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ABSTRACT: 

Type 1 diabetes mellitus (T1DM) is an insulin-dependent autoimmune disease. Its onset is 

characterized by an autoreactive self-destruction of β-cells within pancreatic islets.  T1DM is 

influenced by multiple genetic predispositions, but since the incidence of the disease has 

increased dramatically in the past decades, especially in developed, western-type countries, the 

importance of the environmental factors has become obvious. There are various significant 

environmental influences that need to be addressed in the equation of variables. This bachelor 

thesis deals with the  environmental variables and their mechanisms in T1DM and focuses on 

several areas of interest. It introduces frequently used spontaneous animal model of T1DM, 

pathogenetic mechanisms and T-cells in T1DM as well as regulatory immune cells and their 

mechanisms, in the light of hygiene and another hypothesis. Next it addresses the role of 

intestinal microbiota, dietary factors,  mucosal immunity, their mechanisms and interactions in 

T1DM and extends to other, less researched, but important environmental variables such as 

circadian rhythm in connection with circadian gene expression depending on the rhythmicity 

of light/dark rotation and timing of food intake throughout the day, psychological/oxidative 

stress, and the effects of vitamin D deficiency or toxins present in water and the environment. 

The aim of the bachelor thesis is thus to introduce environmental factors, hygiene hypothesis, 

the NOD mouse model and to provide a comprehensive overview on environmental factors, 

some of them underestimated, and their mechanisms in prevention and pathogenesis of T1DM.  

Several of the environmental factors and their mechanisms, if better identified and understood, 

represent safe and promising strategies for secondary prevention or even at onset therapeutical 

interventions in T1DM.  
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ABSTRAKT: 

Diabetes Mellitus 1 typu (T1DM) je insulin-dependentní autoimunní onemocnění, jehož 

iniciace je charakteristická autodestrukcí vlastních β-buněk, které jsou součástí ostrůvků 

pankreatu. T1DM je ovlivňována genetickou predispozicí, ale protože se v poslední dekádě 

ukazuje nárůst incidence tohoto onemocnění například v severských zemích Evropy, je zřejmé, 

že genetika nebude jedinou proměnnou a je třeba zohlednit nezanedbatelné vlivy vnějšího 

prostředí. Tato bakalářská práce pojednává o mechanismech vlivu vnějšího prostředí a 

zaměřuje se na několik oblastí poznání. Představuje často používaný spontánní zvířecí model 

T1DM, patogenetické mechanismy a T-buňky v souvislosti s T1DM, jakož i regulační imunitní 

buňky a jejich mechanismy, s ohledem na hygienu a další hypotézy. Dále se zabývá rolí střevní 

mikroflóry, dietními faktory, imunitou sliznic, mechanismy a interakcemi v T1DM a rozšiřuje 

se na další, méně prozkoumané, ale důležité proměnné prostředí, jako je cirkadiánní rytmus ve 

spojení s cirkadiánní genovou expresí v závislosti na rytmizaci světla/tmy a načasování příjmu 

potravy po celý den, psychologický/oxidační stres a účinky nedostatku vitaminu D nebo toxinů 

přítomných ve vodě a životním prostředí. Cílem bakalářské práce je tedy představit faktory 

prostředí, hygienické hypotézy, myší model NOD a poskytnout ucelený přehled faktorů 

prostředí a jejich mechanismů v prevenci a patogenezi T1DM. Několik faktorů prostředí a jejich 

mechanismů, pokud jsou lépe identifikovány a pochopeny, představují bezpečné a slibné 

strategie pro sekundární prevenci nebo dokonce v rámci terapeutických intervencí v rámci 

počátku rozvoje T1DM. 

 

KLÍČOVÁ SLOVA: 

Diabetes 1. typu, faktory vnějšího prostředí, mikrobiom, baktérie, imunitní mechanismy, 

slizniční imunita, prevence, patogeneze, NOD myši  
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INTRODUCTION: 

Type 1 Diabetes Mellitus (T1DM) is an insulin-dependent type of diabetes mellitus. It 

is a chronic autoimmune disease that becomes evident when insulin production is inadequate 

to control glucose metabolism. The autoimmune onset is well observable in non-obese diabetic 

(NOD) mice that spontaneously develop T1DM (Bach 1995). The disease is linked to several 

genetic predispositions, but its progression and onset are also influenced  by epigenetic 

influences. Environmental factors and also the microbiome play an important role in the 

pathogenesis and even more recent increase of   T1DM incidence worldwide (Patterson et al. 

2019). 

Environmental risk factors e.g. viruses are often considered as a trigger of β-cell 

destruction (Harrison 2005). The influence of the microbiome, mainly intestinal microbiome 

may be an important regulator and possibly a diseases-preventive factor  within external 

influences on the development of T1DMs. Dietary factors are also known modifiers of the 

incidence of  the disease. These factors may play a role in exposure throughout a lifespan to 

e.g., dairy or gluten. They may lead to or permit  am increased rate of  T1DM onset and its 

progression or, conversely, and perhaps even more likely, also to the disease prevention 

(Rewers a Ludvigsson 2016).  

The integrity of the intestinal barrier is critical for keeping the proinflammatory contents 

of the intestine separate from the intestinal mucosa and the systemic circulation. (Visser et al. 

2009) The immune system is tightly regulated by circadian rhythm and disrupted circadian 

rhythm can have devastating consequences associated with microbiome dysbiosis and T1DM 

progression (Cermakian et al. 2014) (see Figure 1). 

Important factors include the composition (above all proteins) as well as quality of the 

diet in general the quality of drinking water and the presence of toxins in the diet (Benson et al. 

2010), which can affect e.g. the permeability of the intestine (leaky gut syndrome) and the 

microbiome profiles (Wood Heickman et al. 2020). Microbiome imbalance may facilitate 

autoreactivity in genetically susceptible individuals (Paun et al. 2017).  

Increased incidence of T1DM possibly reflects the delayed exposure and the decrease 

in overall infection frequency due to improved hygiene and overuse of antibiotics in 

industrialized countries in the last decades (Bach a Chatenoud 2012).  
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Among environmental factors in T1DM belongs, although somehow overshadowed  

also increased psychological stress. Chronic stress can activate the hypothalamic-pituitary-

adrenal (HPA) axis and the nervous system. Both influence the immune cells and may increase 

insulin resistance (Sharif et al. 2018). 

 This bachelor thesis aims to introduce the environmental influences in the pathogenesis, 

progression, and prevention of type 1 diabetes mellitus. In addition, it also aims to briefly 

discuss possible mechanisms and interactions as well as their potential in prevention (primary 

or secondary) of T1DM. 

1. Mechanisms of T1DM onset and immunoregulation  

Type 1 Diabetes Mellitus (T1DM) is considered an autoimmune disease that is 

characterized by insulin deficiency resulting from the destruction of pancreatic β-cells. The 

pathogenesis of T1DM results from selective destruction of  pancreatic β-cells by innate and 

adaptive immune systems (Hull et al. 2017). 

T1DM is a T-cell-dependent immune-mediated disease. Insulin-producing pancreatic β-

cells are invaded by a mononuclear infiltrate consisting of monocytes, macrophages, T-cells 

etc. and consequently destroyed (Kolb et al. 1995). CD4+ and CD8+ T-cells play a major role 

in the autoimmune process leading to the destruction of pancreatic β-cells (Yagi et al. 1992). 

Self-directed immune reaction, in which the immune system recognizes β-cell specific 

antigens (e.g., proinsulin, GAD65, IA-2, IGPR etc.) (Han et al. 2013) , processes  them as 

foreign, and reacts against them in a similar manner  like to e.g.  infectious agents results  is the 

elimination of pancreatic β-cells and a decline  in insulin secretion (Bach a Chatenoud 2001). 

The causes of T1DM are very likely multifactorial and not exactly known  although 

virus infections are believed to be responsible for the initial hit in genetically susceptible 

individuals. Both  genetics but also environmental factors play important roles in T1DM. The 

genetic region which is strongly linked to T1DM is the human leukocyte antigen (HLA) locus 

(Steck a Rewers 2011). Risk genes for the development of T1DM are mostly genotyping HLA 

DR3, HLA DR4 (HLA DQ2, HLA DQ8) (Noble a Erlich 2012; She 1996). More than 50 risk 

genes have been so far identified in T1DM (Onengut-Gumuscu et al. 2015). 

Environmental factors play major a role in the recent increase of  T1DM incidence even 

though there much less information is available about their exact identities and mechanisms. 
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This is mainly due to the complexity of environmental factors, as it is difficult to isolate and 

study their specific mechanisms of impact (Knip a Simell 2012; Hamilton-Williams et al. 2021). 

Environmental impact may be illustrated as an increase in the incidence of diabetes over 

a specific period in populations. In Finland, it has been reported that the incidence of the disease 

has increased 4,5 times from 1950 to the present. The incidence of T1DM has also increased in 

most post-communist countries due to an improvement in socio-economic levels. This fact is 

more likely to explain by changes in lifestyle and environment than by a change in genetic 

information (Onkamo et al. 1999). 

It is generally suggested that T1DM is developing through elicitation of the immune 

system against β-cell antigens and initiation of proinflammatory responses. After antigen-

presenting cells (APC) present β-cell antigens to the immune system, chronic effector 

autoimmune responses prevail also due to a dysbalanced or an inefficient regulation of the 

immune system, resulting in the destruction of β-cells (Wållberg a Cooke 2013). 

1.1. Development of T-cells 

The whole process begins in the thymus through the central tolerance of naive T-cells. 

Then clones, that would respond to the structures of the organism, are deleted. These 

mechanisms are not flawless. Autoreactive T-cells enter the peripheral system and together with 

other immune cells infiltrate the islets of the pancreas. An interesting fact is that the 

development of T1DM manifests itself symptomatically months or even years after a 

dysregulation (Kuhn et al. 2016; Marx et al. 2021). 

1.1.1. Viruses 

Viruses are believed by many to act as initial triggers of T1DM (Harrison 2005). Exact 

mechanisms are not exactly known. Viral respiratory infections in humans during the first year 

of life are associated with the onset and increased risk of T1DM (Beyerlein et al. 2013).  

Enteroviruses are one of the most discussed groups of viruses in connection with T1DM 

(Honkanen et al. 2017). Especially Coxsackie viruses (CV) are detected in the pancreas of 

patients with T1DM (Dotta et al. 2007) (see Figure 1).  

Viral β-cell infections induce cellular stress, reduce insulin production, maintain the 

inflammatory environment in the pancreas, and increase MHC I expression on β-cells. This 

cascade leads to promotion of autoimmune disease (Richardson et al. 2016). Type B CV 

vaccines are tested in NOD mice model. It could serve as a primary protection for children 

before a development of T1DM (Hyöty et al. 2018). 
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1.2. Induction of diabetogenic T-cells 

In the lymph nodes, antigens encounter naive T-cells. T-cells are activated and then 

migrate to the circulation and tissues, where they participate in humoral and cellular immunity. 

The pancreatic lymph node (PLN) is an important induction site in T1DM. PLN is  a mucosal 

lymph node draining the pancreas and is thus entered by autoantigens from the islets. PLN is 

also the lymphoid organ critically important for induction of effector (but also regulatory) 

immune responses in T1DM (Höglund et al. 1999). The autoantigens get recognized by 

autoreactive T-cells giving rise to an anti-β-cell effector immunity (Gagnerault et al. 2002). T-

cells are activated before entering the pancreas. The response in the pancreatic node then 

escalates (Jaakkola et al. 2003). T-cells involved in prediabetic insulitis express a specific 

homing marker for intestinal lymphoid tissue integrin α4β7 (Jaakkola et al. 2003). It confirms 

their association with the mucosal intestinal environment. 

1.3. Effector T-cells in T1DM 

CD8 and CD4 T-cells are necessary for the disease onset. The persistence of 

autoreactive memory (CD4, CD8) T-cells is a typical feature of T1DM (Burrack et al. 2017). 

The role of NK cells and innate immune mechanisms in the initial stages of β-cell elimination 

is also well documented (Gianchecchi et al. 2021). On the other hand, protective effects of  NK 

cells were also reported (Beilke et al. 2012). Several studies reported the involvement of Th1 

cells in pathogenesis of T1DM and it was originally considered a Th1 autoimmune disease 

(Burrack et al. 2017). However, later Th17 cells and also follicular CD4 T-cells have gained 

increasing attention in the pathogenesis of T1DM, also with respect to environmental factors 

(Shao et al. 2012; Walker a von Herrath 2016). 

1.4. Diabetogenic T-cells 

CD4 + T-cells are considered to be the essential and initial cell population that 

intervenes in T1DM (Delong et al. 2016). Nevertheless, when  CD4+ T-cells are transferred 

alone to mice without a developed thymus, they induced insulitis only, but did not lead to β-cell 

destruction and hyperglycemia (Yagi et al. 1992). Insulitis or hyperglycemia occurs when 

CD8+ T-cells are transferred. Thus only co-administration of both populations induces insulitis 

with high CD8+ T-cell infiltration, hyperglycemia, and β-cell destruction (Yagi et al. 1992).   

CD4+ T-cells are a key cell population that recognizes β-cell antigens and further 

releases several cytokines (IL-2, INF-γ). CD4+ T-cells are building up the inflammatory 

reaction which is leading to the activation of macrophages (M1) and cytotoxic CD8+ T-cells 



10 

 

(Angstetra et al. 2009). Altogether that induces β-cell apoptosis by Fas activation and 

perforin/granzyme release (Delong et al. 2016). 

1.4.1. Autoantigens and neoepitopes 

An amount of T1DM autoantigens have recently been identified - proinsulin, GAD65, 

IGRP, CHgA, IAPP, ZnT8, HSP GRP78, IA-2 and IA-2β. There is still not clear evidence about 

which antigens are initiating the onset of T1DM in humans (Roep a Peakman 2012). The 

detection of these antigens is caused by changes in the pancreas, either by internal damage to 

β-cells or by exogenous stimuli - e .g. a viral infection (Ilonen et al. 2019). Relatively recently 

it has been discovered that effector T-cells in T1DM recognize so-called neoepitopes in the 

periphery. Neoepitopes are products of aberrant translation of mRNA, post-translational 

modifications of self-peptides or protein fusions. These neoepitopes are generated under the 

influence of cellular stress e.g. high insulin demand or due to the environmental stressors 

(Mannering et al. 2019). There is for example the neoepitope which is the modification of the 

IA-2 antigen. This modification is caused by stress in the endoplasmic reticulum and leads to 

the formation of a complex that is recognized by CD4+ T-cells (Marre et al. 2018). The 

formation of neoepitopes explains why autoreactive T-cells escape both thymic deletion and 

mechanisms of peripheral tolerance. In addition, the neoepitopes also provide elegant 

explanation how  the environment (stress, unspecific viruses) may participate in the initial phase 

of autoreactive CD4+ and consequently CD+8 T-cell responses.  

1.5. Regulatory T-cells (Treg) 

Mechanisms of disrupted immune homeostasis between the effector and regulatory arms 

of  T-cell immune responses (also due to the changes in the environment) have been implicated 

in the recent increase of T1DM in genetically susceptible individuals (Sakaguchi et al. 2020; 

Gupta et al. 2014). In T1DM human intervention trials Foxp3 Tregs are frequently used as a 

biomarker together with monitoring of changes in T-cell effector subsets for assessing possible 

beneficial effects (Odegard et al. 2015). Several mechanisms are observed in patients with 

early-stage T1DM - depletion of CD4 and CD8 effector memory (Tem), depletion of central 

memory T-cells (Tcm) and shift in Teff / Treg ratio (Rigby et al. 2015).  

1.6. FoxP3 + Tregs 

FoxP3 + T cells are formed either in the thymus or at the periphery. If formation occurs 

in the thymus, they are referred to as tTreg. On the other hand, formation at the periphery leads 

to the formation of pTreg. Foxp3 Tregs are generated by action  of IL-2 and TGF-β. They are 
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characterized by high expression of CD25 and intracellular FoxP3 (Bluestone a Tang 2005). 

Changes in Foxp3 Tregs have been repeatedly reported in the NOD mouse model of T1DM 

(Bluestone a Tang 2005) however  other studies showed that the defect lies in the altered 

sensitivity of effector T-cells to regulatory mechanisms (D’Alise et al. 2008). Conflicting and 

inconclusive results came also from human trials of T1DM (Tan et al. 2014). However, a  defect 

in the function of Foxp3 Tregs has been clearly documented in  newly diagnosed children as 

well as autoantibody positive at-risk children (Vecchione et al. 2020). A meta-analysis study 

documented that in T1DM patients FoxP3+ Tregs produced lower levels of suppressive 

cytokine TGF-β but a decrease in IL-10 levels was not statistically significant (Qiao et al. 2016). 

1.7. Regulatory type 1 (Tr1) T-cells 

Regulatory type 1 (Tr1) T-cells are characterized by high IL-10 expression in 

comparison with the FoxP3+ Treg. They were first described by Groux et al. (Groux et al. 1997) 

and were characterized as FoxP3-negative, not CD25high CD4+ Tregs (Zeng et al. 2015), 

however as a result of the high expression of IL-10, Tr1 cells can transiently also express FoxP3 

(Gregori et al. 2012),  Tr1 cells (defined later as CD49b+LAG3+CD4+ T-cells) were shown as 

highly effective Tregs in T1DM. They prevented diabetes in the NOD-SCID model of diabetes 

transfer and Tr1 cells induced by a combination therapy even reverted diabetes in 

hyperglycemic NOD mice (Mbongue et al. 2019) (Yu et al. 2017).  

1.8. Hygienic hypothesis 

T1DM incidence is continuously increasing, especially in western type, developed 

countries  (IDF Diabetes Atlas, 10th ed., Int. Diabetes Federation 2019). For example, it is 

substantially increasing in “clean” countries with higher level of hygiene such as Finland and 

is also occurring in younger and younger children ed countries (Patterson et al. 2009). In 

addition, it has been noted that children who had lower (home care) or delayed (firstborns) 

exposure to infection have a higher incidence of T1DM (Bach a Chatenoud 2012). It has been 

documented that the intestinal microbiota in children at T1DM onset is altered  (Murri et al. 

2013). In NOD mice model spontaneous T1DM incidence varies hugely depending on the 

quality of SPF conditions – the lowest is in ”dirty” housing conditions (Pozzilli et al. 1993), on 

the other hand rederivation of the breeding nucleus renews higher T1DM development (Bach 

2002). Germ-free NOD mice display high, 100% diabetes incidence and earlier diabetes onset 

compared to SPF litters (Wen et al. 2008).  
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In children, we can observe noticeable differences in microbiota colonization in 

connection with T1DM (Han et al. 2018). There is the evidence of decrease in Bifidobacterium 

and Lactobacillus, and vice versa increased Bacteroidetes with decreased Firmicutes (de Goffau 

et al. 2014). Although the above-mentioned phenomena are observed, the causal cause of the 

relationship between changes in the microbiome and the development of T1DM is not yet surely 

known. Thus the effect of microbiome changes, exposure to infections but also dietary factors 

may all contribute to the recent increase of T1DM incidence in developed countries (Craig et 

al. 2019). The real question is thus not so much about what is causing T1DM in genetically 

predisposed individuals, but rather what environmental factors were preventing T1DM in the 

past and are not so present anymore (Gale 2002). 

2. The importance of NOD mouse model in T1DM 

The Non-Obese Diabetic (NOD) mouse model (as well as the BioBreeding BB rats) is 

a very important tool to research pathogenesis, prevention and cure for T1DM.  Unlike in many 

other animal models of autoimmune diseases, NOD mice develop T1DM spontaneously and 

the disease is not induced e.g., by immunization with an autoantigen or chemically induced. 

There are many similarities but also a few differences compared to human T1DM (Pearson et 

al. 2016). The NOD mouse origins form Japan, where Makino et al. observed, bred and reported 

spontaneously diabetic mice over 40 years ago (Makino et al. 1980). The NOD mice model is 

suitable for observing the role of both innate and adaptive cell subsets and mechanisms 

contributing to the disease development. The advantage of the NOD model is that T1DM is 

developing spontaneously, with incomplete penetrance of clinical onset of diabetes, and 

sensitive to environmental changes and manipulations i.e.  corresponding to the recent increase 

of T1DM worldwide. This model allows to study natural course of development of type 1 

(Pearson et al. 2016). 

In addition to environmental triggers, similar and multiple predisposing genetic factors 

are paralleled in the NOD mouse model. There are over 50 genetic loci both in NOD mice and 

humans shown to be important in T1DM development and pathogenesis (Robertson a Rich 

2018). They include genes related to immune system function and pancreatic β-cell functions 

(Noble a Erlich 2012). The major differences form the human T1DM comprise  increase 

diabetes incidence in NOD females compared to males in SPF conditions, histological 

appearance of insulitis and the mononuclear infiltrate, that is massive in NOD mice compared 
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to humans, some differences in autoantibodies (no IA-2A auto-Abs in NOD mice) and 

increased resistance to ketoacidosis of the NOD mouse (Pearson et al. 2016).  

2.1. Characteristics and advantages in NOD mice model 

In NOD mice T1DM develops spontaneously and shares a similar genetic predisposition 

with human patients. NOD model also shares with human environmental factors which 

contribute to the onset of the disease. Pancreatic β-cells are destroyed by autoreactive T-cells. 

In animals kept in Specific Pathogen Free conditions with non-pathogenic microbiota present, 

NOD female’s insulitis starts to occur at 5 - 6 weeks of age. Lower diabetes incidence and later 

development of insulitis is found in SPF NOD males. Lymphocytes and monocytes infiltrate in 

the peripheral parts of the islets. Peri-insulitis is followed by inflammation that permeates the 

entire islet, causing massive infiltration of immune system cells. In T1DM patients  infiltration 

by immune cells is a lot smaller and scattered within the islets (In’t Veld 2014).  The difference 

between the human and NOD model is in the number of residual β-cells that are retained during 

T1DM. In humans, we find 20-30% of β-cells and in NOD mice 10-20% of β-cells  (In’t Veld 

2014). 

The incidence of T1DM depends on many factors - sex, mouse breeding, diets, and last 

but not least at all on microbiota composition, or quality of the SPF facilities. In SPF common 

SPF facilities screened only for pathogens according to the FELASA standards, a lower 

incidence is observed in SPF males (10-30%), while the incidence is higher in females NOD 

mice (60-80%). T1DM progresses often from age between 12 - 40  weeks of age (Wilberz et 

al. 1991) (Bach 2002). However commercial facilities that use a defined and limited bacterial 

mix for colonization of mice are reaching high, 100% diabetes incidence. This is similar to 

germ-free NOD mice. These models show a faster onset and higher incidence of T1DM  - 100 

% in female NOD mice (Wen et al. 2008; Bach 2002) On the other hand, NOD mice from 

conventional facilities display lower diabetes incidence, depending on the quality of the 

microbial environment and lengths of breeding (Pozzilli et al. 1993). 

Environmental influences that affect the development of T1DM can be assessed, for 

example, by the degree of exposure infectious organisms (Cooke et al. 1999), exposure to gluten 

(Marietta et al. 2013) or wheat (Maurano et al. 2005). NOD mice are valuable also for studies 

on innate recognition of microbial components by e.g., TLR and NLR. These receptors interact 

with the gut microbiota and are important in modifying T1DM susceptibility (Wen et al. 2008). 
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The NOD model also contributes to the understanding of the microbiome-gut-PLN axis in 

T1DM, and the role of intestinal inflammation (Vaarala et al. 2008).  

2.2. Development of new, humanized NOD mice strains 

Humanized NOD mice have provided many discoveries into T1DM pathogenesis in 

humans (Gale a Gillespie 2001). Some NOD mice and human autoantigens are shared, while 

others differ in their epitopes. Therefore, it was difficult to translate research from  the NOD 

mouse model to T1DM patients. Humanized NOD mice models bypass some of these 

disadvantages and have allowed researchers to discover mechanisms and cell populations that 

may develop into promising, novel and effective immunotherapies  (Roep 2007). Humanized 

NOD mice are frequently used to identify and study class I and class II dependent β-cell 

autoreactive T cells and their clinical importance in T1DM (Tsui et al. 2008). 

3. The role of Microbiota and environmental factors in T1DM 

Genetic studies which are studying changes in the population's gene pool show that is 

changing. It has been reported that the HLA alleles of high risk for onset of T1DM decrease in 

the population and alleles of low risk concerning T1DM increase. This is one of the proofs for 

the role of environmental factors (Gillespie et al. 2004). 

Besides genome, or environmental factors which are known as important players  in  the 

β-cell destruction. Microbiomes, mainly intestinal microbiome, seems to play an important  role 

in the development of  T1DM. There are multiple factors associated with the microbiome  that 

may affect T1DM onset - breastfeeding, C-section, zonulin, dietary habits (gluten, dairy) 

(Norris et al. 1996), and other cumulative factors such as water quality, presence of toxins in 

the environment and diet, chronic stress and last but not least, and factors comprised by  the 

Hygiene hypothesis. The cumulative character and interactions of the above-mentioned factors 

makes it difficult to identify exact environmental entities and their mechanisms. During the 

period of initiation and cumulative progression of environmental impacts, it is difficult to 

determine which ones are  truly  responsible for the development of the disease. The influence 

of lifestyle and mechanisms of mucosal (intestinal) immunity in connection with microbiome 

and its metabolites may affect progression to clinical onset T1DM  in predisposed individuals 

(Paun et al. 2017). Increased incidence of T1DM probably reflects the decrease in overall 

infection frequency due to improved hygiene and antibiotics in industrialized countries (Bach 

a Chatenoud 2012). Another important player in T1DM  is the chronic stress. Chronic stress 
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activates the hypothalamic-pituitary-adrenal (HPA) axis and the nervous system and it 

influences the immune cells as well as  increases insulin resistance (Sharif et al. 2018). 

3.1. The impact of the microbiome from an early age 

The microbiome is defined as the many varied groups of microorganisms which are 

living in symbiosis with human. Microbial populations reach a community of around 4 × 1013 

cells (Bäckhed et al. 2005). The colonization of digestive tract begins at birth and is 

fundamentally affected by the way of delivery. Vaginally delivered infants gain microbial 

communities strongly similar to maternal vaginal microbiota (mainly Lactobacillus). In the case 

of C-section, the intestines are colonized mostly by microorganisms similar to those which are 

found on the skin of the mother, (Staphylococcus, Clostridium genera) (Bäckhed et al. 2015). 

Thus, not surprisingly, Caesarean section is contributing to a remarkable 20% increased risk of 

T1DM (Cardwell et al. 2008). 

3.2. Importance of microbiome symbiosis for humans 

Symbiosis of humans with microorganisms is a very key ability that affects many 

important factors in our body - vitamin production, elimination of exogenous toxins, drug 

metabolism, support of cell proliferation and differentiation, maintaining the integrity of the 

intestinal barrier, maturation, and education of the immune system, neutrophil modulation, T-

cell differentiation, or secretion of SCFAs. The human gut microbiota plays several important 

functions. It protects against pathogen overgrowth. It participates in the synthesis of important 

vitamins - B1, B2, B5, B6, B12, K, folic acid. It eliminates exogenous toxins and metabolizes 

specific drugs. Gut microbiota is also important for intestinal repair by promoting cellular 

proliferation and differentiation. This guarantees the important maintaining of the integrity of 

the gut barrier (Krishnan et al. 2015). 

      Microorganisms in the human gut play a crucial role in the maturation and education of the 

host immune system. The mucosal immune system has to discriminate between commensal and 

“danger” pathogenic bacteria. Pathogenic bacteria trigger a pro-inflammatory response whereas 

commensal bacteria have no such an effect or trigger anti-inflammatory responses (Goodman 

et al. 2011). Our microbiome modulates the migration and function of neutrophils and affects 

T-cell differentiation of regulatory T-cells (Tregs). Tregs are key mediators of immune 

tolerance (Paun et al. 2017). Another important mechanism by which the gut microbiota 

controls the immune system is through the secretion of short-chain fatty acids (SCFAs). SCFAs 

include molecules such as butyrate, acetate, and propionate. They are usually generated by the 
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fermentation of non-digestible carbohydrates (dietary fiber) (Ridaura et al. 2013) (see Figure 

1). 

SCFA secretion promotes G-protein-coupled receptors signaling pathways activation, 

inhibition of histone deacetylation, induction of metabolic changes by enhancing the activity of 

the mTOR complex in T-cells, which has a net effect on the inhibition of inflammatory cascades 

and the decrease of production of inflammatory cytokines (IL-10, IFN-γ) (Ridaura et al. 2013).   

3.3. The connection between microbiota and T1DM 

The connection between the microbiome, the immune system, and the development of 

T1DM can be observed from several angles – the connection with the mechanisms of non-

specific and specific immunity. The connection between the gut microbiota and the 

pathogenesis, prevention, or onset of T1DM is being the subject of several studies in recent 

years. Microbiome effects on innate immunity is largely dependent on the Myd88 adaptor 

protein for several the TLRs. This adaptor molecule is involved in induction of  innate immune 

responses by microbial patterns. If Myd88 is missing in the NOD mouse model, T1DM-related 

protection occurs. The protective effect of Myd88 deficiency is microbiota dependent. It 

confirms that interactions between the microbiome and innate immunity are important (Wen et 

al. 2008). 

Another case in the demonstrable connection between T1DM, gut microbiota, and the 

adaptive immune system is represented by inflammatory lymphocytes, Th17 and type 3 innate 

lymphoid cells that are increased in the intestinal lamina propria of NOD mice, while 

tolerogenic dendritic cells and Treg are reduced in the lymph nodes draining the gut. These 

changes in adaptive immunity may have an impact on the activation of auto-reactive T-cells 

against β-cell antigens and T1DM development (Miranda et al. 2019). 

The data on human microbiome changes in relation to T1DM are reviewed in Han et al 

(Han et al. 2018). Significantly decreased number of Bifidobacterium and Lactobacillus, and 

increased Bacteroidetes with decreased Firmicutes to Bacteroidetes ratio were reported in 

children with T1DM (Murri et al. 2013, s. 2). Whether these changes in microbiome profiles 

have a causative effect in T1DM is not known. Both Bifidobacterium longum and Akkermansia 

muciniphila with their e.g., production of SCFA have recently attracted a great deal of attention 

(Insel a Knip 2018; Y et al. 2018). Hänninen et al. (Hänninen et al. 2018) reported Akkermansia 

muciniphila having a beneficial metabolic and immune effects and it also reduced diabetes 

incidence when transferred to high incidence SPF NOD mice. In additions, study by 
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Yurkovetskiy et al. documented that gender difference in diabetes incidence of NOD mice is 

due to influences of gut microbiota (Yurkovetskiy et al. 2013). Further studies in 

gnotobiological models of germ-free and monoassociated NOD mice are necessary to uncover 

the role of selected bacteria in pathogenesis or prevention of T1DM.  

4. Dietary risks in Diabetes Mellitus type I onset or progression 

4.1. Gluten-free diet as a prevention of T1DM 

Not carbohydrates but proteins were identified as the major pro-diabetic  components 

within the non-purified animal diets to keep a  high diabetes incidence in BB rats and NOD 

mice (Scott 1996; Coleman 1978). Conversely, hypoallergic baby diet based on hydrolyzed 

casein  had a diabetes-preventive effect (Hoorfar et al. 1993). Later, a specifically designed 

non-purified, open-formula gluten-free diet (GFD)  highly (from 64% to 15%) prevented 

diabetes in NOD mice that were exposed to it since in utero (Funda et al. 1999). Gluten intake 

directly affects the composition of the intestinal microflora.  NOD mice fed a GFD have reduced 

numbers of caecal bacteria and Gram-positive bacteria in comparison with mice fed a standard 

diet containing wheat proteins (Hansen et al. 2006). Whether these changes have a causative 

role in the diabetes-preventive effect of GFD is not known.   

Mothers who consumed large amounts of gluten during pregnancy give their offspring 

twice as likely chance to develop T1DM than mothers who ate during pregnancy gluten-free 

(Antvorskov et al. 2018). Higher gluten intake in early childhood may also be associated with 

a higher risk of T1DM (Lund-Blix et al. 2020). Encouraging is a case report of a 5-year-old boy 

diagnosed with T1DM and without celiac disease, who was on GFD diet in an attempt to 

preserve beta-cell functions and stayed without insulin therapy for 20 months (Sildorf et al. 

2012). Recently, a 1-year intervention trial of GFD in newly diagnosed children with T1DM 

showed slower C-peptide decline, lower insulin demand and HbA1c and a more pronounced 

partial remission period in children on GFD (Neuman et al. 2020).  

4.1.2. The effect of a GFD on immune cell populations 

Gliadin fragments stimulate innate immune cells -  such as macrophages or mast cells 

(Lavö et al. 1989; Tucková et al. 2002).  Furthermore, GFD affects APC, the number of which 

decreases in mice in the mesenteric (MLN) and PLN nodes due to diet. Decreased expression 

of dendritic cell activation markers MHC-II, CD40 and CCR7 was also demonstrated in PLN, 

while the proportion of dendritic cells (DC) with tolerogenic properties increased (He et al. 
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2014). In contrast, when DCs are isolated from the bone marrow of BALB / c mice stimulated 

in vitro with wheat gluten, the expression of the activation markers MHC II, CD40, CD54 and 

CD86 and the secretion of chemokines is higher (Nikulina et al. 2004). It has been shown to 

reduce the proportion of IL-17 producing CD4+ T-cells (Antvorskov et al. 2012). In NOD mice 

on a gluten-free diet, only in utero, it reduces the infiltration of pancreatic islets by immune 

cells and reduces the expression of the transcription factor for Th17 RORγt in the gut 

(Antvorskov et al. 2016). A gluten-free diet reduces the number of proinflammatory Th1 

lymphocytes in the MLN of BB rats and suppresses their production of IFN-γ (Chakir et al. 

2005).  

Furthermore, GFD administered since in utero reduces the proportion of IFN-γ + CD4+ 

CD3+ T cells and IL-22 + γδTCR + T cells in the spleen in mouse offspring (Haupt-Jorgensen 

et al. 2018). Changes in the number of regulatory FoxP3 + T-cells due to the GFD vary from 

study to study, but rather do not change (Antvorskov et al. 2012), but the cytokine profile of T-

cells changes. The expression of pro-inflammatory cytokines (IL-2, IL-4, IL-17, IFN-γ) is 

reduced in mice on a gluten-free diet, while the expression of anti-inflammatory cytokines (IL-

10, TGF-β) is increased. These changes are most pronounced in lymph nodes associated with 

the mucosa (MLN, PLN, PP) (Antvorskov et al. 2014). The proportion of γδ T cells, which are 

associated with T1D-associated mucosal tolerance and have a rather protective function, is 

increased in GF mice in all mucosal and systemic nodes examined in BALB / c mice 

(Antvorskov et al. 2012). In this work, a reduced proportion of CD8 + γδ T lymphocytes 

expressing the marker CD103, which targets these cells to the mucous membranes in PLN and 

MLN, was also found (Antvorskov et al. 2012). Thus, GFD  promoted s regulatory cell subsets, 

especially within the intestinal, mucosal immune system   and decreases pro-inflammatory s 

cytokine signatures.  

4.1.3. The role of gluten and the association of celiac disease with T1DM 

T1DM and celiac disease (CD) share a similar genetic background, with high 

susceptibility associated with the HLA-DQ2/DQ8 (Smyth et al. 2008). In addition, there is an 

increased association between CD and T1DM.  The fact that most of these children develop 

T1DM first and not vice versa indirectly suggests a possible protective effect of GFD for 

progression from celiac disease to T1DM (Cosnes et al. 2008). Similarly, while it seems that 

the gut immune system is activated in T1DM patients, that activation is not only due to the 

shared genotype with CD patients, because intestinal inflammatory responses in T1DM patients 

are independent of a CD-associated genotype – HLA-DQ2 (Sánchez et al. 2011). 
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The onset and progression of the disease are often initiated when gluten peptides cross 

the intestinal epithelium. The peptides are supposed to be crosslinked or deamidated by the 

enzyme tissue transglutaminase (tTG). Deamidation leads to a negative charge in the gluten 

peptides. This mechanism is increasing their binding affinity to HLA-DQ2 or HLA-DQ8 on 

APCs, and also is increasing the chance of reaching the threshold necessary to prime gluten-

reactive T-cells. The intestinal CD4+ T-cell response is directly leading against many different 

epitopes in the gluten proteins (Jabri a Sollid 2009). 

The mechanism which is observed in this issue is that almost all T-cell lines from adult 

CD patients recognize the same 33mer gliadin peptide. It contains six HLA-DQ2-binding and 

T-cell-stimulatory epitopes and is resistant to intestinal digestion (Shan et al. 2002). CD is 

moreover characterized by IgA and IgG autoantibodies directed against tTG, by intestinal 

activation of T helper 17 cells, CD8+ T-cells, γδ T-cells, NK cells, DCs (Sollid 2000), and by 

the direct effect of gluten on intestinal enterocytes (Maiuri et al. 2003). 

5. Another environmental influences of onset T1DM 

5.1. Circadian rhythm 

The circadian rhythm (CR) is an approximately 24 h pattern that alternates with almost 

all organisms (Hastings et al. 2003). It is a biological system that regulates the function of the 

organism on many levels - cellular, systemic, organ, behavior, vigilance / rest cycles etc 

(Mohawk et al. 2012). Vigilance and rest cycles drive physiological and cellular adaptations in 

a huge variety of processes such as gastrointestinal or metabolic processes and cellular 

transcription/translation (Reddy a O’Neill 2010). A certain correlation was found between 

circadian rhythm dysregulation and T1DM pathogenesis (Feng D. et al. 2012). Studies in NOD 

mice show that the dysregulation of the circadian rhythm can cause β‐cell loss and onset of 

T1DM (Gale a Gillespie 2001).  

The main role here is played by factors - CLOCK, ARNTL1, ARNTL2, CRY1, CRY2, 

PER1, PER2, PER3. Transcription and translation of clock components such as CLOCK, 

ARNTL1, ARNTL2, period circadian proteins (PER1, PER2, PER3) and cryptochromes 

(CRY1, CRY2) play an essential role in rhythm generation in the suprachiasmatic nucleus 

(SCN). SCN is the site of the circadian oscillator in mammals and the place of control of 

peripheral oscillations. There has already been shown direct relation of CLOCK‐related genes 

in diabetes (Ko a Takahashi 2006).  
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Knockout mice for ARNTL1 and CLOCK exhibited a role for the β‐cell clock in 

coordinating insulin secretion with the sleep/wake cycle. The elimination of the pancreatic 

clock can trigger the onset of T1DM (Marcheva et al. 2010). CRY is another part of the clock 

component and is necessary for the regulation of inflammatory cytokines through the NF‐

kappaB pathway (Narasimamurthy et al. 2012). Present data suggest a tight link between T1DM 

and the circadian rhythm through a variety of different gene pathways – including those that 

affect insulin metabolism and also immune regulation (Hofmann et al. 2013). 

5.1.1. Circadian rhythm and ARNTL gene 

The ARNTL2 gene is a key gene for association with T1DM that affects and controls 

IL-21 expression. IL-21 serves to control the proliferation of immune cells. The effects of the 

ARNTL2 gene have been demonstrated: downregulation in the NOD mouse model, control of 

the peripheral CD4 + T-cell proliferation, and association with the IL-21 gene promoter. 

The ARNTL2 gene has been discovered as a possible gene for T1DM within the IDD6 locus 

of the NOD mice model (Hung et al. 2006). The gene is downregulated in NOD mice compared 

to that of other NOD mouse strains. It has been shown many polymorphisms between these 

strains (Steward et al. 2013). 

It was confirmed that ARNTL2 controls the proliferation of peripheral CD4+ T-cells 

and T1DM onset (He et al. 2010). It has also been shown that ARNTL2 binds to the promoter 

of the Il‐21 gene, which controls the proliferation of immune cells itself (Spolski et al. 2008). 

Il‐21 is located in T1DM locus IDD (McGuire et al. 2009). ARNTL2 probably controls Il‐

21expression without interaction with other circadian factors - CLOCK or BMAL (Lebailly et 

al. 2014). This fact points to a mechanism of controlling T1DM development independently of 

other known regulatory pathways.  

5.1.2. Circadian rhythm and microbiome 

Microorganisms colonize every accessible surface of the host organism – they are found 

on the skin, in nasal passages, and also in the gastrointestinal tract. Some bacteria also affect 

the circadian rhythm. Circadian rhythm and the molecular circadian clock are found in almost 

every cell with different molecular clocks regulated by different environmental cues (Yoo et al. 

2004) (see Figure 1). Light/dark cycles are important for the regulation of the central circadian 

clock located in the SCN. The SCN has two majority functions. First, integrating inputs from 

the optic nerve, and second, synchronizing circadian rhythm in the periphery through 

parasympathetic and sympathetic signals (Welsh et al. 2010). 
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Light is a regulator of the central circadian rhythm. But there is another important 

marker of external cues that can regulate circadian clocks in peripheral tissues. Peripheral 

tissues are regulated by nutrient availability and have an impact on circadian clocks in the 

intestine and liver. We can regulate it by the timing of food availability throughout the day 

(Mattson et al. 2014). Another factor of regulating circadian rhythm is also physical activity 

(Youngstedt et al. 2016). 

Dysregulation of circadian rhythm in the human organism is very usual due to lifestyle 

and can be the consequence of various factors – shift work and jet lag are being some of the 

most obvious causes. Chronic diseases are usually associated with circadian rhythm 

dysregulation due to the promotion of inflammatory processes (Clemente et al. 2012). Here are 

several factors that can influence significant proinflammatory changes in the organism. It can 

lead to dysfunction of intestinal barrier integrity (Caricilli et al. 2014). The changes in the 

microbiota are defined by an increase in pro-inflammatory bacteria and a decrease in anti-

inflammatory butyrate-producing bacteria (Voigt et al. 2014). 

The integrity of the intestinal barrier is crucial for keeping the proinflammatory parts of 

the intestine separate from the intestinal mucosa and the systemic circulation(Farhadi et al. 

2003). Intestinal dysbiosis can have proinflammatory consequences in the intestinal mucosa 

and these factors can transform immune function. The immune system is tightly regulated by 

circadian rhythm and its dysregulation can be devastating (Cermakian et al. 2014). Circadian 

disruption by night shifts usually leads to increased intestinal Th17 cells (Yu et al. 2013). 

5.2. Psychological stress 

The β-cell stress hypothesis suggests that any exogenous/endogenous factor that induces 

insulin resistance, which leads to extra pressure on the β-cells, should be categorized as a risk 

factor for T1DM (see Figure 1). In case of psychological stress occurs to insulin sensitivity 

decrease and insulin resistance increase. This phenomenon may be an important factor in the 

development/onset of T1DM. An increase in adrenaline or testosterone increases the need for 

insulin because the organism is preparing for a fight/flight reaction. Human physiology in this 

case leads to an increase in cortisol concentration and also to a reduction of insulin sensitivity. 

These belongings lead to amplified demand for the insulin-producing β-cells. Elevated pressure 

on the β-cells leads to increased presentation of autoantigens (Kampe et al. 1989). High 

concentrations of diabetes-related autoantibodies trigger autoimmune destruction of β-cells. For 

this phenomenon to occur, these possibilities must be met - genetic disposition for 
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autoimmunity, a deficient immune balance, or an immature or under-engaged immune defense 

(Kolb a Elliott 1994). 

5.2.1 Link between T1DM and psychological stress 

Psychological stress may play an important role in the development of diabetes. Both 

types of DM (T1DM, T2DM) result from the loss of β-cell function in association with insulin 

resistance (Wilkin 2001). Insulin resistance was found as the primary accelerator for T1DM 

(also T2DM) (Wilkin 2001) and is also expected to increase β-cell stress and amplification of 

an autoimmune response in organisms who have the genetic predisposition (Kibirige et al. 

2003). The β-cell stress hypothesis suggests that any phenomenon that induces insulin 

resistance and thereby adds extra pressure on the β-cells should be regarded as a risk factor for 

diabetes (Ludvigsson 2006). 

5.2.2. Oxidative stress in relationship with T1DM 

Oxidative stress has been closely associated with inflammatory conditions including 

T1DM. T-cell-mediated infiltration has been shown to increase the release of ROS and 

proinflammatory cytokines, which lead to destruction (Haskins et al. 2003). The other important 

aspect which leads to inflammation is the clearance of apoptotic cells. It should prevent cell 

lysis and as a consequence to prevent the release of proinflammatory content that fuels 

inflammatory pathways (Savill 1997). Several lines of evidence highlight the role of oxidative 

stress on T1DM. The presumed mechanisms involve changes at the hypothalamic-pituitary-

adrenal axis, the influence of the nervous system on immune cells, and also insulin resistance. 

The modification of the hypothalamic-pituitary-adrenal (HPA) axis and changes in hormonal 

levels (glucocorticoids), play a key role in the response of organisms to stress. Catecholamines 

released from the adrenal medulla also affect the stress response (Geer et al. 2014).  

The excessive counterregulatory molecules support insulin resistance, which plays an 

important role in T1DM development/progression (Kirsch et al. 1983). The binding of 

catecholamines on monocytes leads to increase production of proinflammatory cytokines (IL-

1á) (Grisanti et al. 2010). Relating to APC, the binding of norepinephrine results in decreased 

production of IL-12, a driver for Th1 production (Tsatsoulis 2006). The activation of adrenergic 

receptors on Th1 cells inhibits the secretion of IFN-γ. IFN-γ is an important regulator of Th1 

development. Stress has been also shown to result in elevated Th2 cytokines including IL-4, 

IL-10, IL-13 (Ramírez et al. 1996). These factors indicate that stress disfigures the Th1/Th2 

balance toward a Th2-dominant immunity (Iwakabe et al. 1998).  
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5.3. Vitamin D 

The most well-known function of vitamin D is its role in calcium homeostasis and bone 

metabolism (Munger et al. 2006). Epidemiologic evidence supports the potential role of vitamin 

D in the pathogenesis of T1DM. The vitamin D receptor (VDR) may play a role in T1DM 

pathogenesis/onset or regulation. VDR has been found in almost every tissue in the human 

organism, including the cells of the immune system (Pani et al. 2000). The VDR gene is located 

on chromosome 12 (Busta et al. 2011). Some allelic variations of the VDR gene have been 

associated with an increased risk for T1DM (Chang et al. 2000). Vitamin D possibly may 

suppress the expression of MHCII complex antigens and the production of cytokines. It may 

support the induction of Treg. Together, these immunomodulatory effects of vitamin D (see 

Figure 1) may protect the β-cells of the pancreas (Busta et al. 2011).  

The active form of vitamin D is involved in the pathogenesis of T1DM through the 

regulation of genes encoding proteins associated with glucose metabolism and normal immune 

system function. 25-hydroxyvitamin D is also important for the regulation of insulin secretion 

by β-cells and in the sensitivity of tissues to insulin. The Ca-binding protein (calbindin) 

transports proteins in the kidneys and the small intestine. These proteins are dependent on the 

function of vitamin D and allow the absorption of calcium from the intestine and renal tubules 

into the body. Calbindin protects β-cells from apoptosis. This means that vitamin D affects the 

function of T-cells and APC. This interferes with several autoimmune processes in β-cells and 

may prevent the onset of T1DM (Ysmail-Dahlouk et al. 2016).  

Discussion and conclusion 

T1DM is an insulin-dependent autoimmune disease that is the result of an interaction of 

genetic and environmental factors. The initial trigger - likely a virus (Harrison 2005)  and the 

very early stages of the pathogenic process are not yet clearly identified and fully understood. 

There is a great deal of information on the role of pathogenic effector T-cells in the disease 

development as well as potential of regulatory immune mechanisms in disease prevention or 

even reversal (Harrison 2005, Walker a von Herrath 2016, (Wållberg a Cooke 2013)  Recently, 

the described T-cell neoantigens and neoepitopes attract significant attention as they also 

proved explanation for the influence of environmental stressors in generation of beta cell 

specific autoreactive T-cell responses. Although the role of Foxp3 Tregs in T1DM was 

extensively addressed, they brought  sometime conflicting or inconclusive data on their 

physiological role in T1DM,  especially in humans (Tan et al. 2014; Qiao et al. 2016). The 
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relatively newly described peripheral-induced Tr1 cells are gaining more interest also in T1DM 

(Mbongue et al. 2019).  

The interactions and more frequently protective than pathogenic role of  environmental 

factor has been postulated in the hygiene hypothesis and still reflects the fact that T1DM is on 

a steady rise in the developed, “clean” countries (Patterson et al. 2009). Supportive data are 

coming also form the  animal models (Pozzilli et al. 1993). For decades, the environmentally 

sensitive NOD mouse model, that spontaneously develops T1DM has been a very valuable tool 

for conducting research in the genetic susceptibility, the mechanism of disease development 

and pathogenesis or prevention under environmental influences (Pearson et al. 2016). NOD 

humanized mouse models are widely used in translational research and to study autoreactive T-

cells (Roep 2007). In NOD mice intestinal microbiota has a disease preventive effect, while 

germ-free animals display 100% and rapid onset T1DM (Wen et al. 2008). Several microbiome 

changes have been described in children with T1DM, also in relation to dietary interventions, 

but more, preferentially gnotobiotic animal studies are required to clarify the robustness and 

mechanism of such prevention as well interactions with diets. Changes in the intestinal 

microflora in early childhood have an impact on the development of T1DM, mainly due to 

immunoregulation, e.g., the method of delivery. Whether it is vaginal or C-section (Cardwell 

et al. 2008) or vitamin D deficiency of mother (Ysmail-Dahlouk et al. 2016).  

In early childhood, breastfeeding is another factor that can affect the colonization of a 

microbiome by symbiotic/dysbiotic ratio bacteria (Bäckhed et al. 2015), exposure to a sterile 

environment (Han et al. 2018) or antibiotics. Microorganisms inhabiting the intestinal mucosa 

can also be influenced by dietary habits and possible supplementation of probiotics of 

commensal strains of individual microbiota (Mishra et al. 2019). 

Recent studies have pointed to the phenomenon of the intestinal microbiome, its 

metabolites and diurnal rhythmicity, which depend on the alternation of light / dark as well as 

the timing of food intake during the day. Circadian rhythm and its oscillation can be disrupted 

due to jet lag, poor eating habits and sleep rhythm (Ko a Takahashi 2006). Gut microbial 

metabolites influence central and hepatic clock gene expression and sleep duration and regulate 

body composition through circadian transcription factors (Cermakian et al. 2014). It has been 

discovered that ARNTL2 controls the expression of the IL-21 gene and that high levels of 

ARNTL2 suppress IL-21 expression. It connects well with the role of IL-21 in the immune 

system, the expansion of T-cells, and in particular as being a major factor in T1DM (He et al. 
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2010). These findings reinforce the evidence that components of the immune system undergo 

circadian rhythm control (Scheiermann et al. 2013). 

Among other environmental influences, it is important to mention the connection 

between T1DM and psychological/oxidative stress. Psychological stress, throughout β-cell 

stress or direct influence on the immune system. However, further empirical data are needed to 

support this hypothesis (Sharif et al. 2018). Oxidative stress probably contributes to promotion 

of the initiation and progression of T1DM. The β-cell stress hypothesis suggests that any 

phenomenon that induces insulin resistance and thereby adds extra pressure on the highly 

metabolically active β-cells should be regarded as a risk factor for diabetes (Ludvigsson2006). 

Enterovirus infections are a widespread factor that promotes the autoimmune response in β-cell 

destruction in genetically predisposed individuals. Viral infections act as accelerators of 

autoimmune processes. Nevertheless, they remain as just one factor in the complexity of T1DM 

(Richardson et al. 2016). Enterovirus vaccines could be potential game changers in the primary 

prevention of T1DM (Hyöty et al. 2018). 

Vitamin D deficiency plays a role in increasing the chance of initiating T1DM (Ysmail-

Dahlouk et al. 2016). From a therapeutic point of view, vitamin D may potentially be suggested 

as an immunological adjuvant and a potential anti-inflammatory agent in individuals at risk of 

T1DM (Ysmail-Dahlouk et al. 2016). Data on vitamin D supplementation in connection with 

decreased β-cell function in T1DM remain inconclusive. Specific subpopulations could be 

advised to increase the dose of vitamin D to achieve the required serum concentration of 

25(OH)D for the prevention or treatment of T1DM (Ko a Takahashi 2006). 

Taking into account the above-mentioned environmental phenomena, which play a 

significant role in influencing the propagation and progression of T1DM in genetically 

predispositions of individuals, it is clear that the T1DM can be subjected to a number of 

preventive steps and changes in the future, especially as  screening for at-high risk individuals 

is becomes more available. Changes in the lifestyle and/or virus vaccines should be able to 

promote so far untouched primary prevention in T1DM, whereas more gnotobiotic animal 

studies are required to address the complexity of microbiome, dietary as well as other (circadian 

rhythm, stress, vitamin D) environmental factors and their impact on mucosal 

immunity. Environmental factors and their mechanisms should serve as a basis for 

prospective  clinical trials as they represent rather safe and not yet fully explored means for 

secondary prevention or even  interventions in at-risk or recent onset T1DM individuals. 
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ATTACHMENTS: 

 
Figure 1: T1DM as a multifactorial autoimmune disease. Disease onset and development or disease prevention may be 

influenced through various environmental factors. There is also a certain relationship between the influence of genetics and 

the environment. These two arms altogether affect an immune balance, which shift may result in either protection or increased 

susceptibility to T1DM onset. Modified scheme from Antvorskov et al. (Antvorskov et al. 2014).  

 


