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Abstract

The thesis investigates the application of machine learning in portfolio con-

struction. The analysis was conducted on a dataset consisting of 442 Amer-

ican stocks. Initially, we cluster stocks using Principal Component Analysis

and K-means algorithms. Then we select stock from each cluster based on

return/risk metrics. Where risk was estimated by Value at Risk, and re-

turn was predicted using Random Forest and GARCH models. This leaves

us with 11 stocks for every monthly period during 2020. The results in-

dicate that the portfolios constructed from the selected stocks were able to

outperform the market benchmark. However, the return predictions were

not accurate enough. Thus, the portfolio from selected stock using the 1/N

approach achieved better results than the portfolio optimized by the Mean-

Variance model.
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Abstrakt

Práce zkoumá využit́ı strojového učeńı při tvorbě portfolia. Analýza byla

provedena na souboru dat, který se skládá ze 442 amerických akcíı. Na

začátku jsme provedli klastrováńı akcíı pomoćı algoritmů analýzy hlavńıch

komponent a K-means. Poté vyb́ıráme akcie z každého klastru na základě

metrik výnosnosti/rizikovosti. Kde riziko bylo odhadnuto pomoćı Value at

Risk a výnos byl předpovězen pomoćı model̊u Random Forest a GARCH.

Takto nám z̊ustalo 11 akcíı pro každé měśıčńı obdob́ı v pr̊uběhu roku 2020.

Výsledky ukazuj́ı, že portfolia sestavená z vybraných akcíı dokázala překonat

tržńı benchmark. Predikce výnos̊u však nebyly dostatečně přesné. Portfolio

z vybraných akcíı s využit́ım př́ıstupu 1/N tedy dosáhlo lepš́ıch výsledk̊u

než portfolio optimalizované pomoćı Mean-Variance modelu.

Kĺıčová slova

konstrukce portfolia, Mean-Variance model, analýza hlavńıch komponent,

K-means, Random Forest, GARCH, strojové učeńı
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1 Introduction

Portfolio construction consists of many tasks, from examining the market to

building beliefs about future performance. Following with selection of the

assets into the portfolio and lastly weighting each asset in the portfolio to

diversify and minimize the risk for the wanted return.

The classic model for diversification was proposed by Markowitz (1952).

The model performs well in the sample. But due to errors in estimations, the

model is not constantly outperforming the naive 1/N approach (DeMiguel

et al., 2009).

Errors in estimation can be lowered by using Machine Learning tech-

niques. Tadlaoui (2017) showed significant improvement in returns from the

portfolio created by the Markowitz model extended with use of Random

Forest and GARCH model for returns prediction. It is important to note

that the research used a universe consisting of 8 stocks that were preselec-

ted without any specific method. The preselection without any reasoning

is present in many studies, as noted by Fulga & Dedu (2012), and they

presented the usage of clustering and Value at Risk in stock selection.

We want to follow it as with clustering, the investor can obtain groups

of similar stocks, and by picking the stocks from different groups, can achieve

a diversified selection of the stocks. We extended it by adding a prediction

of returns.

In the thesis, we conducted analysis on a dataset consisting of 442

American stocks. Firstly we implement PCA and K-means algorithms on

our dataset to cluster our stock universe. Following by calculating Value at

Risk, which we use for the first selection of stocks. Then we predict the future

direction of the asset using Random Forest, which Ballings et al. (2015)

recommends as the best performing model for predicting the stock direction.

Then the magnitude of expected return is estimated using volatility derived

from the GARCH model. Therefore, from each cluster, we select one stock

based on expected return and Value at Risk. The selected stocks are used to
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construct the portfolio using the naive 1/n approach and by the Markowitz

model. The resulting portfolios are compared to the market benchmark.

The rebalancing will be performed 12-times during 2020. Thus, we will be

testing the model during 2020 when the market experienced very fluctuating

times because of the COVID pandemics.

The thesis attempts to demonstrate the combinations of the machine

learning techniques during the whole portfolio construction process as they

are commonly examined separately. The contribution we see in an interest-

ing combination of models, whereby clustering we want to obtain different

groups of stocks. By picking stocks from each cluster using return predic-

tion, we want to gain a well-diversified portfolio. The hypothesis is that we

will be able to pick stocks from the clustered stock universe, and the port-

folio from selected stocks will be able to outperform the market in terms of

returns and volatility. Another hypothesis is that the portfolio from selected

stocks will perform better with mean-variance optimization than with the

1/N approach.

The thesis is divided into six sections. The second section firstly briefly

presents the beginning of the modern portfolio theory and is followed by

current literature about the usage of machine learning in the portfolio theory.

The third section introduces methods and models used in the thesis. The

fourth section provides a description of the data and the manipulation with

them. The fifth section presents the empirical results, and everything is

summarized in the last section.
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2 Literature Review

As the founder of Modern portfolio theory is widely considered Markowitz

(1952), his principal claim is that investors should diversify their portfolios.

The intercorrelated portfolio is more prone to shock than the well-diversified

portfolio. Markowitz derived a theory for optimization of a portfolio called

mean-variance optimization. It suggests that expected returns and risk (rep-

resented as the variance of the portfolio) should be taken together. The

investor should maximize expected returns for a given risk or minimize risk

for given expected returns.

Another extension of Modern portfolio theory is the capital asset pricing

model (CAPM), independently derived by Treynor (1962), Sharpe (1964),

Lintner (1965), and Mossin (1966). CAPM decomposed risk into two com-

ponents, the systematic and the idiosyncratic. Investors should take into

account both types of risk. Nevertheless, diversification can reduce only the

idiosyncratic risk.

Although these models are theoretically important, their practical per-

formance is disputable. DeMiguel et al. (2009) challenged them in an empir-

ical study, where mean-variance, CAPM, and another 11 modern versions of

them were tested using 7 different datasets. They found that these models

do not consistently outperform naive 1/N strategy, where N is a number

of stocks and each stock in the portfolio is weighted by 1/N. The authors

do not imply that naive 1/N portfolio is better than portfolio optimization

models as the in-sample mean-variance model outperforms the 1/N bench-

mark. They claim that gains from optimization of the portfolio are eroded

by errors in estimating means and covariances. Thus, more energy should

be put into improving asset returns estimation.

Return predictions is where machine learning techniques could help.

A variety of types of machine learning can be used, from supervised and

unsupervised learning methods to even reinforcement learning (Snow, 2020).

The thesis will focus on supervised and unsupervised learning techniques.
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Supervised learning algorithms firstly interact with the dataset, where

every random vector x is connected to a label or target, which we denote

as y (Goodfellow et al., 2016). This phase is called training, we view it

as the target vector or value y is given by the instructor. That is why

these techniques are called supervised learning. Then comes predicting phase

when the algorithm returns y from given x using p(y | x) estimated during

the first phase. Supervised learning can be divided into two main groups,

classification and regression. Classification is about predicting labels, on the

other hand, regression is about predicting a quantity.

As the name suggests, unsupervised learning is missing the target value

y from the instructor in the training part. The unsupervised learning al-

gorithms interact only with x, from which it is learning the properties of

the structure of the dataset (Goodfellow et al., 2016). The most common

tasks are estimating the probability distribution which generated data, de-

noising, dimensionality reduction, or clustering, which divides the dataset

into clusters of similar variables.

The usefulness of machine learning in portfolio optimization was demon-

strated by Tadlaoui (2017) on the stock universe consisting 8 stocks. Firstly,

the Random Forest algorithm was trained on historical data and then used to

predict the future direction of the price of the stock. The size of the change

of price was estimated by volatility which was predicted using the GARCH

model. These two models give predictions of the future return of the stock.

Prediction of returns was used to enhance the mean-variance model, this was

compared to the mean-variance model using historical returns. The portfo-

lio constructed by extended version mean-variance was able to outperform

the classic mean-variance by more than 20% in absolute returns.

The predictive power of the Random Forest method in portfolio con-

struction was also demonstrated by Kaczmarek & Perez (2021). The study

is working with companies listed in the S&P500 index. The authors of

the study use Random Forest for predicting excess returns. Next, n stocks

with the highest prediction values were chosen, where n = 25, 50, 75, ..., 250.
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These chosen stocks were first diversified by the naive 1/N rule. Secondly,

a mean-variance optimizer was used. Thirdly and finally, hierarchical risk

parity (HRP) optimizer was implemented. The portfolios were rebalanced

monthly during 10 year period, from 01/01/2010 to 31/12/2019. The chosen

n stock naively diversified were able to outperform the market benchmark,

whole equal-weighted S&P500 index. Finally, a comparison of 1/N with

mean-variance and HRP appears to be better for both optimization meth-

ods as they were able to outperform naive portfolios from n chosen stocks

and market benchmark. The difference in performance between HRP and

mean-variance was not significant and was dependent on n.

Chen et al. (2021) implemented the eXtreme Gradient Boosting al-

gorithm (XGBoost) for stock price prediction in combination with the firefly

algorithm, which serves as an optimizer of the hyperparameters in XGBoost.

For practical analysis, 24 stocks were randomly selected from the Shanghai

Stock Exchange 50 index. Stock prediction is followed by the mean-variance

model. The XGBoost was also compared with other techniques as Long

Short-Term Memory (LSTM) Neural Network, Support Vector Regression

(SVR), or just random selection of stocks, these methods were combined

with the mean-variance model or 1/N diversification, 1/N diversification

with machine learning methods was done that only assets with the best pre-

diction were selected and then equally weighted. All portfolios enhanced

with XGBoost, LSTM, SVR outperformed simple 1/N or random + 1/N

portfolios in terms of Sharpe ratio. The paper also showed that machine

learning + mean-variance was able to get better results than machine learn-

ing + 1/N. This indicates that the mean-variance model has an essential

role in portfolio construction.

Another popular supervised learning technique is the Support Vector

Machine (SVM). Yu et al. (2014) established a stock selection model using

SVM. Researchers also used Principal Component Analysis (PCA) for redu-

cing the dimensionality of the financial data. PCA-SVM model was used on

a dataset of companies in A-share of Shanghai Stock Exchange. The model

5



was trained to determine high return stocks, which were used to construct

the equal-weighted portfolio. This portfolio was able to accumulate higher

returns than the A-share index of the Shanghai Stock Exchange.

An extensive study of methods for forecasting stock price direction

was realized by Ballings et al. (2015). Three ensemble methods (Random

Forest, AdaBoost, and Kernel Factory) and four single classifiers (Neural

Networks, Logistic Regression, SVM, and K-Nearest Neighbor) were com-

pared by cross-validation and AUC as a measure of performance, AUC is

the area under probability curve that plots the true-positive rate against

the false-positive rate. Analysis was performed on data from 5767 European

companies from a variety of industries. For each model was performed five

times twofold cross-validation, and the median of AUC was taken as a rep-

resentation of the model performance. Based on this evidence was Random

Forest declared as the best performing model for predicting the stock price

direction, followed by SVM, Kernel Factory, and AdaBoost.

As already stated, PCA is mostly used for dimensionality reduction,

but it can be used for portfolio diversification as well, this is demonstrated

by Pasini (2017). PCA algorithm works that it changes the dataset into

the Principal Components, where every Principal Component is a linear

combination of the dataset. Principal Components are calculated in the way

that the first one captures the most variance in data, the second one captures

the second most variance in data, and so on. The paper demonstrates the

application of PCA on three subgroups of stock of the American Index DJI.

Two groups are homogeneous, but the third is more heterogeneous. PCA

is then applied to the correlation matrix of stocks, subsequently, the first

two Principal Components are analyzed. The paper shows that portfolios

constructed based on the first or second Principal Component follow trends

of the market (1/N portfolio). Coefficients of the first Principal Component

were also always positive; thus, this component can be seen as a market

component. The author of the paper suggests that PCA could be good for

diversifying risk, but the drawback is that it cannot say how many stocks

6



the investor should retain in the portfolio.

The usage of unsupervised machine learning in stock selection was ex-

amined by Fulga & Dedu (2012). The research was done on the dataset

of 48 financial assets from Bucharest Stock Exchange with seven financial

indices, e.g., Price-to-book value, Earnings per share. First, a reduction of

the number of variables was achieved with PCA. This reduced number of

variables was used for clustering to build classes of similar assets. That was

accomplished by the agglomerative hierarchical clustering technique. Ag-

glomerative clustering is a bottom-up approach, which means that every

observation is initially in its own cluster, and the algorithm is gradually

merging the clusters until the required number of clusters is achieved. In

the study, 10 clusters were chosen by authors. Following that, Value at Risk

(VaR) was estimated for each asset. Afterward, the asset with minimal VaR

was selected from each cluster. Using a mean-risk optimization portfolio

was constructed from the selected stocks. The author state that this ap-

proach improves the optimization process as only already diversified assets

with minimal risk are considered.

Lemieux et al. (2014) provided a comparison of clustering algorithms.

They applied the following clustering methods on the CRSP US Stock data-

base: K-means, K-medoids, and hierarchical clustering. Each method was

used to construct 7 clusters. The paper then demonstrated differences

between methods by plotting the variations between techniques. The main

claim of the authors is that there are inconsistencies between outputs of

different clustering methods.

7



3 Methodology

The methodology is divided into four sections. The first section describes

unsupervised techniques which we used for clustering, more precisely PCA

and K-means. The second section will introduce Value at Risk as one of

the measures which the thesis use for choosing the best stock from each

cluster. In the third section, we are going to present methods for stock

return prediction, more specifically we are going to describe Random Forest

and GARCH model. The fourth and last sections will introduce the mean-

variance optimization problem.

3.1 Clustering Techniques

3.1.1 Principal Components Analysis (PCA)

PCA was developed by Pearson (1901) as the method which takes multivari-

ate data and fits a linear subspace to it by minimizing the chi distances, in

simple words how many standard deviations is the given point from the

distribution of the data.

PCA is an unsupervised learning algorithm that learns the represent-

ation of data in order to present new low-dimensional representations of

data by compressing as much information about data in a lower dimension

(Goodfellow et al., 2016). The elements of the new representation of data

also do not have a linear correlation with each other. PCA can be defined

in two ways (Bishop, 2006). Firstly, as maximum variance formulation us-

ing orthogonal projection of the data onto a lower-dimensional linear space.

Secondly, as the linear projection that minimizes the mean squared distance

between the original data points and projection, this approach is called min-

imization of the average projection cost. Both definitions lead to the same

algorithm.

We are going to present a maximum variance formulation. Let us have

a set of observations {xn}, where n = 1, ..., N and every vector xn is a D-

8



dimensional vector.

The sample mean is derived as:

x̄ =
1

N

N∑︂
n=1

xn

Using sample mean, we derived sample covariance matrix:

S =
1

N

∑︂
n=1

N(xn − x̄)(xn − x̄)T

Then the goal of PCA is to project every xn into the vector pn, where the

elements of the vector pn are defined as:

pi,n = wT
i xn

where i = 1, ..., D, but as PCA is used for dimension reduction, we are

usually interested in i = 1, ..., d, d < D.

Elements of the vectors p are called principal components, we denote

vectors of principal components as (P1, P2, ..., Pd). The PCA algorithm cal-

culates weights wi to satisfies two conditions. Firstly, principal components

must be orthogonal, that means E(PiPj) = 0, i ̸= j. Secondly, the first prin-

cipal component explains the largest possible percentage of variability of the

original dataset, then the second principal component explains the largest

percentage of variability that has not been explained by the first component

and so on.

This is achieved by setting w1 to the eigenvector with the largest eigen-

value of the covariance matrix S, then setting w2 to the eigenvector with

the second largest eigenvalue and so forth (Bishop, 2006). For details, the

thesis refers to Bishop (2006) or Goodfellow et al. (2016).

We present an example of PCA dimensionality reduction in figure 1.

The reader can notice that originally two-dimensionality data were reduced

to a single dimension and plotted as in one line on top of the original data.

The plot was obtained in Python using an example by VanderPlas (2016).

9



Figure 1: Example of Dimensionality Reduction using PCA

3.1.2 K-means

K-means is an unsupervised classification technique that splits the dataset

into a given number of clusters based on the distance between points and the

cluster centers. Note that the number of clusters is given by the researcher.

The idea of this algorithm was firstly introduced by Steinhaus (1957). Lloyd

(1982) is considered to be the first who derived algorithmic solution, he man-

aged to do it in 1957 but note that the paper was not published immediately

but in 1982.

Before deriving the K-means algorithm, we need to define squared Eu-

clidean distance which is used as a distance measure in K-means. For two

vectors x, y of dimension D, the squared Euclidean distance is defined by

10



the following equation:

∥x− y∥2 =
D∑︂

n=1

(xn − yn)
2

K-means is the expectation-maximization algorithm as each iteration

takes two steps (Bishop, 2006), (Goodfellow et al., 2016). Let us have a

set of observations {xn}, where n = 1, ..., N , and every vector xn is a D-

dimensional vector. We want to split the dataset into the K clusters, where

K < N is given.

K-means algorithm approach this by first initializing a set of D-dimensional

vectors {µk}, k = 1, ..., K. We denote µk as a center of the kth cluster. These

centers can be given or random. Then we define rn,k, which is equal to 1

if observation xn is in the kth cluster, and equal to 0 otherwise. Remark,

every observation can be only in one cluster. By this setup, we can define

the function J of the K-means optimization problem:

J =
N∑︂

n=1

K∑︂
k=1

rn,k∥xn − µk∥2

We can minimize J by rn,k or µk. As we already stated, the algorithm

has two main steps. Firstly, we will minimize J with respect to rn,k while

holding µk fixed. This step is called ’Expectation’ (Bishop, 2006). As we

can see directly from the equation, in order to minimize J with respect to

rn,k we just set rn,k equal to 1 for k with lowest ∥xn−µk∥2, and 0 otherwise.

In other words, we assign xn to the cluster with the nearest center.

The second step, called ’Maximization’ (Bishop, 2006), is to minimize

J with respect to µk. This is a quadratic problem, the first-order condition

is following:

2
N∑︂

n=1

rn,k(xn − µk) = 0

from that, we easily derive that minimum is for:

µk =

∑︁N
n=1 rn,kxn∑︁N
n=1 rn,k
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Note that this is the mean of all xn that belongs to the cluster k.

Therefore, the algorithm in every iteration firstly assigns points to their

nearest cluster center and then updates the cluster center based on the mean

of the points of that cluster. This is repeated until the algorithm converges.

The algorithm always converges, but note that it does not have to be a

global minimum (MacQueen et al., 1967).

As stated above, the number of clusters is given to the algorithm. Thus,

there is the problem of choosing the right number of clusters. The rule

of thumb is running the algorithm multiple times for different numbers of

clusters and choosing the number for which the value of converged J will stop

significantly decreasing (Mirkin, 2011). The J is commonly called Within-

Cluster-Sum of Squared Errors.

In figure 2, we present an example of the K-means algorithm used on

two-dimensional data for 4 clusters. The plot was generated in Python

following an example by VanderPlas (2016).

Figure 2: Example of K-means
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3.2 Value at Risk (VaR)

Initially, we should say what risk is. Jorion (2006) defines risk as the volat-

ility of unexpected outcomes. Risk is usually seen as the probability of loss.

Measurements of the risk are important in the finance world as the economic

agents are taking a risk for their actions, and they should take it into ac-

count. The future is not certain, and investors should make a decision based

on the level of risk they are able to accept (Markowitz, 1952).

Value at Risk (VaR) is a statistical risk measure of potential losses (Jor-

ion, 2006). It was developed at J.P.Morgan in the 1980s. Researchers of this

investment bank were looking for simple and understandable risk measures,

and so the managers of the bank could take risk into consideration when

making decisions. The methodology of VaR was published by J.P.Morgan

with their simplified version of the bank’s internal model in 1994. VaR was

quickly adopted by other financial institutions and also become standardly

used in banking regulations.

Hull (2015) is introducing VaR as 100 ·α percent certainty that in time

T we will not lose more than V dollars. Where for the given stock or the

portfolio V denotes its VaR with respect to two parameters, confidence level

α and time horizon T.

To express that mathematically, let us have profit-loss random variable

X, for better intuition, we define flipped profit-loss variable Y = −X. Thus,

profits are negative and losses are positive. Then we define VaR at confidence

level α ∈ [0, 1] with the following formula:

V aRα(X) = inf{y : P (Y ≤ y) ≥ α}

As noted by Jorion (2006), there are 3 main ways of computing VaR

in practice. The parametrical approach assumes that the distribution of the

returns is from the parametric family, usually normal distribution. The cal-

culation then involves estimating the parameters from the data, in the case

of normal distribution, it is the mean and standard deviation. These para-
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meters are then used for calculating the quantile of the assumed distribution

which gives us VaR, based on the confidence level we want.

Another method is using the concept of the Monte Carlo simulations.

The Monte Carlo method is to simulate a random process multiple times,

which recreates a new sample of observations. This needs an assumption

of the distribution of the data as in the parametrical method, or the dis-

tribution of data can be estimated with a different technique. After that,

the profits and losses are simulated for a given number of simulations. The

number of simulations is commonly very high, which makes the method

very computationally intensive. VaR is then calculated as a quantile of the

simulated data based on the wanted confidence level.

The last method, the one used in the thesis, is the historical approach.

This method does not need any assumption about the distribution of the

data. It is simple derived as quantile from the historical data. For VaR

at the 0.95 confidence level, we can imagine it as that we sort profit-loss

historical observations and V aR0.95 is a cut-off value that only 5 percent of

losses are above this value.

3.3 Techniques for stock return prediction

In this part, we are going to describe methods for predicting future re-

turns. This involves Random Forest as the classifier to predict the direction

of the stock price and the GARCH model for modeling the magnitude of

this change. Before describing the Random Forest, we must introduce the

Decision Tree model as an important part of the Random Forest.

3.3.1 Decision Tree

Decision Trees, also called Classification and Regression Trees, is a simple

and intuitive tree-like model (Breiman et al., 1984), (Bishop, 2006). Building

the tree is done by splitting the nodes into two daughter nodes. The splits

are determined by the splitting criterion. The splitting will create non-
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overlapping smaller regions in the predictor space. The example of that we

can see in figure 3, where is Decision Tree demonstrated on two-dimensional

space. On the left side of the figure, we can notice that the space was splitted

into smaller regions, and on the right side is an example of the simple tree

structure belonging to that space.

Figure 3: Example of Decision Tree

Source: Bishop (2006)

As we can notice that the tree is made in a recursive way. Firstly space

is divided by θ1 then the two new regions are divided independently by

different criteria. The first node is called a root node, nodes ”in the middle”

which are split into the new two nodes are called internal nodes, and the

final node is called a leaf node.

The splitting stops (the leaf node is created) when the node contains

only one observation or some of the stopping parameters are satisfied. The

most common stopping parameters are:

• Maximal depth controls the size of the tree, it represents the max-

imum number of nodes on the way to the leaf node.

• Minimal samples split determines the minimal number of observa-

tions in the node for continuing in the splitting.

• Minimal samples leaf regulates for the minimal number of observa-

tions in leaf node (final node).
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As noted by Bishop (2006), the determination of the optimal structure

of the Decision Tree is computationally very demanding, and for most cases,

it is computationally infeasible. Thus, every step is determined by choosing

the decision with the best immediate gain in performance, this is tackled by

using a greedy algorithm. But with this approach, the convergence to the

optimal Decision Tree is not assured, but we can reduce this issue by using

Random Forest described in the section 3.3.2.

The performance measure of the split for regression tasks is usually the

sum of squares error. In the case of the classification problem, the measure

is commonly Giny index or cross-entropy (Bishop, 2006). We are going to

define only Gini index, as it is the one used in the thesis:

Gini index =
K∑︂
k=1

pk(1− pk)

where K is a number of classes and pk indicates the proportion of data

points in the given subset which belongs to the class k, where k = 1, ..., K.

In the thesis, we are working with a binary classification problem (K = 2),

price direction prediction. Thus, we can further simplify this equation in

the following way:

Gini index = 2p(1− p)

where p denotes the proportion of data points in a given subset that belongs

to the first class. It is easy to derive that maximum for the Gini index is at

p = 0.5 and the index is equal to zero when p = 0 or p = 1.

The decision tree algorithm finds the best split that for the two new

nodes calculates Gini indices. Then the Total Gini index is derived as the

weighted mean of these two Gini indices, where weights indicate the propor-

tional size of the nodes. The goal of the split is to achieve the lowest Total

Gini index.

3.3.2 Random Forest

As stated above, the algorithm used in the Decision Tree does not have to

converge to the optimal model. This instability can be reduced by using en-
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semble technique, bagging or extended version of these two, Random Forest

(Hastie et al., 2016). Before describing the Random Forest, we are going to

briefly introduce ensemble and bagging:

• Ensemble learning is based on using a high number of models (De-

cision Trees in our case), every model is trained, and the prediction is

derived from the voting of the models. It is important that predictions

between models do not have a very high correlation. The variation

between models can reduce the mistakes of a single model. An en-

semble model with perfect correlation would act similarly to the single

model.

• Bootstrap aggregating (Bagging) is part of the ensembling tech-

niques. The important part of bagging is drawing random samples with

replacement from the training data. Thus, every model is trained on a

different subset of the original data. The Decision Trees are sensitive

to even a slight change in the data, and this technique reduces the final

variance of the predictions to make them more robust to slight changes.

The averaging multiple Decision Trees trained on a different subset of

the data give us more stable outcomes (Hastie et al., 2016).

Random Forest is extending these methods by random choice of features

during every split. Thus, the procedure is as follows; firstly drawing random

subset with replacement as in Bagging, then the Decision Tree is trained on

this subset. However, during each split, random m features is selected, for

classification the default setting of m is the square root of the number of

features.

The idea is that when some feature is very important, which means

that the feature is responsible for a very big part of all splits. Then with

the Random Forest approach, this feature’s presence is reduced, and the

importance of others is increased. This is the main difference to Bagging.

Although a single tree’s predictive power is lower, this decrease is averaged

in all trees and is beneficial for the Random Forest method (Hastie et al.,
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2016).

Performance of the Random Forest will be evaluated based on these

metrics:

• Accuracy - a fraction of right predictions

TP + TN

TP + TN + FP + FN

• Precision - a fraction of correct positive predictions

TP

TP + FP

• Recall - a fraction of correctly predicted real positive

TP

TP + FN

where TP is true positive, TN true negative, FP false positive, and FN

false negative

3.3.3 GARCH Model

The generalized autoregressive conditional heteroskedasticity model (GARCH)

is a technique for modeling volatility, assuming that variance follows a mean-

reverting process. The model was proposed by Bollerslev (1986) as an ex-

tension of the ARCH model. The ARCH model is describing volatility using

error terms from previous periods. GARCH model is extending ARCH with

the use of past volatility as well. The difference is that ARCH is assuming

an autoregressive process, but GARCH is assuming a more general autore-

gressive moving average process.

We are going to present only GARCH(1,1), which is the most simple

version of GARCH. GARCH(1,1) is convenient for financial data as Miah

et al. (2016) showed that GARCH(1,1) achieved a better result in modeling

volatility than the more complicated methods.

The ”(1,1)” in GARCH(1,1) specify that the current variance is depend-

ent on the most recent observation. GARCH(1,1) is defined in the following

18



way:

Rt = µ+ ϵt

ϵt = σt ∗ ζ

σ2
t = ω + αϵ2t−1 + βσ2

t−1

where Rt denotes asset return with mean µ and error term ϵt. ϵt is related

to the volatility and the white noise ζ, white noise is a random variable with

zero mean and no correlation between the values. First-term in the equation

ω denotes the weight of long-run average variance rate VL, ω = γVL. Inter-

pretation of the next parameters is following, α represents the persistence

of the short-term shocks, and (α+ β) represents the persistence of the long-

term shock (Campbell et al., 1996). For the process to be stable, we require

(α+ β) < 1 (Hull, 2015). The difference between general GARCH(p,q) and

GARCH(1,1) is that the general version of the model for estimating σ2
t is

using the most recent p observations of ϵ2 and the most recent q observations

of σ2.

An essential part of the functionality of the model is assuming that ϵt

are following normal distribution, although the model can be adjusted to

t-distribution. As noted by Hansen & Lunde (2005), the returns of stock

are commonly more heavy-tailed than the normal distribution. Thus, we are

using GARCH(1,1) with the assumption that ϵt are following t-distribution.

Another assumption is that ϵt needs to be uncorrelated as they are

related to the white noise.

3.4 Mean-Variance Optimization (MVO)

The final step in our portfolio construction is the optimization of weights

of the given assets. We are going to introduce Mean-Variance Optimization

(MVO) by Markowitz (1952). Harry Markowitz with his work is widely

considered as the founder of the Modern Portfolio Theory.

Markowitz’s principal claim is that investors should not only focus on

maximizing expect returns of the portfolio, but they should take the risk into
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account as well. In the MVO, the risk is represented as the portfolio variance.

This risk-reward approach is a mathematical technique for diversification in

investing. It follows the idea that by investing in different types of assets,

the investor is taking lower risk than by investing in only one type of asset.

In defining the MVO, we follow Dupačová et al. (2006), for N assets,

we define the weight vector as w = (w1, ..., wN)
T , where wi denotes how big

part of the initial wealth was invested into the ith asset. It is clear that∑︁N
i=1wi = 1. In the thesis, we also add another constraint that wi ∈ [0, 0.2],

for every i. Thus, we forbade short-selling and, to avoid corner solution, we

allow for every asset’s weight to be maximally set to 20 percent. This will

ensure diversification across assets.

The expected return of the ith asset we denote as ri. Therefore, the

expected return of the portfolio is rp = rTw, where r is the vector of ri.

Then we define covariance matrix V = (σi,j), where σi,j = cov(ri, rj); i, j =

1, ..., N . Note that for i = j, it is the variance of returns for ri. The variance

of the portfolio (risk) is given by σ2
p = wTV w. Remark, Dupačová et al.

(2006) are using the square root of σ2
p (standard deviation), but in this, we

are following the setting from PyPortfolioOpt, Python library for portfolio

optimization, where the variance is used.

This leaves us with the following optimization problem:

rp = rTw

σ2
p = wTV w

N∑︂
i=1

wi = 1

wi ∈ [0, 0.2], i = 1, ..., N

There are 4 main ways how to solve these equations, depending on the

goal of the investor. Remark, we will not state the constraints for weights

anymore as they are the same for all methods.

• Maximize return for a given risk

Let us consider that the maximal risk which the investor is able to take
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is σ2
MAX . Then the setting is following:

Maximize

rTw

Constraint

wTV w ≤ σ2
MAX

• Minimize risk for a given return

Let us consider that the investor wants at least a return rMIN from the

portfolio. Then he is minimizing the risk for this return:

Minimize

wTV w

Constraint

rTw ≥ rMIN

• Global minimum-variance portfolio

This method ignores the expected returns and only focuses on risk

minimization. Therefore:

Minimize

wTV w

• Maximize Sharpe ratio

Sharpe ratio is the return-risk ratio derived by Sharpe (1966), and is

given by the equation:

S =
rp − rf√︁

σ2
p

where rf denotes the return of a risk-free asset, the default value of rf in

PyPortfolioOpt is equal to 0.02. However, the thesis omit the problem

of choice between risk-free and risky assets. The thesis focus on optim-

ization between risky assets, and our main goal is a demonstration of

machine learning during the risky side of portfolio construction. Thus,

we will set risk free rate to 0, which simplify the maximization of the

Sharpe ratio into the following equation:

Maximize
rTw√
wTV w
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For details, the thesis refers to Dupačová et al. (2006). The thesis will

optimize the portfolio by maximizing the Sharpe ratio as it is related to the

way we are selecting stocks from clusters, where we are using return/risk

metric.

To summarize this section, we firstly described unsupervised learning

techniques, PCA and K-means. Then we introduced VaR. Followed by a

description of supervised learning techniques, Random Forest and GARCH.

Lastly, we presented MVO.
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4 Data Description and Processing

For the analysis, we wanted to use companies from the Standard and Poors

500 (S&P500) index. However, the list of companies in S&P500 is regularly

changing. This brings problems with choosing the dataset for clustering

companies. The goal is rebalancing the portfolio during the year 2020; thus,

the best data for clustering would be from the end of the year 2019. Never-

theless, we could not find the dataset from this date as most of the data on

the internet is updated to the current date.

Therefore, the chosen dataset for clustering (more described in the sec-

tion 4.1) comes from the second half of 2018, one year away from the ideal

dataset from the end of 2019. The drawback is that we are going to use the

outdated list of companies in the S&P500 index. When we compared this

outdated version to the current index (start of the 2021), we found out that

101 companies are not in the current index and were replaced with different

companies.

Unfortunately, we have to filter out 63 companies because their time

series for returns predictions were not long enough. We are using data from

the end of 2016 to the end of 2020, where 3 years of data are for training. Out

of 63 companies, 59 companies are not currently in the S&P500 index, and

the data are mainly missing because the companies were merged or acquired

by another company. The remaining 4 companies were too young to provide

enough data for prediction. This leaves us with 442 assets. Remark, there

are 505 assets in the clustering dataset because it includes 5 companies

with dual-class stock. Because of the filtering, we have survival bias in the

dataset, but we assume that the bias is lower than if we use the current list

of companies in the index.

In the following sections, we are going to present our datasets and the

operations with them. Firstly, we will introduce the dataset for clustering,

and then we will move to the dataset for return predictions.
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4.1 Data for Clustering

The dataset was obtained from DataHub1. It is a cross-sectional dataset of

companies in the S&P500 from the second half of 2018. The dataset provides

10 features for our analysis. The features and their description is following:

• Dividend Yield

It is expressed in percents, and it represents the amount of dividend

paid out relative to the price of the asset. It is calculated by dividing

dividend by the price of the asset.

• Earnings per Share (EPS)

Demonstrates profitability of the company. It is simply earnings (profits)

divided by the number of available shares.

• Price to Earnings Ratio (P/E Ratio)

Closely related to the EPS, it is derived as the ratio of the price of share

to the EPS.

• EBITDA

Proxy of the earning potential. The acronym corresponds to the earn-

ings before interest, taxes, depreciation, and amortization.

• Book Value

Important number in the balance sheet of the company derived as total

value of an asset minus depreciation and other expenses.

• Price to Book Ratio (P/B Ratio)

The measure of comparison of the price and book value calculated as

the ratio of the market price to the book value.

• Price to Sales Ratio (P/S Ratio)

This ratio shows a comparison between price and the sales of the com-

pany, derived as market price divided by the company’s revenue.

1https://datahub.io/JohnSnowLabs/standard-and-poors-500-companies-list-with-financial-

information
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• Market Capitalisation

Demonstrate the value of the company held by shareholders. It is calcu-

lated by multiplicating the price of the company’s share with the num-

ber of shares held by shareholders, also denoted as shares outstanding.

• 52-Week Low

Denotes the lowest price of the stock during the last 52 weeks.

• 52-Week High

Opposite of the 52-Week Low. The highest price of the stock for the

last 52 weeks.

In the Dividend Yield feature, there were altogether 69 missing values,

these missing values denoted that the company is not paying out dividends.

Thus, missing values were replaced with 0.

Another feature with the most missing values was the P/E Ratio with

46 missing values, and the next was EBITDA with 28 and the third P/B

Ratio with 18. The remaining features had 2 missing values at maximum.

To not lose the information, we decided to replace missing values in these

features with the mean of the feature.

The last operation with the dataset is norm-standardization because the

dataset will be used to fit PCA. As Yu et al. (2014) suggest, it is an essential

step in using PCA because the algorithm is sensitive to the magnitude of

the data. Norm-standardization for variable X is given by:

Z =
X −mean(X)

std(X)

4.2 Data for Return Predictions

Time series for given assets were obtained from Yahoo Finance using Python

package pandas datareader. For each asset, we loaded adjusted close price

and daily volume. Adjusted close price denotes the closing with adjustment

of dividends and splits. Volume represents the number of shares traded

during the day for a given asset.
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Firstly, we define d-days2 returns from adjusted close price, which are

calculated by the following formula:

Rd,t =
Pt − Pt−d

Pt−d

where Pt denotes adjusted closing price at time t. We calculated 21-days

returns (d = 21) and daily-returns (d = 1).

4.2.1 Features for Random Forest

For the rest of the section, we will be deriving features for predicting stock

direction by Random Forest. Firstly, we need to denoise raw data of ad-

justed closing prices. Following Basak et al. (2019), we will use exponential

smoothing given by:

S0 = P0

St = αPt + (1− α)St−1, t > 0

where α ∈ (0, 1) is a smoothing factor. Various levels of smoothing factors

were tried out, based on the correctness of the predictions of Random Forest

we choose α = 0.3.

From the smoothed price we derived 5 features that were inspired by

Basak et al. (2019) and Tadlaoui (2017). Remark, all features were derived

using smoothed adjusted closing price. Features are following:

• Stochastic Oscillator (%K)

Stochastic Oscillator was introduced by Lane (1984). The feature provides

a comparison between price and the high-low 14-days range. It is cal-

culated as:

%K = 100
Pt − Low14

High14 − Low14

where Low14 and High14 are the lowest and highest closing prices over

the last 14 days.

• Relative Strength Index (RSI)

RSI is commonly used as an indicator of overbuying or overselling of
2In the thesis, by d-days we mean d-trading days.
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the given asset, derived by Wilder (1978). The formula is following:

RS =
avg gain14

avg loss14

RSI = 100− 100

1 +RS

where avg gain14 and avg loss14 denote respectively average positive

and negative change in the price of the asset over the last 14 days.

• Moving average convergence divergence (MACD)

MACD is the indicator of momentum, introduced by Appel (2005).

The indicator shows changes in trend and strength of that change. It

is calculated as the difference between two moving averages:

MACD = EMA12 − EMA26

where EMAt is t-day exponential moving average of the price.

• Signal MACD

It is derived from MACD:

Signal MACD = EMA9(MACD)

Signal MACD and MACD are used together. If the MACD gets over

the signal, it is indicating that the price is going up and vice versa if

the MACD is below the signal.

• 7-Day Difference between On Balance Volume (OBV)

OBV is an indicator of trends by analyzing the traded volume (Gran-

ville, 1976). If the price goes up, the traded volume is added to the

OBV, and if the price goes down, the volume is subtracted. The for-

mula is following:

OBVt = OBVt−1 +

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
V olumet, if Pt > Pt−1

0, if Pt = Pt−1

−V olumet, if Pt < Pt−1

Basak et al. (2019) used OBV in their analysis as it is. However, when

we were examining the importance of variables in Random Forest, the
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importance of OBV was not sufficient. Thus, we derived a 7-day differ-

ence between OBV, which achieved higher importance in the algorithm.

The formula is following:

diff7 OBVt = OBVt −OBVt−7

We norm-standardized this variable for each asset to get the same scale

across assets.

• Label Variable

Finally, we derived a label variable for the prediction of the stock dir-

ection. Remark, the label variable is derived from the original non-

smoothed adjusted close price. It is given by:

Yt =

⎧⎪⎨⎪⎩1, if Pt+21 ≥ Pt

−1, if Pt+21 < Pt
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5 Results

In this section, we are going to present empirical results. Firstly, we will

cluster our stock universe using PCA and K-means algorithms. This step

will provide us groups of similar stocks. Then we will, by VaR and prediction

of returns, choose the best stock from each cluster.

Using the selected stocks, we will construct two portfolios. Firstly,

using MVO, we denote this portfolio as ”selected MVO”. Secondly, using

the simple 1/N rule, we name this portfolio ”selected 1/n”. This provides

us the comparison of how big benefit provides the optimization with MVO

using predicted returns with the selection. As the main benchmark, we

will construct a portfolio from all stocks using the 1/N rule, this portfolio

represents the market, and we name it the ”1/N” portfolio. For interpreting

the results, every portfolio will start with initial 100 units.

Rebalancing will be done every 21-days during 2020. The periods fol-

lows table 1.

Table 1: Rebalancing Calendar

Start End

Period 1 02.01.2020 03.02.2020

Period 2 03.02.2020 04.03.2020

Period 3 04.03.2020 02.04.2020

Period 4 02.04.2020 04.05.2020

Period 5 04.05.2020 03.06.2020

Period 6 03.06.2020 02.07.2020

Period 7 02.07.2020 03.08.2020

Period 8 03.08.2020 01.09.2020

Period 9 01.09.2020 01.10.2020

Period 10 01.10.2020 30.10.2020

Period 11 30.10.2020 01.12.2020

Period 12 01.12.2020 31.12.2020
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5.1 Clustering: PCA and K-means

Initially, we will use PCA3 on the norm-standardized dataset described in

the section 4.1. The goal of using PCA is reducing the dimensionality of the

data. Therefore, reducing the complexity of clustering, but also eliminating

the highly intercorrelated variables. PCA achieved this by transforming

variables into principal components as we described in the methodology

3.1.1. The table 2 shows how much variance of the original data is explained

by each principal component. First 6 principal components are explaining

almost 90 percent of the variance. Therefore, we are choosing 6 principal

components for further analysis.

Table 2: Explained Variance by Principal Components

Principal Component PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

Explained Variance (%) 32.35 17.38 13.40 10.53 8.42 7.60 5.53 3.26 1.42 0.12

Cumulative Variance (%) 32.35 49.73 63.13 73.65 82.07 89.67 95.20 98.46 99.88 100

The next step is clustering the companies using the K-means4 algorithm.

We firstly run K-means for 1 to 40 clusters to obtain Within-Cluster-Sum of

Squared Errors (WSS). The WSS was plotted against a number of clusters

in the figure 4.

Figure 4: WSS from K-means

3We used PCA from Python library scikit, sklearn.decomposition.PCA
4sklearn.cluster.KMeans
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The good number of clusters seems to be 11 as the WSS stops decreasing

so drastically. We tried 11 clusters, but it did not achieve what we wanted

from clustering. K-means with 11 clusters generates 1 big cluster and a lot

of small ones. It seems that with this setting, the algorithm is not able to

break the big group ”in the middle”.

Therefore, we choose 16 clusters, and it provides a better split of the

dataset. Evaluating the quality of clusters derived by the K-means is dif-

ficult. We are at least presenting the table 3, where we are comparing our

clusters with GICS sectors5.

Table 3: Comparison of Clusters with GICS Sector

GICS Sector / Cluster 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Consumer Discretionary 6 11 1 5 0 0 12 0 16 1 15 2 0 1 1 1

Consumer Staples 4 11 0 7 0 1 1 0 5 0 1 0 0 2 0 1

Energy 0 8 0 2 0 1 6 0 2 0 4 0 0 1 0 4

Financials 9 16 0 3 0 0 4 0 18 0 3 2 0 1 0 3

Health Care 11 4 0 8 0 1 0 0 5 0 15 3 1 0 1 3

Industrials 8 14 0 3 2 0 2 0 14 0 14 0 0 2 0 0

Information Technology 1 12 0 5 0 2 5 2 5 0 17 0 2 1 0 8

Materials 2 5 0 0 0 0 2 0 9 0 4 0 0 0 0 0

Real Estate 0 0 0 0 0 0 5 0 0 0 0 0 1 0 0 21

Telecommunications Services 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0

Utilities 0 1 0 0 0 0 18 0 8 0 0 0 0 0 0 0

Cardinality 41 82 1 33 2 7 56 2 82 1 73 7 4 8 2 41

Interesting is that the ’Real Estate’ sector is mostly in one cluster. Sim-

ilar is for the ’Utilities’ sector, where 18 companies are in the 7th cluster with

12 companies from ’Consumer Discretionary’ and few other companies. The

remaining sectors are spread across the clusters. There are two big clusters

with 82 companies. But there are 6 clusters with less than 5 companies. It is

unreasonable to choose the best asset from a cluster with 2 assets. Thus, we

decided to merge these 6 clusters into one. We can view the merged cluster

as the cluster of outliers. The cardinality of the final clusters is presented in

table 4.
5The Global Industry Classification Standard (GICS) is used by S&P to separate companies into

industrial sectors.
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Table 4: Cardinality of Cluster

Cluster 1 2 3 4 5 6 7 8 9 10 11

Cardinality 41 82 12 33 7 56 82 73 7 8 41

5.2 Predictions and Construction of Portfolio

For every period in the table 1, we are now going to choose one stock from

each cluster. We firstly will calculate VaR for each asset. The expected

return will be estimated by the prediction of direction and volatility. Then

based on the return/risk metric, we will select stocks for the portfolio. All

these steps are done in a three-year rolling window presented in the table 5.

Table 5: Rolling windows for prediction

Start train End train RF End train Forecast day

Period 1 03.01.2017 02.12.2019 02.01.2020 03.02.2020

Period 2 02.02.2017 02.01.2020 03.02.2020 04.03.2020

Period 3 06.03.2017 03.02.2020 04.03.2020 02.04.2020

Period 4 04.04.2017 04.03.2020 02.04.2020 04.05.2020

Period 5 04.05.2017 02.04.2020 04.05.2020 03.06.2020

Period 6 05.06.2017 04.05.2020 03.06.2020 02.07.2020

Period 7 05.07.2017 03.06.2020 02.07.2020 03.08.2020

Period 8 03.08.2017 02.07.2020 03.08.2020 01.09.2020

Period 9 01.09.2017 03.08.2020 01.09.2020 01.10.2020

Period 10 03.10.2017 01.09.2020 01.10.2020 30.10.2020

Period 11 01.11.2017 01.10.2020 30.10.2020 01.12.2020

Period 12 01.12.2017 30.10.2020 01.12.2020 31.12.2020

All methods will follow Start train - End train period except for

Random Forest. The ending period for training the Random Forest must be

shifted back by 21-days, because in these 21-days we would not know the

label variable (direction).
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5.2.1 VaR

We calculated VaR using the historical approach described in the section

3.2 from a 3-years rolling window of 21-days returns. We tried V aR95 and

V aR99. The V aR99 seems to be too strict for 3-year data. Thus, we choose

V aR95.

We then removed from each cluster 50 percent of stocks with the highest

VaR. This assures us that the riskiest assets will not be in further analysis.

Because the GARCH model was commonly unstable for the highly volatile

stocks and overestimated them a lot. Also this step lowers the complexity

of the following task.

5.2.2 Random Forest - Direction Prediction

For setting parameters in Random Forest6 we firstly run GridSearch Cross-

Validation7 which randomly split the dataset, into training and validation

datasets. Then the model is trained for multiple settings and GridSearch

chooses the best performing setting based on performance on the validation

dataset.

After inspecting the recommended setting, we decided to rather use the

default setting. Even though the recommended setting had better accuracy,

but it failed to predict negative returns in the validation set. Therefore the

setting is following: n estimators=1018, max depth=None, min samples split=2,

min samples leaf=1

Also, we made a decision if to train the model on the whole dataset or

on each asset separately. The model trained for each asset separately gives

better results on the validation set. Thus, we choose this approach.

The procedure is following, for each stock we take features derived in the

section 4.2 from period Start train - End train RF denoted in the table

5. Then the dataset is randomly split into training and validation datasets

6sklearn.ensemble.RandomForestClassifier
7sklearn.model selection.GridSearchCV
8Default is 100, but we changed it to 101 to have an odd number of trees.
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by a ratio of 80:20. We trained the Random Forest on the training dataset

and then obtain performance metrics on the validation dataset. For better

predictions, we subsequently trained the model using all data (training +

validation dataset). Moreover, using the features from End train date,

we predicted the direction of the asset’s price for the next 21 days. This

was done for all stocks (= the better half, which remained after the VaR

filtering).

In the table 6, we present average accuracy, precision, and recall from

the validation set for every period. The average of metrics is stable over

the periods. The accuracy is between 0.76 and 0.78. Precision is a little bit

higher but similar to the accuracy and recall is mostly around 0.84.

Table 6: Average performance of Random Forest

Accuracy Precision Recall

Period 1 0.765 0.781 0.854

Period 2 0.762 0.768 0.859

Period 3 0.769 0.789 0.854

Period 4 0.763 0.779 0.834

Period 5 0.767 0.788 0.842

Period 6 0.772 0.800 0.834

Period 7 0.764 0.771 0.844

Period 8 0.768 0.787 0.846

Period 9 0.774 0.792 0.852

Period 10 0.763 0.783 0.841

Period 11 0.765 0.776 0.842

Period 12 0.766 0.786 0.843

5.2.3 GARCH - Volatility Prediction

Firstly we checked for assumptions in the GARCH model. In the figure 5, we

present a histogram of standardized residuals ( ϵt
σt
) obtained in the GARCH

process and ACF plot for the daily returns of the Google stock. The distri-

bution of standardized residuals seems to be close to the t-distribution. The

second plot, the ACF plot, investigates the autocorrelation in the stand-
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ardized residuals. On the x-axis, we can see a number of lags and their

significance. The shaded area corresponds to the 5% confidence level. Most

of the lags are in the area of the 5% confidence level, except the 5th, 8th,

and 11th lags that are a little bit out of the shaded area. Nevertheless, there

is no pattern in the points that represent autocorrelation. From that, we

can conclude that there is no significant autocorrelation in our data.

Figure 5: Histogram of standardized residuals and ACF plot - Google

For the volatility forecast, we fitted the GARCH model9 for each stock

separately using daily returns from Start train - End train period (table

5). Then we forecast daily variance for the next 21-days. From these 21

predicted values, we calculated the mean and multiply it by 21 to transform

it to 21-days variance. Volatility was then derived as the square root of the

21-day variance.

The predicted volatility was then used to calculate the expected return

by multiplicating the volatility with the prediction of the asset’s direction

from the Random Forest.
9Using arch model package in Python (arch model.arch)
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5.2.4 Portfolio Construction

Initially, we chose one stock from each cluster. The decision was made using

both predicted returns and VaR by the following formula:

return/risk =
Predicted Return

V aR95

The stock with the highest return/risk was chosen from each cluster. This

leaves us with 11 stocks out of the total 442. The return/risk can be

problematic if the VaR is negative. It could theoretically happen, but not

likely in reality, as the given stock would need to have almost only positive

returns. We did not observe any negative VaR in our data. Thus, we did

not need to handle this case.

From the 11 stocks, the ”selected 1/n” portfolio was created in the way

that every stock was bought to represent 1/11 of the whole portfolio.

The next step is constructing the ”selected MVO” portfolio. The MVO

takes two arguments, expected returns and covariance matrix. We used

the predicted returns derived in the section 5.2.2 and 5.2.3 as the expected

returns. The covariance matrix was estimated from historical daily-returns

from Start train - End train period (table 5).

All calculations were done using the PyPortfolioOpt Python package.

The covariance matrix10 was transformed from daily data to the 21-days by

setting the frequency to 21; thus, it matches the 21-days expected returns.

The weights for the given assets were then calculated with constraint to

maximize the Sharpe ratio.

The table 7 presents portfolios for the first period. The right direction

was predicted for 8/11 of these stocks. The accuracy of the prediction of

the exact returns is worse. As we can notice that the best prediction is for

MA. Another good prediction was made forCHTR, but the remaining were

mispredicted by more than 0.015. This confirms the nature of the returns

data as they are hard to predict. Although, the ”selected 1/n” and ”selec-

ted MVO” portfolios achieved positive returns during the first period. The
10pypfopt.risk models.sample cov
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Table 7: Period 1

Company Symbol cluster forecast return weights real return

TMO 1 0.05594 0.02412 -0.02460

WM 2 0.04319 0.10650 0.07416

EQIX 3 0.05813 0.07782 0.04186

CSCO 4 0.06701 0.04120 -0.03903

MSFT 5 0.05844 0 0.08567

CNP 6 0.05606 0.2 -0.02263

NEE 7 0.04199 0.18332 0.11814

ZTS 8 0.06117 0.03453 0.01175

CHTR 9 0.07295 0.12240 0.08486

INTU 10 0.10197 0.2 0.06459

MA 11 0.07058 0.01010 0.07107

Initial Value Ending Value Return

1/N 100 98.19471 -0.01805

Selected 1/n 100 104.23471 0.04235

Selected MVO 100 105.05122 0.05051

”1/N” portfolio, representing the market, finished with a negative return.

Therefore, we can conclude that clustering and selecting the stock provide

a positive effect in constructing a portfolio.

In the next table 8, we present results for the third period, which take

place during March 2020. There we can see a reaction to the start of the

COVID pandemic. We failed to predict the right direction for all selected

stocks as all the actual returns are negative. It is important to note that

only 14 from 442 assets achieved a positive return. However, the return for

the ”1/N” portfolio was -0.26241. Thus, the fall in the market was by more

than one quarter. Nevertheless, the clustering and selection of the stock

seem to provide at least a little positive effect. The return for ”selected

1/n” was -0.16155, and for ”selected MVO” -0.18552. Thus, the selection of

stocks achieved a smaller drop in the portfolio value.

The remaining periods are presented only in the Appendix A because

we can see their results in the next section, where we examine the overall
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performance.

Table 8: Period 3

Company Symbol cluster forecast return weights real return

TMO 1 0.13186 0 -0.11899

FIS 2 0.14810 0.18001 -0.21684

EQIX 3 0.10659 0 -0.02996

UNH 4 0.20980 0.2 -0.16564

MSFT 5 0.18112 0.07957 -0.08965

D 6 0.14362 0.2 -0.20184

NEE 7 0.11549 0.2 -0.19761

FISV 8 0.12257 0 -0.20886

MTD 9 0.11120 0 -0.15289

SPGI 10 0.16181 0.12534 -0.18483

MA 11 0.17366 0.01508 -0.20995

Initial Value Ending Value Return

1/N 92.91590 68.53387 -0.26241

Selected 1/n 102.43842 85.88939 -0.16155

Selected MVO 103.44463 84.25386 -0.18552
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5.3 Evaluation of Results

Figure 6: Value of Portfolios

Figure 7: Returns for Portfolios
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It is evident that the ”selected” portfolios are above the ”1/N” (figure 6).

That is a good sign of the benefit of the clustering. However, when we

compare the ”selected” portfolios between themselves, then it seems that the

”1/n” strategy achieved better results than the strategy with MVO. Thus,

it does not support our hypothesis that MVO will improve performance.

The figure 7 shows returns of portfolios for every period. We can see

that the ”selected” portfolios were outperforming the ”1/N” mainly during

the first three periods. Then the differences diminished.

The average returns are higher for ”selected” portfolios than for the

”1/N” (table 9). The ”selected 1/n” has a higher average return by more

than 44 percent, and the ”selected MVO” has higher average returns by

34 percent than the market benchmark ”1/N”. In addition, both ”selec-

ted” portfolios achieved a lower standard deviation of returns (volatility),

which indicates that we were able to obtain some level of diversification of

the portfolio by using the clustering method. Furthermore, the annualized

Sharpe ratio is higher for the portfolios with clustering. Where ”selected

1/n” has twice as large Sharpe ratio as ”1/N”. Thus, it supports our claim

that by the selection of stocks from clusters, we will be able to outperform

the market.

Table 9: Results of Portfolios

Average Return Standard Deviation Annualized Sharpe Ratio

1/N 0.01672 0.11304 0.51236

Selected 1/n 0.02415 0.07759 1.07801

Selected MVO 0.02249 0.08497 0.91684

The comparison of ”selected MVO” and ”selected 1/n” shows that we

did not demonstrate the efficiency of MVO enabled with Random Forest and

GARCH predictions as showed by Tadlaoui (2017). But our analysis differs

significantly in the number of stock as we used a dataset of 442 stock. Fur-

thermore, we were not just focusing on the MVO, but on the stock selection

also.
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The results indicate that gains, in comparison to the ”1/N” portfolio,

were mostly due to clustering and selection of stocks. The application of

the clustering during the portfolio construction was already shown by Fulga

& Dedu (2012). However, we extended it with rebalancing the portfolio.

It seems that clustering and selecting the stocks from each cluster can be

practical as we were able to construct portfolio using just 11 assets from the

442 in total, and we accomplished higher average returns and lower volatility

than the ”1/N” market benchmark portfolio during the fluctuating year

2020. A portfolio with 11 stocks seems to be attainable for the individual

investor.

However, the better results for the ”selected 1/n” than for the ”selected

MVO” portfolio imply that the predictions of the returns were not accurate

enough to obtain better results with MVO.

We also tested various combinations of our model, as return prediction

with MVO without clustering, clustering with estimating returns only based

on historical data, etc. However, these combinations did not outperform the

presented ones. Thus, we decided to present them in the appendices to keep

the results readable and straightforward.

Appendix B compares the presented portfolios with MVO without any

machine learning techniques. The MVO has volatility similar to our ”se-

lected” portfolios, but the MVO has a lower Sharpe ratio than the market

benchmark because of the low average return.

Comparison of portfolios with a selection of stocks from clusters but

without stock prediction is in Appendix C. The expected returns were es-

timated from historical 21-days returns, then the process was identical to

portfolios presented above. Portfolios were able to outperform the market

benchmark but did not achieve the same result as portfolios with returns

prediction in terms of the Sharpe ratio. This demonstrates that the machine

learning predictions of returns improved our model.

Appendix D compares the 1/N strategy constructed from stocks that
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remained after filtering half of them from each cluster based on VaR in the

section 5.2.1. It shows that it was not the most influential step in our thesis

as the main benefit of this filtering seems to be that we obtain the subset

of assets with lower volatility. Although, it is an important step as we are

predicting returns using prediction of volatility. Therefore, it is a safety

step as very risky stocks were highly overestimated by Random Forrest +

GARCH approach.
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6 Conclusion

The main goal of the thesis was to use clustering of the stock universe

followed by selecting the stocks from each cluster to construct a portfolio

that will be able to outperform the market benchmark. Also, we wanted to

demonstrate the benefit of using MVO with the stock return prediction.

We conducted an analysis on 442 American stocks. Firstly by clustering

them based on information about the companies using PCA and K-means

algorithms. This approach splits our dataset into 11 clusters. The goal of

clustering was to pre-diversify our stocks universe. Based on these clusters,

we were constructing a portfolio that was rebalanced 12-times during 2020.

Every rebalancing started by calculating VaR. We filtered out 50 per-

cent of stocks from each cluster based on VaR. This was followed by returns

predictions for the next 21-days using a combination of the Random Forest

and the GARCH model. Then from each cluster, we picked 1 stock based on

return/risk value. Therefore, for each period, we ended with 11 stocks that

were used for portfolio construction by MVO and the naive 1/N approach.

Both portfolios were able to outperform the market benchmark during

2020 with higher average returns and lower volatility. The lower volatility

implies that the clustering helps us in diversifying the portfolio. However,

results indicate that the gain in returns was mainly achieved by clustering

and the selection of the stocks from clusters. As the 1/N portfolio from the

selected stocks accomplished better results than the portfolio using MVO.

Thus, we failed to demonstrate the benefit of MVO with machine learning.

We consider that it is mainly due to errors in return predictions; thus,

this part could be improved in further research. However, our proposed

model could still be practical as with clustering and picking the right stocks.

We were able to construct a portfolio with 11 stocks that were able to out-

perform the market benchmark. This low number of stocks in the portfolio

we consider obtainable for the individual investor.
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A Appendix 1

Table 10: Period 1

Company Symbol cluster forecast return weights real return

TMO 1 0.05594 0.02412 -0.02460

WM 2 0.04319 0.10650 0.07416

EQIX 3 0.05813 0.07782 0.04186

CSCO 4 0.06701 0.04120 -0.03903

MSFT 5 0.05844 0 0.08567

CNP 6 0.05606 0.2 -0.02263

NEE 7 0.04199 0.18332 0.11814

ZTS 8 0.06117 0.03453 0.01175

CHTR 9 0.07295 0.12240 0.08486

INTU 10 0.10197 0.2 0.06459

MA 11 0.07058 0.01010 0.07107

Initial Value Ending Value Return

1/N 100 98.19471 -0.01805

Selected 1/n 100 104.23471 0.04235

Selected MVO 100 105.05122 0.05051
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Table 11: Period 2

Company Symbol cluster forecast return weights real return

TMO 1 0.07846 0.04094 0.02607

FIS 2 0.05522 0 0.02868

AMZN 3 0.12873 0.19189 -0.01416

PFE 4 0.07850 0.2 -0.02959

WMT 5 0.05347 0.06010 0.02188

PEG 6 0.04435 0.14916 -0.06304

NEE 7 0.04161 0.18538 0.06328

FISV 8 0.06527 0.01154 -0.08004

GS 9 0.06834 0.06033 -0.12131

INTU 10 0.08090 0 0.00972

V 11 0.08938 0.10066 -0.03107

Initial Value Ending Value Return

1/N 98.19471 92.91590 -0.05376

Selected 1/n 104.23471 102.43842 -0.01723

Selected MVO 105.05122 103.44463 -0.01529

Table 12: Period 3

Company Symbol cluster forecast return weights real return

TMO 1 0.13186 0 -0.11899

FIS 2 0.14810 0.18001 -0.21684

EQIX 3 0.10659 0 -0.02996

UNH 4 0.20980 0.2 -0.16564

MSFT 5 0.18112 0.07957 -0.08965

D 6 0.14362 0.2 -0.20184

NEE 7 0.11549 0.2 -0.19761

FISV 8 0.12257 0 -0.20886

MTD 9 0.11120 0 -0.15289

SPGI 10 0.16181 0.12534 -0.18483

MA 11 0.17366 0.01508 -0.20995

Initial Value Ending Value Return

1/N 92.91590 68.53387 -0.26241

Selected 1/n 102.43842 85.88939 -0.16155

Selected MVO 103.44463 84.25386 -0.18552
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Table 13: Period 4

Company Symbol cluster forecast return weights real return

HUM 1 0.33247 0.15460 0.25901

FIS 2 0.25014 0 0.09794

ISRG 3 0.29683 0.04610 0.07327

UNH 4 0.30355 0.01994 0.19589

WMT 5 0.08814 0 0.04256

ES 6 0.25634 0.2 0.01904

NEE 7 0.24422 0.15093 0.01607

FISV 8 0.28182 0.12060 0.14411

REGN 9 0.10626 0 0.08636

OKE 10 0.50449 0.2 0.39416

CCI 11 0.24006 0.10783 0.07761

Initial Value Ending Value Return

1/N 68.53387 79.72347 0.16327

Selected 1/n 85.88939 96.86781 0.12782

Selected MVO 84.25386 97.57789 0.15814

Table 14: Period 5

Company Symbol cluster forecast return weights real return

HUM 1 0.18486 0.13188 0.04205

FIS 2 0.11837 0 0.08547

GOOGL 3 0.15814 0.15273 0.08795

GILD 4 0.14884 0.2 -0.07290

VZ 5 0.05893 0 0.01049

WELL 6 0.19414 0.11539 0.23900

NEE 7 0.08451 0 0.15344

L 8 0.22966 0.2 0.11934

REGN 9 0.09932 0 0.11528

CLX 10 0.08842 0.2 0.03362

MA 11 0.15471 0 0.14042

Initial Value Ending Value Return

1/N 79.72347 91.13490 0.14314

Selected 1/n 96.86781 105.27042 0.08674

Selected MVO 97.57789 103.68330 0.06257

VII



Table 15: Period 6

Company Symbol cluster forecast return weights real return

NOC 1 0.11167 0.2 -0.07736

SYF 2 0.23753 0.2 -0.07725

AMZN 3 0.07897 0.07781 0.16620

JPM 4 0.13960 0.09292 -0.10269

MSFT 5 0.06107 0 0.11275

WELL 6 0.19932 0.2 -0.10751

NEE 7 0.07742 0.00607 -0.05077

ZTS 8 0.08631 0 -0.03417

REGN 9 0.11545 0.2 0.03007

OKE 10 0.13772 0 -0.20774

AIV 11 0.12847 0.02319 -0.02691

Initial Value Ending Value Return

1/N 91.13490 88.14172 -0.03284

Selected 1/n 105.27042 101.67807 -0.03412

Selected MVO 103.68330 99.12620 -0.04395

Table 16: Period 7

Company Symbol cluster forecast return weights real return

WLTW 1 0.09520 0.2 0.04095

WM 2 0.07518 0.11373 0.03820

AMZN 3 0.11294 0.2 0.07667

UNH 4 0.09540 0.00276 0.01794

MSFT 5 0.07832 0 0.04984

WELL 6 0.14159 0.16590 0.00456

NEE 7 0.06302 0 0.12658

ZTS 8 0.08936 0.01636 0.12398

CHTR 9 0.08434 0.12045 0.13910

INTU 10 0.08759 0 0.02271

CCI 11 0.09476 0.18080 -0.03878

Initial Value Ending Value Return

1/N 88.14172 92.13949 0.04536

Selected 1/n 101.67807 107.24024 0.05470

Selected MVO 99.12620 103.13527 0.04044
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Table 17: Period 8

Company Symbol cluster forecast return weights real return

TMO 1 0.06622 0 0.03493

CHD 2 0.10705 0.2 0.02314

AMZN 3 0.11648 0.13879 0.12444

GILD 4 0.08811 0.08432 -0.08225

MSFT 5 0.13521 0 0.05209

FE 6 0.23681 0.2 -0.01864

ECL 7 0.11946 0.14435 0.09354

CTXS 8 0.12194 0.2 0.03847

CHTR 9 0.08466 0.03253 0.04670

INTU 10 0.08103 0 0.11383

V 11 0.08303 0 0.12052

Initial Value Ending Value Return

1/N 92.13949 96.88986 0.05156

Selected 1/n 107.24024 112.57083 0.04971

Selected MVO 103.13527 106.63703 0.03395

Table 18: Period 9

Company Symbol cluster forecast return weights real return

WLTW 1 0.07970 0.19601 0.01153

FIS 2 0.07372 0 -0.03369

AMZN 3 0.09175 0.2 -0.07941

KO 4 0.06207 0.08934 0.00933

VZ 5 0.04940 0.18473 0.00490

WELL 6 0.11020 0.11988 -0.02942

APD 7 0.09194 0.2 -0.02217

DHR 8 0.06684 0.01005 0.03110

MTD 9 0.06652 0 -0.00509

INTU 10 0.07396 0 -0.04274

V 11 0.07712 0 -0.04687

Initial Value Ending Value Return

1/N 96.88986 94.06759 -0.02913

Selected 1/n 112.57083 110.49815 -0.01841

Selected MVO 106.63703 104.55443 -0.01953
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Table 19: Period 10

Company Symbol cluster forecast return weights real return

UHS 1 0.14231 0.17455 0.03154

ABT 2 0.08444 0.12726 -0.02927

GOOG 3 0.09135 0.2 0.08786

DIS 4 0.07850 0 -0.01671

MSFT 5 0.08737 0 -0.04702

DUK 6 0.11340 0.2 0.02288

NEE 7 0.07521 0 0.03565

EW 8 0.10010 0.09819 -0.09230

MTD 9 -0.07222 0 0.02780

INTU 10 0.09904 0 -0.05147

AIV 11 0.13267 0.2 -0.09349

Initial Value Ending Value Return

1/N 94.06759 93.42858 -0.00679

Selected 1/n 110.49815 109.24722 -0.01132

Selected MVO 104.55443 104.15370 -0.00383

Table 20: Period 11

Company Symbol cluster forecast return weights real return

ROP 1 0.11528 0.06772 0.14181

FIS 2 0.13117 0.13228 0.20700

AMZN 3 0.15728 0.2 0.06058

UNP 4 0.10977 0 0.14765

MSFT 5 0.11331 0 0.07066

WU 6 0.14685 0.2 0.16255

ADM 7 0.14462 0.2 0.09153

PYPL 8 0.14938 0 0.16338

MTD 9 0.08564 0 0.16252

INTU 10 0.10717 0 0.13391

MA 11 0.17490 0.2 0.17406

Initial Value Ending Value Return

1/N 93.42858 109.62399 0.17335

Selected 1/n 109.24722 124.29996 0.13779

Selected MVO 104.15370 118.18617 0.13473
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Table 21: Period 12

Company Symbol cluster forecast return weights real return

TMO 1 0.09215 0.2 -0.01083

SYY 2 0.11871 0.04937 0.01130

EQIX 3 0.07913 0.01811 0.00225

JPM 4 0.11696 0.11953 0.06122

MSFT 5 0.06922 0 0.02872

ETR 6 0.06770 0 -0.08277

NEE 7 0.06336 0 0.04046

PYPL 8 0.11395 0.06153 0.08156

CHTR 9 0.08228 0.15146 -0.00106

SPGI 10 0.12171 0.2 -0.01672

AIV 11 0.13186 0.2 0.25198

Initial Value Ending Value Return

1/N 109.62399 112.57786 0.02695

Selected 1/n 124.29996 128.43686 0.03328

Selected MVO 118.18617 125.00071 0.05766
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B Appendix 2

Figure 8: Comparison of Values with MVO

Figure 9: Comparison of Returns with MVO

Table 22: Comparison of Results with MVO

Average Return Standard Deviation Annualized Sharpe Ratio

1/N 0.01672 0.11304 0.51236

Selected 1/n 0.02415 0.07759 1.07801

Selected MVO 0.02249 0.08497 0.91684

MVO 0.01148 0.08246 0.48211
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C Appendix 3

Figure 10: Comparison of Values with Portfolios with Historic Returns

Figure 11: Comparison of Returns with Portfolios with Historic Returns

Table 23: Comparison of Results with Portfolios with Historic Returns

Average Return Standard Deviation Annualized Sharpe Ratio

1/N 0.01672 0.11304 0.51236

Selected 1/n 0.02415 0.07759 1.07801

Selected MVO 0.02249 0.08497 0.91684

Selected historic 1/n 0.01835 0.08789 0.72325

Selected historic MVO 0.02110 0.09555 0.76480
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D Appendix 4

Figure 12: Comparison of Values with VaR 1/N

Figure 13: Comparison of Returns with VaR 1/N

Table 24: Comparison of Results with VaR 1/N

Average Return Standard Deviation Annualized Sharpe Ratio

1/N 0.01672 0.11304 0.51236

Selected 1/n 0.02415 0.07759 1.07801

Selected MVO 0.02249 0.08497 0.91684

50% VaR95 1/N 0.01204 0.08693 0.47983

XIV
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