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Abstract 

For a sustainable future, there is a call to increase the market share of bio-based technologies and 

materials. Microbial-based technologies have the potential and the ability to contribute substantively 

on many levels to global efforts to achieve sustainability. Development and utilization of microbial 

technologies is, however, an extensive process involving numerous steps, including the discovery of 

novel technologies and the development of industrially viable production systems.  In the presented 

thesis, individual steps of microbial biotechnology development were addressed.  

In the first part of the study, a variety of methodological approaches were employed in order to study 

the effect of the anthropogenic activity (i.e. decades lasting production of penicillin G) on the 

structure of soil microbial communities. Moreover, both cultivable and non-cultivable fractions of 

populations were subjected to functional screening in order to unravel the biotechnological potential 

of the microorganisms in terms of production of enzymes involved in biotransformation of beta-

lactam antibiotics: penicillin G acylase (PGA) and alpha amino acid ester hydrolase (AEH). Our results 

indicated that the impacted communities harbour a microbial community with increased diversity 

and richness. However, on the composition level, these communities differ significantly from the 

control samples, thus evidencing the grave impact of the industrial activity. Consequent analyses of 

biotechnological potential proved that this environment is a rich source of microorganisms with PGA- 

and AEH- like activity that could hold the potential to increase the portfolio of industrially important 

enzymes.  

 

The second part of the study was concerned with the further steps of biotechnology development: 

the upstream development. The experimental plan aimed at the construction of the Pichia pastoris 

strain producing PGA with a particular focus on determining the optimum cultivation strategy leading 

to maximum extracellular concentrations of PGA, as well as on defining the physiological and genetic 

limitations of the production system. Fed-batch cultivations with the constructed strain showed a 

potential to extracellularly produce fully active PGA, however, a serious secretion bottleneck was 

also observed, as only around 40% of the produced enzyme was found outside of the cells. 

Consequently, it was revealed that the secretion limitations can be attributed to the cellular stress 

caused by intracellular accumulation of the produced enzyme that results in substantial up-

regulation of the unfolded protein response pathway. This leads to translational arrest that on one 

hand relieves the cellular stress after which the system could reach its secretion maxima, although 

at the same time it significantly decreases the specific productivity of the system.   

Overall, this unfortunately means that even after multiple cultivation-optimization trials the 

constructed strain failed to achieve the desired biotechnological potential, thus leading to the 



 

 
 

conclusion that the strain construction process ought to be repeated while taking into account the 

knowledge established by this thesis.  

To facilitate future research aimed at unravelling the true potential of PGA-P.pastoris system, an 

extra pilot study regarding rational strain design was performed. This study showed that the 

limitations of PGA production and secretion can be successfully overcome by rational design of the 

production strain and suitable cultivation strategy and evidenced that PGA-P. pastoris production 

platform indeed has a great potential for industrial biotechnology. 

 

 



 

 
 

Abstrakt 

V zájmu udržitelné budoucnosti se stupňuje tlak na zvýšení podílu biotechnologií a biomateriálů na 

trhu. Mikrobiální biotechnologie mají potenciál a schopnost na mnoha úrovních podstatně přispět 

k tomuto celosvětovému úsilí o dosažení udržitelnosti. Vývoj a využití mikrobiálních technologií je 

však komplexní proces zahrnující řadu kroků, včetně objevování nových technologií a vývoje 

průmyslově realizovatelných výrobních systémů. V předložené práci byly řešeny jednotlivé kroky 

vývoje mikrobiální biotechnologie.  

V první části studie byla využita řada metodických přístupů ke studiu vlivu antropogenní aktivity (tj. 

desetiletí trvající produkce penicilinu G) na strukturu půdních mikrobiálních společenstev. 

Kultivovatelné i nekultivovatelné frakce těchto populací byly zároveň podrobeny funkčnímu 

screeningu za účelem odhalení biotechnologického potenciálu mikroorganismů ve smyslu produkce 

enzymů podílejících se na biotrasformaci beta-laktamových antibiotik: penicilin G acylázy (PGA) a 

esterázy alfa-aminokyselin (AEH). Naše výsledky ukázaly, že společenstva zasažených půd ukrývají 

mikrobiální komunitu se zvýšenou biodiverzitou a druhovou bohatostí. Na úrovni složení se však tyto 

komunity významně liší od kontrolních vzorků, co je důkazem zásadního dopadu průmyslové činnosti 

na tato společenstva. Následné analýzy biotechnologického potenciálu prokázaly, že toto prostředí 

je však bohatým zdrojem mikroorganismů s aktivitou podobnou enzymům PGA a AEH, které by mohly 

mít potenciál k rozšíření portfolia těchto průmyslově významných enzymů. 

Druhá část studie se zabývala dalšími kroky vývoje biotechnologie: tzv. upstream development. 

Experimentální plán byl zacílen na konstrukci kmene Pichia pastoris produkujícího PGA, se zvláštním 

zaměřením na stanovení optimální kultivační strategie vedoucí k maximálním extracelulárním 

koncentracím PGA, jakož i na identifikaci fyziologických a genetických limitací produkčního systému. 

Fedbatch kultivace (tj. kultivace s postupným přidáváním dávek živin) s konstruovaným kmenem 

ukázaly potenciál extracelulární produkce plně aktivní PGA v P. pastoris, současně však byla také 

pozorována výrazná limitace v sekreci. Následné experimenty ukázaly, že tuto limitaci lze připsat 

buněčnému stresu způsobenému intracelulární akumulací produkovaného enzymu vedoucí k 

podstatné upregulaci UPR dráhy, která představuje buněčnou odpověď na nesbalené nebo špatně 

sbalené proteiny, které se hromadí v lumenu endoplazmatického retikula. Tato upregulace vedla 

k translačnímu arestu, který na jedné straně zmírnil buněčný stres, načež systém mohl dosáhnout 

maxima sekrece, současně však také významně snížil celkovou specifickou produktivitu systému. 

V souhrnu výsledky této práce znamenají, že i přes veškeré pokusy o optimalizaci kultivace se 

konstruovanému kmeni nepodařilo dosáhnout požadovaného biotechnologického potenciálu. 

Konstrukci kmene je tedy třeba zopakovat se zohledněním poznatků získaných v této práci. 



 

 
 

Pro usnadnění budoucího výzkumu zaměřeného na odhalení skutečného potenciálu systému PGA-P. 

pastoris byla provedena dodatečná pilotní studie týkající se racionalizace designu produkčního 

kmene. Tato studie ukázala, že omezení produkce a sekrece PGA lze překonat optimální konstrukcí 

produkčního kmene a vhodnou strategií kultivace, a prokázala, že produkční platforma PGA-P. 

pastoris má skutečně velký potenciál pro průmyslovou biotechnologii. 
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1. List of abbreviations 

 

α-MF alpha-mating factor 

AEH  alpha amino acid ester hydrolase 

AOX1 alcohol oxidase 1   

AOX2 alcohol oxidase 2 

API active pharmaceutical ingredient 

ER endoplasmic reticulum 

ERAD endoplasmic reticulum associated protein degradation 

GA Golgi apparatus 

his4 histidine dehydrogenase gene 

Mut- methanol utilizing minus 

Mut+ methanol utilizing plus 

MutS methanol utilizing slow 

NHEJ non-homologous end joining pathway 

Ost1 open stomata 1 signal sequence 

pAOX1 alcohol oxidase 1 promoter 

pAOX2 alcohol oxidase 2 promoter 

pDC catalase promoter 

pFLD1 formaldehyde dehydrogenase promoter 

pFMD formate dehydrogenase promoter  

PGA penicillin G acylase 

pGAP glyceraldehyde-3-phosphate dehydrogenase promoter 

POI protein of interest 

qp specific rate of product formation (U.g-1.h-1) 

SNARE Snap receptor proteins 

µ specific growth rate (h-1) 

UPR unfolded protein response  

VACV valacyclovirase 
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2. Introduction 

 

The encompassing definition of biotechnology is “the integrated use of microbiology, 

biochemistry and engineering sciences in order to achieve the technological application of the 

capacities of microorganisms and cultured tissue cells” (Gray, 1984).  

 

2.1 Milestones in biotechnology development 

Development and utilization of bio-based technology is an extensive process involving numerous 

steps (Fig. 1). In the discovery phase, detailed assessment of the microbial community of the 

selected ecosystem needs to be performed first in order to estimate the potential of the sample 

to harbour the desired characteristics/ protein of interest (POI). In the second step, functional 

screening needs to be performed to reveal such POIs. This step can be performed both by using 

cultivable organisms from the sample or by using whole isolated environmental DNA to prepare 

metagenomic library, each of which is consequently screened. Positive isolates/ clones are 

subjected to gene mining with the aim of obtaining the DNA sequence of the POI that is 

consequently cloned into the basic production strain and thoroughly analysed. The final step in 

the discovery phase is the assessment of industrial viability of the relevant POI.  

In the next phase, the upstream development begins. First, a suitable host organism is chosen 

according to the product/ planned biotechnology and both the host and the gene encoding the 

POI are optimized. Created clones are analysed by using the high through-put method and the 

most promising ones are then used for the high-cell density cultivations in a bioreactor. In this 

step, the modelling of the process (including its performance) and throughout analyses are both 

performed in order to identify the optimal cultivation conditions for maximizing the process 

outcomes. Should this step fail and the outcomes are not industrially viable, the development 

needs to start again with the optimization of the strain itself. 

Apart from discovery and upstream part of the development, scale-up and downstream of the 

technology also needs to be planned and optimized. However, this part is beyond the scope of 

presented thesis and will not be further discussed in detail. 
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Fig. 1 Value chain in the biotechnology development (up-stream) 
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2.2 Soil microbial communities 

2.2.1 Antibiotic production and environmental pollution  

Antibiotics and antimicrobials account for the majority of the pharmaceuticals produced and used 

all around the globe. Between 2000 and 2015, global antibiotic consumption increased by 65% from 

21.1 billion to 34.8 billion defined daily doses annually, with the expected further increase of 200% 

by 2030 (Eurosurveillance editorial, 2019). Additionally, antibiotics are not only intended for the 

human use, but a smaller fraction is also produced for veterinary purposes and agriculture (Singh 

et al., 2017, Sneeringer et al., 2019). However, since the global regulation and good manufacturing 

practice guidelines for the environmentally safe production are yet to be implemented, 

pharmaceuticals are now major environmental pollutants, and are ubiquitous in waters and soils 

(Kamba et al., 2017).  

Since the 1980s, indications about the burden connected to industrial manufacturing of antibiotics 

started to appear (Lee & Arnold, 1983). Even so, it was generally thought that antibiotics are 

primarily reaching environment through their usage or inappropriate disposal. In 2007, however, a 

study dealing with the release of huge amounts of antibiotics from the industrial plants was 

published (Larsson et al., 2007) and changed the perception about the main origin of the problem. 

It was proven that the contamination resulting from industrial production of active pharmaceutical 

compounds (APIs) unprecedentedly spreads in the environment, polluting surface, ground and 

drinking water, as well as the soil (Fick et al., 2009, Rutgersson et al., 2014). Even though it is still 

expected that only a small fraction of the produced APIs is entering the environment, this amount 

can still be greater than therapeutic concentrations (Larsson, 2014). Also, it was shown that even 

very low doses of antibiotics can pose enough selection pressure to promote changes in microbial 

communities, especially when lasting for prolonged periods (DeVries et al., 2015, Bengtsson-Palme 

& Larsson, 2016). Comprehensive review of the pollution caused by drug manufacturing was 

published by Joakim Larsson (Larsson, 2014), while the portfolio of newer studies has been 

increasing ever since (Lubbert et al., 2017, Chen et al., 2020, Milakovic et al., 2020).  

In the Czech and Slovakian context, antibiotics (penicillin G, erythromycin, sulfamethoxazole, 

trimethoprim, chloramphenicol, and clarithromycin) were detected in the wetlands in the water-

shed of a drinking water reservoir Švihov (Vymazal et al., 2017) and sulphonamide antibiotic 

pollution was also detected in rivers and the water bodies in the region of South Moravia (Járová 

et al., 2015). Wide variety of antibiotics was found in the effluent of health care institutions both in 

Czechia and Slovakia (Mackuľak et al., 2019) as well as in the influent of eight waste water 

treatment plants around Slovakia (Fáberová et al., 2017) and six around Czechia (Tylová et al., 

2013). 
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2.2.2 Microbial ecology in context of environmental antibiotic pollution 

Soil microorganisms are suggested to be the major contributors to soil health (Doran, 2002). They 

have an irreplaceable role, carrying key ecological functions in global element cycling, such as 

carbon and nitrogen; they are involved in turnover processes of organic matter, breakdown of 

xenobiotics, sustaining plant growth, or stabilization of the soil structure (Ducklow, 2008, Gattinger 

et al., 2008, Martínez, 2017).  

The homeostasis of the soil is dependent on both biotic and abiotic factors, including the presence 

of antibiotics. Selection pressures associated with antibiotic pollution can act on the overall 

microbial community composition by reducing taxa diversity or by shifting microbial composition 

(Cycon et al., 2019). According to the exposition level, antibiotics can alter the population structure 

of the microbiome with (i) the immediate effect which decreases the diversity of the culture and 

(ii) the long term effect which allows the overall structure of the community to recover, yet not 

reach the equivalent genomic structure (Martínez, 2017). In the presence of antibiotics, bacterial 

populations are able to exert changes in gene expression or perform fluctuations in critical 

physiological traits, which reduce the diversity in microbial populations by favouring the growth of 

more tolerant or more resistant microbial lineages (Sanchez-Romero & Casadesus, 2014, El 

Meouche & Dunlop, 2018). In general, bacteria harbour wide range of processes altered by the 

presence of antibiotics, such as gene expression adjustments, SOS induction, conjugation, biofilm 

formation, increased uptake of extracellular DNA, or quorum sensing (Maiques et al., 2006, 

Skindersoe et al., 2008, Zhang et al., 2013, Sanchez-Romero & Casadesus, 2014, Slager et al., 2014, 

Penesyan et al., 2020), all of which increase the available pool of genetic & phenotypic diversity; 

reviewed in Kraemer et al. (2019). 

The changes in the microbial community composition can consequently alter the ecological 

functionality of the soil (Molaei et al., 2017). Numerous studies confirm this assumption. For 

example, exposition to sulphonamides in high concentrations resulted in decrease of basal 

respiration, nitrification rate, and measured enzymatic activity of beta-glucosidase, protease and 

urease (Liu et al., 2016), while ultralow-dose of the same antibiotic caused increased nitrate 

reduction and changes in N2O fluxes (DeVries et al., 2015). On the other hand, natural microbial 

communities have a large functional redundancy, because of the presence of multiple species able 

to carry out the same process. That means that the process can continue even during the antibiotic 

exposition despite modifications in the community structure (Roose-Amsaleg & Laverman, 2016).  

In the case of beta-lactam antibiotics, the exposition was described to lead to the activation of SOS 

response and horizontal transfer of virulence factors (Maiques et al., 2006). Vertical gene transfer 

was also described to be one of the most important drivers for the spread of resistance in the 
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microbial community in the presence of amoxicillin (Meng et al., 2017). Moreover, presence of 

beta-lactam antibiotics increases the frequency of conjugation and DNA transport between cells 

(Barr et al., 1986, Nesme & Simonet, 2015) and also changes expression of genes responsible for 

protective effect against perturbation of bacterial wall (Rogers et al., 2007). In the work of 

Akimenko et al. (2015), exposition to penicillin G lead to a decrease in the activity of catalase, 

dehydrogenase, phosphorylase, and invertase enzymes (20-70% of control). Similar results were 

also obtained by Telesiński et al. (2018), whereby penicillin G caused temporal decrease in the 

activity of both acid and alkaline phosphatase, urease, and dehydrogenase. However, this effect 

was only temporal and was slowly diminishing over the cultivation time (overall 56 days). Presence 

of amoxicillin led to the decrease in abundance of genera responsible for carbohydrate, amino acids 

and glucose degradation (Meng et al., 2017). Overall, presence of beta-lactam antibiotics 

significantly affects composition of the microbial community and its function through spread of 

resistance and emergence of non-beta-lactam-antibiotics-sensitive bacteria (Singh et al., 2013, Cai 

et al., 2019, Das et al., 2019).  

Finally, pollution by antibiotics not only disrupts the structure and the function of microbial 

communities but also presents a substantial risk due to the development of drug-resistant 

microorganisms which could pose a significant health risk to both humans and animals, should they 

spread (Grenni et al., 2018, Bengtsson-Palme et al., 2019).  

 

2.2.3 Assessment of biotechnological potential of microbiome of polluted environments 

It is widely accepted that microorganisms represent unique source of enzymes with potential 

biotechnological importance (Sleator et al., 2008, Simon & Daniel, 2011). Moreover, microbial 

consortia of harsh environments (extreme conditions, polluted environments) had adapted 

themselves to reside with those environments, developing mechanisms that tamper the extrinsic 

influence or help them to nutritionally profit on those conditions (Ferrer et al., 2007, Dantas et al., 

2008, Sayed et al., 2020). Such “specialized” microorganisms and their enzymes are 

biotechnologically important, because they often have characteristics more suitable for the 

industrial usage, such as higher temperature optimum and stability (Escuder-Rodríguez et al., 2018, 

Thamer & Pravej, 2020), lower/ increased pH optimum (Steele & Streit, 2005), increased salt 

tolerance (Cretoiu et al., 2015), increased substrate specificity (Huo et al., 2018), etc. 

With the development of culture-independent methods for functional screening and gene mining, 

such as preparation of the metagenomic libraries, it is now possible to reach the potential of the 

uncultivable microorganisms which account for vast majority of the whole microbiome (Daniel, 

2004, Ngara & Zhang, 2018). This is even more important for the mentioned microorganisms from 
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the extreme environments, which are very difficult to cultivate due to their specific cultivation 

demands (Bodor et al., 2020). Such libraries theoretically provide access to the entire genetic 

information of the studied sample (genome, total environmental DNA, DNA obtained from enriched 

culture etc.) (Dias et al., 2014). The presence of the gene encoding POI is assessed by the targeted 

functional screening of created library clones from metagenomic DNA, thus not requiring 

knowledge about the structure of the gene (Almeida et al., 2020). Whole sequence of POI gene is 

consequently “mined” from the positive clones either by using sequence homology methods (when 

conserved parts of the gene are expected) or by whole insert sequencing (Dias et al., 2014). 

Such approach of metagenomic potential mining already lead to the discovery of various interesting 

products, such as new melanin-like pigment from industrially polluted metagenomic library (Amin 

et al., 2018), alkaline protease isolated from oil-polluted mud flat metagenome (Gong et al., 2017), 

or lipase and foldase obtained from fat-contaminated soil (Almeida et al., 2019). Gabor et al. (2005) 

isolated new penicillin G acylase (PGA) using the plasmid library from DNA of sand soil enrichment 

culture and cosmid library from the Antarctic soil sediment was also the source of the new 

thermostable PGA (Zhang et al., 2014). Moreover, selection pressure was described to drive 

spontaneous mutation in the pga gene causing change in substrate specificity of the enzyme 

resulting in an increased survival rate of the organism of origin (Roa et al., 1994), thus confirming 

the influence of “harsh” conditions on the function of exposed organisms.  

Nevertheless, screening of the cultivable fraction of the microorganisms should not be completely 

overlooked either. Even though metagenomic approach brings novel ways of exploiting hidden 

potential of the microbial consortia, there are still certain limitations to be tackled. The probability 

of recovering a certain gene depends on its abundance in the environmental DNA used for the 

library construction, on the length of the target gene, and on the presence of expression signals 

that are functional in the host organism (Gabor et al., 2004). Moreover, the production of enzyme 

not only requires gene expression, but also proper folding, intracellular transport, and secretion. 

Therefore, exploring the biotechnological potential among the cultivable organisms can overcome 

the stated limitations; such organism can be potentially also used itself as a whole cell catalyst, 

without the need of molecular optimization steps (de Carvalho, 2017). 
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2.3 Enzymes biotransforming beta-lactam antibiotics 
 

While beta-lactam antibiotics remain the most important specific therapeutics for treatment of 

bacterial diseases (Eurosurveillance editorial, 2019), their extensive use has led to spread in 

bacterial resistance (Sawa et al., 2020). Generic technologies to efficiently synthesise novel 

effective antibiotics are therefore being sought. Biocatalytic processes using penicillin G acylase 

(PGA) and alpha amino acid ester hydrolase to produce such semi-synthetic beta-lactam antibiotics 

(i.e. ampicillin, amoxicillin, cephalexin) represent a more environmentally-friendly alternative to 

the established manufacturing technologies using chemical synthesis. The success of the current 

trend of “bio-pures” is dependent on the availability of enzymes of desired quality at a reasonable 

price. Therefore, optimization of enzymes to improve their catalytic functions as well as their 

production platform to maximize the yields is of immense importance. 

 

 

2.3.1 Penicillin G acylase EC 3.5.1.11 

PGA is an important industrial enzyme, produced by various organisms, including bacteria, yeast, 

and fungi. It belongs to the N-terminal nucleophile hydrolase (Ntn) superfamily, which is 

characterized by the four-layer alpha/beta structure around the active site with a single N-catalytic 

residue (McVey et al., 1997, Done et al., 1998).  

The mature PGA is a heterodimeric enzyme with lighter alpha-subunit and heavier beta-subunit 

(McVey et al., 1997). Like all Ntn hydrolases, PGA is expressed as an inactive precursor peptide 

which undergoes post-translational processing. This pre-pro-protein contains an N-terminal leader 

sequence and proenzyme, consisting of alpha- and beta-subunits that are separated by a short 

spacer of 30–50 amino acid residues (Hewitt et al., 2000). Processing of the enzyme precursor 

begins in the cytoplasm, where the pre-pro-protein is stabilized by Ca2+ and the beta-subunit is 

released by intra-molecular autocatalytic cleavage (Ignatova et al., 2005). The signal sequence of 

the precursor is cleaved upon crossing the cytoplasmic membrane and followed by sequential 

removal of the spacer, generating the C-terminus of the alpha-subunit (Kasche et al., 1999). 

The physiological role of PGA remains poorly understood. It is hypothesised that in vivo PGA 

functions as a scavenger enzyme acting on alternative carbon sources containing phenylacetyl 

group (Valle et al., 1991); being related to the hydroxyphenylacetic acid catabolic pathway (Kim et 

al., 2004). This hypothesis is supported by the fact that, at transcriptional level, pga gene is 

repressed by glucose but induced by phenylacetic acid (Merino et al., 1992). Moreover, it is 

hypothesized that PGAs can be involved in bacterial cell signalling as they are structurally related 

to acyl homoserine lactone acylases (Matsuda et al., 1987, Bokhove et al., 2010) which are widely 
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studied quorum quenching enzymes in Gram-negative bacteria (Utari et al., 2017). Therefore, PGAs 

can also potentially be involved in mediating antibiotic resistance, as quorum quenching in bacteria 

was shown to control antibiotic resistance (Evans et al., 2018). 

The main industrial potential of PGA lies in its ability to catalyse the hydrolysis of amidic bonds of 

penicillin G and cephalosporin G, producing amine nucleophiles 6-aminopenam (6-amino 

penicillanic acid, 6-APA) and 7-aminocephem (7-amino deacetoxy cephalosporanic acid, 7-ADCA) 

(Bruggink et al., 1998). PGA also catalyses kinetically-controlled syntheses of semisynthetic 

antibiotics such as ampicillin, amoxicillin, cephalexin, etc. (Bruggink & Roy, 2001, Maresova et al., 

2014). Moreover, further applications of PGAs have been described, such as catalysis of peptide 

syntheses and the resolutions of racemic mixtures for the production of enantiopure active 

pharmaceutical ingredients. PGA also rank among promiscuous enzymes because they also catalyse 

reactions such as trans-esterification, Markovnikov addition or Henry reaction; reviewed in Grulich 

et al. (2013). Summary of the PGA biocatalytic potential is depicted in Fig. 2.  

 

However, to fully utilize its potential on an industrial level, certain limitations of the enzyme need 

to be overcome. PGA has to be improved in terms of its stability (temperature, pH, tolerance to 

organic solvents) and sensitivity to inhibition by reactants. Also, the recognition of further beta-

lactams as substrates or the acquisition of better catalytic traits (e.g. increased ratio of the initial 

rate of the product synthesis to the initial rate of the hydrolysis of activated acyl donor) is necessary 

to improve its competitiveness with chemical processes (Becka et al., 2014).  

For sake of completeness, it should be noted that one of the other potential strategies to improve 

the productivity of PGA-catalysed reactions is by way of enzyme immobilization (Kallenberg et al., 

2005, Datta et al., 2013). For instance, catalysts based on the immobilized PGAs are already used 

for large-scale production of semisynthetic β-lactam antibiotics in kinetically controlled syntheses 

(Becka et al., 2014, Maresova et al., 2014).  
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Fig. 2 Reactions catalysed by PGA (in circles) and the area/ final products of respective usage  

 

2.3.2 Alpha amino acid ester hydrolase EC 3.1.1.43 

Alpha amino acid ester hydrolases form a family of enzymes capable of synthesis and hydrolysis of 

dipeptide-esters and semi-synthetic beta-lactam antibiotics (Barends & Dijkstra, 2003). Currently, 

the class of alpha amino acid ester hydrolases (AEH) was enriched with the structurally and 

functionally related subgroup, valacyclovirases (VACVases). Even though they differ in number of 

traits, they have similar active-centre structure and thus similar substrate specificity and activity 

(Kurochkina et al., 2013). 

AEHs are composed of two or four identical subunits (70-72 kDa) that form a dimer or dimer of 

dimers with 81 residues that make up the subunit interfaces (Kim & Byun, 1990). VACVase is a basic 

monomeric protein of low molecular mass (27-30 kDa) (Kim et al., 2003), though the presence of 

dimers was also observed (Lai et al., 2008). Both AEHs and VACVases share the same structure of 

the catalytic domain with classical catalytic serine hydrolases triad Ser-Asp-His and possess two 

important catalytic centre elements responsible for the recognition and binding of amino-group 

containing substrates (Barends et al., 2003, Kim et al., 2004). 

Native role of AEH is not completely clear; however they do not share PGA’s synthesis/expresion 

induction by phenylacetic acid when cultivated on rich or minimal medium (Polderman-Tijmes, 

2004), thus indicating no native functional relationship with PGA. All the open reading frames found 

upstream of the AEH genes encode proteins that are involved in the biosynthesis of amino acids, 

suggesting AEHs supportive role in general amino acid biosynthesis (Polderman-Tijmes et al., 2002a, 

Polderman-Tijmes et al., 2002b). The alternative theory suggests that AEHs may have a role in 



 

12 
 

hydrolysis of misfolded oligoproteins, due to its multimeric structure. Moreover, AEH from 

Xanthomonas campestris pv. campestris have been categorized in the cluster of proteins involved 

in pathogenicity, virulence and adaptation, more specifically in toxin production and detoxification 

(Blum & Bommarius, 2010). As for VACVases, their native role is yet to be revealed. However, 

promoter region of human VACVase conform to those of typical constitutively expressed 

housekeeping gene, indicating an important physiological role of this enzyme (Puente et al., 1998). 

AEHs are known to be able to catalyse the transfer of the acyl group from alpha-amino acid esters 

to amine nucleophiles such as 7-aminocephem and 6-penam compounds (synthesis) or to water 

(hydrolysis) (Polderman-Tijmes et al., 2002a). Their main biotechnological potential lies in their 

ability to catalyse one-pot syntheses of semi-synthetic aminopenicillins and aminocephalosporins 

(Sklyarenko et al., 2015). When compared to PGAs, AEHs have increased ability to catalyse beta-

lactam synthesis with minimal secondary hydrolysis of synthesized product and are not inhibited 

by phenylacetic acid (Blinkovsky & Markaryan, 1993, Blum & Bommarius, 2010). Additionally, AEHs 

are exhibiting stereospecificity, allowing the antibiotic syntheses from racemic mixture (Fernandez-

Lafuente et al., 2001); and are also able to synthesize dipeptides, yet the yields of such dipeptides 

are still inadequate for industrial utilization (Hossain et al., 2018). 

Studies of human VACVases demonstrated that the enzyme hydrolyses esters of alpha-amino acids 

and displays a broad specificity spectrum of aminoacyl moiety (Lai et al., 2008). They catalyse (in 

vivo) hydrolytic activations of alpha-amino acid ester prodrugs of a broad range of antiviral and 

anticancer nucleoside analogues (Kim et al., 2004, Lai et al., 2008). Therefore, they possess 

potential not only for utilization as an activation target but can also be used in the planning and 

design of those prodrugs (Sun et al., 2010). 

The available portfolio of genes encoding enzymes of alpha-amino acid ester hydrolase family is still 

rather restricted, limiting full utilization of those enzymes in the industrial processes. Therefore, 

identification of novel metagenomic AEH and VACVase sequences can potentially reveal novel 

catalytic functions and leverage the utilization of this catalyst.  

 

 

2.4 Heterologous protein production with Pichia pastoris 

P. pastoris is budding yeast belonging to the order Saccharomycetales, family Phaffomycetaceae, 

and only distantly related to better-known yeasts such as Saccharomyces cerevisiae, 

Schizosaccharomyces pombe and Candida albicans. In the case of P. pastoris, genome sequencing 

analysis led to the change in the classification of commonly applied P. pastoris strains into the 
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closely related genera Komagataella phaffii and K. pastoris (Kurtzman, 2009). However, the original 

classification had in-built itself in the scientific community. Therefore, it is still common practice to 

use the name P. pastoris instead of K. phaffii or K. pastoris in scientific publications. The rest of this 

thesis will adhere to this principle. 

It was discovered in 1969 by Koichi Ogata (Ogata et al., 1969) as one of the first yeast able to utilize 

methanol as a sole source of carbon; and for the past 40 years, over which it has been used for 

commercial production, P. pastoris has been proven as a substantial workhorse for biotechnology 

(Shay LK, 1984, Schmidhalter & Meyer, 2014).  

It is one of the most effective and versatile host systems for the production of heterologous 

proteins. It has already been used for the production of more than five hundred different proteins, 

and the number is expected to increase (Ahmad et al., 2014, Juturu & Wu, 2018, Baghban et al., 

2019).  Also, in 2009, the first FDA and EMA approval for recombinant production of kallikrein 

inhibitor protein by P. pastoris was granted for human use (Ahmad et al., 2014), thus paving the 

way for this host in the industrial production of pharmaceuticals. Currently, over 70 products are 

on the market or at the late stages of development                         (https://pichia.com/science-

center/commercialized-products/).  

Moreover, P. pastoris is not only used to produce single proteins, but further diverse products are 

also emerging, ranging from industrial enzymes (Valero, 2018) to multi-enzyme pathways (Geier et 

al., 2015). Although there are some examples of P. pastoris expression in the ≥1 g/L range, there 

are also few examples of expression ≥10 g/L, ranking the P. pastoris expression systems as one of 

the most productive eukaryotic expression systems available (Cregg et al., 2000, Ahmad et al., 2014, 

Karbalaei et al., 2020). 

 

2.4.1 P. pastoris as a production host 

Among the hosts utilized for heterologous protein production, Escherichia coli is still widely 

preferred due to the vast information availability about this host, its rapid growth, and simple 

cultivation techniques (Vieira Gomes et al., 2018). Nevertheless, depending on the properties of 

produced protein (such as posttranslational modifications) and demands concerning its harvest and 

down-stream processing, utilization of this host can be limited. Moreover, usage of bacterial 

production hosts has got a number of disadvantages when compared to yeast production systems, 

especially with P. pastoris. Comparison of the commonly used microbial production hosts are 

summarized in Tab. 1. 

 

https://pichia.com/science-center/commercialized-products/
https://pichia.com/science-center/commercialized-products/
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Tab. 1 Comparison of key characteristics of commonly applied microbial hosts for recombinant 

protein expression (Fernandez & Hoeffler, 1999, Brondyk, 2009, Vieira Gomes et al., 2018).  

 E. coli  S. cerevisiae  P. pastoris  

Viral infections  Bacteriophages  No  No  

Endotoxins  Lipopolysaccharides No  No  

Secretion 

capabilities  

Low  Medium  Medium to high 

Growth rate  High  Medium  Medium  

Medium complexity  Low  Low  Low  

Product titre  Medium to high  Low to medium  Medium to high  

Process complexity  Low  Low  Low to medium  

Post-translational modifications 

Protein folding  Low  Medium  Medium to high  

Glycosylation  No  Yes (high mannose; 

hyperglycosylation)  

Yes (high mannose)  

Phosphorylation  No  Yes  Yes  

Acetylation  No  Yes  Yes  

Acylation  No  Yes  Yes  

γ-Carboxylation  No  No  No  

 

Yeast production systems combine the simplicity of unicellular organism with the ability to realize 

most of the required posttranslational modifications essential for bioactive products (Mattanovich 

et al., 2012). They are more robust than the bacterial systems, due to the higher stability of 

recombinant strains, non-susceptibility to the bacteriophages and higher metabolic capacity 

(Meehl & Stadheim, 2014). They also provide strengths in terms of large portfolio of molecular 

tools, can be grown in very high cell densities, and are more adaptable to the harsh industrial-scale 

conditions (Vieira Gomes et al., 2018).  

In comparison to other yeast systems, P. pastoris is advantageous especially through its ability to 

secrete a high quality protein product with a minor basal secretion of its own proteins (Delic et al., 

2013). Thus, downstream processing is reduced, having a substantial beneficial impact on 

manufacturing costs. Moreover, P. pastoris is known for giving higher recombinant titres, when 

compared to conventional yeast host S. cerevisiae, since P. pastoris is Crabtree-negative and does 

not produce ethanol under aerobic conditions, which results in higher biomass formation and 

consequently in more recombinant protein (Mattanovich et al., 2012). One of the main features of 

P. pastoris is the usage of tightly regulated promoters, especially alcohol oxidase promoter (pAOX1) 

allowing for uncoupling of the growth from the production phase, i.e., biomass is accumulated prior 

to protein expression. Therefore, cells are not stressed by the accumulation of recombinant protein 

during the growth phase (Ahmad et al., 2014). 
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The recombinant product production and secretion in P. pastoris starts with protein folding at the 

endoplasmic reticulum (ER), where also post-translational modifications are initiated (Hammond et 

al., 1994, Delic et al., 2013). As every secretory protein carries signal sequences for its final 

destination, folded proteins aimed at secretion are recognized there, packed in COP-II vesicles and 

transported into the Golgi apparatus (GA) (Montegna et al., 2012). GA in Pichia is closer to the 

mammalian morphology; it is arranged in ordered stacks, close to transitional ER sites where COP-

II vesicles bud-off (Rossanese et al., 1999). In GA, further processing of the glycans takes place (Delic 

et al., 2013), signal sequence is cleaved, and protein undergoes final “quality check” (Coughlan et 

al., 2004). The final step in the secretory pathway is the transport of the cargo in light and dense 

vesicles that bud-off at the trans-GA and fuse with the plasma membrane. The exocytosis is 

performed by the complex called exocyst, where many different proteins functions together 

(Harsay & Schekman, 2002).  Beside the exocyst, snap proteins (SNAREs) are also involved in 

exocytosis (Aalto et al., 1993, Damasceno et al., 2012). 

 

2.4.2 P. pastoris cellular bottlenecks and limitations 

As described before, many proteins can be produced in P. pastoris at high levels. However, 

production of (especially) complex or multimeric proteins of heterologous origin has proven to be 

a challenge, leading to low production yields (Puxbaum et al., 2015). Production of secretory 

proteins can be hampered at all levels of protein synthesis, maturation, and secretion.  

Overproduction of heterologous proteins can lead to accumulation of misfolded product due to the 

insufficiency or over-saturation of ER, consequently causing stress in the production cells. The key 

cellular mechanisms triggered by the accumulation of unfolded/misfolded proteins are the 

unfolded protein response (UPR) (Mattanovich et al., 2004) and endoplasmic reticulum associated 

protein degradation (ERAD) (Zahrl et al., 2017). Those two cellular mechanisms are causing adverse 

reactions in terms of protein folding. UPR response leads to positive feedback loop, enhancing 

protein folding by transcriptional activation of genes encoding chaperons and related factors (Cox 

& Walter, 1996, Wu et al., 2014). In case that this response is not sufficient and the unfolded 

proteins are not being successfully repaired, they are eliminated within the ERAD proteolytic 

pathway (Zahrl et al., 2017). Proteolysis of the produced protein is also caused by their misdirection 

to the cell’s vacuoles/lysozymes (Sinha et al., 2005, Yang et al., 2013, Heiss et al., 2015), or by 

proteolysis caused by membrane proteases (Silva et al., 2011, Wu et al., 2013). The proportion of 

such degraded protein can be very high, reaching up to 60% of total produced protein (Pfeffer et 

al., 2011).  
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Furthermore, secretion of the active product can be hampered by limitations in the secretory 

pathway itself. It was shown that every step in protein secretion, as described in the chapter “2.4.2 

2.4.1 P. pastoris as a production host”, can be rate limiting (Puxbaum et al., 2015). Numerous 

studies focused on overexpression of individual components of secretory pathway revealed 

improvements in the secretion of the product, therefore showing that the produced amount, as 

well as recycling of those components, can significant limit the productivity of the system (Juturu & 

Wu, 2018, Fischer & Glieder, 2019). In particular, such limitations were proposed at the level of 

protein translocation into ER (Fitzgerald & Glick, 2014), ER-GA trafficking via COP-II vesicles (Barrero 

et al., 2018), secretory targeting in GA (Zheng et al., 2016), exocytosis via exocyst (Marsalek et al., 

2019) and via SNAREs (Gu et al., 2015). 

The major recently discussed bottlenecks and limitations of P. pastoris hosts are highlighted in the 

Fig. 3.  

 

 

 

Fig. 3 Secretion in P. pastoris. Red squares: Major bottlenecks of the production and secretion 

production of product. Purple squares: Most important physiological responses to the stress caused 

by overproduction. Figure adapted from Gu et al. (2015). 
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2.4.3 P. pastoris and PGA 

Development of an efficient process for industrial production of penicillin G acylase (PGA) would 

be of great relevance, since there is an emerging interest in leveraging the intrinsic versatility of this 

enzyme for multiple organic syntheses and the demand for PGA at an affordable price is growing 

rapidly (Grulich et al., 2013, Maresova et al., 2014).  

The best results in the production of PGA have so far been obtained by using bacterial hosts. The 

highest activity and productivity of PGA (E. coli origin) that has been documented in production 

using E. coli was obtained by Velez et al. (2014) with volumetric activity up to 100.000 U/L. However, 

this result was obtained by utilizing conditions that are difficult to be transferred into the industrial 

environment (e.g. low temperature, sudden changes in the cultivation process). Despite those 

results, the bacterial hosts also have several features which make them less attractive for the 

industrial production of PGA, such as plasmid instability (Valesova et al., 2004), formation of 

inclusion bodies (Orr et al., 2012) or accumulation of the product in periplasmic space (Scherrer et 

al., 1994) among others.  

PGA has not yet been produced efficiently by either S. cerevisiae (Ljubijankic et al., 1999, Ljubijankic 

et al., 2002) or P. pastoris (Sevo et al., 2002, Senerovic et al., 2006, Maresova et al., 2010). PGA 

maturation is a complex process spanning from the bacterial cytoplasm to the periplasmic space 

(as described in chapter 2.3.1 Penicillin G acylase EC 3.5.1.11). However, it was shown that bacterial 

periplasm has got very similar functional qualities to yeast endoplasmic reticulum (Miller & Salama, 

2018) and therefore it can be hypothesized that the maturation of PGA should be successfully 

performed in this yeast compartment; as was shown for a variety of other heterologously produced 

proteins (Delic et al., 2014). 

The first study dealing with the production of PGA in P. pastoris (GS115 his4) was performed by 

Sevo et al. (2002). Using pga gene from Providencia rettgeri, up to 180 U/L of PGA was secreted in 

the cultivation medium (1L shake-flask culture) – which was two order higher result than the same 

production in S. cerevisiae (Ljubijankic et al., 1999). Intracellular production of PGA from P. rettgeri 

in P. pastoris LN 5.5 pep4 was also studied by Senerovic et al. (2006). The final achieved volumetric 

activity of PGA in supernatant (150 mL shaking flasks, 6 days induction) was up to 3800 U/L. In the 

consequent high-cell density cultivation in 9 L bioreactor (5 days methanol induction), PGA activity 

reached 26500 U/L - so far the highest titre obtained while producing PGA of this origin in any host. 

The enzyme was also N- and O- glycosylated which led to the improvement of its stability (Senerovic 

et al., 2006, Senerovic et al., 2009).  

Secretory production of PGA (E. coli origin) was only studied in S. cerevisiae, although the 

production was described as “poor” (Ljubijankic et al., 1999). On the other hand, intracellular 
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production of PGA (E. coli origin) was studied in the work of Maresova et al. (2010). Leader-less pga 

gene was cloned into P. pastoris X33 and the evaluation of the activity was done in 10 L stirred 

reactor (6 days methanol induction). Under optimal conditions the average volumetric activity of 

25900 U/L was obtained. However, cell destruction was necessary in order to obtain the enzyme.  

These results indicate that the production of PGA in P. pastoris presents a promising path towards 

the development of appropriate industrial production process. However, to develop the 

biotechnological use of a yeast system for PGA production, it is necessary to consider the integrated 

process by identifying essential properties of developed strains in a production procedure and, 

simultaneously, to use this knowledge to optimise the expression system. 

 

2.4.4 Rational strain and production platform design 

For successful recombinant protein expression in P. pastoris, it is important to prepare a suitable 

recombinant system that includes the design of expression cassette and the choice of suitable host 

strain. Strain design needs to suit the produced heterologous protein both in terms of its structure 

and the chosen production strategy (e.g., intracellular production, secretory production, 

membrane protein production).  

 

 

A:  Preparation of Expression cassette  

The initial step of the production of the heterologous proteins in P. pastoris is the construction of 

expression cassette which is consequently used for chromosomal integration. Such cassette is 

delivered into the P. pastoris cells in the form of expression vector (Fig. 4) 

 

When the expression vector is delivered inside the P. pastoris cells, the non-homologous end joining 

(NHEJ) pathway mediates integration of DNA (Klinner & Schäfer, 2004). Integration of the 

expression cassette results in random, non-targeted, chromosomal insertion. In P. pastoris this 

NHEJ pathway is more pronounced than homologous recombination (Emerson & Bertuch, 2016) 

and, depending on the target locus, approx. 1000 bp long homologous sequences are needed for 

efficient targeting (Schwarzhans et al., 2016). Therefore, functionality of frequently present short 

homologous sequences on expression vectors is disputable and explains differences between the 

created clones (Schwarzhans et al., 2016). On the other hand, knock-out strains have been created 

to improve targeted integration. For example, knockout of ku70 gene (encoding ATP-dependent 

DNA helicase II subunit 1) increased efficiency of targeted integration by 85% (Naatsaari et al., 
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2012); simultaneous knockout of dnl4 gene (encoding DNA ligase IV) further improved this 

efficiency (Ito et al., 2018). 

 

 

Fig. 4 Structure of a typical expression vector for extracellular protein expression in P. pastoris  

 

The first step in production cassette preparation is customization of the expressed gene. Pichia 

species display a non-random pattern of synonymous codon usage and show general bias towards 

a subset of codons, leading to different heterologous expression efficiencies (Oberg et al., 2011). 

Thus, codon optimization of the gene encoding product has to be performed by replacing rarely 

used codons with frequently used ones, as well as by considering the effect of codon sequences on 

mRNA secondary structure (Wang et al., 2015). 

 

In the second step, suitable signal sequence needs to be chosen. The protein secretion pathway in 

yeast starts from recognition of a signal peptide sequence of nascent peptide by the signal 

recognition particle and their translocation co- or post-translationally into the ER lumen (Delic et 

al., 2013). Although many types of signal peptide sequences have been developed, the most 

commonly used signal sequence is α-mating factor pre-pro signal from S. cerevisiae (Lin-Cereghino 

et al., 2013) which directs posttranslational translocation to ER. This type of translocation could be 

inefficient due to the complex secondary structure of the protein, as was proven for the monomeric 

superfolded GFP (Fitzgerald & Glick, 2014). Therefore, usage of the signal sequence directing co-

translational cytosol-ER translocation, such as open stomata 1 signal sequence (Ost1) from 

Arabidopsis thaliana, could overcome the translocation bottleneck and be advantageous for more 

complex proteins (Barrero et al., 2018).   
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The choice of the right promoter is another crucial point for efficient gene expression, as most 

regulations in productivity take place at the transcriptional level (Weinhandl et al., 2014).  

Generally, promoters can be divided into several classes according their regulation: 

i. Constitutive promoters – unregulated promoters that allow for continual transcription of 

its associated gene. 

ii. Inducible promoters – characterized by strong and tight controllable regulation, cost-

efficient induction, and effective expression of the gene of interest being placed 

downstream of the inducible promoter sequence. Chemically regulated promoters are 

induced or repressed by the presence or absence of chemical compounds, such as carbon 

sources. 

iii. Repressed/ de-repressed promoters – regulated at the level of presence/ absence of the 

repressor; typically carbon source, such as glycerol. The expression of the protein of 

interest does not start during cell growth, when the carbon source is typically abundant, 

but only at the late exponential phase, allowing de facto regulated gene expression without 

external induction step. 

iv. Combination-regulated promoters – certain promoters can be regulated using more 

regulation strategies. An example can be the catalase promoter (pCat) - this promoter is 

both de-repressed upon glycerol depletion and further induced by the presence of 

methanol. This characteristic allows for switching between regulation strategies according 

the needs of the strain. 

 

The most popular promoters used in P. pastoris for foreign gene expression are the methanol 

inducible alcohol oxidase 1 promoter pAOX1 and the constitutive glyceraldehyde-3-phosphate 

dehydrogenase promoter pGAP (Vogl & Glieder, 2013). pAOX1 offers tight regulation under 

repressed conditions, and exceptionally high activity when induced with methanol (Cereghino & 

Cregg, 2000). pGAP, as a constitutive promoter, has got stable activity throughout the cultivation 

which is comparable to the one of pAOX1 (Waterham et al., 1997). Each of the promoter type has 

its own pros and cons and their respective use needs to be tested in order to suit the prepared 

production strain. Since pAOX1 is induced by methanol, handling of such carbon source can be of 

concern and cultivation conditions need to be adapted due to increased oxygen consumption and 

heat generation of high cell density culture grown on methanol (Looser et al., 2015). On the other 

hand, pGAP promoter is not suitable for expression of toxic compounds as by using this promoter 

the growth and the production cannot be uncoupled. 
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In the recent years, large portfolio of both natural and synthetic promoters for the use in P. pastoris 

has been created; comprehensively reviewed in Vogl & Glieder (2013) and Türkanoğlu Özçelik et al. 

(2019). Those include alternative promoters with different expression strengths and regulatory 

properties, such as methanol inducible promoters of the methanol utilization pathway (Vogl et al., 

2016); as well as other constitutive or repressible promoters (Türkanoğlu Özçelik et al., 2019). For 

example, formaldehyde dehydrogenase (pFLD1) inducible promoter, when induced by methanol or 

methylamine, was found to have similar/ higher strength to pAOX1 (Shen et al., 1998), and S. 

cerevisiae pCUP1 promoter can actively work in P. pastoris and be induced at desired levels by 

different Cu2+ concentrations (Koller et al., 2000). In addition to natural promoters there has been 

a growing interest in synthetic promoters driving enhanced protein expression (Vogl et al., 2013). 

Using directed evolution approach, variants of both pAOX1 and pGAP with adjusted transcriptional 

activity have been developed to enable advanced, fine-tuned expression profiles (Hartner et al., 

2008, Qin et al., 2011). Using the knowledge on the basis of the sequence/function relationship of 

natural core promoters, nucleosome occupancy and the presence of short motifs, completely 

synthetic core promoter sequences were designed by Portela et al. (2017). Such core promoters 

were fused to the P. pastoris pAOX1 cis-regulatory modules, and the resulting activity spanned 

more than a 200-fold range of the wild type pAOX1 (Portela et al., 2017). 

 

Finally, in order to ensure sufficient level of transcription of the heterologous gene, strategies 

involve not only choosing the right promoter strength but also gene copy number (i.e. number of 

integrated expression cassettes). Gene copy number generally is described as “early” production 

bottleneck affecting heterologous product productivity. In numerous examples, the isolation of 

multicopy integrants resulted in dramatically higher yields, so gene dosage can be critical for 

maximal expression (Romanos et al., 1998, Daly & Hearn, 2005, Parashar & Satyanarayana, 2017). 

On the other hand, it was proved that correlation between increased gene dosage and productivity 

is not linear for all products (Puxbaum et al., 2015); in some cases, increased copy-number of 

cassettes was observed to lead to upregulation of anti-oxidative genes and changes in expression 

levels of methanol metabolic pathway genes, leading to transcriptional attenuation of the methanol 

metabolism. This change was concomitant with reduced levels of secreted heterologous product 

(Zhu et al., 2011, Cámara et al., 2017). Therefore, increasing copy number in the created strain also 

needs to be carefully planned and tested. 

 

 

B: Strain choice 
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The parental strains for the most used P. pastoris protein expression hosts are CBS7435 and 

DSMZ70382 (deposited in the former Centraalbureau voor Schimmelcultures, now Westerdijk 

Institute, Netherlands), some of the very first discovered methanol utilizing yeast stains. The first 

step in methanol utilization is its oxidation to formaldehyde by the enzyme alcohol oxidase (AOX, 

EC 1.1.3.13) (Hartner & Glieder, 2006). Production of this enzyme is significantly induced by the 

presence of methanol; in methanol grown cells up to 30% of the total cellular protein is transcribed 

from the pAOX promoters, being regulated at the level of transcription involving two mechanisms: 

repression/ de-repression and induction (Ellis et al., 1985, Vogl & Glieder, 2013). There are two 

genes in P. pastoris that code for alcohol oxidase – aox1 and aox2 – but aox1 is responsible for the 

vast majority of the alcohol oxidase activity in the cells. The enzymes are produced from respective 

promoters, pAOX1 and pAOX2, out of which pAOX1 is almost 10 times stronger (Cregg et al., 1989). 

Even though methanol-induced expression is highly useful in the production, it is also desirable to 

minimize methanol´s use because of its high flammability. Additionally, its metabolism requires 

increased amount of oxygen (Arnau et al., 2010), causes excessive heat generation (Krainer et al., 

2012) as well as formation of toxic products such as formaldehyde and hydrogen peroxide (Jungo 

et al., 2007, Jungo et al., 2007).  

The solution to these problems can be either strict control of the growth rate of the culture (and 

therefore minimization of the methanol feed) or creation of strains with limited utilization of 

methanol (whereby methanol is mainly used as an inducer of gene expression rather than as a 

carbon source).  

Cells having both functional AOX genes are called “methanol utilizing plus (Mut+)”. Cells having only 

functional AOX2 are utilizing methanol more slowly, therefore are referred to as “methanol utilizing 

slow (MutS)”. Cells in possession of no alcohol oxidase activity are called “methanol utilizing minus 

(Mut-)”. Mut- as well as MutS strains need to be provided with a secondary carbon source, such as 

sorbitol, mannitol, trehalose or alanine, all of which were found not to repress pAOX induction (Inan 

& Meagher, 2001). MutS and Mut- strains can only tolerate low levels of methanol and therefore 

Mut+ strains are less likely to become poisoned by methanol, though are more likely to become 

oxygen limited (Daly & Hearn, 2005). Both Mut+ and MutS strains are currently used in preparation 

of the production platforms and no consensus of the scientific community about their superiority / 

inferiority has been reached yet (Singh & Narang, 2019). On the other hand, lack of any recent 

literature indicates that Mut- strains are not currently used. 

Apart from the methanol utilization phenotype, a wide range of genetically different P. pastoris 

strains is currently available and their use is determined by the required application. For example, 

strains deficient in protease activity have been widely popular (Zhang et al., 2007). Several 

protease-deficient strains, such as SMD1163 (his4, pep4, prb1), SMD1165 (his4, pep4), and 
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SMD1168 (his4, pep4) have been found to be effective in enhancing the yield and the quality of 

various heterologous proteins (Cereghino & Cregg, 2000). Such strains have been successfully used 

for production of insulin-like growth factor I (Brierley, 1998) or laccase (Jonsson et al., 1997). 

However, Cereghino & Cregg (2000) pointed out that protease-deficient strains exhibit lower 

specific growth rates, are difficult to transform, and have lower viability. Therefore, they are 

recommended to be used only if the other methods reducing proteolysis fail.  

Certain genotypes were also introduced in order to simplify the selection of the positive 

transformants – for example strains GS115 or SMD1168 are defective in histidine dehydrogenase 

gene (his4) and therefore can be selected on histidine-free media if the inserted production 

cassette contains functional his4 as a selection marker. Commonly used X33 strain (Invitrogen, Life 

Technologies; USA) is considered wild type, even though random mutagenesis of this strain has 

been historically performed (based on personal communication with prof. Cregg). Still, the 

phenotype of X33 is seemingly not differing from the parental strain. 

 

 

C – Cultivation method 

In order to prepare a successful production platform using P. pastoris, an integrated process of 

genetic alterations as well as physiological manipulation needs to be considered. Construction of 

the production strains thus needs to be done with respect to the appropriate handling in the 

cultivation process. 

Shake-flask small scale cultivations of constructed strains are often the first stage in optimizing 

protein levels as well as in selecting culture conditions (Daly & Hearn, 2005). However, the levels of 

produced product are generally 10-fold lower than in cultivations using controlled conditions, 

mainly due to the concentration of the dissolved oxygen which becomes growth-limiting (Cereghino 

& Cregg, 2000). Thus, in order to obtain heterologous product on the large scale, fed-batch high-

cell-density cultivation using bioreactors with strictly controlled conditions (aeration, pH, 

temperature, agitation, pressure, foam formation, exhaust air analyses, feeding) is established. This 

is performed with the ultimate goal of maximizing the amount of product in the minimum process 

time. Therefore, specific productivity qp (U.g-1.h-1; units of product per gram of biomass produced 

per hour), biomass (g), and production time (h) are critical bioprocess variables.  

Fundamental step in identifying the physiological constraints of P. pastoris is the development of a 

suitable feeding strategy (i.e. carbon and energy substrates addition) (Spadiut et al., 2014, Looser 

et al., 2015, Liu et al., 2019). The relationship between qp  and specific growth rate µ (h-1) reflects 

the equilibrium between cellular processes until the product is maturated/ secreted (i.e. induction 
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of gene expression, translation, protein folding and degradation in the endoplasmic reticulum, flux 

of folded protein out of the ER, and trafficking through the secretory machinery) (Looser et al., 

2015). Therefore, it is essential to design production strategy with the strict control of the desired 

µset using controlled addition of the carbon source.  

 

Among the traditional feeding strategies belong (Liu et al., 2019): 

i. Dose feeding strategy: an indirect feedback of on-line measurement of dissolved oxygen 

concentration. Increase in the dissolved oxygen signalizes depletion of the C-source (e.g. 

methanol) which is automatically supplemented in the response. However, dose feeding 

strategy does not allow retaining constant growth rate and methanol concentration in the 

culture is varying. Therefore, this strategy does not allow uncoupling of the influence of 

those variables on the production outcomes. 

ii. Methanol non-limited strategy: methanol concentration is on-line monitored and 

automatically supplied to the designed level. However, the concentration of methanol 

fluctuates around the methanol set-point and such non-linear conditions can again have an 

important impact on the studied variables. 

iii. Exponential feeding strategy: methanol addition is pre-planned in order to maintain 

designed µ. A feeding rate profile is calculated using mass balance equations and µ of the 

culture is constant. Therefore, the yield of biomass to substrate is expected to be constant 

with a quasi-exponential accumulation of biomass as well as concentration of methanol 

should be close to zero at any given point.  

 

Keeping the constant µ accelerates process reproducibility and allows to study µ-related effects on 

heterologous protein production (Liu et al., 2019). Therefore, exponential feeding strategy (iii) 

represents the best design for the studies aimed at understanding the production and secretion of 

difficult-to-produce products, such as PGA. 

Fed-batch process of P. pastoris producing heterologous proteins under the control of inducible 

promoter (pAOX1) comprises a phase of biomass growth in both the batch and the fed-batch modes 

and a production phase in the fed-batch mode. The process is initiated with a batch culture 

containing glycerol as a substrate. At the point of substrate depletion, the exponential addition of 

glycerol feed is initiated in order to reach the desired biomass concentration.                 A methanol 

feed is exponentially added during the subsequent production phase, Fig. 5 (Hyka et al., 2010, 

Looser et al., 2017). 
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Fig. 5 Key characteristics of the cultivation strategy. Asterisks: cell dry weight CDW (grams per litre); 

Blue dots: Concentration of glycerol in medium (grams per litre); Blue line: Feed rate of glycerol/ 

methanol (grams per hour); Black line: CO2 efflux (moll per moll); Triangles: PGA production 

intracellular (full), extracellular (empty). Dashed lines distinguish the process into the three phases: 

a Batch phase, b Growth fed-batch on glycerol, c Production fed-batch on methanol. 

 

Apart from the process control strategy, other physical parameters affecting the production levels 

of heterologous proteins in P. pastoris include nutrient supply, pH, temperature, and oxygen 

quantity (Looser et al., 2015). One of the most important parameters is suitable pH. P. pastoris can 

grow in wide range of pH from 3.0 to 7.0 with little to no effect on its growth (Stratton et al., 1998). 

pH optimum is therefore mostly dependent on the properties of product, especially its stability 

(Macauley-Patrick et al., 2005). Cultivation temperature can also have significant impact on product 

yields (Chen et al., 2000). Even though temperature optimum for P. pastoris is 30 °C, lower 

cultivation temperature can have positive effect on protein folding and decreased activity of 

proteases (Li et al., 2001, Hong et al., 2002). 

Choosing the most appropriate operational mode and the feeding profile significantly improves cell 

performance and decreases the burden caused by heterologous protein production, thus pushing 

the productivity of the system to its peak. Such an optimized process can be further scaled and 

transferred into the industrial process. 

3. Aims of the study 
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This thesis contains data from two main projects I participated in during my PhD study. Both of 

these projects are focused on the microbial biotechnology development and are divided into 

“discovery” and “upstream development” parts. 

 

Project 1 “discovery”: Biotechnological potential of soil microbiomes affected by industrial 

production of antibiotics 

i. Analysis of the microbial consortia exposed to long-term selection pressure resulting from 

industrial production of penicillin G and other pharmaceuticals;  

ii. Exploration of the biotechnological potential of the microbial consortia exposed to long-

term selection pressure caused by industrial production of penicillin G in question and 

discovery of the new enzymes involved in biotransformation of beta-lactam antibiotics. 

 

Project 2 “upstream development”: Relationship between yeast cell physiology, molecular design 

of expression system, and secretion of heterologous penicillin G acylases 

i. Analysis of the biotechnological potential of Penicillin G acylase; 

ii. Preparation of the yeast-based penicillin G acylase production platform; 

iii. Detailed characterization of the yeast-based penicillin G acylase production process and in-

depth analyses of intracellular protein fluxes. 
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4. List of methods 

During the experimental part of the thesis preparations following methods were employed: 

- Microbial community studies 

o Metagenomic DNA isolation 

o 16s rRNA V4 hypervariable region analyses using Illumina MiSeq platform 

o Preparation of fosmid libraries from the metagenomic DNA 

o Gene-of-interest mining (homology-based strategy, phenotype qualitative 

screening) 

o Whole genome sequencing and analyses (Illumina HiSeq platform) 

 

- Product-related studies 

o In vitro and in vivo hydrolytic/ synthetic experiments 

o Establishment of enzymatic assays including high throughput variant 

 

- Production platform preparation and screening 

o DNA manipulations – editing codon usage, gene optimizations 

o Production cassette design and construction 

o Vector construction, cloning 

o Production strain optimization  

o Selection and screening of the clones 

▪ High throughput cultivations and enzymatic assays 

▪ Shake flask cultivations and enzymatic assays 

 

- Cultivation/ strain physiology studies 

o Bioprocess modelling 

o Bioreactor cultivations (Batch, fed-batch mode) 

o Product characterisations (enzymatic assays, SDS-page, Western Blot, 

glycosylation assays) 

o Strain characterizations – flow cytometry, fluorescence microscopy, 

transcriptome analyses (qPCR) 
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5. Results 

Publications related to the thesis 

5.1 Project 1 

Biotechnological potential of soil microbiomes affected by industrial production of antibiotics 

List of the publications related to this thesis’ sub-project and the respective author statements. 

 

Paper I 

Characteristics of microbial community of soil subjected to industrial production of antibiotics. 

Borčinová, M.; Pitkina, A.; Marešová, H.; Štěpánek, V.; Palyzová, A.; Kyslík, P. Folia Microbiologica 

2020, 65, 1061–1072, doi: 10.1007/s12223-020-00819-z. 

IF2019 1.730 

In this study, we focused on characterization of microbial consortia exposed to long-term selection 

pressure caused by penicillin G production with the aim of examining the diversity and composition 

of these communities and exploring their biotechnological potential.  

For the analyses, the soil from the area of pharmaceutical plant Biotika, a.s. (Slovenská Ľupča, 

Slovakia), which has been producing penicillin G since 1956, was sampled. For control purposes we 

also sampled the soil from the same geographical area outside the mentioned plant. Metagenomic 

DNA from both on-site and control samples was used to analyse and compare the composition of 

the respective microbial communities by analysing V4 hypervariable region of 16S rRNA gene by 

using Illumina MiSeq platform.  

Consequently, metagenomic DNA from the on-site samples was also used for creation of E. coli T1R-

based fosmid library. The aim was to unravel the biotechnological potential of the communities in 

terms of enzymes involved in biotransformation of beta-lactam antibiotics, i.e. penicillin G acylase 

and alpha amino acid ester hydrolase. 

This study offers new insights into the changes in microbial communities of soils exposed to 

anthropogenic activity and indicates that those soils may represent a hotspot for biotechnologically 

interesting targets. 
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Author statement: Contribution of the author: 70%. For this publication, I was involved in all of the 

steps of the publication preparation. I conceptualized the study and collected the respective 

samples. Subsequently, I planned the experimental part of the study and worked on the sequencing 

analyses of the samples. I was also responsible for the statistical analyses of the data and for the 

interpretation of the results. I also drafted the manuscript. 

 

Paper II 

Draft genome sequence of Pantoea agglomerans JM1, a strain isolated from soil polluted by 

industrial production of beta-lactam antibiotics that exhibits valacyclovir-like hydrolase activity. 

Zahradník, J.; Plačková, M.; Palyzová, A.; Marešová, H.; Kyslíková, E.; Kyslík, P. Genome 

Announcements 2017, 5, e00921-00917, doi:10.1128/genomeA.00921-17. 

IF2018 0.89 

In this study, we were screening cultivable organisms from the on-site soil samples within the area 

of pharmaceutical plant Biotika, a.s. (Slovenská Ľupča, Slovakia) for the presence of microorganisms 

exhibiting PGA- or AEH- like activity.  

Out of the screened isolates, one was weakly positive for AEH activity. Genome of this strain was 

sequenced, assembled and described. Genes with a predicted PGA- or AEH-like activity were 

identified in the genome of this strain and were cloned and expressed in E. coli BL21. Using this 

approach, we discovered a new protein with alpha/beta hydrolase fold that was remotely 

homologous to human valacyclovirase gene (member of AEH-enzyme family).  

The study brought new information on genes encoding novel enzymes with industrial potential and 

further supported the theory that microbial consortia from soils polluted by antibiotics are a potent 

source of microorganisms with industrially usable characteristics. 

 

Author statement: Contribution of the author: 30%. For this publication I was responsible for the 

selection of the strain. I performed the cultivation experiments and screened for the strains in 

possession of the desired characteristics (production of enzyme biotransforming beta-lactam 

antibiotics; i.e. PGA or AEH). After I selected the strain in question, I also performed pilot PCR gene 

mining experiments using the method of sequence homology. I was also involved in the manuscript 

corrections. 
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5.2 Project 2 

Relationship between yeast cell physiology, molecular design of expression system, and secretion 

of heterologous penicillin G acylases 

List of the publications related to this thesis’ sub-project and the respective author statements. 

 

Paper III 

Current state and perspectives of penicillin G acylase-based biocatalyses. 

Maresova, H.; Plackova, M.; Grulich, M.; Kyslik, P. Applied Microbiology and Biotechnology 2014, 

98, 2867-2879, doi: 10.1007/s00253-013-5492-7. 

IF2019 3.530 

This publication is a review article focused on the enzyme Penicillin G acylase (PGA) and its potential 

for the industrial biocatalyses. In the course of more than 60-year history, PGA has gained a unique 

position among the enzymes used in bioprocesses and for biotransformation of beta-lactam 

antibiotics, especially in the production of beta-lactam nuclei from penicillin G and glutaryl-7-

aminocephalosporanic acid. A portfolio of other PGA traits required for enzymes with high 

industrial potential was summarized and discussed in terms of the current industrial utilization of 

these traits and their potential for other biotechnological applications. PGA was also compared with 

enzymes competing with PGA in the syntheses of semisynthetic beta-lactam antibiotics (alpha 

amino acid ester hydrolases, penicillin V acylases, and cephalosporin acylases). 

The performed review of literature showed that PGA has a great potential to go beyond the beta-

lactam biocatalyses and has the potential to be used in synthetic reactions, in the production of 

achiral and chiral compounds, or in the pro-drug activation. On the other hand, our review also 

revealed that even though a great number of PGAs of different origins has been described, only a 

limited number of production strains was at the time available for industrial-scale production of 

PGA; all of them based on prokaryotic host, namely E. coli. 

 

Author statement: Contribution of the author: 30%. For this publication, I participated in the 

literature review and in writing the manuscript, namely I drafted the section concerning the 

description of the enzymes competing with PGA for syntheses of semisynthetic beta-lactam 

antibiotics. I was also involved in the manuscript corrections. 
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Paper IV 

Potential of Pichia pastoris for the production of industrial penicillin G acylase. 

Maresova, H.; Palyzova, A.; Plackova, M.; Grulich, M.; Rajasekar, V.W.; Stepanek, V.; Kyslikova, E.; 

Kyslik, P. Folia Microbiologica 2017, 62, 417-424, doi:10.1007/s12223-017-0512-0. 

IF2019 1.730 

In this study we focused on construction and characterization of two P. pastoris based production 

systems for intracellular and extracellular production of PGA from Achromobacter sp. CCM 4824. 

Prokaryotic pga gene was codon optimized for the use in the yeast host and was cloned into the 

commercial vectors pPICZ and pPICZα for intracellular and extracellular production, respectively.  

P. pastoris X33 was consequently transformed with the prepared plasmids and the created 

transformants were screened for those with the best PGA-production performance and 

characterized. A set of fed-batch 6 L stirred bioreactor cultivations with the prepared strains was 

consequently performed using the in-study optimized media.  

The performed bioreactor fed-batch cultivations revealed that the strain producing PGA 

intracellularly yielded a comparable amount of enzyme as industrially established E. coli production 

systems. On the contrary, equivalent bioreactor cultivation with the strain constructed for 

extracellular production of PGA revealed secretory bottleneck of the production strain, whereby 

only approx. 40% of the produced enzyme was secreted into the culture supernatant while the 

majority was retained intracellularly.  

This study laid, for the first time, the basis for extracellular PGA production in P. pastoris. Even 

though the potential of P. pastoris as a production host for PGA was established in principle, the 

secretory bottleneck needed to be addressed in further studies.  

 

Author statement: Contribution of the author: 20%. During the experimental part of this study, I 

was working on the bioreactor cultivations and I was performing the enzymatic assays. I was also 

involved in the data analyses and in the manuscript preparation and corrections. 
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Paper V 

Production and secretion dynamics of prokaryotic Penicillin G acylase in Pichia pastoris.  

Borcinova, M.; Raschmanova, H.; Zamora, I.; Looser, V.; Maresova, H.; Hirsch, S.; Kyslik, P.; Kovar, 

K. Applied Microbiology and Biotechnology 2020, 104, 5787-5800, doi:10.1007/s00253-020-10669-

x. 

IF2019 3.530 

In this study we continued with the development of the P. pastoris production system for 

extracellular production of PGA. We performed a detailed study dealing with the optimization of 

the production process as well as with the quantification of the time-dependent specific rate of 

PGA secretion and its interdependence with intracellularly retained PGA and biomass growth. 

The strain producing PGA extracellularly (developed in the Paper IV, Maresova et al., 2017) was 

cultivated in a series of 6 L stirred bioreactor fed-batch cultivations. Those cultivations were 

performed at different specific growth rates, which were maintained by exponentially increasing 

the feeding of methanol. Detailed analyses of the production process as well as of cells and their 

analysts were performed, including substrate analyses, protein analyses, and cell viability and lysis 

analyses. In order to study the evolution of specific productivity of the system over the course of 

cultivation in great detail, a descriptive mathematical model was developed. This advanced data 

interpolation and fitting tool allowed us to describe dynamic changes in specific productivity (qp) 

and specific rate of product secretion (qp,extra) in considerable depth. 

The key achievement of the study is a description of the temporal change in the rate of specific 

product formation during the production phase of P. pastoris fed-batch cultivation, when producing 

PGA under the control of the pAOX1 promoter. We also showed that the stress caused by 

heterologous PGA production induced cellular imbalance leading to the selective translational 

arrest as a response to the oversaturation of the secretory pathway. 

The study represents a significant contribution to understanding the dynamic changes in qp over 

time and may generate opportunities for expanding the biotechnological application potential of 

the Pichia-pAOX1 system for difficult-to-produce products. 

 

Author statement: Contribution of the author: 80%. For this publication, I was involved in all of the 

steps of the publication preparation. I conceptualized the study and I planned the experimental 

part of the study. I performed all of the bioreactor cultivations, including sample analyses and 

interpretation. I was also responsible for the analyses of the resulting data and for writing the 

manuscript. 
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Paper VI 

Single-cell approach to monitor the unfolded protein response during biotechnological processes 

with Pichia pastoris 

Raschmanova, H.; Zamora, I.; Borcinova, M.; Meier, P.; Weninger, A.; Machler, D.; Glieder, A.; 

Melzoch, K.; Knejzlik, Z.; Kovar, K. Frontiers in Microbiology 2019, 10, 335, 

doi:10.3389/fmicb.2019.00335. 

IF2019 4.235 

In this study, production and secretion of three different recombinant proteins (PGA from E. coli, 

lipase B from Candida Antarctica, and xylanase A from Thermomyces lanuginosus) by P. pastoris 

was investigated along with up-regulation of the unfolded protein response pathway (UPR) and cell 

viability, which were assessed at a single-cell level in living cells and at-line with flow cytometry. 

For the purpose of the study, a new strain carrying PGA production cassette as well as UPR-reporter 

cassette was constructed (analogously for lipase B and xylanase A). The constructed strain was 

cultivated in 6 L stirred bioreactor fed-batch cultivation and intracellular and extracellular product 

concentrations were measured along with measurements of the cell viability and the upregulation 

of UPR using flow-cytometry. Subsequently, the cells´ viability and the levels of UPR up-regulation 

were put in the context of production patterns.  

The resulting data brought novel insight into the development of heterogeneity in a recombinant 

P. pastoris population during a biotechnological process. They also provided us with important 

information about UPR upregulation in context of the dynamic changes of specific productivity of 

PGA-P. pastoris system described in the previous study (Paper V, Borcinova et al., 2020).  

This study represents a first trial in which UPR up-regulation was studied at a single-cell level and 

in a non-invasive manner. By understanding the relationship between the protein 

production/secretion and the tuning of the UPR, this monitoring system based on fluorescence 

measurement can be utilized in future bioprocess control and optimizations. 

 

Author statement: Contribution of the author: 30%. For this publication, I was involved in the PGA 

production strain design and preparation. I performed the respective bioreactor cultivations with 

the created strain and I was involved in sample analyses. I was also involved in the manuscript 

preparation and corrections. 

Pilot study VII 
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Effect of multivariate engineering and co-expression of helper factors on an efficient production 

of penicillin G acylase in Pichia pastoris  

Borčinová, M.; Krainer, F.; Kyslík, P.; Glieder, A. Concept study performed for the European 

Research Council H2020 grant application. 

This concept study dealt with the development and studying of various P. pastoris strains for PGA 

production. By employing an integrated process of identifying essential properties of the 

production strains, the aim was to acquire an in-depth view of the bottlenecks and limitations of 

PGA production by P. pastoris. 

Gene codon usage, promoter choice and regulation, the type of transport to endoplasmic 

reticulum, the effect of increasing gene dosage, and finally the influence of overproduction of the 

proteins involved in the protein maturation and secretion were analysed. Overall, 40 different 

constructs were prepared during the course of the study. In a series of cultivation experiments 

performed by the high throughput method in 96-deep well plates, the uncoupled effect of the 

mentioned studied parameters was quantified and putative activity landscapes were generated. 

This study represents a pilot analysis of the rate limiting steps in the maturation and secretion of 

PGA in P. pastoris that evidences the potential of this host for PGA production. The obtained 

knowledge should give base for the development of a tailored strain capable of efficient production 

and secretion of PGA.  

 

Author statement: Contribution of the author: 80%. For this study, I was involved in all of the steps 

of the study preparation. I conceptualized the study and planned the experimental part of the 

study. I constructed all of the studied strains and performed all of the cultivations, including sample 

analyses and interpretation. I was also responsible for the analyses of the resulting data. 

 

 

__________________________________________ 

RNDr. Pavel Kyslík, CSc., the supervisor  
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6. Discussion 

The presented thesis consists of two sub-projects dividing the thesis into the “discovery” and the 

“upstream” parts of biotechnology development.  

In the “discovery” part of the thesis, the impact of industrial production of beta-lactam antibiotics 

on microbial consortia was studied along with the analyses of the biotechnological potential of 

those communities in terms of enzymes involved in bio-transformation of beta-lactam antibiotics, 

namely penicillin G acylase (PGA) and alpha-amino acid ester hydrolase (AEH). The second 

“upstream” part of the thesis was aimed at the exploration of the biotechnological potential of PGA 

production using yeast organism Pichia pastoris by studying the limitations and bottlenecks of this 

production system.  

 

 

Biotechnological potential of soil microbiomes affected by industrial production of antibiotics 

In the “discovery” sub-project of this thesis, we studied the impact and consequences of industrial 

production of beta-lactam antibiotics on soil microbiomes. Soil microbial communities are an 

integral part of soil health and soil-related processes. However, with the expansion of industrial 

manufacturing of pharmaceutical compounds without clear guidelines for environmentally safe 

production, increasing amounts of xenobiotics are polluting the environment and are influencing 

the composition and functions of such communities (Cycon et al., 2019). Soil samples for our 

analyses (Paper I, II) were collected from the area of a pharmaceutical plant operating since 1953. 

Even though a wide variety of products had been produced there, our main interest laid in the 

impact of over 60 years of the production of penicillin G which started in 1956 and has 

intermittently been continuing to this day. In order to assess the change in diversity and 

composition of the consortia, control samples from the same geographical location outside the 

plant site were analysed along with the soil samples from the plant site.  

As expected, our analyses revealed that the communities were significantly affected by penicillin G 

production. However, contrary to the initial hypothesis, the on-site samples exhibited significantly 

higher bacterial diversity and richness than the control samples. The Shannon diversity index (H) of 

the on-site samples equalled 4.7 and 5.2 respectively; for the control samples the H’ index equalled 

3.2 and 3.1 respectively. Our results are in accordance with the previously described long-term 

effect of the pollutants that allows for the overall structure of the community to recover, but not 

to reach the equivalent genomic structure (Martínez, 2017). The same observations were described 

in an analysis of bacterial communities in water exposed to penicillin G-plant effluent, in which 
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higher levels of diversity were observed compared to those in non-exposed water (Li et al., 2011). 

Our results therefore confirm the theory that the selection pressure inhibits a certain, more 

susceptible, part of the community, which consequently allows the remainder to increase in 

abundance, and therefore minor taxons can emerge (Cleary et al., 2016).  

The linear discriminant analysis effect size method (LefSe method) was further employed to detect 

phyla, orders and genera explaining the difference between the samples and acting as “biomarkers” 

of the respective microbial community (Segata & Huttenhower, 2011). It was shown that a 

significant decrease in Proteobacteria, especially Gammaproteobacteria and Actinobacteria, 

occurred among the on-site samples. On the other hand, enrichment in Betaproteobacteria, 

Deltaproteobacteria, Gemmatimonadetes, Acidobacteria and Planctomycetia was observed. 

Decrease in Proteobacteria and enrichment in Acidobacteria is of particular importance because it 

points out to the reduced nutritional status of the environment (Smit et al., 2001). This finding is 

further supported by the fact that phyla Actinobacteria was, at the same time, an important 

determinant of the control samples and was therefore significantly underrepresented in the on-site 

samples. Actinobacteria were described to be highly sensitive to the C/N nutrient status of the soil 

(Wolińska et al., 2019). Actinobacteria have a key role in soil communities in terms of organic 

carbon recycling and the cycling of nitrogen, phosphorous and potassium; they also produce a 

variety of hydrolytic enzymes enabling them to degrade natural polymers, including lignin, 

cellulose, chitin and other organic compounds, reviewed in Zhang et al. (2019). Therefore, their 

decrease in the environment also indicates disrupted metabolic and enzymatic functions of the soil.  

At class level, the enrichment of the on-site samples was mostly in accordance with the previously 

published study of rivers receiving treated penicillin G and oxytetracycline production wastewater 

(Li et al., 2011). However, we encountered one surprising finding which was the decrease in the 

Gammaproteobacteria class, previously described as one of the most abundant classes on the 

global level (Ghannam et al., 2020). Numerous studies showed that Gammaproteobacteria are one 

of the dominant classes in antibiotic-contaminated environments (Petrovich et al., 2020, Shen et 

al., 2020). Also Zhang et al. (2017) indicated the prevalence of Gammaproteobacteria in the soil 

treated with penicillin G. Gammaproteobacteria were shown to be positively correlated with the 

“multifunctionality” of the soil (measures of enzymatic activity and respiration) (Delgado-Baquerizo 

et al., 2017) and we can therefore hypothesize that their decrease again indicates a reduction in 

the functionality of the on-site soil. 

These findings led us to the hypothesis that the nutritionally poor soil with potentially disrupted 

functionality could give rise to bacteria able to adapt to such conditions. The PGA enzyme is thought 

to assist in the production of phenylacetic acid via degradation of phenylacetylated compounds, 
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such as penicillin G, whereas phenylacetic acid may in turn be used as a carbon source for bacteria 

when in a free-living mode (Done et al., 1998, Tishkov et al., 2010). Therefore, we hypothesized 

that the possession of PGA enzymatic activity can provide a nutritional advantage to the bacteria 

present in the on-site soil and thus the abundance and diversity of PGA could be increased.  

For that reason, isolated metagenomic DNA from the on-site samples was also used for the 

preparation of a fosmid library that was subjected to functional screening with the aim of assessing 

the presence and diversity of PGA-like enzymes. The screening of the created library (2000 clones 

tested) brought forth 48 positive clones, out of which 14 were proven to contain PGA-like enzyme. 

By way of comparison, Zhang et al. (2014) constructed a cosmid metagenomic library using the soil 

metagenome of sediment microbial consortia in Antarctica. Their screening revealed 9 clones, out 

of 3000 tested, that carried the gene for PGA. Therefore, we can conclude that our library yielded 

high hit rates and confirmed our hypothesis about the abundance of PGA enzymes.  

Out of the 14 obtained sequences, only one was 100% identical (comparison of amino acids) to the 

sequence deposited in the NCBI database. All of the remaining 13 sequences have a great potential 

to significantly increase the portfolio of industrially usable PGAs. The work of Deaguero et al. (2012) 

showed that mutation in a single amino acid can change the enantioselectivity of the PGA enzyme 

and thus change/ increase its usability. The importance of single nonsynonymous mutations was 

also comprehensively analysed by Wrenbeck et al. (2017). Therefore, when fully characterized, the 

identified metagenomic PGA sequences can potentially reveal novel catalytic functions and 

leverage the utilization of this catalyst.  

Nevertheless, screening of the cultivable fraction of the microorganisms should not be overlooked 

either. Even though metagenomic approach brings novel ways of exploiting hidden potential of the 

microbial consortia, there are still certain limitations of this method, such as uncertainty of finding 

the genes of interest due to their potentially low abundance in the metagenomic sample as well as 

its structure and processing requirements (Gabor et al., 2004, de Carvalho, 2017). Thus, in the 

subsequent study (Paper II), we also screened cultivable fraction of microorganisms from the on-

site soil samples for isolates exhibiting activities analogous to PGAs and AEHs. The strain that 

showed positive phenotype, later identified by genome sequencing as Pantoea agglomerans JM1 

(Czech Collection of Microorganisms, CCM 8766), was isolated. Members of genus Pantoea were 

not previously described as producers of either PGAs or AEHs. By identifying the prospective genes 

in the genome sequence of this organism we identified a protein with alpha/beta hydrolase fold 

that was remotely homologous (22%) to human valacyclovirase gene, which belongs to the alpha 

amino acid ester hydrolase family of enzymes (Kurochkina et al., 2013). Valacyclovirases were 

described to activate number of clinically important precursors with a wide range of antiviral and 
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anticancer action and are predicted to play an important role in the medical field in prodrug 

activation (Sun et al., 2010, Kurochkina et al., 2013). This enzyme has not yet been identified in 

prokaryotes and the one revealed in our study can therefore hold the potential for further 

biocatalytic conversions. 

In conclusion, this “discovery” sub-project represents the first holistic approach to studying the 

ecology and the biotechnological potential of soils exposed to decades’ lasting production of 

penicillin G. The study revealed novel patterns in the impact of the antibiotics’ production on the 

composition and function of microbial communities that in response can hold interesting 

biotechnological potential, as was also declared by our results. 

 

 

Relationship between yeast cell physiology, molecular design of expression system, and secretion 

of heterologous penicillin G acylases 

In parallel to the first sub-project, we also concentrated on the second part of the thesis which 

aimed at “upstream” development of an efficient production platform for penicillin G acylase. 

Many industrial-scale E. coli-based PGA production systems are already available (Paper III), 

however this prokaryotic platform has numerous limitations, especially in terms of downstream 

processing. In E. coli, PGA preproprotein is translocated to the periplasmic space; the process during 

which the protein folds. Thus the mature enzyme needs to be mechanically released and 

consequently purified (Velez et al., 2014). Therefore, we decided to test and utilize the emerging P. 

pastoris platform which recently gained significant attention in production of other industrial 

enzymes (Ahmad et al., 2014). This organism is able to secrete a high-quality product with a low 

basal secretion of its own proteins (Delic et al., 2013), which has a substantial impact on lowering 

the manufacturing costs by reducing downstream processing. 

For the first study concerning this objective (Paper IV), P. pastoris X33 strains producing PGA from 

Achromobacter sp. CCM 4824 were constructed using the commercial vectors pPICZ and pPICZα 

(Thermo Fisher Scientific, USA). In the first created strain, PGA was produced intracellularly, while 

in the second strain, α-mating signal sequence from S. cerevisiae was employed for secretory 

production of the enzyme. Performed bioreactor fed-batch cultivations revealed that the strain 

producing PGA intracellularly yielded comparable amount of enzyme as E. coli production systems 

(Becka et al., 2014). On the other hand, equivalent bioreactor cultivation with the strain 

constructed for extracellular production of PGA revealed secretory bottleneck of the production 
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strain, whereby only approx. 40% of the produced enzyme was secreted into the culture 

supernatant while the majority was retained intracellularly. Similar observation about intracellular 

retention of the enzymes aimed at secretory production in P. pastoris was previously described for 

numerous other products such as for alkaline phytase from Lilium longiflorum (Yang et al., 2015), 

glucose oxidase from Aspergillus niger (Bankefa et al., 2018), or methyl parathion hydrolase from 

Ochrobactrum sp. (Wang et al., 2014). However, there is only limited information available on the 

production of PGA using P. pastoris and thus the reasons for the described secretory limitation of 

this system needed to be further experimentally studied.  

For this purpose, a detailed study dealing with optimization of the production process as well as 

with the quantification of the time-dependent specific rate of PGA secretion and its 

interdependence with intracellularly retained PGA and biomass growth of the previously created 

secretory strain was performed (Paper V). Knowledge of product formation kinetics, i.e. the 

relationship between the specific rate of protein production and the specific growth rate of culture, 

is imperative for bioprocess development and optimization. Using a mathematical fitting tool for 

data analysis, formation kinetics of PGA in P. pastoris was investigated, with the focus on the 

kinetics of not only PGA secretion, but also its intracellular retention, which has not yet been 

described in the literature. Generally, three main phases (Fig. 7, originally published in Paper V) 

with respect to changes in specific productivities of secreted and intracellularly retained PGA were 

distinguished in each of the performed fed-batch cultivations: (I) An initial steady-state phase 

characterized by quasi stable specific productivity (qp) and specific rate of product secretion (qp,extra), 

followed by (II) a transition period coinciding in time with reaching the intracellular saturation 

maxima when overall qp was declining while qp,extra increased, and the final (III) saturation phase, 

again characterised by stable qp and qp,extra. In contrast to initial steady-state phase (I), where qp of 

product retaining inside the cells is about 6-times higher than qp,extra. qp,extra was twice as high as qp 

of retained product during steady-state saturation phase (III), i.e. the majority of the synthesized 

product was secreted.  
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Fig. 7 Time course of PGA production with distinguished phases with respect to qp. The displayed 

data represent the typically observed trend in PGA formation in all cultivations enlisted within 

Paper V (Borcinova et al., 2020). a: Amount of PGA (in U) during the production phase of cultivation. 

The symbols represent measured enzyme: crossed squares – total amount; full squares – 

intracellular amount; empty squares – extracellular amount. The solid lines represent the calculated 

theoretical values for the respective measured enzyme (U). b: The coloured lines marked by 

respective square symbols represent calculated qp(t) values: green (crossed square) – qp,total, blue 

(full square) – qp,intra, red (empty square) – qp,extra (U (gcdw)-1 h-1). The black bold line represents the 

time development of intracellular PGA activity per gram of cell dry weight (U (gcdw)-1), which 

indicates the saturation of the cell with product. The time course of the specific production rate of 

PGA qp(t) was divided into three phases as indicated by the vertical dotted lines: initial, transition, 

and saturation phase. (Paper V, Borcinova et al., 2020) 
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The most probable reason behind the significant proportional increase in secreted PGA in phase III 

is partial translational arrest, as previously described by Edwards-Jones et al. (2015). The most likely 

stress factor that could promote translational arrest is a nutritional imbalance, resulting from 

demands of cells undergoing nutritional limitation and synthesising high level of proteins, leading 

to a redox imbalance between the cytosol and mitochondria (Edwards-Jones et al., 2015). This state 

consequently significantly affects heterologous protein production. In their work, Hesketh et al. 

(2013) observed significant changes in the levels of transcripts predicted to encode proteins 

associated with mRNA processing and translation. This may reflect general changes in protein 

synthesis during recovery from cellular stress, as indicated by the down-regulation of genes 

associated with ribosome biogenesis (Hesketh et al., 2013). Moreover, they also showed that 

intracellular protein aggregation was followed by up-/ down-regulation of transcription of genes 

involved in responses to intracellular stress. Several of these genes were also found to be antisense 

to genes associated with cell membrane biosynthesis and metabolism. This confirmed the inference 

from the ”sense” transcriptome that overproduction of a misfolded or over-accumulated protein 

has a significant impact on cell wall-associated processes  and can therefore significantly affect the 

secretory abilities of the cell (Hesketh et al., 2013). Similar results were also described in the work 

of Barrigón et al. (2013) who suggested that the down-regulation of transcription happens in 

response to activation of unfolded protein response (UPR) pathway (Barrigón et al., 2013).  

We assume that translational arrest may have helped to relieve the stress, facilitating restoration 

of the secretory pathway in phase III, although at the same time it also resulted in lower overall 

productivity of the system.  

The study also revealed the significant shift in the relationship between qp and specific growth rate 

(µ). Our results indicated that initial product formation is related to growth in a bell-shaped manner, 

as previously described in Looser et al. (2015), while after the transition period the qp(µ) 

relationship shifted towards a linear production kinetics, which is usually found for constitutive 

promoters. After the described shift to phase III, the specific secretion rate of the cells was up to 

three times higher. Rebnegger et al. (2014) described significant changes in the regulation of 

important groups of genes at high µ. Specifically, this involved up-regulation of translational and 

UPR genes such as those involved in translocation of nascent proteins to the ER, enhancement of 

protein folding in the ER and the synthesis of cytosolic chaperones. High µ also led to the down-

regulation of genes involved in proteolytic degradation of proteins in the secretory pathway and 

exocytosis (Rebnegger et al., 2014). Such regulation of genes at high µ could explain the linear 

relationship between qp,extra and µset observed in this work. 
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Overall, based on the results of Paper V, it was hypothesized that the underlying cause for the 

strain´s behaviour was intracellular stress caused by the accumulation of the protein in the 

intracellular secretory pathway leading to UPR stress – consequently causing translational arrest. 

Therefore, in order to test the hypothesis, up-regulation of the UPR pathway was studied during 

the course of the cultivation (Paper VI). 

Firstly, in order to confirm the transferability of the results from Paper V, we tested the observed 

trends on other P. pastoris systems (Paper V) as well as on EcPGA strain that was newly developed 

for this purpose. The EcPGA strain was constructed in the same way as strain from Paper IV and 

Paper V: pga gene under the control of the pAOX1 promoter was integrated into the P. pastoris X33 

genome. The behaviour of the strain during fed-batch cultivations was proven to follow the same 

pattern of the three phases described in Paper V (unpublished data). Therefore, we used this newly 

constructed strain for the consequent analyses in which plasmid PKAR2(FL)-sfGFP was co-integrated 

to the EcPGA strain. This plasmid for monitoring UPR carried a 324bp upstream region of the KAR2 

coding sequence (encoding ER chaperone BiP) containing one copy of the unfolded protein 

responsive element before the super folded green fluorescent protein (sfGFP) coding sequence. It 

was used for UPR up-regulation monitoring based on sfGFP production upon the activation of KAR2 

promoter.  

The constructed strain was cultivated in bioreactor fed-batch cultivations and intracellular and 

extracellular product concentrations were measured along with measurements of cell viability and 

the up-regulation of UPR using flow-cytometry measurements. It was shown that proportion of the 

cells with up-regulated UPR steeply increased right after the induction of production and, after 30 

hours of production fed-batch, approx. 60% of the cells had up-regulated UPR. UPR up-regulation 

correlated with the previously described phases of PGA production, plateaued at the end on phase 

I just before the maximal saturation of the cells with intracellular product, and remained at approx. 

60% till the end of the cultivation. This confirms that maximal UPR up-regulation correlated with 

the switch in specific productivity of the system and thus confirming the previously discussed 

translational arrest caused by UPR up-regulation (Paper V).  

Surprisingly, only 13% of the cells had impaired viability which was the rate comparable to the non-

producing control strain. Therefore, we can conclude that even though UPR up-regulation was 

strong, it did not promote cell lysis, contrary to the results of (Ron & Walter, 2007) whom observed 

significant cell lysis due to extensive UPR up-regulation. 

Using the principal component analysis of the flow cytometric data, four sub-populations of cells 

were identified in all the cultivation processes: smaller and less complex viable cells with no UPR 
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up-regulation (on average constituting 30% of the cells), larger and more complex viable cells with 

no UPR up-regulation (8%), viable cells with up-regulated UPR (up to 60%), and cells with an 

impaired viability (at maximum 13%). In the study of Dragosits et al. (2010), it was shown that the 

non-producing cells were larger than the cells producing the recombinant product. On the other 

hand, according to work of Aw et al. (2017), P. pastoris strains secreting a higher amount of a 

recombinant protein were shown to have larger cells than the strains producing the same product 

with lower titres. Even though we did not measure the secretion of PGA at a single-cell resolution, 

based on the results of the population heterogeneity in relation to the production and secretion of 

PGA we can conclude that the cell cluster most probably responsible for PGA secretion were the 

viable cells with up-regulated UPR. This result is mostly in agreement with the results of Love et al. 

(2010) who, by using microengraving experiments, described the heterogeneity of P. pastoris 

population with regard to the secretion of human Fc fragment: one cluster of the cells yielded no 

significant secretion over the course of the experiment (35%), one cluster (32%, consisting of two 

subpopulations) consistently secreted protein, and one cluster (33%, three subpopulations) 

exhibited a significant change in their rates of secretion during the experiment (Love et al., 2010). 

In conclusion, as discussed in Paper IV and Paper V and as evidenced by the results of Paper VI, 

production of PGA leads to its incorrect maturation and accumulation in ER which results in ER 

stress. Consequently, ER stress negatively influences PGA production and secretion.  Since Papers 

IV and V showed that the same behaviour of the strain can be observed irrespective of specific 

growth rate of the culture and other cultivation conditions, we have to conclude that in order to 

develop an industrially viable P. pastoris-PGA platform, it is necessary to take a step back and 

further optimize the production strain on the construction/ molecular level. 

 

In order to analyse whether a rational strain design could reduce cellular stress responses and 

improve PGA production and secretion, we performed the pilot study concerned with the 

development of a library of PGA-producing P. pastoris constructs (Pilot study VII). Overall, 40 

different P. pastoris strains were constructed for the purpose of the study.  

Generally, the major challenge for heterologous protein production in P. pastoris is inefficient 

protein folding and secretion. However, this process is rather complicated as numerous interrelated 

mechanisms and stress responses need to be in equilibrium (Gu et al., 2015). 

In the first part of the study, we performed series of experiments in which the uncoupled effect of 

gene codon optimization, signal sequence, promoter, and gene dosage were studied. The most 

important finding of this part of the study was the observation that increasing transcript availability 
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significantly improved production of PGA, especially when strong promoter was combined with the 

multicopy insertion of the production cassette. The yield of PGA of the resulting created strain, 

pPpB1_pFMD_Da-PGA, was 2.74-fold higher in comparison to the benchmark strain (strain EcPGA, 

Paper VI). This result is rather surprising in the context of the previous studies (namely Paper VI), 

where overproduction of PGA was proven to be the main reason for cellular stress. The explanation 

can lie in the fact that a different type of the host strain was utilized in this study. In contrast with 

the previously used Mut+ strain X33, the strain used in this study, BSYBG11, was MutS strain. The 

slow growth and lower methanol consumption of MutS strains may have some advantages for 

production processes such as lower demand for oxygen and reduced heat formation (Schotte et al., 

2016). Moreover, fast methanol oxidation is also linked to by-product formation of hydrogen 

peroxide formation, which is known to cause cellular stress and potentially induce cell death (Kern 

et al., 2007). In that respect, MutS strain could be of advantage for PGA production. At the same 

time, the previously used EcPGA strain expressed PGA under the control of the pAOX1 promoter as 

opposed to the formate dehydrogenase promoter pFMD used in this study (Weinhandl et al., 2014). 

The studies of Camara et al. (Camara et al., 2017, Camara et al., 2019) showed that pAOX1 faces a 

transcriptional limitation when heterologous genes are expressed under the control of this 

promoter. This results in a limitation of the methanol assimilation capacity of such strains due to 

low availability of methanol expression regulator 1, a trans-acting factor essential for significant 

levels of methanol pathway (Lin-Cereghino et al., 2006).  

The strain pPpB1_pFMD_Da-PGA was used in the consequent experiments where so-called 

“helper” proteins were co-produced along with PGA. The major mechanisms related to protein 

production in P. pastoris can be divided into several modules: translocation to ER, protein folding, 

vesicular trafficking, ERAD, UPR, and exocytosis (Fig. 3). 9 potential genes from the individual 

modules, which were previously described to increase heterologous protein production, were 

selected and co-produced with PGA (Grote et al., 2000, Boer et al., 2003, Wilkinson & Gilbert, 2004, 

Joo et al., 2011, Gu et al., 2015, Wu & Guo, 2015, Preston & Brodsky, 2017, Saito et al., 2017, Han 

et al., 2020). Using this approach, we were able to further significantly increase the PGA yields when 

compared to strain EcPGA cultivated under the same cultivation conditions. The helpers having the 

main impact on PGA production and secretion were those connected to the vesicular trafficking 

and exocytosis.  

Co-production of WSC4, which plays an important role in the translocation of proteins in ER and 

also interacts with the regulators of UPR pathway (Mamoun et al., 1997, Zu et al., 2001), increased 

the PGA yields 5.4-fold, marking protein trafficking as an important bottleneck of efficient PGA 

secretion. Nevertheless, the best results were observed when SSO2 was co-produced – up to 7-fold 
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increase in PGA yields was observed. SSO2 is a plasma membrane target of SNAP receptors 

(tSNAREs, the syntaxin homologues), that helps with the fusion of secretory vesicles at the plasma 

membrane (Gasser et al., 2007). This indicated that exocytosis may represent another of the major 

bottlenecks in PGA-P. pastoris system. Interestingly, for both those proteins, the effect was only 

observable while they were produced under the control of constitutive promoters. That indicates 

that the respective pathways were boosted prior the production of PGA, which only started after 

the methanol induction. When produced under inducible promoter, i.e. when the production of the 

helper was started at the same time as PGA production, the effect of the helper was significantly 

lower. From this we can hypothesize that initial “prevention” of the bottleneck plays an important 

role in PGA secretion. Similar results were also observed in the work of Gu et al. (2015) or Gasser 

et al. (2007).  

However, it is not only the two mentioned helpers that had a significant impact on PGA yields. 

Improvement was observable while co-producing “helpers” from each described module; PGA 

yields were also increased while co-producing helpers involved in activation of general stress 

response of the cells, ER chaperones, and Hac1p activator of the UPR pathway. This indicates that 

further steps in preparation of the PGA-P. pastoris platform should employ a combination strategy, 

where helpers from different modules would be co-expressed together to further improve the 

yields of PGA and push its secretion beyond existing benchmarks.  

The current study presents the first systems biotechnology-based strategy for engineering P. 

pastoris strain producing PGA. The study proved the great potential of P. pastoris for producing 

PGA. Obtained knowledge should therefore facilitate the development of tailored process 

strategies to design an optimum PGA-secreting strain and, consequently, to allow for the 

production of PGA in ways that are feasible for large-scale manufacturing. 
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7. Summary and Outlook 

In conclusion, the first “discovery” part of this thesis offered new insights into the changes in 

microbial communities of soils exposed to anthropogenic activity as well as into indications that 

those soils may represent a hotspot for biotechnologically interesting targets. The analyses of the 

second “upstream” part represent a significant contribution to the understanding of the behaviour 

and physiology of PGA-P. pastoris system and, as such, represents a valuable input for further 

studying and optimization of P. pastoris production platform in order to generate opportunities for 

expanding its biotechnological application potential. 

 
The main messages of the “discovery” project “Biotechnological potential of soil microbiomes 

affected by industrial production of antibiotics” can be summarized as follows: 

• Long-term selection pressure caused by xenobiotic pollutants formed at a penicillin G 

manufacturing site causes significant changes in microbial consortia of the affected soils, 

leading to a significant change of composition on both phyla and genera level that 

potentially results in decreased functionality of the soil. On the other hand, a significant 

increase in diversity and richness of the impacted consortia was observed.   

• Metagenome of the anthropogenic soil represents a promising reservoir for discovering 

enzymes involved in the bio-transformation of beta-lactam antibiotics that exhibit novel 

functions and abilities.   

 
The main messages of the “upstream” project “Relationship between yeast cell physiology, 

molecular design of expression system, and secretion of heterologous penicillin G acylases” can be 

summarized as follows: 

• Production of Penicillin G acylase in Pichia pastoris is hindered at the level of efficient 

secretion of the produced enzyme. Limitation in the secretory machinery can be attributed 

to the cellular stress caused by accumulation of the (unfolded) protein in the endoplasmic 

reticulum. 

• Specific product formation rate (qp) exhibits temporal change during the production phase 

of P. pastoris fed-batch cultivation. Moreover, initial product formation is related to growth 

(µ) in a bell-shaped manner, while after the transition period the qp(µ) relationship shifts 

towards a linear production kinetics, which is usually found for constitutive promoters. 

Also, after the described shift, the specific secretion rate of the cell machinery is up to three 

times higher. 
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• The limitations of PGA production and secretion by P. pastoris could be overcome by 

rational design of the production strain and suitable cultivation strategy.   

• Overall, the obtained results strongly indicate that PGA-Pichia production platform could 

find its place in the industrial biotechnology, though further development steps need to be 

performed. 

 

 

The presented thesis also gave rise to the consequent studies that should follow: 

1. Detailed analysis and isolation of the pga genes from Paper I 

2. Further development of the P. pastoris-PGA production platform based on Pilot study VII 

using combinatorial strategy and further scale-up and development of the most suitable 

cultivation strategy for bioreactor cultivations. 
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