTT/xmlns.oracle.com/xdb/documentation/

purchaseOrder.xsd’)
=1;

- 37 -

CHAPTER 5. COMMERCIAL SYSTEMS

Annotation attribute Value Action
defaultTable string Used to control the name of the

default table generated for each
global element.

SQLName string Used to specify the name of the
SQL attribute that corresponds
to each element or attribute de-
fined in the XML schema

SQLType Any SQL
type name

For complexType definitions,
SQLType is used to specify the
name of the SQL object type
that corresponds to the complex-
Type definitions. For simpleType
definitions, SQLType is used to
override the default mapping
between XML schema datatypes
and SQL datatypes.

SQLCollType Any SQL
collection
type name

Used to specify the name of the
varray type that will manage a
collection of elements.

maintainDOM true, false Used to determine whether or not
DOM fidelity should be main-
tained for a given complexType
definition.

storeVarrayAsTable true, false Used to force all collections to
be stored as nested tables. The
nested tables are created with
system-generated names.

Table 5.1: Commonly used annotations

5.2 DB2

Users can annotate a simplified XML Schema with mapping information.
The resulting schema is referred to as the XML Extender Document Ac-
cess Definition (DAD). DADs are used both for publishing relational data
in XML and for storing XML. A DAD mapping defines RDB Nodes. A
primary key is needed for each table and column types. Two functions are
provided: dxxShredXML() to decompose an incoming XML document
and dxxGenXML() to compose a shredded XML. A number of stored
procedures are provided for handling XML columns. XMLVarCharFrom-
File() is used for type conversion. Cast functions Varchar(XMLVarChar)
for retrieval. Update functions such as Update(xmlobj, path,value) and
selection functions using XPath such as Extractvarchar(). The example

- 38 -

CHAPTER 5. COMMERCIAL SYSTEMS

below shows a portion of the DAD used to map the HL7 example into
DB2.

<DAD> <Xcollection> <root_node> <element_node name = "HL7">
<RDB_node>

<table_name = "hl7_tab"/>
<element_node name=’’PATIENT’’>

<RDB_node>
<table name=’’Patient_tab’’/>
<condition>IDNum > "635"</condition>
<attribute_node name=’’IDNum’’>

<RDB_node>
<table name=’’Patient_tab’’/>
<column name=’’Patient_key’’/>

</RDB_node>
</attribute_node>

</RDB_node>
</element_node>

</RDB_node>
</element_node> </root_name> </Xcollection> </DAD>

This mapping creates a table Patient tab to store PATIENT elements
and a column name Patient key using the attribute IDNum of each PA-
TIENT element. More complex mappings, e.g., using join conditions and
vertical partitioning of an element into multiple tables could be provided.
In addition, XML columns can be registered with the types: XMLCLOB
for large XML documents; XMLVARCHAR for small XML documents
and XMLFile for XML documents stored outside DB2.

XML Extender provides an XML DTD repository. Each XML data-
base contains a DTD reference table called DTD REF, which is used to
store meta information on users mappings. Users can access this table
to insert their own DTDs. These DTDs can be used to validate XML
documents.

Given a mapping, the system reads an arbitrary XML document and
loads it into a DB2 database. Users do not have to write loading programs
by hand.

Mixed content is handled using CLOBs (Character Large OBjects)
and side tables for indexing structured data contained in text. Side ta-
bles are automatically updated when new documents are inserted. This
method of handling mixed content is the most advanced among the so-
lutions provided by database vendors.

5.3 MS SQL Server

Microsoft provides extensions to SQL to publish relational data as XML
documents using the FOR XML clause. There are three publishing modes:

- 39 -

CHAPTER 5. COMMERCIAL SYSTEMS

RAW, AUTO and EXPLICIT. RAW creates flat XML documents by
converting each row in the SQL result into an XML element and each
non-NULL column value to an attribute (column name becomes the at-
tribute name). In the AUTO mode, query results are used to build nested
documents where each table in the FROM clause is represented as an
XML element. The columns listed in the SELECT clause are mapped
to attributes or sub-elements. EXPLICIT mode provides more flexible
publishing of relational data. It defines a SQL view to assemble relevant
rows. Special column names such as Tag and Parent are used. Nesting is
explicitly specified as part of the query.

Microsoft adopts three solutions for storing XML documents. It im-
plements the generic Edge technique described in Section 3.4.1 It allows
users to annotate an XML schema in order to determine the XML-to-
relations mapping. Finally, it provides OpenXML.

Annotated schemas are created using the XML Schema Definition
(XSD). The XSD language is the successor to the XML-Data Reduced
(XDR) schema definition language. This solution is implemented in SQL-
XML that enables XML support for SQL Server 2005 Databases. SQL-
XML includes an XDR to XSD converter tool that is designed to help
convert annotated XDR schemas to equivalent XSD schemas.

An XSD schema is enclosed in a <xsd:schema> element. Additional
attributes that define the namespace in which the schema resides and
the namespaces that are used in the schema can be defined for that
element. Below is an annotated XSD schema that describes a mapping to
a relational database [5]. The view specification contains embedded SQL
references. Similarly to IBM, this schema is used both for publishing and
for storage.

<xsd:schema xmlns:xsd="http://www.w3.org/XMLSchema"
xmlns:sql="urn:schemas-microsoft:mapping-schema">
<xsd:element name="PATIENT" sql:relation="Patients">

<xsd:complexType>
<xsd:sequence name="PaNa">

<xsd:element name="FaNa"
sql:field="LastName"
type="xsd:string" />

<xsd:element name="GiNa"
sql:field="FirstName"
type="xsd:string" />

</xsd:sequence>
<xsd:attribute name="IDNum"

sql:field="PatientID"
type="xsd:integer"/>

</xsd:complexType>
</xsd:element>
<xsd:annotation>

- 40 -

CHAPTER 5. COMMERCIAL SYSTEMS

<xsd:appinfo>
<sql:relationship name="Patient_OBX"

parent="Patients" parent-key="PatKey"
child="OBX" child-key="OBXKey" />

</xsd:appinfo>
</xsd:annotation>

</xsd:schema>

The mapping describes the names of the tables and columns used to
store XML documents. Mappings can also describe the names of the KFO
fields that capture document structure. Mapping schemas are parsed to
generate the corresponding relational schema.

The third solution, OpenXML, compiles XML documents into an in-
ternal DOM representation using sp xml preparedocument. The generic
syntax is

OPENXML($<$XML doc handler$>$, $<$path expression$>$,

$<$flags$>$) WITH (schema - Table).

The T-SQL function is provided to build rowsets from a XML stream.
OpenXML can be attribute-centric or element-centric. An example of an
attributecentric mapping is given below:

Select * from OpenXML(@pat, ‘/HL7/PATIENT’, 1)
WITH (IDNum int GiNa varchar(20))

In order to load the XML data in the underlying database, users
provide a decomposition of XML documents into multiple tables in a
programmatic way which can make this task tedious.

1. The XML document is first parsed into a DOM tree.

2. Users must write XPath expressions to specify XML values to map
into tuples and attribute values.

As an example, the user could define a table containing patient re-
cords. The user can then specify how tuples in this table are computed
using the query: /PATIENT → row in Table Patient specifies that each
distinct patient node corresponds to a distinct row in the Patient table.
The query /PATIENT//FaNa → LastName in Table Patient specifies
how to compute the value of the LastName column in the Patient table.

Microsoft supports storing XML documents in CLOBs. However, un-
like IBM, no side tables are provided to index mixed content data.

Templates are used to query the relational database that stores XML
data. Templates are XML documents that provide a parameterized query
and update mechanism to the database. In a template, elements in the
urn:schemas-microsoft-com:xml-sql namespace are processed by the tem-
plate processor and used to return database data as part of the resulting
XML document.

- 41 -

CHAPTER 5. COMMERCIAL SYSTEMS

5.4 Pros and cons

Commercial systems and their support for XML documents have one big
advantage. They can use database specific features to make XML docu-
ments mapping process more powerful. They use their own amended SQL
language and therefore use specific database objects and procedures. It is
common that XML support is already built-id the database core system.
This means that XML documents mapping and subsequent querying is
a little bit quicker than other non-commercial approaches.

The price for this performance is platform dependence. This means
that each system has its own mapping language.

- 42 -

Chapter 6

Solution design

In this chapter it is described how new proposed mapping method XRM
(XML to Relation Mapping) reuses some existing features of mapping
techniques, which have already been developed (mentioned in the Chap-
ter 4 and 5), and how it integrates new features into those concepts.

The Section 6.1 gives a big picture of the XRM system. It is high-level
description of how the XRM system works. The non-detachable part of
this section are the reasons that led to the creation of XRM system.

More detailed specification of each module and communication be-
tween them can be found in the Section 6.2.

6.1 Analysis

In the previous chapters some of the existing mapping techniques are
described. Each of them has number of pros, however also several cons.
The XRM system tries to inherit some of these advantages and beware of
all disadvantages. Three basic conditions which are necessary to comply
are:

ã Flexibility

ã Platform independence

ã Easy-to-use

ã Enriched by some new interesting feature(s)

It is assumed that non-commercial methods (systems) are platform
independent. It means that the theoretical method could be implemented
in almost any actual programming language and as relational core could
be used any current relational database system. Database system inde-
pendence is the biggest advantage over commercial systems.

On the other hand commercial systems can exploit the specific fea-
tures of the individual system (database objects, XML support integrated

- 43 -

CHAPTER 6. SOLUTION DESIGN

into database core, etc.). However, this individual approaches force users
to learn specific mapping language and also specific operating principles.

XRM tries to fulfill platform independence by using standardized SQL
(database system independence) and only basic program functions like
I/O, DB connections, etc. (program language independence).

Lately, in the chapter 7 it can be found that for the prototype im-
plementation Java is used as an program language and Oracle database
system for testing and benchmarking.

The XRM system is mostly based on ShreX mapping system. It uses
annotated XML Schema documents. This combination provide user an
easy way to define mapping rules. Annotated XML Schema can be used to
validate XML documents because annotations use different namespace.
Document structure definition is stored together with mapping definition
in a single file so there is no need of any extra file. The use of XML
Schema simplifies the mapping process, since it does not require users
to master a new specialized mapping language. The use of annotations
allows mapping choices to be combined in many different ways. As an
result, XRM not only supports all the mapping strategies proposed in the
literature, but also new useful strategies that had not been considered
previously. For more information about annotations see Section 6.1.1.

6.1.1 Mapping definition

Mappings are expressed by annotating an input XML schema docu-
ment. Annotations define how specific XML document fragment should
be mapped into the relational model. Annotations are added into the
XML schema using attributes from a namespace called xrm, and can be
associated to any attribute, element or group. All available annotations
are listed in the Table 6.1.

Annotations can be divided into two groups - local and global. Local
annotations as outlined, outlinedMethod, etc. have impact only on an
element they correspond to. For example, if annotation outlined is used
on element TITLE it means that element TITLE is outlined from its par-
ent element, but it does not necessarily mean that all its descendants have
to be outlined. However, global annotations as outlinedAttributes,
outlinedElements and XPathQueries have impact on the whole map-
ping document. This means that their functionality can be expressed
by using several corresponding local annotations. Priority of annotation
types is:

1. Local annotation

2. Global annotation

3. Default rules

- 44 -

CHAPTER 6. SOLUTION DESIGN

Annotation
attributes Target Value Description
outlinedAttributes root element true, false If value is true, all at-

tributes are outlined by
default. Only outlined
within the attribute def-
inition can override this
setting.

outlinedElements root element true, false If value is true, all the
elements are outlined by
default. Only outlined
within the element def-
inition can override this
setting.

XPathQueries root element string Comma-separated list
of most frequently used
XPath queries. If used
properly, it speeds up
the system.

outlined attribute, el-
ement

true, false If value is true, a re-
lational table is created
for the attribute or el-
ement. Otherwise, the
attribute or element is
inlined.

outlinedMethod root element KFO,
Dewey,
Path, Inter-
val, Edge,
etc.

Specifies structure map-
ping.

datatype attribute,
element of
simple type

varchar,
number,
date, char,
CLOB, etc.

The string overrides the
SQL type of a column.

name attribute,
element,
group

string The string used as ta-
ble eventually column
name.

queryByValue attribute,
element of
simple type

true, false If value is true, it indi-
cates that many queries
by value will be queried
on this element or at-
tribute.

Table 6.1: Annotations attributes

- 45 -

CHAPTER 6. SOLUTION DESIGN

The only exceptions are annotations name and queryByValue. The
annotation name cannot have neither global nor default value. If there is
no local annotation value, this annotation is automatically generated by
system (element or attribute name + random number). The annotation
queryByValue cannot have global value or default rule because of system
performance. If this annotation is set to true it means that an index is
created for the column in which this element or attribute is stored. Setting
this annotation to true for all the elements and attributes leads to the
system overload.

Figure 6.1 presents an example of annotated XML Schema document.
XRM annotations are shown bold. The schema is partly annotated. Initial
processing by Annotation processor (described later) completes partly
annotated schema into fully annotated schema. It is shown in the Figure
6.2. Fully annotated XML Schema document is used to prepare document
repository DB schema and subsequent mapping of XML documents.

6.1.2 IXRM

XRM system stores mapping information into mapping repository. Map-
ping data are loaded to the repository by using simple SQL INSERT
statement. On the other hand there has to be some interface defined to
provide ability to query these data. Since XRM mapping information has
an XML syntax, it could be queried using a language such as XQuery.
XQuery is powerful and could be used to extract any information from
the mapping. However, it assumes knowledge of the language itself. In
the XRM system a simple interface API called IXRM (Interface for XML
to Relational Mapping) is designed. IXRM provides several methods to
acquire all the information from the mapping document.

The Table 6.2 lists all methods provided by IXRM. All methods get
one of input parameter ID of the mapping document (XML Schema doc-
ument) they want to query. This allows several mapping documents to
be stored in a single mapping repository. Based on return values of these
methods XML documents are uploaded to data repository and the XPath
queries are translated into SQL statements, which returns the result of
them.

6.2 Solution overview

The Figure 6.3 depicts the whole architecture of XRM system. It con-
sists of three main processes. The first one (with prefix ”1.”) handles
input XML Schema document, its completing and storing into mapping
repository. The second one (with prefix ”2.”) is in charge of accepting
XML documents which are tied to the XML schema already stored in the
system. These documents are parsed and divided into tuples according

- 46 -

CHAPTER 6. SOLUTION DESIGN

<element name="SHOW" xrm:outlinedMethod="KFO" />

<sequence>

<element name="TITLE" type="string"

xrm:outlined="true"

xrm:name="ShowTitle" />

<element name="YEAR" type="integer"

xrm:outlined="false"

xrm:name="Showyear"

xrm:datatype="NUMBER(4)" />

<element name="REVIEW" type="ANYTYPE"

minOccurs="0" maxOccurs="unbounded" />

<element name="AKA" type="string"

minOccurs="0" maxOccurs="unbounded" />

</sequence>

</element>

Figure 6.1: Example of annotated XML Schema

<element name="SHOW" xrm:outlinedAttributes="false"

xrm:outlinedElements="false" xrm:XPathQueries=""

xrm:outlinedMethod="KFO" name="SHOW1"

xrm:queryByValue="false" >

<sequence>

<element name="TITLE" type="string"

xrm:outlined="true" xrm:name="ShowTitle"

xrm:datatype="varchar"

xrm:queryByValue="false" />

<element name="YEAR" type="integer" xrm:outlined=

"false" xrm:datatype="varchar" xrm:datatype=

"NUMBER(4)" xrm:name="Showyear" />

<element name="REVIEW" type="ANYTYPE" minOccurs="0"

maxOccurs="unbounded" xrm:outlined="true"

xrm:datatype="CLOB" xrm:name="REVIEW2"

xrm:queryByValue="false" />

<element name="AKA" type="string" minOccurs="0"

maxOccurs="unbounded" =xrm:outlined="false"

xrm:datatype="varchar" xrm:name="AKA3"

xrm:queryByValue="false" />

</sequence>

</element>

Figure 6.2: Example of fully annotated XML Schema

- 47 -

CHAPTER 6. SOLUTION DESIGN

Method name Return value Description
isAttributesOutlined true, false Returns true if annotation

outlinedAttributes is set to true,
false otherwise.

isElementsOutlined true, false Returns true if annotation
outlinedElements is set to true,
false otherwise.

isOutlined true, false Returns true if annotation outlined
is set to true, false otherwise.

getOutlinedMethod Mapping
method name

Return the value of the annotation
outlinedMethod.

getDatatype Datatype
name

Returns the value of the annota-
tion datatype.

getName String Returns the value of the annota-
tion name.

isSetQueryByValue true, false Returns true if annotation
queryByValue is set to true,
false otherwise.

Table 6.2: IXRM methods

to the mapping rules stored in mapping repository. XML documents and
its data are stored in data repository. The last process (with prefix ”3.”)
parses XPath query into SQL query and runs it on the data repository.
It returns the result in XML format.

Each process and its subsystems are described in more details in the
subsections below.

6.2.1 XML schema loading process

Before XML documents can be uploaded into the XRM system their
annotated XML Schema document has to be stored in the system. This
is done by XML schema loading process. Steps of this process are marked
in the Figure 6.3 by labels with prefix ”1.”.

The annotated XML Schema document is put as an input (1.1a) to
the Annotation processor (see Section 6.2.4). It parses this document,
adds (1.1b) missing annotations according to the Default rules file (see
Section 6.2.5) and transforms XPath expressions to the form of appro-
priate annotations. The generated schema document is provided (1.2)
to the user to make (1.3) some changes if any. It is an original XML
Schema document with all the mapping information that are needed to
successfully map XML documents to the relational system. After user’s
confirmation (1.4), this file is delegated to the DB schema generator
(1.5a) and Mapping DB input interface (1.5b). The DB schema gener-
ator (see Section 6.2.7) creates an object model of an appropriate DB

- 48 -

CHAPTER 6. SOLUTION DESIGN

Figure 6.3: XRM architecture

schema for Data repository (see Section 6.2.10) and call (1.6) Data DB
input (see Section 6.2.10) to create (1.7b) this model to prepare Data
repository for documents uploading. The Mapping DB input (see Section
6.2.6) stores (1.7a) XML Schema document to the Mapping Repository.
The Mapping repository is used during XML document loading process
to access mapping informations.

After successful execution of this process XML documents tied on this
XML schema document can be loaded into the XRM system. Mapping
information from Mapping repository are used to map these documents
to the Data repository. This can be done by XML document loading
process (see Section 6.2.2).

6.2.2 XML document loading process

During this process XML documents, whose XML schema is already up-
loaded in system, can be stored in the XRM system.

The document is parsed (2.1) in Document processor (see Section
6.2.8). Appropriate mapping rules are loaded (2.2) from Mapping repos-
itory and internal document (see Appendix C for XML Schema of this

- 49 -

CHAPTER 6. SOLUTION DESIGN

file) with all mapping information is passed (2.4) to the Data Input gen-
erator (see Section 6.2.9). This module transforms mapping information
document into object model of DB schema with all data stored, which
is used to physically create (2.5) data in Data repository (see Section
6.2.10) through Data DB input.

6.2.3 XPath query executing process

All XML documents stored in the XRM system can be queried by XPath
expressions.

The XPath query (3.1) and mapping information (3.2) from Map-
ping repository are combined and internal query document (see Appendix
D for XML Schema of this file) is created in the Query processor (see Sec-
tion 6.2.11). Data Output generator (see Section 6.2.12) converts (3.3)
internal query document into object model of DB schema with conditions
loaded. This model is executed (3.4) through Data DB Output, which
creates the SQL script for aquiring data. The result is packed in the Data
Output generator into query result XML document.

6.2.4 Annotation processor

All documents, which are stored in the XRM system, must have assigned
an XML Schema document. This schema document and especially anno-
tations used in this schema are used to generate fully annotated XML
Schema document. This document holds all information needed to store
corresponding XML document.

Annotation processor implements two interfaces - Annotated schema
generation and Fully annotated schema processing.

Figure 6.4: Annotation processor

The first one parses incoming annotated XML Schema document and
because not every single element has to be annotated by user it adds these

- 50 -

CHAPTER 6. SOLUTION DESIGN

missing ones according to the Default mapping rules stored in the XRM
system. The XPathQueries annotation is parsed and each expression
listed is transformed into local annotations.

The transformation of XPath expressions affects local annotations
(outlined, outlinedMethod, queryByValue). For example, by providing
this XPath expression

/element1/element2[@attribute2="abc"]/element3

on the attribute ”attribute2” the annotation queryByValue and outlined

is set to ”true”, on elements ”element2” and ”element3” is the annotation
outlined set to ”true” and outlinedMethod set to ”KFO”. Addition-
ally ”element3” has datatype set to ”CLOB”. The attribute ”attribute1”
has queryByValue set to true because in the expression query on spe-
cific value of this attribute is used. The value of this attribute could be
any string and redundancy can not be omitted, therefore the attribute
”attribute2” is outlined. ”element1” and ”element2” are elements with
complex type. To avoid huge tables and redundancy their children should
be outlined. The most common mapping method for outlined elements is
”KFO”. While the expression queries on the whole content of ”element3”
the datatype is set to ”CLOB”. It is the easiest way to return the whole
fragment of XML document.

As mentioned before, XPathQueries belongs to the group of global
annotations, therefore it has lower priority then local annotations. So
there do not have to be all the XPath queries which will be ever queried.
These queries should only simplify process of defining annotation. De-
tailed mappings can be defined only by setting local annotations.

As an output of this operation the fully annotated XML Schema
document is called back.

The second one accepts fully annotated XML Schema document and
passes it to the Mapping DB input module to store this document and DB
Schema Generator to create an appropriate schema in Data repository.

6.2.5 Default rules

Annotation processor needs some default rules to generate a fully an-
notated XML Schema document. In order to avoid hard-coding the se-
mantics of default mapping rules into each application, these rules are
specified in an XML document, which is parsed along with other mapping
information. The XML Schema document of the default rules XML doc-
ument can be found in an Appendix B. Almost every type of annotation
have an default value. The exception is only the name of relational ta-
ble in which corresponding element or attribute should be stored. If this
annotation is omitted, it means that this name should be automatically
generated.

- 51 -

CHAPTER 6. SOLUTION DESIGN

The main benefit of writing default rules as a separate specification
and subsequent adding to the XML Schema document is that they could
be made queryable and thus applications build on top of the mapping
information could be abstracted from any hard-coded choice.

As an extreme case not-annotated XML Schema document can be
passed to the Annotation processor and it generates all annotations ac-
cording to the default mapping.

6.2.6 Mapping repository

Mapping information generated by Annotation processor is stored in
Mapping repository. It consists of DB schema in some relational system
and two interfaces - Mapping DB input and Mapping DB output.

DB schema in relational system is a physical repository of mapping
information. In this repository there are stored fully annotated XML
Schema documents, their unique identifiers and DB schema name in
which all data in Data repository is stored.

Mapping DB input is an interface to database which provides methods
for storing annotated XML Schema documents. Practically it is a simple
module which gets an fully annotated XML Schema document and loads
it into DB repository.

On the other hand Mapping DB output is an interface to acquire the
mapping information. This interface called IXRM has been described in
the Section 6.1.2. It provides complete access to mapping information.
These information is then used to map XML document into Data repos-
itory and to evaluate XPath queries.

Figure 6.5: Mapping repository

- 52 -

CHAPTER 6. SOLUTION DESIGN

6.2.7 DB schema generator

XML documents are stored in relational database system. All documents,
which are tied to the same XML Schema document, are stored in the
specific database schema. This schema is created according to the XML
schema and its annotations. The DB schema generator converts fully-
annotated XML Schema document into an object model of the schema,
which is used to create the database schema for this XML schema. It
creates relational tables objects according to the outlined annotation and
the specifics of storage technique used. For example, if the KFO storage
technique is used, there must be created a new table with three or more
columns and a foreign key between this new table and the table where
the parent is stored. The new tables columns are ID (unique identifier),
PID (foreign key to the parent table) and the VALUE column in case it is
simple type element or more columns for its attributes and subelements
(in case they are not outlined).

This procedure is done for every element and attribute in the XML
Schema document. Of course, other storage techniques can be used.

Figure 6.6: DB schema generator

6.2.8 Document processor

Document processor accepts XML documents with known XML Schema
document assigned. It uses Mapping DB output and IXRM interface to
gather mapping information.

Figure 6.7: Document processor

- 53 -

CHAPTER 6. SOLUTION DESIGN

Using this information the XML document is converted into the in-
ternal form which consists of all the XML data and mapping information.
It means that each element and each attribute have uniquely determined
where it should be stored in the Data repository. This is done by inserting
annotations from its XML Schema document into the XML document.
This information can be redundant if the element has several subele-
ments of the same type. The mapping information is stored for each of
these subelements. However, this redundancy helps DB Input generator
to create an object model for document loading into Data repository.

6.2.9 Data Input generator

The internal XML document generated by Document processor is con-
verted into an object model which is used to create the data in the Data
repository. Document processor creates an internal form of input XML
document which holds all the information needed to insert XML doc-
ument data into Data repository. It consists of table name or column
name, mapping method, flag whether it is outlined or not, flag whether
the index should be created, etc.

All this information is processed and object model with all the data
is created. The Data DB Input module is then called to insert data from
this model into Data repository.

Figure 6.8: Data Input generator

6.2.10 Data repository

As well as repository for mappings data exists, the repository for the
data itself exists. It consists of the relational database system and two
interfaces - Data DB input and Data DB output. It is similar to the Map-
ping repository. Data DB input is used to create DB schema according
to the XML schema and its annotations and stores XML document data,
whereas the Data DB output is used to gather the information to create
query output.

The Data DB input accepts two kinds of SQL scripts. One is from
DB Schema generator, which is an SQL DDL script. This script creates
DB schema according to which it inserts the XML document data into
Data repository. It is simple module for storing new XML documents.

- 54 -

CHAPTER 6. SOLUTION DESIGN

On the other hand, the Data DB output accepts XPath query object
model. This model consists of all information needed to gather all the
data for the XPath query result. It converts this model into a set of SQL
SELECT statements and executes them against Data repository.

Figure 6.9: Data repository

6.2.11 Query processor

Storing XML documents would have no sense if there existed no means to
query these documents. Query processor accepts XPath queries. It uses
Mapping DB output interface to acquire necessary information about the
location of demanded data. These information and the query are com-
bined into an internal query representation (XML Schema document can
be found in Appendix D). This document is similar to the internal docu-
ment representation. There are missing all the values and some conditions
are added. Internal query representation document is passed to the Data
Output generator which converts this input document into object model
which is sent to the Data DB output.

Figure 6.10: Query processor

- 55 -

CHAPTER 6. SOLUTION DESIGN

6.2.12 Data Output generator

The Data Output generator converts the internal query representation
document with query and location information into an object model. This
document contains all the information needed to find demanding data.
This information is transformed similarly as in Data Input generator.
The difference is that the Data Output generator creates a model that
has several values missing. These missing values are then aquired from
the Data repository through the Data DB output interface. The result
is transformed into the XML document and it is returned as an query
result.

Figure 6.11: Data Output generator

6.3 Mapping completeness

The XRM system generates complete mappings. This statement can be
supported by the fact that every annotated XML Schema document is
automatically completed by global annotations and default rules. The
completeness is ensured because every single element and attribute has to
have all necessary annotations to correctly map it to the Data repository.
Therefore there is uniquely determined where the element or attribute
should be stored and how it can be queried back.

- 56 -

Chapter 7

Implementation

As part of this book a prototype implementation of mapping method is
designed. It is called like the method itself, XRM. In this chapter details
of the implementation, used technologies and libraries and control can
be found.

7.1 Used technologies

For prototype implementation of mapping method Java language (con-
cretely the application is tested with SDK version 5.0 Update 12) was
chosen. The Java language was chosen because of its platform indepen-
dence of application and because of many libraries for work with XML
documents that exist. For XML documents processing SAX parser (con-
cretely its Xerces implementation) is used.

As a relational backend is used Oracle 10g Release 2 database. This
database server was chosen because it is one of the most popular databases.
XRM system uses standardized SQL, therefore it is not significant which
database is used.

7.2 Architecture

The architecture of application consists of eight basic and several auxil-
iary packages. These packages correspond to eight modules of proposed
mapping method.

ã schema.processor: This package contains classes that implements
functionality of Annotation processor

ã schema.generator: This package contains classes that implements
functionality of DB Schema generator

ã schema.repository: This package contains classes that implements
functionality of Mapping repository

- 57 -

CHAPTER 7. IMPLEMENTATION

ã document.processor: This package contains classes that imple-
ments functionality of Document processor

ã query.processor: This package contains classes that implements
functionality of Query processor

ã data.outputgenerator: This package contains classes that imple-
ments functionality of Data Output generator

ã data.inputgenerator: This package contains classes that imple-
ments functionality of Data input generator

ã data.repository: This package contains classes that implements
functionality of Data repository

ã techniques: This package contains classes which implements func-
tionality of individual storage techniques (such as KFO, PATH)

ã helper: This package contains helper classes for work with XML
documents and database connections

ã execute: This package contains classes for input and output pro-
cessing

Each package can contain these subpackages:

ã entity: This package contains entity Java beans. For example,
beans used to create object model of DB schema (Table, Column,
Row, ForeignKey, etc.)

ã handlers: This package contains event handlers for XML processng
by using SAX parser

ã input: This package contains classes of an input of the module

ã output: This package contains classes of an output of the module

Package document.processor

This package implements functionality of Document processor. The main
class is DocumentProcessorImpl and its interface DocumentProcessor.
It is dependent on package schema.repository, especially IXRM part.

- 58 -

CHAPTER 7. IMPLEMENTATION

Package schema.processor

This package contains classes which implement Annotation processor
functionality. The main class is AnnotationProcessorImpl and its in-
terface - AnnotationProcessor (groups all methods which Annotation
processor provides).

The other important class is DefaultRules which stores information
from Default rules XML document.

Package query.processor

This package implements functionality of Query processor. The main
class is QueryProcessorImpl and its interface QueryProcessor. It is
dependent on package schema.repository, especially IXRM part.

Package schema.generator

This package contains classes which implements functionality of DB Sche-
ma generator. The main class is DBSchemaGeneratorImpl and its inter-
face - DBSchemaGenerator.

DB Schema generator needs classes from package techniques since
it uses used technique principles to generate DB schema.

Package schema.repository

This package implements functionality of Mapping DB Input and Map-
ping DB output modules. Since Mapping DB output is basically imple-
mentation of IXRM, this package contains classes that implements IXRM
interface.

This is the only package that should work with Mapping repository
database. Any other mapping data manipulation could cause system fail-
ure.

Package data.outputgenerator

This package implements functionality of Data Output generator. Its
main classes are DataOutputGeneratorImpl and its interface DataOut-
putGenerator.

Package data.inputgenerator

This package implements functionality of Data input generator. Its main
classes are DataInputGeneratorImpl and its interface DataInputGene-
rator.

- 59 -

CHAPTER 7. IMPLEMENTATION

Package data.repository

This package implements functionality of Data DB Input and Data DB
output modules.

This is the only package that should work with Data repository da-
tabase. Any other data manipulation could cause system failure.

7.3 Control

The prototype implementation can be run using command prompt. There
exist three subapplications which starts three different XRM processes.
XML schema input process accepts one input parameter - annotated
XML Schema in first step and fully-annotated schema in second step.
XML document loading process accepts one input parameter - XML doc-
ument which has assigned an XML Schema that is already loaded in the
system. XPath query executing process accepts XPath expression.

Results of each subapplication can be stored in file or displayed on
the screen depending on the input parameter. There exists an application
log stored in /log directory. In this log are written all information about
program execution and an error states and their causes of course.

7.4 Implementation limitations

The enclosed implementation is only prototype implementation and there
should be made several modifications and completions to be able to de-
ploy this application in production environment. There are three places
where it can be enriched.

There are currently implemented just two storage techniques that can
be used - KFO and PATH. The XRM is, however, ready to add some new
ones.

XPath expressions that can be used in XRM are restricted to use only
child and attribute axes. The predicate part can contain element value,
attribute value and position. The Query processor can be upgraded to
allow more axes.

XPathQueries annotation translation into local annotations can be
improved to use some more complex algorithm. Current implementation
uses just few rules how these queries modify local annotations.

The prototype implementation is designed to be illustrating the XRM
system architecture at the expense of performance and memory complex-
ity.

- 60 -

Chapter 8

Experimental results

In this chapter there are described several experimental executions of
prototype implementation. They should present basic implementation
features and principles. As prototype is not implemented to fulfill all
the performance requirements, performance issues are neither tested nor
compared with other mapping techniques implementations. There are
described behavior of XRM system, how the data DB schema changes
according to the annotations alternations, etc.

Every test presented here consists of four steps:

ã Annotate XML Schema document and upload it to the Mapping
repository

ã Insert a sample document into Data repository

ã Query this document with an XPath expression

After each step there are described all the changes that were taken
place in the system, especially in the Mapping and Data repositories.
The XML Schema document used in these examples is shown in the
Figure 8.1. The XML document used as an data example is stored on
the enclosed CD-ROM. There were queried two XPath expressions:

/shiporder[@orderid="123"]
/shiporder/item[title="PC"]

In the first case the XML Schema document was less annotated. Only
three elements were annotated - shiporder, shipto and item. Fully-
annotated XML Schema document is stored on the enclosed CD-ROM.
Most of the annotations were set according to the Default rules (stored
on enclosed CD-ROM). There were created three tables. One for each
outlined element.

By querying the first XPath expression XRM has to join three tables
to acquire the result. On the other hand the second query does not have

- 61 -

CHAPTER 8. EXPERIMENTAL RESULTS

<?xml version="1.0" encoding="ISO-8859-1" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="shiporder">
<xs:complexType>

<xs:sequence>
<xs:element name="orderperson"

type="xs:string"/>
<xs:element name="shipto">

<xs:complexType>
<xs:sequence>

<xs:element name="name"
type="xs:string"/>

<xs:element name="address"
type="xs:string"/>

<xs:element name="city"
type="xs:string"/>

<xs:element name="country"
type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="item" maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>

<xs:element name="title"
type="xs:string"/>

<xs:element name="note" type="xs:string"
minOccurs="0"/>

<xs:element name="quantity"
type="xs:positiveInteger"/>

<xs:element name="price"
type="xs:decimal"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name="orderid" type="xs:string"

use="required"/>
</xs:complexType>

</xs:element>
</xs:schema>

Figure 8.1: XML Schema used in experiments

- 62 -

CHAPTER 8. EXPERIMENTAL RESULTS

to join any tables. Its result can be constructed from one table - table
for the element item.

In the second case the XML Schema document was already fully-
annotated. Every element and attribute of this schema was annotated
by outlined annotation set to true. This means that there were created
one table for every element and attribute - 13 tables.

By querying the first XPath expression XRM has to join all 13 tables.
This is not optimal solution since table joins are expensive database
operations. The second query does not make any difference. There are 5
table joins needed.

In the third case the XML schema document was annotated like in the
first case, the only difference was added XPathQueries annotation added
to the xs:schema element. This alternation changed the DB schema.
There were created 8 tables. Every element has its own table only the
whole element shipto is stored in one CLOB value. This reduces the
number of table joins while keeping the data granularity.

This examples shows that XRM system fulfill all basic functionality
of XML-to-Relations mapping system and moreover provides features to
simplify annotating process.

- 63 -

Chapter 9

Conclusion

The goal of this thesis was to explore the opportunities and limitations of
mapping techniques which map XML documents into relational system
and using this analysis propose and implement new solution.

The first part of this thesis analyzes already proposed mapping tech-
niques, such as MXM, ShreX and commercial ones (by Oracle, IBM and
Microsoft). The result of this analysis was formulation of basic criteria
for the proposed solution.

On the basis of this analysis, especially on the basis of realized fea-
tures and pros and cons of the existing approaches, there was proposed
a new mapping solution. The annotated XML Schema was selected be-
cause of XML Schema flexibility, annotated schema transparency and
also because XML Schema is standardized by W3 Consortium. New pro-
posed annotations helps an unfamiliar user to use this mapping technique
without learning every annotation type meaning and subsequent mean-
ing of their effects. On the other hand they also gives more possibilities
for expert user to optimize system performance.

The benefit of this thesis consists in selecting XML Schema for defin-
ing document structure and adding some new annotations which simpli-
fies process of annotating the XML Schema documents. The annotation
XPathQueries helps an unfamiliar user to annotate XML Schema more
optimally without hard-studying XML and relational system details. The
annotation queryByValue helps an expert user to more precisely define
where should be created database indexes and where not. The next ben-
efit is the modularity of solution system, therefore it is simple to ex-
tend the system with new storage techniques, default rules definition or
XPathQueries annotation transformation.

Though there were completed essentially all thesis goals, in the pro-
posed solution there are places which can be further improved and ex-
tended. One of the places can be defining more detailed rules for trans-
lating XPathQueries annotation into local annotations. Especially sup-
port for more XPath axes. The next area of improvement is prototype

- 64 -

CHAPTER 9. CONCLUSION

implementation. There are some places where it can be upgraded to sup-
port more storage techniques and more XPath axes for executing XPath
expressions. The last opportunity for improvement is the graphical user
interface. Controlling the program through command prompt is not com-
fortable. An GUI with visualizing the annotations could be very useful.

- 65 -

Bibliography

[1] G. Weikum A. Theobald. Adding Relevance to XML. WebDB’00,
2000.

[2] Sihem Amer-Yahia. Storage Techniques and Mapping Schemas for
XML. AT&T Labs Research, 2003.

[3] E. W. Brown. Fast Evaluation of Structured Queries for Information
Retrieval. SIGIR, 1995.

[4] D. J. DeWitt C. Zhang, J. F. Naughton and Q. Luo. On Supporting
Containment Queries in Relational Database Management Systems.
SIGMOD, 2001.

[5] Microsoft Corporation. Microsoft support for xml. http://
msdn.microsoft.com/sqlxml.

[6] D. Kossman D.Florescu. A Performance Evaluation of Alternative
Mapping Schemes for Storing XML Data in a Relational Database.
IEEE Data Engineering Bulletin, 1999.

[7] Anders Berglund et al. Xml path language (xpath) version 2.0.
http://www.w3c.org/TR/xpath20, 2002.

[8] M. J. McGrill G. Salton. Introduction to Modern Information Re-
trieval. McGraw-Hill, 1983.

[9] Health level seven. http://www.hl7.org, 2003.

[10] IBM. Ibm xml extender. http://www-4.ibm.com/software/data/
db2/extenders/xmlext/docs/v71wrk/english/index.htm.

[11] G. He J. Shanmugasundaram, K. Tufte and C. Zhang. Relational
databases for querying xml documents: Limitations and opportuni-
ties, 1999.

[12] The library of congress. http://www.loc.gov, 2003.

[13] J. Haritsa M. Ramanath, J. Freire and P. Roy. Searching for afficient
XML-to-Relational mappings. Proceedings of the International XML
Database Symposium, 2003.

- 66 -

BIBLIOGRAPHY

[14] Microsoft Corporation M. Rys. Bringing the Internet to Your
Database: Using SQLServer 2000 and XML to Build Loosely-
Coupled Systems. ICDE, 2001.

[15] M.Klettke and H. Meyer. XML and object-relational database sys-
tems - enhancing structural mappings based on statistics. Proceed-
ings of the Workshop on Web and Databases, 2000.

[16] K. Grossjohann N. Fuhr. XIRQL - An Extension of XQL for Infor-
mation Retrieval. SIGIR, 2001.

[17] Introduction to the dewey decimal classification.
http://www.oclc.org/dewey/about/about the ddc.htm.

[18] P.Roy P. Bohannon, J. Freire and J. Simeon. From xml schema to
relations: A cost-based approach to xml storage, 2002.

[19] G. Navarro R. Baeza-Yates. Integrating Contents and Structure in
Text Retrieval. ACM SIGMOD Record, 1996.

[20] W3C Recommendation. Extensible markup language (xml).
http://www.w3.org/TR/REC-xml, 2004.

[21] W3C Recommendation. Xml schema. http://www.w3.org/TR/
xmlschema-1, 2004.

[22] K. Runapongsa and J.M. Patel. Storing and querying XML data in
object-relational DBMSs. Proceedings of the International Confer-
ence on Extending Database Technology, 2002.

[23] N. Koudas S. Al-Khalifa, H. V. Jagadish and J.M. Patel. Struc-
tural joins: A Primitive for Efficient XML Query Pattern Matching.
ICDE, 2002.

[24] D. Srivastava S. Amer-Yahia, M. Fernandez and Y. Xu. Exact and
Approximate Phase Matching in XML. CIKM, 2002.

[25] R. Greer S. Amer-Yahia, M. Fernandez and D. Srivastava. Logical
and Physical Support for Heterogenous Data. CIKM, 2002.

[26] M. Krishnaprasad S. Banerjee, V. Krishnamurthy and R. Murthy.
Oracle 8i - The XML Enabled Data Management System. ICDE,
2000.

[27] M. Fernandez et al S. Boag, D. Chamberlin. XQuery 1.0: An XML
query language. W3 Consortium, 2004.

[28] C. Hara S. Davidson, W. Fan and J. Qin. Propagating xml con-
straints to relations, 2003.

- 67 -

BIBLIOGRAPHY

[29] Divesh Srivastava Sihem Amer-Yahia. A Mapping Schema and In-
terface for XML Stores. AT&T Labs Research, 2002.

[30] Juliana Freire Sihem Amer-Yahia, Fang Du. A Comprehensive So-
lution to the XML-to-Relational Mapping Problem. AT&Labs Re-
search, OGI/OHSU, 2004.

[31] S. Uemura T. Shimura, M. Yoshikawa. A Path-Based Approach
to Storage and Retrieval of Documents using Relational Databases.
TOIT, 2001.

[32] Xerces java parser 1.4.3. http://xml.apache.org/xerces-j.

[33] Xsl transformation (xslt). http://www.w3.org/TR/xslt.

- 68 -

Appendix A

XRM annotations - XML
Schema document

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://ksi.mff.cuni.cz/xrm">

<xs:attribute name="outlinedAttributes"
type="xs:boolean" default="false"/>

<xs:attribute name="outlinedElements"
type="xs:boolean" default="false"/>

<xs:attribute name="outlined"
type="xs:boolean" default="false"/>

<xs:attribute name="outlinedMethod"
type="xs:string" default="KFO"/>

<xs:attribute name="datatype"
type="xs:string" default="varchar"/>

<xs:attribute name="name"
type="xs:string"/>

<xs:attribute name="queryByValue"
type="xs:boolean" default="false"/>

<xs:attribute name="XPathQueries"
type="xs:string"/>

</xs:schema>

- 69 -

Appendix B

Default rules - XML Schema
document

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://ksi.mff.cuni.cz/xrm">
<xs:element name="DefaultRules">

<xs:complexType>
<xs:sequence>

<xs:element name="outlinedAttributes"
type="xs:boolean" default="false"/>

<xs:element name="outlinedElements"
type="xs:boolean" default="false"/>

<xs:element name="outlinedMethod"
type="xs:string" default="KFO"/>

<xs:element name="datatype" type="xs:string"
default="varchar"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

- 70 -

Appendix C

Internal document
representation - XML Schema
document

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:attributeGroup name="XRMAttributeGroup">
<xs:attribute name="tableName" type="xs:string"

use="required"/>
<xs:attribute name="columnName" type="xs:string"

use="optional"/>
<xs:attribute name="datatype" type="xs:string"

use="optional"/>
<xs:attribute name="outline" type="xs:string"

use="optional"/>
<xs:attribute name="queryByValue" type="xs:boolean"

use="required"/>
</xs:attributeGroup>

<xs:complexType name="attributeType">
<xs:attribute name="value" type="xs:anySimpleType"/>
<xs:attribute name="attributeName" type="xs:string"/>
<xs:attributeGroup ref="XRMAttributeGroup"/>

</xs:complexType>

<xs:complexType name="elementType">
<xs:sequence>

<xs:element name="element" type="elementType"
minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="attribute" type="attributeType"
minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

- 71 -

APPENDIX C. INTERNAL DOCUMENT REPRESENTATION

<xs:attribute name="value" type="xs:anySimpleType"/>
<xs:attributeGroup ref="XRMAttributeGroup"/>
<xs:attribute name="elementName" type="xs:string"/>

</xs:complexType>

<xs:element name="root">
<xs:complexType>

<xs:choice>
<xs:element name="value" type="xs:anySimpleType"/>
<xs:sequence>

<xs:element name="element" type="elementType"
minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="attribute" type="attributeType"
minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:choice>
<xs:attribute name="elementName" type="xs:string"/>
<xs:attribute name="outlinedMethod" type="xs:string"/>
<xs:attribute name="XMLSchemaNamespace"

type="xs:string"/>
<xs:attributeGroup ref="XRMAttributeGroup"/>

</xs:complexType>
</xs:element>

</xs:schema>

- 72 -

Appendix D

Internal XPath query
representation - XML Schema
document

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:attributeGroup name="XRMAttributeGroup">
<xs:attribute name="tableName" type="xs:string"

use="required"/>
<xs:attribute name="columnName" type="xs:string"

use="optional"/>
<xs:attribute name="datatype" type="xs:string"

use="optional"/>
<xs:attribute name="outlineMethod" type="xs:string"

use="optional"/>
<xs:attribute name="queryByValue" type="xs:boolean"

use="required"/>
</xs:attributeGroup>

<xs:complexType name="attributeType">
<xs:sequence>

<xs:element name="value" type="xs:anySimpleType"/>
</xs:sequence>
<xs:attribute name="attributeName" type="xs:string"/>
<xs:attributeGroup ref="XRMAttributeGroup"/>

</xs:complexType>

<xs:complexType name="elementWhereType">
<xs:sequence>

<xs:element name="value" type="xs:anySimpleType"
minOccurs="0"/>

<xs:element name="attribute" type="attributeType"

- 73 -

APPENDIX D. INTERNAL XPATH QUERY REPRESENTATION

minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="position" type="xs:integer"

minOccurs="0"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="elementType">
<xs:sequence>

<xs:element name="where" type="elementWhereType"/>
<xs:choice>

<xs:element name="value" type="xs:anySimpleType"/>
<xs:sequence>

<xs:element name="element" type="elementType"
minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="attribute"
type="attributeType" minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:choice>

</xs:sequence>
<xs:attributeGroup ref="XRMAttributeGroup"/>
<xs:attribute name="elementName" type="xs:string"/>

</xs:complexType>

<xs:element name="root">
<xs:complexType>

<xs:sequence>
<xs:element name="where" type="elementWhereType"/>
<xs:choice>

<xs:element name="value"
type="xs:anySimpleType"/>

<xs:sequence>
<xs:element name="element" type="elementType"

minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="attribute"

type="attributeType" minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:choice>

</xs:sequence>
<xs:attributeGroup ref="XRMAttributeGroup"/>
<xs:attribute name="elementName" type="xs:string"/>
<xs:attribute name="XMLSchemaNamespace"

type="xs:string"/>
</xs:complexType>

</xs:element>
</xs:schema>

- 74 -

Appendix E

CD-ROM content

A part of this book is an enclosed CD-ROM which contains the text of
this book and the first of all the source code including the documentation
and compiled files of the prototype implementation of XRM. CD-ROM
contains following files and directories:

ã content.txt - file with the description of CD-ROM content

ã /text - directory with the text of this book

ã /src - directory with the source code of prototype implementation

ã /doc - directory with the documentation of prototype implementa-
tion (generated by javadoc application)

ã /release - directory with compiled application XRM

ã /data - directory with the data used to verify prototype implemen-
tation in the Chapter 8

- 75 -

