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Abstract
The aim of the thesis is to bring new insights into banks’ internal credit risk es-
timates and their application in estimation of credit transition matrices, which
are an important part of credit risk modelling with limited publicly available
sources. The doctoral thesis consists of three essays that jointly analyse fea-
tures of bank-sourced credit risk data and practicalities of transition matrices
estimation. In the first essay, I empirically test two assumptions widely used
for estimation of transition matrices: Markovian property and time homogene-
ity. The results indicate that internal credit risk estimates do not satisfy the
two assumptions, showing evidence of both path-dependency and time hetero-
geneity even within a period of economic expansion. Contradicting previous
findings based on data from credit rating agencies, banks tend to revert their
past rating actions. The second essay analyses the extent to which transition
matrices depend on the characteristics of the underlying overlapping bank-
sourced credit risk datasets and the aggregation method. It outlines that the
choice of aggregation approach has a substantial effect on credit risk model
results. I also show that bank-sourced transition matrices are more dynamic
than those produced by credit rating agencies and introduce industry-specific
transition matrices, signalling the existence of industry-specific business cycles.
The third essay focuses on dispersion in banks’ internal credit risk estimates,
concluding that there is a substantial variance in the estimates and that the
variance decreases with the amount of information available about the assessed
entity. Further, I show that the level of variance is highly dependent on the
entity type, its industry and locations of both the entity and the contribut-
ing banks. What is more, a considerable part of the variance is systematic,
which may be problematic for regulator as banks may over- or underestimate
the consensus level of credit risk across their entire portfolios. Finally, I show
the massive impact that the COVID-19 pandemic had on dispersion of credit
estimates.
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Chapter 1

Introduction

Credit risk, identified by Bank for International Settlements as potential that
a bank borrower or counterparty will fail to meet its obligations in accordance
with agreed terms, has been one of the most researched topics in finance (e.g
Lando, 2009 and numerous recent studies including Berg and Koziol, 2017;
Behn et al., 2016; Fernandes and Artes, 2016; Hilscher and Wilson, 2016).
Further interest in credit risk research during the last two decades has then
been driven by development of portfolio risk measurement, growing trading in
credit derivatives, regulatory concerns and Basel II implementation.

The importance of credit risk in the current environment has also paved
my way to this dissertation. My work is driven by a unique dataset provided
by Credit Benchmark, a London-based financial technological start-up focusing
on crowd-sourced credit risk data. The company co-operates with the world’s
leading financial institutions, collects their internal credit risk estimates and
aggregates them into a consensus view of companies’ credit risk; and it has
been my pleasure to be part of the project nearly from the beginning. Although
I had always been interested in further studies, I was unsure about pursuing a
PhD degree before joining Credit Benchmark as I did not have a strong research
topic. Once I laid my hands on the unique dataset, I could not resist to dig
deeper. It turned out that the data can help to answer some important credit
risk questions, which I present in this thesis.

First, I would like to introduce the unique dataset and explain its impor-
tance. The existing credit risk data sources are very limited, especially those
available to the public. Indeed, the general public often links credit risk to
credit rating agencies, giants such S&P, Moody’s and Fitch. However, the fi-
nancial crisis in 2008 revealed that their credit ratings might not be unbiased;
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they face a potential conflict of interest as they are compensated by the rated
company (Strier, 2008; European Commission, 2010; De Haan and Amtenbrink,
2011). Critics further point out that credit rating agencies do not always re-
act on time and list number of cases where ratings were downgraded just days
before an entity went bankrupt (e.g. Enron or California Utilities). Hamilton
and Cantor (2004) suggest that Moody’s rating system management practices
try to limit rating reversals and decrease rating volatility, and it is reasonable
to assume that the other major credit rating agencies have similar internal
policies. Indeed, they use other metrics, such as outlooks or reviews, to reflect
short- to medium-term shifts in credit risk, which makes analysis of credit risk
time dynamics more complicated.

At the same time, credit rating agencies are not the only institutions en-
gaged in estimating credit risk; many financial institutions face credit risk and
create internal models to monitor it. A special case are banks, for which credit
risk is mainly linked to loans and represents the largest component of risk-
weighted assets (RWA) (Basel Committee on Banking Supervision, 2013), a
measure used to determine the minimum amount of liquid capital that banks
are required to hold to reduce the risk of their insolvency. Since the intro-
duction of Basel II in 2004, regulators allow some banks to use proprietary,
internal models to estimate the credit risk parameters entering the RWA cal-
culation. Such models have to meet a set of minimum requirements outlined
in Basel Committee on Banking Supervision (2006), providing a meaningful
assessment of borrower characteristics and reasonably accurate and consistent
risk estimates. Banks which follow these principles are said to use internal
rating-based (IRB) approach to credit risk and produce estimates that are
comparable across banks.

Internal credit risk estimates have been collected only by some regulators
and are not fully utilised due to capacity constrains, which means that most
of the associated research uses locally focused, small and/or hypothetical port-
folios. Credit Benchmark is one of a few private bodies collecting internal
credit risk estimates at the entity level from IRB banks. It collects data from
banks headquartered all around the world including European Union, United
Kingdom, United States, Canada, South Africa and Asia Pacific. The company
invests significantly in its data mapping processes, linking banks’ data to entity
reference data from multiple data providers in order to identify observations
that evaluate risk of the same entity. The data are then aggregated to create
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entity- and portfolio-level credit risk benchmarks.1 This has formed a unique
dataset of banks’ credit risk estimates, which are consistently mapped to en-
tities. As most of the contributing banks submit data on their full corporate
books, the data include information on diverse set of entities including corpo-
rates of different sizes, financials, governments and funds, and the dataset has a
substantial depth of hundreds of thousands of monthly observations. As such,
the collected dataset is much larger than any other similar one used in the risk
literature and my research thus provides a valuable contribution in this area.

My attention was first directed to credit transition matrices (CTMs), which
capture time dynamics of credit risk by indicating the probabilities of moving
from one credit rating category to another in a given time period. CTMs are
an essential component of credit risk modelling (Jarrow et al., 1997, Israel
et al., 2001, Boreiko et al., 2019) with practical applications in portfolio risk
assessment, modelling of credit risk premia term structure, pricing of credit
derivatives, bank stress-testing and life-time credit loss estimation under IFRS9
and CECL accounting standards. As indicated earlier, the existing industry
standard is to source CTMs from credit rating agencies (CRAs). However,
CTMs estimated by CRAs data are based on a limited set of rated entities
typically representing only a small proportion of counterparties in a financial
institution’s portfolio and not allowing for more narrowly focused CTMs (e.g.
industry-specific). I propose an alternative approach to CTM estimation: bank-
sourced CTMs based on aggregation of internal credit risk estimates pooled
from multiple banks, which have the potential to overcome issues of CRA-
sourced CTMs, leading to higher accuracy of the resulting CTM estimates.

I analyse the topic in the first two papers. One assesses the assumptions
behind estimation of bank-sourced transition matrices, whereas the second fo-
cuses on the approach to aggregating banks’ data into credit transition matri-
ces. Given the limited information on banks’ internal credit assessment systems
and their potential heterogeneity, characteristics of banks’ credit risk estimates
need to be thoroughly investigated to ensure that bank-sourced transition ma-
trices are unbiased. The first paper contributes to the existing literature by
testing the widely used assumptions for CTM estimation: Markovian property
and time homogeneity. While the previous studies focus on data by CRAs
(Nickell et al., 2000; Bangia et al., 2002; Frydman and Schuermann, 2008) or
work with local clusters of banks (see e.g. Gavalas and Syriopoulos, 2014 for Eu-

1The banks are clients of Credit Benchmark and the benchmarks allow banks to compare
themselves against their peers.
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ropean central bank data; Gómez-González and Hinojosa, 2010 for Columbian
commercial loans; and Lu, 2012 for Taiwanese data), I provide an analysis of
applicability of the common CTM estimators based on a large and global bank-
sourced dataset. The Markovian property is tested using conditional transition
matrices and panel probit models and the time homogeneity assumption is
then assessed by comparing individual annual transition matrices to their long-
term averages using the χ2 statistic. The results indicate that internal credit
risk estimates do not satisfy the two assumptions, showing evidence of both
path-dependency and time heterogeneity even within a period of economic ex-
pansion. Contradicting previous findings based on data from CRAs, banks
tend to revert their past rating actions. The findings are essential for estima-
tion of bank-sourced transition matrices and should be reflected in the choice
of appropriate estimators as well as interpretation of results.

The second paper assesses the extent to which bank-sourced CTMs depend
on the characteristics of the underlying credit risk datasets and the aggregation
method. This is done using large-scale Monte Carlo simulations to generate a
large number of data points with precisely modelled characteristics – and the
ability to alter them as required. I first analyse features of credit risk data
in overlapping bank’s portfolios, propose three aggregation approaches and a
simulation framework, and compare the resulting transition rates and value-at-
risk estimates, providing an overview of the trade-offs to be considered when
developing a bank-sourced CTM aggregation model. I also estimate a series
of bank-sourced CTMs and compare their characteristics to those provided
by CRAs. Finally, I produce a set of novel, industry-specific CTMs possibly
indicating existence of industry-specific credit cycles. All of these are novel
topics not previously discussed in the credit risk literature.

The last paper was motivated by the observed dispersion in credit risk
estimates used in the above mentioned simulation exercise and a question if
such variance is normal. Even though the banks’ internal credit risk models
are regulated, banks are allowed to implement diverse rating systems, raising
a question about comparability of outputs captured by model risk. There is a
number of studies researching this topic but all of them focus either on local
portfolios (e.g. Berg and Koziol, 2017 for Germany, Plosser and Santos, 2014 for
the US or Jacobson et al., 2006 for Sweden) or small and hypothetical portfolios
(Financial Services Authority, 2012; Basel Committee on Banking Supervision,
2013). Once again, I analyse a large global dataset that allows me to make more
general conclusions and also to extend the analysis by considering different
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entity types, location of both entities and banks, and additional information
on the assessed entities, such as their size and industry. In line with the prior
literature, I find that there is a substantial variance in outcomes and that it
decreases with the amount of information available about the assessed entity. I
further show that the level of variance is highly dependent on the entity type,
its industry and locations of the entity and the contributing banks; banks’
estimate deviate further from the mean credit risk for foreign entities. I also
conclude that a considerable part of the variance is systematic, especially for
fund models. Finally, I utilise the latest available data to analyse the impact
of the COVID-19 pandemic on dispersion of credit estimates.

All of these findings are very topical as regulators, such as the European
Central Bank (ECB) with the AnaCredit project, have started to use large-
scale bank-sourced credit risk datasets for their analyses and potentially stress-
testing purposes (Brananova and Watfe, 2017). The approaches to estimation of
bank-sourced CTMs described herein can be replicated by regulators and used
by organisations aiming to improve their credit risk models. The analysis of
dispersion can also direct regulators to additional research of the data collected
from banks.
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Chapter 2

Bank-Sourced Transition Matrices:
Are Banks’ Internal Credit Risk
Estimates Markovian?

Abstract1

This study provides new insights into banks’ credit risk models by exploring
features of their credit risk estimates and assessing practicalities and assump-
tions behind estimation of bank-sourced transition matrices. The importance
of understanding banks’ internal credit risk processes has increased recently
as regulators begin to utilise larger, more detailed datasets for their analyses,
including banks’ internal probability of default estimates (e.g. AnaCredit by
the ECB) with potential applications in stress-testing. We empirically test the
widely used Markovian property and time homogeneity assumptions at a larger
scale than previously documented in the literature. The unique dataset used
in this study consists of internal credit risk estimates from twelve global banks
that employ advanced internal rating-based approach, covering monthly obser-
vations on 20,000 North American and EU large corporates over the 2015-2018
time period. The results indicate that internal credit risk estimates do not
satisfy the assumptions, showing evidence of both path-dependency and time
heterogeneity even within the period of economic expansion. In addition, con-
tradicting previous findings based on data from credit rating agencies, banks
tend to revert their rating actions. Such transition patterns have significant
practical implications through the estimated credit transition matrices.

1This study has been recently accepted for publication in Journal of Credit Risk as:
Stepankova, B. Bank-Sourced Transition Matrices: Are Banks’ Internal Credit Risk Esti-
mates Markovian?.
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2.1 Introduction
Credit transition matrices are essential components of credit risk modelling.
They are used to characterise the expected changes in credit quality of oblig-
ors and have many practical applications including portfolio risk assessment,
modelling of credit risk premia term structure, and pricing of credit derivatives
(Bangia et al., 2002). Transition matrices are also used in bank stress-testing,
which took on a prominent role within the regulatory toolkit after the financial
crisis in 2008 (e.g. Varotto, 2012). Recently, transition matrices gained atten-
tion due to modelling of life-time credit losses required by the new IFRS9 and
CECL regulations as outlined in several industry papers including e.g. Cziraky
and Zink (2017). Transition matrices are estimated using past credit risk data
and the main sources of transition matrices are currently credit rating agencies.
Banks also construct transition matrices using their internal credit rating data,
yet there is no public source for such matrices given their proprietary character.

Given the limited information on banks’ internal credit assessment systems
and their potential heterogeneity, characteristics of banks’ models and credit
risk estimates need to be thoroughly investigated to ensure that bank-sourced
transition matrices are unbiased. This study provides a unique insight into the
issue and applicability of methods for estimation of bank-sourced transition
matrices. Using a one-of-a-kind dataset of credit risk estimates from 12 global
A-IRB banks, we empirically test the two main assumptions applied in the most
commonly used estimators of transition matrices: the Markovian property and
time homogeneity.

The study focuses on banks’ main corporate models and data on large North
American and EU corporates. The final dataset includes monthly observations
on 800-2,000 corporates from each bank over the 2015-2018 time period, cov-
ering more than 20,000 unique entities in total, adding up to nearly 1,000,000
bank-entity-month observations. The Markovian property is tested using condi-
tional transition matrices (Bangia et al., 2002) and panel probit models (Fuertes
and Kalotychou, 2007), investigating momentum and duration effect hypothe-
ses. The time homogeneity assumption is then assessed by comparing individ-
ual annual transition matrices to their long-term averages using the χ2 statistic
(Trück and Rachev, 2009).

We analyse banks’ credit rating behaviour patterns at a larger scale than
covered by previous literature, which mostly works with local clusters of banks
(e.g. Gómez-González and Hinojosa, 2010 and Lu, 2007). The findings are
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essential for estimation of bank-sourced transition matrices and should be re-
flected in the choice of appropriate estimators as well as interpretation of re-
sults, especially in comparison to credit rating agencies. This is particularly
topical given that regulators, such as the European Central Bank (ECB) with
the AnaCredit project, have started to use large-scale bank-sourced datasets,
including probability of default estimates, for their analyses and stress-testing
purposes (Brananova and Watfe, 2017).

2.2 Assumptions and Estimators
In this section we review the most commonly used methods for estimation of
transition matrices and their assumptions, introduce the concepts of Markovian
property and time homogeneity, and present approaches for estimation and
comparison of our newly constructed matrices. Each subsection then contains
an overview of the relevant literature and technical details.

2.2.1 Notation and Main Assumptions

When defining a transition matrix, we consider a rating space S = 1, 2, ..., K,
where 1 and K −1 represent the best and the worst credit quality, respectively,
and K represents a default. R(t) denotes rating of an entity at time t and takes
values from the rating space S.

The (K × K) transition matrix Q(t, t + δ) describes all possible transitions
and their probabilities over time horizon (t, t + δ):

Q(t, t + δ) =

⎡⎢⎢⎢⎢⎢⎢⎣
p11 p12 p13 . . . p1K

p21 p22 p23 . . . p2K

... ... ... . . . ...
pK1 pK2 pK3 . . . pKK

⎤⎥⎥⎥⎥⎥⎥⎦ , (2.1)

where pij represents transition probability from state i to state j within time
period (t, t + δ) when i ̸= j, and the probability of rating being preserved
when i = j. Rows represent credit ratings of entities at time t while columns
represent ratings at time t + δ. For the sake of simplicity, it is often assumed
that the last row with defaults is an absorbing state, meaning that defaulted
entities cannot emerge from default. The transition rates satisfy pij ≥ 0 for all
i, j and pii ≡ 1 −∑︁K

j=1,j ̸=i pij for all i.
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Starting with the works of Jarrow et al. (1997), the industry standard in
description of credit rating dynamics has been based on time-homogeneous
Markov chain models. Consequently, one of the most discussed topics in the
field of transition matrices is the Markovian chain assumption, suggesting that
the estimated migration probabilities are independent of the prior credit rating
history. In addition, the assumption of time homogeneity considers the tran-
sition probabilities to be constant over time. Even though the validity of the
assumptions has been challenged by a number of empirical studies (e.g. Lando
and Skødeberg, 2002; Kavvathas, 2001; Nickell et al., 2000), the assumptions
significantly simplify estimation of transition matrices and the resulting esti-
mates provide valuable insights into rating systems of banks.

Markovian Property Definition A stochastic process satisfies the first-order
Markovian property if the probability of transition to a future state j depends
only on the current state and is independent of the rating history:

P [R(t + δ) = j|R(t), R(t − 1), R(t − 2), ...] = P [R(t + δ) = j|R(t)], (2.2)

where R(t) denotes rating of an entity at time t and takes the values from the
rating space S.

Time Homogeneity Definition A Markovian chain is time-homogeneous if
transition probabilities depend only on the time horizon of interest, δ, and not
on the initial date:

Q(δ) ≡ Q(t, t + δ) = Q(t − k, t − k + δ). (2.3)

Time-homogeneous Markovian chain satisfies

P [R(t + δ) = j|R(t) = i] = P [R(t − k + δ) = j|R(t − k) = i]. (2.4)

As explained in Fei et al. (2012), time homogeneity implies that an n-year
migration matrix is given by the nth power of an annual one, defined as Q(t, t+
n) = Q(t, t + 1)n or the matrix product of n copies of Q(t, t + 1), and it
allows the user to make a statistical inference. Time-homogeneous Markovian
transition matrices are then an essential tool for credit risk assessment as they
can be used for forward-looking analysis. For example, credit distribution of a
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portfolio observed after five years can be defined as:

d(t + 5) = d(t) · [Q(t, t + 1)]5, (2.5)

where d(t) is the initial rating distribution, d(t + 5) is the rating distribution
observed after five years, and Q is the transition matrix.

2.2.2 Estimation of Transition Matrices

Transition matrices can be estimated using either the cohort or hazard rate
(duration) approaches, which differ in their conception of time: the cohort
approach is a discrete-time framework, whereas the hazard rate approach works
with continuous time. Importantly, the basic versions of both estimators are
based on the Markovian property and time homogeneity assumptions.

The cohort approach looks at the number of entities that migrated from
rating i to rating j over a specific period of time (t, t + δ), where δ is a discrete
number. Ni(t) denotes the number of entities with rating i at time t, R(t) = i,
and Nij(t, t + δ) is a subset of such entities that migrated to rating j within
the period (t, t + δ), R(t) = i and R(t + δ) = j.

Assuming a time-homogeneous Markov rating process, the maximum-likelihood
(ML) estimator of the credit migration probability is:

p̂ij ≡ p̂ij(δ) =
T∑︂

t=1
wi(t)p̂ij(t, t + δ) =

∑︁T
t=1 Nij(t, t + δ)∑︁T

t=1 Ni(t)
= Nij

Ni

, (2.6)

where wi(t) = Ni(t)/
∑︁T

t=1 Ni(t) are yearly weights. Therefore, p̂ij can be simply
computed as the total number of migrations over a specific period from grade
i to j, divided by the total number of obligors that were in grade i at the start
of the sample period.

The ML estimator is biased but consistent; large enough datasets thus al-
low estimation of consistent transition matrices. However, Bangia et al. (2002)
conclude, based on the estimated coefficient of variation of transition matrix
elements, that only the diagonal elements are estimated with high precision.
Moreover, the cohort method neglects within-year transitions and rating dura-
tion information.

An alternative approach is a hazard rate (duration) estimator capturing
transitions occurring at any time. The approach estimates positive probabilities
of extreme transitions that are not observed in the data but can occur given
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a large dataset, as illustrated by Lando and Skødeberg (2002), but it requires
higher frequency observed data and the calculation is based on a more complex
generator matrix. The cohort method is less efficient and Jafry and Schuermann
(2004) and Fuertes and Kalotychou (2007) find that the differences between
the cohort and duration methods are larger than between different duration
methods.

Other estimation methods are used e.g. by Hanson and Schuermann (2006),
who assess the confidence intervals around probabilities of default using an-
alytical approaches and (non-) parametric bootstrap methods, finding that
bootstrap intervals for continuous estimates are narrower than for cohort es-
timators. In other studies, Stefanescu et al. (2009), and Kadam and Lenk
(2008) use Bayesian techniques for estimation of default and transition prob-
abilities to mitigate the effect of data sparsity. Finally, multiple studies pro-
vide alternatives for data that are either time-heterogeneous or non-Markovian.
For instance, Bluhm and Overbeck (2007) calibrate a non-homogeneous time-
continuous Markov chain, Frydman and Schuermann (2008) use Markov mix-
tures, and Giampieri et al. (2005) consider hidden Markov models.

In our study, we use the cohort method for testing the Markovian property
and time homogeneity assumption. Its lower efficiency is not an essential is-
sue since we do not intend to produce a matrix best representing credit risk
transitions but rather focus on examination and comparison of characteristics
of individual banks’ rating systems.

2.2.3 Comparison of Transition Matrices

The simplest approaches to comparison of transition matrices use Euclidean dis-
tance (based on the average absolute difference) and average root-mean-square
difference between corresponding cells of the analysed matrices. However, as
Jafry and Schuermann (2004) point out, such methods provide only a rela-
tive rather than absolute comparison, and thus only limited information on
the magnitude of the observed differences. As a result, they propose a singu-
lar value decomposition (SVD) metric based on a mobility matrix (defined as
the original matrix minus an identity matrix) that approximates the average
probability of migration and facilitates a more comprehensive comparison. The
metric is defined as the average of the singular values of the mobility matrix:

MSV D(Q) =
∑︁n

i=1

√︂
λi(Q′ˆ Q̂)
n

, (2.7)
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where Q̂ is the n × n mobility matrix defined as the original transition matrix
minus an identity matrix of the same size, i.e. Q̂ = Q − I, and λi(...) denotes
the i-th largest eigenvalue.

The SVD method captures the probability and magnitude of migration
(change in credit categories) but not its direction. Hence, we also report the
average share of entities upgrading and downgrading, calculated as UP (Q) =∑︁

i>j p̂ij/n for upgrades and analogously as DW (Q) = ∑︁
i<j p̂ij/n for down-

grades.

2.3 Analytical Approach
This section describes the methodology for testing the Markovian property and
time homogeneity. The text is thematically structured and introduces the tests
used for detection of non-Markovian behaviour and time heterogeneity together
with a review of the relevant literature and technical details.

2.3.1 Testing the Markovian Property

The Markovian property of rating processes is challenged by multiple studies
investigating presence of non-Markovian momentum and duration effects de-
fined below. Specifically, Lando and Skødeberg (2002) and Kavvathas (2001)
employ a semi-parametric multiplicative hazard model; Fuertes and Kaloty-
chou (2007) and Lu (2012) use logit models; Bangia et al. (2002) estimate
transition matrices dependent on previous developments and compare them;
and Krüger et al. (2005) test the Markov property using a Likelihood Ratio
Test and conditional transition matrices. Most of the studies find strong down-
grade momentum effects and evidence of duration effects, although Krüger et al.
(2005), who, unlike most of the other studies, do not use credit risk data from
rating agencies but rather analyse a rating system based on balance-sheet data
of Deutsche Bundesbank, conclude that upgrades are more likely to be followed
by downgrades and vice versa, and identify a second-order Markov behaviour.
Significant duration effects are then described in e.g. Fuertes and Kalotychou
(2007), Lando and Skødeberg (2002), or Kavvathas (2001), but the evidence of
their direction is mixed.
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Momentum Effect

Rating momentum presupposes that prior credit rating changes have predictive
a power regarding the direction of future rating changes. There are several ap-
proaches to testing the momentum effect. We present two of them: comparison
of conditional transition matrices and panel probit model estimation.

Conditional Transition Matrices The first approach is based on analysis of
up and down momentum transition matrices and follows Bangia et al. (2002).
In this approach, entities are separated into three groups based on their rating
experience from the previous year: upgrading, downgrading, and stable. The
groups are then followed for a year to capture the subsequent rating changes
and construct group-specific transition matrices: up, down, and maintain mo-
mentum transition matrices.

We focus on comparison of the conditional up and down momentum transi-
tion matrices to highlight the differences in rating behaviour following upgrades
and downgrades. The comparison is done using the singular value decomposi-
tion (SVD) metric.

The annual credit migration probabilities are calculated using transitions
observed over the last 12 months in the datasets and the counts are conditioned
by previous movements. Concretely, credit migration probability in an up
momentum transition matrix is defined as:

p̂u
ij(t, t + 12) ≡

Nu
ij(t, t + 12)

Nu
i (t) , (2.8)

where Nu
i (t) denotes the number of entities with rating i at time t that were

upgraded within the period (t−13, t−1), R(t) = i, and Nu
ij(t, t+12) is a subset

of such entities that migrated to rating j within the period (t, t + 12), R(t) = i

and R(t + δ) = j.

Panel Probit As a second step, we follow Fuertes and Kalotychou (2007) and
Lu (2012) and test the Markovian chain assumption using a probit model to
detect momentum effects for rating changes over two time periods of 36 and 12
months. To do so, we define the following four variables related to the current
and historical rating changes:

• Uit = 1 if entity i was upgraded in month t and 0 otherwise;

• Dit = 1 if entity i was downgraded in month t and 0 otherwise;
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• Mu
it = 1 if entity i was upgraded to their current rating over the period

(t − x, t − 1) and 0 otherwise, where x represents number of months (36
or 12 as discussed above);

• Md
it = 1 if entity i was downgraded to their current rating in the period

(t − x, t − 1) and 0 otherwise, with x defined as for Mu
it = 1.

Note that Mu and Md are upward and downward momentum indicators, whereas
U and D represent the current upgrade and downgrade indicators.

When observing the full rating history (36 months), we focus on entities with
at least one credit rating change preceding the current upgrade or downgrade.
As we show later in this study, time spent in a rating category impacts the
probability of an upgrade or downgrade, which might cause a bias in comparison
of entities with a previous rating change and entities that have been stable for
a long time. The base group of the model with an upgrade dummy variable
Mu

it is ‘downgraded to the current state’2 and the respective probit regression
for upgrade momentum estimation is defined as:

yit = α + βMu
it + ϵit, (2.9)

where ϵit ≡ iid(0, σ2) and yit is a continuous latent variable such that Uit = 1 for
yit ≥ 0 and Uit = 0 otherwise. The downgrade momentum model is analogous.
We use a panel probit regression model for the estimation.

For analysis focusing on rating changes within the last year only, we also
consider stable entities (i.e. those with no rating change in the last year), which
form the base group for a model with downgrade and upgrade dummies. The
respective probit regression for upgrade momentum estimation is then defined
as:

yit = α + βMu
it + βMd

it + ϵit, (2.10)

where ϵit ≡ iid(0, σ2) and yit is a continuous latent variable such that Uit = 1
for yit ≥ 0 and Uit = 0 otherwise. All models are estimated across all credit
rating categories.

2We ran additional regressions using the entire sample with the base group defined as
‘downgraded to the current state or stable’. The results are consistent with the outputs
reported in Section 2.5.



2. Are Bank’s Internal Credit Risk Estimates Markovian? 17

Duration Effect

The duration effect is another non-Markovian property referring to a link be-
tween time spent in a given credit rating category and probability of credit
rating transition (Fuertes and Kalotychou, 2007). The duration measure dit is
defined as the number of months between the last transition and the current
state. The effect of dit is measured separately for upgraded and downgraded en-
tities using a similar panel probit model as for detecting the momentum effect:

yit = α + βdit + ϵit, (2.11)

where ϵit ≡ iid(0, σ2) and yit is a continuous latent variable such that Uit = 1 for
yit ≥ 0 and Uit = 0 otherwise. An analogous notation applies to downgrades.

Since the presented dataset of internal ratings starts in 2015, we are not
able to determine the exact rating duration of several stable entities that have
changed credit risk rating only once during the observed period. In order
to remain consistent, we use the date of bank’s credit rating assessment of
an entity as a proxy for a previous upgrade/downgrade/rating issuance, even
though the assessment may indicate a review without change.

2.3.2 Testing Time Homogeneity

The time homogeneity assumption has been extensively covered in the academic
literature; it is mostly tested using eigenvalues or sensitivity of transition rates
to the business cycle, yet some studies also link transition matrices to specific
macro- and micro-economic indicators. For instance, Bangia et al. (2002), Kav-
vathas (2001), Fuertes and Kalotychou (2007), and Krüger et al. (2005) investi-
gate time heterogeneity using eigenvalue and eigenvector tests or conditioning
the hazard rates on time. Fuertes and Kalotychou (2007) find that eigenvalue
and eigenvector tests support a time-homogeneous Markovian process, while
Kavvathas (2001) and Krüger et al. (2005) identify time dependence.

Studies comparing transition matrices across the business cycle include Kav-
vathas (2001), Nickell et al. (2000), Bangia et al. (2002), Christensen et al.
(2004), Gavalas and Syriopoulos (2014), Fei et al. (2012), and Frydman and
Schuermann (2008). Most of the analyses conclude that there are significant
differences between transition matrices estimated during recession and expan-
sion periods.

Finally, studies measuring dependency of transition probabilities on various
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economic indicators include Gavalas and Syriopoulos (2014), Kavvathas (2001),
Krüger et al. (2005), and Berteloot et al. (2013), who show a correlation be-
tween transition probabilities and GDP growth or unemployment; Stefanescu
et al. (2009), who use a Bayesian model to describe the explanatory power of
S&P500 returns; and Gómez-González and Hinojosa (2010), who include both
macroeconomic and microeconomic variables in their model to obtain condi-
tional time homogeneity.

Unfortunately, our dataset is too short to apply these methods of testing.
Notwithstanding that, both the Centrum for Economic Policy Research (EU)
and the National Bureau of Economic Research (US) mark the time period
covered in our dataset as a period of expansion, so, based on the time homo-
geneity assumption, the estimated transition matrices should be consistent over
time within such a homogeneous period. To test this hypothesis, we construct
non-overlapping annual matrices, average them and compare the averages to
the individual matrices using a χ2 test applied to transition matrices by Trück
and Rachev (2009). There are two to three non-overlapping annual transition
matrices per bank, depending on the covered time period.

To check whether the individual transition matrices for time sub-samples
differ significantly from the average transition matrices, we employ the following
test statistics:

Zt =
T∑︂

t=1

N∑︂
i=1

∑︂
jϵVi

ni(t)
(p̂ij(t) − p̂ij)2

p̂ij

∼ χ2
(︄

N∑︂
i=1

(ui − 1)(vi − 1)
)︄

, (2.12)

where p̂ij denotes the average probability of default representing the transition
from rating i to j estimated based on the full sample, p̂ij(t) is the corresponding
transition rate estimated based on a sub-sample t, and ni(t) is the number of
observations initially in the ith rating class within the tth sub-sample.

The test is based only on transition probabilities that are positive across
the entire sample; hence, we define Vi = {j : pij > 0}. Zt has an asymptotic χ2

distribution with degrees of freedom equal to the number of summands in Zt,
corrected for the number of categories where ni(t) = 0, number of estimated
transition probabilities p̂ij and the number of restrictions (i.e. ∑︁

j p̂ij(t) = 1
and ∑︁j p̂ij = 1). Consequently, the degrees of freedom can be calculated as

∑︂
i=1

(ui(vi − 1) − (vi − 1)) = (ui − 1)(vi − 1), (2.13)

where vi is the number of positive entries in the i-th row of the matrix for the
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entire sample (vi = |Vi|, meaning that vi is the number of elements in Vi), and
ui is the number of sub-samples (t) in which observations for the i-th row are
available (ui = |Ui|; Ui = t : ni(t) > 0).

2.4 Data
This section reviews the major existing data sources used for construction of
transition matrices, describes the dataset used in this study, and discusses issues
related to bank-sourced credit risk data. Specifically, we discuss transition to
a ‘not rated’ category and probability of default to rating scale mapping.

2.4.1 Existing Data Sources

The existing studies on credit risk transition matrices use various types of data
for analysis. The mainstream literature, represented e.g. by Bangia et al.
(2002), Lando and Skødeberg (2002), Kavvathas (2001), Krüger et al. (2005),
Jafry and Schuermann (2004), and Gavalas and Syriopoulos (2014), focuses on
corporates, whereas a minority of studies, including e.g. Fuertes and Kaloty-
chou (2007), Nickell et al. (2000), and Wei (2003), analyses sovereigns and/or
financials.

The most common sources of credit risk rating and transition data are credit
rating agencies. However, each of the main credit rating agencies rates up to
10,000, the relatively low coverage results in infrequent multiple categories tran-
sitions impacting the accuracy of the published transition matrices based on
cohort estimation (Fei et al., 2012). Agency-sourced data is employed e.g. by
Nickell et al. (2000), Fuertes and Kalotychou (2007), Trück (2008), Kadam and
Lenk (2008) (Moody’s); and Lando and Skødeberg (2002), Jafry and Schuer-
mann (2004), Frydman and Schuermann (2008), Stefanescu et al. (2009) (S&P).
On the contrary, only a handful of studies focuses on internal bank estimates.
Lu (2012) employs data of the Taiwanese investment bank Chiao Tung Bank;
Krüger et al. (2005) analyse rating system based on a balance-sheet data of
Deutsche Bundesbank; Gómez-González and Hinojosa (2010) analyse a sample
of Colombian commercial loans; and Gavalas and Syriopoulos (2014) work with
internal credit risk rating data of four central banks in Europe.
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2.4.2 Bank-Sourced Data

Our study is based on a unique dataset provided by Credit Benchmark, con-
taining probability of default estimates (PDs) from 12 global banks covering
the 2015-2018 period. The data are bank- and entity-specific and the actual
time frame for individual banks varies between 2 to 3 years. Credit Bench-
mark works with global advanced internal ratings based (A-IRB) banks,3 pools
together their internal estimates of hybrid through the cycle (H-TTC) one-
year PDs used in risk-weighted assets calculation and aggregates them into an
entity-level credit risk benchmark. As regulators require an annual review of
all credit risk estimates, we focus on annual transition matrices to ensure that
all of the entities have been reviewed over the observed period.

Basel II introduced reduced risk weighting for small and medium-sized en-
terprises (SMEs) in line with their turnover. Some of the analysed banks use
different credit risk models for corporates, financials and governments; large
corporates and SMEs; developed and developing markets. Hence, in our study
we focus on banks’ main corporate models and limit our dataset to large cor-
porates from North America (NA) and the European Union (EU). The entity
size and country are determined using information on annual sales, number of
employees and family structure from Duns & Bradstreet and FactSet.4 As the
North American and EU economies are closely connected, the transition rates
are comparable across the banks and the differences in the model behaviour
should not be driven by sampling.

Each bank provides PD estimates for 800-2,000 large North American and
EU corporates, covering more than 20,000 unique entities in total, adding up
to nearly 1,000,000 bank-entity-month observations. The distribution between
NA and EU entities is bank-specific and banks tend to have higher coverage of
entities from the country of their domicile than from other countries. Around
90% of entities covered by EU banks come from within the EU; the NA banks
show a similar portfolio structure in favour of NA entities. Figure 2.1 shows
that the distribution across industries is more balanced, with Industrials and

3A-IRB banks are allowed to use internal credit risk model to estimate credit risk param-
eters for calculation of regulatory capital. Banks need approval from the national regulator
to use the A-IRB approach and their models are regularly assessed by regulators to ensure
quality.

4According to the European Commission (OJ L 124, 20.5.2003, p. 39), SMEs are com-
panies with staff headcount lower than 250 and turnover below EUR 50 million or a balance
sheet total below EUR 43 million. Companies that are a part of a larger family are assessed
based on the group data.
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Consumer Services being the most represented industries, covering on aver-
age 25% and 22% of entities, respectively, while the number of entities in the
Telecommunications (4%), Technology (10%) and Basic Materials (14%) in-
dustries is substantially lower.

Figure 2.1: Distribution of PD Estimates Across Industries - Ranges
based on Individual Banks
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The participating banks are based in various countries and prefer to stay
anonymous so we do not name them here. The order of the presented results
is randomised and changes for each set of results to maintain confidentiality.

2.4.3 Macroeconomic Factors

We consider unemployment, inflation and GDP growth data as macroeconomic
indicators in the Markovian property analysis and evaluate their impact on the
results. The data were extracted from Eurostat, U.S. Bureau of Economic Anal-
ysis, U.S. Bureau Labor of Statistics and Statistics Canada. We investigate the
relationship of upgrade and downgrade probabilities and the macroeconomic
indicators in form of levels, as well as 3-month and 1-year percentage points
changes.

2.4.4 Data Considerations

There are two considerations in relation to the presented data. Firstly, the
set of entities covered by each bank changes over time as banks adjust their
portfolios and corporates repay their debt and move between loan providers.
This is essentially an equivalent of moving to a ‘not rated’ category in the as-
sessment process of rating agencies. Literature suggests several approaches to
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the ‘not rated’ category and changing sample over time (see Bangia et al., 2002
for more details). One possibility is to fix the sample of entities over the whole
period but the authors argue that transition matrices should be based on the
current sample of a rated universe as a fixed sample of entities suffers from sev-
eral problems: the cohort quickly becomes outdated; the entities’ fundamental
characteristics evolve over time; and the sample of examined entities would be
substantially reduced.

In contrast, if the analysed data sample varies over time, entities transition-
ing into a ‘not rated’ category need a special handling – it has to be decided
if the change is informative and if it should be viewed positively or negatively.
On average, 14% of entities in the dataset drop from banks’ portfolios annu-
ally, transitioning to the ‘not rated’ status. The percentage varies across banks;
portfolios of some banks are very stable with only 2% churn, while other port-
folios change more rapidly with up to 20% churn. Entities can be removed from
a bank’s portfolio for several different reasons including a change in the bank’s
strategy, increase in entity’s credit risk, or its decision to change the lending
bank; details of a rating withdrawal are not known and it is not clear if the
transition is favourable or not. Hence, in line with the industry standard we
treat exclusion of an entity from bank’s portfolio as a non-informative action
and distribute the probability of dropping from the sample among all states in
proportion to their values. As this study focuses on analysis of general credit
risk transitions and does not aim to precisely estimate default probabilities,
this action does not affect our results or conclusions.

The second consideration relates to transition matrices being based on a set
of rating categories rather than continuous PDs; banks in our sample produce
only a limited number of PD values based on their internal rating scales. The
number of different rating categories is in range of 13-26 and varies across banks,
with majority of the banks using 16-21 categories. Our analysis uses the banks’
specific rating categories derived from the submitted PD estimates. Different
rating scale granularity might impact sensitivity of banks’ ratings to changes in
credit risk but it does not affect our analysis assessing the Markovian property
and time homogeneity as we only describe the credit risk processes behaviour.

2.5 Results
The following results are structured according to Section 2.3. That is, we first
investigate whether the PD estimates from the 12 banks satisfy the Marko-
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vian property, looking separately at the momentum effect and the duration
effect. Subsequently, we analyse the time homogeneity assumption of credit
rating processes. All banks have been anonymised and their IDs change in
each subsection to maintain confidentiality.

2.5.1 Testing the Markovian Property

The Markovian property requires transition probabilities to depend only on the
current state and be independent of the rating history. We analyse the banks’
rating processes using tests based on the momentum and duration effects.

Momentum Effect

Presence of the momentum effect is determined by existence of a link between
prior and future credit rating changes. This is tested using conditional transi-
tion matrices defined in Equation 2.8 and the panel probit regression models
described in Equations 2.9 and 2.10.

Conditional Transition Matrices
In the first step, we investigate the differences between up (UTM) and down
(DTM) momentum transition matrices, defined as conditional matrices based
only on entities that were upgraded/downgraded during a one-year period pre-
ceding the period captured by the transition matrix. We calculate the percent-
age of upgrades (UP ) and downgrades (DP ) and test statistical significance of
differences using the test statistic for differences in two population proportions.5

Since the percentage of upgrades and downgrades does not reflect size of the
changes, we further estimate the singular value decomposition (SVD) metric
defined in Equation 2.7. For reference, the SVD metric differs substantially
across the analysed banks, ranging between 0.15 and 0.60 (not reported in
Table 2.1), with lower values corresponding to fewer migrations. Jafry and
Schuermann (2004) report values 0.1-0.3 for S&P transition matrices.

Table 2.1 shows that banks more often revert their rating change than con-
tinue in the established trend. As shown in the ‘UP DTM - UP UTM’ column,
which compares the upgrade probabilities in the up and down momentum tran-
sition matrices, an upgrade is more likely to come after a previous downgrade

5Defined as Z = (p̂1−p̂2)−(p1−p2)√
p̂(1−p̂)(1/n1+1/n2)

, where p̂1 and p̂2 stay for the two samples ‘successes’
proportions, n1 and n2 are the sample sizes, p̂ is the proportion of ‘successes’ in the two
samples combined and the null hypothesis assumes p1 = p2.
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Table 2.1: Differences in Upgrades and Downgrades between the Con-
ditional Transition Matrices

UP DTM - DW DTM - SVD DTM -
Bank UP UTM DW UTM SVD UTM # obs

1 9% *** -10% *** -0.08 high
2 3% -1% 0.02 med
3 14% *** -8% * 0.11 med
4 7% ** -9% ** 0.03 high
5 -7% 4% 0.06 med
6 -6% 17% * 0.04 low
7 16% *** 7% *** 0.03 med
8 19% *** 0% 0.20 med
9 14% *** -8% *** 0.10 high

10 16% -9% 0.00 low
11 insufficient data for analysis
12 insufficient data for analysis

+ significant at p < 0.1; * signif. at p < 0.05; ** signif. at
p < 0.005; *** signif. at p < 0.001
Notes:
The order of banks and labels differ from the other tables
due to confidentiality.
UP DTM - upgrade percentage in down momentum matrix,
UP UTM - upgrade percentage in up momentum matrix,
DW - downgrade percentage,
SVD - singular value decomposition, see Subsection 2.2.3.
# obs - high = more than 1,000; med = 100 to 1,000; low
= less than 100, obs used in DTM/UTM

than after a previous upgrade; these results are significant for 6 out of 10 exam-
ined banks. The results for downgrades are less pronounced with the differences
being statistically significant for 4 out of 10 banks, while 2 banks more often
downgrade entities that were previously downgraded. The positive value of
the SVD differences means that DTMs show more and/or more significant
movements than UTMs.

Panel Probit
To confirm the results, a panel probit regression is estimated using two cuts of
data, tracking changes over the full sample of data (‘Full Sample’) and over 12
months preceding the given upgrade or downgrade (‘12 Months’).

In the first step, we limit the data sample to entities with at least two
rating changes and check if the later change was preceded by an up or down
movement using the upward and downward momentum indicators. We regress
the current upgrade indicator (U) on the upward momentum indicator (Mu),
with the downward momentum indicator (Md) as the base group6 using a
panel probit model – and analogously for the current downgrade indicator
(D). This analysis is labelled ‘Full Sample’ in Table 2.2. The estimates are

6Base group is the group against which the comparisons are made.
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in line with those discussed previously in Table 2.1; banks tend to reverse
their rating change and the probability of an upgrade is significantly lower for
entities that were previously upgraded than for downgraded ones (and similarly
for downgrades).

Table 2.2: Regression Analysis: Impact of Previous Upgrade and
Downgrade on Probability of Rating Change

Full Sample (See Equation 2.9) 12 Months (See Equation 2.10)

Uit Dit Uit Dit

Bank Mu
it Mu

it Mu
it Md

it Mu
it Md

it

101 -0.283 *** 0.121 *** 0.166 *** 0.445 *** 0.337 *** 0.228 ***
(0.031) (0.032) (0.035) (0.032) (0.033) (0.035)

102 -0.289 *** 0.050 -0.095 + 0.190 *** 0.149 ** 0.074
(0.048) (0.048) (0.051) (0.044) (0.046) (0.049)

103 insufficient data for analysis -0.056 0.101 0.091 -0.031
(0.084) (0.073) (0.08) (0.078)

104 -1.261 *** 0.881 *** -0.622 + 0.607 *** 0.981 *** -0.020
(0.316) (0.166) (0.321) (0.104) (0.109) (0.192)

105 -0.210 *** 0.191 *** -0.059 * 0.186 *** 0.190 *** -0.021
(0.025) (0.026) (0.027) (0.024) (0.025) (0.028)

106 insufficient data for analysis 0.162 + 0.581 *** -0.212 + 0.397 ***
(0.086) (0.075) (0.118) (0.084)

107 -0.639 *** 0.599 *** -0.003 0.730 *** 0.676 *** -0.036
(0.031) (0.028) (0.036) (0.024) (0.024) (0.032)

108 -0.151 * 0.022 0.098 0.134 + 0.082 0.028
(0.076) (0.731) (0.08) (0.077) (0.073) (0.075)

109 -0.053 -0.032 0.248 0.337 -0.005 0.154
(0.189) (0.232) (0.186) (0.51) (0.256) (0.267)

110 insufficient data for analysis -0.387 ** 0.332 ** 0.269 ** 0.175
(0.118) (0.121) (0.103) (0.165)

111 -0.631 ** -0.001 0.008 0.628 *** 0.293 -0.284
(0.213) (0.223) (0.227) (0.159) (0.184) (0.343)

112 -0.396 *** 0.012 -0.203 * 0.224 *** -0.177 * -0.125 *
(0.076) (0.068) (0.083) (0.056) (0.069) (0.061)

+ significant at p < 0.1; * signif. at p < 0.05; ** signif. at p < 0.005; *** signif. at p < 0.001
Notes:
The order of banks and labels differ from the other tables due to confidentiality.
Uit = 1 if borrower i was upgraded in month t and 0 otherwise, similarly for Dit = 1;
Mu

it = 1 if borrower i was upgraded to the current rating over [t − x, t − 1] and 0 otherwise, similarly
for Md

it, x represents the number of months (36 for ‘Full Sample’ and 12 for ‘12 Months’).
Full Sample - base group is ‘previously downgraded entities’.
12 Months - base group is ‘entities that have been stable over the last 12 months’.

Then we focus on the 12-months analysis and divide the entities into three
groups: upgraded, downgraded and stable during the 12 months preceding the
last change. We employ a panel logit model on the current upgrade and down-
grade indicators (U and D) and upward and downward momentum indicators
(Mu and Md). The base group is defined as stable entities. This analysis is
labelled ‘12 Months’ in Table 2.2.

The upgrade model (U) clearly shows that entities downgraded in the last
12 months (Md) are more likely to be upgraded than entities previously sta-
ble (baseline) or upgraded (Mu). A direct comparison of entities previously
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upgrading and downgrading based on the 95% Wald confidence interval shows
that an upgrade is more likely to occur after a previous downgrade than a
previous upgrade for 8 out of the 12 banks.

The downgrade model (D) results are slightly less definite, previous up-
grade (Mu) has a positive effect on the probability of a subsequent downgrade
for half of the banks, while a previous downgrade (Md) has no clear impact.
The 95% Wald confidence intervals imply that only 3 banks are significantly
more likely to downgrade a previously upgraded entity than a previously down-
graded entity, 1 bank shows a significantly higher probability of downgrade for
previously downgrading entities.

In order to test robustness of the results and consider varying levels of cross-
sectional dependence, we rerun the regressions with changing model specifica-
tions, adding region-specific macroeconomic variables (unemployment, inflation
and GDP growth) as both levels and 3-months/1-year changes as explanatory
variables, and testing pooling, random and fixed effect models. The estimates of
upward and downward momentum indicator coefficients and their significance
are consistent across the different specifications. Only the baseline pooling
model results without the additional macroeconomic variables are reported in
Table 2.2.

To summarise, analyses of this effect using conditional transition matrices
and panel probit regression models lead to the same conclusion: previously
downgraded entities are more likely to be upgraded in the future compared to
previously upgraded and stable entities. The impact of previous movements
on downgrades is weaker and less definite, yet we can also conclude that pre-
vious upgrades have a positive impact on the downgrade probability. We can
therefore confirm presence of the momentum effect.

Duration Effect

The duration effect is a non-Markovian behaviour linking time spent in a single
credit risk rating category (duration, d) with the probability of transition from
that category. To test the duration effect, we employ panel probit regression
defined in Equation 2.11. The results are summarised in Table 2.3.

While the effect of duration is not uniform across the banks, it is statistically
significant for half of the banks in both the upgrade (Uit) and downgrade mod-
els (Dit), showing that recently upgraded and downgraded entities are more
likely to see another rating change than stable entities. The results are consis-
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Table 2.3: Regression Analysis: Impact of Duration on Probability
of Rating Change

Uit Dit

Bank dit dit

A -0.005 + 0.001
(0.003) (0.003)

B -0.027 *** -0.022 ***
(0.001) (0.001)

C -0.013 -0.021 *
(0.008) (0.011)

D 0.005 0.011 ***
(0.003) (0.003)

F -0.004 -0.004
(0.004) (0.005)

G 0.006 ** 0.000
(0.002) (0.002)

H -0.042 *** -0.019 ***
(0.006) (0.005)

I -0.003 0.003
(0.005) (0.005)

J -0.014 *** -0.013 ***
(0.002) (0.002)

K 0.012 *** -0.014 ***
(0.003) (0.004)

L -0.014 ** -0.004
(0.004) (0.005)

M 0.000 -0.004 **
(0.001) (0.001)

+ significant at p < 0.1; * signif. at p < 0.05; **
signif. at p < 0.005; *** signif. at p < 0.001
Notes:
The order of banks and labels differ from the
other tables due to confidentiality.
Uit = 1 if borrower i was upgraded in month t
and 0 otherwise, similarly for Dit = 1;
dit is duration measure.

tent across different model specifications including models with macroeconomic
variables and random and fixed effects. These findings are in line with Fuertes
and Kalotychou (2007), Lando and Skødeberg (2002) and Kavvathas (2001).

2.5.2 Testing Time Homogeneity

A time-homogeneous rating process depends only on the time horizon of inter-
est and not on the initial date; we test this assumption using the likelihood ratio
test defined in Equations 2.12 and 2.13. That is, we examine the differences
between the individual annual transition matrices and the average matrix, cal-
culate the observed χ2 test statistics and compare its values with the tabulated
values. The results are reported in Table 2.4. We can reject the null hypothesis
of time homogeneity for 7 out of 10 analysed banks at the 99% confidence level
and for another bank at the 95% confidence level, in summary indicating that
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bank-sourced transition matrices are not stable over time even across the recent
period of economic expansion.

Table 2.4: Likelihood Ratio Test: Time Homogeneity of Transition
Matrices

Bank Z Y W V U T S R Q P

Observed χ2 116 1005 413 573 274 376 72 757 147 103
Tabulated χ2

99% 105 739 383 300 274 362 93 557 121 147
DF 74 652 321 246 222 302 64 482 87 110
p-value 0.001 0.000 0.000 0.000 0.010 0.002 0.230 0.000 0.000 0.669

** *** *** *** * ** *** ***

+ significant at p < 0.1; * signif. at p < 0.05; ** signif. at p < 0.005; *** signif. at p < 0.001
Note:
The order of banks and labels differ from the other tables due to confidentiality.
Two banks are not included due to insufficient data.

2.6 Practical Implications
The findings demonstrate that banks’ credit models have certain common fea-
tures with a potentially significant economic impact that are not appropriately
reflected in the most commonly used estimators of credit risk transition matri-
ces and their application. They show that for 8 out of 10 banks with sufficient
data for the analysis, transition patterns change over time (time heterogeneity)
even within the period of economic expansion. Further, 10 out of the total 12
banks show signs of non-Markovian behaviour linked to the momentum effect,
specifically rating change reversion, which is confirmed by the duration effect
observed for a half of the examined banks.

Time heterogeneity can be linked to the type of banks’ internal credit risk
estimates; banks use hybrid through-the-cycle (H-TTC) PDs for risk-weighted
assets calculation, which are expected to show limited sensitivity to macroe-
conomic data and explain the time heterogeneity. H-TTC data lie between
point-in-time (PIT) estimates reflecting all available information and through-
the-cycle (TTC) estimates that adjust for static and dynamic obligor charac-
teristics but do not change based on changing macroeconomic conditions. Most
banks’ models reflect economic indicators indirectly through their impact on
individual entities, which are difficult to adjust for at the aggregate level due
to complex structures of banks’ portfolios. Our study shows that the impact of
macroeconomic conditions is more granular than a simple distinction between
boom and recession periods as shown in some of the previous studies including
Nickell et al. (2000) or Christensen et al. (2004).
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To further illustrate the time variance of rating processes, we analyse the
monthly tendency to upgrade and downgrade for each bank and calculate the
resulting balance as

bj(t) =
∑︁Njt

i=1[1imp(PDijt) − 1det(PDijt)]
Njt

, (2.14)

where bj(t) is the improvement-deterioration balance of bank j in month t;
PDijt is the PD observation from bank j on entity i in month t, and Njt

is the number of entities contributed by bank j in month t. 1imp(PDijt) is
an indicator function equal to 1 if the observation improves compared to the
previous month, i.e., PDij(t) < PDij(t − 1), and 0 otherwise; and similarly,
1det(PDijt) is equal to 1 when PDij(t) > PDij(t − 1) and 0 otherwise.

Figure 2.2 presents the improvement-deterioration balance averaged across
all banks and smoothed using three-month moving average. Even though the
bank-specific trends depend on the size and industrial/regional focus of their
portfolio and can differ, the aggregated balance shows a clear trend over time.
There is a slight bias towards deteriorations in 2016 as the percentage of deteri-
orations is 0.6 percentage points higher than the percentage of improvements in
several months of the first year-half. The year 2017 is biased towards improve-
ments. The banks’ time deviations can be linked to macroeconomic indicators;
the average credit risk balance is negatively correlated with changes in inflation
(correlation coefficient of -0.4) and larger increases in inflation are associated
with bias towards credit downgrades.

Figure 2.2: Three Month Moving Average of (Improvement- Deteri-
oration) Balance
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These finding are in line with e.g. Carlehed and Petrov (2012) and Oeyen
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and Salazar Celis (2019), who focus on H-TTC ratings and PDs, define a PIT-
ness parameter and propose a framework for calibrating purely TTC PDs by
excluding the systemic risk component from the H-TTC PDs.

Considering non-Markovian behaviour, the observed rating change rever-
sion is in contrast with studies analysing data from rating agencies (e.g. Bangia
et al., 2002; Lando and Skødeberg, 2002), which mostly conclude that a down-
grade is more likely to be followed by another downgrade than by an upgrade.
Hamilton and Cantor (2004) suggest that Moody’s rating system management
practices try to limit rating reversals and decrease rating volatility. Indeed,
they use other metrics such as outlooks or reviews to reflect short- to medium-
term shifts in credit risk. The other major credit rating agencies are expected
to have similar internal policies. In contrast, Basel Committee on Banking
Supervision (2005) does not require low rating volatility, which may together
with the call for conservatism explain the increased probability of rating change
reversal described in this study. That is, banks might be much faster to react
to any credit risk changes at the entity level even if the changes have a short-
term character and lead to increased rating volatility. At the same time, the
differences may also be partially driven by differences in timing of the studies
and underlying economic cycle, which can significantly impact the transition
rates as shown e.g. by Kavvathas (2001) and Christensen et al. (2004). We
expect periods of economic downturn and recovery to have different transition
characteristics and to more likely show sequences of upgrades and downgrades
rather then rating change reversions.

Finally, there is some evidence of a duration effect in the data, with recently
upgraded and downgraded entities being more likely to be upgraded/downgraded
again than stable entities, yet the effect is not particularly consistent across
banks. This is in line with the mixed evidence found by Fuertes and Kaloty-
chou (2007), Lando and Skødeberg (2002) and Kavvathas (2001).

Critically, the statistical properties of banks’ credit risk models have signif-
icant practical implications, including impact on future credit risk distribution
and on portfolio valuation. To investigate the size of the effect, we estimate a
set of transition matrices for each bank, relaxing the assumption of Markovian
property by allowing for a second order Markovian chain and the assumption
of time homogeneity by comparing rolling annual transition matrices across the
whole period.

The second order Markovian chain assumes that the probability of a rating
change depends also on the previous rating change. To reflect this in the
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transition matrices, we use conditional matrices driven by previous upgrades
and downgrades as described in Section 3.1.1, Equation 2.8. Rating transitions
for entities that were upgraded in the previous year are defined by the up
momentum transition matrix and equivalent definitions apply for previously
downgraded and stable entities. The one-year conditional distribution of a
portfolio, dc, is thus defined as

dc(t + 1) = du(t) · UTM + dd(t) · DTM + ds(t) · STM, (2.15)

where du, dd and ds are the initial distributions of entities that upgraded,
downgraded or stayed stable in the last year and UTM , DTM and STM are
the associated conditional transition matrices. Using such one-year matrices,
we apply the unconditional (Equation 2.5) and conditional (Equation 2.15)
approaches to estimate clients’ credit distributions in five years’ time to magnify
the impact (one-year difference may be too subtle) and compare the percentage
of entities classified as high yield to measure the impact of the second order
Markovian chain assumption.

Table 2.5: Impact of Relaxing the Markov Chain and Time Homo-
geneity Assumptions

∆ %HY d(5) ∆ %HY d(5) 99% CVaR 99.9% CVaR
Bank dc(5) vs d(5) T Mdown vs T Mup T Mdown vs T Mup T Mdown vs T Mup

a 0.4% 5.1% *** 10.2% 7.8%
b -0.3% 6.1% * 2.5% 0.8%
c -0.6% 5.6% * 0.3% 0.1%
d 0.1% 7.0% *** 6.0% 3.9%
e 0.6% 14.5% *** 7.5% 6.5%
f 2.0% 15.5% *** 12.8% 7.2%
g -0.5% 10.8% * 10.6% 5.5%
h 1.9% 10.1% *** 12.1% 9.8%
i 1.9% 4.2% *** 17.0% 6.2%
j 0.7% 6.9% *** 9.0% 7.5%
k insufficient data for analysis
l insufficient data for analysis

+ significant at p < 0.1; * signif. at p < 0.05; ** signif. at p < 0.005; *** signif. at p
< 0.001.
Notes: The order of banks and labels differs from the other tables to ensure confiden-
tiality. The first two columns show differences in the share of high yield entities in
the overall portfolio after five years, the last two columns show differences in one-year
CVaR estimates. Refer to text for details.
Column ‘dc(5) vs d(5)’ compares proportion of high yield entities using conditional
transition transition matrices (dc(5)) vs unconditional baseline outputs (d(5)), after
relaxing the Markov chain assumption.
Columns ‘T Mdown vs T Mup’ compare proportion of high yield entities and CVaR using
matrices from periods most biased towards downgrades vs upgrades, after relaxing the
time homogeneity assumption.

Table 2.5 (column 1) summarises the results. It shows that the differences in
the distributions are very limited and not statistically significant, even though
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the differences in the actual conditional matrices are large and statistically
significant as shown in Table 2.1. This is partly driven by the balanced number
of upgrades and downgrades and partly by the reversion of rating changes
observed in the data for the analysed period of economic expansion. It is
important to note that the results cannot be generalised, as the effect may be
stronger in periods of economic downturn and recovery.

Moving on to time homogeneity, we show in Table 2.4 that the rating data
do not meet the assumption even within the observed period of economic ex-
pansion by comparing the individual annual transition matrices to the average
matrix. Figure 2.2 further reports a trend in banks’ bias towards upgrades and
downgrades. Annual transition matrices for individual banks reflect this trend
and we can therefore identify an annual matrix for each bank with the strongest
bias towards upgrades (TMup) and downgrades (TMdown). Table 2.5 (column
2) shows the resulting impact on the proportion of high yield entities after
five years using TMup vs TMdown. This time the differences are sizeable and
statistically significant, with transition matrices from periods biased towards
downgrades increasing the share of high yield entities by 4-16 percentage points
compared to matrices from periods biased towards upgrades.

To give these figures an economic interpretation, we use the credit portfo-
lio model, CreditMetrics™ and the CreditMetrics package for R (Wittmann,
2007). Specifically, we follow Bangia et al. (2002) and analyse the impact of
transitions on portfolio value distribution at the extreme lower end. We con-
struct a portfolio of 150 entities from the S&P500 index following the S&P
credit risk distribution with $0.1m individual exposures ($15m total). The
model estimates the portfolio value distribution in one year given the bank-
specific transition rates estimated for different years, while keeping the default
rates fixed at their long-term averages. The differences in CVaR estimates for
individual banks range between 0.3% and 17.0% at the 99% confidence level,
with average of 8% (worth approx. $29k). For the 99.9% level, the differences
are between 0.1% and 9.8%, with average of 5% (worth approx. $42k). The
details are listed in Table 2.5 (columns 3 and 4).

Moreover, we detect significant cross-sectional differences in transition ma-
trices (accounting for more than 30% difference in cross-sectional CVaR esti-
mates at the 99% confidence level) and trends highlighting that one matrix does
not fit all portfolios and rating systems. In order to minimise bias in estimation
of future loses or credit risk distribution, banks should avoid modelling future
rating behaviour based on a single, externally provided transition matrix, as
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its behaviour may not reflect dynamics of the bank’s portfolio. They should
also avoid using a single long-term average transition matrix estimated using
the simple cohort method.

Based on the evidence provided thorough this study, we propose the follow-
ing best practices. First, thoroughly analyse the structure of a credit portfolio
and understand the time dynamics of rating changes including path depen-
dency, degree of time heterogeneity and correlation with macroeconomic vari-
ables. Second, assess applicability of transition matrices estimated using the
standard method and, if the underlying assumptions are not met, consider alter-
native approaches to estimation of credit risk transition probabilities. Depend-
ing on the particular dynamics, the following studies may provide guidance.
Frydman and Schuermann (2008) present a mixture of (two) Markov chains al-
lowing for dependence of future distribution on both current ans past history of
ratings; Wei (2003) adjusts the historical average transition matrix based on la-
tent credit cycle variables using a multi-factor Markov chain model; Stefanescu
et al. (2009) and other studies develop models to describe the credit rating pro-
cess and use that to estimate transition probabilities exhibiting non-Markovian
and time-heterogeneous behaviour; Berteloot et al. (2013) model credit rating
migrations conditional on macroeconomic indicators and provide a useful lit-
erature overview on the topic. Third, consider modelling specific industries or
regions separately as findings by Nickell et al. (2000), Kavvathas (2001) and
Stepankova (2021) indicate existence of industry/region-specific credit cycles.

2.7 Conclusion
Banks’ internal credit risk estimates can be used to create an industry standard
for transition matrices, overcoming the issue of data sparsity faced by rating
agencies, which are currently the main source of transition matrices in the
field. Indeed, data from banks provide greater detail than data from credit
rating agencies and allow estimation of country- and industry-specific transition
matrices, which may lead to improvements in the accuracy of forward-looking
credit risk models.

This study provides an insight into some of the essential features of banks’
internal credit models using a unique dataset of probability of default estimates
from 12 global A-IRB banks. Specifically, it assesses the two main assumptions
commonly used for estimation of transition matrices: the Markovian property
and time homogeneity of the underlying rating processes. The existing litera-
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ture, including e.g. Fuertes and Kalotychou (2007) and Bangia et al. (2002),
documents extensive testing of these assumptions for credit rating agencies but
the coverage of banks’ internal rating processes is sparse and the relevant stud-
ies mostly analyse local clusters (see e.g. Gómez-González and Hinojosa, 2010,
and Lu, 2007).

The analysed dataset of credit risk estimates contains information on large
corporates in North America and the European Union, modelled by banks’
main corporate models; SMEs and developing markets are often modelled sep-
arately. The final dataset covers 800-2,000 monthly observations from each
of the 12 analysed banks for the 2015-2018 time period, adding up to nearly
1,000,000 bank-entity-month observations and allowing the analysis to explore
the selected topics at an unprecedented scale, providing more robust results
than in the previous literature.

We test the Markovian property assumption using the momentum and du-
ration effects hypotheses. Based on the comparison of conditional transition
matrices and panel probit models, we conclude that banks’ credit rating pro-
cesses are not Markovian as previous ratings and time spent in a given rating
(duration) have a significant impact on transition probabilities. The results are
in line with the previous studies on credit rating processes by major credit rat-
ing agencies (e.g. Lando and Skødeberg, 2002; Bangia et al., 2002; Fuertes and
Kalotychou, 2007). At the same time, and in contradiction to the listed studies,
our analysis suggests that the probability of an upgrade is higher for previously
downgraded entities than for previously upgraded entities - and analogously for
downgrades. That is, banks tend to revert their rating actions. As we point
out in Section 2.6, this might be driven by different approaches to credit risk
estimation; credit rating agencies try to limit rating volatility while there is
no such a requirement for banks’ internal ratings. The Likelihood ratio test
then indicates that the transition matrices are time-heterogeneous even within
the limited three-year period of economic expansion. This supports results
of previous studies (e.g. Nickell et al., 2000; Frydman and Schuermann, 2008;
Gavalas and Syriopoulos, 2014).

Our findings are vital for estimation of bank-sourced transition matrices,
proving the need to employ more complex estimators (e.g. Frydman and Schuer-
mann, 2008; Wei, 2003) that, unlike the more simplistic estimators, do not rely
on the two hereby invalidated assumptions. Further, we point out several
important distinctions in the credit rating estimation approaches adopted by
credit rating agencies and banks, which should be considered in the context of



2. Are Bank’s Internal Credit Risk Estimates Markovian? 35

the recent initiatives of various regulators (e.g. AnaCredit by the ECB) aiming
to use large bank-sourced datasets in their work.
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Chapter 3

Bank-Sourced Credit Transition
Matrices: Estimation and
Characteristics

Abstract1

This study proposes and analyses a novel alternative to credit transition ma-
trices (CTMs) developed by credit rating agencies - bank-sourced CTMs. It
provides a unique insight into estimation of bank-sourced CTMs by assessing
the extent to which the CTMs depend on the characteristics of the underlying
credit risk datasets and the aggregation method and outlines that the choice of
aggregation approach has a substantial effect on credit risk model results. Fur-
ther, we show that bank-sourced CTMs are more dynamic than those of credit
rating agencies, with higher off-diagonal transition rates and higher propensity
to upgrade. Finally, we create a set of industry-specific CTMs, otherwise unob-
tainable due to the data sparsity faced by credit rating agencies, and highlight
the implications of their differences, signalling the existence of industry-specific
business cycles. The study uses a unique and large dataset of internal credit risk
estimates from 24 global banks covering monthly observations on more than
26,000 large corporates and employs large-scale Monte Carlo simulations. This
approach can be replicated by regulators (e.g., data collected by the European
Central Bank in the AnaCredit project) and used by organisations aiming to
improve their credit risk models.

1This study was published as: Stepankova, B. (2021). Bank-sourced credit transition
matrices: Estimation and characteristics. European Journal of Operational Research, 288(3),
992-1005.
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3.1 Introduction
Credit risk captures the loss resulting from a counterparty failing to meet its
obligations in accordance with agreed terms and it is linked mainly to loan
exposures and fixed-income securities. As such, it is one of the core risks for
financial institutions and it is closely monitored by regulators and researched
by academics (recent studies include Augustin, 2018, Fernandes and Artes,
2016, Brigo et al., 2019 and Altman et al., 2020). A key measure of credit risk
is probability of default, represented by percentage or a list of credit rating
categories, quantifying the likelihood of a default event over a particular time
horizon (usually one year). The time dynamics of credit risk can then be cap-
tured using credit transition matrices (CTMs) which indicate the probabilities
of moving from one credit rating category to another in a given time period.
CTMs are an essential component of credit risk modelling (Jarrow et al., 1997,
Israel et al., 2001, Boreiko et al., 2019) with practical applications in portfo-
lio risk assessment, modelling of credit risk premia term structure, pricing of
credit derivatives, bank stress-testing and life-time credit loss estimation under
IFRS9 and CECL accounting standards.

The existing industry standard is to source CTMs from credit rating agen-
cies (CRAs). However, CTMs estimated using CRA data are based on a limited
set of rated entities typically representing only a small proportion of counter-
parties in a financial institution’s portfolio (especially in case of non-US entities
and smaller enterprises), potentially causing modelling inaccuracy. Equally, it
is generally not possible to estimate industry- or country-specific CTMs, even
though both of the dimensions have been shown to affect CTMs (Nickell et al.,
2000; Frydman and Schuermann, 2008), and the resulting annual CTMs are
considered inferior to long-term average of transition matrices adjusted for busi-
ness cycle phase (see e.g. Wei, 2003), as they may show abnormal behaviour
such as non-monotonic transition rates when a change across multiple rating
categories is more likely than a one-category change (Kreinin and Sidelnikova,
2001). Last but not least, credit rating agencies face a potential conflict of in-
terest as they are compensated by the rated company (Strier, 2008; European
Commission, 2010; De Haan and Amtenbrink, 2011).

Our paper analyses an alternative approach to CTM estimation: bank-
sourced CTMs based on aggregation of internal credit risk estimates pooled
from multiple banks. This has multiple benefits with the potential to overcome
the aforementioned issues of CRA-sourced CTMs. Firstly, the resulting entity
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portfolio, which can be multiple times larger than in case of CRAs, provides
better representation of the economy and the increased sample size allows for
estimation of country- and industry-specific CTMs. Secondly, bank-sourced
data inherently reflect the phase of business cycle (see below) and the resulting
annual CTMs can be directly used in risk modelling. Finally, the bank-debtor
relationship avoids the potential conflict of interest risk faced by CRAs. These
may lead to higher accuracy of the resulting CTMs. Bank-sourced CTMs
can be particularly useful for regulatory purposes and stress testing, as various
regulators are collecting increasing amounts of data from banks (e.g., the recent
AnaCredit project run by the European Central Bank involves collection of
the internal probability of default estimates from all of the Eurozone’s credit
institutions2).

Unfortunately, banks’ internal credit risk estimates are not publicly avail-
able and have therefore not been extensively researched in relation to CTM es-
timation, with the existing studies focusing on limited subsets of data and not
discussing performance of alternative aggregation mechanisms (see e.g. Gavalas
and Syriopoulos, 2014 for European central bank data; Gómez-González and
Hinojosa, 2010 for Columbian commercial loans; and Lu, 2012 for Taiwanese
data). Bank-sourced CTMs can be significantly affected by specifications and
overlap of individual bank portfolios; such dynamics must be considered when
designing a model for CTM estimation in order to maximise its accuracy.

This study contributes to the literature on CTMs in the following three
ways, none of which has been discussed in the literature yet. Firstly, we propose
and analyse the three aggregation approaches – the observation-based method,
entity-average-based method, and method based on the average of bank-specific
CTMs – and assess the resulting transition rates and value-at-risk estimates,
providing an overview of the trade-offs to be considered when developing a
bank-sourced CTM aggregation model. Secondly, we estimate a series of bank-
sourced CTMs and compare their characteristics to those provided by CRAs.
Finally, we produce a set of novel, industry-specific CTMs possibly indicating
existence of industry-specific credit cycle.

The study uses a unique large dataset of probability of default (PD) esti-
mates sourced from 24 global banks approved by regulators to use the advanced
internal ratings-based (A-IRB) approach to credit risk estimation, allowing
them to employ internal credit risk models to calculate PD estimates. The

2REGULATION (EU) 2016/867 OF THE EUROPEAN CENTRAL BANK of 18 May
2016 on the collection of granular credit and credit risk data (ECB/2016/13).
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dataset consists of 1.74 million monthly observations of PD estimates covering
more than 26,000 large corporates in North America, United Kingdom and
the European Union (EU) over the period of 2015-2019. The data are used
for analysis of the three aggregation approaches and estimation of overall and
industry-specific bank-sourced CTMs. To evaluate association between differ-
ences in the three versions of CTMs and data characteristics, we utilise large-
scale Monte Carlo simulations driven by relationships among credit risk level
and change variables observed in the data and introduce controlled variance in
12 selected parameters.

Our analysis shows that bank-sourced CTMs are substantially influenced
by the choice of aggregation method and that the differences are driven by
the entity overlap among banks, size of their PD data samples, initial PD
distributions, and rating changes. Using value-at-risk assessment, we estimate
that the CTM differences can lead to 7.3% higher 99% credit value-at-risk
estimates based on a CreditMetrics calculation. Comparing the rich bank-
sourced CTMs against corporate CTMs produced by the three major credit
rating agencies, covering 2,000-5,000 entities each, our analysis highlights that
the bank-sourced CTMs exhibit relatively high off-diagonal transition rates and
more favourable features overall, including a close to bell-shaped steady state
distribution and a clear linear pattern in the relationship between transition
rates and notches. Finally, the industry-specific CTMs, otherwise unobtainable
due to the data sparsity faced by rating agencies, indicate existence of industry-
specific business cycles which can be critical fro IFRS9 modelling.

The study is structured as follows. First, we introduce the CTM notation,
the main methods for CTM estimation, comparison, and aggregation of the
underlying datasets, and the bank-sourced PD estimates used in our analysis.
Subsequently, we compare the three aggregation methods for CTM estimation,
construct empirical, bank-sourced CTMs and compare them against CTMs
obtained from CRAs. Finally, we analyse the industry-specific CTMs.
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3.2 Credit Transition Matrix Estimation and Com-
parison

3.2.1 Concept of Transition Matrices

Credit transition matrices are estimated using historical data on companies’
credit risk estimates. The two most common approaches to CTM estimation
are cohort (discrete time) and duration (continuous time) methods (Jafry and
Schuermann, 2004, Fuertes and Kalotychou, 2007); the straightforward cohort
approach has become the industry standard (Schuermann, 2008) and is used
by credit rating agencies. Both approaches are based on the time-homogeneous
Markov chain assumption (Jarrow and Turnbull, 1995). Even though banks’
credit data violate the underlying assumption (Makova, 2019) similarly to credit
ratings from CRAs (e.g. Nickell et al., 2000; Lando and Skødeberg, 2002; Ban-
gia et al., 2002), in what follows, we use the cohort method for CTM calcu-
lation because it is notably simpler compared to the other methodologies, it
is in line with the methodology used by CRAs, and it provides a valuable in-
sight into the banks’ credit transitions. Alternative approaches for either time-
heterogeneous or non-Markovian data have been proposed by, e.g., Bluhm and
Overbeck (2007), Frydman and Schuermann (2008), Giampieri et al. (2005),
and D’Amico et al. (2016).

To describe the cohort approach, consider a rating space S = {1, 2, ..., M},
where S = 1 and S = M − 1 represent the best and worst credit ratings,
respectively, and M represents a default. R(t) denotes the rating of an entity
at time t and takes values from the rating space S. The M × M transition
matrix Q(t, t + δ) describes all possible transitions and their probabilities over
the horizon (t, t + δ):

Q(t, t + δ) =

⎡⎢⎢⎢⎢⎢⎢⎣
p11 p12 p13 . . . p1M

p21 p22 p23 . . . p2M

... ... ... . . . ...
pM1 pM2 pM3 . . . pMM

⎤⎥⎥⎥⎥⎥⎥⎦ , (3.1)

where pij represents the transition probability from state i to state j if i ̸= j

and the probability of the rating being preserved if i = j. The rows represent
the rating of the entities at time t, while the columns represent the rating at
time (t + δ). For simplicity, it is often assumed that the last row with defaults
is an absorbing state, which means that defaulted entities cannot emerge from
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default. The transition rates satisfy pij ≥ 0 for all i, j and pij ≡ 1−∑︁M
j=1,j ̸=i pij

for all i.
The cohort approach considers the number of entities that migrated from

rating i to rating j over a specific period of time (t, t + δ), where δ is a discrete
number. Ni(t) denotes the number of entities with rating i at time t, R(t) = i,
and Nij(t, t + δ) is a subset of such entities that migrated to rating j within
the period (t, t + δ), R(t) = i and R(t + δ) = j. Specifically, assuming a time-
homogeneous Markov rating process, the maximum likelihood estimator of the
credit migration probability is:

p̂ij ≡ p̂ij(δ) =
T∑︂

t=1
wi(t)p̂ij(t, t + δ) =

∑︁T
t=1 Nij(t, t + δ)∑︁T

t=1 Ni(t)
= Nij

Ni

, (3.2)

where wi(t) = Ni(t)/
∑︁T

t=1 Ni(t) are weights. Therefore, p̂ij can be simply
computed as the total number of migrations over a specific period from rating
i to j divided by the total number of obligors that had rating i at the start of
the sample period.

CTMs can be compared using a range of methods, we use the singular
value decomposition metric (MSV D) proposed by Jafry and Schuermann (2004)
based on the mobility matrix, defined as the original matrix minus the identity
matrix, that approximates the average probability of migration and facilitates
a meaningful comparison between transition matrices. The metric is defined as
the average of the singular values of the mobility matrix:

MSV D(Q) =
∑︁n

i=1

√︂
λi(Q′ˆ Q̂)

M
, (3.3)

where Q̂ = Q − I is the M × M mobility matrix and λi(.) denotes the i-th
largest eigenvalue. The method captures the probability and the size of a mi-
gration but not its direction. Hence, we also report the average percentage of
entities upgrading and downgrading, calculated as UP (Q) = ∑︁

i>j p̂ij/M for
upgrades and analogously as DW (Q) = ∑︁

i<j p̂ij/M for downgrades. In addi-
tion, we assume that portfolios satisfy the Markov chain and time homogeneity
assumptions and assess their projected 5-year and steady state distributions.3

3A steady state distribution is defined as the long-run distribution reached despite the
starting point. Such a long-run equilibrium exists for a Markov process that is finite, irre-
ducible and aperiodic.
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The distribution observed in 5 years is defined as:

d(t + 5) = d(t) · [Q(t, t + 1)]5, (3.4)

where d(t) is the initial rating distribution, d(t+5) is the final rating distribution
observed after 5 years, and Q is the transition matrix. The fifth power of the
transition matrix is defined as the matrix product of five copies of Q(t, t +
1). The steady state or invariant distribution π satisfies πQ = π; it can be
computed by:

lim
n→∞

pn
ij = πj, (3.5)

where pn
ij is the (i, j) entry of Qn. If d is any initial probability vector, then

limn→∞ dQn = π. In transition matrices with absorbing default, all entities
eventually converge to default. As we do not include the default column in
transition matrices in this analysis (see Section 3.3), the distribution converges
to the invariant distribution.

3.2.2 Aggregation of Banks’ Credit Estimates

Banks measure credit risk using probability of default and generally provide PD
estimates only for entities that they have a financial interest in. However, on
many occasions, a single entity is funded by multiple creditors, resulting in mul-
tiple banks having a PD opinion on the entity at the same time. Consequently,
pooled banks’ portfolios overlap and need to be appropriately aggregated in
the CTM estimation. Following are descriptions of three principal methods for
aggregation.

The first approach is based on PD estimates from individual banks (obser-
vations) mapped to credit ratings following the Credit Benchmark (CB) scale
(see Section 3.3). The “Observation CTM" estimation treats all observations
equally; it captures all observed notch changes triggered by banks’ reassessing
their PD estimates and assigns greater weight to entities with observations from
multiple banks (i.e., higher depth parameter). We do not consider weighting
observations using the inverse of depth, which would lead to uniform entity im-
pact, because it would increase the complexity of the estimation, and estimators
with weights are not well described in the literature. All transitions, including
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transition to default and withdrawal, are clearly defined by observations. The
estimation can be defined as:

pij =
∑︁K

k=1
∑︁L

l=1 1ij(PDkl(t − 1), PDkl(t))∑︁K
k=1

∑︁L
l=1 1i(PDkl(t − 1))

, (3.6)

where PDkl(t) is the probability of default estimate from bank k on en-
tity l at time t; K is the number of banks and L is the number of entities.
1ij(PDkl(t − 1), PDkl(t)) is the indicator function equal to 1 when the the
CB credit ratings associated to the PD estimates are i and j, Rkl(t − 1) =
g(PDkl(t − 1)) = i and Rkl(t) = g(PDkl(t)) = j, and to 0 otherwise. g is a
mapping function between PD estimates and CB credit ratings. 1i(PDkl(t−1))
is an indicator function equal to 1 when Rkl(t − 1) = i, and 0 otherwise.

The second approach uses data aggregated at entity level. The entity-level
information is calculated as the geometric mean of banks’ PD estimates for
a given entity; the geometric mean reflects the close-to-log-normal shape of
the PD distribution (Erlenmaier, 2006; Berg and Koziol, 2017). The “Entity
CTM" does not reflect all notch changes observed at the observation level as
their impact is diminished in the entity aggregation; all entities have the same
weight. The entity-level PDs are mapped to CB credit ratings and used in the
CTM estimation. The approach requires definition of entity withdrawal and
default.

pij =
∑︁L

l=1 1ij( K

√︂∏︁K
k=1 PDkl(t − 1), K

√︂∏︁K
k=1 PDkl(t))∑︁L

l=1 1i( K

√︂∏︁K
k=1 PDkl(t − 1))

. (3.7)

The last approach is based on the average of bank-specific CTMs and assigns
equal weights to all banks, disregarding the size of their portfolios (“Average
CTM"). As a result, single observations from some banks have a greater impact
on the final transition matrix than others, while transition to withdrawal and
default is defined by observations:

pij =
K∑︂

k=1

∑︁L
l=1 1ij(PDkl(t − 1), PDkl(t))∑︁L

l=1 1i(PDkl(t − 1))
/K. (3.8)

All equations make the simplifying assumption that each bank provides a
PD estimate on every entity.

To better appreciate the extent to which CTM estimates may differ using
the three formulas, consider the following stylised example of three entities
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(1, 2, 3) with PD observations received from three different banks (a, b, c) at
times t1 and t2, as depicted in Table 3.1, column “Observation level". We are
not allowed to present an example based on real data due to confidentiality
of the bank specific PD estimates but the distribution and dispersion of the
stylised PD estimates are in line with the observed data. For simplicity, the
estimates are mapped to two rating categories (notches), with values < 48
Bps assigned rating 1 and values ≥ 48 Bps assigned rating 2 (48 Bps is a
boundary between investment and non-investment entities in the CB scale).
Consequently, we can calculate the geometric average PDs at the entity level
and assign the credit ratings (see column “Entity level" in Table 3.1).

Table 3.1: Stylised example: observation- and entity-level PD esti-
mates in Bps

Entity Bank
Observation level Entity level

PD Notch PD Notch
t1 t2 t1 t2 t1 t2 t1 t2

1 a 25 78 1 2
34 69 1 21 b 47 130 1 2

1 c 33 33 1 1

2 a 128 128 2 2 99 78 2 2
2 b 76 47 2 1

3 a 25 55 1 2 47 70 1 2
3 c 88 88 2 2

Using this set of observation- and entity-level PDs and their rating mapping,
we can calculate the resulting CTMs based on Equations 3.6-3.8, as shown in
Table 3.2. We can see that the three approaches to CTM estimation can
indeed provide significantly different results; in particular, unlike the other two
approaches, the entity-based matrix does not show any transitions from notch
2 to notch 1 despite some of the individual observations doing the transitions.

Table 3.2: Stylised example: derived CTMs

Type CTM
1 2

Entity CTM 1 0% 100%
2 0% 100%

Observation CTM 1 25% 75%
2 33% 67%

Average CTM 1 33% 67%
2 33% 67%
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3.3 Data
The unique empirical dataset used in our study is provided by Credit Bench-
mark and contains PD estimates from 24 global banks. This section discusses
the source of the data, data characteristics, features of the bank-sourced tran-
sition matrices, banks’ internal risk systems and modelling considerations.

3.3.1 Data Source and Description

Credit Benchmark works with global banks that were approved by regulators
to use A-IRB approach to credit risk modelling. The company pools together
internal PD estimates and aggregates them to create entity- and portfolio-level
credit risk benchmarks. The banks are clients of Credit Benchmark and the
benchmarks allow banks to compare themselves against their peers. Banks
monthly submit their internal hybrid-through-the-cycle (H-TTC) one-year PD
estimates together with entity specific information including name, country of
risk and industry classification. Credit Benchmark maps the banks’ data to
entity reference data from multiple data providers including FactSet, Dun &
Bradstreet and Thomson Reuters and identifies which observations evaluate
the risk of the same entity. We have access to the mapped PD estimate contri-
butions by banks as well as the aggregated entity-level outputs including mean
PD.

Credit Benchmark collects PD estimates on entities globally on a monthly
basis since 06/2015. In order to increase comparability of the individual ob-
servations, we focus on large corporates from North America, the EU and
the United Kingdom. The resulting dataset contains 1.74 million observation-
month rows representing 1.25 million corporate-months from 24 banks covering
the 06/2015-06/2019 period.4 The actual time frame for individual banks varies
between two to four years. There are more than 36,000 observations available
every month and these observations represent 26,000 unique entities. Appendix
A1 presents a detailed overview off all measured variables and their descriptive
statistics.

The geometric mean of PD estimate observations is 44 Bps; the geometric
mean accounts for the close to log-normal distribution of PD estimates (Erlen-
maier, 2006; Berg and Koziol, 2017) characterised by the excess right-skewness

4A total of 18.26 million observation-month rows were excluded from the original dataset
due to partially missing information or being outside of the scope of the analysis. Refer to
Appendix A1 for more details.
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and kurtosis as shown in Appendix A1. The PD estimates are aggregated to
entity-level mean PDs using the geometric average. An average entity has ex-
posure to 1.39 banks. Entities can be divided into two subsets: entities with
a single observation (0.98 million corporate-month combinations) and entities
with two and more observations (0.27 million corporate-month combinations).
Entities with at least two observations have average mean PD of 40 Bps and
average relative dispersion between observations of 0.63 (the interquartile range
is 0.31 to 0.84).5 This is close to the relative dispersion of 0.77 observed by
Berg and Koziol (2017) for German borrowers in the 2008-2012 period. The
dispersion is driven by the number of approaches used for credit risk modelling
and is acknowledged by Basel Committee on Banking Supervision (2005). The
regular model validation required by regulators aims to achieve a compliance
with the listed rules and comparability of the outputs at portfolio level ensuring
that the differences in PD estimates are not systematic. Berg and Koziol (2017)
investigate the source of the dispersion and find that 95% of the variation is
idiosyncratic.

The transition matrices constructed in the following sections are based on
a set of rating categories. To assign PDs to a rating category, we use the
Credit Benchmark scale with eight categories calibrated using the individual
rating scales submitted by banks. Due to the regulatory floor of 3 Bps applied
on corporates (Basel Committee on Banking Supervision, 2006), there are no
corporates rated as aaa, and this category is omitted in corporates’ bank-
sourced transition matrices.

A transition to default and a withdrawal of an entity from an individual
bank’s portfolio are special cases of credit risk migration and require additional
assumptions. An entity can be viewed as defaulted if one of its contributors
records default, if all of the banks record default, or at any stage in between.
The banks in this dataset do not have consistent approach to defaulting entities;
some of them report defaults, while others withdraw defaulting entities from the
submitted portfolios. Further, banks withdraw observations for many different
reasons including default and changes in portfolio driven either by bank or by
the debtor. Hence, we for simplicity do not include transitions to default or
withdrawals in the study and focus solely on non-default transitions.

As regulators require an annual review of all credit risk estimates, we fo-
5Relative dispersion is defined as standard deviation of log-transformed PDs following

Berg and Koziol (2017): SDl,t(ln(PD)) = SD̂(ln(PD1l(t), ..., ln(PDKl(t))), where PDkl(t)
is the probability of default submitted by bank k on entity l at time t.
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cus on annual transition matrices to ensure that all of the entities have been
reviewed over the observed period.

3.3.2 Considerations

The advanced internal rating-based approach introduced by Basel II allows
banks to use internal ratings as primary inputs to capital calculations. A bank
has to obtain a permission from the regulator to use the A-IRB approach. The
permission is conditioned by proving that the bank’s risk estimation systems
provide for a meaningful assessment of borrower characteristics and reasonably
accurate and consistent risk estimates and by meeting a set of minimum re-
quirements outlined in Basel Committee on Banking Supervision (2006). All
PD estimates in our analysis are outputs of internal credit risk systems.

The Basel II A-IRB requirements on specifics of credit risk systems are
relatively loose and allow banks to implement diverse rating systems. There
are differences in the asset class breakdown and number of employed models,
types of models, number of stages of the system, input variables, dataset used
for the calibration, and output variables as explained in Appendix A2.

The dependence of PD estimates on various input variables and bank-
specific approaches to credit risk modelling raise potential issue of endogeneity
in the simulation. For example, a positive correlation between the probability
of entity PD change and its PD level can be driven by an unobserved entity or
bank factor.

The problem of correlation between the pooled PD estimates and unob-
served entity-level risk factors is limited by the various approaches of individual
banks to credit risk modelling. The differences in PD estimates are illustrated
by previous dispersion analyses (Berg and Koziol, 2017) and confirmed on our
data. We demonstrate that PD estimates from different banks on a single en-
tity show not only significant variance in levels but also follow different time
dynamics; a downgrade of an entity by one bank does not imply that other
banks will follow suit.

To further reduce the risk of endogeneity bias, we conduct sensitivity tests
of all results using a variety of entity- and bank-specific covariates and controls
(entity’s region of risk, industry classification, bank size based on the number
of observations, credit risk bias of bank’s main portfolio, and common equity
tier 1 ratio) as well as bank fixed effects. None of the additional variables sub-
stantially impact the relationships between variables used in the simulation.
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As this study focuses on differences in bank-sourced CTMs driven by the es-
timation methods, we take a more controlled approach and induce variance in
the simulated data through 12 model parameters instead of factoring in the
entity and bank control variables.

3.4 Comparison of Aggregation Methods
In this section, we use the extensive empirical dataset of bank-sourced PD
estimates to analyse the characteristics of the CTMs estimated using the three
aggregation principles presented in Equations 3.6-3.8. These are assessed in
terms of differences in the observed CTMs and dependence of the differences
on data characteristics such as portfolio overlap among banks, size of data
samples and initial PD distributions. To do so, we use Monte Carlo simulations
with data-derived parameters to create a set of fictitious observations closely
following the general patterns observable in the data. This way, we are able
to construct a set of perfect counterfactuals for analysis of scenarios varying in
a single parameter. For coherence, the CTM estimators are derived using the
cohort approach (see Equation 3.2) and are limited to transition rates between
non-default categories.

3.4.1 Observed Version of Bank-Sourced CTMs

Moving away from the simplified example shown in Section 3.2.2, we analyse
the actual differences in the CTM estimation results for the available set of
North American, EU and UK corporates, as summarised in Table 3.3 show-
ing the singular value decomposition metric (MSV D) and average percentage
of upgrades and downgrades. The Observation CTM and Entity CTM results
are very similar, while the Average CTM is significantly more stable. The up-
grade and downgrade rates reveal that this is driven mainly by downgrades:
the Entity CTM shows 9.2% downgrades on average in each of the credit cat-
egories, whereas the Average CTM shows only 5.8% downgrades. The Average
CTM also shows the strongest skew towards upgrades, with the upgrade-to-
downgrade ratio of 1.88, compared to 1.73 for the Observation CTM and 1.5
for the Entity CTM.

Figure 3.1 analyses the differences in the transition rates by credit category,
highlighting more significant dispersions in the outer categories, especially c.
Appendix A3 discusses the steady state distributions of the three CTMs.
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Table 3.3: Observed CTMs: summary statistics

MSV D % upgrades % downgrades

Entity CTM 0.2461 13.8% 9.2%
Observation CTM 0.2495 14.7% 8.5%
Average CTM 0.1765 10.9% 5.8%

Figure 3.1: Observed CTMs: transition rate comparison

To better appreciate the implications of using one aggregation method ver-
sus another, we present a credit portfolio valuation example calculated using
the CreditMetrics™ model, which utilises the estimated CTMs to determine
asset return thresholds and simulates the joint distribution of underlying as-
set values. Note that the default rates are derived from the scale mapping of
PD to credit categories and are invariant across the three CTMs; the resulting
valuation differences are therefore caused only by the differences in the other
transition rates. We construct a portfolio with 150 entities from the S&P500
index with $0.1m individual and $15m total exposures; the credit risk distribu-
tion of the portfolio is derived from the Credit Benchmark data and follows the
distribution of S&P500. The model estimates the portfolio value distribution
in one year given the Entity, Observation and Average CTM estimates. Each
distribution is generated using 1,000,000 simulations using the CreditMetrics
package for R (Wittmann, 2007). Appendix A3 presents medium-term impact
of the three CTMs on the initial S&P distribution.

Following a similar example in Bangia et al. (2002), we focus on the portfo-
lio value at the extreme lower end, specifically the credit value-at-risk (CVaR)
at a 99% or 99.9% confidence level. The results are depicted in Table 3.4 as
percentage differences in the CVaR estimates. The three aggregation methods
result in up to a 7.3% difference in 99% CVaR (worth approx. $27k) and a
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4.6% difference in 99.9% CVaR (worth approx. $39k), highlighting the tan-
gible implications of differences in the PD aggregation methods. The Entity
CTM provides the most conservative estimates (i.e., the highest CVaR), with
the Average CTM being the least conservative and the Observation CTM in
between them.

Table 3.4: Observed CTMs: CVaR estimate comparison

CVaR Transition matrix Difference

99%
Entity to Observation CTM 1.4%
Average to Observation CTM -6.1%
Average to Entity CTM -7.3%

99.9%
Entity to Observation CTM 0.8%
Average to Observation CTM -3.8%
Average to Entity CTM -4.6%

Such discrepancies may have a substantial impact on banks’ and regulators’
forecasting models. To understand which aggregation methodology may be the
most appropriate for use in such scenarios, we need to better understand all
of the underlying factors driving the differences in the estimated CTMs, such
as the entity overlap among banks, size of data samples and initial distribu-
tions. In what follows, we generate modified underlying PD datasets using
Monte Carlo simulations with varying parameters, allowing us to identify the
independent impact of the individual factors on the resulting differences in the
three versions of CTMs.

3.4.2 Portfolio Simulation: Process Set-up

In essence, the Monte Carlo simulation method uses repeated random sam-
pling from a predefined probability distribution of an input set to generate a
large amount of pseudo-random data. Conditional on the generated datasets
being large enough, any two datasets will differ in the individual data points
but will show approximately the same aggregate characteristics. In our case,
Monte Carlo simulation can produce a large number of fictitious PD estimates
on any given number of entities from an arbitrary number of banks that will ex-
actly follow the empirical bank-sourced data presented above in their aggregate
characteristics (e.g., rating distributions and rating changes). Importantly, the
probability distributions used to generate the pseudo-random inputs and/or
their subsequent deterministic transformation can be altered to induce an iso-
lated change in the resulting dataset. This way, two datasets otherwise equiv-
alent in their characteristics can differ in a specific parameter (to a determined
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extent) allowing us to analyse the impact of such changes on the resulting CTM
estimates through a sensitivity analysis.

The simulations implement two sets of changes. The first set assumes that
the overall rating trend, represented by entity-level data, is stable but that the
set of contributing banks and their features differ. That is, we consider the
entity-level transition matrices to follow those estimated from the empirical
data, while the underlying observation-level data characteristics are altered.
The second set introduces changes to the entity-level behaviour representing
wide shifts in credit risk (e.g., during a recession), keeping the bank features
and initial entity distribution static.

The simulation is done in probabilities of default, i.e., the level of infor-
mation received from banks. This approach is preferred to the credit category
(notch) representation, as PD is a continuous measure, whereas the notch rep-
resentation used in the transition matrices is discrete and does not capture all
shifts at the PD level. The close to log-normally distributed PDs (Engelmann
and Rauhmeier, 2011) are normalised using a logarithmic transformation, and
the simulation is done using logarithms of PD (log-PDs). The mapping be-
tween PD and notches is done using the CB 8-point rating scale with exclusion
of the aaa (regulatory floor on PD) and d (an ambiguous definition) categories
as explained in Section 3.3. We use all 36,000 observations from 24 banks
covering 26,000 unique entities for the parameter estimation; we also investi-
gate the time variance of the estimates using the historical data covering the
06/215-06/2019 period.

The process is structured as follows. We start by simulating entity-level data
and then obtain observation-level information through numerical optimisation.
Subsequently, we model changes in credit risk. This is depicted in Figure 3.2
in detail.
Simulation of data levels (entities)

Having a predefined set of fictitious banks and entities, the simulation’s start-
ing point is a set of entity-level variables – mean, variance and depth – and
their initial distribution, obtained from the empirical data. We simulate new
data with the same overall characteristics using the inverse-transform method
(Rubinstein and Kroese, 2016). Note that the distribution of credit risk, de-
fined by entity-level mean log-PD, remains constant as per the specification
above. Changes in depth and variance are equivalent to changes in the overlap
of banks portfolios and the level of banks’ agreement. The three variables are
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Figure 3.2: Simulation: flowchart of the process

described in Appendix A4 in detail; Figure 3.3 summarises their individual and
joint distributions. The distribution across credit categories shows that with
49% entities rated as investment grade and peaks in bb; 79% of the universe is
covered by a single observation, signalling a low overlap. The absolute value
of correlation between each pair of mean log-PD, depth and variance is never
greater than 0.16, and correlation among the variables is therefore omitted from
the simulation for simplicity.
Simulation of data levels (observations)

Having the newly simulated data at the entity level, the next step is to generate
the associated data at the observation level for each entity such that values
of the three variables simulated in the previous step are preserved. To do
so, we must first determine which of the fictitious banks contribute to which
entities. This is done through a randomised process to ensure an appropriate
distribution of banks’ portfolios, in which the probability of a bank contributing
to an entity depends on its size and the distribution of its portfolio. Again, the
baseline parametrisation is determined from the empirical data 30% of banks
are small, 50% medium and 20% large. Further, there are more banks with
investment grade bias (40%) than high yield bias (20%); the remaining banks
have balanced portfolio. Additional information is provided in Appendix A5.
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Figure 3.3: Observed data: distribution and correlation of mean log-
PD, depth and variance

After establishing the links between banks and entities, we proceed to cal-
culate the observation-level log-PDs. This is trivial for entities with a single
observation as the observation-level PD and the entity-level PD are equal. For
other entities, a given number of log-PDs is generated using the augmented La-
grangian optimisation algorithm, with the deviation from the simulated entity
variance used as the optimisation function and the match with the simulated
entity mean log-PD used as a binding constraint. Subsequently, the entity-
level values simulated in the first step are replaced by the mean and variance
of the simulated observation-level log-PDs so that the observation and entity
information match, and the baseline simulation of the cross-sectional set of ob-
servations, effectively equivalent to the data received from the banks for one
period, is complete.
Simulation of data changes (entities)

As the initial PD levels are set up, we move to simulation of mean log-PD
changes over time. This step is simplified to allow for stable entity-level output
and efficient simulation: we do not consider monthly changes and the path
dependency of the changes, focusing only on the full 1-year changes needed for
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CTM estimation using the cohort method, which are again calibrated to cor-
respond to the bank-sourced empirical data. The simplification is acceptable,
as the overall simulation process is built for analysis of data aggregation at the
CTM level and not a full description of the transition process.

The underlying simulation parameters are obtained by analysing the fre-
quency and magnitude of the mean log-PD changes. Given the inherent differ-
ences in the nature of the parameters, we use a variety of statistical models for
the estimation as described below, with additional details available in Appendix
A6-A8.

The dynamics of entity-level data are defined by the percentage of migrating
entities and the direction and size of the mean log-PD changes. For any entity-
level data, the probability of the change is determined by the initial mean
log-PD. The PD changes for 50% of the entities across the one-year period,
and entities with worse ratings have a higher tendency to move.

For entities with changing PD, the direction of the change is determined by
the probability that the observed entity-level change is positive, and it is driven
by the initial mean log-PD value. 48% entities with changing PD deteriorate
(their PD increases), and entities with higher PD are less likely to experience
a PD increase.

The final step defining an entity’s movement is the size of the mean log-PD
change, which depends on the initial mean log-PD level. Entities with high
initial mean log-PD tend to decrease more but increase less than entities with
low PD values. The relationship is stable over time for decreasing PD but it
is not always monotonic for increasing PD. The size of the change is slightly
higher for increases.

Using the three parameters – probability of change, probability of increase
and size of change – we can determine, on a randomised basis, which of the
simulated entities will see a PD change, as well as the direction and size of such
changes.
Simulation of data changes (observations)

As the next step, we simulate the appropriate underlying observation-level
changes using a randomised selection. The dynamics are governed by a set
of parameters estimated using statistical models in a similar way as for the
entity-level simulation. The parameters include the number of observations
changing for each changing entity, the direction and size of the changes and
bank-specific characteristics. The initial/final mean log-PD and the depth are
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exogenous inputs anchoring the calculation. Details are available in Appendix
A9-A10.

We begin by determining the number of observations changing per entity.
We split the process into two steps - the probability that all observations change
and the percentage of changing observations, focusing on entities with a depth
of 2 or more (as the process for entities with a depth of 1 is trivial). There are
19% of entities with all observations changing over the one-year period. The
data analysis shows that both parameters are dependent on the mean log-PD
as well as the depth. We determine which observations move based on bank-
specific characteristics. The process results in each of the previously simulated
observations being marked as moving or not moving.

Then, we estimate the direction of the movement and its size similarly to
the entity-level simulation. On average, 16% of changing observation PDs move
in the opposite direction than the entity mean PD and the probability of the
opposite observation movement is higher for entities with increasing PD. The
estimation of the change size parameters is in line with the entity process; the
size of the increase/decrease grows/reduces with the log-PD. The final log-PD
changes are to a large extent limited by the entity mean log-PD change.

This completes the simulation process. The simulated PD values at the
observation- and entity-levels are mapped to the eight CB notches with empty
aaa and d categories, which are finally used for estimation of CTMs using the
three distinct approaches. The simulations are coded in R.

3.4.3 Portfolio Simulation: Results

In this section, we first briefly describe the results of the baseline simulations
replicating the empirical bank-sourced PD dataset and subsequently discuss
the impacts of changes to the underlying simulation parameters.

Baseline Simulations

Despite the complex multilevel nature of our simulation modelling, the baseline
simulation of 440,000 observation-level and 300,000 entity-level data points
produces rating distributions almost identical to the observed ones with the
average absolute difference per notch of less then 0.5 pp for both entities and
observations. The difference is largely driven by the optimisation processes in
the simulation and the distributions are visualised in Appendix A11.
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The simulated CTMs show greater differences, as reported in Figure 3.4 and
Table 3.5. This is driven mainly by the simplifications done in the simulation
process, including the predefined relationships between the simulation param-
eters and the mean log-PD or depth. This does not affect our ability to assess
the impact of parameter changes, as the sensitivity analysis is done against
the baseline simulation scenario rather than the empirical CTMs. The credit
rating category c differs the most as a result of the fewest observations in that
category. Unlike in the case of empirical data, the simulated Observation CTM
is closer in descriptive statistics to the Average CTM than to the Entity CTM,
suggesting that we do not fully capture the factors impacting the differences
between banks reflected in the Average CTM mainly because we do not include
extreme cases and base the simulation on the average bank.

Table 3.5: Observed and simulated CTMs: summary statistics com-
parison

Observed Simulated

MSV D % upgrades % downgrades MSV D % upgrades % downgrades

Entity CTM 0.2461 13.8% 9.2% 0.2746 15.2% 9.8%
Observation CTM 0.2495 14.7% 8.5% 0.2144 12.1% 8.0%
Average CTM 0.1765 10.9% 5.8% 0.2006 11.4% 7.4%

Figure 3.4: Observed and simulated CTMs: transition rate compari-
son, baseline

Sensitivity Analysis: Bank and Observation Parameters

The main purpose of the simulation modelling is to assess the impact of changes
in the baseline characteristics of bank-sourced PD datasets, such as the overlap
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of portfolios, on the resulting CTMs estimated by each of the three aggregation
methods. To do so, we adjust the corresponding simulation parameters, one at
a time, while keeping a constant pseudo-random number seed so that all differ-
ences in the resulting simulated datasets are only due to the parameter changes.
Each simulation is based on 300,000 entities and is driven by 12 parameters in
total, as described in Table 3.6, which are divided into three categories based
on the part of the process that they affect: entity level, observation level and
bank level. The results are summarised in Tables 3.7 and 3.9, with simulation
0 representing the baseline results presented in Table 3.5 and simulations 1-11
representing the sensitivity analysis.

Table 3.6: Simulation: description of parameters

Level of impact Parameter Estimated value Simul.

Entity EPC - Probability of change Table A4 8
Entity EPI - Probability of increase Table A5 9
Entity ES - Size of increase/decrease Table A6 10
Banks & Obser. BOD - Entity depth (overlap) Figure 3.3 6
Banks & Obser. BOV - Entity variance (level of agreement) Figure 3.3 7
Banks BS - Size Table A3 4
Banks BD - Risk distribution of portfolio Table A3 4

Banks BC - Portion of portfolio moving 50% large, 35% medium,
21% small 5

Observation OAC - Probability that all observations change Table A7 1
Observation ONC - Number of observations changing Table A8 1

Observation OPO - Probability of move in opposite direction 18.5% increasing,
15% decreasing 2

Observation OS - Size of increase/decrease Table A9 3

In the first phase, we focus on bank and observation parameters. Given
its estimation methodology, the Entity CTM stays the same and anchors the
simulations, while the other two CTMs change. The changes in the parameters
represent differences across banks and their individual views of credit risk,
while the overall credit trends represented by the entity-level processes remain
stable. All parameter changes are in the form of simple multipliers impacting
the probability or the size of observation-level changes and move in a range
that is justified by the observed data.6 The simulations with an unchanged
depth parameter are based on 440,000 observations as above; simulations 6
and 8 with higher depth accordingly use 650,000 observations.

In simulation 1, increasing the number of observations that move per entity
leads to a growth in transition rates of both Observation CTM and Average

6We assume that the parameters are independent, even though the time-specific estimates
indicate a shared cyclicality for some of them. This is to indicate the full range of effects
rather than to identify the most probable scenarios.
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Table 3.7: Simulated CTMs: summary statistics, impact of banks
and observation parameters

Simulation

0 1 2 3 4 5 6 7 8

Entity CTM
- MSV D 0.2746 0.2746 0.2746 0.2746 0.2757 0.2746 0.2748 0.2745 0.2758
- % upgrades 15.2% 15.2% 15.2% 15.2% 15.3% 15.2% 15.2% 15.2% 15.3%
- % downgrades 9.8% 9.8% 9.8% 9.8% 9.8% 9.8% 9.8% 9.8% 9.8%
Observation CTM
- MSV D 0.2144 0.2455 0.2146 0.2249 0.2158 0.2143 0.1778 0.2117 0.3026
- % upgrades 12.1% 13.9% 12.1% 12.8% 12.2% 12.1% 10.2% 11.9% 17.4%
- % downgrades 8.0% 9.2% 7.9% 8.5% 8.0% 8.0% 6.9% 8.0% 12.2%
Average CTM
- MSV D 0.2006 0.2387 0.2010 0.2107 0.1942 0.1948 0.1596 0.1949 0.2798
- % upgrades 11.4% 13.6% 11.4% 12.1% 11.0% 11.0% 9.1% 11.0% 15.8%
- % downgrades 7.4% 8.8% 7.4% 8.0% 7.3% 7.2% 6.1% 7.3% 11.6%

Summary of parameter changes by simulation
0 - Baseline, no changes
1 - OAC double, ONC double
2 - OPO double
3 - OS double
4 - BS small & medium half size, BD HY double, IG half, 10 pp larger imbalance
5 - BC small quarter probability, medium half
6 - BOD 50% higher
7 - BOV 50% higher
8 - OAC triple, ONC triple, OS double, BS small & medium half size, BD HY double, IG half,
10 pp larger imbalance, BOD 50% higher

CTM. The impact on the average transition rates is rather substantial, with
average upgrade rates increasing by approximately 2 pp and average downgrade
rates by 1.3 pp. In simulation 2, changing the probability of an opposite-
direction movement has a very limited impact. This is largely due to the
depth distribution; opposite movements can occur only if there are at least two
changing observations per entity.

Doubling the change size (simulation 3) adds 0.7 pp to the average up-
grade rate and 0.5 pp to the downgrade rate. The summary statistics do not
reflect the increase in multi-notch changes. Disregarding category c, where
multi-notch movements account for more than 10%, the average percentage of
entities moving by more than one notch is 2.6-3% in the simulated baseline
CTMs. After increasing the observation change size parameter, the percentage
increases to 3.8% for the Observation CTM and stays stable at 2.6% for the
Entity CTM. As in the case of opposite movements, the impact of observation
movement size is limited by the overall low overlap.

As expected, the bank-specific parameters for the size, distribution and
frequency of changes (simulations 4 and 5) mainly impact the Average CTM,7,

7A small change can also be observed for the Entity CTM and the Observation CTM,
as these parameters impact the set of observations entering the optimisation part of the
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and the effect is very small, with a 0.5 pp change in the migration probabilities.
Increased depth (simulation 6) has measured impacts of 2 pp on upgrade

rates and 1.2 pp on downgrade rates, whereas isolated change to the variance
(simulation 7) has a very low impact on the simulated CTMs. Overall, changes
in a single parameter result in an up to 3.5 pp shift in the total average mi-
gration rate. Finally, in simulation 8, we introduce simultaneous changes to
multiple parameters by combining scenarios 1, 2, 3 and 7.8 Consequently, the
average transition rates increase by nearly 10 pp for both the Observation and
Average CTMs.

We demonstrate the practical implication of the described differences in the
simulated transition rates using the same credit portfolio valuation example
calculated based on CreditMetrics™ presented in Section 3.4.1. The results
for the 99% and 99.9% credit value-at-risk (CVaR) are presented in Table 3.8.
This table shows that the differences in CVaR are the largest for simulation
8; the difference in the 99% CVaR between the Entity and Observation CTMs
increases from -8.4% for the baseline simulation to -25% (from approx. $36k
to $130k). The default rates are the same for all the matrices; the difference is
driven solely by the differences in the transition rates.

Table 3.8: Simulated CTMs: CVaR estimate comparison

Simulation

CVaR Transition Matrix 0 6 8

99%
Entity to Observation CTM -8.4% -12.1% -25.0%
Average to Observation CTM -1.6% -3.4% -0.3 %
Average to Entity CTM 7.4% 9.8% 32.9%

99.9%
Entity to Observation CTM -6.5% -9.6% -17.7%
Average to Observation CTM -0.9% -2.7% -0.4%
Average to Entity CTM 6.0% 7.6% 21.1%

Summary of parameter changes by simulation
0 - Baseline, no changes
6 - BOD 50% higher
8 - OAC triple, ONC triple, OS double, BS small & medium half
size, BD HY double, IG half, 10 pp larger imbalance,
BOD 50% higher

simulation, which then affects the simulated observation and entity PDs. The same holds for
changing depth.

8The parameters determining the number of changing observations increase threefold to
overbalance the decrease in the overall change rate caused by the increased depth.
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Sensitivity Analysis: Entity Parameters

Last, we introduce more fundamental changes to the rating processes impact-
ing the Entity CTM. These represent changes in the overall credit process,
potentially driven by a changing credit cycle. The simulations start with the
entity level, which directs the observation-level results. We make the simpli-
fying assumption that the changed frequency, direction and size of changes at
the entity level have no impact on the entity-observation relationships. The
results are displayed in Table 3.9.

Table 3.9: Simulated CTMs: summary statistics, impact of entity
parameters

Simulation

0 9 10 11

Entity CTM
- MSV D 0.2746 0.4831 0.2758 0.3728
- % upgrades 15.2% 25.2% 8.2% 21.4%
- % downgrades 9.8% 19.0% 16.2% 15.0%
Observation CTM
- MSV D 0.2144 0.3850 0.2163 0.2642
- % upgrades 12.1% 20.7% 6.8% 15.3%
- % downgrades 8.0% 15.6% 13.0% 10.7%
Average CTM
- MSV D 0.2006 0.3605 0.2031 0.2476
- % upgrades 11.4% 19.4% 6.5% 14.3%
- % downgrades 7.4% 14.6% 12.1% 10.0%

Summary of parameter changes by simulation
0 - Baseline, no changes
9 - EPC double
10 - EPI double
11 - ES double

The changes in entity parameters significantly impact the migration rates
in the three transition matrices; however, the ratio of upgrade and downgrade
rates is almost identical for all the matrix types and simultaneously changes
across the simulations. The relative differences between the overall migration
rates in the three matrices stays stable for higher frequency of changes and
higher probability of deterioration (simulations 9 and 10); the Entity CTM
shows 23% higher transition rates than the Observation CTM and 32% higher
transition rates than the Average CTM. The differences become more pro-
nounced when the size of entity movement increases (simulation 11), reaching
40% and 50%, respectively.

To conclude, both the absolute and relative differences between the three
CTM estimation approaches are sensitive to changes in the entity, bank and
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observation parameters. The differences in the transition rates can have a
significant impact on credit risk modelling, as demonstrated in the CVaR es-
timation example. Selection of the most appropriate estimation method must
therefore be based on a careful assessment of the underlying dataset and the
degree of portfolio overlap. In general, low portfolio overlap results in the En-
tity and Observation CTM approaches providing similar results, as the two
methods are closely linked through the averages. The Average CTM results
are more independent and influenced by harder-to-measure discrepancies in
banks’ portfolios, including the size and distribution of the portfolio, as well as
frequency of credit rating changes.

Returning to the observed bank data, the limited volume of ratings, espe-
cially when focusing on industry-specific CTMs, results in less frequent tran-
sitions larger than 1 notch – more distant off-diagonal cells in the CTMs are
thus often left blank. This is particularly true for the Entity CTMs, as move-
ments in entity-level mean PDs are less pronounced than the individual ob-
servation changes. This argument favours the Observation CTMs, and we
therefore use the Observation CTM approach in the following sections com-
paring bank-sourced CTM to CTMs from credit rating agencies and analysing
industry-specific CTMs.

3.5 Practical Utility

3.5.1 Bank-Sourced vs CRA Credit Transition Matrices

The analysis thus far was essential for understanding how the specifics of banks’
credit risk portfolios affect the results of their aggregation. In this section, we
turn to focusing on a practical application of bank-sourced CTMs, comparing
the 2018 bank-sourced CTM for North American and EU large corporates with
the 2018 CRA corporates CTMs. The bank-sourced transition matrix is based
on PD estimates on 26,000 entities and estimated using the cohort approach
defined in Equation 3.2 and the Observation CTM defined in Equation 3.6.
The CRA matrices are driven by 2,000 to 5,000 corporates rated by one of
the three large credit rating agencies and estimated using the cohort approach.
Withdrawn and defaulted entities as well as aaa rated entities are omitted in
this analysis, as we focus on non-default transition rates and the aaa category
is not populated in bank-sourced CTMs due to the PD estimates floors (see
Section 3.3 for more details). The CRA data were extracted from the Rat-
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ings Performance in Exhibit 1 of Form NRSRO, available in the database of
company filings, Edgar, run by the U.S. Securities and Exchange Commission.9

Table 3.10: Bank-sourced and CRA CTMs: summary statistics com-
parison

MSV D % upgrade % downgrades

Bank-sourced corporates 0.2495 14.7% 8.5%
CRA1 corporates 0.0921 5.0% 3.5%
CRA2 corporates 0.0997 5.6% 3.7%
CRA3 corporates 0.1076 5.5% 4.4%
Source of CRA data: SEC Edgar Database, 2019 Form NRSRO

Table 3.10 shows the usual comparative statistics, MSV D and the upgrade/downgrade
rates. It highlights that the CRA matrices show considerably fewer transitions
and the transitions have lower magnitude. Figure 3.5, analysing the differences
in more detail, shows that the bank-sourced transition matrix reports more
credit activity in all credit categories and directions except for downgrades
in bb and b, where the transition rates are very close. The transition rates
in the bank-sourced matrix show almost a linear relationship with the rating
categories, in contrast to the CRA transition rates, which do not show strong
patterns.

Figure 3.5: Bank-sourced and CRA CTMs: transition rate compari-
son

Interestingly, the underlying credit rating distribution significantly differs
between banks and CRAs, as shown in Figure 3.6. Banks have fewer entities in
categories b and c and higher representation in aa and a compared to CRAs;
the distribution is close to a bell shape.

9Retrieved from https://sec.report/ on September 22, 2019.
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Figure 3.6 further compares the observed distribution to the steady state, as
defined in Equation 3.5. It shows that the bank-sourced and CRA2’s transition
matrices produce an invariable distribution that is rather close to the initial
distribution, with an average absolute difference of less than 5 pp, whereas the
CTMs produced using data from CRA1 and CRA3 substantially change the
initial distribution. The steady state distributions of CRAs are not bell shaped.

Figure 3.6: Bank-sourced and CRA CTMs: distribution and steady
state comparison

To sum up, the comparison between the bank-sourced CTM and CTMs
produced by CRAs shows that the bank data are more dynamic, with higher
off-diagonal transition rates. The credit distribution and steady state of the
banks’ CTM is close to a bell shape, which is in contrast to the uneven CRA
distributions. This highlights the need to use long-term averages of CRA CTMs
in modelling, while the banks’ CTM shows favourable features for much shorter
periods. The discrepancies may be a result of differing data samples: the bank-
sourced CTM is based on 36,000 observations for 26,000 large corporates, while
the CRAs cover only 2,000-5,000 entities.

3.5.2 Industry-Specific Credit Transition Matrices

A number of studies have documented the fact that ratings transition matrices
vary according to the industry of the obligor, including Nickell et al. (2000)
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and Frydman and Schuermann (2008). As a last exercise, we use the extensive
bank-sourced dataset to estimate industry-specific transition matrices, which
would not be possible with the limited data samples held by CRAs. We again
use the cohort approach defined in Equation 3.2, the Observation CTM defined
in Equation 3.6 and 2018 transition data. Each matrix is based on at least 1,700
observations. The resulting summary statistics of transition matrices for eight
industries are reported in Table 3.11.

Table 3.11: Industry CTMs: summary statistics comparison

MSV D % upgrade % downgrades

All 0.2495 14.7% 8.5%
Basic Materials 0.2512 17.2% 5.7%
Consumer Goods 0.2753 15.4% 9.9%
Consumer Services 0.2379 12.4% 10.2%
Health Care 0.2397 15.4% 6.5%
Industrials 0.2679 14.8% 9.9%
Oil and Gas 0.2788 18.0% 7.2%
Technology 0.2604 15.1% 8.7%
Utilities 0.2638 17.0% 6.0%

Indeed, there are notable differences among the industries: Consumer Ser-
vices has the most stable ratings with an MSV D of 0.2379, while Oil and Gas
shows the most and largest movements with an MSV D of 0.2788. Further, Ba-
sic Materials is the most skewed towards upgrades, with the difference between
average upgrade and downgrade rates of 11.6 pp. Figure 3.7 highlights the
implications for credit rating distributions using the steady state (see Equation
3.5). For Basic Materials, aa and a entities account for 44% of the portfolio,
compared to 19% for Consumer Services.

Figure 3.7: Basic Materials and Consumer Services CTMs: steady
state distribution comparison

Since the collected risk estimates are H-TTC, meaning that they are partly
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impacted by the business cycle, the industry CTM differences may reflect
industry-specific business cycles. We can investigate this further using trends
constructed through cumulative monthly balance between improving and de-
teriorating observations, defined as:

bt =
∑︁K

k=1
∑︁L

l=1[1imp(PDkl(t − 1), PDkl(t)) − 1det(PDkl(t − 1), PDkl(t))]
K · L

,

(3.9)
where bt is the balance in month t; PDkl(t) is a PD observation from bank k on
entity l in month t; K is the number of banks and L is the number of entities.
1imp(PDkl(t−1), PDkl(t)) is an indicator function equal to 1 if the observation
improves, i.e., PDkl(t) − PDkl(t − 1) < 0, and 0 otherwise; and similarly,
1det(PDkl(t − 1), PDkl(t)) is equal to 1 when PDkl(t) − PDkl(t − 1) > 0 and
0 otherwise. We use a simplifying assumption that every bank contributes to
every entity, and the total number of observations is K · L. The cumulative
balance is then defined as cbT = ∑︁T

t=1 bt.
Figure 3.8 shows the cumulative balance observed for three different U.S.

and UK industries. It indicates not only the differences between industries
but also a recent divergence between the two regions. Basic Materials and
Industrials deteriorated in both countries in 2016, while Consumer Goods was
stable, with a slight bias towards improvements. The beginning of 2017 was
a turning point for Basic Materials, and both Basic Materials and Consumer
Goods dramatically improved over 2017. U.S. Industrials experienced a slight
improvement, while UK Industrials kept deteriorating. In 2018 and 2019, we
can see diverging trends between the two countries, with U.S. Basic Materials
and Industrials showing an improvement and Consumer Goods sliding into
deterioration. All three industries in the UK deteriorated over the 2018-2019
period.

The change in trends can also be tracked in the CTMs, as shown by Figure
3.9 and Table 3.12, which report the overall Basic Materials CTMs for 2016
and 2017. The transitions were dominated by downgrades in 2016 in a 4:3 ratio
and then shifted to nearly a 1:2 ratio in 2017. The difference in upgrades can
be observed mainly in category c, while downgrades were higher in 2016 across
all categories.

As a consequence, the data appear time heterogeneous, and different indus-
tries (and possibly regions) are in different parts of the credit cycle. Time het-
erogeneity can be caused by banks’ PD estimates being H-TTC, which means
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Figure 3.8: Credit risk trend lines: U.S. and UK Basic Materials,
Consumer Goods and Industrials

Figure 3.9: Basic Materials CTMs: annual transition rate comparison

that the sensitivity of PD estimates to the credit cycle is between that of the
pure through-the-cycle (TTC) PDs (which express the same degree of credit-
worthiness at any time, regardless of the state of the economy) and point-in-
time (PIT) PDs (which are based on all currently available information), but
the banks do not specify the PIT-level in their H-TTC PD estimates. The
results are important for IFRS9 modelling, which is based on PIT principles,
as they highlight the need for modelling industry-specific credit cycles. The
banks-sourced CTMs might be useful inputs into these models.

Table 3.12: Basic Materials CTMs: summary statistics comparison

MSV D % upgrade % downgrades

Basic Materials 2017 0.2403 14.0% 7.8%
Basic Materials 2016 0.2286 9.2% 12.4%
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3.6 Conclusion
Banks’ internal credit risk estimates can be used to create an industry standard
for credit transition matrices, overcoming the issue of data sparsity and poten-
tial conflict of interest faced by rating agencies, which are currently the main
source of CTMs in the field. Indeed, data from banks provide a greater level of
detail than data from credit rating agencies and allow estimation of country-
and industry-specific transition matrices, which may lead to improvements in
the accuracy of forward-looking credit risk models.

This study builds on a unique dataset of probability of default estimates
from 24 global A-IRB banks, providing insights into the features of banks’ inter-
nal credit models and proposing a bank-sourced version of CTMs. The dataset
of credit risk estimates consists of monthly observations on more than 26,000
large corporates in North America, the EU and the UK. We analyse the ap-
propriateness of three methods for aggregation of bank-specific datasets used
in CTM estimation – the observation-based method (“Observation CTM”),
entity-average-based method (“Entity CTM”), and method based on the av-
erage of bank-specific CTMs (“Average CTM”) – and subsequently compare
bank-sourced CTMs to those developed by credit rating agencies, as well as
industry-specific CTMs.

The analysis shows that bank-sourced CTMs calculated using the three
approaches have different tendencies to downgrade: the Entity CTM is the most
conservative with the highest ratio of downgrades, whereas the Average CTM
shows the least downgrades. The differences in the non-default transition rates
lead to 7.3% higher 99% credit value-at-risk estimates based on a CreditMetrics
model calculation.

Using Monte Carlo simulations, we then evaluate the impact of various un-
derlying parameters derived from bank-sourced datasets on the CTM estima-
tions. We find that the level of overlap of banks’ portfolios and the percentage
of changing observations per entity have the most significant impact. Keeping
the Entity CTM stable, the combined effect of these metrics can cause a 10
pp difference in the average transition rates of the Observation and Average
CTMs. Selection of the most appropriate estimation method must therefore
be based on a careful assessment of the underlying dataset. We use the Ob-
servation CTM, as the level of portfolio overlap is limited and it shows better
performance in capturing more significant movements.

Comparing the bank-sourced 2018 corporate CTM to those estimated by
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the three major credit rating agencies, we show a higher propensity of bank-
sourced CTMs to transition: on average, 23% of the bank observations upgrade
or downgrade, compared to 8-12% in the data from the credit rating agencies.
The bank-sourced CTM is more significantly skewed towards upgrades, and
it shows more favourable features, including close to a bell-shape steady state
distribution and a clear linear pattern in the relationship between transition
rates and notches even for the observed one-year sample, than the credit rating
agency CTMs, which, in contrast, show more uneven patterns.

Finally, an analysis of industry-specific CTMs shows substantial differences
in both the average upgrade and downgrade rates across the reported industries.
The CTMs for Basic Materials are the most skewed towards upgrades, with a
difference between average upgrade and downgrade rates of 11.6 pp, whereas
the Consumer Services industry has the most balanced upgrade and downgrade
rates of 12% and 10%, respectively. This indicates the existence of industry-
specific business cycles, which is an important finding for IFRS9 modelling.

A particular potential application of the bank-sourced CTMs is credit risk
forecasting or industry-specific stress testing in a regulatory environment (Brananova
and Watfe, 2017) as a result of the recent efforts to collect bank-sourced infor-
mation (see the AnaCredit project developed by the European Central Bank).
As this study shows, bank-sourced data can comfortably support such efforts,
yet one must carefully assess all aspects of the underlying datasets and degree of
portfolio overlap in order to choose the most appropriate method for analysis,
as well as to appreciate the potential biases in the resulting estimates.

Bank-sourced CTMs provide opportunities for future research, including
analysis of association between transition rates and credit cycle and observed
data characteristics, deeper evaluation of industry and regional differences in
transition rates, and analysis of transition drivers.
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Appendix
Following are additional details on the dataset, the observed transition matrices
and Monte Carlo simulations done in this study as referenced throughout the
text.

A1 Data Description

Credit Benchmark collects around 500,000 PD estimates every month from 40-
plus banks starting in 06/2015, which sums to almost 20 million of observation-
month combinations between 06/2015 and 06/2019. Even though we have ac-
cess to the full dataset, we want to increase the comparability of the individual
observations and focus on large corporates from North America, the EU and
the United Kingdom. We remove the following categories of observations:

• 4.6 million observations due to inability to map entities to secondary
entity databases;

• 6.6 million observations due to missing entity type, country and size clas-
sification;

• 3.2 million observations on financials, funds and governments;
• 1.5 million observations with country of risk outside of the selected area;
• 2.1 million observations on small and medium enterprises;
• 0.26 million observations from banks with less than two years of history.

This brings us to the final number of 1.74 million observation-month combi-
nations representing 1.25 million corporate-month combinations from 24 banks
covering the 06/2015-06/2019 period. Table A1 and Table A2 describe and
summarise the data. The data are divided into three categories: observations,
entities and banks. Observations from individual banks are aggregated into
entity-level information using arithmetic (performed on PD estimates) or ge-
ometric (performed on logarithm of PD estimates) aggregation approaches.
Banks data provide more details on the contributing banks.
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A2 Banks’ Internal Credit Risk Models

The usage of the A-IRB approach is conditioned by an approval from the reg-
ulator and (Basel Committee on Banking Supervision, 2006) lists numerous
requirements that need to be fulfilled to obtain the permission. The require-
ments include minimum set of risk drivers, minimum number of risk categories,
exposure distribution across the risk categories, conservatism, regular valida-
tion, annual update of ratings, default definition, and others . Loan officers
are allowed to overwrite the modelled PD if they consider the model output
unreasonable but regulators closely monitor the frequency of overwrites and
may request a model revision (Behn et al., 2016).

The model requirements are less definite. Basel Committee requires banks
with the A-IRB approach to categorise their banking book exposures into
five general asset classes, which often show different degrees of dependence
on macro-financial conditions: corporate, sovereign, bank, retail and equity,
but allows for a breakdown by additional sub-classes, driven for example by
entity size (Basel Committee on Banking Supervision, 2006).

Further, Basel Committee on Banking Supervision (2005) lists multiple dif-
ferent types of approaches to rating systems including the historical default
experience approach, the statistical model approach or the external mapping
approach. Hayden and Porath (2006) then provides detailed overview of de-
fault experience and statistical models covering ordinary least square regression
model, logit and probit models, discriminant analysis as well as neural networks
and decision trees. Erlenmaier (2006) describes in details external mapping
approach shadowing rating agencies and Pluto and Tasche (2011) discusses ap-
proach to estimating probability of default for low default portfolios. Medema
et al. (2009) mentions that some models result in a continuous probability of
default but most banks divide the risk estimates into risk buckets. Basel II
requires a minimum of seven borrower grades for non-defaulting entities (Basel
Committee on Banking Supervision, 2006).

Svítil (2017) describes the different stages in a rating system implemented
by three banks from German-speaking countries and lists some quantitative
and qualitative factors used in their models. The inputs in banks’ credit risk
systems may include financial ratios, qualitative information, expert opinion
and external ratings.
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A3 Observed Version of Bank-Sourced CTMs

Steady State

Using Equation 3.5, we can obtain steady state rating distributions as shown
in Figure A1. These are in line with the findings in Section 3.4.1, with the
Average CTM showing the highest representation in aa as a result of its high
upgrade-to-downgrade ratio. The Entity CTM converges to the steady state
within just 16 years, whereas the Observation CTM takes 20 years and the
Average CTM more than 30 years to get within the 1 pp distance from the
steady state distribution for each notch.

Figure A1: Observed CTMs: steady states distribution comparison

Medium-Term Impact on S&P Distribution

Figure A2 magnifies the impact of the estimated transition matrices on the
S&P portfolio by focusing on five-year credit transitions (see Equation 2.5).
The resulting distributions are significantly more conservative after 5 years,
with a higher proportion of entities in the bb and b categories and a decrease
in bbb category as the distributions converge to their steady states. The Entity
CTM distribution is the most conservative, and the Average CTM is the least
conservative.

A4 Simulation of Data Levels (Entities)

Mean PD is the entity-level PD calculated as the geometric mean of observation-
level PDs. This variable is fixed in the simulations, i.e., it always follows pat-
terns observed in the empirical data. In particular, 49% of entities are rated as



3. Bank-Sourced Credit Transition Matrices: Estimation and Characteristics 79

Figure A2: Observed CTMs: cumulative 5-year impact on the S&P
distribution

investment grade and the distribution peaks in the notch bb, with 36% of all
entity ratings. The distribution is very stable over the 2015-2019 period; the
individual percentages stay in the +/- 3 pp range.

Depth marks the number of observations per entity and defines the overlap
of banks’ portfolios. The variable is scalable using a normally distributed per-
centage change (with predefined mean and standard deviation) to increase or
decrease the overlap. A large overlap creates more room for differences between
observation and entity levels (e.g., two opposing movements on the observation
level can aggregate to no movement at the entity level). Zero overlap means
that the Entity and Observation CTMs are identical. Moreover, 79% of all
entities are based on a single observation, 15% of entities are of depth 2, 5%
are of depth 3, and only 4% of entities have a higher depth. The distribution
stays stable with depth 1 entities accounting for 70-85% of the universe over
2015-2019.

Finally, variance of the observations is available for entities with depth 2+;
it captures the credit risk opinion similarities among banks. The variable is
scalable using normally distributed percentage change (with predefined mean
and standard deviation) to increase or decrease the agreement between banks.
A large variance means that the banks disagree, e.g., an entity-level rating of
bbb can be based on two observations with ratings of aa and b; low variance
implies that the individual estimates are closer to each other. Additionally,
78% of the entities have variance lower than 1. Variance of 1 can be observed
for example for entity with two observations equal to 40 Bps and 300 Bps or
entity with five observations equal to 50 Bps, 100 Bps, 400 Bps, 500 Bps and
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700 Bps.
The correlation analysis of these three variables shows that they are

slightly correlated; the correlation of depth and mean PD ranges between -
0.10 to -0.14 over the time, the correlation of mean PD and variance between
0.04 to 0.16 and the correlation of depth and variance between -0.08 to -0.12.
As the correlation is rather weak, variance is available only for entities with
depth 2 and more and depth and variance variables are adjustable as part of the
sensitivity analysis, we omit the correlation to simplify the simulation process
and to avoid simulation of depth 1 and depth 2+ entities separately.

A5 Simulation of Data Levels (Observations)

The banks are divided into three size groups – large, medium and small –
based on their relative sample sizes. 30% of banks are classified as small, 50%
as medium and 20% as large. The definition of a small contributor is that
its sample size is smaller than 20% of the average sample size; large contrib-
utors send at least 50% more rows than the average. The average number of
observations per size group follows the 1:10:50 ratio, which is reflected in the
contribution probability. The representation of small contributors ranges be-
tween 25% and 40% and that of large between 15% and 25% over time, as the
composition of contributing banks changes; the ratio of the average number of
observations per size group remains stable.

Further, not all of the banks have a balanced risk portfolio, with invest-
ment grade (IG) vs high yield (HY) rated entities having similar weights; 40%
of banks are skewed towards IG with more than 60% and on average 70% of
observations in IG; 20% of banks are skewed towards HY entities with more
than 60% and on average 65% of observations in HY. The percentage of banks
preferring low risk companies ranges between 30% and 55% and high risk en-
tities ranges between 5% and 30% over the years 2015-2019. The average size
of the bias towards high yield ranges between 65% and 75% for banks prefer-
ring risky entities; and the bias towards investment grade for low risk banks
moves from 70% to 80%. The breakdown of the banks based on size and bias
of portfolio is summarised in Table A3.

To complete the simulation of the cross-sectional set of observations and
entities, we replace entity-level values simulated in step 1 by the mean and
variance of the simulated observation-level log-PDs to make the observation-
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Table A3: Observed data: size and risk distribution of banks

Size group Observed distribution Average sample size ratio

Large 20% 1
Medium 50% 10
Small 30% 50

Risk Observed distribution Average % entities in IG

IG bias 40% 70%
Balanced 40% 50%
HY bias 20% 35%

IG bias marks banks with more than 60% observations in investment grade
HY bias marks banks with less than 40% observations in investment grade

and entity-level information match. Figure A3 compares the observed and
resulting simulated mean log-PD and variance distributions.

Figure A3: Observed (black) and simulated (red) data: distribution
of mean log-PD and variance, entity level

A6 Simulation of Data Changes (Entities): Probability of
Change

Probability of default consistently changes for 50% of the entities across all
observed one-year periods. The probability of change depends on the mean
log-PD. To determine the degree of dependency, we use a logit regression with
mean log-PD as the explanatory variable, defined as:

ChangeIndi,t = α + βMeanPDi,t + ϵi,t,
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where ChangeIndi,t is equal to 1 if the mean log-PD of entity i changes between
periods t and t + 1, MeanPDi,t is the mean log-PD of the entity at time t and
ϵi,t ≡ iid(0, σ2).

The continuous estimated probability of change, taking values between
0 and 1, is estimated for all entities. The final decision on the change is
driven by a uniformly distributed random value rand1,i; entity i moves and
ChangeIndFinali,t = 1 if ChangeIndi,t > rand1,i; otherwise, the entity stays
stable, and ChangeIndFinali,t = 0.

Figure A4 shows the close to linear relationship between the notch (cate-
gorisation of log-PD) and percentage of changing entities; entities with worse
ratings have a higher tendency to move. There are 33% of entities with chang-
ing mean log-PDs in notch 2 (aa) but 57% in notch 6 (b) in the December 2017
to December 2018 period. Notch 7 (c) is an outlier, which is likely driven by
the small sample size.

Figure A4: Parameters: percentage of changing entities vs notch

The relationship is confirmed by the regression results on the December 2017
to December 2018 data reported in Table A4, showing that the initial mean
log-PD is a significant predictor of the PD change probability; entities with
higher mean log-PD are more likely to have their PD changed. The regression
is based on more than 26,000 entity data points.

The sensitivity of the coefficients to the estimation period was tested, and
the coefficients stay relatively stable. The period between April 2018 and April
2019 shows the most balanced distribution of changes; the estimated probability
of change is 45% for an entity with a mean log-PD of -8 (i.e., 3.4 Bps, aa) and
60% for an entity with a mean log-PD of -2 (i.e., 1350 Bps, c). In contrast,
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Table A4: Parameters: probability of entity change, logit regression

Estimate S.E. p-Value

Intercept 1.041 0.052 0.0000
MeanP Di 0.194 0.009 0.0000

Log Likelihood = -18096.21 (df=2)
p-Value = 0.0000

the most unbalanced period shows change probabilities of 32% and 66% for the
same mean log-PDs in October 2016 to October 2017.

The coefficients imply a cyclicality in the data, the probability of change was
the most balanced for high and low risk entities in 2016 with a 18% difference
betweenaa and c. Then the imbalance increased with a peak of 35% in the
second half of 2017, decreased an stabilised at 25% in 2018 and started to
decrease again at the beginning of 2019.

A7 Simulation of Data Changes (Entities): Probability of
Increase

The percentage of increasing entities varies between 42% and 54% over the
2015-2019 period. The regression to determine the relationship between the
probability of a PD increase and the initial mean log-PD of an entity using a
logit regression on the sample of all changing entities is defined as:

IncreaseIndi,t = α + βMeanPDi,t + ϵi,t,

where IncreaseIndi,t is equal to 1 if the mean log-PD of changing entity i

increases between periods t and t + 1, MeanPDi,t is the mean log-PD of the
entity at time t and ϵi,t ≡ iid(0, σ2).

The final decision on the direction of change for a changing entity i is driven
by a uniformly distributed random variable rand2,i; the entity increases and
IncreaseIndFinali,t = 1 if IncreaseIndi,t > rand2,i; otherwise, the entity
decreases, and IncreaseIndFinali,t = 0.

Figure A5 shows that the relationship between the notch and percentage
of increasing entities is almost linear, and the PDs of entities with a worse
rating increase much less frequently than those of better rated entities; 81%
of changing entities with an initial notch of 2 (aa) increase, but only 29% of
notch 6 (b) entities increase in the December 2017 to December 2018 period.

The logit regression for the December 2017 to December 2018 data reported



3. Bank-Sourced Credit Transition Matrices: Estimation and Characteristics 84

Figure A5: Parameters: percentage of increasing entities vs notch

in Table A5 confirms the significance of the relationship. Changing entities with
higher initial PD have lower probability to report increasing PD. The regression
is based on more than 13,000 entity data points.

Table A5: Parameters: probability of entity increase, logit regression

Estimate S.E. p-Value

Intercept -2.026 0.078 0.0000
MeanP Di -0.380 0.015 0.0000

Log Likelihood = -8840.49 (df=2)
p-Value = 0.0000

The sign of the coefficient is stable for all periods, but the degree of imbal-
ance between low and high risk entities changes over time. February 2016 to
February 2017 shows the strongest imbalance captured by the regression, with
the estimated probability of increase for a mean log-PD of -8 (i.e., 3.4 Bps,
aa) equal to 82% and for a mean log-PD of -2 (i.e., 1350 Bps, c) of only 19%.
On the other side is the June 2017 to June 2018 period, with the percentages
changing to 57% and 26%. The balance between low- and high-risk entities
moves in a cycle; the imbalance was strongest in 2016, when the difference was
61%, while the value decreased to 32% at the June 2018 turning point and
increased to 43% in the most recent months.

A8 Simulation of Data Changes (Entities): Size of Change

The mean log-PD changes have similar distributions for increasing and de-
creasing entities, as shown in Figure A6, but the data indicate an opposite
relationship between the change and initial mean log-PD: entities with high
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initial mean log-PD tend to decrease more than low PD entities but increase
less (see Figure A7). The relationship is stable over time for decreasing PD,
but it is not always monotonic for increasing PD, as there are months with the
largest steps reported by bbb entities. The size of change is slightly higher for
increases, with the median change in mean log-PD ranging between 0.45 and
0.55 over time, while the median for decreasing changes moves between -0.35
and -0.50. We model the two changes separately as a consequence, using ordi-
nary least squares (OLS) regressions on the sample of all increasing/decreasing
entities.

Figure A6: Observed (black) and simulated (red) data: distribution
of entity change size

We use an OLS regression with the logarithm of the mean log-PD as the
explanatory variable for estimation of the size of the mean log-PD changes for
entities with increasing/decreasing PD; the logarithm brings the distribution
to normal.

log(ChangeSizeIncreasei,t) = α1 + β1MeanPDi,t + ϵ1,i,t,

log(−ChangeSizeDecreasej,t) = α2 + β2MeanPDj,t + ϵ2,j,t,

where ChangeSizeIncreasei,t is the size of the log-PD change of increasing
entity i between periods t and t + 1, MeanPDi,t is the mean log-PD of the
entity at time t, ϵ1,i,t ≡ iid(0, σ2

1), and similarly for decreasing entity j.
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The final mean log-PD at time t + 1 is defined as:

MeanPDi,t+1 = MeanPDi,t + ChangeIndFinali,t · IncreaseIndFinali,t·

(ChangeSizeIncreasei,t + rand(0, σ2
1))+

ChangeIndFinali,t · (1 − IncreaseIndFinali,t)·
(ChangeSizeDecreasej,t + rand(0, σ2

2)),

where σ2
1 is the variance of errors in the increase regression and σ2

1 is the variance
of errors in the decrease regression. ChangeIndFinali,t = 1 if entity i changes
PD, and IncreaseIndFinali,t = 1 if the PD increases. There are no limits on
the estimated PD change, but the resulting PD has to remain in the 0 Bps to
10,000 Bps range.

Figure A7 capturing the relationship between the notch and size of the
improvement and deterioration shows that a trend exists for both cuts of data
but it is clearer for decreasing PD. The average size of the decrease also takes
a larger range of values across the notches, starting with a 0.26 log distance for
notch 3 (a) and ending with 1.5 for 7 (c). On the other hand, the increasing
PD values range between 0.45 for 7 (c) and 1 for 2 (aa).

Figure A7: Parameters: size of entity change vs notch

The results of the OLS regression reported in Table A6 confirm the findings.
The coefficient in the increase regression is negative but not significant, while
the size of change significantly increases with the initial mean log-PD for entities
with decreasing PD. The regressions are based on more than 6,000 data points.

Figure A6 compares the simulated distribution to observed values, showing
quite a close alignment. The deviation close to zero is driven by the simplifica-
tion that we do not limit the size of the simulated movement, while movements
by banks are hardly ever smaller than 0.1 log distance.
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Table A6: Parameters: size of entity change, OLS regression

Increase Decrease

Estimate S.E. p-Value Estimate S.E. p-Value

Intercept -0.875 0.054 0.0000 0.589 0.039 0.0000
MeanP Di -0.014 0.010 0.1390 0.309 0.008 0.0000

Adjusted R2: 0.0002 0.1916
F-statictics: 2.187 on 1 and 6424 DF 1629 on 1 and 6868 DF
p-value: 0.1392 0.0000

Sensitivity analysis of the increase regression coefficient to the time period
reveals that the sign of the initial mean log-PD is not stable over time, and
it moves between positive and negative, significant and non-significant effects.
The relationship seems to have a cyclical behaviour, starting with positive
coefficients in 2016, moving to negative in 2017 and starting to shift to positive
in the most recent months. For example, the January 2016 to January 2017
period shows that the average size of improvement is 0.52 for a mean log-PD
of -8 (i.e., 3.4 Bps, aa) and 0.63 for -2 (i.e., 1350 Bps, c), i.e., high risk entities
improve more. In contrast, July 2017 to July 2018 show a 0.54 improvement
for -8 and 0.44 for -2.

The sign of the slope coefficient is stable for decreasing PD, but the relative
difference between the high and low notch size changes. July 2016 to July 2017
show a -0.23 improvement for entities with a mean log-PD of -8 (i.e., 3.4 Bps,
aa) and a -0.69 improvement for -2 (i.e., 1350 Bps, c) entities, while the values
moved to -0.13 and -1.19 in June 2017 to June 2018.

A9 Simulation of Data Changes (Observations): Probability
of Change

There are 17% to 23% of entities with all observations changing over time. We
explore the relationship between the probability of all observations changing,
the mean log-PD and depth using a logit regression:

ChangeAllIndi,t = α + βMeanPDi,t + γDepthi,t + ϵi,t,

where ChangeAllIndi,t is equal to 1 if all observations on entity i change be-
tween periods t and t + 1, MeanPDi,t is the mean log-PD of the entity at time
t, Depthi,t marks number of observations for the given entity at time t and
ϵi,t ≡ iid(0, σ2).

The all changing indicator is set to one based on the estimated probability
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and a uniformly distributed random variable rand3,i; all observations change
and ChangeAllIndF inali,t = 1 if ChangeAllIndi,t > rand3,i.

Figure A8 shows the relationships of the notch and depth with the per-
centage of entities with all observations changing. Entities with a worse rating
see all observations changing more often; this is the case for 25% of notch 5
(bb) entities but only 7.5% of notch 3 (a) entities. Considering depth, depth 2
entities are most likely to have all observations changing, with an occurrence
frequency of 29%, but this decreases to only 12% for depth 3 entities and falls
further to approx. 3% for high-depth entities.

Figure A8: Parameters: percentage of entities with all observations
changing vs notch and depth

The logit regression for the December 2017 to December 2018 data reported
in TableA7 confirms the significance of the relationship. Entities with lower
depth and higher mean log-PD see all observations changing more often. The
regression is based on more than 4,000 data points.

Table A7: Parameters: probability of all observations changing, logit
regression

Estimate S.E. p-Value

Intercept 2.364 0.2348 0.0000
MeanP Di 0.308 0.037 0.0000
Depthi -0.848 0.066 0.0000

Log Likelihood = -1799.06 (df=3)
p-Value = 0.0000

The coefficients are very stable for all periods.
Then, we need to determine the number of observations changing for en-

tities with less than all observations in transition. We focus on depth 3+
entities, as depth 2 has only one non-100% option - 50%; the percentage of
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changing entities is strictly larger than 0 and strictly less than 1. To turn the
dependent variable from bounded between 0 and 1 to unbounded, we use the
following transformation: log

(︂
P erChangingi,t

1−P erChangingi,t

)︂
. The estimation is done using

OLS regression with two independent variables - mean log-PD and depth.

log
(︄

PerChangingi,t

1 − PerChangingi,t

)︄
= α + βMeanPDi,t + γDepthi,t + ϵi,t,

where PerChangingi,t is the percentage of observations for entity i changing
between periods t and t+1, MeanPDi,t is the mean log-PD of the entity at time
t, Depthi,t marks the number of observations for the given entity at time t and
ϵi,t ≡ iid(0, σ2

3). The simulated change is adjusted using a normally distributed
random variable with mean 0 and variance σ2

3,

log
(︄

PerChangingF inali,t
1 − PerChangingF inali,t

)︄
= log

(︄
PerChangingi,t

1 − PerChangingi,t

)︄
+ rand(0, σ2

3).

Further, the percentage has to be in line with the depth, so the number of
changing observations is calculated using the rounding function as

ObsChangini,t = round(PerChangingF inali,t · depthi,t, 0).

The regression results are summarised in Table A8.

Table A8: Parameters: percentage of observations changing, OLS
regression

Estimate S.E. p-Value

Intercept 1.012 0.1064 0.0000
MeanP Di 0.166 0.018 0.0000
Depthi -0.080 0.012 0.0000

Adjusted R2: 0.093
F-statictics: 84.86 on 2 and 1656 DF
p-value: 0.0000

A10 Simulation of Data Changes (Observations): Direction
and Size of Change

Finally, we can move to observation changes. We determine which observations
are changing based on the entity change indicator, the number of observations
changing per each entity and the percentage of portfolio changing per bank.
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The percentage of portfolio that changes for each of the banks ranges between
15% and 60%. There is a slight relationship between the probability of change
and the size of the full portfolio; the large banks change 50% of their portfolio
at the median, medium banks change 35% and small banks change 21%. To
reflect this in the simulation, we randomly order the banks and assign 100%,
60% and 40% probability of change to large, medium and small banks; if the
observation is the first and a uniformly distributed random number is lower
than this percentage, then the observation is marked as changing.

Not all observations move in the same direction as the entity-level PD; on
average, 16% of changing observations move in the opposite direction to the
moving entity. The probability of an opposite observation movement is higher
for entities with increasing PD: 18.5% compared to 15% for decreasing PD
entities. The percentage shows a cyclical behaviour, starting as low as 13% in
2016 and increasing to 18.5% in 06/2017 before falling to 15% in 06/2018 and
finally increasing to 20% in 06/2019. The probability is dependent neither on
the observation/entity log-PD nor on the depth and can therefore be reflected in
the simulations through the average values and a uniformly distributed random
variable determining if an observation moves in the opposite direction.

The magnitude of change of all but the last moving observations follows
the same calculation approach as that at the entity level; the size of the in-
crease/decrease grows/reduces with the log-PD, and the relationship is signifi-
cant, as shown in Table A9.

Table A9: Parameters: size of observation change, OLS regression

Increase Decrease

Estimate S.E. p-Value Estimate S.E. p-Value

Intercept -0.893 0.037 0.0000 0.385 0.026 0.0000
MeanP Dij -0.058 0.007 0.0000 0.216 0.005 0.0000

Adjusted R2: 0.0106 0.1741
F-statictics: 80.81 on 1 and 7472 DF 1712 on 1 and 8114 DF
p-value: 0.0000 0.0000

A11 Portfolio Simulation: Baseline Results

Figure A9 presents the comparison of the rating distributions for the ob-
served data and the baseline simulation output of 440,000 observation-level
and 300,000 entity-level data points. The average absolute difference per notch
of 0.2 pp for entities and 0.5 pp for observations.
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Figure A9: Observed and simulated data: entity and observation
distributions, baseline



Chapter 4

Consistency of Banks’ Internal
Probability of Default Estimates

Abstract1

Some financial institutions can use internally developed credit risk models to
determine their capital requirements. At the same time, the regulatory frame-
work governing such models allows institutions to implement diverse rating
systems with no specified penalty for poor model performance. To what extent
the resulting model risk – potential for equivalent models to deliver inconsistent
outcomes – is prevalent in the economy is largely unknown. We use a unique
dataset of 4.9 million probability of default estimates provided by 28 global IRB
banks, covering the January 2016 to June 2020 period, to assess the degree of
variance in credit risk estimates provided by multiple banks for a single entity.
In line with the prior literature, we find that there is a substantial variance
in outcomes and that it decreases with the amount of available information
about the assessed entity. However, we further show that the level of variance
is highly dependent on the entity type, its industry and locations of the entity
and contributing banks; banks report a higher deviation from the mean credit
risk for foreign entities. Further, we conclude that a considerable part of the
variance is systematic, especially for fund models. Finally, utilising the latest
available data, we show the massive impact of the COVID-19 pandemic on
dispersion of credit estimates.

1This study was published as: Stepankova, B. (2020). Consistency of Banks’ Internal
Probability of Default Estimates. IES Working Papers, 44/2020. Institute of Economic
Studies, Faculty of Social Sciences, Charles University, Prague, Czech Republic.
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4.1 Introduction
Credit risk, i.e. the loss resulting from a counterparty failing to meet its obliga-
tions in accordance with agreed terms, is a key consideration in banking and the
financial industry more broadly. The recent trends in regulation and supervi-
sion of the financial industry resulted in greater independence of financial insti-
tutions in managing their risks. The Basel II Accord was a significant milestone
in this regard: it allows banks to use internal models to determine their capital
requirements through estimation of the entity’s probability of default (PD), the
loss given default (LGD) and the exposure at default (EAD). Although such
models are regulated, banks are allowed to implement diverse rating systems
and there is no specified penalty for poor model performance. Instead, the
regulatory framework works with an implicit assumption that banks produce
accurate risk estimates given the information available to them, despite the
fact that banks may be motivated to exploit their discretion and optimise the
reported inputs to the models (Plosser and Santos, 2014).

This raises a question about comparability of outputs captured by model
risk, which can be literally defined as the potential for different models to
provide inconsistent outcomes (Danielsson et al., 2016). Several studies have
investigated the consistency of banks’ internal model outputs and factors that
may affect it (e.g. Berg and Koziol, 2017, Firestone and Rezende, 2016 and
Plosser and Santos, 2014), showing a significant variance in the PD estimates,
indicating that more explicit rules for banks’ internal credit rating systems may
be required. In absence of a tightened regulation, the underlying differences
in banks’ credit models may result in capital requirements that are no longer
comparable across banks, especially if the differences are systematic. However,
further evidence is required in this regard as the studies work with a relatively
small sample of banks, specific type of credit instruments or they focus on a
particular geographical area.

This paper contributes to the existing literature on model risk of credit risk
estimates by analysing a unique dataset with a vastly greater number of banks
and their entities than in the prior literature, as well as a more comprehensive
geographical and industry coverage. We investigate a longitudinal dataset of
PD estimates from 28 global banks that use the internal rating based (IRB)
approach to estimate their regulatory capital. The data cover monthly assess-
ments on more than 60,000 entities including corporates, financials, funds and
governments, and multiple regions for the January 2016 to June 2020 period,
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accounting in total for 4.88 million month-entity-bank observations. In addi-
tion, we further extend the analysis from the prior literature in three ways.
First, we study new factors affecting the variance in credit risk estimates, in-
cluding location of entities and banks, entity type, industry classification or
existence of rating by a rating agency. Second, we measure the magnitude of
systematic effects in the overall model risk individually for each entity type rep-
resenting different internal models. Finally, utilising the latest available data,
we show the impact of the COVID-19 pandemic on credit risk estimates and
their variance.

The next section provides a brief overview of banks’ credit rating models
and the relevant literature, Section 4.3 presents the dataset and its descrip-
tive statistics and describes the empirical strategy, Section 4.5 discusses the
analytical results and Section 4.6 concludes the work.

4.2 Banks’ internal credit rating models
Credit risk models developed internally by banks are a result of the need to
quantify the amount of economic and regulatory capital required to support
banks’ risk taking activities (Chatterjee et al., 2015). Indeed, for many finan-
cial institutions, credit risk is a major component of the overall risk to the
institution and, if inappropriately managed, may have substantial secondary
effects on the financial sector as a whole. Hence, it is closely monitored by
regulators. The Basel II Accord, introduced in 2004, served as a basis for na-
tional rule-making and implementation processes, allowing institutions to use
their own internal credit risk models but requiring them to align their models
with the regulatory requirements, such as portfolio invariance, separation of
corporate, sovereign, bank, retail and equity models, and use of appropriate
risk parameters.

This study focuses on banks using the IRB approach for credit risk estima-
tion, i.e. banks which use their own quantitative models to estimate probability
of default. Such models must meet various minimum guidelines defined by the
accord and banks have to prove that their risk estimation systems provide
reasonably accurate and consistent estimates. Credit risk models typically
work with a number of well-defined parameters, such as leverage (financial
debt, bank debt, interest paid), profitability (value added, profit-loss ratio,
EBITDA), liquidity (cash, current liabilities), capital structure (equity, cur-
rent assets), dimension (turnover, employees), and macroeconomic indicators
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(aggregate default rate, credit growth, GDP growth). At the same time, the
exact model specifications evolve over time and differ by bank, resulting in vari-
ance in credit risk estimates for a single entity assessed by multiple banks. To
make things worse, many banks have recently started adopting the vast array
of often highly disparate and hard-to-follow artificial intelligence algorithms
in their credit risk models to consider the large amounts of data available on
individuals and organisations, further exacerbating the problem of model het-
erogeneity.

Indeed, banks’ credit risk models are subject to various risks relating to
uncertainty at multiple levels of the risk assessment process (Danielsson et al.,
2016). These include particularly the validity of model input parameters – their
completeness, accuracy and recency – appropriateness of the credit risk model
choice and its theoretical foundations. Accuracy of model parameters is dis-
cussed e.g. by Boucher et al. (2014), Glasserman and Xu (2014) and Alexander
and Sarabia (2012), who distinguish between parameter uncertainty, i.e. the
inherent error in estimation of model’s parameters, and an inappropriate form
of the statistical model to estimate such parameters in the first place. Model
appropriateness and validity, discussed e.g. by Danıelsson (2002) and O’Brien
and Szerszen (2014), refers principally to the difficulty (or impossibility) to
identify the best-performing model due to latency of credit risk as a concept
and inability to directly estimate it using observable data. Regardless of the
model risk source, its implications can be substantial if it creates systematical
differences in credit risk estimates.

Despite the importance of banks’ internal credit rating systems for their
capital requirements and the broader regulatory purposes, much of the inherent
differences in banks’ models are still unknown. This is partially because the
models are, as an intellectual property, kept secret, without a direct access to
most researchers. One way of circumventing this limitation is by looking at
the model outputs rather than the models themselves, analysing the variance
in PD estimates for a single entity assessed by multiple banks. However, there
are only a handful of such studies available. In an earlier work, Firestone and
Rezende (2016) use data on syndicated loans from nine US banks, showing
that banks’ PD estimates substantially differ, but that this variance is mostly
random, i.e. that banks generally do not set their estimates systematically
above or below the median bank. The variance in PD estimates is confirmed
by Jacobson et al. (2006), who use data from two Swedish banks over the
1997-2000 period, as well as Plosser and Santos (2014), who investigate the
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incentives for banks to bias their internally generated risk estimates through
comparison within loan syndicates using Q1/2010-Q3/2013 quarterly data from
188 banks who participated in the Shared National Credit Program in the US,
accounting for almost 80,000 credit-quarters. They concluded that there are
significant differences in the borrower’s probability of default as estimated by
the individual banks, ranging up to 1 pp. The results are also in line with
a more recent paper by Berg and Koziol (2017), who utilise quarterly data
from 40 banks and 17,000 corporate borrowers available through the German
credit registry dataset. Looking specifically at the 2008-2012 period. They
show that the difference in banks’ capital ratios can vary by up to ± 10%,
equivalent to approximately 1 pp, when using the average risk weights from
all banks providing a PD estimate for a given entity instead of risk weights
based on banks’ individual PD estimates. Other studies on the topic include
RMA Capital Working Group (2000) or Carey (2002); regulators often focus
on small and hypothetical loan portfolios (Financial Services Authority, 2012;
Basel Committee on Banking Supervision, 2013).

4.3 Data
The unique empirical dataset used in our study is provided by Credit Bench-
mark and contains monthly PD estimates from 28 global banks that were ap-
proved to use the IRB approach to credit risk modelling. The company pools
together banks’ internal PD estimates and aggregates them to create entity-
and portfolio-level credit risk benchmarks. The banks are clients of Credit
Benchmark and the benchmarks allow banks to compare themselves against
their peers. On a monthly basis, banks submit their internal hybrid-through-
the-cycle (H-TTC) one-year PD estimates together with entity-specific infor-
mation including name, country of risk and industry classification. PDs do
not capture recovery rate and all banks use the same PD concept (credit risk
only, time horizon, reporting date), which allows for a direct comparison across
banks. Credit Benchmark maps the banks’ data to entity reference data from
multiple data providers including FactSet, Dun & Bradstreet and Thomson
Reuters, and identifies which observations evaluate the risk for the same entity.
We have access to the mapped PD estimate contributions by banks as well as
the aggregated entity-level outputs including the mean PD. Banks’ portfolios
are not stable over the time as they drop some exposures and add other entities
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to their portfolio. Regulators require the risk estimates to be reviewed at least
on annual basis to reflect newly available information.

The dataset consists of 24.8 million month-entity-bank observations cover-
ing the 01/2016-06/2020 period, with 4.88 million month-entity-bank observa-
tions (covering 1.75 million month-entities and 60,220 unique entities) used in
the final analysis after the following data cleaning steps. First, observations
had to be dropped due to non-existent mapping to the reference data including
country and industry classification (24.4%), due to duplicated rows (2.4%) or
because they are marked as inactive by the contributing banks (3.0%). Sec-
ond, as the focus of this study is on dispersion in banks’ credit risk estimates
at the entity level, we limited the sample to entities with credit risk estimates
from at least two banks, excluding 49.9% of observations. Third, we removed
defaulted entities, i.e. all entities where at least one bank reported a PD of
100% in a given month, as well as entities emerging from default, as the timing
often differs across banks (0.4%). Finally, we dropped corporate entities with
PD estimates greater than 3 Bps (0.3%), which is the floor for calculating cap-
ital requirements based on internal models under the Basel Accord, as some
banks report the values before regulatory overwrite and the inconsistency in
methodologies would artificially increase the resulting dispersion.

Banks’ portfolios cover entities from all regions and entity type classifica-
tions. The dataset includes information on entity’s country of risk and industry
classification, monthly credit rating estimates from S&P, public/private entity
identifier, and, for corporates, size based on sales, number of employees and
company family structure. Each of the 28 banks contributed for at least 29 out
of the total 54 months and covered at least 1,000 distinct entities with credit
estimates from two and more banks. To analyse the impact of bank’s location
on PD estimates, each bank is assigned a country of domicile based on the loca-
tion of its headquarters. The banks in our sample are located in United States,
South Africa, United Kingdom, continental Europe, Canada and Asia-Pacific.
In order to protect the confidential nature of the data, we do not identify the
banks in our sample. The number of participating banks increases over time,
starting with 14 banks in Jan-16 and reaching the full sample of 28 banks in
Feb-18, which impacts the number of entities used in the study as shown in
Figure 4.1. The number of entities continuously increased in 2016-2019 and
then started to drop in 2020 as banks adjusted their portfolios at the onset of
the COVID-19 crisis . For summary, Table 4.1 lists all collected variables and
Table 4.2 presents the summary of the data.
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Figure 4.1: Time series of count of entities
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The month-entity-bank PD estimates are aggregated to month-entity mean
PD using geometric average of the individual PDs to reflect the close to log-
normal distribution of the data, illustrated by the large skewness and kurtosis
of both observation and entity level PDs (see Table 4.2).2 Analogously, we
can calculate the entity-level PD dispersion parameter (see Equation 4.2) and
depth, i.e. the number of banks contributing to a single month-entity. The
mean PD of entity i at time t across banks b ∈ {1, . . . , ni,t} is defined as

PDGMean
i,t = exp

(︄∑︁ni,t

b=1 lnPDi,t,b

EDepi,t

)︄
, (4.1)

where EDepi,t is the number of banks contributing to entity i at time t (i.e.
entity’s depth). The average PD is 0.57% with the interquartile range of 0.05%
to 0.53%.

To calculate dispersion, we follow Berg and Koziol (2017) and use standard
deviation of PD estimates in logarithms. Consequently, dispersion of banks’
PD estimates for entity i at time t across banks b ∈ {1, . . . , ni,t} is calculated
as

Di,t(lnPD) = σ̂(lnPDi,t,b=1, . . . , lnPDi,t,b=ni,t
) =⌜⃓⃓⎷∑︁ni,t

b=1(lnPDi,t,b − lnPDGMean
i,t )2

EDepi,t − 1 .
(4.2)

Note that dispersion measures the level of disagreement across banks regarding
2Both geometric and arithmetic approaches to aggregation of PDs are valid are there is

no consensus in the existing literature. Credit Benchmark uses arithmetic aggregation.
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entity’s credit and Berg and Koziol (2017) interpret it as a proxy for model risk
of the banks’ underlying internal rating models. The average dispersion is 0.69
with an interquartile range from 0.35 to 0.94.

Figure 4.2: Time series of Mean PD and Dispersion
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Figure 4.2 shows the changes in the mean PD and dispersion averaged across
all entities. The changes in the measures are driven by both changes in the risk
estimates and changes in the set of contributed observations.

4.4 Methodology
Our study broadly follows the analysis by Berg and Koziol (2017), who fo-
cus on dispersion of credit risk estimates provided by 40 German IRB banks.
They analyse determinants of across-bank dispersion of PD estimates, their
systematic vs idiosyncratic differences, and determinants of the systematic dif-
ferences. We extend their work by including credit risk estimates of financials,
funds and governments, analysing the importance of bank and entity location,
adding more details on the underlying entities, such as size, region, industry
classification and existence of external ratings, and by including global banks
in the analysis. Further, we provide an overview of the impact of COVID-19
on both credit risk levels and disagreement across banks in different regions.

This is done in four steps. First, we analyse the determinants of the disper-
sion, followed by the role of location and the size of systematic effects. Finally,
we provide insights into the impact of COVID-19.
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4.4.1 Determinants of dispersion of bank-specific PD esti-
mates

Analysis of drivers of dispersion aims to indicate which entities are most prone
to bank’s disagreement. In the prior literature, dispersion was for this purpose
defined as standard deviation of banks’ (log) PD estimates (Berg and Koziol,
2017) or differences in ratings (Carey, 2002). The studies consider entity’s
credit quality and size, number of bank relationships, whether the entity is a
public company, region and industry classification, and loan-specific informa-
tion (seasoning and draw-down rate). The results are rather ambiguous: Berg
and Koziol (2017) show that dispersion is larger for low credit quality borrow-
ers and for larger loans, while Carey (2002) shows that rating disagreements
are less likely for large borrowers. Berg and Koziol (2017) argue that bank’s
subjective analysis is more important for larger borrowers and creates space for
disagreement, whereas small borrowers are usually assessed using a standard
set of information. Carey (2002), on the other hand, mentions easier access to
information and more scrutiny for large borrowers, making them less likely to
be misrated. In their analyses, region and industry classifications, as well as
private vs public indicators are not statistically significant predictors.

We use rather detailed entity characteristics, including entity’s type, size,
industry classification, region of risk and credit information: average credit risk
and the number of contributing banks with an active credit exposure to the
entity. Industry classification and size are examined for corporates only. Entity
type (funds, corporates, financials, governments) is particularly interesting in
the analysis as it has not been assessed before and may provide good insight
into the differences between the individual credit risk models.

Our model is defined as

Di,t = β1 · lnPDGMean
i,t + β2 · EDepi,t+

+ γ1 · ERegi + γ2 · ETypi + γ3 · EPubi,t + (γ4 · EIndi + γ5 · ESizi,t)+
+ FEt + ϵi,t

= β · Crediti,t + γ · EChari,t + FEt + ϵi,t

(4.3)

where Crediti,t is the credit risk-related information, represented by the
credit risk of entity i at time t (in logs), lnPDGMean

i,t , and the depth of the
entity-level information, EDepi,t, (used as both an integer and a categorical
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variable in line with the non-linearity of the relationship described by Berg and
Koziol, 2017). Analogously, EChari,t jointly marks the entity characteristics
and consists of ERegi, a categorical variable representing entity’s region of risk;
ETypi, entity type (both time-invariant); EPubi,t, a binary variable identifying
public entities; EIndi, entity’s industry classification; and ESizi,t, entity’s size.
The latter two are available only for corporates, for which we run a separate
set of regression models. Finally, to capture time dependency we also include
time-driven fixed effects FEt.

Size is a binary variable distinguishing large corporates with more than
250 employees and/or sales above $50 million vs small and medium corporates
(SME). We also considered using turnover and number of employees as con-
tinuous explanatory variables or grouping them into several categories by size,
but neither of these proved more insightful than a simple binary indicator.

The model is estimated using a linear regression with a continuous depen-
dent variable. To correct for the possible cross-sectional correlation, implying
that credit risk estimates for a single entity in two subsequent quarters are not
independent, we report standard errors clustered at the borrower level.

Ratings provided by credit rating agencies are frequently used as inputs in
banks’ internal credit risk models, entering the process as both independent
variables and also as dependent variables in so-called rating replicator models.
Hence, they are expected to act as an anchor of the credit risk estimates and
reduce the disagreement between banks. Further, we argue that banks are
generally not in consensus when it comes to disagreeing with a rating agency,
meaning that dispersion increases with the difference between the credit rating
agency’s rating and the mean PD. Carey (2002) investigates such an impact
of agency rating availability on rating disagreement across banks but does not
find it statistically significant.

To connect the PDs to ratings, we use a 21-notch scale mapping PDs to
agency-like notches derived from banks’ internal scales. We add the rating
agency variables to the disagreement determinants model defined in Equation
4.3 as

Di,t = β · Crediti,t + γ · EChari,t + δ1 · CRAi,t + δ2 · CRADisti,t + FEt + ϵi,t

(4.4)

where Crediti,t and EChari,t cover all variables used in Equation 4.3, CRAi,t

is a binary variable indicating if entity i is rated by a credit rating agency (CRA)
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at time t (1 stays for rated entities and 0 for unrated entities), and CRADisti,t

measures the absolute distance between the entity’s credit risk as estimated
by banks and the rating provided by a credit rating agency in notches. We
use ratings from S&P. Again, the reported standard errors are clustered at the
entity level to account for cross-sectional correlation.

4.4.2 The effect of location

The global data allow us to investigate if banks’ location – specifically their
geographical proximity to an assessed entity – has any impact on dispersion of
the associated credit risk estimates. In their analysis of US syndicate loans,
Plosser and Santos (2014) distinguish between US and non-US lenders and
find that bank’s location does in some cases affect the deviation of bank’s PD
estimates from the median risk. We extend their analysis through worldwide
geographical coverage and by including bank and entity characteristics in the
model. We argue that banks have information advantage in their domicile
country and are able to assess credit risk of local entities more accurately as
a result, whereas they tend to deviate from the true risk value for foreign
exposures. This is then reflected in dispersion of bank estimates, which should
increase with the number of foreign banks with exposures to a given entity.

To analyse this presumption we first define the share of bank contributions
that come from foreign banks, Foreigni,t, as the ratio of foreign to all bank
contributions, where foreign contributions come from banks with headquarters
in a different country/region than that of the assessed entity. The geographical
classification combines countries and regions and its granularity is determined
by bank clusters; if there is a larger group of banks from a single country, we list
the country, otherwise we use the broader region to increase overlap between
banks and to protect their anonymity.

The variable is used as an addition to the baseline model of dispersion
with credit information and entity characteristics as explanatory variables (see
Equation 4.3). We also add an interaction term for Foreigni,t and the binary
variables indicating regions.

Di,t = β · Crediti,t + γ · EChari,t + δ1 · Foreigni,t+
+ δ2 · (Foreigni,t × ERegi) + FEt + ϵi,t

(4.5)

As an additional robustness check we look at the absolute difference be-
tween individual bank’s PD estimate and the mean PD in relation to the credit
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risk information, entity and bank characteristics. We define a binary variable,
BankForeigni,t,b, which takes value of 1 if bank b is a foreign contributor to
entity i at time t and 0 otherwise. We use time fixed effects FEt and banks’
fixed effects FEb (Equation 4.6) or country-region binary variables (Equation
4.7), which would reveal any systematic differences between regions.

|lnPDi,t,b − lnPDGMean
i,t | = β · Crediti,t + γ · EChari,t + δ1 · BankForeigni,t,b+

+ FEt + FEb + ϵi,t,b

(4.6)

or

|lnPDi,t,b − lnPDGMean
i,t | = β · Crediti,t + γ · EChari,t + δ2 · BRegb+

+ δ3 · (BankForeigni,t,b × BRegb) + FEt + ϵi,t,b

(4.7)

Note that while the model in Equation 4.6 is very similar to that in Equation
4.8, here the bank and country-region fixed effects capture the average absolute
deviation from the mean. This factors in both systematic and idiosyncratic
variation and we thus expect to obtain different results than in the investigation
of the systematic factor in the next section.

4.4.3 Idiosyncratic versus systematic differences

The differences in entity’s PD estimates from different banks can be of two
types, both of which can apply at the same time: systematic and idiosyncratic.
Systematic differences arise from an underlying bias in banks credit risk models,
resulting in the bank systematically assigning lower or higher PD estimates to
all entities. On the contrary, idiosyncratic differences are driven by entity-
specific factors and are not consistent across bank’s portfolio.

Critically, idiosyncratic differences should not, on average, adversely im-
pact capital requirements as they cancel out at the aggregate level. On the
other hand, systematic differences can cause capital requirements for the same
portfolio to differ across banks. While the former may be appreciated by reg-
ulators as a sign of banks’ individual and independent opinions that can limit
herding behaviour, systematic differences are problematic as they make capital
requirements incomparable.

The contribution of systematic and idiosyncratic factors can be estimated
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by looking at the deviation of bank-entity PD estimates from the entity’s mean
credit risk. If the differences are purely systematic, each bank-entity obser-
vation can be calculated as a combination of the entity’s mean PD and bank
time-specific fixed effects. If all differences are idiosyncratic, the bank time-
specific fixed effect have no explanatory power in the model.

Plosser and Santos (2014) and Berg and Koziol (2017) investigate the issue
for US syndicate loans lenders and German IRB institutions, respectively, and
both studies find significant systematic deviations, with fixed effects explaining
14% and 5% of the overall variation in banks’ PD estimates, respectively. This
means that a large part of PD estimate variation is idiosyncratic. However,
the individual fixed effects are significant and large in magnitude. Plosser and
Santos (2014) show that individual banks report PDs that, on average, deviate
by -25% to 69% from the median PD, i.e. that PD estimates from one bank
are 69% higher than the median on average. Berg and Koziol (2017) find such
deviation to be within the -30% to 41% range and conclude that using average
risk weights instead of the internal estimates leads up to ±10% differences in
the reported regulatory capital ratio for 10 largest banks in their sample.

There are further interesting question not tackled by the previous litera-
ture. Banks mostly differentiate their models at least by the entity type of
the entities. Are the systematic effects the same for all the models? Does the
size of the systematic deviation differ across regions? The richness our dataset
allows us to analyse these the systematic factors for both different entity types
and different regions.

Our model investigates the impact of bank fixed effects on the deviation of
banks’ PD estimate from the mean PD, calculated as

lnPDi,t,b − lnPDGMean
i,t = FEt,b + ϵi,t,b. (4.8)

We again report entity-level clustered standard errors due to the potential
cross-sectional correlation. The level of idiosyncraticity is measured by the
R-squared (0% for purely idiosyncratic dispersion across banks and 100% for
purely systematic dispersion). We also show the size distribution and signifi-
cance of the individual fixed effects to analyse the size of the systematic effect.

We estimate the model using entity type-specific sub-samples to answer the
question on differences across multiple internal models. The differences across
country-regions are analysed using the average absolute fixed effects for banks
domiciled in the given location. Larger average absolute fixed effects mean
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that banks in the given country-region show larger systematic bias in their PD
estimates, we account for positive and negative bias in the same way.

The analysis focuses on a specific time sub-sample of the data – December,
March, June and September 2018-2020 – to limit the computational require-
ments. The regression accounts for 303 bank-months fixed effects.

4.4.4 COVID-19 crisis effects

The COVID-19 pandemic offers a unique opportunity to evaluate banks’ reac-
tion to an unprecedented crisis and the associated high levels of uncertainty.
We can make an initial assessment from Figure 4.2 presented in Section 4.3,
which shows a modest increase in both PD and dispersion in 2020. However, the
trends reflect changes in PD estimates as well as in banks’ portfolios, which
are expected to be more substantial as banks will adjust their portfolios in
times of a crisis. To adjust for portfolio changes, we focus on month-on-month
percentage changes in the mean PD and dispersion based on a fixed set of PD
estimates. For example, if five banks contributed to entity A at time 1 and only
four of them contribute at time 2, we would use PD estimates from only the
four remaining banks that contributed at both times to calculate the changes
in mean PD and dispersion between times 1 and 2. Formally:

Change_Fixed_PDGMean
t =

Fixed_PDGMean
t,ft

Fixed_PDGMean
t−1,ft

− 1

=
exp(∑︁eft

i=1

∑︁ni,ft
b=1 lnP Di,t,b

EDepi,ft
/ECountft)

exp(∑︁eft

i=1

∑︁ni,ft
b=1 lnP Di,t−1,b

EDepi,ft
/ECountft)

− 1,

(4.9)

where b ∈ {1, . . . , ni,ft} denotes banks with PD estimates available for
both time t and t − 1 and EDepi,ft is the number of such banks. Similarly,
i ∈ {1, . . . , eft} denotes entities for which data are available at both time pe-
riods and ECountft is their count. An analogous calculation is defined for
dispersion. Subsequently, the monthly changes are cumulated to form an index
with January 2018 as the base month.
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4.5 Results

4.5.1 Determinants of dispersion of bank specific PD esti-
mates

Table 4.3 shows univariate analysis of dispersion of bank-specific PD estimates,
including a breakdown of both mean PD (column 1) and PD dispersion (column
2) as defined by Equations 4.1-4.2. It shows that dispersion decreases with
credit quality, while the link to depth is not monotonic. However, this might
be linked to the fact that Funds tend to have higher dispersion and lower
depth than other entities. We take this into account in the regression analysis
presented below.

There is no clear time trend; the differences in dispersion observed between
2016 and 2018 are most probably driven by the changing sample of contributing
banks. On the other hand, dispersion is significantly affected by entity types
and regions: average dispersion for Funds is 0.75 compared to 0.64 for Gov-
ernments, and dispersion for Europe is 0.72 compared to 0.65 for Asia-Pacific.
All of these differences are statistically significant but they might again be
linked to the composition of the analysed portfolio in different regions, which
is considered in the regression analysis.

Public entities show, on average, lower dispersion than private ones, likely
reflecting inequality in information accessibility, similar to entities rated by
S&P, which show lower dispersion than those without an external rating, and
SMEs, which tend to have higher dispersion than large corporates. In other
words, banks tend to provide more consistent PD estimates for entities with
more available information. Further, dispersion is higher for entities with worse
S&P rating, which is in line with the relationship observed for credit quality
given by mean PD.

Finally, there are significant differences across industries, with Utilities
showing the lowest level of dispersion and Oil & Gas the highest, which could
be driven by the underlying credit quality of the industries: Utilities have the
lowest mean PD (0.0050) while Oil & Gas the highest (0.0117).

The multivariate analysis, described in Tables 4.4 for all entities and 4.5 for
corporates only, then mostly confirms the findings. The relationship between
dispersion and depth proves to be non-monotonic even after accounting for the
entity type. Funds show significantly higher dispersion compared to Corporates
and the difference implied by the regression analysis is higher than observed
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Table 4.3: Determinants of dispersion of bank specific PD estimates
- uni-variate analysis

The table reports results of uni-variate analysis on both mean PD (lnP DGMean) and dispersion (D), which are
defined by Equations 4.1 and 4.2. The variables are defined in Table 4.1. T-values are based on Welch adjusted
standard errors. ***, **, * denote significance at the 1%, 5% and 10% level, respectively.

Variable Mean PD D Count Variable Mean PD D Count

Credit quality Public
(quantiles)
1 (low PD) 0.0003 0.68 349,288 1 Public 0.0075 0.59 163,592
2 0.0006 0.69 349,063 2 Private 0.0052 0.71 1,512,122
3 0.0015 0.64 349,175 Difference (2-1) -0.0023 0.12
4 0.0043 0.71 349,178 t-value -55.5 116.1
5 (high PD) 0.0218 0.75 349,173 *** ***
Difference (5-1) 0.0215 0.07
t-value 501.7 59.9

*** ***

Depth SP Rating
1 2 observations 0.0065 0.69 1,098,957 1 Rated 0.0081 0.56 168,088
2 3 obsevations 0.0046 0.74 357,927 2 Unrated 0.0054 0.71 1,577,789
3 4 obsevations 0.0044 0.70 137,867 Difference (2-1) -0.0027 0.15
4 5+ obsevations 0.0037 0.64 151,126 t-value -54.0 161.2
Difference (4-1) -0.0028 -0.05 *** ***
t-value -104.4 -57.8

*** ***

Time period S&P rating
1 2016 0.0046 0.66 213,294 1 AAA to A- 0.0009 0.52 59,159
2 2017 0.0058 0.68 330,175 2 BBB+ to BBB- 0.0026 0.53 58,460
3 2018 0.0057 0.71 454,913 3 BB+ to B- 0.0202 0.64 48,762
4 2019 0.0057 0.70 506,206 4 CCC+ to C 0.0998 0.78 1,707
5 2020 0.0066 0.70 241,289 Difference (4-1) 0.0989 0.26
Difference (4-1) 0.0010 0.05 t-value 57.4 18.7
t-value 31.8 39.5 *** ***

*** ***

Entity Type SME Corp. only
1 Funds 0.0015 0.75 734,733 1 Large 0.0086 0.64 543,849
2 Corporates 0.0098 0.65 697,790 2 SME 0.0139 0.70 131,178
3 Financials 0.0065 0.66 287,447 Difference (2-1) 0.0054 0.06
4 Government 0.0073 0.64 25,907 t-value 96.8 37.7
Difference (1-2) -0.0083 0.10 *** ***
t-value -382.4 119.8

*** ***

Region (Top 4) Industry Corp. only
1 Europe 0.0054 0.72 744,564 1 Basic Materials 0.0093 0.68 72,540
2 North America 0.0050 0.68 680,511 2 Consumer Goods 0.0087 0.65 104,816
3 Asia-Pacific 0.0049 0.65 205,014 3 Consumer Services 0.0109 0.66 141,807
4 Africa 0.0149 0.68 67,956 4 Health Care 0.0105 0.63 28,227
Difference (3-1) -0.0004 -0.07 5 Industrials 0.0097 0.66 204,545
t-value -18.0 -55.4 6 Oil & Gas 0.0117 0.69 55,028

*** *** 7 Technology 0.0115 0.62 34,028
8 Telecommu. 0.0101 0.60 15,670
9 Utilities 0.0050 0.56 41,129
Difference (9-6) -0.0067 -0.13
t-value -52.8 -43.1

*** ***

in the univariate analysis due to adjustments for mean PD and depth. On the
other hand, the regional differences change after factoring in all other variables
as the inherent variation in banks’ portfolios is minimised: dispersion is largest
for entities in Europe and Latin America and lowest for African, Middle East
and North American entities.

Models estimated only on corporate data reveal the same relationship be-
tween dispersion, mean PD and public company identifier. The link between
dispersion and depth is weaker and there are no major regional differences with
the exception of higher dispersion in Latin America. The analysis shows that
the large dispersion observed in the Oil & Gas industry is driven mainly by the
large mean PD and becomes comparable to other industries once this is fac-
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Table 4.4: Determinants of dispersion of bank specific PD estimates
- multi-variate analysis

The table provides regression results of dispersion (D) on credit-related information and entity characteristics as defined by
Equation 4.3. Mean PD is used in logarithm. All coefficients need to be interpreted in relation to the baseline category.
Regressions include time fixed effects. T-values based on robust standard errors clustered at the entity level are reported in
brackets. ***, **, *, + denote significance at the 0.1% , 1%, 5% and 10% level, respectively.

Variables D D D D D D

Mean PD 0.02 *** 0.02 *** 0.06 *** 0.06 *** 0.06 *** 0.06 ***
(14.3) (13.8) (40.6) (40.4) (39.8) (40.3)

Depth -0.01 *** 0.00 0.00 * 0.00 ***
(-12.9) (1.0) (2.5) (6.1)

Depth 2 baseline

Depth 3 0.06 ***
(17.7)

Depth 4 0.04 ***
(10.8)

Depth 5+ 0.03 ***
(6.1)

Corporates baseline baseline baseline baseline

Financials 0.05 *** 0.05 *** 0.05 *** 0.05 ***
(9.3) (9.3) (8.8) (8.8)

Funds 0.22 *** 0.23 *** 0.22 *** 0.22 ***
(43.8) (44.6) (41.3) (40.8)

Government 0.08 *** 0.07 *** 0.03 0.02
(4.7) (3.9) (1.5) (1.4)

Africa baseline baseline baseline

Asia-Pacific 0.03 * 0.02 + 0.03 *
(2.5) (1.8) (2.3)

Europe 0.06 *** 0.05 *** 0.05 ***
(6.3) (4.5) (4.9)

Latin America 0.08 *** 0.08 *** 0.08 ***
(3.8) (3.6) (3.8)

Middle East 0.02 0.02 0.02
(0.8) (0.8) (0.9)

North America 0.01 0.00 0.00
(0.7) (-0.5) (-0.3)

Is Public -0.07 *** -0.07 ***
(-13.0) (-13.6)

Observations 1,745,877 1,745,877 1,745,877 1,745,877 1,675,714 1,675,714
R-squared 0.003 0.003 0.030 0.033 0.037 0.039

tored in. Entities in Utilities, Technology and Telecommunication have lower
dispersion than in other industries.

Further, we look at the dependence of dispersion on ratings from credit
rating agencies. Contrary to findings by Carey (2002), our regression results
show a significant impact of S&P rating on dispersion of banks’ PD estimates
(see Table 4.6), confirming that external ratings serve as anchors for banks and
lead to lower dispersion. Further, dispersion increases with difference between
banks’ credit quality estimate and the agency’s rating, i.e. banks do not tend
to find another “true" credit risk level if they disagree with the credit rating
agency. Both S&P variables have very large t-statistics and the reduction in
dispersion for rated entities is up to 0.17 compared to the dispersion interquar-
tile range of 0.35 to 0.94. The impact on dispersion turns to positive when
the distance between mean PD-based rating and S&P rating is three or more
notches (e.g. aa+ vs a+).
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Table 4.5: Determinants of dispersion of bank specific PD estimates
for Corporates - multi-variate analysis

The table focuses on Corporates and provides regression results of dispersion (D) on credit related information,
entity characteristics and variables specific for Corporates: Industry and Size, as defined by Equation 4.3. Mean
PD is used in logarithm. All coefficients need to be interpreted in relation to the baseline category. Regressions
include time fixed effects. T-values based on robust standard errors clustered at the entity level are reported in
brackets. ***, **, *, + denote significance at the 0.1% , 1%, 5% and 10% level, respectively.

Variables D D D D D

Mean PD 0.06 *** 0.06 *** 0.06 *** 0.06 *** 0.06 ***
(29.0) (28.0) (26.3) (25.1) (25.2)

Depth -0.01 *** 0.00 *** 0.00 0.00
(-5.3) (-5.2) (0.5) (0.8)

Depth 2 baseline

Depth 3 0.03 ***
(4.8)

Depth 4 0.01
(1.5)

Depth 5+ 0.00
(0.4)

Basic Materials baseline baseline baseline baseline

Consumer Goods -0.02 -0.02 -0.01 -0.01
(-1.5) (-1.4) (-1.0) (-1.0)

Consumer Services -0.03 ** -0.03 ** -0.03 * -0.03 *
(-2.6) (-2.7) (-2.4) (2.4)

Health Care -0.03 * -0.03 -0.02 -0.02
(-2.0) (-1.5) (-1.2) (-1.2)

Industrials -0.03 * -0.03 ** -0.03 * -0.03 *
(-2.6) (-2.9) (-2.5) (-2.5)

Oil & Gas 0.02 0.02 0.02 0.02
(1.3) (1.5) (1.2) (1.2)

Technology -0.07 *** -0.06 *** -0.05 *** -0.05 ***
(-4.8) (-4.1) (-3.8) (-3.8)

Telecommunications -0.07 *** -0.08 *** -0.07 *** -0.07 ***
(-4.1) (-4.2) (-4.1) (4.2)

Utilities -0.07 *** -0.07 *** -0.06 *** -0.06 ***
(-4.9) (-5.0) (-4.5) (-4.6)

Africa baseline baseline baseline

Asia-Pacific 0.02 0.02 0.02
(1.5) (1.3) (1.5)

Europe 0.03 * 0.02 0.02 +
(2.2) (1.6) (1.7)

Latin America 0.16 *** 0.16 *** 0.16 ***
(5.2) (5.1) (5.2)

Middle East 0.00 -0.01 -0.01
(0.1) (-0.4) (-0.3)

North America -0.01 -0.02 -0.02
(-0.9) (-1.2) (-1.1)

Is Public -0.05 *** -0.06 *** -0.06 ***
(-8.1) (-8.3) (-8.4)

Is SME 0.01 0.01
(1.2) (1.4)

Observations 697,790 697,790 647,698 630,868 630,868
R-squared 0.023 0.025 0.032 0.032 0.032

4.5.2 The effect of location

Portfolios of the analysed banks are typically global, allowing us to investigate
the performance of internal PD estimates for local vs foreign entities. Analysing
connections between banks and entities in different regions, we find that Africa
is the most detached region as 70% of African banks’ portfolios are locally
focused and 61% of African entities are covered only by local banks. Canada is
closely linked with the US; Canadian banks have 64% of their exposures south
of the border and 66% of PD estimates for Canadian entities come from either
of the two countries. Asia-Pacific, Europe (excl. the UK), United Kingdom
and United States are all closely connected.
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Table 4.7 shows the impact of foreign contributions on PD dispersion. The
first column shows a baseline model equivalent to that in the last column of Ta-
ble 4.4, with a slightly updated regional classification matching that of banks.
This change has a very limited impact on the results, with most of the coeffi-
cients virtually unaffected. In the second column we introduce the percentage
of foreign contributions to an entity into the model. The variable has a positive
and significant coefficient, meaning that entities with a greater share of contri-
butions from foreign banks tend to have higher dispersion. At the same time,
the changes in region coefficients signal a variance in the impact across regions.
Hence, in the third column we model region-specific interactions, showing that
the effect is significant only for Asia-Pacific, Europe and United States.

As an alternative point of view, we look at the problem from bank’s perspec-
tive and analyse the absolute difference between individual bank’s PD estimate
and the mean PD as shown in Table 4.8. Again, the first column shows a base-
line model for comparison. In the second column we add bank’s region as an
explanatory variable (but do not reflect whether the bank and entity are in the
same region), showing that British banks’ PD estimates deviate the most on
average, whereas estimates from Asia-Pacific and Canadian banks are closest
to the mean PD. In the third column we analyse whether being from the same
country as the analysed entity matters, clearly showing that the PD deviation
is indeed higher for foreign entities. Lastly, in the fourth column we show that
this effect is again not equivalent across the globe, with banks in US, Asia-
Pacific and Europe showing the biggest difference in deviation for local and
foreign entities.

To sum up, entity’s PD dispersion increases with the share of foreign con-
tributors for entities in Asia-Pacific, Europe and United States, and, equally,
banks from Africa, Asia-Pacific, Europe and United States produce less accu-
rate ratings for foreign entities. Further investigation (details not reported)
shows that US banks report highest PD deviation in the Asia-Pacific region
and in Europe, European banks in the US, African banks in Europe, and Asia-
Pacific banks in the US. The deviation is the strongest for US banks. The
analysis was run by including categorical variables specifying both region of
the bank and region of the entity, which allowed us to identify the statisti-
cally significant differences for specific bank-entity region combination when
controlling for number of contributors, mean PD and entity type.

These findings have potential policy implication but the recommendation
depends not only on the size of the deviation but also the direction of the dif-
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ferences and systematicity. The results presented in Table 4.8 look at deviation
in absolute values but it is possible that individual banks overestimate the risk
for some entities and underestimate it for others, i.e. the differences are not
systematic. After taking the direction of the difference into account, we con-
clude that most of the banks tend to be systematically more conservative for
foreign entities compared to their domestic exposures. Conservatism seems to
be the preferred approach in case of limited information so there are no direct
regulatory implications.

In general, this raises a question about the quality and quantity of informa-
tion available to banks for foreign entities. If the deviation is systematic and
causes a bias to one side only, regulators might consider limiting the usage of
IRB approaches only to regions, where bank has sufficient level of insight, e.g.
models specific for the given region.

4.5.3 Idiosyncratic versus systematic differences

We measure the contribution of systematic versus idiosyncratic factors in dif-
ferences of banks’ PD estimates using the R2 statistic in regression of PD
estimate deviation from the mean PD on bank-time fixed effects. The greater
is the R2 statistic, the more variance in bank’s PD estimates can be explained
by systematic factors. Further, the size and significance of the fixed effect coef-
ficients provides additional information for individual banks. If a coefficient is
significantly different from zero, the given bank reports systematically biased
estimates compared to mean PD in the given month. The size of the average
difference between bank’s PD estimates and mean PD is measured by the size
of the coefficient.

Figure 4.3 tracks the R2 statistic over time starting in January 2018, when
the sample of contributing banks stabilised. It shows that the systematic ef-
fects can explain around 11.5% of the differences in PD estimates and that it
has no time trend. The figure is higher than the 5% observed by Berg and
Koziol (2017) but broadly in line with the 14% estimated by Plosser and San-
tos (2014). However, in line with the results presented above and in addition
to the analysis in the prior literature, our data show that the contribution of
systematic factors varies across entity types. For Corporates, the systematic
effects explain just 7.7% of the variation, increasing to 10.1% for Financials and
27.2% for Funds. That is, credit risk modelling for Funds is most impacted by
systematic differences and is thus the most problematic from the regulatory
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Figure 4.3: Explanatory power of bank fixed effects over time
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perspective. Following discussions with bank practitioners, this may be driven
by under-financing of teams focusing on Funds, availability and quality of data,
and by the very low number of observed defaults in the Funds space.

Figure 4.4: Distribution of bank fixed effects
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Looking at the actual size of the fixed effects (see Figure 4.4), which imply
the magnitude of systematic differences, the coefficients range from -0.39 to
0.41 and 236 out of the 303 fixed effects are significant at 0.1% level. Again,
there are significant differences in the size of the coefficients across entity types.
Reporting on coefficients in absolute values, 9% of Corporates coefficients are
larger than 0.3 and the percentage increases to 17% for Financials and 37% for
Funds.

The dataset used in this study does not include information on exposure so
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we cannot calculate the exact impact on risk-weighted assets. Berg and Koziol
(2017) note that the average elasticity of a typical corporate portfolio is 30%, i.e.
a 100% increase in a PD estimate causes a 30% increase in the associated capital
requirements. Using the same logic on our Corporates results, i.e. multiplying
the PD fixed effect by 30% to get the capital requirements impact, the capital
requirements could change by as much as ±12% and by at least ±6% for 34%
of the bank-months. A ±6% difference means that a bank reporting capital
ratio of of 8.0% based on its internal PD estimates would report a ratio between
7.5% and 8.5% using the mean PD instead. The impact of PD changes on risk-
weighted assets is more significant for lower PDs (Plosser and Santos, 2014),
which further exaggerates the possible issues with Funds given their low mean
PD.

Finally, we summarise the fixed effects by banks’ country/region. Table
4.9 shows the average absolute fixed effect together with Z-scores for two-
population mean comparison, differences significant at the 95% confidence
level are in bold. European and Canadian banks stand out as those with
the largest average absolute fixed effects, results for the other regions are very
similar. Looking specifically at Corporates (details not reported), Asia-Pacific
and United Kingdom then have the lowest average absolute fixed effects (less
than 0.1), with all other country-regions being significantly higher and above
0.15.

4.5.4 COVID-19 crisis effects

Although the impact of the COVID-19 pandemic on the mean PD in the dataset
may appear relatively small as depicted in Figure 4.2, this may be misleading
due to the hidden changes in banks’ portfolios. Looking at Table 4.10, the
average percentage of observations dropped each month rose sharply in 2020
compared to the 2018-2019 period, increasing from 2.3% to 4.7% on average.
What is more, the average share of new additions decreased from 3.8% to 3.3%.
Factoring in such portfolio changes through Equation 4.9, the full impact of
the COVID-19 crisis is revealed in Figure 4.5.3

Compared to the rather constant trends in 2018 and 2019, the average mean
3This section includes data for the full 2020 year, which became available just before

finalising the paper and are not reflected in other parts of the research. They provide im-
portant insights about the behaviour of the credit risk data during the recent crisis and as
such are valuable addition to this section; hence, we have decided to include the data here
without altering any other sections.
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Figure 4.5: Changes in mean PD and dispersion in 2020
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PD increased by 10.3% in 2020. While such an increase in credit risk is to be
expected during economic recession, our analysis further shows that the average
dispersion has increased by 4.6%, implying that banks do not react to the crisis
in the same way. It further shows that the steepest increase in credit risk was
observed in the second quarter of 2020; however, the credit risk continued to
rise despite the slower rate and December actually saw another steep jump.
Dispersion data show that the level of disagreement stabilised.

The impact of the crisis is not equivalent for entity types and industries
either; the average mean PD for Corporates increased by 20.8%, whereas it
increased by only 9.9% for Financials, and remained stable for Funds, with
equivalent results for dispersion as summarised in Table 4.11. Looking at in-
dustries, there was a large increase in the mean PD for Oil & Gas (40.9%)
and Consumer Services (38.2%), while the impact on Telecommunications and
Utilities was limited. This supports the theory of industry-specific credit cycle
suggested by e.g. Stepankova (2021), Nickell et al. (2000) or Frydman and
Schuermann (2008).

The difference between Corporates and Financials also highlights the con-
trast between the 2008 financial crisis and the current COVID crisis. The
COVID crisis is not driven by the financial sector. It has had a direct im-
mediate impact on the real economy through halted production, ordered shop
closures, lost of income and reduced spending. The crisis has a potential to
impact financial sector through increased number of defaulting companies that
sought financial support. However, the data currently do not indicate that.
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4.6 Conclusion
Financial institutions can greatly benefit from use of internal credit risk models
for regulatory purposes, increasing the overall process efficiency of the system
and reducing burden put at the regulatory authorities at the same time. How-
ever, given the uncertainty inherent to credit risk predictions and the incentive
to get favourable results, there is a risk that the models will not provide the
performance desired by regulators. That is, banks may be motivated to ex-
ploit their discretion and optimise the inputs to the models as well as model
calibration as argued by Behn et al. (2016), Plosser and Santos (2014) or Berg
and Koziol (2017). Methodology documents are sensitive and shared only with
regulators which restricts the assessment of models by external researchers and
the comparison across financial institutions overlooked by different regulators.
Finally, many regulators do not require full reporting of entity and loan level
credit risk information including probability of default or do not fully utilise
the data when available. This has recently started to change with projects
focused on credit risk data collection and analysis run by some regulators (e.g.
AnaCredit by the ECB). All these factors make regulation compliance moni-
toring challenging. We analyse the model outputs of global banks and measure
the model risk, specifically we measure the difference in probability of default
estimates provided by multiple banks for a single entity.

Using a unique dataset of 4.9 million probability of default estimates pro-
vided by 28 global IRB banks, covering the January 2016 to June 2020 period,
we analyse determinants of PD dispersion, including bank and entity charac-
teristics, existence of credit rating provided by an external agency, and bank’s
geographical proximity to its borrower. Further, we break down the variance
in estimates to systematic and idiosyncratic and provide a first look at how the
unprecedented COVID-19 financial crunch affected dispersion in PD estimates
globally.

In Section 4.5.1 we first show that, abstracting from other factors, substan-
tial variation exists in PD dispersion across a number of variables. Perhaps
most interesting is the scale of differences across entity types and regions that
has not been discussed in the literature up to this point. The findings are then
confirmed through multivariate analysis and a follow-up analysis of the impact
of an entity being rated by an external agency. Here, in contrast to the prior
literature, we clearly show how the external rating may serve as an anchor
point, reducing dispersion in banks’ own credit risk estimates.



4. Consistency of Banks’ Internal Probability of Default Estimates 118

Our novel analysis presented in Section 4.5.2 shows that banks tend to
provide more consensual PD estimates for borrowers within the same coun-
try/region as their own headquarters, likely as a result of a better knowledge
of the broader local economic, societal other conditions as well as better access
to information.

Mostly in line with Berg and Koziol (2017) and Plosser and Santos (2014),
we show in Section 4.5.3 that most of the variance in credit risk estimates is
attributable to idiosyncratic factors, as only 11.5% of differences in PD es-
timates can be explained by banks’ fixed effects. Consequently, the under-
and overshooting of the consensus credit risk estimates by individual banks
mostly cancels out at the aggregate level, limiting the overall implications for
the financial system as a whole. The outlier in the analysis are funds, where
the systematic effects account for almost 30% of differences in banks’ PD esti-
mates. This raises a question of comparability of the outputs of fund models
and related capital requirements across banks.

The fact that banks do not respond synchronously and/or equally to major
changes in credit risk of their borrowers is evident from results shown in Section
4.5.4. The virtually constant average PD and dispersion in the 2018-2019
period has been followed by a strong increase in both variables since Q1/2020.
While the increase in the average PD is to be expected given the steadily
rising indebtedness worldwide and the high inherent levels of uncertainty due
to the COVID-19 pandemic, the change in PD dispersion indicates that the
underlying PD changes have been far from consensual across the contributing
banks. The underlying reasons remain unknown at this time and may range
from inability to properly assess the true level of credit risk given incomplete,
fast-changing and/or uncertain information available to banks not being able
to time lag between a change in borrower’s situation and the resulting credit
risk assessment update, or different guidance by regulators.

These results confirm finding of previous studies and suggest an existence
of incentives to “artificially” minimise risk weights using internal credit risk
systems. This raises a question about appropriateness of this approach from
the regulatory point of view. The IRB approach is expected to be more sensi-
tive to the drivers of credit risk and economic loss in a bank’s portfolio and to
encourage banks to continue to improve their internal risk management prac-
tices and thus contribute to a safer credit risk system. The alternative to the
IRB approach is the standardised approach, which relies on external data by
credit rating agencies. However, the recent trend indicates decreasing reliance
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on credit rating agencies due to controversies linked to conflict of interests
highlighted in the 2008 financial crisis. This means that there is not a pre-
ferred alternative to the IRB approach. In my opinion, the concept should be
preserved but regulators should take a more active role in ensuring the compa-
rability of the models’ outputs, which can be achieved using the new datasets
collected by some of the regulators (e.g. AnaCredit project in the ECB). Reg-
ulators also target the comparability through limiting the possible deviation
between the IRB and standardised approaches. Basel IV will introduce the
output floor, which means that the capital requirement will always be at least
72.5% of the requirement under the standardised approach. Combination of
these two incentives will hopefully lead to minimising the risk of exploiting the
IRB approach, while preserving its advantages.
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Table 4.6: Dispersion and ratings by S&P
This table provides regression results of dispersion (D) on rating by S&P
and credit related information and entity characteristics as defined by Equa-
tion 4.4. Mean PD is used in logarithm. It builds on results presented in
Table 4.4. All coefficients need to be interpreted in relation to the baseline
category. Regressions include time fixed effects. T-values based on robust
standard errors clustered at the entity level are reported in brackets. ***,
**, *, + denote significance at the 0.1% , 1%, 5% and 10% level, respectively.

Variables Dispersion Dispersion

Mean PD 0.06 *** 0.06 ***
(40.0) (39.8)

Depth 2 baseline baseline

Depth 3 0.06 *** 0.06 ***
(18.8) (18.8)

Depth 4 0.05 *** 0.05 ***
(12.7) (13.0)

Depth 5+ 0.05 *** 0.06 ***
(11.5) (13.3)

Corporates baseline baseline

Financials 0.05 *** 0.05 ***
(8.7) (8.7)

Funds 0.21 *** 0.21 ***
(38.1) (38.1)

Government 0.04 * 0.04 **
(2.2) (2.6)

Africa baseline

Asia-Pacific 0.04 ** 0.04 ***
(3.1) (3.3)

Europe 0.06 *** 0.06 ***
(5.8) (6.1)

Latin America 0.09 *** 0.10 ***
(4.5) (4.6)

Middle East 0.03 0.02
(1.2) (1.1)

North America 0.01 0.01
(1.1) (1.2)

Public -0.05 *** -0.05 ***
(-8.6) (8.1)

SP Rated -0.09 *** -0.17 ***
(-15.6) (-26.3)

abs(P DGMean to SP in notches) 0.08 ***
(15.1)

Observations 1,675,714 1,675,714
R-squared 0.041 0.440
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Table 4.7: Dispersion and location of bank vs entity
This table measures the impact of contributions by foreign banks on the level of dis-
persion as defined in Equation 4.5; it provides regression results of dispersion (D) on
percentage of foreign contributors, credit related information and entity characteristics.
It builds on results presented in Table 4.4 and introduces more detailed regions in line
with the contributors clusters (UK, US, Canada), Europe marks the other countries in
the region in this new regions definition. All coefficients need to be interpreted in relation
to the baseline category. Regressions include time fixed effects. T-values based on robust
standard errors clustered at the entity level are reported in brackets. ***, **, *, + denote
significance at the 0.1% , 1%, 5% and 10% level, respectively.

Variables D D D

Mean PD 0.06 *** 0.06 *** 0.06 ***
(39.2) (39.3) (38.4)

Depth 2 baseline baseline baseline

Depth 3 0.06 *** 0.06 *** 0.06 ***
(17.8) (16.9) (16.9)

Depth 4 0.04 *** 0.04 *** 0.04 ***
(10.8) (9.7) (9.8)

Depth 5+ 0.03 *** 0.02 *** 0.02 ***
(6.1) (3.9) (4.4)

Corporates baseline baseline baseline

Financials 0.05 *** 0.05 *** 0.05 ***
(8.9) (8.5) (8.8)

Funds 0.22 *** 0.22 *** 0.23 ***
(40.3) (38.5) (39.7)

Government 0.03 0.03 0.03 +
(1.6) (1.6) (1.7)

Africa baseline baseline baseline

Asia-Pacific 0.03 * -0.03 * -0.08 *
(2.2) (-2.0) (-2.6)

Europe 0.04 *** 0.01 -0.05 **
(3.6) (1.2) (-2.8)

Latin America 0.08 *** 0.02 0.09 ***
(3.8) (1.0) (4.0)

Middle East 0.02 -0.04 + 0.03
(0.9) (-1.7) (1.3)

Canada -0.02 + -0.04 *** -0.01
(-1.7) (-3.5) (-0.3)

United Kingdom 0.06 *** 0.06 *** 0.07 ***
(5.5) (5.5) (5.3)

United States 0.00 -0.03 ** -0.07 ***
(-0.3) (-2.6) (-4.7)

Is Public -0.07 *** -0.07 *** -0.07 ***
(-13.1) (-12.7) (-11.9)

% Foreign contributions 0.07 ***
(10.4)

% For. c. × Africa 0.04
(1.2)

% For. c. × Asia-Pacific 0.12 ***
(4.0)

% For. c. × Europe 0.15 ***
(9.7)

% For. c. × Canada -0.01
(-0.7)

% For. c. × United Kingdom -0.01
(-0.6)

% For. c. × United States 0.12 ***
(9.5)

Observations 1,675,714 1,675,714 1,675,714
R-squared 0.039 0.040 0.042
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Table 4.8: Impact of location of bank vs entity on absolute Distance
of PD estimate from mean PD

This table measures the dependence of absolute deviation of PD estimate from mean PD on the location of the entity
vs the bank as defined by Equations 4.6-4.7. It provides additional details to the results presented in Table 4.7. All
coefficients need to be interpreted in relation to the baseline category. Regressions include time fixed effects and some
of them include bank fixed as well as specified in the table. T-values based on robust standard errors clustered at the
entity level are reported in brackets. ***, **, *, + denote significance at the 0.1% , 1%, 5% and 10% level, respectively.

Variables Abs. dist. Abs. dist. Abs. dist. Abs. dist.

Mean PD 0.05 *** 0.05 *** 0.05 *** 0.05 ***
(41.7) (42.3) (41.9) (43.1)

Depth 2 baseline baseline baseline baseline

Depth 3 0.06 *** 0.06 *** 0.06 *** 0.06 ***
(25.8) (25.8) (25.3) (25.7)

Depth 4 0.07 *** 0.07 *** 0.06 *** 0.07 ***
(21.5) (21.3) (20.9) (21.5)

Depth 5+ 0.06 *** 0.06 *** 0.06 *** 0.06 ***
(19.8) (18.6) (18.1) (18.4)

Corporates baseline baseline baseline baseline

Financials 0.04 *** 0.04 *** 0.04 *** 0.04 ***
(11.4) (10.7) (11.0) (10.2)

Funds 0.17 *** 0.17 *** 0.17 *** 0.16 ***
(41.1) (44.2) (40.3) (43.5)

Government 0.02 ** 0.02 + 0.02 * 0.04 ***
(2.6) (1.7) (2.5) (3.5)

Africa baseline baseline baseline

Asia-Pacific 0.00 0.00 0.00
(0.3) (0.3) (-1.5)

Europe 0.01 0.01 0.00
(1.4) (1.3) (0.4)

Latin America 0.00 0.00 -0.02
(-0.0) (0.4) (-2.2)

Middle East 0.02 0.01 0.00
(1.5) (0.7) (0.3)

Canada 0.00 0.00 0.00
(0.3) (-0.0) (-0.4)

United Kingdom 0.02 0.02 + 0.02 *
(1.8) (1.9) (2.0)

United States -0.01 -0.01 -0.02 *
(-1.1) (-0.7) (-2.4)

Is Public -0.05 *** -0.05 *** -0.05 *** -0.05 ***
(-13.4) (14.6) (-13.5) (14.6)

Bank - Africa baseline baseline

Bank - Asia-Pacific -0.06 *** -0.06 ***
(-6.8) (-5.9)

Bank - Europe -0.01 + -0.02 *
(-1.7) (-2.1)

Bank - Canada -0.05 *** -0.04 ***
(-6.4) (-4.8)

Bank - United Kingdom 0.02 ** 0.04 ***
(3.2) (5.0)

Bank - United States -0.01 + -0.05 ***
(-1.7) (-6.4)

Bank foreign 0.03 ***
(15.4)

B. f. × Bank - Africa 0.02 +
(1.9)

B. f. × Bank - Asia-Pacific 0.03 **
(2.6)

B. f. × Bank - Europe 0.03 ***
(5.9)

B. f. × Bank - Canada 0.00
(-0.2)

B. f. × Bank - United Kingdom 0.00
(-1.2)

B. f. × Bank - United States 0.06 ***
(23.1)

FE bank yes yes

Observations 4,880,497 4,880,497 4,880,497 4,880,497
R-squared 0.053 0.038 0.055 0.040
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Table 4.9: Average absolute fixed effects by country and Z-scores
This table compares average absolute fixed effects across banks’ regions estimated based
on model presented in Equation 4.8. The averages are compared using Z-scores for two-
population mean comparison. Differences significant at the 95% confidence level are in bold.

Avg. abs. Z-score
fixed effects Asia-Pacific Africa UK US Canada

Bank - Asia-Pacific 0.12
Bank - Africa 0.14 0.95
Bank - United Kingdom 0.14 0.99 0.15
Bank - United States 0.15 1.49 0.62 0.37
Bank - Canada 0.18 2.83 2.28 1.86 1.81
Bank - Europe 0.21 3.88 3.49 2.98 3.10 1.26

Table 4.10: 2020 impact on portfolio churn
This table presents the monthly percentages of observation being added to or dropped
from the observed portfolio.

N Mean p25 Median p75

2018-2019 new observations Percentage 24 3.8% 2.1% 2.6% 4.1%
2018-2019 dropped observations Percentage 24 2.3% 1.8% 2.1% 2.4%
2020 new observations Percentage 6 3.3% 2.6% 3.0% 3.5%
2020 dropped observations Percentage 6 4.7% 2.8% 3.1% 6.3%

Table 4.11: Changes in mean PD and dispersion in 2020 by entity
type and industry

This table shows the percentage change in the average mean PD and
dispersion between December 2019 and June 2020 / December 2020
for different entity types and industries. The calculation is based on
Equation 4.9.

H1 2020 % change Full 2020 % change
Mean PD Dispersion Mean PD Dispersion

All 5.8% 3.8% 10.3% 4.6%
Corporates 13.4% 6.9% 20.8% 7.8%
Financials 3.9% 3.4% 9.9% 3.6%
Funds -0.2% 1.1% 0.2% 2.0%
Basic Materials 12.5% 7.5% 19.3% 10.5%
Consumer Goods 12.3% 5.5% 15.6% 4.6%
Consumer Services 23.0% 11.0% 38.2% 12.9%
Health Care 5.7% -0.2% 9.2% 5.7%
Industrials 9.9% 7.1% 17.2% 7.0%
Oil & Gas 29.0% 8.7% 40.9% 12.5%
Technology 5.0% 3.8% 8.2% 2.5%
Telecommunications 0.4% 2.1% 4.0% 2.1%
Utilities 3.3% 0.8% 4.3% -0.8%



Chapter 5

Responses to Referees

I am grateful to all the referees for their comments and useful suggestions in
their referee reports. Following is the full list of comments and my responses to
them or references to the associated changes in the text. The comments from
referees are presented in italics, my responses are typeset in the normal font.
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5.1 Prof. Jonathan Ansell Ph.D.

5.1.1 General notes

1. Obviously, as further issue on may consider the regulatory frameworks.
These are under constant amendments with latest being Basel 4 alongside
recent changes in accounting standards (IFRS 9). Obviously, the data is
from an epoch possibly dominated by the change in accounting standards.
It does lead to consideration of whether any of the effects are due to the
shifts in the regulatory frameworks, especially when considering changes
in the Probability of Default (PD).

This is a really good point; IFRS 9 came into force in January 2018 with
earlier adoption permitted, which means that the implementation timing
differed across banks and the bank-specific dates are unfortunately not
known to me. This limits to possibilities for rigorous tests. However,
simple data checks do not signal any structural breaks in banks’ rating
behaviour around that time.

Some reassurance is provided also by the general information on credit
risk systems given by the banks. We know that most of the analysed
banks move from through-the-cycle (TTC) regulatory estimates to point-
in-time (PIT) IFRS 9 estimates (and not the other way around) or model
the two separately, so any changes linked to IFRS 9 introduction should
not have impacted the TTC estimates. Nevertheless, there are a couple of
banks which derive their TTC estimates from PIT PDs and these might
have been impacted by the IFRS 9 / CECL implications. As CECL
introduction lags behind IFRS 9 and was recently delayed further by the
Federal Reserve due to the ongoing pandemic, we are unlikely to observe
CECL-related changes in the analysed data for American banks. This
leaves us with one bank whose data might have been impacted by the
switch, and excluding the one bank from the analysis would not impact
the conclusions of my thesis.

I believe that it is still too early to observe the full impact of changes
related to Basel 4 in the data.
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5.1.2 First paper

1. In the first two papers, macro-economic factors are not explored as expla-
nations.

Thank you for the comment. The first paper actually contains a brief ref-
erence to macroeconomic indicators, which were considered in the Marko-
vian property analysis and do not have any impact on the paper’s conclu-
sions. I also report a negative correlation between the average credit risk
balance and changes in inflation (correlation coefficient of -0.4); larger
increases in inflation are associated with bias towards credit downgrades.
This correlation is in line with the observed time-heterogeneity.

2. The first paper tackles the two requirements to use Markovian matrix.
Yet, one can think of alternative modelling. Semi-Markovian models
would deal with temporal issue, but would still require the Markovian prop-
erty. It might be that one should use a multi-state Stochastic Differential
Process for modelling. The argument against this within the context of
Thesis is the behaviour of the regulatory.

Thank you for suggesting different approaches to the modelling. I agree
with the reviewer; based on my findings, all named options would be
better for credit transition matrix comparison than the simple cohort
approach as they would rely less on the two main assumptions.

The first paper aims to show that banks’ credit risk processes are not
Markovian or time homogeneous and I believe that detailed exploring of
alternative approaches is out of scope. Nevertheless, the data can be used
for solidifying some of the existing modelling approaches or as a driver
for new approaches in future research. The size and relevance of the data
in practise might help to establish new regulatory approved approach to
credit risk modelling as discussed with the prof. Ansell during the pre-
defense. I outline some ideas for future research on this topic in Section
5.1.4.

5.1.3 Second paper

1. In the first two papers, macro-economic factors are not explored as expla-
nations.

The reviewer is completely correct, thank you for pointing this out. The
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second paper does not reflect macroeconomic factors to not increase the
complexity of the simulation process. Some simulation scenarios used in
the paper incorporate changes in line with different stages of business
cycle (e.g. higher propensity to downgrade); however, the effects are very
simplified. At the time of the analysis, data related to the COVID-19
pandemic were not available and so it was impossible to observe how the
data behave during a period of crisis and properly capture the effect in
the model including a definite link to macroeconomic variables.

The new data represent a potential extension of the research presented
in the paper, which would directly link data characteristics to economic
cycle and observe their correlation with macroeconomic variables.

2. Simulation approach provide a realistic solution, but even when they pro-
duce is similar distribution it does not mean that those elements tested are
the real determinants of relationship. Either they may be substituting for
other measures or combination of measures, or results might be happen
chance.

I agree with this statement and I am aware that the simulated data might
not completely reflect the observed dataset and capture all the relation-
ships between the observations. My main objective was to compare the
three approaches to CTM estimation based on overlapping portfolios and
I believe that the simulation approach is best fitted for this task as it
allows me to create data with a precisely given specification. This results
in the same Entity CTMs but different Observation and Average CTMs
as the characteristics of observations change. While it is possible that the
simulated differences might not be completely realistic, it is still useful to
understand the types of moves in theory.

3. Exploring upgrades and downgrades is interesting, but there is a question
about the intervals between grades, which are not always the same. It
may be a misunderstanding on my part but it appears be implied. Yet, if
not then perhaps a finer analysis is required. The alternative is there is
a robustness in the testing results.

Thank you for the comment. It is correct that the simulations are run
using continuous PDs, while the transition matrices are represented by
7 rating categories and default. Such bucketing of credit risk increases
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the potential for larger differences across the three analysed methods of
aggregation. However, there is a good reason for such an approach.

Simulation of PDs allows for greater flexibility and incorporating smaller
than full-notch movements in the simulated underlying data.

Transition matrices are presented in rating categories and based on the
scales of CRAs; it is usual to present them either using 21 notches or to
group these to 7 wider categories. Both options were considered when
writing the study. Ultimately, the option with 7 categories was chosen
based on the number of rating categories usually provided by the con-
tributing banks. The banks often do not have enough granularity in the
upper and lower part of their scale to support 21x21 matrices (the aver-
age number of notches used by a bank in my dataset is 16) so the 7x7
option was the only one providing comparable outputs for all banks.

I would also like to mention that the link between continuous PDs and
rating categories is driven by banks’ internal scales, which often map the
internal ratings to CRA equivalents and hence allowed me to derive a
consensus version of the rating scale used in the analysis.

5.1.4 Third paper

1. A regression approach is taken in the 3rd paper. In dealing with the
times between transitions (upgrade or downgrade), one might use a suit-
able semi-parametric model. It seems more natural within the modelling
context. There is also possible to formulate in terms of a Bayesian model
and I believe the EU regulator does accept Bayesian formulations.

I agree with the reviewer that other approaches might fit the data better.
I tried to stay consistent with the previous literature on the topic.

Nevertheless, the proposed model for credit risk would be a great topic for
future research. And as mentioned in Section 5.1.2, Question 2, the data
may help to solidify a more suitable approach to credit risk modelling in
the the regulatory space. The research can be driven by the following
outline.

First, a detailed literature review of approaches to credit risk modelling
would be presented and discussed in the context of previous findings on
bank-sourced data. The research on models for credit risk is extensive; the
following literature overview lists several papers on some of the suggested
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modelling approaches: Bayesian modelling, semi-Markovian models, and
stochastic models.

Bayesian models have been explored by Stefanescu et al. (2009), McNeil
and Wendin (2007), or Kadam and Lenk (2008). Stefanescu et al. (2009)
develop a model capturing patterns of obligor heterogeneity and ratings
migration dependence through an unobserved systematic macroeconomic
shock and use a Bayesian hierarchical framework for model calibration
from historical rating transition data. McNeil and Wendin (2007) test
several threshold Bayesian models with fixed and random effects using
the latent factor approach to transition probabilities estimation.

The stochastic approach is covered e.g. in Gagliardini and Gouriéroux
(2005), Koopman et al. (2008) and Figlewski et al. (2012). Gagliardini
and Gouriéroux (2005) introduce a stochastic migration model. Koop-
man et al. (2008) work with parametric intensity-based duration model
with multiple states, exogenous covariates, latent dynamic factors and
semi-Markov structure. Figlewski et al. (2012) fit semi-parametric Cox
regression model with a broad range of macroeconomic and firm-specific
ratings-related variables.

Semi-Markovian models in credit risk are covered in a series of papers
by D’Amico, Janssen and Manca including D’Amico et al. (2006, 2011,
2016). Vassiliou (2013) adds fuzzy states to inhomogeneous semi-Markov
process.

Second, the models proposed in the previous literature would be assessed
in relation to the bank-sourced data, adjusted accordingly and evaluated.
The best performing model would be chosen.

Finally, the research would demonstrate practical application of the model
on estimation of transition matrices and credit risk prediction.
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5.2 Hsin-Vonn Seow Ph.D.

5.2.1 General notes

1. However, I am acutely aware that these results are based on the access to
the required dataset for the estimated. Hence this research is limited by
the access to data like that was available to the candidate through Credit
Benchmark and Anacredit efforts. However, as these findings are meant
for the regulators, this should negate the concern of the access to the
required database.

Thank you for the comment. The referee is correct, my findings are
aimed principally at regulators, who are or will soon be able to construct
similar transition matrices using bank-sourced data (e.g. Bundesbank or
the ECB). I believe that before they take the action, they need to be
aware of all potential challenges linked to this type of data.

The third paper presents a comparison of credit rating estimates at a
level that is not available even to the regulators as it compares credit risk
estimates from banks working in different regions. When looking at the
global market, regulators often use hypothetical portfolios with limited
implications compared to full banks’ portfolios. As such, I believe that
the findings contained in this document provide very useful and unique
insights into rating behaviour of banks.
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5.3 prof. PhDr. Petr Teplý Ph.D.

5.3.1 General notes

1. I recommend to add all references at the end of the thesis (rather to the
end of each chapter).

Thank you for the recommendation. As some of the papers have been
already published, I prefer to present them in the thesis including the
specific references. However, I understand that having a complete list
of referred papers is useful and I added the full bibliography (excluding
citations for Response to Reviewers) at the end of the document.

5.3.2 First paper

1. The data set covers large corporates in North America and the European
Union. Could Barbora present detailed statistics on countries of origin of
these corporates in the sample? The distinction between emerging coun-
tries (in the EU) and developed countries (the rest of the countries) might
reveal interesting facts. My more general question - did the author try to
split her data sample in a different way than on the industry level as
depicted on Figure 2.1 (e.g. emerging/developed countries)?

Thank you for the great question. Before discussing the regional break-
down, I would like to mention that portfolios of banks are heavily linked
to their country of origin. In other words, banks tend to stay local in
their exposures. This means that splitting the dataset by a more detailed
regional classification would not work well for individual banks and would
introduce a bank selection bias for aggregated data.

The broader group of emerging countries is limited by the number of
observations in this category. Depending on classification, there are only
few countries in the analysed regions classified as emerging or developing.1

The representation of these countries in banks’ portfolios is between 0-2%
1United Nations in World Economy Situation Prospects 2020 classify all of

the countries as developed and only Bulgaria and Romania are in the upper-
middle-income category; International Monetary Fund in World Economic Out-
look 2020 marks Bulgaria, Croatia, Hungary, Poland and Romania as emerging
and developing countries; World Bank provides an income classification and lists
only Bulgaria in the upper-middle-income category on their website. The lists
are available at https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-
bank-country-and-lending-groups. Accessed on February 7, 2021.



5. Responses to Referees 133

with one exception of 5%. The sample of the data is too small so I did
not consider emerging markets split in the analysis.

Nevertheless, I agree that it is useful to show the actual country break-
down and I present the data in Figure 5.1. It shows that the most repre-
sented countries are United States and the United Kingdom.

Figure 5.1: Distribution of PD Estimates Across Countries - Ranges
based on Individual Banks
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2. Barbora proposes strong policy recommendation in this essay. She high-
lights several important distinctions in the credit rating estimation ap-
proaches adopted by credit rating agencies and banks, which should be
considered in the context of the recent initiatives of various regulators
aiming to use large bank-sourced datasets in their work. Which one is the
most important one and why?

I would highlight two findings. The first one is the sole fact that banks’
credit risk estimates behave differently than data from credit rating agen-
cies (downgrade drift for CRAs vs tendency to revert for banks – at least
during economic expansion). This is partially driven by the actual rules
including usage of on-watch and outlook categories that CRAs apply to
decrease volatility of their data, which make credit risk predictions more
challenging. On the contrary, banks often rely on models and cannot fully
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incorporate the chance of rating reversion, resulting in more dynamic
credit risk estimates. Banks should reflect this in common practices and
should not rely on CRA CTM estimation when modelling internal credit
risk.

The second important finding is time heterogeneity within the observed
period of economic expansion and correlation with macroeconomic vari-
ables. Even though the banks’ internal estimates are considered to be
(hybrid-) through-the-cycle, this finding highlights that the level of sen-
sitivity to economic phase is rather high and that it needs to be reflected
in internal credit risk predictions.

5.3.3 Second paper

1. After conducting an analysis of industry-specific CTMs, Barbora identi-
fies substantial differences in both rating upgrades and downgrades across
the analyzed industries. In other words, she reveals the existence of in-
dustry specific business cycles, what is important in the context of IFRS 9
modelling. Could Barbora present her particular recommendation in this
respect?

The link to IFRS 9 is a very important point. The industry-specific busi-
ness cycle is an important finding, highlighting that credit risk in different
industries can have different trends despite the overall macroeconomic
conditions. This is important in the context of IFRS modelling, where
banks have to calculate life-time expected credit losses for exposures in
stages 2 and 3. This means that banks should reflect the expected credit
cycle. I would recommend banks to use industry- and country-specific
CTMs and go as granular as their data allow.

I believe that some banks already use industry-specific CTMs in IFRS9
modelling but I do not have an information on how widespread the prac-
tice is. If the industry dependence becomes a widely acknowledged fact,
regulators might be able to provide some industry and country bench-
marks to banks based on their newly collected data, which might be very
useful especially for smaller banks with less advanced internal models.

2. As a result of the recent COVID-19 crisis, many supervisors have relaxed
accounting procedures, introducing more flexibility in the criteria for loan
classification as well as in the implementation of IFRS 9. A question
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arises over whether the relaxation of the implementation of IFRS 9 is
appropriate. What is Barbora’s opinion on that in the light of her research
findings?

Thank you for the question. I think that the relaxation can actually
lead to greater differences in the implementation and an increased gap
between banks that were timely in their implementation and banks that
lag behind. I analysed some recent IFRS 9 credit risk estimates and
can say that numerous banks very significantly shifted their credit risk
estimates, sending many loans to stage 2; this can be seen also in the
recent financial statements. The ECB reported in Rancoita and More
(2020) that banks’ loan loss provisions rose more than 2.5 times in the first
half of 2020 compared to the level a year earlier. However, if the approach
is inconsistent in the industry, it can negatively impact specific players.
The ECB reports that the provisioning levels were widely dispersed across
both countries and banks within the same countries. There is also a
whole new stream of research emerging on this topic, e.g. Barnoussi
et al. (2020).

5.3.4 Third paper

1. Figure 4.5 implies an increase of the average mean PD and dispersion dur-
ing the recent COVID-19 crisis (until June 2020), what is not surprising.
The highest increase of the average mean PD was observed for Corpo-
rates increased by 13%, whereas Financials reported a 4% rise. What is
Barbora’s explanation for that? Does she have updated data? If she does,
was the peak in June 2020 or not?

Thank you for the question. The paper has been updated to reflect my
answer (pages 115-116) and I also provide the answer here for complete-
ness.

The current COVID crisis is, unlike the 2008 crisis, not due to a financial
impulse. It has had a direct and immediate impact on the real economy
through halted production, ordered shop closures, lost of income and
reduced spending. Further, some industries were impacted more than
others, e.g. travel limitations have a large negative impact on airlines,
hotel chains and similar. This is in line with what the data show - Con-
sumer Services is one of the most impacted industries, while the impact
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on Financials were lower compared to Corporates as shown in Table 5.1.
The crisis has a potential to impact financial sector through increased
number of defaulting companies that sought financial support. However,
the data currently do not indicate that.

Table 5.1: Changes in mean PD and dispersion in 2020 by entity type
and industry

This table shows the percentage change in the average mean PD and
dispersion between December 2019 and June 2020 / December 2020
for different entity types and industries. The calculation is based on
Equation 4.9.

H1 2020 % change Full 2020 % change
Mean PD Dispersion Mean PD Dispersion

All 5.8% 3.8% 10.3% 4.6%
Corporates 13.4% 6.9% 20.8% 7.8%
Financials 3.9% 3.4% 9.9% 3.6%
Funds -0.2% 1.1% 0.2% 2.0%
Basic Materials 12.5% 7.5% 19.3% 10.5%
Consumer Goods 12.3% 5.5% 15.6% 4.6%
Consumer Services 23.0% 11.0% 38.2% 12.9%
Health Care 5.7% -0.2% 9.2% 5.7%
Industrials 9.9% 7.1% 17.2% 7.0%
Oil & Gas 29.0% 8.7% 40.9% 12.5%
Technology 5.0% 3.8% 8.2% 2.5%
Telecommunications 0.4% 2.1% 4.0% 2.1%
Utilities 3.3% 0.8% 4.3% -0.8%

The question of peak can be answered by Figure 5.2. It shows that the
steepest increase in credit risk was observed in the second quarter of
2020; however, credit risk continued to rise despite the slower rate and
December actually saw another steep jump. Dispersion data show that
the level of disagreement stabilised and is not increasing any more.

Figure 5.2: Changes in mean PD and dispersion in 2020
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2. Barbora concludes shows that US banks report highest PD deviation in
the Asia-Pacific region and in Europe and European banks in the US
(page 112). Could she be more specific on this result? Could she propose
relevant policy recommendation from that?

That is a very good question, thank you. The answer is presented both
in the paper (pages 112-113) and here.

I included more specific categorical variables in the regression analysis,
specifying bank’s and entity’s region which allowed me to identify the
statistically significant differences for specific bank-entity region combi-
nations when controlling for a number of contributors, mean PD, entity
type and bank’s region. The deviation is strongest for US banks.

Policy recommendation would depend not only on the size of the devia-
tion but also on the direction of the differences. The results presented in
the table look at deviation in absolute terms but it is possible that indi-
vidual banks overestimate the risk for some entities and underestimate it
for others, i.e. the differences are not systematic. After taking the direc-
tion of the difference into account, I found that most of the banks tend
to be more conservative for foreign entities compared to their domestic
exposure, i.e. conservatism seems to be a preferred approach in case of
limited information.

In general, this raises a question about the quality and quantity of infor-
mation available to banks for foreign entities. If the deviation is systemic
and causes a bias to one side only, regulators might consider limiting the
usage of IRB approaches only to regions where bank has a sufficient level
of insight, e.g. through models specific for the given region.

3. Barbora states that financial institutions can greatly benefit from use of
internal credit risk models for regulatory purposes (page 116). However,
empirical evidence suggests that incentives exist to “artificially” minimise
risk weights when internal models are used to set minimum capital require-
ments. What is Barbora’s opinion on that?

Thank you for the question, I have added an extra paragraph to the
conclusion (pages 118-119) targeting this. It reads as:

... This raises a question about appropriateness of this approach from
the regulatory point of view. The IRB approach is expected to be more
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sensitive to the drivers of credit risk and economic loss in a bank’s port-
folio and to encourage banks to continue to improve their internal risk
management practices and thus contribute to a safer credit risk system.
The alternative to the IRB approach is the standardised approach, which
relies on external data by credit rating agencies. However, the recent
trend indicates decreasing reliance on credit rating agencies due to con-
troversies linked to conflict of interests highlighted by the 2008 financial
crisis. This means that there is not a preferred alternative to the IRB
approach. In my opinion, the concept should be preserved but regula-
tors should take a more active role in maintaining comparability of the
models’ outputs, which can be achieved using the new datasets collected
by some of the regulators (e.g. AnaCredit project in the ECB). Regula-
tors also target the comparability through limiting the possible deviation
between the IRB and standardised approaches. Basel IV will introduce
the output floor, which means that the capital requirement will always
be at least 72.5% of the requirement under the standardised approach.
Combination of these two incentives will hopefully lead to minimising the
risk of exploiting the IRB approach, while preserving its advantages.
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