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Preface

This thesis studies linear approximation problems

AX ≈ B, A ∈ Rm×n, B ∈ Rm×d,

where the aim is to approximate the unknown matrix X ∈ Rn×d from the given model
A and the observation (measurement) B. Such problems arise in various areas and are
known under various names, e.g., linear data fitting or errors-in-variables modeling.
Depending on the particular application, the system above typically suffers from the
presence of various types of errors in the observation matrix B and/or the matrix A
representing the model. Furthermore, many troublesome properties complicating the
solution can be present, e.g., sensitivity of the solution X to small changes of data,
severe ill-conditioning of the matrix A, etc. Thus large effort has been devoted to the
analysis and development of solution approaches for such classes of problems. This
thesis presents a collection of 11 papers contributing to this area coauthored by Iveta
Hnětynková in various collaborations, in particular with M. Plešinger (TU Liberec) and
Z. Strakoš (Charles University). Other coauthors are M. Kub́ınová (Czech Academy of
Sciences), J. Mead (Boise State University), R. Renaut (Arizona State University), D.
M. Sima (KU Leuven), S. Van Huffel (KU Leuven), J. Žáková (TU Liberec).

The principal difficulty in data fitting problems is the presence of factors (e.g. errors
in the data) that make the problem incompatible. Thus a general question arises in
which sense the problem should be solved. Least squares methods [3], [29] are the
most widely used, while the total least squares (TLS) [14] is the method of choice
when the errors are present both in A and B. Since TLS looks simultaneously for the
minimal correction of A and B making the corrected problem compatible, its analysis
and solution is significantly more complicated than for the well known ordinary least
squares (LS) and this holds even for the case of single observation. Already in the early
work [14] it was shown that the TLS solution may not exist. The TLS problem for d = 1
was there analyzed through the singular value decompositions (SVD) of the matrices
A and [b, A] leading to a sufficient (but not necessary) GVL condition for existence
of a TLS solution. Having multiple observations for the same model A available, i.e.
d > 1, the TLS problem complicates even more significantly both in terms of existence
of the solution and computational approaches. The additional difficulty is related to
the fact that the individual observations (columns of B) can be closely correlated with
different subsets of columns of A. The TLS problem with d > 1 was studied in [52]
assuming special distribution of singular values of the matrix [B,A], followed by [57],
[58] and many others. The core reduction introduced in [36], [37] for d = 1 brought
in a completely different concept. It suggested to extract the necessary and sufficient
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information for solving the problem contained in the data A and b, while removing
the redundant and/or irrelevant information. Thus it represents a crucial step towards
understanding, analysis and solution of TLS problems with a single right-hand side.
While [36], [37] presents a complete theory including necessary and sufficient conditions
for the existence of the TLS solution for a single observation vector, extensions for the
multiple observation case (d > 1) remained unresolved.

The first part of this thesis summarizes our main contributions to the analysis of
existence and uniqueness of solutions of TLS problems with multiple observations, and
to generalizations of the core problem concept to such problems. It includes seven
papers listed below:

[C1] I. Hnětynková, M. Plešinger, D. M. Sima, Z. Strakoš, and S. Van
Huffel, The total least squares problem in AX ≈ B: A new classification with the
relationship to the classical works, SIAM J. on Matrix Anal. and Appl. 32 (2011),
pp. 748–777.
DOI: 10.1137/100813348

[C2] I. Hnětynková, M. Plešinger, and Z. Strakoš, The core problem within a
linear approximation problem AX ≈ B with multiple right-hand sides, SIAM J.
Matrix Anal. Appl. 34 (2013), pp. 917–931.
DOI: 10.1137/120884237

[C3] I. Hnětynková, M. Plešinger, and Z. Strakoš, Band generalization of the
Golub–Kahan bidiagonalization, generalized Jacobi matrices, and the core problem,
SIAM J. Matrix Anal. Appl. 36 (2015), pp. 417–434.
DOI: 10.1137/140968914

[C4] I. Hnětynková, and M. Plešinger, Complex wedge-shaped matrices: A gen-
eralization of Jacobi matrices, Linear Algebra Appl. 487 (2015), pp. 203–219.
DOI: 10.1016/j.laa.2015.09.017

[C5] I. Hnětynková, M. Plešinger, and D. M. Sima, Solvability of the core prob-
lem with multiple right-hand sides in the TLS sense, SIAM J. Matrix Anal. Appl.
37(3) (2016), pp. 861–876.
DOI: 10.1137/15M1028339

[C6] I. Hnětynková, M. Plešinger, and J. Žáková, TLS formulation and core
reduction for problems with structured right-hand sides. Linear Algebra Appl. 555
(2018), pp. 241–265.
DOI: 10.1016/j.laa.2018.06.016

[C7] I. Hnětynková, M. Plešinger, and J. Žáková, On TLS formulation and
core reduction for data fitting with generalized models. Linear Algebra Appl. 577
(2019), pp. 1–20.
DOI: 10.1016/j.laa.2019.04.018

The paper [C1] provides a full classification of TLS problems with respect to the
(non)existence of the solution covering all possible cases. The paper [C2] presents
generalization of the core reduction to problems with d > 1. Its determination by a
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band (or block) generalization of the Golub-Kahan iterative bidiagonalization with de-
flations is described in [C3]. This paper also introduces generalized Jacobi matrices that
can be used to study band algorithms. The paper [C4] provides analysis of eigenvalues
and eigenvectors of these generalized Jacobi matrices. Existence of TLS solutions of
core problems with multiple right-hand sides is studied in [C5]. The papers [C6] and
[C7] present further generalizations of the TLS formulation and core reduction to ap-
proximation problems where the observation matrix B or the matrix A of the model
has tensor (or some other special) structure.

The second part of this thesis is devoted to linear approximation problems AX ≈ B
that are ill-posed. Such problems arise in various applications, e.g. in image processing,
seismology, etc., see [15], [18] for an overview. It was observed in the early work [46] that
the solution X is then extremely sensitive to errors present in the data, in particularly
in the observation matrix B. Thus classical methods such as LS or TLS produce for this
class of problems outputs dominated by the amplified errors (noise), and regularization
is necessary. In truncated LS (called also TSVD) or truncated TLS [10] (called TTLS
or RTLS), regularization is achieved by replacing the matrix A (in TSVD) or [B,A]
(in TTLS) by their low rank approximations. Alternatively, a Tikhonov regularization
can be used in the LS formulation, see [46] and [47]. As shown in [11], [20, Chap. 6] for
d = 1, these methods can be interpreted as dumping the unwanted SVD components
of the LS solution by the so called filter factors. While generalization of filter factors
to d > 1 for TSVD or Tikhonov regularization is straightforward, such representation
for TTLS was not known. For large scale and also matrix-free problems, where the
matrix is not given explicitly but only in terms of a function allowing for matrix-vector
multiplication, iterative regularization is needed. Widely used class of such methods
including CRAIG [7], LSQR [35], LSMR [12] (and also their hybrid variants [24], [8],
etc.), constructs a sequence of approximate solutions on Krylov subspaces of increasing
dimensions, with the bases computed by the Golub-Kahan iterative bidiagonalization
[13]. As explained in [18], early termination of the iterations is necessary, because the
larger dimensional Krylov subspaces tend to be contaminated by amplified noise. This
well known phenomenon called semiconvergence requires to study propagation of noise
into bidiagonalization vectors and into the approximate solutions.

The second part of this thesis summarizes our main contributions to the analysis
of regularization properties of the TTLS and bidiagonalization-based methods for the
solution of linear ill-posed problems. It includes four papers listed below:

[C8] I. Hnětynková, M. Plešinger, and Z. Strakoš, The regularizing effect of
the Golub-Kahan iterative bidiagonalization and revealing the noise level in the
data, BIT 49 (4) (2009), pp. 669–696.
DOI: 10.1007/s10543-009-0239-7

[C9] R. Renaut, I. Hnětynková, and J. Mead, Regularization parameter estima-
tion for large-scale Tikhonov regularization using a priori information, Computa-
tional Statistics and Data Analysis 54 (2010), pp. 3430–3445.
DOI: 10.1016/j.csda.2009.05.026
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[C10] I. Hnětynková, M. Kub́ınová, M. Plešinger, Noise representation in resid-
uals of CRAIG, LSQR and LSMR regularization, Linear Algebra Appl. 533 (2017),
pp. 357–379.
DOI: 10.1016/j.laa.2017.07.031

[C11] I. Hnětynková, M. Plešinger, and J. Žáková, Filter factors of truncated
TLS regularization with multiple observations. Applications of Mathematics 62
(2017), pp. 105–120.
DOI: 10.21136/AM.2017.0228-16

The papers [C8]-[C10] are devoted to regularization based on the Golub-Kahan iterative
bidiagonalization for problems with d = 1. Propagation of noise from the observation
vector b to the basis vectors generated by the bidiagonalization is analyzed in [C8].
Furthermore, a method for cheap approximation of the unknown noise level (amount of
noise in b) is presented. The paper [C9] introduces a hybrid regularization method com-
bining the outer Golub-Kahan iterative bidiagonalization with the inner regularization
of the projected system for the solution of Tikhonov minimization problem with a gen-
eral weighted norm. Regularization properties of CRAIG, LSQR and LSMR are studied
in [C10] by deriving explicit relations between their residuals and noise-contaminated
bidiagonalization vectors. The paper [C11] shows that TTLS for problems with d > 1
can be represented as a filtering method and derives the corresponding filter factors.

In spite of the fact that the presented analysis assumes exact arithmetic (whose
simulation would require, e.g., reorthogonalization in the Golub-Kahan bidiagonaliza-
tion), most of the results are applicable to practical computations and this is supported
by the numerical experiments included in the papers. Rigorous numerical analysis of
rounding errors represents a nontrivial challenge for the future.
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Chapter 1

Analysis of TLS and core
reduction for problems with
multiple observations

1.1 Introduction to least squares methods

In the most common situation we are given for the linear model A one observation
(measurement) vector b leading to the single (or vector) right-hand side formulation

(1.1) Ax ≈ b, where A ∈ Fm×n, x ∈ Fn, b ∈ Fm

and F = R or F = C. For some models, however, repeated measurements are possible
that can be organized into an observation matrix of the form B = [b1, . . . , bd]. In that
case we arrive at a more general multiple (or matrix) right-hand side problem

(1.2) AX ≈ B, where A ∈ Fm×n, X ∈ Fn×d, B ∈ Fm×d.

Each column of X then represents the unknown vector corresponding to the individual
observation in the column of B. Several nonrestrictive assumptions simplifying the
exposition can be made. If not stated otherwise, we assume F = R, range of B is not
in the range of A (otherwise the system is compatible and we can look for the exact
solution), ATB 6= 0 (otherwise the model and the observations are uncorrelated and
the only meaningful solution is a zero matrix X = 0), and m ≥ n + d (otherwise we
can formally add zero rows).

Assuming errors both in A and B, the TLS formulation searches for correction
matrices E of A and G of B minimizing the Frobenius norm in

(1.3) min
X,E,G

∥∥[ G E
]∥∥
F

subject to (A+ E)X = B +G,

and any X solving the corrected system above is called the TLS solution. (Minimization
in other norms is also possible, see [30] or [56].) The TLS formulation differs from the
commonly known (ordinary) LS

(1.4) min
X,G

∥∥ G
∥∥
F

subject to AX = B +G,
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where the correction is restricted only to the observation matrix B.

The ordinary LS can be directly reformulated as a search for X minimizing the
residual norm ‖B −AX‖F = ‖R‖F , which immediately implies that a solution always
exists and can be found by various methods; for an overview see [3], [29]. If A has
full column rank, this solution is moreover unique, otherwise a minimum norm solution
can be constructed. Furthermore, the problem (1.4) is equivalent to the set of the
individual LS problems within

Axi ≈ bi, i = 1, . . . , d,

since the corrections of the individual columns of B are independent. This important
property allows to analyze and solve the multiple right-hand side problem (1.2) in the
LS sense using the tools for single right-hand side problems (1.1). This is however not
true for TLS, where the correction E is common to all observations.

1.2 Analysis of existence and uniqueness of TLS

solution

The TLS problem has been investigated for decades under various names such as orthog-
onal regression or errors-in-variables modeling, see [54] for some examples. Consider
first the single right-hand side problem (1.1). Rewriting this equivalently as

[b|A]

[
−1
x

]
≈ 0

reveals that TLS looks for the minimal correction [g|E] of the extended matrix [b|A]
such that there exists a vector with the nonzero first entry in the null space of the
corrected matrix [b+ g|A+E]. G. Golub and C. Van Loan shown already in [14] that
a TLS solution for d = 1 may not exist and it may not be unique. They also proved
that if the smallest singular value of A is strictly larger than the smallest singular value
σn+1 of [b|A] (the so called GVL condition), then σn+1 is simple and the corresponding
right singular vector vn+1 has a nonzero first component. Thus the vector

x = − 1

v(1)
v(2), where vn+1 =

[
v(1)

v(2)

]
}1
}n ,

represents the unique TLS solution. It is worth to emphasize that the GVL condition is
sufficient for existence of a TLS solution, but not necessary. General analysis requires
to study the SVD of [b|A], where the key role is played by the singular values and the
corresponding right singular subspaces. In the case of nonexistence of a TLS solution,
S. Van Huffel and J. Vandewalle defined in the book [52, Sect. 3.4] a vector called ”non-
generic solution”. This vector can be interpreted as a minimizer of the TLS problem
extended by an additional constraint, see [52, Def. 3.2]. The TLS problem with d = 1
was then analyzed by C. Paige and Z. Strakoš in [36] revealing principal difficulties
connected with the generic-nongeneric terminology and clarifying the meaning of the
nongeneric solution. This was done by introducing the core reduction concept, which
we explain in the next section. Analysis of problems with d > 1 remained, however,
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unfinished.

The multiple right-hand side problem (1.2) can be similarly rewritten into the form

[B|A]

[
−Id
X

]
≈ 0,

where Id ∈ Rd×d is the identity matrix, revealing that in TLS we are looking for the
minimal correction of the extended matrix [B|A] such that its null space has special
properties. The book [52] analyzed existence and uniqueness of a solution of (1.3), but
only for two particular cases with a prescribed distribution of singular values of the
extended data matrix [B|A]. To be more precise, consider the SVD

(1.5) [B|A] = UΣV T , U ∈ Rm×m, V ∈ R(n+d)×(n+d), Σ ∈ Rm×(n+d),

where U and V are unitary and Σ is a diagonal matrix with the singular values

σ1 ≥ . . . ≥ σn ≥ σn+1 ≥ . . . ≥ σn+d ≥ 0,

on its diagonal. The solvability of the TLS problem depends particularly on the singular
value σn+1 and the corresponding right singular subspace. In [52] it was shown that if
σn > σn+1 or if there exists some index p ≤ n such that σp = · · · = σn+1 = · · · = σn+d,
then the problem (1.3) has a TLS solution. The ”nongeneric solution” for d > 1 was
also defined in [52, Def. 3.3]. See also [57] and [58] studying TLS problems with
nonunique solutions and providing various relations between LS and TLS solutions.

Our paper [C1] revealed that full analysis of existence and uniqueness of a TLS
solution requires careful handling of the multiplicity of σn+1. Thus we define integers
q, n ≥ q ≥ 0, and e, d ≥ e ≥ 1, as

(1.6) σn−q > σn−q+1 = . . . = σn︸ ︷︷ ︸
q

= σn+1 = . . . = σn+e︸ ︷︷ ︸
e

> σn+e+1,

(σn−q or σn+e+1 may be undefined when q = n or e = d, respectively). Consider the
corresponding partitioning of the matrix of right singular vectors,

V =

[
V11 V12 V13
V21 V22 V23

]
}d
}n .(1.7)

︸ ︷︷ ︸
n−q

︸ ︷︷ ︸
q+e

︸ ︷︷ ︸
d−e

In words, the block-columns correspond to singular values strictly larger than, equal
to, and strictly smaller than σn+1, respectively (again V11, V21 or V13, V23 may be
undefined). The novel classification introduced in [C1] distinguishes four disjoint sets
F1, F2, F3, and S of TLS problems based on ranks of individual blocks in (1.7) covering
all possible cases. For each of the classes, it is analyzed whether a TLS solution exists
and whether it is unique. In particular:

F : If rank([V12, V13]) = d, then the problem belongs to the 1st class, where:

F1: If rank(V12) = e, rank(V13) = d− e, then a TLS solution exists (unique or
nonunique). If it is nonunique, the TLS solution minimal in the Frobenius
and at the same time in the 2-norm can be found.
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F2: If rank(V12) > e, rank(V13) = d − e, then there exist infinitely many TLS
solutions. The TLS solutions minimal in the Frobenius and 2-norms may
not be the same.

F3: If rank(V12) > e, rank(V13) < d− e, then a TLS solution does not exist.

S: If rank([V12, V13]) < d, then the problem belongs to the 2nd class. A TLS solution
does not exist.

Note that single right-hand side problems (1.1) belong either to F1 or S. This
classification again reflects several difficulties (revealed for d = 1 in [36]) with the
generic-nongeneric terminology used originally for TLS problems, that still appear in
some publications. For example, the generic problems are often considered as TLS solv-
able. However, since they correspond to the problems of the 1st class, their solvability
is not ensured unless they satisfy additional properties (see the class F3).

The widely used computational tool for solving TLS problems is the TLS algorithm
[51]. It was shown in [C1] that for problems in the set F2 the TLS algorithm cannot
reach the existing TLS solutions. The output matrix X of the algorithm is not a
solution of (1.3) but a solution of a problem modified by a specific constraint, see [C1,
Sect. 6].

1.3 Core reduction and block generalization of

the Golub-Kahan bidiagonalization

As illustrated in the previous section, classification of TLS problems is complicated
requiring distinguishing various cases based on the SVD information. Different point
of view was given by the core reduction concept introduced by C. Paige and Z. Strakoš
in [36], [37] for problems with single right-hand side, i.e. (1.1). In was shown how
the original problem can be orthogonally transformed to a special block form allowing
for reduction of the data by separating the necessary and sufficient information for
solving the problem (1.1) from the rest. More precisely, for any data [b|A] there exist
orthogonal matrices P ∈ Rm×m, Q ∈ Rn×n, such that

P T [b|A]

[
1 0
0 Q

] [
1 0
0 QT

] [
−1
x

]
=

[
b1 A11 0

0 0 A22

]

−1
x1
x2


 ≈ 0,(1.8)

where the matrix A11 has smallest possible dimensions among all matrices that can
be obtained by the orthogonal transformation of the form above. Now, since the TLS
problem (1.3) is orthogonally invariant, instead of solving (1.1) we can solve

(1.9)

[
A11 0

0 A22

] [
x1
x2

]
≈
[
b1
0

]
.

Because of its block structure, the problem (1.9) decomposes into two independent
subproblems A11x1 ≈ b1 and A22x2 ≈ 0, where for the second one it is reasonable to
put x2 = 0 and only the first one called the core problem has to be solved. The vector
x can then be obtained simply by the back transformation of variables

(1.10) x = Q

[
x1
0

]
.
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Moreover, it was proved in [37] that the core problem has various properties implying
that it satisfies the GVL condition. Consequently, it always has the unique TLS solu-
tion. In this way, core reduction simplifies the TLS approach by separating the only
TLS-meaningful information from A and b.

As shown in [37] and [23], the core problem for d = 1 can be constructed either
directly by using the SVD or iteratively by the Golub-Kahan iterative bidiagonalization
[13]. Putting the starting vectors w0 = 0 and s1 = b/β1, where β1 = ‖b‖, the algorithm
computes for k = 1, 2, . . .

αkwk = AT sk − βkwk−1 , ‖wk‖ = 1,(1.11)

βk+1sk+1 = Awk − αksk , ‖sk+1‖ = 1,(1.12)

where αk ≥ 0, βk+1 ≥ 0 are the normalization coefficients. The vectors sk ∈ Rm are
mutually orthogonal and the same holds for the vectors wk ∈ Rm. The process continues
until αk = 0 for incompatible problems (1.1), or until βk+1 = 0 for compatible problems.
In the incompatible case of our interest, the core data are then given by the coefficients

[b1|A11] =




β1 α1

β2
. . .
. . . αk−1

βk



.

Noting that the matrices A11A
T
11 and [b1|A11]

T [b1|A11] are Jacobi matrices, i.e. sym-
metric tridiagonal matrices with positive subdiagonal entries, various properties of the
core problem can be proved through spectral properties of Jacobi matrices, see our
paper [23] (not included in this thesis).

In the view of these results the natural question arises whether a similar data
reduction can be done in the multiple right-hand side case (1.2). The first attempts can
be found in [4], [44], and [38]. The task was then resolved in our paper [C2], where the
SVD-based core reduction was presented, followed by the paper [C3] providing iterative
algorithm for construction of the multi-observation core problem. It was proved that
for any data [B|A] there exist (in this case three) orthogonal matrices P ∈ Rm×m, Q ∈
Rn×n, R ∈ Rd×d such that

P T [B|A]

[
R 0
0 Q

]
= P T [BR|AQ] ≡

[
B1 0 A11 0

0 0 0 A22

]
,(1.13)

where A11 and B1 are minimally dimensioned subject to the orthogonal transformation
above. Taking the advantage of orthogonal invariance of TLS, we can again solve the
problem [

A11 0

0 A22

] [
X1 Z1

X2 Z2

]
≈
[
B1 0

0 0

]
,

decomposing into four independent subproblems

A11X1 ≈ B1, and A11Z1 ≈ 0, A22X2 ≈ 0, A22Z2 ≈ 0.
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Putting naturally X2 ≡ 0, Z1 ≡ 0, and Z2 ≡ 0, only the core problem A11X1 ≈ B1 has
to be solved, complemented by the back transformation

(1.14) X ≡ Q
[
X1 0
0 0

]
RT .

Consequently, the solution of (1.2) is again fully determined by the solution of the
extracted minimal subproblem (1.14). Note that any problem A11X1 ≈ B1 is a core
problem if and only if it satisfies the following properties (see [C2, Sect. 4]):

(CP1) The matrix A11 is of full column rank.

(CP2) The matrix B1 is of full column rank.

(CP3) Let A11 have ξ distinct nonzero singular values with multiplicities µi, let µξ+1 be
the dimension of the null space of AT11, and let Ui be matrices having orthonormal
bases of left singular vector subspaces of A11 as their columns.

Then the matrices UTi B1 are of full row rank µi, for i = 1, . . . , ξ, ξ + 1.

Thus (CP1)-(CP3) characterize fully the core problem.
The core problem for d > 1 can be determined iteratively by the so-called band (or

block) generalization of the Golub-Kahan iterative bidiagonalization, see [C3]. Since
the algorithm is in its complete form complicated, we explain only the main idea.
Instead of the vectors and numbers in (1.11)-(1.12), the generalized algorithm works
with blocks of vectors and with matrices. Starting with the whole matrix B, it produces
in each step a set of maximally d vectors wk and maximally d vectors sk such that wk
are mutually orthogonal and sk are mutually orthogonal. Normalization steps in (1.11)-
(1.12) are replaced by QR-factorizations of square blocks of the size maximally d × d,
where their rank must be controlled. Here the so called (upper and lower) deflation
plays a crucial role due to possible zero entries present in these blocks reducing the
band shape of the resulting matrix. As derived in [C3, Sect. 3], after d deflations we
obtain the core data in the form of a band (or equivalently block bidiagonal) matrix,
e.g.,

[B1||A11] =




β1 δ1,2 δ1,3 α1

β2 δ2,3 δ2,1 α2

β3 δ3,1 δ3,2 α3

β4 δ4,2 δ4,3 α4

β5 δ5,4 α5

β6 δ6,5
β7 α6




.

In order to study properties of the core problem above, motivated by the derivations
for d = 1, we look at the matrices A11A

T
11 and [B1|A11]

T [B1|A11]. For the example
above

(1.15) A11A
T
11 =




♥ ♥ ♥ α1β4
♥ ♥ ♥ ♥
♥ ♥ ♥ ♥ α3β5
α1β4 ♥ ♥ ♥ ♥ α4β6

α3β5 ♥ ♥ ♥
α4β6 ♥ ♥ α5β7

α5β7 ♥




≡




∆1 ΞT1
Ξ1 ∆2 ΞT2

Ξ2 ∆3 ΞT3
Ξ3 ∆4


 ,
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where ♥ are in general nonzero entries. The blocks ∆` are symmetric, and Ξ` are full
row rank blocks in upper triangular row echelon forms. Consequently, the matrices
(1.15) can be considered a structural generalization of Jacobi matrices. We showed
in [C3] that they are related to the band matrices produced by the generalized band
algorithm in a similar way as the bidiagonal matrices produced by (1.11)-(1.12) are
related to the Jacobi matrices. We called the matrices of the form (1.15) wedge-shaped
and analyzed their spectral properties in a separate paper [C4] revealing bounds for the
multiplicities of their eigenvalues, special nonzero structure of entries of their eigenvec-
tors, etc. Note that various generalized band algorithms are used also in other contexts,
e.g., for the solution of systems of linear algebraic equations with a square nonsingular
matrix A and a matrix right-hand side. Deflation is in analysis of their convergence
typically neglected. We believe that wedge-shaped matrices can be used as a geral tool
to study behavior of band algorithms including deflation.

As showed in [36], for d = 1 the core problem is always uniquely TLS solvable. In
the classification of TLS problems (see [C1]), it belongs to the set F1. Solvability of the
core problem for d > 1 was investigated later in [C5]. We proved that the core problem
has the unique TLS solution if and only if it belongs to the set F1. We further showed by
construction that it is possible to find a core problem (i.e. a problem satisfying (CP1)-
(CP3)) in any of the classification sets F1,F2,F3,S. Consequently, a core problem with
multiple right-hand sides may not have a TLS solution. To understand the cases where
this happens, we studied possible internal structure of core problems. It was shown
that a core problem with d > 1 can be composed of several uncorrelated subproblems,
e.g.

(1.16) A11X1 ≈ B1, where A11 =

[
Aα11 0

0 Aβ11

]
, B1 =

[
Bα

1 0

0 Bβ
1

]
.

Even when the subproblems (so called components)

Aα11X
α
1 ≈ Bα

1 , Aβ11X
β
1 ≈ Bβ

1

are uniquely TLS solvable, depending on the relations among their singular values,
the composed core problem (1.16) still may not have a TLS solution. In that case, it
would be reasonable to consider the individual components separately, as the data are
obviously independent. Computational technique for separation of these components
from the data A11, B1 is, however, still an open question.

Even though the core reduction for d > 1 does not necessarily lead to F1 problems,
it still represents a tool for maximal possible reduction of the dimensions of the data
without loss of information. In [C5] we also proved that the output matrix of the
TLS algorithm [51] for the core problem with d ≥ 1 after the change of variables (1.14)
equals the output of this algorithm for the original problem (1.2), which is an important
consistency result. (For d = 1 this follows already from [37]). Here it is particularly
interesting to look at the outputs of the TLS algorithm for composed core problems and
their components. Depending on the properties of components, the output matrix for
the core problem can be, e.g., a direct sum of the outputs for individual components, or
it can be fully determined by the output for one of the components if this component
is in some sense significantly more important (for example in terms of the size of its
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singular values). This can be seen as an automatic inner regularization in the TLS
algorithm, where some part of information is removed from [B|A] during the solution
process, see [C5] for detailed explanation.

1.4 Generalizations of the problem setting

Some applications lead to linear approximation problems having more complicated
structure, see for example [40] (where the model depends on multiple parameters),
[34], or [45] (where observations depend on time). Assume first that the observation
vector depends on k − 1 parameters, each of them is sampled to dj samples and for
each combination we save the observation vector. In fact we have a set of multiple
observations forming naturally a k-way tensor (multidimensional array) B of dimensions
m× d2 × · · · × dk. This yields a linear approximation problem of the form

(1.17) A×1 X ≈ B,
where A is a matrix and X is a tensor of unknowns. The 1-mode matrix-tensor product
“×1” above is defined with reversed order of operands in comparison to the standard
notation given in [2], to keep the ordering of objects in equations Ax ≈ b, AX ≈ B,
and A×1 X ≈ B consistent.

In order to solve the problem (1.17) in terms of TLS, it seems enough to unfold
simultaneously B and X into a matrix by putting the individual column vectors behind
each other and use approaches derived for the matrix problem (1.2). However, our
analysis of (1.17) in [C6] showed why removing the parameter-given tensor structure
may not be appropriate. We introduced the TLS minimization directly for the tensor
observation problem as follows

(1.18) min
G ∈ Fm×d2×···×dk

E ∈ Fm×n

(‖G‖2 + ‖E‖2F )
1
2 subject to (A+ E)×1 X = B + G,

where ‖G‖ is a tensor norm defined as the square root of the sum of squares of all entries
of G, i.e., a straightforward generalization of the matrix F-norm. For a tensor C denote
by C{1} a matrix obtained by its 1-mode matricization. Then the tensor right-hand
side TLS problem (1.18) is equivalent to the matrix right-hand side TLS problem (1.3)
for

(1.19) AX ≈ B, where B ≡ B{1}, d ≡
∏k

j=2
dj .

This means that X is a tensor TLS solution of (1.18) if and only if X ≡ X {1} is a
matrix TLS solution of (1.3), see [C6, Sect. 4.1]. While the basic solvability analysis
can be easily translated from (1.3) to (1.18) using this equivalence, this is not true for
the core reduction.

In [C6] an orthogonal reduction is derived extracting the necessary and sufficient
information from (1.17) into a small subproblem

(1.20) A11 ×1 X1 ≈ B1,
while maintaining the tensor structure. This tensor core reduction uses heavily the
Tucker decomposition [48]-[50] generalizing the SVD to tensors. The tensor core prob-
lem can be characterized by three properties, similarly as the matrix core problem:
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(CP1) The matrix A11 is of full column rank.

(CP2) The j-mode matricization B{j}1 is of full row rank, or equivalently, all j-mode
co-fibers of B are linearly independent, j = 2, . . . , k.

(CP3) Let A11 have ξ distinct nonzero singular values with multiplicities µi, let µξ+1

denote the dimension of the null space of AT11, and let Ui be matrices having
orthonormal bases of left singular vector subspaces of A11 as their columns.

Then the matrices UTi B
{1}
1 are of full row rank µi, for i = 1, . . . , ξ, ξ + 1.

The tensor core problem (1.20) is generally different from the matrix core problem for
the matricized data (1.19), the dimensions of (1.20) are typically larger, see [C6] for a
detailed discussion.

Another extension of the matrix approximation problem (1.2) is discussed in [C7].
Using the vectorization of B and X (i.e. the columns of a matrix are stacked into a
long vector), (1.2) rearranges to

(1.21) (I ⊗A) vec(X) ≈ vec(B),

where ⊗ is the Kronecker product. The corrected problem in (1.3) similarly takes the
form (

(I ⊗A)︸ ︷︷ ︸
A

+ (I ⊗ E)︸ ︷︷ ︸
E

)
vec(X) = vec(B) + vec(G)

revealing that the perturbation E in TLS follows the Kronecker-product structure of the
model A. This restriction of the search set is the key factor limiting the TLS solvability
of (1.3), see [C1]. In [C7], we showed how the search set is enriched when moving from
matrix to more general models, and how this influences the TLS formulation. We staid
with the matrix observation B and studied various extensions of the model A:

• the bilinear model represented by a pair of matrices (for applications see [26],
[27]),

• the model of higher Kronecker rank,

• and the fully tensor model A.

In particular, for fully general tensor models the search set is so rich that by vectoriza-
tion the problem can be transformed to the basic single right-hand side TLS problem.
Consequently, core reduction leading to a core problem with the unique TLS solution
is available here. Fully tensor problems, where both the model and observations are
represented by tensors A and B are currently under investigation.

17



18



Chapter 2

Analysis and development of
regularization methods for linear
ill-posed problems

2.1 Introduction to ill-posed problems

In many applications one finds inverse problems modeled as Fredholm integral equations
of the first kind with a kernel having smoothing properties; see, e.g., [15] and [18] for
various examples in image processing, geophysics, etc. After discretization, we obtain
a problem (1.1), where typically:

• Singular values of A decay gradually to zero without a noticable gap. Thus A is
ill-conditioned, often numerically close to singular (for n = m) and its numerical
rank is not well defined.

• The matrix A (and also AT ) has smoothing properties, meaning that high fre-
quency components of Av are significantly reduced compared to high frequency
components of the vector v, v 6= 0.

Furthermore, the observation vector b is contaminated by noise. Assuming this noise
is additive and the problem (1.1) for the noise-free observation is compatible, we can
write

(2.1) b = bexact + η, bexact ≡ Axexact,

where xexact denotes the unknown exact solution and η is the noise vector. The noise
as well as the noise level in the data

(2.2) δnoise ≡
‖η‖
‖bexact‖ , δnoise � 1

is in most applications unknown. Typically, the properties of the underlying inverse
problem imply that:

• The vector bexact is smooth and satisfies the discrete Picard condition (DPC), i.e.
sizes of its projections to left singular subspaces of A decay (on average) faster
than the corresponding singular values of A.
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• The vector η does not satisfy DPC. Its properties vary depending on the partic-
ular application. For example, the most common random noise (called white) is
modeled by a vector η, where each of its entries comes from the same Gaussian
distribution with the zero mean.

See [18] for the detailed discussion on the DPC.
Properties above cause that data fitting approaches such as LS or TLS in their

basic form can fail to approximate xexact. For a closer look, consider the SVD

(2.3) A = UΣV T , U = [u1, . . . , um], V = [v1, . . . , vn], σ1 ≥ σ2 ≥ . . . ≥ σr > 0,

where r = rank(A). Then the LS solution of (1.1) with the right-hand side as in (2.1)
satisfies

xLS =
r∑

i=1

uTi b

σi
vi(2.4)

=

r∑

i=1

uTi b
exact

σi
vi +

r∑

i=1

uTi η

σi
vi,(2.5)

where the left sum in (2.5) represents the unknown exact solution and the right sum
is caused by the presence of noise η. Now the question arises how the size of the
second sum compares to the size of the first sum. For example for white noise, sizes of
projections uTi η are for all i roughly comparable. Because of DPC, sizes of projections
uTi b

exact decay with the increasing i. Thus uTi b is dominated by exact data for small i,
but by noise for large i. Now, since σi decay to zero with the increasing i, the noisy
components in xLS are amplified destroying fully the solution xLS. Such problems must
be solved by regularization techniques allowing to suppress the influence of noise on
the approximate solution.

2.2 Regularization via SVD filtering

Regularized least squares methods include TSVD (also called truncated least squares),
TTLS (also called regularized total least squares), or Tikhonov regularization; see, e.g.,
[17], [21] for a summary and references. These methods are often interpreted as filtering
of the unwanted components of the SVD expansion (2.4) by the so called filter factors.

Since noise is amplified in components corresponding to large i, the TSVD regular-
ized solution is defined as

xTSVD
k =

k∑

i=1

uTi b

σi
vi,

=
r∑

i=1

fi
uTi b

σi
vi, f1 = · · · = fk = 1, fk+1 = · · · = fr = 0,

where fi are the filter factors and 1 ≤ k ≤ r is the regularization parameter controlling
the balance between the regularization and approximation error. The vector xTSVD

k is
thus the LS solution of the nearby problem

(2.6) Akxk ≈ b,
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where Ak is the best rank-k approximation of A in the sense of the Eckart-Young-Mirsky
theorem [9]. For the basic Tikhonov regularization [46] minimizing

(2.7) min
x∈Rn

(
‖Ax− b‖2 + λ‖x‖2

)
,

where λ > 0 is the regularization parameter, filter factors are given by [20, Chap. 6]

fi =
σ2i

σ2i + λ2
, i = 1, . . . , r.

For multiple observation problems with the right-hand side

B = Bexact +H, Bexact ≡ AXexact,

TSVD or Tikhonov filter factors can be obtained directly from the filter factors for
d = 1, see [C11, Sect. 2].

When we expect significant errors to be present also in A, TTLS regularization is
more appropriate. We describe it for the multiple observation problem (1.2). The basic
idea is to chose the regularization parameter ε > 0 such that the influence of singular
values of [B|A] smaller than ε is suppressed similarly as in (2.6); see [11, Sect. 2].
To use the notation consistent with the paper [C11], consider the SVD (2.3) of A and
denote

(2.8) [B|A] = Û Σ̂V̂ T , σ̂1 ≥ · · · ≥ σ̂n+d ≥ 0,

the SVD and singular values of [B|A]. For 0 ≤ t ≤ n define the partitioning

V̂ =

[
V̂11 V̂12
V̂21 V̂22

]
} d
}n , with V̂12 =



v̂1,(n−t)+1 · · · v̂1,n+d

...
. . .

...
v̂d,(n−t)+1 · · · v̂d,n+d


 .(2.9)

︸ ︷︷ ︸
n− t

︸ ︷︷ ︸
t+ d

In order to ensure existence of the solution (see also Section 1.2), the regularization
parameter ε > 0 must be chosen such that:

(i) σ̂n−t > ε > σ̂(n−t)+1 holds for some index t, 0 ≤ t ≤ n, and

(ii) V̂12 in the corresponding partitioning of V is of full column rank.

The TTLS solution of (1.2) is then defined as

(2.10) XTTLS
ε = −V̂22V̂ †12,

where V̂ †12 is the Moore-Penrose pseudoinverse. For d = 1, filter factors for TTLS were
derived in [11] yielding

(2.11) fi =

n+1∑

`=(n−t)+1

v̂21,`

‖V̂12‖2F
σ2i

σ2i − σ̂2`
, i = 1, . . . , r.
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The derivation employs relations between eigendecompositions of AAT and [b, A][b, A]T

using the fact that [b, A][b, A]T = AAT + bbT can be interpreted as a rank-one update
of AAT .

Since TLS and thus also TTLS can not be rewritten as a set of problems for the
individual observations (as explained in Section 1.2), filter factors for problems with
d > 1 do not follow directly from the filter factors above. Motivated by [10], [11], we
studied in the paper [C11] eigenvalues and eigenvectors of rank-d updates of symmetric
matrices. Based on these results, we proved that TTLS for d > 1 can also be expressed
as a filtering method since the lth column of the matrix XTTLS

ε satisfies

XTTLS
ε el =

r∑

i=1

d∑

j=1

fi,j,l
uTi bj
σi

vi , l = 1, . . . , d,

where bj is the jth column of B. Explicit formulas for the filter factors fi,j,l generalizing
the formulas for d = 1 are given in [C11, Theorem 5.3]. In this way we provided a tool
for future studying of regularization properties of the TTLS method.

2.3 Noise in the Golub-Kahan iterative bidiag-

onalization

Since direct approaches mentioned above require computation of (at least a part of) the
SVD, iterative Krylov subspace regularization can be more beneficial for some problems;
see [31] for an overview of Krylov subspace methods and [18] for basic principles of their
application in regularization. Among the most widely used we can find LSQR [35],
LSMR [12], or their hybrid variants (see, e.g., [16], [8], and many others) combing the
iterative outer regularization with a direct inner regularization of the projected problem.
All of these methods are based on computation of bases of underlying Krylov subspaces
by the Golub-Kahan iterative bidiagonalization (1.11)-(1.12). The bidiagonalization
thus represents one of the fundamental algorithms in iterative regularization. A closer
look at its properties when applied to ill-posed problems was provided in our paper
[C8].

Vectors s1, . . . , sk, and w1, . . . , wk, computed by the three-term recurrences (1.11)-
(1.12) with the starting vectors w0 = 0 and s1 = b/β1, β1 = ‖b‖, form orthonormal
bases of the Krylov subspaces Kk(AAT , b) and Kk(ATA,AT b), respectively. Assume the
process does not terminate before the step k. Denote Sk ≡ [s1, . . . , sk] ∈ Rm×k, Wk ≡
[w1, . . . , wk] ∈ Rn×k and

(2.12) Lk ≡




α1

β2 α2

. . .
. . .

βk αk


 ∈ Rk×k, Lk+ ≡

[
Lk

eTk βk+1

]
∈ R(k+1)×k.

Then
ATSk = WkL

T
k , AWk = Sk+1Lk+,

implying

(2.13) (AAT )Sk = Sk+1(Lk+L
T
k ), (ATA)Wk = Wk+1(L

T
k+1Lk+).
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The equations (2.13) give the well known connection between the bidiagonalization
algorithm and the Lanczos tridiagonalization [28] of AAT with the starting vector s1
and of ATA with the starting vector w1, described in various ways in [1], [5], [6], [13],
etc.

The bidiagonalization vectors sk+1 and wk+1 can thus be written in terms of the
Lanczos polynomials as

(2.14) sk+1 = ϕk(AA
T )b, wk+1 = ψk(A

TA)AT b, ϕk, ψk ∈ Pk,

where Pk denotes the set of polynomials of degree less or equal to k. Using this
representation, we analyzed in [C8] how white noise η from the measured right-hand
side b propagates in the bidiagonalization vectors. In particular, while all the vectors
wk are smooth, this is not true for sk. Since s1 = b/β1 = (bexact + η)/β1, then

sk+1 = ϕk(AA
T )b = ϕk(AA

T )bexact + ϕk(AA
T )η.

Denoting
ϕk(AA

T ) = ζk(AA
T )k + · · ·+ ζ1(AA

T ) + ζ0,

where ζk, . . . , ζ0 ∈ R are the coefficients of the polynomial ϕk, gives

ϕk(AA
T )η =

[
ζk(AA

T )k + · · ·+ ζ1(AA
T )
]
η + ζ0η.

Multiplication by AAT smooths the noise vector η, except of the last summand corre-
sponding to the constant term ζ0 ≡ ϕk(0) of the Lanczos polynomial ϕk. Consequently,
we can write

sk+1 = s̃k+1 + ϕk(0)η,

where
s̃k+1 = ϕk(AA

T )bexact +
[
ϕk(AA

T )− ϕk(0)
]
η

is for smaller k smooth and thus ϕk(0)η is approximately the noisy component of
sk+1. Moreover, as shown in [C8, Sect. 3], the relative size of the noisy part in sk+1

in comparison to the smooth part s̃k+1 increases until the so called noise revealing
iteration knoise, where noise fully dominates. Then, a part of noise is projected out
resulting in a smoother left bidiagonalization vector. Figure 2.1 adopted from [C8, Fig.
5.1] shows individual entries of several bidiagonalization vectors sk for the standard
benchmark problem shaw(400) available in the Regularization Toolbox [19] with the
noise level δnoise = 10−4. The relative size of noise increases until knoise = 7, the vector
s8 is dominated by a high-frequency part of noise η.

The noise amplification factor ϕk(0) can be easily controlled during the iterations,
since it can be computed from the bidiagonalization coefficients

(2.15) ϕk(0) = (−1)k
1

βk+1

k∏

j=1

αj
βj
.

Other way of detecting knoise based on left singular vectors of Lk was also presented in
[C8, Sect. 4].

This result can be used in various ways. First of all, it indicates that approximately
after the iteration step knoise, noise significantly propagates to the bidiagonalization
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Figure 2.1: Individual entries of several left bidiagonalization vectors sk com-
puted by the double reorthogonalized Golub-Kahan iterative bidiagonalization
for the problem shaw(400) with the noise level δnoise = 10−4. The vector s8 is
dominated by a high-frequency part of noise η.

and thus we have to stop (unless inner regularization is used in a hybrid framework),
see, e.g., [39] for application of this stopping criterion. Furthermore, in the iteration
knoise,

(2.16) η ≈ ϕk(0)−1sk+1,

in the sense that the right term represents an estimate of the high-frequency part of
unknown noise η. Thus an estimate of the unknown noise level is given by

δnoise ≈
‖η‖
‖b‖ ≈

1

β1
|ϕk(0)−1|,

see, e.g., our paper [22] (not included in this thesis) for an application in image deblur-
ring on problems with various noise distributions not restricted to white noise.

2.4 Iterative regularization via projection

With understanding on how noise contaminates the bidiagonalization vectors, we can
investigate methods CRAIG, LSQR and LSMR based on the Golub-Kahan bidiagonal-
ization. Considering for simplicity the zero initial guess, they search for the approxi-
mation in the form

xk = Wkyk ∈ Kk(ATA,AT b),
where

Lky
CRAIG
k = β1e1,

yLSQR
k = argmin

y∈Rk

‖β1e1 − Lk+y‖,

yLSMR
k = argmin

y∈Rk

‖β1α1e1 − LTk+1Lk+y‖.
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In words, the approximation xk on Kk(ATA,AT b) is selected such that CRAIG mini-
mizes the distance of xk from the LS solution, LSQR minimizes the norm of the residual
rk and LSMR minimizes the norm of AT rk.

We explained in Section 2.1, that for ill-posed problems searching a solution mini-
mizing the residual norm (LS solution) is not adequate. Instead, one should look for a
vector xk such that (in an appropriate sense)

rk ≡ b−Axk ≈ η.

This idea is behind various stopping criteria in iterative regularization, e.g., the Moro-
zov’s discrepancy principle [33] (comparing residual norm to an a priori known noise
level estimate), the cumulative residual periodogram [41], [42] (assuming white noise).
However, a priori information is rarely available in practice. In the paper [C10] (see
also the PhD thesis [25] for further discussion), we considered a general noise setting
and studied the match between the actual residual rk and the unknown noise vector
η for LSQR, LSMR, and CRAIG without any such a priori information. We derived
explicit relations between residual vectors and the vectors sk with the coefficients given
by the constant terms of the Lanzos polynomials (2.14). In particular, it was revealed
that for CRAIG,

rCRAIG
k = ϕk(0)−1sk+1, k = 1, 2, . . .

Consequently, xCRAIG
k is the exact solution of a compatible problem

Ax = b̃, where b̃ = b− ϕk(0)−1sk+1,

i.e. currently available estimate (2.16) of the noise vector is subtracted from the original
right-hand side. In LSQR and LSMR, the residual is a combination of all previously
computed vectors sk, where the coefficients reflect the amount of propagated noise in
each of sk vectors. For LSQR,

rLSQR
k =

1
∑k

l=0 ϕl(0)2

k∑

l=0

ϕl(0)sl+1,

for LSMR see [C10, Sect. 3.3]. In this way LSQR and LSMR provide generally solutions
with lower true error (i.e. the norm of the difference between the approximation xk
and the exact solution xexact) than CRAIG. (Note that because of their mathematical
equivalence to selected methods above, the results apply also to CGNE and CGME
[43].)

The Golub-Kahan bidiagonalization can be used also to solve iteratively the Tikhonov
problem (2.7), see, e.g., [17] and the references therein, [24], [8], etc. Using the
well known equivalence between regularize-then-project and project-then-regularize ap-
proaches described in [18], one of the possibilities is to employ hybrid LSQR, where
the outer Golub-Kahan iterations for the data A and b are combined with the inner
Tikhonov regularization of the projected problem

Lk+yk ≈ β1e1.

Here in fact two regularization parameters are tuned - the number of bidiagonaliza-
tion iterations k and the Tikhonov parameter λ. Some ill-posed problems must be
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approached by a more general form of the Tikhonov regularization (also known as
weighted regularized LS)

(2.17) min
x∈Rn

(
‖Ax− b‖2W + λ‖D(x− x0)‖2

)
,

incorporating general weighted norm defined by a weighting matrix W ∈ Rm×m and
the initial approximation x0 ∈ Rn. The matrix D ∈ Rp×n, p ≤ n, comes often from a
discretization of the first or second order derivative operator, see [18, Chap. 8]. In the
paper [C9] we derived a hybrid approach based on the Golub-Kahan bidiagonalization
for the solution of (2.17) particularly effective for large scale problems. The develop-
ments were motivated by the algorithm presented in [32] that required costly evaluation
of the generalized SVD [55]. In [C9], we assume that an estimate on the covariance
structure of noise in the measured data b is given. The two regularization parameters
in the hybrid method are then selected automatically based on the χ2 principle.
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[31] J. Liesen, and Z. Strakoš, Krylov subspace methods: Principles and Analysis,
Oxford University Press, Oxford, 2013.

[32] J. Mead, and R. Rosemary, A Newton root-finding algorithm for estimating the
regularization parameter for solving ill-conditioned least squares problems, Inverse
Problems 25 (2009), art. no. 025002.

[33] V. A. Morozov, On the solution of functional equations by the method of regu-
larization, Soviet Math. Dokl. 7 (1966), pp. 414–417.
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linear approximation problem AX ≈ B with multiple right-hand sides, SIAM J.
Matrix Anal. Appl. 34 (2013), pp. 917–931.
DOI: 10.1137/120884237
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