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Souhrn 

Cílem mé disertační práce bylo vyvinout obecnou syntetickou metodologii 

pro přípravu dlouhých helicenů, která by zároveň umožnila funkcionalizaci těchto 

molekul vedoucí ke zvýšení jejich rozpustnosti či zavedení vhodné kotvící skupiny 

s vysokou afinitou ke kovovým povrchům, především ke zlatu. 

Jako klíčový krok v syntéze dlouhých helicenů byla pro tvorbu helikálního skeletu 

vybrána [2+2+2] cyklotrimerizace katalyzována komplexy přechodných kovů, která je 

vysoce regioselektivní, efektivní z hlediska atomové ekonomie a tolerantní k široké škále 

funkčních skupin. Pro syntézu výchozích oligoynů byl použit modulární přístup 

umožňující vysokou strukturální rozmanitost. Jednotlivé aromatické stavební bloky 

odvozené od resorcinolu byly pospojovány za použití Sonogashirovy reakce, přičemž 

poskytly sérii polyynů pro klíčovou cyklizační reakci. Tyto prekursory obsahovaly až 

dvanáct trojných vazeb s vhodným uspořádáním pro [2+2+2] cyklotrimerizaci, která 

umožnila konstruovat tři nové šestičlenné kruhy z každé trojice sousedních trojných 

vazeb. Touto metodologií byla připravena série dlouhých helicenů obsahujících až 19 

kondenzovaných kruhů. Čtyřnásobná [2+2+2] cykloizomerizace vedoucí k přípravě 

oxa[19]helicenu byla provedena ve vysokotlakém průtokovém reaktoru při 250 °C 

v přítomnosti CpCo(CO)2. Kolekce připravených molekul obsahuje racemické i opticky 

čisté heliceny nesoucí sirné nebo dusíkaté kotvící skupiny. 

Sirné kotvící skupiny byly zavedeny pomocí nukleofilní aromatické substituce za 

použití příslušných výchozích chlorderivátů helicenů. Díky nízké reaktivitě arylchloridů 

za podmínek cross-couplingových reakcích bylo možné použít komerčně dostupné 

výchozí stavební bloky obsahující atom chloru, který bylo možné nahradit požadovanou 

sulfanylovou kotvící skupinou za vyšší teploty (200 ‒ 270 °C) na konci syntetické cesty. 

Tímto postupem byla připravena série [5]-, [6]-, [7]- a [19]helicenů resp. jejich 

oxaderivátů nesoucích sirné kotvící skupiny v různých polohách. 

Souběžně se syntézou byl navržen a zkonstruován „break junction“ přístroj pro 

měření monomolekulární vodivosti nově připravených molekul v STM i MCBJ módu. 

Za použití tohoto přístroje byly změřeny vodivosti vybraných nově připravených helicenů 

se sirnými/dusíkatými kotvícími skupinami. Všechny heliceny měly relativně vysokou 

vodivost v řádu 10-3 G/G0. 



  



 

 

Summary 

The aim of my Thesis was to develop a general synthetic methodology for the 

preparation of long helicenes equipped with suitable functional groups that control their 

solubility or serve as anchoring groups for attachment to metallic surfaces, especially 

gold. 

The well-established transition metal catalyzed [2+2+2] cyclotrimerization of 

triynes was selected as the key scaffold-forming transformation in the synthesis of long 

helicenes because of its high regioselectivity, atom efficiency, functional group tolerance 

and general robustness. A modular approach was used for the preparation of the starting 

oligoynes, thus enabling a high level of their structural diversity. Individual resorcinol-

based aromatic building blocks were interconnected by Sonogashira cross-coupling 

reactions, providing complex cyclization precursors encompassing up to twelve alkyne 

units pre-arranged for the multiple [2+2+2] cycloisomerization to produce three six-

membered rings from each set of three neighboring alkyne units. Thus, a small series of 

long helicenes with up to 19 rings constituting the helical scaffold was synthesized. 

The quadruple cyclization leading to the longest oxahelicene prepared to date was 

performed in a high-temperature-high-pressure flow reactor at 250 °C in the presence of 

CpCo(CO)2. The set of compounds includes racemic as well as optically pure helicenes 

functionalized by sulfur or nitrogen anchoring groups. 

Sulfur anchoring groups were conveniently introduced into the helicene molecules 

by nucleophilic aromatic substitution employing the corresponding chloro helicenes. Due 

to its low reactivity in palladium catalyzed cross-coupling reactions, the chlorine 

substituent was advantageously carried through the synthesis to be eventually replaced 

by a sulfanyl group at high temperature (200 – 270 °C). A series of such helicenes with 

one or two sulfanyl or thioacetate groups attached at different positions was prepared 

using this approach including carba- and oxa- [5]-, [6]-, [7]- and [19]helicenes. 

In parallel to the synthesis, a state-of-the-art break junction (BJ) instrument was 

designed and constructed in order to study single-molecule conductance of the newly 

prepared compounds in the STM as well as mechanically controllable BJ modes. Three 

new helicene molecules with sulfur-based anchor groups and the pyridooxa[9]helicene 

derivative were investigated, showing conductance in the order of 10-3 G/G0. 
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1  Introduction: Current State of Art 

Helical shape of an object is not as rare a feature as it might seem, it is a very 

common phenomenon in the nature. It is possible to find it from the largest entities such 

as galaxies, across tornados, snails and pea sprigs, down to the notoriously known 

supramolecular structures of DNA and to helicenes at the molecular level. 

1.1  Helicene 

1.1.1 Definition and Characteristics 

A strict definition of helicenes is that they are ortho-condensed polycyclic aromatic 

compounds,1 in which benzene rings are angularly annulated to give helically-shaped 

molecules. This definition may be extended to cover also other (hetero)aromatics such as 

thiophene or pyridine, smaller and larger rings, partially saturated rings, etc. Names 

of helicenes are constructed from the word helicene used as the radix and a Latin prefix 

signifying the number of fused rings. A number in square brackets might be used instead 

of the prefix (e.g. [6]helicene is an equivalent of hexahelicene). An example of atom 

numbering of a helicene is shown in the Figure 1. 
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1 2
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Figure 1: Hexahelicene, (P)-1 and (M)-1 enantiomers 

Helicity is a type of chirality, which does not result from the presence of a chiral 

center, e.g. an asymmetrically substituted atom or a chiral axis caused by a hindered 

rotation around a single (double) bond, but from a steric repulsion between distant parts 

of the molecule, which forces it to adopt a helical shape. Depending on the handedness 

of the helicene, they are conventionally labeled either as P, if the helix winds away from 

the observer in a clockwise sense, or M, if the direction is counter-clockwise (Figure 1). 

Their helical shape makes us think of helicenes as molecular springs. This concept 

of spring-like behavior was supported by X-ray analysis and manifested by 
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calculations.2,3 It is possible to stretch the helix by at least 1.4 Å per turn4 without any 

bond rupture. The pitch of the helicene derivatives studied by Tanaka and co-workers 

changed depending on the type of solvent used for crystallization. Formation of clathrates 

with planar aromatic guest molecules was also described. 

1.1.2 Application 

The significant feature of helicenes is their chiral helical shape, which projects into 

their intriguing physical properties. One of those is an enormously high optical activity. 

Due to their conjugated π - electron system, helicenes are expected to behave as molecular 

conductors with a discrete and adjustable band gap and therefore they might be useful in 

molecular or organic electronics.5 Furthermore, the combination of their helical shape and 

conductive properties makes them suitable for investigation of spin polarization as well 

as magneto-chiral anisotropic effect.6 Their flexibility, low thermal conductivity and good 

electrical conductivity suggest helicenes as promising candidates exhibiting the thermo-

power and piezoelectric effect.2 

Optically pure helicene derivatives have also found applications in enantioselective 

organocatalysis7 (the first report on this topic comes from 1987)8, or as chiral ligands 

in transition metal complexes. For example, enantioselective Pd-catalyzed allylic 

substitution,9 Suzuki-Miyaura coupling,10 or catalytic hydrogenation have already been 

studied.11,12 

Other perspective applications of helicenes include chiral sensing of amines, 

alcohols, or phenols based on fluorescence quenching,13 or development of materials for 

circularly polarized light-emitting diodes taking advantage of their high fluorescence in 

the combination with an enormously high CD response.14 Furthermore, it is possible to 

use helicenes for enantioselective sensing.15 

Very recently, helicene-based molecules applied in dye-sensitized solar cells were 

reported.16 They contained a push-pull system and were used in either molecular or 

polymeric form.17 

Helicenes also found applications in materials science due to their second-order 

non-linear optical properties induced by supramolecular structure folding,18 or as electric 

field-responsive liquid crystals.19 
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1.1.3 Synthesis 

Synthesis of helicenes and helicene-like molecules is a challenging task, therefor it 

is natural that many different approaches have been developed since the first synthetic 

report on pentahelicene 3 in 1918 by R. Weitzenbök and A. Klingler20 (Scheme 1). This 

Chapter briefly describes the synthetic methods leading to the longest reported helicenes. 

COOHHOOC

NH2 NH2



5%

2 3  

Scheme 1: The first preparation of [5]helicene 3 under thermal conditions 

It took almost forty years before hexahelicene was prepared by M. S. Newman and 

D. Lednicer in 1955 (Scheme 2).21 It was published the following year and the synthesis 

consisted of ten steps.22 The two central rings of the [6]helicene 1 were built sequentially, 

one after the other. The first ring is closed by anhydrous hydrogen fluoride to provide 

the intermediate 5. The ketoacid 5 is then reduced and cyclized via acyl chloride to yield 

6. The ketone 6 is then further reduced and dehydrated to give the hexahelicene 1. 
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Scheme 2: Sequential synthesis of [6]helicene 1 

1.1.3.1 Photoinduced Cyclodehydrogenation 

A decade later, in 1967, photocyclodehydrogenation (PCDH) was applied for 

the first time in the synthesis of [7]helicene.23 This methodology used irradiation by 

a mercury lamp at ~450 nm in the presence of molecular iodine. The mechanism of 

PCDH was studied in detail at various stilbene derivatives including the naphthalene 

analogues and described in 1974 (Scheme 3).24 
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Scheme 3: Mechanism of PCDH shown on the synthesis of [5]helicene 324 

Even though only the Z isomer of the starting stilbene derivative gives rise to the 

desired helicene product, a mixture of E/Z isomers can also be used in the process due to 

their smooth isomerization under the photochemical reaction conditions. R. H. Martin 

and co-workers successfully used this synthetic method for the preparation of a 

homologous series of carbahelicenes, the longest representative was nonahelicene.25 

Later on, in 1975, even longer homologs, [11]helicene 11 (Scheme 4) to [14]helicene, 

were prepared using the same approach.26 

I
2
, h

benzene
84%

10 11
 

Scheme 4: [11]Helicene 11 prepared via photocyclodehydrogenation26 

Finally, in 2015, Makoto Fujita et al. applied sextuple PCDH reaction to prepare 

[16]helicene 13 derivative bearing two silylated hydroxy groups (Scheme 5), which could 

eventually be cleaved off to produce the parent hydrocarbon.27 
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Scheme 5: Synthesis of [16]helicene 13 using PCDH27 

Careful design of the PCDH precursor is essential for good yields and 

regioselectivity in the synthesis of longer helicenes. In the case of [16]helicene 13, only 

the precursor with the structure [2]+[1]+[1]+[2]+[1]+[1]+[2], where “[n]” is the number 

of ortho-fused benzene rings and “+” signifies the vinylene linkers, was found to give a 

decent yield of the desired product. Other sequences of stilbene unites were vulnerable to 

form the side products with the motives of 15 and 16 (Scheme 6).28 

++
hn

14 315 16
 

Scheme 6: Typical by-products of dehydrocyclization of precursor 14 

Even though PDCH reaction proved to be a powerful method for synthesis of a wide 

range of helicenes, it suffers from two main drawbacks. The first is a rather poor 

regioselectivity, which results in the formation of the dibenzoanthracene-type side 

product 16 beside the desired [5]helicene 3. Moreover, some helicene products are 

susceptible to further oxidation under the reaction conditions, leading for example to 

benzoperylene 15 (Scheme 6).28 A detailed study of the reaction conditions showed the 

possibility of suppressing overoxidation by adding a copper complex.29 The second major 

disadvantage is the difficulty of controlling absolute stereochemistry. Attempts at 

application of either single- or dual-wavelength circularly polarized light for asymmetric 

induction so far failed to provide any decent enantiomeric excess of 0.8%.30 
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A special type of the photochemical approach is the photochemical 

cyclodehydrochlorination (CDHC),31 which is an alternative to the Scholl reaction. 

Judging by the lack of side products, this reaction is expected to proceed via 

electrocyclization, resulting in good regioselectivity. Contrary to that, bromo and iodo 

compounds undergo the same reaction via a radical mechanism, generating all possible 

side products. The CDHC reaction was tested in the synthesis of various aromatic 

compounds such as triphenylene or dibenzo[5]helicene 18 (Scheme 7). Recently, 

the same methodology was used for the synthesis of helically coiled graphene 

nanoribbons,32 which are expected to behave as semiconductors, being similar to the 

graphene but with a well-defined band gap. 

Cl

Cl

17 18

h
acetone

Na
2
CO

3
 (aq.)

91%

 

Scheme 7: Photochemical CDHC in the synthesis of dibenzo[5]helicene 1831 

1.1.3.2 [2+2+2] Cycloisomerization 

Intramolecular [2+2+2] cyclotrimerization of alkynes is another type of reaction 

frequently used for the preparation of helicenes and helicene-like molecules. 

Intermolecular trimerization of various acetylenes to form benzene derivatives was 

first observed by W. Reppe in 1948.33 In 1986, K. P. C. Vollhardt reported a novel 

approach to the synthesis of angularly condensed polyaromatics with alternating aromatic 

benzene cores and antiaromatic butadiene rings using cobalt catalysis.34 In principle, this 

methodology has a potential to be used for the synthesis of longer [n]heliphenes (where 

n is number of benzene rings in the structure). However, the yield of the cyclization step 

is quite low. Despite this drawback, [9]heliphene, containing altogether seventeen rings 

in the helix, was successfully prepared. The synthesis of the [7]heliphene 20 is shown in 

Scheme 8.35 
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Scheme 8: [7]Heliphene 20 prepared via multiple [2+2+2] cycloisomerization35 

Experimental36 as well as theoretical37 studies suggest a mechanism shown in 

Scheme 9. After dissociation of labile ligands (carbon monoxide), two triple bonds are 

coordinated to cobalt to form the complex 21. Unless trapped in a counter-productive 

cyclodimerization to the cyclobutadiene complex 28, the catalytic cycle delivers the 

metallacyclopentadiene complex 22 with an available coordination site, which is then 

taken by the third acetylene unit to create the complex 23. The η4-bound arene complex 

26 is proposed to be formed via the bridged metallanorbornadiene complex 24 or 

metallacycloheptatriene complex 25. The structure of the proposed intermediate 26 is 

supported by the existence of similar η4-complex (Figure 2).36 The catalytic cycle is 

completed by the release of the aromatic product 27 through the ligand exchange with 

two new alkynes. 

 

Figure 2: X-ray structure of Co(I) η4-complex [3]heliphene36 (hydrogen atoms were omitted 

for clarity) 
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Scheme 9: Catalytic cycle of alkyne [2+2+2] cyclotrimerization 

A novel concept of the synthesis of ortho-fused helicenes by means of 

intramolecular [2+2+2] cyclotrimerization of triynes was first published by I. Starý et al. 

(Scheme 10).38 

TMS

TMS

TMS

TMS

CpCo(CO)
2

71%

30 31
 

Scheme 10: Synthesis of tetrahydro[5]helicene 3138 

This approach was then extensively developed and a plethora of variously 

substituted [5]- to [7]helicenes 33 (Scheme 11) and helicene-like compounds have been 

successfully synthesized using transition metal catalysts based mainly on cobalt(I) or 

nickel(0).39 
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Ni(cod)
2

51%
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Scheme 11: Synthesis of [7]helicene 33 by [2+2+2] cyclotrimerization of cis,cis-

dienediyne 32 mediated by a nickel(0) complex39 

The reason why the formation of the aromatic core is so efficient is that during the 

cyclotrimerization step approximately 140 kcal·mol-1 are released. This significant 

energetic gain is mostly the result of aromatization. 

It is worth mentioning that rhodium(I) complexes are also frequently used as 

catalysts for the [2+2+2] cyclotrimerization and they provide very high turnover numbers. 

However, there is one drawback. Rhodium catalyzed cyclotrimerization, systematically 

investigated by Tanaka et al.,40 has an additional reaction channel, the so called 

[2+1+2+1] cycloisomerization, which results in regioisomeric products with an 

anthracene-like structural motif. The main reaction pathway and the plausible side 

reaction channel are shown in Scheme 12. While the main reaction pathway leads to the 

desired helical product 36, the side channel provides its regioisomer 39. The mechanism 

of the competitive reaction involves the isomerization of the metallacyclopentadiene 

intermediate 35 to 38, which proceeds via the butadiene complex 37. The regioisomeric 

product 39 is then formed during the cyclization step. 
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Scheme 12: Mechanism of [2+2+2] vs. [2+1+2+1] cyclotrimerization of triynes under 

rhodium catalysis40 

Despite of the presence of a side reaction channel, rhodium(I) catalyzed 

cyclotrimerization of alkynes was successfully used in the preparation of many helicenes. 

Scheme 13 shows the compositions of the reaction mixtures when attempting the 

synthesis of [5]- and [7]helicene derivatives 42 and 43, respectively.41 A similar approach 

was used to synthesize extended homologues, up to [11]helicene 60 (as mentioned later 

in Scheme 20). 
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Scheme 13: Rhodium(I) catalyzed [2+2+2] cyclotrimerization41 

1.1.3.3 Other Methodologies 

Diels-Alder reaction is another powerful synthetic tool, rewarded by the Nobel 

Prize, which found its use in the preparation of helicenes. It was first published by Liu 

and Katz in 1990 for the [5]helicene bis(quinone) 47 (Scheme 14).42 Two years later, 

the same approach was used in the preparation of the homologous [6]helicene 

bis(quinone) 4943 but, in both cases, the yields were rather low, 17% for [5]helicene 4742 

and 6% for [6]helicene 4943, respectively. 

O O

O

O

O

O

O O

O

O

O

OAcOH, reflux
6%

46 47 48 49

CCl
3
COOH

toluene, reflux
17%

 

Scheme 14: Diels-Alder reaction applied to the synthesis of [5]helicene bis(quinone) 4742 

and [6]helicene bis(quinone) 4943 

On the other hand, good efficiency of this methodology was proven by the 

multigram-scale synthesis of (hetero)[7]helicene44 51 and its derivatives (Scheme 15).45 
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Scheme 15: Diels-Alder reaction applied to the synthesis of the [7]helicene-bis(quinone) 

derivatives 5144,45 

In 2006, Collins and co-workers first used the ring-closing metathesis of olefins 

catalyzed by ruthenium complexes (Grubbs catalysts) in the synthesis of a series of [5]- 

to [7]helicenes, such as 33, and their derivatives in good yields (Scheme 16).46 However, 

this approach seems to be less suitable for the preparation of longer helicenes, because 

only one ring at a time is formed by the cyclization process and no reports on the synthesis 

of higher homologues by olefin metathesis have appeared in the literature since. 

[Ru]

80% Ru

N NMes Mes
Cl

PhCl
PCy3

52
33

 

Scheme 16: Ring-closing metathesis in the synthesis of [7]helicene 3346 

A very innovative approach with a novel point of view was demonstrated by Werz 

and co-workers in 2014.47 They truncated the helicene scaffold down to a simple 

all-(Z)-configured polyene 54. In this design, the helical shape as well as the π-

conjugation is preserved. The helical scaffold is constructed in a cascade of 

carbopalladation reactions (Scheme 17). Up to five five-membered rings are formed in 

this domino sequence, which force the all-(Z)-polyene to fold into a coil. The longest 

truncated helicene prepared from tetrayne 53 (n = 2) is an equivalent of [11]helicene 54. 
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Scheme 17: Truncated [11]helicene 54 prepared by carbopalladation of oligoyne47 

1.1.3.4 Nonracemic Helicenes and Methods of their 

Preparation 

Racemization barrier, which is reflected by the configuration stability of the 

respective helicenes, is shown for the [5]-,48 [6]-,22 [7]-,49 [8]-49 and [9]helicene49 in 

Figure 3. It is clearly visible that the height of the barrier does not grow proportionally 

to the length of the helicene over the whole range, but rather levels off at approximately 

45 kcal·mol-1. Consequently, any helicene similar to or longer than [6]helicene 1 is 

conformationally stable at room temperature, whereas [5]helicene 3 racemizes readily at 

25 °C. 

 

Figure 3: Racemization barriers of [n]helicenes (for n = 5 – 9)  

file:///E:/Jindra/Disertace/Rac-bar.xlsx
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Resolution of racemic helicenes by derivatization or co-crystallization with chiral 

auxiliaries or by chromatography on a chiral stationary phase still remains the most 

versatile approach to optically pure helicenes.50 Nevertheless, several enantio- or 

diastereoselective synthetic methods have been developed over the recent years. The use 

of a chiral transition metal catalyst in the key cyclization step seems to be a promising 

concept, as the chirality of the catalyst can be directly transfers into the helicity of the 

final product. An illustrative example was reported in 2008: kinetic resolution of the 

racemic axially chiral 52, which was subjected to ring-closing olefin metathesis, led to 

the enantioenriched (M)-[7]helicene 33 (Scheme 18).51 

Ru

N N Me
Cl

PhCl
PCy3

tBu tBu
tBu

MeO

iPr

52

(M)-33

[Ru], C
6
F

6

38%, 80%ee

 

Scheme 18: Enantioselective ring-closing olefin metathesis in the synthesis of the 

enantioenriched [7]helicene 3351 

Recently, optically pure helicene-based NHC ligands52 as well as commercially 

available axially chiral phosphines such as QUINAP53 were shown to be effective in 

controlling helicity of dibenzohelicenes produced by the nickel(0) catalyzed [2+2+2] 

cyclotrimerization of respective triynes, reaching up to 86%ee (Scheme 19). 

N N
+ [5]Hel[5]Hel

Cl
–

O

O

Tol

Tol

iPr

iPr

[5]Hel = 

55 (P)-56

Ni(acac)
2
, EtMgCl

NHC-precursor

86%, 86%ee

 

Scheme 19: Enantioselective [2+2+2] cyclotrimerization of triyne 55 using helically 

chiral NHC ligands 
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Another example of a successful enantioselective synthesis based on [2+2+2] 

cyclotrimerization describes the use of an axially chiral phosphine ligand attached to 

cationic rhodium, as reported by Tanaka and co-workers (Scheme 20).54 The level of 

stereoinduction was excellent, 91%ee in the case of [11]helicene (M)-60, albeit with 

moderate preparative yield of 22%. 
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2
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Scheme 20: The use of the chiral rhodium-based catalyst in enantioselective [2+2+2] 

cyclotrimerization of hexaynes 57 and 59 to oxahelicenes 58 and 60 respectively 

All of the above examples of enantioselective catalysis indicate a very limited 

substrate scope and incomplete transfer of chirality to obtain enantiopure helicenes. 

Contrary to that, the well-established method of diastereoselective [2+2+2] 

cyclotrimerization of centrally chiral triynes predictably provides diastereomerically and 

enantiomerically pure helicenes over a wide range of substrates.55,56 This general method, 

its principles were firstly demonstrated by Starý et al. on synthesis of helicene-like 

compounds in 2005,57 is based on the thermodynamic preference of one of the 

diastereomers caused by steric repulsion (1,3-allylic type strain) between methyl and tolyl 

groups attached to the newly formed central benzene ring (Figure 4). 
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Figure 4: Energy profile of interconversion of (M,R,R) and (P,R,R) diastereoisomers of 

the oxa[5]helicene derivative 61 (Gaussian 09, B3LYP/cc-pVTZ)55 

Regardless of the barrier to epimerization, the stereochemical outcome of the 

reaction is always governed only by the energy difference between the two diastereomers. 

This allows the synthesis of the optically pure [5]helicene derivative (M,R,R)-61, in which 

the (P) helix is energetically disfavored. Thus, the absolute configuration on the carbon 

stereocenter(s) controls the resulting helicity (Scheme 21). 
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Scheme 21: Diastereo- and enantioselective [2+2+2] cyclotrimerization of the optically 

pure triyne (R,R)-62 to the enantio- and diastereomerically pure oxa[5]helicene 

(M,R,R)-6155 
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1.1.3.5 Heterohelicenes 

Helicenes containing heteroatoms in their backbone, such as nitrogen, sulfur, 

phosphorus, or the aforementioned oxygen, are generally called heterohelicenes. 

Phosphahelicenes58,59 were synthesized for use as chiral catalysts or ligands. However, 

only a few examples are known, as opposed to helicenes bearing phosphine groups, such 

as phosphahelicene (P)-64 having the phosphorus atom incorporated in the helical scaffold 

of [7]helicene (Figure 5). 

Azabora[6]helicene 63 and its higher homologues (up to azabora[10]helicene) were 

prepared using photooxidation as the helix-forming step.60 All these compounds showed 

moderate to intense luminescence of nonpolarized as well as the circularly polarized light 

as the result of the boron atom incorporated in the helix being coordinatively bonded to 

the pyridyl nitrogen atom. The quantum yield depends on the number of boron atoms and 

the number of rings in the helix. 

Very recently, a new class of silicon-containing helicenes was also synthesized 

employing rhodium catalysis.61 Another synthetic approach is based on a cascade 

carboboration reaction that results in closing the rings one by one during the single-step 

procedure.62 Surprisingly, no fluorescence was detected at silahelicenes such as 65. 
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Figure 5: Azabora[6]helicene 63,60 phospha[7]helicene 6458 and sila[7]helicene 6562 

Azahelicenes are much more common compared to phospha- or borahelicenes. The 

nitrogen atom(s) are usually part of pyrrole63 or pyridine rings53 that are integral part of 

the helicene scaffold (Figure 6). These compounds are mostly used as chiral catalysts or 

in on-surface/materials science. Especially the pyridine rings coordinate well to d-metals 

and are thus frequently used as anchoring groups. Synthetically, azahelicenes are 

prepared by chemical oxidation, photooxidation (66)63 and also 
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[2+2+2] cyclotrimerization of nitrogen-containing heterocyclic triynes (67)53 or 

diynenitriles, where the pyridine ring is constructed during the cyclization step (68).64 

N
H
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NH
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NH

N
H

N
N

66 67 68
 

Figure 6: Representative azahelicenes 

Thiahelicenes contain at least one thiophene ring in their helical backbone. 

The synthesis of thiahelicenes is commonly based on photocyclodehydrogenation 

of thienylethenes such as 69 to deliver the respective helical product such as the 

[7]helicene analog 70 shown in Scheme 22.65 
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Scheme 22: Synthesis of tetrathia[7]helicene 70 by photocyclodehydrogenation of the 

respective heterocyclic diene 6965 

This approach was firstly described in the late 60’s.66 Since then, the methodology 

was developed to afford up to [15]thiahelicenes.65 However, the low yields of the 

cyclization step remain a serious disadvantage of this method, decreasing rapidly with 

increasing number of helix rings down to 8% for [15]thiahelicene. 

Recently, an alternative synthetic pathway was described, in which the thiophene 

ring is constructed after the helix formation (Scheme 23).67 The scaffold of (P)-71 is 

prepared by nickel catalyzed [2+2+2] cyclotrimerization of the respective triyne68 and the 
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thiophene ring is annulated in the last step, thus elongating the thiahelicene helix and 

delivering the product (P)-72. 
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Scheme 23: Annulation of the thiophene ring in the synthesis of thiahelicene (P)-7267 

1.2  Conductivity at the Nanoscale 

The idea of molecular electronics and engineering arose in the 1950’s and was 

published by A. von Hippel in 1956.69 He proposed that the only way to satiate the 

“hunger” for new electronic materials is not to scale down the size of macroscopic 

electronic components but to design their properties and features directly at the level of 

molecules. The motivation for using the molecules in the “bottom-up” approach towards 

nanoscale electronics roots from easy modifiability of their structure. Also, molecules can 

be prepared as pure, uniform and well-defined species according to a relatively simple 

and reproducible procedures. The behavior of nanoscale electronics was predicted by 

Aviram and Ratner in 197470 and the theory is being continuously developed so that it 

can cover the newly discovered phenomena. But the experimental studies were enabled 

first with the rapid development of microelectronics, especially transistors71 and 

computers in the 80’s. Several methods were designed and developed to study objects at 

the nanoscopic, molecular and even atomic level, for example scanning electron 

microscopy (SEM),72 atomic force microscopy (AFM),73 scanning tunneling microscopy 

(STM)74 and the break junction (BJ) technique.75 The first report on the conductance of a 

single molecule was published in 1997 for 1,4-benzene dithiol (BDT) using the 

mechanically controllable break junction (MCBJ) technique.76 Since then, many 

molecules were studied with respect to their single-molecule electrical properties.77 

1.2.1 Break Junction Techniques 

This Thesis focuses on the BJ techniques used in the study of the single-molecule 

conductance. These techniques are described in more detail in this Chapter. 
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Several types of break junction experiments have been developed over the past 

decades. These techniques are designed to form nanoscale contacts and, especially, to 

study properties of single molecules. 

Apart from a few scarcely used techniques such as the electromigration 

technique78,79 or electrochemical80,81 break junction, the majority of nanoscale 

conductance measurements has been performed by employing either a scanning tunneling 

microscopy-based break junction (STM-BJ) or mechanically-controllable break junction 

(MCBJ) techniques. Both of these are discussed in more detail in the following text. Even 

though the physical principle is the same in both types of experiments, there are 

significant differences in the device design: While the nanoscale contacts in the STM-BJ 

are asymmetric and the molecular junction is oriented vertically, in the MCBJ the contacts 

are symmetrical and the junction is horizontal. In both of these methods, piezo actuators 

are used to break and close the junctions to achieve sub-Å resolution. 

1.2.1.1 General Principles 

The conductance of the gold nanowire decreases proportionally to the cross-

sectional area of the conductor as the junction stretches and the wire gets thinner. The 

diffusive conductance in bulk conductors is affected by atomic defects in the material and 

thermal dislocations of atoms in the crystal lattice. This behavior of bulk conductor can 

be described using classical continuum models, namely by Ohm's law (Formula 1),82 

where A is the conductor’s cross-section area, L is the length of the conductor and σ is 

the specific conductivity of the material. 

𝐺 =
𝜎𝐴

𝐿
=

𝐼

𝑉
       (Formula 1) 

The conductance G is also defined as the quotient of the current I to the applied 

voltage V and it is constant in bulk conductors of the fixed geometry. 

On the other hand, when the conductor width is reduced to the atomic scale, the 

electrode is not continuous at infinitesimal volume of the matter but is created by integer 

number of atoms. Due to the atomic structure of a conductor, continuum models fail and 

are no longer applicable. The discontinuity results in discrete conductance values, so 

called “conductance quantization”. Therefore, step-wise conductance traces are observed 

with typical conductance values corresponding to n × G0 (n = 1, 2, 3 ...). There is only 

a certain number of atoms in the cross-section of the contact and their individual 

javascript:r(0)
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contributions to the total conductance value are roughly additive. The “conductance 

quantization” correlates also with the ballistic transport of the charge carriers (electrons), 

which can travel through the junction only at discreet energy levels, so-called 

transmission chanels.83 Furthermore, as the contact gets sharper more electrons can 

scatter back and the range of k-vectors that can participate in transmission (electron/hole 

transport through the junction is called transmission) gets narrower. The number of 

accessible transmission channels in a nanowire determines its total conductance, which 

is thus quantized in increments of G0. The G0 (von Klitzing constant) has the value of 

7.748091·10-5 S, which corresponds to resistance of 12.9 kΩ. Mathematically, the total 

conductance is described by Landauer formula (Formula 2),84 which sums up all 

transmission probabilities Ts of the transport channels at the energy equal to the potential 

µ. e is the elementary charge of the electron and h is the Planck constant.  

𝐺 = 𝐺0 ∑ 𝑇𝑠(𝜇)𝑛 =
2𝑒2

ℎ
∑ 𝑇𝑠(𝜇)𝑛  (Formula 2) 

The theory was experimentally proven a few decades later by studying atomic 

contacts between metallic nanoelectrodes.85 

The above described conductance regime is typical for atomically sharp metallic 

contacts. It is called ballistic transport and it is elastic as the electron tunnels via available 

atomic orbitals without interaction and energy change. 

The situation differs in the non-contact regime once the electrodes are separated. 

In general, several types of conduction mechanism come into play in the non-contact 

regime such as direct tunneling (Formula 3), thermionic emission, hopping conduction 

(Formula 4) or Fowler-Nordheim tunneling (field electron emission).86 The two 

tunneling mechanisms, which determine the conductance of a system mostly at ambient 

temperature and voltage close to zero volts are described by Formula 3 and Formula 4 

where tunneling current density J dependence on bias voltage V, temperature T, effective 

electron mass m*, elementary charge e, insulator thickness d, Schottky barrier height 

(work function) Φ, Boltzman constant kB, band activation energy of electrons ∆E, ħ 

reduced Planck constant 

Direct tunneling 
𝐽~𝑉 𝑒

(
−2𝑑√2𝑚∗𝑒𝛷

ℏ
)
 

(Formula 3) 

Hopping 

conduction  𝐽~𝑉 𝑒
(

−ΔE/kBT
d

)
 (Formula 4) 
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Even more interesting junctions can be formed when a nonlinear semiconducting 

element such as a molecule is placed between the metallic electrodes. This is called 

molecular junction and can be studied using techniques described later. Here, several 

features come into play: (i) Range of molecular orbitals, (ii) HOMO/LUMO gap and 

alignment of the Fermi levels, (iii) a localization/delocalization of the molecular orbitals, 

(iv) anchoring groups and their coupling to electrodes, (v) contact geometry etc. Also, the 

range of conducting regimes is extended, namely with possible inelastic tunneling, where 

the electron can exchange energy with the molecule, and hopping mechanisms. 

All previously mentioned conduction mechanisms operate in electron transport 

processes at nanoscale and single-molecule level at the same time. In addition to the direct 

tunneling, the hopping mechanism usually plays the most important role in molecules. 

This type of conduction mechanism relies on their ability to move the charge through 

localized states. A so called multiple trapping takes place in larger molecules, which is 

defined as a series of jumps between several localized states, leading inevitably to lower 

conductance of these molecules. All these events, including fluctuation of the coupling 

between the metallic electrodes and the molecule’s anchoring groups, attribute to the 

broadening of conductance peaks in the measurement.87 

Formula 577 describes the influence of the contact with the electrode on the total 

conductance of the metal-molecule-metal junction. This simplified form is valid only for 

the case of symmetrical contacts (a symmetrical molecule is attached between the metallic 

electrodes made of the same metal). Here Γ is the effective coupling between the 

anchoring group and the electrode, and Δ is the difference between Fermi energies of the 

molecule and the metal. 

𝐺 =
2𝑒2

ℎ

4Γ

Δ2+4Γ2
= 𝐺0 

4Γ

Δ2+4Γ2
 (Formula 5) 

The molecular conductance can be calculated using more sophisticated transport 

theories, such as non-equilibrium Green’s function approach (NEGF)88,89 with density 

functional theory (DFT) method, or using semi-empirical methods such as Slater-Koster 

tight-binding model. 

The basic principle of an experimental conductivity measurement at nanoscale is 

quite simple (Figure 7). A metallic conductor is stretched by the external force and 

thinned till it breaks thus resulting in two separated atomically sharp electrodes. During 

the process of linear electrode separation the distance-dependent (resp. time-dependent) 
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current is recorded at a constant voltage. Time-dependent current provides the so called 

“breaking curves” (Figure 7). Alternative expressions which are used for the time 

dependent current are “breaking traces”, “conductance curves”, or “conductance traces”. 

 

Figure 7: Typical breaking curve of a gold wire (black line) with corresponding electrode 

geometries; (a) bulk electrode (continuous conductivity; green dotted line); (b) 2-atom 

contact with conductance 2 G/G0; (c) 1-atom contact with conductance 1 G/G0 (red 

ellipse); (d) snap-back (a moment of interruption); (e) direct tunneling, exponential 

conductance decay (red dotted line) 

Events at atomic level are typically chaotic, unpredictable and cannot be controlled 

by the BJ experiment, especially at room temperature, which necessitates statistical 

processing of the acquired data.90 The breaking-curves data (Figure 7) are accumulated 

over a certain period of time, because a single conductance trace has a very limited 

interpretation value. The linear electrode separation simplifies the statistical processing, 

because all acquired values have the same statistical weight. Then the data are statistically 

processed into the form of conductance histograms (Figure 8).91  

a) 

b) 

c) 

d) 

d) 

e) 

b) 
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Figure 8: (a) A typical logarithmic conductance histogram of gold (constructed from 

~12000 curves); (b) a single conductance curve; (c) 2D histogram (constructed from 

~12000 curves)  

Values in histograms are usually normalized to the number of curves. Two types of 

histogram are typically used for data representation: (i) linear (with linear scale on current 

axis); (ii) logarithmic (with logarithmic scale on current axis). The linear histogram is 

only useful for a range of up to one decade, whereas the logarithmic one easily covers 

several orders of magnitude. Stability and preference of an individual conductive 

conformation (density of state at the given conductance) is represented by the number of 

counts at the corresponding conductance level (histogram bin matching to the 

conductance interval).92 In other words, the peak in the spectrum corresponds to 

accumulations of certain conductance values during the measurement. Single gold atom 

bridge conductance is highlighted in red oval (Figure 8b). The corresponding peaks in 

logarithmic histogram (Figure 8a) and 2D histogram (Figure 8c) are pointed with the red 

arrow. A 2D histogram (Figure 8c) can be constructed by correlating conductance traces 

with the separation distance of the electrodes, providing additional information about the 

effective length of the molecule trapped in the junction.91,93 

When a molecule is attached between the metallic electrodes, the conductance of 

the system does not decrease exponentially with the increasing electrode separation 

(Figure 9). This event results in an appearance of (i) plateaus in the conductance traces 

(Figure 9b); (ii) peak in the logarithmic histogram (Figure 9a) and (iii) peak in the 2D 

histogram (Figure 9c). Broadening of the conductance peak in the histogram correlates 

a) b) c) 
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to various junction configuration (e.g. molecule binding angle, internal molecule rigidity, 

molecule length etc.).90,94 

 

Figure 9: (a) A typical logarithmic conductance histogram of 4,4’-bipyridine 73 

(constructed from ~32000 curves); (b) a single conductance curve; (c) 2D histogram 

(constructed from ~32000 curves)  

1.2.1.2 Mechanically Controllable Break Junction  

The term of “mechanically controllable break junction” (MCBJ) was first 

introduced in 199295 for an extension of the previously used break junction technique75. 

A simplified scheme is shown in Figure 10. 

A gold lead with a free-standing under-etched constriction d (bridge or junction) in 

its middle is placed on an electrically insulated flexible substrate with thickness t. 

The insulator layer (grey in Figure 10) is usually made of a polyimide film (Kapton) due 

to its high resistivity of ~1016 Ω·cm, chemical, mechanical, and thermal stability, and also 

good adhesion to various materials. For the flexible substrate, which must survive 

thousands of bending cycles, elastic materials such as phosphorus bronze or spring steel 

are used.90 A pushing rod presses from the bottom against the gold bridge while the sides 

of the substrate are held in position by two counter blocks. The junction is stretched until 

it breaks with electrodes separation s (Figure 10b). Ideally, this results in two atomically 

N N

73
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sharp electrodes, which can be brought back into contact by relaxing the substrate 

(retraction of the pushing rod; Figure 10a). 

 

Figure 10: Schematic drawing of a mechanically controllable break junction experiment: 

(a) closed bridge; (b) open bridge  

The distance between separated electrodes s can be adjusted with a sub-Å accuracy 

by moving the pushing rod. The precision depends on the value of the attenuation factor 

r (Formula 6), which is an expression of the gearing property given by the specific 

geometry of the particular substrate (chip). Electrode separation s is proportional to the 

stroke h, the under-etched length of the bridge d and the chip total thickness t divided by 

the second power of chip effective length L (Formula 6).96 Typical values of r are usually 

in the order of 10-5. 

𝛥𝑠 = 𝑟𝛥ℎ = (
6𝑑𝑡

𝐿2 ) 𝛥ℎ (Formula 6) 

Main advantages of the MCBJ technique are: (i) high mechanical stability of the 

contact formed, (ii) short distance and fixed geometry of the electrodes together with 

a large attenuation factor enabling adjustments of the gap (s) with sub-Ångström 

resolution. 

1.2.1.3 Scanning Tunneling Microscopy-Based Break Junction 

In the STM-BJ97,98 experiment, the electrode system is asymmetric, one of the 

electrodes is a horizontally oriented flat metallic surface, whereas a very sharp tip, 

approaching the surface in a perpendicular direction, serves as the other electrode 

(Figure 11). The instrument is very similar to a scanning tunneling microscope99 and 

thus, in principle, also allows nanoscopic imaging of the surface of the planar electrode. 

The most significant difference in the experimental setup between MCBJ and STM-BJ is 
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the direct connection of the metallic (usually gold) tip to the piezo actuator in the STM 

instrument. Due to the absence of any gearing effect, a much higher precision of the 

actuator motion control is required. 

In the imaging mode of the STM technique, a non-contact current is usually 

measured. When compared with the MCBJ, the conductance may by lower by up to 

several orders of magnitude. However, in the contact regime the results do not differ 

significantly. 

 

Figure 11: Schematic drawing of a STM-BJ experiment: (a) closed junction; (b) open 

junction  

The main advantage of this technique is the possibility of STM imaging directly 

before the single-molecule conductance experiment, simpler setup, faster data acquisition 

and lower contamination, especially in the case of an UHV apparatus. 

1.2.1.4 Materials Used in the Break Junction Techniques 

Various materials are used as electrodes in single-molecule conductance 

measurements such as highly oriented pyrolytic graphite (HOPG),100,101 semiconductors 

(e.g. GaAs),102,103 and especially metals, which are generally preferred in both of the break 

junction techniques introduced above, with gold being the ultimate material of 

choice.76,97,104 

Under ambient conditions, gold is advantageously used for its ductility and 

inertness towards oxidation by oxygen in the air. In comparison, both of the other noble 

metals, silver and copper, readily form oxides. These oxides form a semi-conductive 

layer, which strongly interferes with the conductance measurements.105 
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When breaking the junction, all three of the noble metals from the group 11 prefer 

to form one-atom contacts with one accessible transmission channel. As explained above, 

the stability of the contact corresponds to the bin-counts in the respective histogram 

(Figure 12). As shown in experiments performed at 4.2 K in UHV, the three linear 

histograms for copper, silver and gold display a high level of similarity, which is caused 

by the comparable electronic properties of atoms with electron configuration d10s1.106 

 

Figure 12: Linear conductance histograms of pure d10s1 metals106 (group 11 of the 

periodic table) 

This simplified view based only on the number of valence electrons correlates well 

with the observations on other d-group metals, which have two electrons in their valence 

shell such as nickel107 or platinum108. Their electron configuration is d8s2 (Figure 13). 

 

Figure 13: Comparison of conductance histograms of elements in the group 10: 

(a) nickel107 and platinum108; (b) alloy of nickel and copper107  

a) b) 

file:///E:/Jindra/Disertace/Pt-Ni.xlsx
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Purity of the material used as electrodes also plays a very important role in the 

metal-metal bridge formation because contaminants can strongly influence the contact 

structure, thus causing the broadening or even vanishing of peaks in the conductance 

histograms as a result of too many contact states (Figure 13b).107 

1.2.2 Conductance of Organic Molecules 

Molecules to be investigated at the molecular level using the break junction 

techniques need to be equipped with anchoring groups, which are suitable to bind the 

molecule to the bulk material of the electrode. An anchoring group is a part of the 

molecule, which has a high affinity to the electrode surface.  

A number of different anchoring groups have been investigated in the last 

few decades in order to elucidate their on-surface behavior and conductance 

properties.77,109–111 The most frequently studied ones are thiols,112 despite the complexity 

of their bonding motifs. It was shown that many redox events take place on the gold 

surface and the thiols spontaneously disproportionate to form, for example, disulfides.113 

Various modes of thiophenol bonding to the gold surface are shown in Figure 14. 

S S
S

 

S S

  

S

S
 

S
 

 

Figure 14: Thiol-gold binding motifs113 

Quantitatively, an anchoring group can be characterized by the bond strength, 

which can vary from coordination to covalent bonding or even ionic bonding. The bond 

strengths between gold and several common anchoring groups are summarized in 

Table 1. 
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Anchoring group Bond rupture 

force (nN)114 

Bond dissociation 

energy (kJ/mol)115 

R–S–Au  1.5 253.6 ± 14.6  

Pyridine–Au  0.8  

R–P(Ph)2–Au  0.8 (R = CH2)  

R–CN–Au  0.64 (R = Ph)  

R–SH–Au (S coord)  0.6 (R = Alkyl) 60-80 

R–SH–Au (SH coord) 0.5 (R = Ph) ~60 

R–NH2–Au 116 0.48 (R = Ph) 76 (NH3) 

R–NO2–Au  0.32 (R = Ph)  

Au-C6H6  8.4 

Au–Au (chain)  1.5 235 

 

Table 1: Bond strengths between anchoring groups and gold114,115 

Another important property is the stability of the anchoring group towards chemical 

degradability through hydrolysis, oxidation, or protonation. A few specific examples of 

such transformations are shown in Table 2. Importantly, all of these transformations 

change the binding strength as well as geometry and consequently also the overall 

conductance properties of the molecular junction. Thiolates are easily oxidized by air to 

disulfides (Entry 1), phosphines to phosphine oxides (Entry 3) and N-heterocyclic 

carbenes to imidazoli(di)nones or they can dimerize (Entry 4). Thioacetates can slowly 

hydrolyze to thiols (Entry 2) and amines (or nitrogen heterocycles) may be protonated 

(Entry 5-7). 
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Table 2: Chemical processes affecting properties of anchoring groups 

Unfortunately, the sulfanyl moiety as the widely studied strong anchoring group 

suffers from a serious disadvantage, which is oxidability (Entry 1). Dithiol molecules 

polymerize and coordinate to the gold surface in the similar fashion as original monomers. 

The resulting mixture of the analyte and byproducts of oxidation is poorly reproducible 

and much more difficult to be interpreted. Moreover, benzenedithiol as the simplest 

representative of aromatic dithiols, forms chain-like oligomers with incorporated gold 

atoms and clusters, due to the comparable Au-S and Au-Au bond strength.117 

Very recently, carbenes, namely N-heterocyclic carbenes (NHC)122 have become 

hot candidates for on-surface studies due to their bond strength and directionality. 

However, carbenes are incompatible with ambient conditions as they are unstable in air, 

moisture sensitive and tend to dimerize.123 Therefore NHCs can only be used with the 

UHV techniques. Metal atoms can also be used as anchoring groups, organotin 

derivatives being a good example.124 In this case, transmetalation reaction takes place to 

form an Au-C bond. The pyrazole ring shows a very strong double-bonding interaction 

with metals, employing both of its nitrogen atoms.120 Moreover, a significant 

enhancement of conductance was observed at deprotonated pyrazoles. The carboxylic 
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group125,126 is yet another example of a bidentate anchoring group, although it is much 

weaker than the pyrazole one. Phosphines are generally excellent ligands for many 

metals, so it is not surprising that phosphorus containing substituents work as good 

anchoring groups as well.109,127,128 

The conductance of the wire-like organic molecules itself is mainly influenced by 

the degree of conjugation129 and its total effective length130,131. An additional function can 

be introduced into the molecule by inserting various fragments with interesting nonlinear 

electronic behavior such as redox active tetrathiafulvalenes132,133 (74), ferrocenes126 (75), 

metal complexes134 (76) (endowing molecules with magnetic properties), donor-acceptor 

(D-A) systems77,135 (77) (introducing the push-pull effect), or electronically 

nonsymmetrical alkane segments (78)136 (working as molecular rectifiers) (Figure 15). 
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Figure 15: The redox active TTF derivative 74133 and ferrocene derivative 75,126 cobalt(II) 

complex134 76 utilized in the spin-dependent transport, D-A system 77,135 or molecular 

rectifier 78136 

So far, not many systematic studies on the single-molecule conductance behavior 

of different molecular classes have been published.111 The dependence of conductance on 

the effective length of a molecule was nicely described by the Venkataraman’s group, 
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who studied a series of alkanes, silanes and siloxanes by the break junction techniques.131 

The drop of conductance experimentally obtained within particular sets of molecules was 

approximately 0.78 G0 per Å for alkanes, 0.36 G0 per Å for silanes and 1.86 G0 per Å for 

siloxanes (Figure 16). This finding somewhat correlates with the difference in 

macroscopic behavior of silicon (semiconductor) and silicon dioxide (dielectric). 

 

Figure 16: Length-dependent conductance of various organic molecules131 

Not only p-benzenedithiol but also other congeners were experimentally as well as 

computationally studied to show the influence of the molecular structure on the respective 

single-molecule conductance. 137,138 The effect of conjugation was shown by 

Venkataraman and co-workers on a set of para- and meta-substituted stilbenes 

(Table 3).139 In this study, conductance of 79 was found to be about an order of magnitude 

higher (1.2·10−3 G0) than that of 80 (2.9·10−4 G0), which was attributed to the effect of 

constructive quantum interference in the case of the para-substituted benzene ring versus 

destructive quantum interference in the case of the meta-substituted benzene ring. 
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Structure Conductance Ref. 

S

S

79
 

1.2·10−3 G0 [139] 

S

S

80
 

2.9·10−4 G0 [139] 

SAc

AcS 81
 

1.1·10−4 G0 [140] 

AcS SAc82
 

1.5 × 10−5 G0 [140] 

SS

83
 

7.43·10−4 G0 [141] 

S S84 
 

3.03·10−4 G0 [141] 

 

Table 3: Molecules used to study quantum interference139–141 

Independently, van der Zant’s group published a similar result with different 

stilbene compounds 81 and 82.140 The meta- substitution pattern was present in the central 

benzene ring rather than on the periphery, yet the conductance drop is again an order of 

magnitude. Similar behavior was observed also for the bis(thienylethynyl)benzene 

derivatives 83 and 84.141 



35 

1.2.2.1 Electron Transport in Helicene Molecules  

Helicenes present an intriguing class of molecules with nonlinear response to 

external force2,142 and high variability in conductance depending on their structure143. 

In helicenes, two types of electron transport may occur depending on the degree of 

conjugation and inter-loop distances. The large aromatic system of π-electrons should 

allow transport of electrons along the helical scaffold, as visualized by the red arrow in 

Figure 17. Such a behavior might result in physical effects of high interest to physicists 

such as spin filtration6,144 described by R. Naaman as the “CISS effect”,145 electric 

magneto-chiral anisotropy6 or current-induced rotation.146 The phenomenon of spin-

dependent electron scattering was recently observed in helicene monolayers on copper, 

silver and gold surfaces in the group of K. H. Ernst.147 Enrichment of one of the spin 

orientations was observed on surfaces covered with enantiopure helicenes with either P 

or M helicity, whereas no spin preference was detected in an experiment on a surface 

without molecules.  

        

Figure 17: Charge transport in a helicene molecule: (a) along the helix vs. (b) through-

space  

The other possible mode of charge transport in a helicene molecule is across the 

loops through π-π stacked benzene rings (Figure 17b). In a relaxed geometry, this type 

of conductance is significantly suppressed according to calculations. However, according 

to in silico experiments, the non-equilibrium conductance is expected to be significantly 

modulated by either compression (higher conductance) or stretching (lower conductance) 

of the helicene molecule along its helical axis by an external force.2,142 This 

compressibility might also find applications in materials science as single-molecule 

piezoelectrics or electrets.2 

a) b) 
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2 Objectives 

The first goal of my Thesis was to develop a synthetic methodology for the 

preparation of long oxa[n]helicenes based on [2+2+2] cyclotrimerization of alkyne 

precursors. 

Figure 18 presents oxa[19]helicenes 85 and 86, which were selected as synthetic 

targets. Ideally, the synthetic methodology should allow the preparation of the final 

products in their diastereo- and enantiomerically pure form and, moreover, it should be 

compatible with functional groups, which would eventually serve as anchoring groups 

with high affinity to the gold surface. Such helical molecules should enable charge 

transport studies using gold electrodes.  
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Figure 18: Synthetic targets: racemic oxa[19]helicenes 85 and diastereo- and 

enantiopure oxa[19]helicenes 86  

Oxa[19]helicene 85 in Figure 18 with nineteen six-membered rings fused into 

a single helix represents a challenging synthetic target. It may be accessible by 

performing an unprecedented intramolecular four-fold [2+2+2] cyclotrimerization of an 

aptly designed dodecayne. Finally, the racemic product would have to be resolved into 

enantiomers in an extra step. Thus, as an ultimate goal, two stereogenic centers would be 

introduced into the target oxa[19]helicene scaffold 86 to control its helicity by 1,3-allylic 

type strain.  
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The second goal of my Thesis was to develop a synthetic methodology for the 

preparation of helicenes equipped with suitable anchoring groups to study single-

molecule electrical conductance.  

The newly synthesized helicenes need to be decorated with suitable anchoring 

groups to facilitate a defined contact of the helicene molecule with gold electrodes. 

To this end, the thiol anchoring group is proposed for its superior Au-S bond strength and 

the pyridine unit for its good chemical stability and directionality in the bonding to metal. 

First, a small series of short fully aromatic carbo[n]helicene dithiols (Figure 19) 

would be synthesized either from dichlorohelicenes by employing nucleophilic aromatic 

substitution with sulfur nucleophiles or from helicenediols by Miyazaki−Newman−Kwart 

rearrangement of the respective bis-(thiocarbamates). Such structurally simple helicenes 

with only a few degrees of freedom and two well-defined contacts should serve the 

purpose of model compounds for fundamental investigation of charge-transfer behaviors 

of helicenes at molecular level. 

n

SR

SR

 

Figure 19: Sulfanyl derivatives of carbo[n]helicenes  

Figure 20 presents diastereo- and enantiopure pyrido/sulfanyl oxa[n]helicene 

derivatives 87 and 88, which were selected as more challenging synthetic targets for 

conductance measurements. The former, pyridooxa[9]helicenes 87 (Figure 20) should be 

directly accessible by the multiple [2+2+2] cycloisomerization reaction of an oligoalkyne 

precursor bearing pyridine moieties.  

In the latter case, straightforward synthetic functionalization of chloroderivatives 

should be merged with modular strategy for synthesis of long helicenes to provide 

the long helicene 88 bearing two sulfanyl anchoring groups (Figure 20). 
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Figure 20: Synthetic targets: diastereo- and enantiopure pyridooxa[9]helicene 87 

and sulfanyl oxa[19]helicene 88 

The third goal of my Thesis is to study single-molecule electrical conductance 

of the prepared helicenes by employing the break junction techniques. Since there is 

no commercially available and inexpensive instrument for the MCBJ or STM-BJ 

experiments, it should be designed, custom-made and partially assembled from 

commercially available parts (piezo actuators, amplifiers or source-meter units). 

Accordingly, the attention should be paid to the development of the respective 

instrument(s), measurement methodology and study of single-molecule electrical 

conductance, massive data processing, and interpretation of results with the support of 

quantum chemical calculations.  
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3  Results and Discussion 

3.1  The Synthesis of Long Helicenes 

A retrosynthetic analysis of oxahelicene 89 with 11 hexacyclic rings fused into 

a helix is shown in Scheme 24. Its design is based on a two-fold [2+2+2] 

cyclotrimerization reaction of hexayne 90 as the key step, being inspired by an earlier 

successful synthesis of its shorter analogue (oxa[9]helicene).148 The two internal triple 

bonds in hexayne 90 are installed onto the central resorcinol-based building block 93 by 

means of a Sonogashira coupling reaction with a suitable alkynes 91 and 92. The 

substitution pattern of the resorcinol derivative 93 does not allow “all-ortho” annulation 

of rings in the final helicene product, yet the overall molecular shape remains nicely 

helically chiral and the synthesis is greatly simplified when compared to those of the 

1,2,3,4-tetrasubstituted benzene building blocks.  
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Scheme 24: Retrosynthetic analysis of [11] helicene 89 

3.1.1 The Synthesis of Racemic Oxa[n]helicenes 

The known naphthalene diyne 99149 (Scheme 25) is a common building block for 

the synthesis of racemic oxa[19]helicene 85 (Scheme 32), oxa[11]helicenes 107 and 109 

(Scheme 28 and 29). It, diyne 99, was prepared from the commercially available 

bromoderivative 94 through a five-step synthetic sequence including lithium-halogen 

exchange, substitution and Sonogashira coupling in 68% overall yield (Scheme 25). 

Notably, the bulky triisopropylsilyl protecting group efficiently shields the triple bond 
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against unwanted carbopalladation reaction during the Sonogashira coupling but has to 

be removed prior to cyclotrimerization. The previously published procedures149 were 

slightly modified in order to simplify a multi-gram synthesis of this material.  
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Scheme 25: (a) n-BuLi (1.5 equiv.), THF, -78 °C, then I2, THF, -78 °C, 87%, 15 min; 

(b) HBr (15.0 equiv.), THF, 0 °C, 1 h, 95%; (c) TIPS-propyne (1.56 equiv.), n-BuLi 

(1.55 equiv.), THF, -78 °C, 2.5 h, 96%; (d) TMSA (1.5 equiv.), Pd(PPh3)4 (2 mol%), CuI 

(4 mol%), DIPA, rt, overnight, 89%; (e) K2CO3 (2.0 equiv.), MeOH – diethylether (3:1), 

rt, 3h 96%. 

The common resorcinol building block 102 was prepared from 4,6-diiodoresorcinol 

100150 and the bromoderivative 101151 via nucleophilic substitution (Scheme 26). This 

building block 102 bears two iodo groups, which are highly reactive in subsequent cross-

coupling reactions. Indeed, tetrayne 103 was prepared from diiodide 102 using 

a Sonogashira coupling with TMSA followed by deprotection in high overall yield. Such 

a high reactivity of 102 was promising with respect to the synthesis of long helicenes, 

vide infra.  

OH

II

OH

Br

Tol

OO

Tol Tol

R R

OO

Tol Tol

II

(a) (b)

100

101

102
103: R = TMS
104: R = H 

(c)

 

Scheme 26: (a) 101 (2.1 equiv.), K2CO3 (6 equiv.), DMF, rt, 20 h, 70%; (b) TMSA 

(3.0 equiv.), Pd(PPh3)4 (5 mol%), CuI (10 mol%), DIPA-toluene (1:2), rt, 16 h, 93%; 

(c) NaOMe (2.4 equiv.), MeOH:THF (1:1), rt, 45 min, 95%. 
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The key precursor of the oxa[11]helicene derivative 107 (Scheme 28), hexayne 106, 

was prepared by a twofold Sonogashira coupling of diiodide 102 with an excess of diyne 

99 followed by the removal of the bulky triisopropylsilyl protecting groups of 105 using 

tetrabutylammonium fluoride (Scheme 27). 
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106: R = H  

Scheme 27: (a) 99 (2.1 equiv.), Pd(PPh3)4 (10 mol%), CuI (20 mol%), DIPA-toluene 

(1:3), rt, 16 h, 77%; (b) TBAF·3H2O (2.4 equiv.), THF, rt, 1 h, 82%. 

Being by far the most versatile complex to mediate the intramolecular [2+2+2] 

cycloisomerization of alkynes, CpCo(CO)2 was used as a catalyst in the transformation 

of hexayne 106 into helicene 107 (Scheme 28). Also, it is an affordable and easy-to-handle 

liquid, which only slowly decomposes under ambient conditions 

In addition to the relatively common microwave reactor, a high-temperature-high-

pressure flow reactor (Figure 21) was recently introduced to our laboratory toolshed, 

allowing reactions to be performed at up to 350 °C and 150 bar. The experiment in flow 

reactor has several advantages: (i) excellent heat exchange; small volume of the reaction 

mixture is heated and then cooled down again very fast, thus suppressing any 

overreaction; (ii) very accurate control over short reaction times given by the ratio of the 

reactor volume to the flow rate; (iii) volatile solvents can be used at high temperatures, 

which simplifies the work-up; (iv) simplicity of the scale up; the reaction scale is 

determined simply by the duration of the experiment. 

Since the flow reactor was already proven to be useful in some challenging [2+2+2] 

cyclotrimerizations152, it became the method of choice also for the envisioned multiple 

variants. 
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Figure 21: High-temperature-high-pressure flow-reactor schematics 

The racemic oxa[11]helicene derivative rac-107 was obtained under the above 

conditions as a single product. In such reactions, a high amount of catalyst is usually used 

(20-50 mol% per one [2+2+2] cycloisomerization) as the cobalt complex decomposes 

quickly at high temperatures. However, further increase of the catalyst loading did not 

improve the yield of the reaction. Notably, Ni(0)-based catalysts generated in situ from 

Ni(cod)2 and a respective phosphine (PPh3 or PCy3) provided the same product, which 

was accompanied by some impurities of a polymeric nature. They probably originated 

from intermolecular reactions favored by the preferential reactivity of Ni(0) complexes 

with terminal alkynes. 
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Scheme 28: (a) CpCo(CO)2 (0.5 equiv.), THF, flow reactor, 250 °C, 16 min, 50%. 

Chirality of the product was confirmed by the separation of enantiomers on an 

analytical-scale chiral stationary phase high performance liquid chromatography 

(CSP-HPLC) column (Chiralpak IB) using UV (254 nm) and polarimetric detectors. 

The chromatogram is shown in Figure 22. 
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Figure 22: CSP-HPLC analysis of oxa[11]helicene rac-107 (Chiralpak IB 

n-heptane:MTBE 90:10, with 0.5% iPrOH) 

The final proof of the chirality of the structure rac-107 provided the single-crystal 

analysis (Figure 23). The very dense crystal packing of racemic mixture is caused by 

intercalation of P and M helicenes, which creates interdigitating heterochiral pairs. These 

pairs are stabilized by π-π and π-H interactions. 

 

Figure 23: Crystal packing of rac-oxa[11] helicene 107: P (cyan); M (grey) 
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Additional p-tolyl groups were introduced via Sonogashira coupling into the 

molecule 106 to improve the stability of the hexayne 108 and solubility of the final 

oxa[11]helicene 109 (Scheme 29). In fact, while oxa[11]helicene 107 was poorly soluble 

(less than 1 mg/mL of acetone), the multiply p-tolylated derivative 109 was more soluble 

(more than 10 mg/mL of acetone). In contrast, no improvement in cycloisomerization 

yield was observed. 
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Scheme 29: (a) 4-iodotoluene (6.0 equiv.), Pd(PPh3)4 (10 mol%), CuI (20 mol%), DIPA-

toluene (1:5), rt, 16 h, 89%; (b) CpCo(CO)2 (1.0 equiv.), THF, flow reactor, 250 °C, 

16 min, 48%. 

The key step in the synthesis of higher oligoynes such as 111 (Scheme 31) was the 

desymmetrization of diiodo compound 102 (Scheme 30) by Sonogashira coupling with 

diyne 99. Using a 2:1 stoichiometry, the desired iododerivative 110 could be obtained in 

up to 40% yield, in addition to the unavoidable symmetrical byproduct 105. It was found 

that the speed of addition of diyne 99 to the reaction mixture had only negligible effect 

on the reaction outcome. A sequence of two chromatographic separations, first on silica 

gel and then on C-18 reversed phase silica gel, were needed to isolate both products in 

a pure form (recovering also the starting material). 
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Scheme 30: (a) 99 (0.5 equiv.), Pd(PPh3)4 (10 mol%), CuI (20 mol%), DIPA-toluene 

(5:3), rt, 16 h, 41% for 110, 40% for 105. 

The iodotetrayne 110 was then used for the construction of the quadruple 

cyclotrimerization precursor, dodecayne 112. The reaction conditions for the twofold 

Sonogashira coupling of 110 with diyne 104 (Scheme 31) were chosen based on previous 

experience with a similar class of compounds. In particular, the oxidative dimerization of 

104 leading to polymeric byproducts was suppressed by its slow addition via cannula. 

Although the removal of the TIPS protecting groups from 111 provided a single product 

according to the TLC analysis, it was prone to decomposition during work up. Thus, the 

crude polycyclization precursor 112 was purified only by filtration through a short pad of 

silica gel using distilled solvents to remove tetrabutylammonium salts from it. The 

resulting solution was concentrated under the flow of nitrogen and directly used in the 

cyclization step. 
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Scheme 31: (a) 104 (0.5 equiv.), Pd(PPh3)4 (10 mol%), CuI (20 mol%), DIPA-toluene 

(2:1), rt, 16 h, 59%; (b) TBAF·3H2O (4.8 equiv.), THF, rt, 40 min, used without 

purification. 
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Using the same reactions conditions, which were successfully applied in the 

synthesis of oxa[11]helicene derivative rac-109 (Scheme 29), the [19]helicene derivative 

rac-85 was prepared in good yield 56% (Scheme 32). The unreacted starting material, 

dodecayne 112, was detected by TLC-analysis when the catalyst amount was decreased 

below 50 mol% per cyclotrimerization, i.e. 2.0 equivalents for the quadruple reaction. 

112

rac-85

OO

Tol Tol

O

O

Tol

Tol

O

O

Tol

Tol

O

O

O

O
O

O

Tol

Tol
Tol

Tol

Tol

Tol

(a)

 

Scheme 32: (a) CpCo(CO)2 (2.0 equiv.), THF, flow reactor, 250 °C, 16 min, 56% after 

2 steps (from 111). 

Also in this case, the (P)- and (M)-enantiomers could be easily resolved using an 

analytical HPLC column with chiral stationary phase (Chiralpak IB) as demonstrated in 

Figure 24. 

 

Figure 24: CSP-HPLC analysis of oxa[19]helicene rac-85 (Chiralpak IB, 

n-heptane:MTBE 90:10, with 0.5% iPrOH) 
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3.1.2 The Synthesis of Optically Pure Oxa[19]helicene 

After development of the multiple [2+2+2] cyclotrimerization of oligoynes leading 

to extremely long helicene-like molecules such as the oxa[19]helicene derivative rac-85 

in a racemic form, their stereoselective synthesis was begin. Diastereoselective multiple 

[2+2+2] cycloisomerization of centrally chiral oligoynes controlled by 1,3-allylic type 

strain (to favor one of the helices) was thus attempted. 

The centrally chiral naphthalene building block 117, structurally similar to the 

already successfully utilized building block 99, was designed in accord with the well-

established method for the diastereoselective synthesis of non-racemic helicenes.55 Its 

synthesis started with Mitsunobu reaction of the commercially available iodonaphthol 

113153 and the (S)-but-3-yn-2-ol (Scheme 33), which is also commercially available in 

both enantiomeric forms. The orthogonally protected chiral diyne (+)-(R)-116 was then 

prepared by silylation of (+)-(R)-114 and Sonogashira coupling of (+)-(R)-115 with 

trimethylsilylacetylene. Finally, a base-mediated cleavage of the more reactive silyl group 

(TMS) led to the chiral alkyne building block (+)-(R)-117. Its absolute configuration is 

related to the starting (S)-but-3-yn-2-ol and stereospecificity of the SN2-type Mitsunobu 

reaction (proceeding with a complete inversion of configuration). The four-step reaction 

sequence provided a satisfactory overall yield 66% and could be performed on a gram 

scale. 

I

OH

I

O

R

O

TIPS

R

(b)
(+)-(R)-114: R = H

(+)-(R)-115: R = TIPS

(+)-(R)-116: R = TMS113

OH

(d)
(+)-(R)-117 R = H

(c)(a)

 

Scheme 33: (a) (S)-but-3-yn-2-ol (1.1 equiv.), PPh3 (1.2 equiv.), DIAD (1.2 equiv.), 

benzene, rt, 16 h, 86%; (b) LDA (1.2 equiv.), THF, -78 °C, 1 h, then TIPSCl (1.5 equiv.), 

-78 °C, 1 h, 98%; (c) TMSA (1.5 equiv.), Pd(PPh3)4 (2 mol%), CuI (4 mol%), DIPA, rt, 

16 h, 86%; (d) K2CO3 (1.5 equiv.), MeOH, rt, 1 h, 91%. 

The synthesis of the centrally chiral dodecayne (-)-(R,R)-121 (Scheme 34) was 

performed analogously to the synthesis of the racemic oligoyne 108 (Scheme 29) and 112 
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(Scheme 31). The Sonogashira reaction of the chiral diyne (+)-(R)-117 with an excess of 

diiodide 102 provided only the product of mono-coupling (-)-(R)-118 in moderate yield. 

The product of a twofold coupling was not even observed. On the other hand, the 

counterproductive oxidative dimerization of alkyne (+)-(R)-117 could not be avoided. 

Isolation of the product (-)-(R)-118 by flash column chromatography on silica gel was 

found feasible in contrast to the achiral tetrayne 110 (Schema 30). The iodo derivative  

(-)-(R)-118 was then subjected to the Sonogashira reaction with tetrayne 104 to afford  

(-)-(R,R)-119 in good yield. After its desilylation, which led to (R,R)-120, terminal alkyne 

units were immediately p-tolylated utilizing another twofold Sonogashira coupling to 

obtain the optically pure dodecayne (-)-(R,R)-121. 
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Scheme 34: (a) 102 (2.0 equiv.), Pd(PPh3)4 (10 mol%), CuI (20 mol%), DIPA-toluene 

(1:1), rt, 16 h, 53%; (b) 104 (0.5 equiv.), Pd(PPh3)4 (10 mol%), CuI (20 mol%), DIPA-

toluene (1:2), rt, 16 h, 60%; (c) TBAF·3H2O (3.0 equiv.), THF, rt, 40 min, used 

without purification; (d) 4-iodotoluene (4.0 equiv.), Pd(PPh3)4 (10 mol%), CuI 

(20 mol%), DIPA-toluene (1:2), rt, 16 h, 77% (after 2 steps). 

The final multiple cyclization of oligoyne (-)-(R,R)-121 was performed again in the 

flow reactor at 250 °C (Scheme 35), creating twelve new C-C bonds and twelve new 

rings. In this case, the energy difference between the two possible diastereoisomers 

(P,R,R)- and (M,R,R)-86 is approximately 9.6 kcal/mol (calculated by DFT 

(B3LYP/cc-pVDZ/GD3)) in favor of (-)-(M,R,R)-86, which was formed as an exclusive 

product. The high reaction temperature is thus essential for the formation of 



50 

enantiomerically and diastereomerically pure product by post-cyclization thermodynamic 

equilibration. 
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Scheme 35: (a) CpCo(CO)2 (2.0 equiv.), THF, flow reactor, 250 °C, 16 min, 20%. 

The CD spectrum of the oxa[19]helicene (-)-(M,R,R)-86 (red) is shown in 

Figure 25, being overlaid with the spectrum of its shorter analogue, oxa[7]helicene 

(-)-(M,R,R)-122 (blue).55 

 

Figure 25: The CD-spectrum of oxa[7]helicene (-)-(M,R,R)-122 (blue), and 

oxa[19]helicene (-)-(M,R,R)-86 (red) 

The two spectra exhibit similar features: the longest-wavelength negative peak indicates 

M-helicity according to the general rule of thumb in helicene chemistry. The red shift 
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(indicated by a black arrow in Figure 25) results from the extended π-electron system of 

oxa[19]helicene (-)-(M,R,R)-86. 

An additional evidence of the helical folding comes from the ROESY NMR 

spectroscopy, where a cross-peak indicating a trough-space interaction between the 

hydrogen atom attached to the chiral center and the axially oriented hydrogen atom on 

a spatially close loop was found (Figure 26a). Proximity of the two atoms is depicted in 

green color in the 3D model (optimized structure DFT (B3LYP/cc-pVDZ/GD3) of 

oxa[19]helicene (-)-(M,R,R)-86 (Figure 26b) along with their distance (Å). 

 

Figure 26: (a) ROESY NMR spectrum; (b) trough-space interaction in oxa[19]helicene 

(-)-(M,R,R)-86 (optimized structure DFT (B3LYP/cc-pVDZ/GD3) 

3.2  The Synthesis of Helicenes with Anchoring Groups 

The measurement of single-molecule conductance in break junction experiments 

requires molecules decorated with anchoring groups that enable effective binding to the 

electrode surface (Chapter 1.2.2). Thus, the synthesis of helicene derivatives comprising 

pyridine subunits or sulfanyl groups had to be developed. 

3.2.1 The Synthesis of Pyridooxa[9]helicene 

The synthesis of diastereo- and enantiopure pyridooxa[9]helicene (-)-(M,R,R)-87 

relies on the synthetic methodology developed for the unfunctionalized oxa[n]helicenes, 

vide supra. In this case, the use of a properly substituted pyridine building block allowed 

the installation of pyridine subunits in the helical scaffold. 

The readily available iododerivative (-)-(R)-123 was coupled with a terminal diyne 

generated in situ by desilylation of tetrayne 103 under the Sonogashira reaction conditions 

(Scheme 36). This one-pot procedure afforded hexayne (-)-(R,R)-124 in good yield 84%.  

a) 
b) 
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Scheme 36: (a) TBAF·3H2O (2.4 equiv.), toluene, rt, 32 min, then (-)-(R)-123 

(2.4 equiv.), Pd(PPh3)2Cl2 (5 mol%), CuI (10 mol%), DIPA-toluene (1:3), rt, 1.5 h, 84%. 

The highest yield (54%) of the cyclization of hexayne (-)-(R,R)-124 was achieved 

by employing a flow reactor and CpCo(CO)2 as catalyst (Scheme 37). Carrying out the 

reaction in a microwave reactor in the presence of CpCo(CO)(fum) or at room temperature 

in the presence of Ni(cod)2 and PPh3 led to lower yield 42% or 43%, respectively. As 

expected, a single diastereomer of enantiopure (-)-(M,R,R)-87 was obtained as the result 

of thermodynamic equilibration. 
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Scheme 37: (a) CpCo(CO)(fum) (1 equiv.), THF, microwave reactor, 170 °C, 10 min, 

42%; (b) Ni(cod)2 (0.5 equiv.), PPh3 (1 equiv.), rt, 16h, 43%; (c) CpCo(CO)2 (1 equiv.), 

THF, flow reactor, 250 °C, 8 min, 54%. 

3.2.2 The Synthesis of Sulfanylated Helicenes  

The frequently used sulfanyl moiety as an anchoring group provides significantly 

stronger binding to gold electrodes than any nitrogen-based functionality. It was installed 

in the helicene molecule at a late stage of the synthesis to prevent its interference with the 

Pd-catalyzed coupling reactions154 used for the construction of helicene scaffolds. 
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The previously reported reactions of bromo-155 or iodoaryls156 as the starting 

materials afforded the corresponding acetylsulfanyl derivatives. These reactions were 

photoinduced to follow the radical-nucleophilic aromatic substitution mechanism 

SRN1.157 The formation of dehalogenated side products (from 6% up to 40%, depending 

on the substrate)155 was also observed as the reverse radical disproportionation might take 

place at high temperatures as well.158 

On the other hand, chlorosubstituted helicenes are expected to be suitable 

precursors of the corresponding sulfanylated helicenes because chlorine atom is known 

to be compatible with helicene-forming processes159 and they can be replaced by sulfur 

groups via a robust nucleophilic substitution reaction. 

Installation of a chlorine substituent onto the chosen helicene scaffold should not 

be a difficult task as it was already shown159,160 to be compatible with [2+2+2] 

cycloisomerization reaction. Indeed, several such derivatives were available in the 

laboratory as intermediates in other research projects. 

From the synthetic methods commonly used for the introduction of sulfur-based 

anchoring groups to aromatic systems such as the Miyazaki−Newman−Kwart (MNK) 

rearrangement of thiocarbamates 67,149 or the Pd-catalyzed transmetalation reactions161 

with tin, indium sulfides or Pd-catalyzed thiolate introduction,162 nucleophilic aromatic 

substitution of aromatic chlorides with thiolates was chosen as a simple and robust 

alternative. This reaction was widely studied by J. Shaw,163 who demonstrated the 

superiority of N-methyl-2-pyrrolidone (NMP) as solvent over the lower-boiling 

N,N-dimethylformamide (DMF) or highly toxic and expensive 

hexamethylphosphoramide (HMPA). This approach described by Shaw163 (Scheme 38) 

combines the substitution of chlorine atom in the first step with thioether cleavage in the 

second. The reaction can be quenched either by an acid to give a free thiol or with acetyl 

chloride to directly protect the sensitive thiol as a thioester. 

Ar Cl Ar SR

Ar SAc

Ar S
-

Ar SH
+H+

+AcCl

-Cl-

+SR-

-Cl-

+SR-

-RSR

 

Scheme 38: Aromatic substitution with in situ thioether cleavage  
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3.2.2.1 The Optimization of Sulfanylation of Chloroaromatics 

For optimization purposes, before embarking on the synthesis of desired 

chlorohelicenes, the commercially available 1-chloronaphthalene 125 as a model compound 

was subjected to the sulfanylation reaction under various conditions (Table 4). The 

reaction was found to work best when the thiolate was freshly prepared from the 

corresponding thiol by treatment with a base, with sodium metal being much more 

effective than sodium hydride.  

Cl S

O

S
Et

+

125 126 127

1. reagents
 NMP

2. AcCl

 
      

Entry Reagents (equiv.) time T [°C] 126 127 

1 t-BuSH +Na (20) 2 h  270 99 - 

2 EtSH +NaH (5) 2 h 250 59 41 

3 EtSH + Na (10) 2 h 250 99 - 

4 DMDS + Na (5) 1 h 200 99 - 

      

Table 4: The optimization of sulfanylation of chloronaphthalene by the SNAr process 

(yields (%) of 126 and 127 were estimated by GC-MS) 

To push the reaction equilibrium forward, ethanethiol instead of t-butanethiol was used 

so the boiling point of the resulting thioether was reasonably decreased from 150 °C for 

t-butyl to 90 °C for diethylthioether. In additional the steric hindering, which slowing 

down the second reaction in the Scheme 38, was suppressed by using primary thiolates. 

Using primary thiols instead of tertiary ones also changes the reaction mechanism from 

SN1 to SN2, in which the reaction rate in influenced by the reagent concentration, thus 

giving another option of its influencing. In the case of the most reactive methyl thiolate, 

dimethyldisulfide (DMDS) was used as its precursor164 (Entry 4) because it is much 

easier to handle than gaseous highly toxic methanethiol (it is approximatively thousand 

times more effective in inhibition of mitochondrial electron transfer in comparison to 

ethanethiol)165. In addition to its advantageously low steric demands, methyl thiolate-

mediated thioether cleavage (2nd step in Scheme 38) produces dimethyl thioether as 
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a byproduct, which is efficiently removed from the reaction mixture thanks to its low 

boiling point (37 °C), thus shifting the equilibrium towards the final thiol product.  

Another model substrate, 4,4'-dibromobiphenyl 128, was chosen as a slightly more 

challenging electron rich organic dibromide (Scheme 39). Nevertheless, the reaction 

provided excellent yield of the resulting bis(4,4’-S-acetyl)biphenyl dithiol 129 166,167 when 

the conditions from Entry 3 in Table 4 were applied.  

Br Br AcS SAc

128 129

(a)

 

Scheme 39: EtSH (24.0 equiv.), Na (20.0 equiv.), NMP, 250 °C, 2 h, then AcCl 

(30.0 equiv.), rt, 2 h, 92%. 

3.2.2.2 The Synthesis of Sulfanylated Carba[n]helicenes  

First, dichlorodibenzo[5]helicene 130168 was transformed into its 

bis(acetylsulfanyl) derivative 131 in high yield by treatment with sodium ethanethiolate 

in NMP at 250 °C followed by in situ acetylation with acetyl chloride (Scheme 40). 

DMDS could be also used as the source of thiolate with very similar result. The 

bis(acetylsulfanyl) derivative 131 allowed conventional purification without the risk of 

oxidation. The acetyl protecting groups could be easily removed by treatment with 

a methanolic solution of cesium hydroxide to provide the free thiol 132. Alternatively, 

methanolic solution of tetra(n-butyl)ammonium hydroxide was found to be a useful 

reagent for deacetylation, especially for in situ cleavage during the conductance 

measurements.167 
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Scheme 40: (a) EtSH (24.0 equiv.), Na (20.0 equiv.), NMP, 250 °C, 2 h, then AcCl 

(30.0 equiv.), rt, 2 h, 94%; (b) DMDS (31.0 equiv.), Na (50.0 equiv.), NMP, 200 °C, 4 h, 

then AcCl (70.0 equiv.), rt, 2 h, 93%; (c) CsOH (8.0 equiv.), MeOH-MTBE (3:100), rt, 

5 min, then HCl (20.0 equiv.), rt, 10 min, 71%. 

The structurally similar dichloro[5]helicene 133159 provided the respective 

bis(acetylsulfanyl) derivative 134 also in good yield (Scheme 41). This example 

demonstrates that structural changes in the aromatic system have a negligible effect on its 

SNAr-type reactivity. 

AcS

AcS

Cl

Cl

133 134

(a)

 

Scheme 41: (a) DMDS (31.0 equiv.), Na (50.0 equiv.), NMP, 200 °C, 4 h, then AcCl 

(75.0 equiv.), rt, 2 h, 86%. 

On the other hand, the position of chlorine atoms affects the SNAr-type reactivity 

of the respective helicene systems as sulfanylation of dichloro[5]helicene 135169 delivered 

136 in a slightly decreased yield (Scheme 42). 
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Scheme 42: (a) DMDS (31.0 equiv.), Na (50.0 equiv.), NMP, 200 °C, 4 h, then AcCl 

(75.0 equiv.), rt, 2 h, 77%; (b) NaOH (40.0 equiv.), CH3OH-THF (2:1), rt, 3 h, then citric 

acid (50.0 equiv.), rt, 10 min, 62%. 

A racemic single crystal of [5]helicene 136 was grown from a DCM-cyclohexane 

mixture. X-ray analysis revealed two symmetry-independent geometries nestled in the 

asymmetric unit of the P21/c space group (Figure 27). The two forms slightly differ in 

the values of the torsion angle defining the helical shape of the molecule, namely 29.43° 

and 29.71°.  

 

Figure 27: X-ray structure of the bis(acetylsulfanyl)[5]helicene derivative 136; a CH-π 

interaction between the two asymmetric units (magenta dashed line)  

7,8-Dibromo[5]helicene 138162 also reacted smoothly with sodium methanethiolate 

in NMP at 200 °C affording the bis(acetylsulfanyl)[5]helicene derivative 139 in good 

overall yield (Scheme 43). 
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Scheme 43: (a) DMDS (31.0 equiv.), Na (50.0 equiv.), NMP, 200 °C, 4 h, then 

AcCl (75.0 equiv.), rt, 2 h, 71%. 

The single-crystal X-ray analysis of helicene 139 revealed a highly symmetric 

crystal (space group C2/c), in which individual molecules are assembled into closely 

packed layers (Figure 28b). In this case, the torsion angle at the central benzene ring was 

found to be 29.71° (Figure 28a).  

 

Figure 28: (a) X-ray structure of the bis(acetylsulfanyl)[5]helicene derivative 139; 

(b) crystal packing of the bis(acetylsulfanyl)[5]helicene derivative 139 

1,14-Dichloro[5]helicene 140170 was also subjected to the SNAr sulfanylation 

reaction, but only the product of oxidative dehalogenation 15 was isolated (Scheme 44). 

Spontaneous formation of benzoperylene 15 was also observed during heating of 140 in 

the absence of any reagent. 

a) 
b) 
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 Scheme 44: DMDS (25.0 equiv.), Na (40.0 equiv.), NMP, 200 °C, 4 h, then 

AcCl (60.0 equiv.), rt, 2 h, 0% (for 141); 85% (for 15). 

On the contrary, the sulfanylation reaction performed on the longer 

dichloro[7]helicene derivatives afforded lower yields of the desired 

bis(acetylsulfanyl)[7]helicene congeners. Upon treatment with methanethiolate in NMP 

at 200 °C, the readily available 2,17-dichloro[7]helicene 142171 provided the respective 

bis(acetylsulfanyl)[7]helicene derivative 143 in 65% yield (Scheme 45). Alternatively, 

the use of ethanethiolate at 250 °C resulted in faster formation of 143 but partial 

dehalogenation also took place to deliver the monoacetylsulfanylated [7]helicene 145. 

The deprotected dithiol 144 was found to be extremely sensitive to oxidation by air to 

form insoluble oligomeric disulfides. 

The bis(methylsulfanyl)[7]helicene derivative 146 was prepared from the 

bis(acetylsulfanyl) derivative 143 rather than dichloride 142171, as it is difficult to control 

direct methylsulfanylation. 



60 

AcS SAcCl Cl SH SH

AcS

+

MeS SMe

(d)

(c)

142 143

145

144

146

(a), or
(b)

 

Scheme 45: (a) EtSH (50.0 equiv.), Na (40.0 equiv.), NMP, 270 °C, 2 h, then 

AcCl (60.0 equiv.), rt, 2 h, 32% (for 143), 43% (for 145); (b) DMDS (31.0 equiv.), 

Na (50.0 equiv.), NMP, 200 °C, 4 h, then AcCl (75.0 equiv.), rt, 2 h, 65% (c) CsOH 

(8.0 equiv.), THF, rt, 5 min, then citric acid (10.0 equiv.), rt, 10 min, 87%, (d) NaH 

(8.0 equiv.), MeI (12 equiv.), NMP, rt, 2h, 71%. 

Single crystals suitable for X-ray analysis were prepared from both stable 

derivatives 143 and 146 (Figure 29). The distance between overlapping terminal rings is 

3.9 Å in the case of 143 and 4.1 Å in the case of 146. As the intermolecular distances in 

the crystal packing are quite similar (3.4 Å), the relatively significant difference in the 

helicene pitch can be most likely attributed to electron density changes on the aromatic 

rings. These originate from electron-withdrawing character of the acetyl group and 

electron-donating character of the methyl substituent. 
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Figure 29: X-ray structures: (a) bis(acetylsulfanyl)[7]helicene derivative 143; 

(b) bis(methylsulfanyl)[7]helicene derivative 146 

9,10-Dichlorohelicene 147170 was also subjected to the sulfanylation reaction with 

sodium methanethiolate to provide the bis(acetylsulfanyl)[7]helicene derivative 148 in 

still reasonable yield (Scheme 46). 

SAc

SAc

Cl

Cl

(a)

147 148
 

Scheme 46: (a) DMDS (31.0 equiv.), Na (50.0 equiv.), NMP, 200 °C, 4 h, then AcCl 

(75.0 equiv.), rt, 2 h, 59%. 

Single crystal X-ray analysis of 148 revealed a very close crystal packing with 

helicene-to-helicene distances as short as 3.6 Å, which is even shorter than the distance 

between the terminal rings of the same helicene (4.0 Å, Figure 30). For comparison, the 

distance between the two layers in the graphite crystal is 3.3 Å.172 

a) b) 
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Figure 30: The X-ray structure of the bis(acetylsulfanyl)[7]helicene derivative 148 

3.2.2.3 The Synthesis of Sulfanylated Oxa[n]helicenes 

As mentioned in Chapter 2, the aim of this work was to develop the synthesis of 

long helicenes bearing anchoring groups with high affinity to gold. In the previous 

chapters, the [2+2+2] cyclotrimerization methodology was shown to be highly robust and 

versatile to prepare specifically designed racemic as well as optically pure long helicenes. 

Furthermore, sulfur-based anchoring groups were successfully attached to chlorinated 

carbahelicenes. The next logical step was to attempt sulfanylation of long oxahelicenes. 

However, since their electronic nature differs significantly from the fully aromatic 

helicenes, the dichlorooxa[5]helicene model compound 156 was synthesized first in order 

to examine the SNAr-type sulfanylation reaction. 

The synthetic sequence leading to the diastereo- and enantiopure oxa[5]helicene 

dichloride (-)-(M,R,R)-156 is shown in Scheme 47 and Scheme 48. First, the 

commercially available p-chlorophenol 149 was iodinated under basic conditions to 

provide chloroiodophenol 150.173 It was a suitable substrate for the subsequent 

Sonogashira coupling with (trimethylsilyl)acetylene that furnished the TMS-protected 

alkyne 151. Then, a Mitsunobu reaction with the enantiopure butynol (S)-152174 was used 

to prepare the enantiopure diyne (+)-(R)-153, which was in the following step deprotected 

and coupled in situ with iodide 150 via another Sonogashira reaction to afford diyne 

(-)-(R)-154. Finally, the enantiopure triyne (-)-(R,R)-155 was prepared by yet another 

Mitsunobu reaction with the enantiopure butynol (-)-(S)-152174. 
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Scheme 47: (a) KI (3 equiv.), I2 (1 equiv.), NH3 (aq.), 0 °C, 2 h, 64%; (b) TMSA 

(1.6 equiv.), Pd(PPh3)2Cl2 (2 mol%), CuI (4 mol%), DIPA (1.2 equiv.), toluene, rt, 3 h, 

94%; (c) (S)-152 174 (1.1 equiv.), PPh3 (1.1 equiv.), DIAD (1.1 equiv.), benzene, rt, 3 h, 

91%; (d) TBAF·3H2O (1.2 equiv.), THF, rt; then 150 (1.3 equiv.), Pd(PPh3)2Cl2 (2 mol%), 

CuI (4 mol%), DIPA (1.3 equiv.), toluene, rt, 16 h, 81%; (e) (S)-152174 (1.1 equiv.), PPh3 

(1.1 equiv.), DIAD (1.1 equiv.), benzene, rt, 3 h, 75%. 

The [2+2+2] cyclotrimerization of the enantiopure triyne (-)-(R,R)-155 to the 

diastereo- and enantiopure dichlorooxa[5]helicene derivative (-)-(M,R,R)-156 proceeded 

smoothly in a microwave reactor (Scheme 48), which represents a simpler experimental 

setup with respect to the use of a flow reactor. The solvent was changed from 

tetrahydrofuran to chlorobenzene because of its superior ability to absorb microwave 

irradiation. 

O

Cl

Tol

Cl

O

Tol

O

O

Tol

Cl

Cl

Tol

(a)

(-)-(R,R)-155 (-)-(M,R,R)-156
 

Scheme 48: (a) CpCo(CO)2 (1.0 equiv.), chlorobenzene, microwave reactor, 180 °C, 

20 min, 70%. 
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Unfortunately, sulfanylation of (M,R,R)-156 did not proceed at all under the reaction 

conditions successfully applied to carbahelicenes (Scheme 49). Only partial 

dehalogenation was observed according to the NMR analysis of the reaction mixture.  
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Scheme 49: EtSH (24.0 equiv.), Na (20.0 equiv.), NMP, 250 °C, 2 h, then AcCl 

(30.0 equiv.), rt, 2 h, 0%; (b) DMDS (31.0 equiv.), Na (50.0 equiv.), NMP, 200 °C, 4 h, 

then AcCl (70.0 equiv.), rt, 2 h, 0%. 

The most probable reason for the low reactivity of (-)-(M,R,R)-156 is the presence 

of an alkoxy substituent on the aromatic ring in para position with respect to the chlorine 

atom, which decreases its susceptibility towards nucleophilic attack. 

To overcome this obstacle, the naphthalene building block 164168 (Scheme 51) was 

selected, in which the undesirable effect of the electron-donating alkoxy substituent is 

attenuated. Moreover, its use should also provide an oxa[6]helicene analogue. 

Regioselective iodination of the commercially available 7-chloronaphthalen-2-ol 

158 provided the iodo derivative 159168 (Scheme 50). The free hydroxy group was 

acetylated before a Sonogashira coupling with triisopropylsilyl acetylene. It is worth 

noting that, specifically in this case, the free hydroxy group in a close proximity to the 

ethynyl moiety tends to add across it to undergo the endo-5-dig cyclization leading to 

a furan derivative under Sonogashira reaction conditions. Consequently, the bulk TIPS 

protecting group was installed on the triple bond as it survives the basic conditions needed 

for acetate hydrolysis. In spite of the necessity of additional protection and deprotection 

steps, high overall yield of naphthylalkyne 162168 was obtained. 
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Scheme 50: (a) I2 (1.0 equiv.), Na2CO3 (2.0 equiv.), THF-H2O (4:1), rt, 4 h, 99%; 

(b) Et3N (2.5 equiv.), AcCl (1.5 equiv.), CH2Cl2, 0 °C to rt, 5 h, 99%; (c) TIPSA 

(1.2 equiv.), Pd(PPh3)2Cl2 (2 mol%), CuI (5 mol%), DIPA (1.2 equiv.), toluene, rt, 13 h, 

91%; (d) K2CO3 (2.0 equiv.), THF-MeOH (1:1), rt, 3 h, 99%. 

The chiral alcohol (-)-(S)-152174 was then attached to naphthol 162 via Mitsunobu 

reaction (Scheme 51). Unfortunately, the order of the ether formation and Sonogashira 

coupling cannot be interchanged, although it would shorten the synthesis by eliminating 

the protection and deprotection steps. The reason is the intramolecular carbopalladation 

side-reaction that might take place under the Sonogashira reaction conditions.175,176 
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Scheme 51: (a) (-)-(S)-152 (1.1 equiv.), PPh3 (1.1 equiv.), DIAD (1.1 equiv.), benzene, 

ice bath to rt, 3 h, 79%; (b) TBAF·3H2O (3.1 equiv.), THF, rt, 1 h, 99%. 

Finally, the enantiopure triyne (-)-(R,R)-166 was prepared by a sequence of 

Sonogashira reaction with 2-iodophenol and Mitsunobu reaction with the chiral alcohol 

(-)-(S)-152 (Scheme 52). 
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Scheme 52: (a) TBAF·3H2O (1.2 equiv.), toluene, rt, 30 min, then 2-iodophenol 

(3.0 equiv.), Pd(PPh3)4 (10 mol%), CuI (20 mol%), DIPA (1.1 equiv.), toluene, 45 °C, 

16 h, 67%; (b) (-)-(S)-152 (1.1 equiv.), PPh3 (1.2 equiv.), DIAD (1.1 equiv.), toluene, ice 

bath to rt, 3 h, 81%. 

Using the reaction conditions successfully applied in the synthesis of the 

dichlorooxa[5]helicene derivative (-)-(M,R,R)-156 (Scheme 48), cyclotrimerization of 

triyne (-)-(R,R)-166 proceeded in the microwave reactor to give the chlorooxa[6]helicene 

derivative (-)-(M,R,R)-167 in good yield (Scheme 53).  
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Scheme 53: (a) CpCo(CO)2 (1.0 equiv.), chlorobenzene, microwave reactor, 180 °C, 

20 min, 59%. 

In contrast to the unsuccessful sulfanylation of the dichlorooxa[5]helicene 

derivative (-)-(M,R,R)-156, the chlorooxa[6]helicene derivative (-)-(M,R,R)-167 was 

converted smoothly to the corresponding monoacetylsulfanylated derivative 

(-)-(M,R,R)-168 in good yield (Scheme 54). This result confirmed the proper choice of 

the chloronaphthalene building block (-)-(R)-164 in the synthesis of optically pure long 

oxahelicenes bearing sulfur-based anchoring groups. 
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Scheme 54: (a) DMDS (12.5 equiv.), Na (20.0 equiv.), NMP, 200 °C, 4 h, then AcCl 

(30.0 equiv.), rt, 2 h, 85%. 

Single crystal X-ray analysis (a single crystal grown from a DCM-cyclohexane 

solution) of (-)-(M,R,R)-168 confirmed its structure (Figure 31). The acetyl group is 

highly disordered with two distinct orientations prevailing in the crystal lattice. In either 

case the group is oriented perpendicularly to the plane of the adjacent benzene ring, 

pointing either outwards or inwards with respect to the helix. The two conformers also 

differ significantly in their helical pitch, where the inward-oriented acetyl group causes 

the distance between the terminal helicene rings to grow by ~0.5 Å. This elongation along 

the helicene z axis confirms the spring-like behavior of this class of molecules as 

suggested by calculations.2 

 

Figure 31: X-ray analysis of the (acetylsulfanyl)oxa[6]helicene derivative 

(-)-(M,R,R)-168 showing two distinct conformers: with the acetyl group pointing (a) inwards 

or (b) outwards with respect to the helix 

Encouraged by the successful synthesis of oxa[19]helicene (-)-(M,R,R)-86 and 

usefulness of the chloronapthalene building block (-)-(R)-164 in the synthesis of the 

acetylsulfanylated oxa[6]helicene derivative (-)-(M,R,R)-168, the preparation of 

dodecayne (-)-(R,R)-170 was attempted (Scheme 55) en route to the diastereo- and 

a) b) 
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enantiopure oxa[19]helicene dithiol (-)-(M,R,R)-172. Following the procedures 

demonstrated earlier, the desymmetrized iodotetrayne (-)-(R)-169 was prepared. Three 

equivalents of resorcinol building block 102 were used in order to suppress oxidative 

dimerization of the terminal alkyne (-)-(R)-164. Then, a two-fold Sonogashira reaction 

with tetrayne 104 provided the desired compound (-)-(R,R)-170 in high yield. The use of 

the already tolylated building block (-)-(R)-164 excluded the necessity of a late-stage 

derivatization, thus simplifying the synthesis and improving the overall yield of the final 

oligoyne (-)-(R,R)-170.  
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Scheme 55: (a) 102 (3.0 equiv.), Pd(PPh3)4 (15 mol%), CuI (30 mol%), DIPA-toluene 

(5:8), rt, 16 h, 84%; (b) 104 (0.45 equiv.), Pd(PPh3)4 (9 mol%), CuI (19 mol%), DIPA-

toluene (3:4), rt, 16 h, 69%. 
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Similarly to the oxa[19]helicene 85, [2+2+2] cyclotrimerization of the chiral 

dodecayne (-)-(R,R)-170 proceeded in a flow reactor at 250 °C to deliver the dichlorinated 

oxa[19]helicene (-)-(M,R,R)-171 (Scheme 56). In this case, however, the reaction time 

was reduced by half in order to avoid an unwanted dehalogenation reaction that 

accompanied the cyclization at such a high reaction temperature.  
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Scheme 56: (a) CpCo(CO)2 (2.0 equiv.), THF, flow reactor, 250 °C, 8 min, 20%. 

A significant change in the CD spectrum (Figure 32) as well as enhancement of the 

optical rotation value confirmed the formation of the helical product. According to the 

helicene-chemistry “rule of thumb”, the negative sign of the longest-wavelength CD band 

is indicative of M helicity of the product (-)-(M,R,R)-171. 

 

Figure 32: CD spectra of oligoyne (-)-(R,R)-170 (blue) and dichlorooxa[19]helicene 

derivative (-)-(M,R,R)-171 (red)  
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An unequivocal proof of the structure of the dichlorooxa[19]helicene derivative 

(-)-(M,R,R)-171 was obtained through the single crystal crystallographic analysis 

(Figure 33), confirming its counterclockwise helicity (M) with respect to the known 

R-configuration at the chiral centers. 

 

Figure 33: X-ray structure of the dichlorooxa[19]helicene derivative (-)-(M,R,R)-171 

(solvent molecules and hydrogen atoms were omitted for clarity) 

Finally, bis(acetylsulfanyl)oxa[19]helicene (-)-(M,R,R)-88 was prepared from 

dichlorooxa[19]helicene (-)-(M,R,R)-171 and sodium methanethiolate being freshly 

generated from DMDS (Scheme 57). The reaction was quenched with acetyl chloride to 

give overall yield 42%, which is very decent considering the substrate’s complexity. The 

acetyl protecting groups were cleaved by treatment with sodium hydroxide. However, the 

oxa[19]helicene dithiol (-)-(M,R,R)-172 had to be prepared, isolated and analyzed under 

strictly oxygen-free conditions due to its extremely high sensitivity towards oxidation in 

solution. On the other hand, in solid state, this dithiol is quite stable. 
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Scheme 57: (a) DMDS (31.0 equiv.), Na (50.0 equiv.), NMP, 200 °C, 4 h, then AcCl 

(75.0 equiv.), rt, 2 h, 42%; (b) NaOH (40.0 equiv.), MeOH-THF (2:1), rt, 3 h, then citric 

acid (50.0 equiv.), rt, 10 min, 78%. 

3.3  Break Junction Experiments 

3.3.1 Break Junction Device Development 

Even though the break junction (BJ) techniques are irreplaceable for single 

molecule conductance measurements, we are not aware of any commercially available 

and inexpensive device for this purpose. Each apparatus is thus a unique, custom-made 

and self-designed piece of art, which is being continuously improved, developed and 

extended. 

The development of a BJ apparatus is a complex issue, which covers several fields 

of research activity such as materials science, fine mechanics engineering, electronics, 

and as such it requires a broad collaboration (Prof. Josef Zicha, Czech Technical 

University in Prague, Faculty of Mechanical Engineering; Dr. Ladislav Sieger and Prof. 

Karel Hoffmann, Czech Technical University in Prague, Faculty of Electrical 

Engineering; BMD a.s.). 

In our case, the development of the device was started by the Development Center 

at IOCB Prague and the state of the device at the beginning of my participation in the 

project is shown in Figure 34a. 
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Figure 34: The first prototype of the MCBJ device: a) built by the Development Center 

of the IOCB Prague, 2012; b) development model of the device in 2016 

No molecules could be studied at that time due to the insufficient sampling rate 

(maximally 5 kSa, kiloSamples per second), low precision (only 3.5 digit of precision at 

5 kSa) and accuracy 300 ppm, low actuator force (pushing force 20 N) and stiffness, 

nonlinearity of actuator motion and ineffective shielding. Many changes have been made 

since. A development model from the year 2016 is shown for comparison (Figure 34b). 

Although our STM-BJ device model from 2016 was already able to reproducibly 

measure single-molecule conductance, we continued in improving the entire apparatus, 

with the emphasis on electronic parts. These include a logarithmic amplifier and 

stabilized power sources responsible for improved signal-to-noise ratio as well as high 

sampling rate and noise suppression. One of the crucial parts of the experiment is the 

shielding.  

Based on the previous knowledge, aluminum alloy was chosen as the shielding 

material. This alloy has several advantages: (i) it has a very high conductance, which 

makes it suitable for electric shielding, (ii) it is cheaper than copper, (iii) it has higher 

chemical stability due to lead additives and (iv) it is much lighter than other materials. 

This shielding is less effective against magnetic interferences, so further improvements 

will be needed in the future, for example addition of shielding parts made of Permalloy 

or other nickel–iron alloys with a very high magnetic permeability.  

a) b) 
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3.3.2 Mechanically Controllable Break Junction (MCBJ) 

Description of the current device: The BJ device contains several essential parts: (i) 

source of constant voltage for the measurement, (ii) sample holder, (iii) data acquisition 

unit, (iv) amplifier, (v) actuator, (vi) controlling unit and (vii) shielding box. 

Long-range sample movement (several millimeters) is actuated by a micrometric 

screw, but only piezo actuators have sufficient accuracy for fine handling and mechanical 

durability for continual service. The whole measurement is controlled by a computer, 

which is also used for data storage. A custom-made program was composed and is 

described in more detail in Chapter 3.3.4. 

A schematic representation of the MCBJ setup is depicted in Figure 35 and the 

actual design of the current device is shown in Figure 36a. It allows an acquisition 

sampling rate of up to 200 kSa and is able to cover the conductance dynamic range of 

8 orders of magnitude with the detection limit of 100 fA. The precise digital multimeter 

Agilent 3458 has 8.5 digits of precision and extremely high accuracy of 4 ppm. The used 

enhanced piezo has pushing and blocking force 100 N. A precise, self-locking 

micrometric screw is used for the rough long-range adjustment of the sample. The used 

travel range of the micrometric screw is up to tenths of millimeters. The custom-built 

stabilized source was designed so that it can operate at two ranges 20 – 200 mV and 0.2 

– 2 V. The commonly used bias is 100.0 mV. 

 

Figure 35: Scheme of the MCBJ measurement circuit 
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The device is powered by two sets of lead accumulator packs, which allows 

continuous operation of the device. One battery pack is wired into the electric circuit 

while the second one is charged. To eliminate any voltage fluctuations, a stabilized source 

of bias (STAB1) is incorporated in the circuit. The stabilized source (STAB1, custom-

built) has two branches: +5V and -5V to supply (i) another stabilized source (STAB2, 

custom-built), which is used for the actual measurement, and (ii) a custom-made current-

to-voltage convertor (IVC). The accurate adjustable stabilized source (STAB2) 

suppresses external noise and allows to set the measurement bias with the required 

precision (tens of µV). The main part of the IVC is a logarithmic amplifier, which allows 

to measure the current in a range of several orders of magnitude. The output voltage is 

then measured by precise digital multimeter Agilent 3458 (A_3458, Keysight 

Technologies). The adjustment and position corrections of the pushing rod are performed 

by a piezo actuator (P602, Physik Instrumente GmbH & Co. KG), which is controlled by 

a waveform generator K_33512B (WG, Keysight Technologies). The experiment itself 

takes place on a “BJ-Chip”, where the actual gold bridge is located. The whole device is 

shielded and grounded. Shielding is symbolized by the blue dashed line. Each sensitive 

component is enclosed inside an individual shielding box as depicted. The data cables are 

symbolized by thick blue lines in Figure 35. 

 

Figure 36: Current state of the device: (a) MCBJ; (b) STM-BJ 

a) b) 
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3.3.3 Scanning Tunneling Microscopy-Based Break Junction 

(STM-BJ) 

Only a few changes in the MCBJ setup were needed to operate the device in the 

STM-BJ mode (Figure 37). In this configuration, the piezo actuator (P602) adjusts the 

position of the substrate while an additional piezo stack motor (PZT2, Mad City Labs 

GmbH) controlled by another waveform generator (WG) performs the tapping motion. 

The actual design of the current STM-BJ device is shown in Figure 36b. 

 

Figure 37: Scheme of the STM-BJ measurement circuit 

3.3.4 Computer Control and Data Analysis 

The experiment controlling program was created in the LabView177 environment, 

its graphical programming language allowing simple incorporation of measurement 

hardware such as multimeters, actuators, controllers and other devices from various 

vendors. Its visualization helps to create and understand the logical processes, data 

analysis algorithms and finally also to optimize the user interface. The actual interface is 

shown in Figure 38. It includes numerous libraries with prepared drivers, which simplify 

the first steps. 

The controlling program has many options and gives the operator full control over 

the components of the BJ device. Control of the wave generator, piezo actuator and 
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voltmeter allows the operator to change the frequency and speed of contact breaking, 

sampling rate as well as sample counts within one data set. It is also possible to use 

various driving signals for the piezo actuator in order to handle the molecule. This kind 

of handling can be used for example to investigate molecular switching at certain 

conductance level. The program can run in a semi-automatic regime, collecting up to 

hundreds of thousands of curves (gigabytes of data) during the experiment. Finally, the 

program also provides a preliminary statistical analysis. 

 

Figure 38: LabView program interface 

Data from a small set of curves (usually 5) are immediately saved to a hard drive 

so that a potential data loss has negligible statistical value. 

The complete data set from one BJ experiment (up to tenths of GB), which is usually 

spread over several files, is then processed with another analyzing program created by 

Dr. Jaroslav Vacek (Institute of Organic Chemistry and Biochemistry of the Czech 

Academy of Sciences) using Fortran programming language.178 This program was 

specially designed and developed for analysis of extremely large data sets. The program 

sorts, discards, and selects the breaking curves according to required criteria, e.g. 

breaking curve length, noise level or plateaus appearance, plateaus conductance or 

plateaus length. Statistical data processing is also performed by the program.  
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3.4  Single-Molecule Conductance Measurement 

Once operational, the BJ device was evaluated by single-molecule conductance 

measurements of molecules, which were already characterized in this way in the 

literature. 

3.4.1 Evaluation of Standards 

To evaluate functionality a reliability of our methodology several experiments had 

been done. Measurements of standards such as 1,4-bis(methylsulfanyl)benzene 

(BMSB) 173 or 4,4’-bipyridine (BIPY) 73 bearing typical anchoring groups were 

performed (Figure 39). 

S S N N

173 73
 

Figure 39: Standard molecules for break junction measurement 

The bis(methylsulfanyl) derivative 173179 was studied and the resulting histograms 

are free of artifacts caused by the formation of disulfide bridges. The logarithmic 

histogram is shown in Figure 40. The conductance maximum of 2·10-2 G/G0 is in perfect 

agreement with the literature.179 

 

Figure 40: The logarithmic conductance histogram of BMSB 173 (blue), gold (black), 

previously published data (red)179 

S S
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Recently BIPY 7398 became a newly established standard. It was deeply studied by 

Venkataraman and co-workers180,181 to elucidate its conductance and on-surface behavior. 

This molecule also does not suffer from oxidative degradation and has a typical double 

peak in the molecule-conductance area. The conductance measured with our device are 

shown in Figure 41 and agrees perfectly with the published data.181 

 

Figure 41: The logarithmic conductance histogram of BIPY 73 (blue), gold (black), 

previously published data (red)181 

On account of this clear agreement between our experiments and literature data it 

was decided to continue with more complex molecules. A rigid linear molecule had been 

chosen for these experiments. Rod-like oligo(phenyl acetylenes) bearing two anchoring 

groups seem to be ideal candidates for this study because of the low number of degrees 

of freedom. The conductance histograms are thus not complicated by additional 

influences caused by intramolecular geometrical changes. 

The already published dithiol 174182 was chosen for this experiment so that 

the comparison could be easily done. A significant peak appeared after addition of the 

solution of the dithiol 174182, which was in good agreement with the reported conductance 

of 2.9±0.5·10-4 G/G0 as shown in the histogram overlay (Figure 42). 

N N

73
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Figure 42: The logarithmic conductance histogram of oligo(phenyl acetylene) 174 (blue) 

and gold (black), the published conductance histogram (red)182 

3.4.2 Single-Molecule Conductance of Helicene Derivatives 

To the best of our knowledge, no helicene single-molecule break junction 

measurements have been published prior to our study and the first results published by 

us.148 

(-)-(M,R,R)-Pyridooxa[9]helicene 87 

The (-)-(M,R,R)-pyridooxa[9]helicene 87 was chosen as a representative of the class 

of azahelicenes. The choice might be surprising, but there are several reasons for that. 

Even though it is not fully aromatic helicene, the internal helical π-electron system is 

present in this molecule. The methyl groups in position 6 and 6’ prevent the helicene from 

the attachment by metallic electrodes through the extended π-electron system, thus 

opening charge transfer across additional transmission channels through more benzene 

rings similar to the case of BIPY 73.121,181 The helicene (-)-(M,R,R)-87 contains two 

pyridine subunits, which were expected to create sufficiently strong bonds to gold. The 

blue curve in Figure 43 shows the conductance peak corresponding to the tunneling 

regime (MCBJ experiments). This molecule showed surprisingly high conductance with 

maximum at 8.8·10-4 G/G0. The calculation done by Dr. Jaroslav Vacek (IOCB Prague), 

using QuantumWise's Atomistix Toolkit (ATK) program183,184 and NEGF, provided a 

slightly higher conductance (4.5·10-3 G/G0) in comparison with the experiment.  

SH SH

174
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Figure 43: The logarithmic conductance histogram of gold (black) and the 

(-)-(M,R,R)-pyridooxa[9]helicene 87 (blue) (MCBJ experiments); the red arrow shows 

the calculated conductance value  

The respective two-dimensional histogram (Figure 44) showed the length of the 

molecule (-)-(M,R,R)-87, which corresponds well to the calculated distance between 

nitrogen atoms in the relaxed-state geometry. 
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Figure 44: The 2D conductance histogram of (-)-(M,R,R)-87, the molecule effective 

length is marked in orange (MCBJ experiments); inset: the Au-molecule-Au bridge with 

the calculated distance between the apex gold atoms 

Some examples of breaking curves observed during the MCBJ measurements are 

shown in Figure 45. 

 

Figure 45: Breaking curves of (-)-(M,R,R)-87 with conductance plateaus in the blue area 

(MCBJ experiments) 

3,12-Bis(acetylsulfanyl)dibenzo[5]helicene 131 

As far as sulfanylated helicenes are concerned, single-molecule conductance of the 

bis(acetylsulfanyl)dibenzo[5]helicene derivative 131 was investigated by STM-BJ 

experiments. This compound contains also the picene subunit, which makes it more rigid 

~8 Å 
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in comparison to simple [5]helicene derivatives. The on-surface behavior of 131 should 

be more confined because of reduced degrees of freedom. The conductance peak with 

maximum of 1.1·10-3 G/G0 was obtained from the logarithmic conductance histogram 

(Figure 46). The calculated conductance value (8·10-3 G/G0) is slightly higher, but within 

the same order of magnitude. 

 

Figure 46: The logarithmic conductance histogram of gold (black) and the 

bis(acetylsulfanyl)dibenzo[5]helicene 131 (blue) 

The minor conductance peak at 6.3·10-4 G/G0 is probably caused by the attachment 

of the molecule to the electrode through the oxygen atom of the acetylsulfanyl group, 

similarly to the case of [7]helicene 143 described later. The attachment geometry of the 

dibenzo[5]helicene 131 (Au-S-molecule-S-Au) is well-defined and recognizable in the 

2D conductance histogram (Figure 47). The gap between the electrodes correlates well 

with the sulfur-sulfur distance in the molecule increased by gold-sulfur bond length of 

2.2 Å.185 
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Figure 47: The 2D conductance histogram of [5]helicene 131, the molecule effective 

length is marked in orange (STM-BJ experiments); inset: Au-molecule-Au bridge with 

the calculated distance between the sulfur atoms 

The observed breaking curves reveal two preferred geometries: through-sulfur 

bonding (the higher conductance level) and through-oxygen bonding (the lower 

conductance level) (Figure 48). These conductance states seem to interconvert one into 

the other that leads to switching the single-molecule conductance value. This effect needs 

further experimental and computational investigation in order to explore this phenomenon 

and describe it in more detail.  

~9 Å 
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Figure 48: Breaking curves of [5]helicene 131 with conductance plateaus in the blue area 

indicating the conductance switching (STM-BJ experiments) 

2,17-Bis(acetylsulfanyl)[7]helicene 143 

The bis(acetylsulfanyl)[7]helicene 143 is the most deeply studied sulfanylated 

helicene in this series. Its physical properties were co-investigated in collaboration with 

other research groups, vide infra. 

The logarithmic conductance histogram of [7]helicene 143 is depicted in Figure 49 

showing two conductance peaks. The two maxima are indicated by arrows. The higher 

conductance maximum at approximately 0.01 G/G0 was assigned to the bonding 

geometry, where the molecules are attached to the gold electrodes via the sulfur atoms of 

the acetylsulfanyl groups. Additionally, a second bonding geometry, in which attachment 

to the gold electrodes is facilitated via the oxygen atoms of the acetylsulfanyl groups, was 

proposed. In this case conductance drops down by circa one order of magnitude to the 

value of 2·10-3 G/G0. The calculated conductance value (1·10-1 G/G0) is higher similar to 

previously mentioned helicenes. This observation is in agreement with the results 

obtained in the group of Prof. Stefan Müllegger (Johannes Kepler University Linz; 

unpublished results), where studies on the interaction of this molecule (adsorbed on Au 

surface) with radiofrequency field are in progress.  
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Figure 49: The logarithmic conductance histogram of gold (black), [7]helicene 143 

(magenta), through-sulfur bonded [7]helicene 143 (blue; selection), through-oxygen 

bonded [7]helicene 143 (red, selection) (MCBJ experiments) 

 

Figure 50: The 2D histograms of [7]helicene 143 (MCBJ experiments) (a) sulfur bonded; 

(b) oxygen bonded  

The distance-dependent conductance is depicted in the 2D-histogram (Figure 50), 

which is in good agreement with the molecule dimensions received from crystallographic 

AcS SAc

143

a) b) 
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analysis (~6 Å for the sulfur-bonded geometry) or molecular modeling (~8 Å for the 

oxygen-bonded geometry). 

The breaking conductance curves are depicted in Figure 51. The black and the 

green curves show switching between the two bonding states (through-oxygen bonding 

versus through-sulfur bonding). Compared to the other helicenes studied in this Thesis, a 

significant slope of the plateaus present in the breaking curves of 143 was observed. This 

is the result of geometry changes during the separation of electrodes. One of the tentative 

explanations includes mechanical stretching of the flexible helicene molecule. Such a 

behavior is illustrated by the blue curve in Figure 51. 

 

Figure 51: Typical breaking curves of [7]helicene 143 with conductance plateaus in the 

blue-highlighted area; the blue breaking curve might indicate the mechanical stretching 

of the spring-like molecule (STM-BJ experiments) 

The bis(acetylsulfanyl)[7]helicene derivative 143 was also studied by the high 

resolution UHV STM technique in the group of doc. Ing. Pavel Jelínek, Ph.D. (Institute 

of Physics, Czech Academy of Sciences). These studies demonstrated for the first time 

piezoelectric properties of a single-molecule, helicene 143, adsorbed on silver surface.171 

The UHV STM studies (done by Oleksandr Stetsovych, Ph.D., Institute of Physics, 

Czech Academy of Sciences) confirmed the two preferred attachment geometries of 

the acetylsulfanyl group to the Ag(111) surface (Figure 52). Two different geometries 

are clearly visible in the STM image (constant-height scanning mode): the bright and the 

dark one. The bright one corresponds to the taller molecule conformation as the acetyl 

group is rotated perpendicular to the surface. On the other hand, the coplanar orientation 
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of the anchoring group appears dark in the STM image. This observation is further 

supported by the X-ray analysis of the (acetylsulfanyl)oxa[6]helicene derivative 168 

(Figure 31), showing similar relaxed conformation of the acetylsulfanyl group in the 

crystal. 

  

Figure 52: The constant-height STM image of two molecules 143 with the acetylsulfanyl 

oxygen atom pointing up (red arrow) or pointing down (black arrow) 

(-)-(M,R,R)-2,38-Bis(acetylsulfanyl)oxa[19]helicene 88 

Finally, the single-molecule conductance of the 

(-)-(M,R,R)-bis(acetylsulfanyl)oxa[19]helicene 88 was investigated by STM-BJ 

experiments. The first set of measurements yielded surprisingly high conductance 

(Figure 53) starting at 4·10-3 G/G0 and crossing more than one order of magnitude with 

the same molecular length according to the 2D conductance histogram of [19]helicene 

(-)-(M,R,R)-88 (Figure 54). The conductance curves show also plateaus of the similar 

length, but these plateaus are statistically distributed over a wide range of conductance 

(Figure 55). 
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Figure 53: The logarithmic conductance histogram of gold (black) and (-)-(M,R,R)-88 

(blue) (STM-BJ experiments) 

The unusually broad conductance peak is most likely caused by many attachment 

configurations occupied by the molecule that is supported also by calculations. 

Conductance was calculated by employing Quantum ATK. Molecular dynamics was also 

used for simulation of many different geometries and to investigate the actual breaking 

process. Calculated conductance values of the molecule (-)-(M,R,R)-88 being attached to 

gold electrodes and adopting different geometries were in the range of 10-4 to 10-2 G/G0.  

On the other hand, the conductance plateaus are reasonably defined, which excludes 

random noise or measurement errors. These preliminary results point to the ability of 

helicene derivatives to serve as controllable single-molecule conductors. Further 

development of the break junction devices is desirable to refine the data and to allow 

studies on other properties such as external force dependent conductance or I-V 

characteristics. 

The present study has already motivated physicists and chemists to conduct 

collaborative studies on physico-chemical properties of helicene derivatives, which were 

published shortly before this Thesis manuscript was submitted.186,187 

O

O

O

O

O

O
O

O

Tol

Tol
Tol

Tol

Tol

Tol

Tol

Tol

SAc

AcS

(-)-(M,R,R)-88



89 

 

Figure 54: The 2D histogram of (-)-(M,R,R)-88, the molecule effective length is marked 

in orange (STM-BJ experiments); inset: the Au-molecule-Au bridge with the calculated 

distance between the sulfur atoms 

 

Figure 55: Breaking curves of (-)-(M,R,R)-88 with conductance plateaus (blue area) 

  

~14Å 
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4 Conclusion 

The multidisciplinary research I pursued at IOCB Prague during my PhD studies 

contributed to the development of synthetic methodologies for the preparation of 

extremely long oxa[n]helicenes in a racemic or diastereo- and enantiopure form. In this 

context, I prepared the longest helicene derivative reported to date. I also demonstrated 

that these attractive helical molecules can be endowed with useful functional groups such 

as pyrido units or (acetyl)sulfanyl moieties. Selected helicene derivatives bearing 

nitrogen or sulfur anchoring groups were employed in physical studies on single-

molecule conductance. To this purpose I used mechanically controllable break junction 

(MCBJ) or scanning tunneling microscopy-based break junction (STM-BJ) techniques 

employing in-house developed experimental setups. In this context, I measured for the 

first time single-molecule conductance of selected helicene molecules. 

In summary, I have achieved the following most important results: 

(1) I have developed a modular synthesis of racemic or diastereo- and enantiopure 

oxa[11]helicenes and oxa[19]helicenes (Figure 56) where alkyne [2+2+2] 

cycloisomerization is central to their preparation. I demonstrated the advantageous use of 

a high-pressure-high-temperature flow reactor to pursue the key cyclization. Aptly 

designed oligoyne precursors were thus transformed into long helicenes in very 

reasonable yields (20-50%) by the action of CpCo(CO)2 complex in THF at 250 °C. 
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(2) I have successfully proven and optimized the metal-free approach towards 

protected helicene (di)thiols, which was based on aromatic nucleophilic substitution. 

A series of sulfanylated [5]-, [6]-, and [7]helicenes or their oxa analogues were prepared 

by reacting the respective aryl chlorides with sulfur nucleophiles (Figure 57). Selected 

helicene dithiols were subjected to single-molecule conductance measurements by 

break-junction techniques. 
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Figure 57: A series of sulfanylated helicene derivatives 
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Starting from pyridine-based precursors, I have prepared the pyridooxa[9]helicene  

derivative (-)-(M,R,R)-87 by employing the same modular synthetic approach used for the 

synthesis of other long helicenes. Combining two strategies, i.e. [2+2+2] 

cycloisomerization of alkynes and sulfanylation of intermediary chlorohelicenes via 

aromatic nucleophilic substitution of intermediary chlorohelicenes, allowed me to 

synthesize the longest oxa[19]helicene dithiol derivative (-)-(M,R,R)-88 reported so far 

(Figure 58). 
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Figure 58: Pyridooxa[9]helicene (-)-(M,R,R)-87 and oxa[19]helicene dithiol derivative 

(-)-(M,R,R)-88 

Molecular structure of diastereo- and enantiopuredichlorooxa[19]helicene 

(-)-(M,R,R)-171 was proven by single-crystal X-ray analysis, along with structures of 

some other helicenes presented in this Thesis. 

(3) A new break junction device to measure single-molecule conductance was designed 

and constructed within a collaborative project. I have contributed significantly to the 

following parts of the device development: sampling rate optimization, noise level 

suppression by means of a new shielding design, and LabView control software 

programming. The apparatus hardware is designed in such a way that it can easily be adjusted 

for either mechanically controllable break junction measurement or STM-break junction 

measurement (Figure 59). 

The control program enables to run the BJ device in semi-automatic regime and 

collect up to hundreds of thousands of “breaking curves”. The program also allows the 

operator to control all subsystems of BJ apparatus separately and provides a preliminary 

statistical analysis. 
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Figure 59: (a) STM-BJ device; (b) 2D-histogram of the single-molecule conductance 

measurement on the sulfanylated oxa[19]helicene derivative (M,R,R)-88 

By repeating the published measurements of single-molecule conductance of model 

compounds, I obtained identical results, which proved the full functionality of the 

constructed break-junction device. Accordingly, I measured single-molecule conductance 

on [5]-, [7]-, and the longest oxa[19]helicene sulfanyl derivatives 131, 143 and 

(-)-(M,R,R)-88, respectively, along with the conductance of pyridooxa[9]helicene 

(-)-(M,R,R)-87. The experimental data showed their single-molecule conductance in the 

order of 10-3 G/G0 (e.g. Figure 59b). 
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5  Experimental Section 

5.1 Methods 

General 

Melting points were determined on Mikro-Heiztisch Polytherm A (Hund, Wetzlar) 

apparatus and are uncorrected. 

The NMR spectra were measured on Bruker Advance III HD 400, 500 and 600 

instruments, respectively. The 1H NMR spectra were measured at 400.13 MHz, 499.88 

MHz, and 600.13 MHz, the 13C NMR spectra at 100.61 MHz, 125.71 MHz, and 150.90 

MHz in CDCl3, CD2Cl2 or acetone-d6 as indicated. For referencing of 1H NMR spectra, 

the residual solvent signals (δ 7.26 for CHCl3, δ 5.32 for CH2Cl2 and δ 2.05 for acetone) 

were used. In the case of 13C spectra, the signals of solvents (δ 77.16 for CDCl3, δ 54.00 

for CD2Cl2 and δ 29.84 for acetone-d6) were used. The chemical shifts are given in δ-

scale, the coupling constants J are given in Hz. For the assignment of both the 1H and 13C 

NMR spectra of key compounds, homonuclear 2D-H,H-COSY, 2D-H,H-ROESY, and 

heteronuclear 2D-H,C-HSQC, and 2D-H,C-HMBC experiments were performed by 

Dr. Miloš Buděšínský. 

The IR spectra were measured in CHCl3, CCl4 or KBr on FT-IR spectrometer 

Bruker Equinox 55. The CD spectra were acquired on a J-815 CD spectrometer (Jasco 

Analytical Instruments, Inc.) in THF (10-4 M solutions) using 10 mm quartz sample cell. 

The EI mass spectra were determined at an ionizing voltage of 70 eV, the m/z values 

are given along with their relative intensities (%). The low resolution ESI mass spectra 

were recorded on Q-Tof micro (Waters) and high resolution ESI mass spectra and APCI 

spectra using the Orbitrap mass analyzer (LTQ Orbitrap XL, Thermo Fisher Scientific). 

The MALDI-TOF spectra were measured on UltrafleXtremeTM MALDI-TOF/TOF 

mass spectrometer (Bruker Daltonics, Germany). Optical rotations were measured in 

CHCl3, THF using an Autopol IV instrument (Rudolph Research Analytical). 

TLC was performed on Silica gel 60 F254-coated aluminium sheets (Merck) and 

spots were detected by the solution of Ce(SO4)2·4H2O (1%) and H3P(Mo3O10)4 (2%) in 

sulfuric acid (10%). The flash chromatography was performed on Silica gel 60 (0.040-

0.063 mm, Merck) or on Biotage® KP-C18-HS cartridges using the Isolera One HPFC 

system (Biotage, Inc.). Biotage Initiator EXP EU (300 W power) was used for reactions 

carried out in microwave oven. 
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Flow experiments were performed in a high-temperature & high-pressure 

continuous flow reactor constructed by connecting an analytical HPLC pump (Knauer) 

to a stainless-steel capillary (VICI, 10 m, 1.0 mm ID, internal volume 8 mL) embedded 

in an electrically heated block (Development workshops at the IOCB Prague, temperature 

range rt to 350 °C) and an automatic backpressure regulator with a pressure limit of 

150 bar (ThalesNano Nanotechnology Inc.). Enantiomers separation were done using the 

HPLC column Chiralpak IB, 250 x 4.6 mm, 5 m, mobile phase n-heptane:MTBE 90:10, 

with 0.5% isopropyl alcohol and flow rate 1.0 mL/min 

N,N-Diisopropylamine (DIPA) and triethylamine were distilled from calcium 

hydride under nitrogen and degassed by three freeze-pump-thaw cycles before use; DCM 

was distilled from calcium hydride under nitrogen; tetrahydrofuran (THF), diethyl ether, 

and methyl tert-butyl ether (MTBE) was freshly distilled from sodium/benzophenone 

under nitrogen; benzene, toluene and mesitylene were distilled from sodium under 

nitrogen. HPLC-grade N-methyl-2-pyrrolidone (NMP) was distilled under nitrogen (for 

the nucleophilic substitution reactions). Otherwise, all commercially available solvents, 

catalysts, and reagent grade materials were used as received. 4-iodotoluene, propargyl 

alcohol, 4,4’-bipyridine 73, 1-bromo-2-(methoxymethyl)naphthalene 94, 

1-chloronaphthalene 115, 4,4’-dibromobiphenyl 128, p-chlorophenol 154, (-)-(S)-but-3-

yn-2-ol, 7-chloro-2-naphthol 158, and 2-iodophenol were purchased. [4-(1-

ethynylnaphthalen-2-yl)but-1-yn-1-yl][tri(propan-2-yl)]silane 99149, 4,6-diiodoresorcinol 

100150, 1-(3-bromoprop-1-yn-1-yl)-4-methylbenzene 101151, 1-iodonaphthalen-2-ol 

113153, (2S)-4-(4-methylphenyl)but-3-yn-2-ol 152174 and oligo(phenyl acetylene) 174182 

were synthesized according to the literature procedures. Helicene 130168 was prepared by 

Mgr. Václav Houska. Compounds 123148, 133170, 135168, 138170,140170, 142171, 147170 were 

prepared by Michal Šámal, Ph.D. as a part of other projects. Compounds 159168, 160168, 

161168, 162168, 163168, 164168 were prepared by joint effort with Isabel Gay Sánchez. 

Crystallographic Analysis 

Crystallographic data were collected on Bruker D8 VENTURE Kappa Duo 

PHOTON 100 by IμS micro-focus sealed tube MoKα radiation (λ = 0.71073 Å) or CuKα 

(λ = 1.54178 Å) at a temperature of 120 K or 150 K. The structures were solved by direct 

methods (XP)188 or methods (XT) and refined by full matrix least squares based on F2 

(SHELXL2014 or SHELXL2018).189 The hydrogen atoms on carbon were fixed into 

idealized positions (riding model) and assigned temperature factors either 
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Hiso(H) = 1.2 Ueq (pivot atom) or Hiso(H) = 1.5 Ueq (pivot atom) for methyl moiety. 

The determination of absolute configuration for (-)-(M,R,R)-171 was based on anomalous 

scattering; Flack parameter 0.006 (4). All crystallographic measurements were performed 

by Dr. Ivana Císařová. 

General Procedure for Reactions Carried out in a Flow Reactor 

To a solution of the oligoyne (1.0 equiv., 5 mg/mL) in distilled THF CpCo(CO)2 

(0.5 – 2.0 equiv.) was added in one portion under argon. The reaction mixture was 

pumped through the high-temperature high-pressure flow reactor (internal volume 8 mL) 

at a flow rate of 0.5 or 1.0 mL/min. The pressure of the system was set to 80 bar and the 

temperature was maintained at 250 °C. The resulting reaction mixture was concentrated 

in vacuo. Purification of the residue by flash chromatography on silica gel afforded 

desired oxahelicene.  

 

 

5.2  Synthesis 

1-Iodo-2-(methoxymethyl)naphthalene 95190 

To a solution of 1-bromo-(2methoxylmethyl)naphthalene 94 (2.00 g, 

7.96 mmol) in distilled THF (40 mL) n-BuLi (7.5 mL of a 1.6 M 

solution in hexanes, 12 mmol, 1.5 equiv.) was dropwise added at -78 

°C. Then a solution of iodine (4.01 g, 15.9 mmol, 2.0 equiv.) in distilled THF (20 mL) 

was added. The reaction mixture was stirred at -78 °C for 15 min and then allowed to 

warm up to rt. The solvents were removed in vacuo. The residue was dissolved in DCM 

(150 mL) and washed 5% aq. Na2S2O3 (50 mL), and dried over anhydrous Na2SO4. The 

solvent was removed in vacuo and the crude product was purified by flash 

chromatography on silica gel (hexane:DCM, 80:20) to give 95 (2.08 g, 87%). 

The spectra were in an agreement with the published ones.190 

2-(Bromomethyl)-1-iodonaphthalene 96190 

The 1-iodo-2-(methoxymethyl)naphthalene 95 (2.07 mg, 6.94 mmol) 

was dissolved in distilled THF (10 mL) and cooled down to 0 °C under 

nitrogen. Then HBr in acetic acid (33%, 18.3 mL, 104 mmol, 15 equiv.) 

I

Br

I

OCH3
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was added and the reaction mixture was stirred at 0 °C for 1 h. The reaction was quenched 

with saturated solution of sodium bicarbonate (100 mL) and extracted with DCM (3 × 

30 mL). The solvent was removed in vacuo and the crude product was flushed with 

hexane to give bromide 96 (2.28 g, 95%) as an amorphous solid. 

The spectra were in an agreement with the published ones.190 

[4-(1-Iodonaphthalen-2-yl)but-1-yn-1-yl][tris(1-methylethyl)]silane 97190 

n-BuLi (1.6 M solution in hexanes, 9.0 mL, 14 mmol, 

1.55 equiv.) was added dropwise to a solution of 

TIPS-propyne (3.50 mL, 14.4 mmol, 1.56 equiv.) in distilled 

THF (20 mL) at -78 °C under argon. After stirring at -78 °C for 2.5 h, bromide 96 (3.20 

g, 9.22 mmol) in distilled THF (60 mL) was added dropwise. The mixture was stirred at 

-78 °C for 2.5 h and then allowed to warm up to rt. The solvents were removed in vacuo 

and purified by chromatography on silica gel (hexane:ether, 98:2) to give alkyne 97 (4.13 

g, 96%) as an oil. 

The spectra were in an agreement with the published ones.190 

Trimethyl[(2-{4-[tris(1-methylethyl)silyl]but-3-yn-1-yl}naphthalen-1-

yl)ethynyl]silane 98190 

A Schlenk flask was charged with iodide 97 (3.03 g, 

6.55 mmol), Pd(PPh3)4 (151 mg, 0.13 mmol, 2 mol%), CuI 

(50 mg, 0.26 mmol, 4 mol%), and flushed with argon. 

The degassed DIPA (12 mL) was added and the mixture was 

stirred at rt for 5 min before TMSA (966 mg, 9.83 mmol, 1.5 equiv.) was added. 

The reaction mixture was stirred at the rt overnight. The solvents were evaporated under 

reduced pressure and the residue was purified by flash chromatography on silica gel 

(hexane) to afford alkyne 98 (2.53g, 89%) as a yellowish oil. 

The spectra were in an agreement with the published ones.190 

[4-(1-Ethynylnaphthalen-2-yl)but-1-yn-1-yl][tris(1-methylethyl)]silane 99190 

Protected diyne 98 (200 mg, 0.46 mmol) was dissolved 

in anhydrous methanol (3 mL) and distilled ether (1 mL). 

K2CO3 (128 mg, 0.92 mmol, 2 equiv.) was added to this 

TIPS

TMS

TIPSI

TIPS
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solution and the mixture was stirred at rt for 3 h. After this period, the solvents were 

evaporated under reduced pressure and the residue was purified by flash chromatography 

on silica gel (hexane) to afford 99 (160 mg, 96%) as an amorphous solid. 

The spectra were in an agreement with the published ones.190 

4,6-Diiodoresorcinol 100150 

Iodine monochloride (8.20 g, 50.5 mmol, 2.02 equiv.) was dissolved in 

distilled diethyl ether (30 mL), cooled down to -7 °C and slowly 

cannulated to the solution of resorcinol (2.75 g, 25.0 mmol) in distilled diethyl ether (25 

mL) at -7 °C. Then the reaction mixture was allowed to heat up to room temperature and 

stirred for 1 h. Reaction mixture was quenched with Na2SO3 solution (2.0 g in 20 mL 

of water) and extracted with diethyl ether (4 × 25 mL). The collected organic layers were 

evaporated in vacuo to afford the product 100 as a pinkish powder (8.50 g, 94%). 

The spectra were in an agreement with the published ones.150 

1-(3-Bromoprop-1-yn-1-yl)-4-methylbenzene 101151 

A Schlenk flask was charged with 4-iodotoluene (20.0 g, 91.7 mmol), 

Pd(PPh3)4 (530 mg, 0.5 mmol, 0.5 mol%), CuI (175 mg, 0.9 mmol, 

1 mol%), flushed with argon and a mixture of degassed solvents of DIPA-toluene 

(280 mL, 1:2) was added. The mixture was stirred at rt for 5 min before propargyl alcohol 

(5.40 g, 96.3 mmol, 1.05 equiv.) was added and the mixture was vigorously stirred at rt 

overnight. The solvents were evaporated under reduced pressure and the residue was 

washed with hexane (300 mL). The hexane solution was evaporated in vacuo to afford 

3-(4-methylphenyl)prop-2-yn-1-ol 101a (13.3 g, 99%) as an off-white oil. 

The spectra were in an agreement with the published ones.151 

The alcohol 101a (13.4 g, 91.2 mmol) was dissolved in distilled MTBE (92 mL), 

anhydrous pyridine (2.8 mL 34.2 mmol, 0.38 equiv.) was added and cooled down 

to -7 °C, PBr3 (4.3 mL, 45.6 mmol, 0.5 equiv.) was dissolved in MTBE (46 mL), cooled 

down to -7 °C and slowly added to the solution of the alcohol 101a. The mixture was 

vigorously stirred at rt for 2 h. Then the reaction mixture was filtered through small pad 

of silica, flush with DCM (150 mL). The solvents were evaporated in vacuo and the 

residue was purified by flash chromatography on silica gel (hexane:DCM, 70:30) to 

afford the bromoderivative 101 (13.6 g, 71%) as a pale orange oil. 

OH OH

I I

Br
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The spectra were in an agreement with the published ones.151 

1,5-Diiodo-2,4-bis{[3-(4-methylphenyl)prop-2-yn-1-yl]oxy}benzene 102 

A flask was charged with diiodoresorcinol 100 (1.66 g, 

4.59 mmol), anhydrous potassium carbonate (4.20 g, 

28.0 mmol, 6.0 equiv.) and dissolved in anhydrous DMF 

(100 mL). Then a solution of 1-(3-bromoprop-1-yn-1-yl)-4-

methylbenzene 101151 (2.02 g, 9.63 mmol, 2.1 equiv.) in anhydrous DMF (20 mL) was 

added and the reaction mixture was stirred at rt overnight. After filtration through a pad 

of Celite the solvents were evaporated under reduced pressure and the residue was 

purified by flash chromatography on silica gel (hexane: diethyl ether, 95:5) to afford 

alkyne 102 (2.01 g, 70%) as a white solid. 

M.p.: 117.0 - 118.0 °C (hexane-EtOAc). 

1H NMR (400 MHz, CDCl3): 2.33 (s, 6H), 4.97 (s, 4H), 7.04 (s, 1H), 7.07 (d, 

J = 8.0, 4H), 7.29 (d, J = 8.0, 4H), 8.10 (s, 1H). 

13C NMR (101 MHz, CDCl3): 21.48, 58.42, 77.55, 82.17, 88.54, 100.66, 118.78, 

129.07, 131.71, 139.10, 147.14, 158.00. 

IR (CHCl3): 3084 w, 3053 w, 3034 w, 2244 w, 2232 w, 2217 w, 1608 w, 1570 m, 

1562 m, 1510 vs, 1456 s, 1407 w, 1394 s, 1269 vs, 1250 s, 1220 m, 1182 s, 1135 vw, 

1118 w, 1023 s, 1013 s, 947 w, 883 w, 818 vs, 708 w, 646 w, 600 w, 445 w cm-1. 

EI MS: 618 (M+•, 1), 491 (18), 129 (100), 57 (10). 

HR EI MS: calculated for C26H20O2I2 617.9553, found 617.9558. 

 [(4,6-Bis{[3-(4-methylphenyl)prop-2-yn-1-yl]oxy}benzene-1,3-diyl)diethyne-2,1-

diyl]bis(tri-methylsilane) 103 

A Schlenk flask was charged with diiodide 102 (1.13 g, 

1.83 mmol), Pd(PPh3)4 (115 mg, 0.10 mmol, 5 mol%), CuI 

(38 mg, 0.20 mmol, 10 mol%), flushed with argon and 

a mixture of degassed solvents of DIPA-toluene (30 mL, 1:2) 

was added. The mixture was stirred at rt for 5 min before 

TMSA (539 mg, 0.780 mL, 5.48 mmol, 3.0 equiv.) was added and the mixture was stirred 

at rt overnight. The solvents were evaporated under reduced pressure and the residue was 

OO
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purified by flash chromatography on silica gel (hexane:ethyl acetate, 98:2) to afford 

protected tetrayne 103 (952 mg, 93%) as a yellowish solid. 

M.p.: 94.5 - 96.0 °C (hexane-EtOAc). 

1H NMR (400 MHz, CD2Cl2): 0.25 (d, J = 0.6, 18H), 2.33 (s, 6H), 5.03 (s, 4H), 

6.91 (s, 1H), 7.09 (d, J = 8.2, 4H), 7.29 (d, J = 8.2, 4H), 7.51 (s, 1H). 

13C NMR (101 MHz, CD2Cl2): 0.23, 21.77, 58.37, 82.88, 88.68, 98.36, 100.04, 

100.49, 106.88, 119.33, 129.64, 132.16, 139.55, 139.83, 160.39. 

IR(CHCl3): 3052 vw, 3033 w, 2924 m, 2900 w, 2870 w, 2239 w, 2212 w, 2150 s, 

1603 m, 1596 m, 1565 w, 1510 s, 1494 s, 1454 m, 1408 s, 1371 m, 1361 m, 1298 s, 

1251 s, 1198 s, 1181 m, 1120 m, 1023 s, 1015 s, 1006 s, 904 m, 869 vs, 845 vs, 818 s, 

707 w, 700 w, 641 m, 528 m cm-1. 

ESI MS: 559 ([M+H]+), 581 ([M+Na]+) . 

HR ESI MS: calculated for C36H38O2Si2Na 581.2303, found 581.2303. 

1,5-Diethynyl-2,4-bis{[3-(4-methylphenyl)prop-2-yn-1-yl]oxy}benzene 104 

The protected tetrayne 103 (135 mg, 0.240 mmol) was 

dissolved in anhydrous methanol (5 mL) and freshly 

distilled THF (5 mL). NaOMe (1.45 M in methanol, 400 µl, 

0.59 mmol, 2.4 equiv.) was added to this solution and 

the reaction mixture was stirred at rt for 45 min. After this period, the solvents were 

evaporated under reduced pressure and the residue was purified by flash chromatography 

on silica gel (hexane:ethyl acetate, 9:1) to afford the deprotected tetrayne 104 (95 mg, 

95%) as a pale yellow solid. 

M.p.: 141.0 - 142.0 °C (hexane-EtOAc). 

1H NMR (400 MHz, CD2Cl2): 2.33 (s, 6H), 3.27 (s, 2H), 5.04 (s, 4H), 6.95 (s, 1H), 

7.09 (d, J = 8.1, 4H), 7.29 (d, J = 8.1, 4H), 7.56 (s, 1H). 

13C NMR (101 MHz, CD2Cl2): 21.76, 58.29, 79.14, 81.10, 82.66, 88.76, 99.40, 

105.59, 119.22, 129.66, 132.21, 139.64, 139.94, 160.93. 

IR (CHCl3): 3304 s, 3052 w, 2958 w, 2925 m, 2858 w, 2237 w, 2212 w, 2108 w, 

1605 s, 1600 s, 1566 m, 1501 vs, 1495 vs, 1454 m, 1409 s, 1372 m, 1359 m, 1289 vs, 

1191 s, 1181 m, 1119 w, 1100 s, 1022 s, 1015 s, 1009 s, 905 m, 818 vs, 708 w, 661 w, 

607 m, 528 m cm-1.  

APCI MS: 415 ([M+H]+). 
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HR APCI MS: calculated for C30H23O2 415.1693, found 415.1691. 

[(4,6-Bis{[3-(4-methylphenyl)prop-2-yn-1-yl]oxy}benzene-1,3-diyl)bis(ethyne-2,1-

diylnaph-thalene-1,2-diylbut-1-yne-4,1-diyl)]bis[tri(propan-2-yl)silane] 105 

A Schlenk flask was charged with diiodide 102 

(686 mg, 1.11 mmol), Pd(PPh3)4 (128 mg, 0.11 mmol, 

10 mol%), CuI (42 mg, 0.22 mmol, 20 mol%) and 

flushed with argon. Degassed DIPA (5 mL) and 

degassed toluene (5 mL) was added. Then a solution 

of alkyne 99190 (839 mg, 2.33 mmol, 2.1 equiv.) in 

degassed toluene (10 mL) was slowly added at rt 

within 1 h. The reaction mixture then was stirred at the same temperature overnight. The 

solvents were evaporated under reduced pressure and the residue was purified by flash 

chromatography on silica gel (DCM:cyclohexane, 30:70) to afford hexayne 105 (928 mg, 

77%) as a yellow amorphous solid. 

1H NMR (400 MHz, CDCl3): 1.02 (m, 42H), 2.35 (s, 6H), 2.84 (t, J = 7.2, 4H), 

3.39 (t, J = 7.2, 4H), 5.18 (s, 4H), 7.08-7.12 (m, 4H), 7.15 (s, 1H), 7.35 (d, J = 8.1, 4H), 

7.47 (ddd, J = 8.1, 6.8, 1.2, 2H), 7.51 (d, J = 8.4, 2H), 7.58 (ddd, J = 8.3, 6.8, 1.3, 2H), 

7.75 (d, J = 8.3, 2H), 7.80-7.84 (m, 2H), 7.85 (s, 1H), 8.61 (dd, J = 8.4, 1.1, 2H). 

13C NMR(101 MHz, CDCl3): 11.32, 18.63, 21.11, 21.54, 34.78, 58.09, 81.06, 

82.58, 88.40, 89.78, 94.10, 99.26, 107.16, 108.59, 118.98, 119.70, 125.66, 126.51, 

126.76, 127.78, 127.93, 129.12, 131.73, 131.78, 132.00, 133.56, 136.48, 139.03, 141.48, 

159.76.  

IR (CHCl3): 3084 vw, 3057 w, 2959 s, 2944 vs, 2926 s, 2892 m, 2865 vs, 2236 w, 

2207 vw, 2169 m, 1620 vw, 1604 m, 1590 w, 1565 w, 1510 s, 1497 s, 1463 m, 1452 m, 

1429 vw, 1417 w, 1383 w, 1368 m, 1308 m, 1267 m, 1241 m, 1178 m, 1147 w, 1122 w, 

1073 w, 1053 m, 1023 s, 1015 s, 997 m, 961 w, 899 w, 884 m, 868 w, 818 vs, 708 vw, 

678 m, 659 m, 626 w, 617 w, 529 w, 441 w, 416 vw cm-1.  

ESI MS: 1105 ([M+Na]+). 

HR ESI MS: calculated for C76H82O2Si2Na 1105.57456, found 1105.57393.  
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1,1'-[(4,6-Bis{[3-(4-methylphenyl)prop-2-yn-1-yl]oxy}benzene-1,3-diyl)diethyne-

2,1-diyl]-bis[2-(but-3-yn-1-yl)naphthalene] 106 

The protected hexayne 105 (40 mg, 0.037 mmol) was 

dissolved in distilled THF (2 mL). To this solution, 

a solution of TBAF·3H2O (28 mg, 0.089 mmol, 

2.4 equiv.) in THF (2 mL) was added and the mixture was 

stirred at rt for 1 h. After this period, the reaction mixture 

was filtered over a short pad of silica (THF). The solvent 

was evaporated under reduced pressure and the residue 

was subjected to flash chromatography on silica gel (hexane:ethyl acetate, 100:0 → 

90:10) to afford 106 (23 mg, 82%) as an amorphous solid. 

1H NMR (500 MHz, CDCl3): 2.04 (t, J = 2.6 Hz, 2H), 2.35 (s, 6H), 2.76 (ddd, 

J = 8.0, 7.4, 2.7 Hz, 4H), 3.39 (t, J = 7.7 Hz, 4H), 5.18 (s, 4H), 7.08 – 7.11 (m, 4H), 7.15 

(s, 1H), 7.33 – 7.36 (m, 4H), 7.45 (d, J = 8.4 Hz, 2H), 7.47 (ddd, J = 8.3, 6.8, 1.3 Hz, 2H), 

7.57 (ddd, J = 8.3, 6.8, 1.3 Hz, 2H), 7.78 (d, J = 8.1 Hz, 2H), 7.81 – 7.86 (m, 2H), 7.90 

(s, 1H), 8.59 – 8.64 (m, 2H). 

13C NMR (126 MHz, CDCl3): 19.81, 21.65, 34.75, 58.17, 69.06, 82.70, 84.46, 

88.52, 89.69, 94.48, 99.25, 107.12, 119.07, 119.96, 125.94, 126.60, 127.02, 127.55, 

128.11, 128.21, 129.25, 131.90, 132.12, 133.60, 136.91, 139.18, 141.28, 159.93.  

IR (CHCl3): 3308 m, 3083 vw, 3057 w, 3035 vw, 2961 w, 2929 m, 2867 w, 2236 w, 

2208 w, 2117 w, 1620 vw, 1604 m, 1591 w, 1565 m, 1510 vs, 1497 s, 1453 m, 1431 w, 

1417 m, 1384 w, 1371 m, 1362 m, 1310 m, 1267 s, 1241 s, 1178 s, 1148 w, 1122 m, 

1052 m, 1023 s, 1015 s, 961 w, 898 w, 868 w, 819 vs, 708 vw, 638 m, 544 vw, 529 w, 

441 w, 418 vw cm-1. 

APCI MS: 771 ([M + H]+). 

HR APCI MS: calculated for C58H43O2 771.32478, found 771.32576. 
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rac-10,16-Ditolyl(oxa[11]helicene) 107 

Oxa[11]helicene rac-107 was prepared according to the General 

procedure for reaction in a flow reactor from hexayne 106 (50 mg, 

0.065 mmol) and CpCo(CO)2 (12 mg, 9 μL, 0.07 mmol, 1.0 equiv.) 

in THF (10 mL) at a flow rate of 0.5 mL/min (residence time of 

16 min). The purification by a flash chromatography on silica gel 

(hexane-ethyl acetate 4:1) gave rac-107 (25 mg, 50%) as a white 

solid. 

M.p.: >350 oC (DCM-acetonitrile). 

UV/Vis (CHCl3): λmax (log ε) = 262 (4.47), 282 sh (4.28), 334 (4.16) nm. 

1H NMR (600 MHz, C6D6): 2.18 (s, 6H), 2.42 (td, J = 14.8, 14.8, 4.0, 2H), 2.49 

(ddd, J = 14.8, 4.5, 2.1, 2H), 2.57 (ddd, J = 14.3, 4.0, 2.1, 2H), 2.70 (ddd, J = 14.8, 14.3, 

4.5, 2H), 4.62 (dd, J = 13.1, 1.4, 2H), 5.34 (d, J = 13.1, 2H), 5.74 (s, 1H), 6.74 (ddd, 

J = 8.5, 6.7, 1.4, 2H), 6.82 (ddd, J = 8.0, 6.7, 1.4, 2H), 6.99 (d, J = 1.4, 2H), 7.03 (m, 4H), 

7.04 (s, 1H), 7.09 (m, 4H), 7.15 (dd, J = 8.0, 1.4, 2H), 7.18 (d, J = 7.9, 2H), 7.40 (d, 

J = 7.9, 2H), 7.60 (dd, J = 8.5, 1.1, 2H). 

13C NMR (151 MHz, C6D6): 21.53, 31.04, 31.57, 68.32, 105.17, 119.11, 124.45, 

125.53, 126.34, 126.59, 127.44, 127.66, 128.15, 129.02, 129.66 (2C), 129.70 (2C), 

129.75, 129.84, 129.91, 131.63, 131.65, 133.49, 137.51, 137.88, 137.92, 138.37, 141.63, 

157.33. 

 

IR (CHCl3): 3051 w, 2961 m, 2942 m, 2840 w, 1620 m, 1598 w, 1573 w, 1547 vw, 

1515 m, 1496 m, 1462 w sh, 1412 w, 1379 m, 1300 w, 1262 s, 1147 m, 1125 m, 1022 s, 

883 w, 864 w, 819 vs, 811 vs, 705 vw, 690 w, 537 vw, 431 vw cm-1. 

APCI MS: 771.3 ([M+H]+). 

HR APCI MS: calculated for C58H43O2 771.3258, found 771.3257. 
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1,1'-[(4,6-Bis{[3-(4-methylphenyl)prop-2-yn-1-yl]oxy}benzene-1,3-diyl)diethyne-

2,1-diyl]bis{2-[4-(4-methylphenyl)but-3-yn-1-yl]naphthalene} 108 

The hexayne 106 (130 mg, 0.169 mmol) was dissolved 

in degassed toluene (13 mL) under argon and dropwise 

added to a mixture of 4-iodotoluene (221 mg, 

1.01 mmol, 6.0 equiv.), Pd(PPh3)4 (20 mg, 0.1 mmol, 

10 mol%), CuI (7 mg, 0.034 mmol, 20 mol%) in 

degassed mixture of toluene (3 mL) and DIPA (3 mL) at 

rt within 3 h. The reaction mixture was stirred at the 

same temperature overnight. The solvents were evaporated under reduced pressure and 

the residue was purified by flash chromatography on silica gel (cyclohexane:DCM, 

60:40) to afford the product 108 (143 mg, 89%) as a yellowish amorphous solid. 

1H NMR (400 MHz, CD2Cl2): 2.27 (s, 6H), 2.34 (s, 6H), 2.97 (t, J = 7.4 Hz, 4H), 

3.45 (t, J = 7.4 Hz, 4H), 5.22 (s, 4H), 7.01 – 7.05 (m, 4H), 7.09 – 7.12 (m, 4H), 7.14 (s, 

1H), 7.26 – 7.30 (m, 4H), 7.32 – 7.36 (m, 4H), 7.49 (ddd, J = 8.1, 6.8, 1.3 Hz, 2H), 7.54 

(d, J = 8.4 Hz, 2H), 7.58 (ddd, J = 8.3, 6.8, 1.4 Hz, 2H), 7.81 – 7.84 (m, 2H), 7.85 – 7.89 

(m, 2H), 7.96 (s, 1H), 8.60 – 8.64 (m, 2H). 

13C NMR (101 MHz, CD2Cl2): 21.19, 21.62, 21.78, 35.34, 58.58, 81.80, 83.13, 

88.74, 89.64, 90.15, 94.79, 99.52, 107.41, 119.41, 120.20, 121.38, 126.35, 126.81, 

127.48, 128.21, 128.55, 129.48, 129.67, 131.86, 132.28, 132.57, 133.97, 137.15, 138.20, 

139.84, 142.21, 160.43. 

IR (CHCl3): 3081 vw, 3056 w, 3033 w, 2957 w, 2925 m, 2864 w, 2236 w, 2208 w, 

1604 m, 1565 m, 1510 vs, 1497 m, 1452 m, 1431 w, 1417 m, 1371w, 1363 w, 1345 w, 

1311 m, 1265 m, 1240 m, 1178 m, 1147 w, 1122 m, 1106 w, 1052 m, 1022 s, 1015 m, 

961 w, 898 w, 868 w, 818 s, 709vw, 694 vw, 647 vw, 567w, 557 w, 543 w, 529 m, 491 w, 

442 w cm-1. 

APCI MS: 951 (M+).  

HR APCI MS: calculated for C72H55O2 951.41966, found 951.41977. 
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rac-9,10,16,17-Tetratolyloxa[11]helicene 109 

Oxa[11]helicene rac-109 was prepared according to the General 

procedure for reaction in a flow reactor from hexayne 108 (50 mg, 

0.053 mmol) and CpCo(CO)2 (10 mg, 7 μL, 0.053 mmol, 

1.0 equiv.) in THF (8 mL) at a flow rate of 0.5 mL/min (residence 

time of 16 min). The purification by a flash chromatography on 

silica gel (cyclohexane:DCM, 40:60) gave rac-109 (24 mg, 48%) as 

a white solid. 

M.p.: >350 oC (DCM - cyclohexane). 

UV/Vis (THF): λmax (log ε) = 269 (4.48), 293 sh (4.68), 330 (4.43) nm. 

1H NMR (400 MHz, CD2Cl2): 2.12 – 2.23 (m, 2H), 2.29 (s, 6H), 2.31 (s, 6H), 2.38 

– 2.49 (m, 4H), 2.55 – 2.63 (m, 2H), 4.34 (dd, J = 13.5, 1.3 Hz, 2H), 4.64 (d, J = 13.5 Hz, 

2H), 6.44 (s, 1H), 6.73 (dd, J = 7.8, 1.9 Hz, 2H), 6.79 (dt, J = 7.8, 1.2 Hz, 2H), 6.87 (ddd, 

J = 8.3, 6.7, 1.4 Hz, 2H), 6.92 – 6.95 (m, 2H), 6.97 (bd, J = 7.9, Hz, 2H), 7.03 – 7.11 (m, 

9H), 7.13 – 7.16 (m, 2H), 7.23 (bd, J = 8.6, Hz, 2H), 7.29 (d, J = 8.1 Hz, 2H), 7.45 – 7.48 

(m, 2H), 7.55 (d, J = 8.2 Hz, 2H). 

13C NMR (101 MHz, CD2Cl2): 21.44, 21.46, 29.15, 31.29, 68.44, 104.36, 118.85, 

124.32, 125.23, 126.00, 126.26, 127.66, 127.85, 128.12, 128.58, 128.74, 128.77, 129.04, 

129.08, 129.19, 129.33, 130.42, 130.70, 130.78, 131.40, 131.47, 131.56, 133.10, 136.38, 

136.50 (2C), 136.79, 137.92, 138.34, 138.82, 140.49, 156.52. 

IR (CHCl3): 3050 w, 2941 m, 2924 m, 2897 w, 2868 w, 2841 w, 1617 m, 1584 w, 

1573 w, 1518 m, 1489 m, 1459 w, 1433 m, 1422 w, 1392 w, 1381 w, 1371 w, 1347 vw, 

1333 vw, 1292 m, 1263 w, 1251 w, 1183 m, 1150s, 1134 w, 1111 w, 1081 w, 1068 w, 

1048 w, 1030 w, 1022 m, 1002 m, 978 w, 958 w, 921 w, 878 w, 864 w, 844 m, 822 m, 

815 s, 701 w, 661 w, 626 w, 601 m, 593 w, 573 w, 556 w, 529 m, 515 w, 503 m, 485 w, 

481 w, 474 w, 464 w cm-1. 

APCI MS: 951 (M+).  

HR APCI MS: calculated for C72H55O2 951.41966, found 951.41970. 
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(4-{1-[(5-Iodo-2,4-bis{[3-(4-methylphenyl)prop-2-yn-1-

yl]oxy}phenyl)ethynyl]naphthalen-2-yl}but-1-yn-1-yl)[tri(propan-2-yl)]silane 110 

A Schlenk flask was charged with diiodide 102 (703 mg, 

1.14 mmol), Pd(PPh3)4 (132 mg, 0.114 mmol, 10 mol%), 

CuI (44 mg, 0.23 mmol, 20 mol%) and flushed with 

argon. Degassed DIPA (10 mL) was added. Then 

a solution of diyne 99190 (205 mg, 0.570 mmol, 

0.5 equiv.) in toluene (6 mL) was slowly added at rt 

within 1 h. The reaction mixture then was stirred at the same temperature overnight. The 

solvents were evaporated under reduced pressure and the residue was purified by flash 

chromatography first on silica gel (hexane-ethyl acetate 98:2 to 80:20) and then on 

reversed-phase C-18 silca gel (methanol-ethyl acetate, 100:0 →50:50) to afford hexayne 

105 (123 mg, 40% of total conversion to this product) as a yellow amorphous solid and 

tetrayne 110 (198 mg, 41%) as a yellowish amorphous solid. 

1H NMR (400 MHz, CDCl3): 0.98-1.04 (m, 21H), 2.33 (s, 6H), 2.78 (t, J = 7.3, 

2H), 3.33 (t, J = 7.3, 2H), 5.04 (s, 2H), 5.10 (s, 2H), 7.04 – 7.12 (m, 5H), 7.28 – 7.34 (m, 

4H), 7.44 (ddd, J = 8.1, 6.8, 1.2, 1H), 7.46 (d, J = 8.4, 1H), 7.53 (ddd, J = 8.3, 6.8, 1.3, 

1H), 7.73 (bd, J = 8.4, 1H), 7.80 (bd, J = 8.1, 1H), 7.98 (s, 1H), 8.54 (bd, J = 8.4, 1H). 

13C NMR (101 MHz, CDCl3): 11.29, 18.61, 21.06, 21.49 (2C), 34.78, 58.12, 58.34, 

75.82, 81.01, 82.19, 82.52, 88.31, 88.56, 90.24, 93.46, 99.83, 108.45, 109.25, 118.79, 

118.91, 119.52, 125.65, 126.36, 126.77, 127.63, 127.90, 128.00, 129.08, 129.09, 131.72 

(2C), 131.93, 133.44, 139.00, 139.09, 141.39, 142.15, 157.66, 160.00. 

IR (CHCl3): 3082 vw, 3057 w, 3034 vw, 2959 s, 2944 s, 2925 s, 2891 m, 2866 s, 

2244 w, 2231 w, 2216 w, sh, 2169 m, 1622 vw, sh, 1608 w, sh, 1591 m, 1566 w, 1555 w, 

1510 s, 1494 s, 1484 m, sh, 1463 m, 1454 m, 1431 vw, 1402 m, 1385 vw, sh, 1366 m, 

1300 m, 1267 s, 1242 m, 1180 s, 1155 m, 1119 vw, 1076 w, sh, 1058 m, 1042 m, 1023 s, 

1015 s, 996 m, sh, 962 w, 884 m, 867 w, sh, 818 vs, 709 vw, 679 m, 660 m, 626 w, 616 w, 

529 w, 443 w, 416 vw cm-1.  

EI MS: 850 (M+•, 14), 724 (10), 681 (8), 642 (13), 596 (4), 553 (4), 516 (11), 450 

(4), 402 (3), 388 (3), 293 (39), 276 (4), 254 (40), 213 (10), 185 (20), 167 (23), 128 (100), 

97 (9), 59 (7). 

HR EI MS: calculated for C51H51O2ISi 850.2703, found 850.2698.  
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{(4,6-Bis{[3-(4-methylphenyl)prop-2-yn-1-yl]oxy}benzene-1,3-diyl)bis[ethyne-2,1-

diyl(4,6-bis{[3-(4-methylphenyl)prop-2-yn-1-yl]oxy}benzene-3,1-diyl)ethyne-2,1-

diylnaphthalene-1,2-diylbut-1-yne-4,1-diyl]}bis[tri(propan-2-yl)silane] 111 

A Schlenk flask was 

charged with iodide 110 

(265 mg, 0.31 mmol, 

1.0 equiv.), Pd(PPh3)4 

(36 mg, 0.031 mmol, 

10 mol%), CuI (12 mg, 

0.063 mmol, 20 mol%) and 

flushed with argon. 

Degassed DIPA (7 mL) was 

added. Then a solution of tetrayne 104 (64 mg, 0.16 mmol, 0.5 equiv.) in a degassed 

mixture of DIPA-toluene (14 mL, 1:1) was slowly added at rt within 1.5 h. The reaction 

mixture was stirred at the same temperature overnight. The solvents were evaporated 

under reduced pressure and the residue was purified by flash chromatography on silica 

gel (hexane:ethyl acetate, 80:20) to afford dodecayne 111 (170 mg, 59%) as a yellowish 

amorphous solid. 

1H NMR (600 MHz, CDCl3): 0.92 (m, 42H), 2.21 (s, 6H), 2.22 (s, 6H), 2.26 (s, 

6H), 2.72 (t, J = 7.3, 4H), 3.25 (t, J = 7.3, 4H), 5.03 (s, 4H), 5.04 (s, 4H), 5.05 (s, 4H), 

6.95 (m, 2H), 6.96 (m, 6H), 6.98 (s, 1H), 7.00 (m, 4H), 7.00 (s, 2H), 7.21 (m, 4H), 7.23 

(m, 4H), 7.24 (m, 4H), 7.34 (ddd, J = 8.2, 6.9, 1.2, 2H), 7.39 (d, J = 8.4, 2H), 7.44 (ddd, 

J = 8.4, 6.9, 1.3, 2H), 7.64 (dd, J = 8.2, 1.3, 2H), 7.69 (s, 2H), 7.70 (s, 1H), 7.71 (bd, 

J = 8.4, 2H), 8.48 (dd, J = 8.4, 1.2, 2H).  

13C NMR (151 MHz, CDCl3): 11.30, 18.59, 21.03, 21.43, 21.44, 21.48, 34.73, 

58.05, 58.25, 58.34, 81.01, 82.62, 82.85, 82.86, 88.23 (3C), 88.29, 88.45, 89.63, 94.26, 

100.25, 100.86, 107.34, 107.35, 107.38, 108.58, 119.03, 119.07 (2C), 119.75, 125.50, 

126.50, 126.72, 127.73, 127.77, 127.82, 129.02, 129.06 (2C), 131.70, 131.71, 131.75, 

131.96, 133.53, 137.08, 137.77, 138.79, 138.84, 138.91, 141.36, 159.30, 159.42, 159.58. 
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IR (CHCl3): 3056 w, 2958 m, 2943 m, 2925 m, 2865 m, 2237 w, 2212 vw, 2169 w, 

1607 m, 1591 w, 1564 w, 1510 vs, 1501 s, 1461 m, 1454 m, 1408 w, 1387 vw, 1373 m, 

1235 m, 1178 m, 1119 vw, 1023 s, 1016 s, 997 m, 884 w, 818 s, 708 vw, 

678 w, 661 w cm-1. 

APCI MS: 1859 (M+).  

HR APCI MS: calculated for C132H122O6Si2 1858.87799, found 1858.87476. 

1,1'-{(4,6-Bis{[3-(4-methylphenyl)prop-2-yn-1-yl]oxy}benzene-1,3-diyl)bis[ethyne-

2,1-diyl-(4,6-bis{[3-(4-methylphenyl)prop-2-yn-1-yl]oxy}benzene-3,1-diyl)ethyne-

2,1-diyl]}bis[2-(but-3-yn-1-yl)naphthalene] 112 

A Schlenk flask was charged 

with the protected dodecayne 111 

(74 mg, 0.040 mmol) and distilled 

THF (10 mL) under argon. Then 

a solution of TBAF·3H2O (1 M in 

THF, 200 µl, 0.19 mmol, 

4.8 equiv.) was added. The reaction 

mixture was stirred at rt for 40 min, 
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then filtered through a short pad of silica gel (THF) and the resulting solution of the 

deprotected dodecayne 112 was used in the next cyclisation step without purification. 

rac-Oxa[19]helicene 85 

Oxa[19]helicene rac-85 was prepared according to the 

General procedure for reaction in a flow reactor 

from the crude dodecayne 112 (63 mg, 0.04 mmol in 

20 mL THF) and CpCo(CO)2 (15 mg, 0.083 mmol, 

2.0 equiv.) at a flow rate of 0.5 mL/min (residence 

time of 16 min). The purification by a flash 

chromatography on silica gel (hexane:ethyl acetate, 4:1) gave rac-85 (35 mg, 56%, after 

2 steps from 111) as a pale yellow solid. 

M.p.: >350 oC (acetone-acetonitrile). 

UV/Vis (CHCl3): λmax (log ε) = 274 (4.94), 319 (4.58) nm. 

1H NMR (600 MHz, CDCl3): 2.24 (s, 6H), 2.30 (s, 6H), 2.43 (s, 6H), 2.65 – 2.80 

(m, 8H), 3.90 (d, J = 13.2, 2H), 4.16 (d, J = 13.8, 2H), 4.465 (d, J = 13.8, 2H), 4.475 (d, 

J = 13.2, 2H), 4.75 (d, J = 13.2, 2H), 5.10 (d, J = 13.2, 2H), 5.675 (s, 1H), 6.39 (s, 4H), 

6.40 (m, 2H), 6.46 (m, 2H), 6.65 (m, 2H), 6.70 (s, 2H), 6.71 (m, 2H), 6.745 (dd, J = 8.5, 

6.5, 2H), 6.79 (m, 2H), 6.865 (m, 2H), 6.89 (m, 2H), 6.915 (dd, J = 8.5, 6.5, 2H), 7.08 

(m, 2H), 7.17 (bd, J = 8.5, 2H), 7.18 (s, 1H), 7.19 (m, 8H), 7.19 (bd, J = 8.5, 2H), 7.23 

(d, J = 8.2, 2H), 7.39 (d, J = 8.2, 2H). 

13C NMR (151 MHz, CDCl3): 21.17, 21.20, 21.22, 30.22, 30.41, 67.61, 68.07, 

68.29, 103.49, 104.46, 115.99, 117.20, 117.69, 123.19, 124.04, 124.60, 125.02, 125.45, 

125.96, 126.26, 126.92, 127.55, 127.66, 127.91, 128.10, 128.46, 128.58, 128.70, 128.87, 

128.91, 128.96, 129.00 (2C), 129.13 (2C), 129.57, 129.62, 129.97, 130.21, 130.44, 

132.50, 132.91, 133.57, 134.74, 135.00, 135.02, 135.09, 135.12, 136.09, 136.12, 136.63, 

136.68, 137.03, 137.83, 140.80, 155.91, 155.96, 157.86. 
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IR (CHCl3): 3050 w, 2926 s, 2855 m, 1615s, 1516 m, 1495 m, 1465 m, 1446 m, 

1428 s, 1378 m, 1363 w, 1305 m, 1270 w, 1165 s, 1150 s, 1110 w, 1079 m, 1022 m, 

1000 m, 840 w, 832 m, 819 m, 810 w, 703 vw, 586 w, 550 w cm-1. 

MALDI MS: 1547 ([M]+). 

HR MALDI MS: calculated for C114H82O6 1546.6111, found 1546.6106. 

(+)-(2R)-But-3-yn-2-yl 1-iodonaphthalen-2-yl ether 114 

A Schlenk flask was charged with 1-iodonaphthalen-2-ol 113153 

(2.16 g, 8.00 mmol), (-)-(S)-but-3-yn-2-ol (617 mg, 8.80 mmol, 

1.1 equiv.) and PPh3 (2.52 g, 9.61 mmol, 1.2 equiv.) and flushed 

with argon. Distilled benzene (50 mL) was added followed by a dropwise addition of 

DIAD (1.89 mL, 9.61 mmol, 1.2 equiv.). The reaction mixture was stirred at rt overnight. 

After this period, the solvent was evaporated under reduced pressure and the residue was 

purified by flash chromatography on silica gel (hexane:diethyl ether, 96:4) to afford the 

desired product (+)-(R)-114 (2.22 g, 86%) as a white solid. 

M.p.: 66.0 - 68.0 °C (hexane-diethyl ether). 

Optical rotation: [α]20
D +30° (c 0.125, THF). 

1H NMR (400 MHz, CDCl3): 1.82 (d, J = 6.6, 3H), 2.51 (d, J = 2.1, 1H), 5.03 (qd, 

J = 6.6, 2.1, 1H), 7.38 – 7.45 (m, 2H), 7.54 (ddd, J = 8.4, 6.8, 1.3, 1H), 7.73 – 7.77 (m, 

1H), 7.81 (d, J = 8.9, 1H), 8.16 (d, J = 8.6, 1H). 

13C NMR (101 MHz, CDCl3): 22.57, 66.58, 74.77, 82.83, 90.97, 116.82, 124.98, 

128.11, 128.29, 130.08, 130.63, 131.76, 135.73, 155.25. 

IR (CHCl3): 3307 s, 3061 w, 2118 w, 1622 m, 1694 m, 1556 w, 1501 s, 1460 m, 

1427 m, 1375 w, 1325 m, 1261 vs, 1250 m, 1239 vs, 1089 s, 1047 s, 1027 s, 947 m, 

860 w, 803 s, 641 s, 517 m, 412 w cm-1. 
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EI MS: 322 (M+•, 35), 270 (100), 241 (20), 195(20), 165 (10), 142 (15), 114 (25), 

88 (5).  

HR EI MS: calculated for C14H11IO 321.9855, found 321.9857. 

(+)-{(3R)-3-[(1-Iodonaphthalen-2-yl)oxy]but-1-yn-1-yl}[tri(propan-2-yl)]silane 115 

To a solution of freshly prepared LDA from distilled DIPA 

(433 mg, 4.28 mmol, 1.25 equiv.) and n-BuLi (1.6 M in 

hexane, 2.6 mL, 4.1 mmol, 1.2 equiv.) in THF (5 mL) was 

added dropwise to a solution of alkyne (+)-(R)-114 (1.10 g, 3.43 mmol) in degassed THF 

(10 mL) at -78 °C. The reaction mixture was stirred at the same temperature for 1 h. After 

this period, TIPS chloride (1.10 mL, 5.14 mmol, 1.5 equiv.) was added and the reaction 

mixture was stirred at -78 °C for 1 h. The solvents were evaporated under reduced 

pressure and the residue was purified by flash chromatography on silica gel (hexane) to 

afford the silylated alkyne (+)-(R)-115 (1.61 g, 98%) as a yellowish oil. 

Optical rotation: [α]20
D +9° (c 0.259, THF). 

1H NMR (400 MHz, CDCl3): 0.99 (s, 21H), 1.83 (d, J = 6.6, 3H), 5.04 (q, J = 6.6, 

1H), 7.40 (ddd, J = 7.9, 6.8, 1.0, 1H), 7.48 (d, J = 8.9, 1H), 7.54 (ddd, J = 8.4, 6.8, 1.3, 

1H), 7.74 (d, J = 8.2, 1H), 7.77 (d, J = 8.9, 1H), 8.16 (d, J = 8.5, 1H). 

13C NMR (101 MHz, CDCl3): 11.19, 18.61, 22.89, 67.52, 88.04, 91.13, 106.37, 

117.56, 124.81, 127.92, 128.22, 129.81, 130.67, 131.75, 135.72, 155.63. 

IR (CHCl3): 3061 w, 2959 vs, 2944 vs, 2866 vs, 2169 w, 1622 s, 1594 s, 1556 m, 

1501 s, 1461 vs, 1427 m, 1384 m, 1367 m, 1347 m, 1323 s, 1261 vs, 1240 vs, 1150 m, 

1090 s, 1075 m, 1050 s, 1029 s, 997 vs, 948 s, 883 s, 862 m, 803 s, 679 vs, 519 m, 

412 m cm-1. 

EI MS: 478 (M+•, 10), 383 (3), 351 (4), 309 (3), 269 (100), 223 (2), 190 (2), 165 

(2), 125 (4), 111 (3), 96 (2), 83 (2), 59 (2).  

HR EI MS: calculated for C23H31IOSi 478.1189, found 478.1190. 
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(+)-Trimethyl{[2-({(2R)-4-[tri(propan-2-yl)silyl]but-3-yn-2-yl}oxy)naphthalen-1-

yl]ethynyl}-silane 116 

A Schlenk flask was charged with iodide (+)-(R)-115 (1.58 g, 

3.24 mmol), Pd(PPh3)4 (76 mg, 0.066 mmol, 2 mol%), CuI 

(25 mg, 0.13 mmol, 4 mol%) and flushed with argon. Degassed 

DIPA (5 mL) was added and the mixture was stirred at rt for 

5 min before TMSA (487 mg, 4.95 mmol, 1.5 equiv.) was added. The reaction mixture 

was stirred at the rt overnight. The solvent was evaporated under reduced pressure and 

the residue was purified by flash chromatography on silica gel (hexane:diethyl ether, 

95:5) to afford the protected diyne (+)-(R)-116 (1.27 g, 86%) as a yellowish oil. 

Optical rotation: [α]20
D +55° (c 0.335, THF). 

1H NMR (400 MHz, CDCl3): 0.39 (s, 9H), 1.05 (m, 21H), 1.81 (d, J = 6.6, 3H), 

5.18 (q, J = 6.5, 1H), 7.43 (ddd, J = 8.1, 6.8, 1.2, 1H), 7.50 (d, J = 9.0, 1H), 7.57 (ddd, 

J = 8.3, 6.8, 1.3, 1H), 7.76 – 7.82 (m, 2H), 8.32 (dd, J = 8.4, 1.1, 1H). 

13C NMR (101 MHz, CDCl3): 0.33, 11.22, 18.63, 22.79, 67.44, 87.47, 99.46, 

104.45, 106.85, 109.64, 118.67, 124.77, 125.70, 127.17, 128.11, 129.52, 129.75, 134.64, 

158.41. 

IR (CHCl3): 3061 w, 2960 s, 2945 s, 2893 m, 2866 s, 2146 w, 2107 w, 2067 vw, 

1621 w, 1589 m, 1544 w, 1522 w, 1509 m, 1505 w, 1464 m, 1433 w, 1408 vw, 1380 w, 

1373 w, 1323 m, 1251 s, 1148 w, 1087 m, 1075 m, 1037 m, 993 m, 879 s, 846 vs, 699 w, 

680 m, 644 m cm-1. 

EI MS: 448 (M+•, 25), 405 (5), 375 (2), 363 (2), 291 (4), 240 (100), 225 (45), 209 

(4), 165 (4), 125 (3), 115 (2), 111 (2), 83 (2), 73 (9), 59 (4).  

HR EI MS: calculated for C28H40OSi2 448.2618, found 448.2620. 

(+)-[(3R)-4-(1-Ethynylnaphthalen-2-yl)-3-methylbut-1-yn-1-yl][tri(propan-2-

yl)]silane 117 

The protected diyne (+)-(R)-116 (100 mg, 0.22 mmol) was 

dissolved in methanol (5 mL). To this solution, potassium 

carbonate (46 mg, 0.33 mmol, 1.5 equiv.) was added and 

the mixture was stirred at rt for 1 h. After this period, the 

reaction was quenched with a saturated ammonium chloride solution (10 mL), extracted 

with ethyl acetate (2 × 10 mL) and the combined organic layers were dried over anhydrous 
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MgSO4. The solvents were evaporated under reduced pressure and the residue was 

purified by flash chromatography on silica gel (hexane:DCM, 10:1) to afford the 

protected diyne (+)-(R)-117 (77 mg, 91%) as a yellowish oil. 

Optical rotation: [α]20
D +57° (c 0.426, CHCl3). 

1H NMR (400 MHz, CDCl3): 1.00 (m, 21H), 1.80 (d, J = 6.6, 3H), 5.12 (q, J = 6.6, 

1H), 7.41 (ddd, J = 8.1, 6.8, 1.2, 1H), 7.51 (d, J = 9.1, 1H), 7.55 (ddd, J = 8.4, 6.9, 1.3, 

1H), 7.77 – 7.82 (m, 2H), 8.30 (dd, J = 8.5, 1.0, 1H). 

13C NMR (101 MHz, CDCl3): 11.20, 18.61, 22.77, 67.03, 78.25, 86.65, 87.81, 

106.58, 107.78, 117.52, 124.72, 125.50, 127.34, 128.15, 129.25, 130.06, 134.85, 158.56. 

IR (CHCl3): 3307 s, 3063 w, 2945 vs, 2959 s, 2866 vs, 2168 w, 2101 w, 1622 m, 

1590 s, 1510 m, 1506 m, 1465 s, 1434 w, 1383 w, 1374 m, 1323 m, 1270 s, 1250 vs, 

1232 m, 1148 m, 1089 s, 1045 m, 1036 m, 997 m, 883 s, 867 vw, 808 m, 679 s, 650 m, 

607 m, 562 w, 437 w cm-1. 

ESI MS: 377 ([M+H]+), 399 ([M+Na]+). 

HR ESI MS: calculated for C25H33OSi 377.2295, found 377.2297. 

(-)-[(3R)-3-({1-[(5-Iodo-2,4-bis{[3-(4-methylphenyl)prop-2-yn-1-

yl]oxy}phenyl)ethynyl]-naphthalen-2-yl}oxy)but-1-yn-1-yl][tri(propan-2-yl)]silane 

118 

A Schlenk flask was charged with diiodide 102 (883 mg, 

1.43 mmol, 2.0 equiv.), Pd(PPh3)4 (83 mg, 0.072 mmol, 

10 mol%), CuI (27 mg, 0.14 mmol, 20 mol%), flushed 

with argon before the degassed DIPA (10 mL) was added. 

Diyne (+)-(R)-117 (269 mg, 0.715 mmol) was dissolved 

in degassed toluene (10 mL) under argon and added 

dropwise to a reaction mixture at rt within 3 h. The reaction mixture was stirred at the 

same temperature overnight. The solvents were evaporated under reduced pressure and 

the residue was purified by flash chromatography on silica gel (hexane:ethyl acetate, 

96:4) to afford iodide (-)-(R)-118 (328 mg, 53%) as a yellowish amorphous solid. 

Optical rotation: [α]20
D -24° (c 0.213, THF). 

1H NMR (400 MHz, CDCl3): 1.01 (d, J = 1.0, 21H), 1.85 (d, J = 6.6, 3H), 2.34 (s, 

6H), 5.04 (s, 2H), 5.13 (s, 2H), 5.22 (q, J = 6.5, 1H), 7.03 – 7.13 (m, 5H), 7.31 (t, J = 7.8, 
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4H), 7.38 (ddd, J = 8.1, 6.8, 1.2, 1H), 7.48 – 7.61 (m, 2H), 7.73 – 7.82 (m, 2H), 8.01 (s, 

1H), 8.49 (dd, J = 8.4, 1.1, 1H). 

13C NMR (101 MHz, CDCl3): 11.12, 18.54, 21.54 (2C), 22.80, 58.28, 58.39, 67.22, 

76.09, 82.29, 82.71, 87.49, 88.28, 88.50, 88.54, 93.76, 100.45, 106.78, 109.61, 109.71, 

118.30, 118.86, 119.01, 124.60, 125.86, 127.11, 127.93, 129.09, 129.11, 129.33, 129.43, 

131.76, 131.77, 134.38, 138.98, 139.08, 142.50, 157.23, 157.54, 159.84. 

IR (CHCl3): 3059 w, 2959 s, 2944 s, 2925 m, 2866 s, 2244 w, 2231 w, 2218 w, 

2169 w, 1620 w, 1609 vw, 1589 s, 1571 w, 1555 w, 1510 vs, 1495 s, 1485 m, 1463 s, 

1454 m, 1403 m, 1383 vw, 1371 m, 1254 s, 1178 m, 1120 w, 1023 s, 1015 s, 996 m, 

884 m, 818 s, 709 w, 679 m cm-1. 

APCI MS: 867 ([M+H]+). 

HR APCI MS: calculated for C51H52IO3Si 867.27208, found 867.27249. 

(-)-{(4,6-Bis{[3-(4-methylphenyl)prop-2-yn-1-yl]oxy}benzene-1,3-diyl)bis[ethyne-

2,1-diyl-(4,6-bis{[3-(4-methylphenyl)prop-2-yn-1-yl]oxy}benzene-3,1-diyl)ethyne-

2,1-diylnaphtha-lene-1,2-diyloxy(3R)but-1-yne-3,1-diyl]}bis[tri(propan-2-yl)silane] 

119 

A Schlenk flask was charged 

with iodide (-)-(R)-118 

(790 mg, 0.911 mmol, 

1.0 equiv.), Pd(PPh3)4 

(105 mg, 0.091 mmol, 

10 mol%), CuI (35.0 mg, 

0.183 mmol, 20 mol%) and 

flushed with argon. 

A degassed mixture of DIPA-toluene (20 mL, 3:1) was added. Then a solution of tetrayne 

104 (208 mg, 0.502 mmol, 0.5 equiv.) in toluene (25 mL) was slowly added at rt within 

1.5 h. The reaction mixture was stirred at the same temperature overnight. The solvents 

were evaporated under reduced pressure and the residue was purified by flash 

chromatography on silica gel (hexane:ethyl acetate, 80:20) to afford dodecayne 

(-)-(R,R)-119 (516 mg, 60%) as a yellowish amorphous solid. 

Optical rotation: [α]20
D -6° (c 0.214, THF). 
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1H NMR (500 MHz, CDCl3): 0.98 (m, 42H), 1.83 (d, J = 7.1, 6H), 2.21 (s, 6H), 

2.22 (s, 6H), 2.33 (s, 6H), 5.10 (s, 8H), 5.13 (s, 4H), 5.21 (q, J = 7.1, 2H), 7.03 - 7.06 (m, 

12H), 7.064 (s, 3H), 7.29 (m, 12H), 7.35 (ddd, J = 8.0, 6.9, 1.1, 2H), 7.49 (d, J = 8.5, 2H), 

7.49 (ddd, J = 8.5, 6.9, 1.2, 2H), 7.74 (bd, J = 8.5, 2H), 7.767 (s, 2H), 7.77 (bd, J = 8.0, 

1.2, 2H), 7.773 (s, 1H), 8.50 (dd, J = 8.5, 1.1, 2H). 

13C NMR (126 MHz, CDCl3): 11.05, 18.47, 21.44 (2C), 21.48, 22.80, 58.07, 58.19, 

58.27, 67.32, 82.71, 82.81, 82.85, 87.32, 87.74, 88.14, 88.21, 88.22, 88.27, 88.36, 94.50, 

100.58, 100.74, 106.86, 107.27, 107.36, 107.60, 109.94, 118.59, 119.02 (2C), 119.03, 

124.53, 125.95, 127.02, 127.80 (2C), 129.01 (2C), 129.02 (2C), 129.03(2C), 129.06, 

129.44, 131.69 (4C), 131.73 (2C), 134.22, 137.32, 138.76, 138.80, 138.86, 157.13, 

159.22, 159.26, 159.40. 

 

IR (CHCl3): 3058 w, 2959 m, 2944 m, 2925 m, 2866 s, 2237 w, 2214 w, 2169 vw, 

1621 w, 1607 m, 1589 m, 1572 w, 1565 w, 1510 vs, 1501 s, 1462 m, 1454 m, 1408 m, 

1388 vw, 1372 m, 1234 s, 1172 m, 1122 m, 1023 s, 1016 s, 998 m, 883 m, 818 s, 708 w, 

679 m cm-1. 

MALDI MS: 1891 ([M]+). 

HR MALDI MS: calculated for C132H122O8Si2 1890.8678, found 1890.8673. 
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1,1'-{(4,6-Bis{[3-(4-methylphenyl)prop-2-yn-1-yl]oxy}benzene-1,3-diyl)bis[ethyne-

2,1-diyl-(4,6-bis{[3-(4-methylphenyl)prop-2-yn-1-yl]oxy}benzene-3,1-diyl)ethyne-

2,1-diyl]}bis-{2-[(2R)-but-3-yn-2-yloxy]naphthalene} 120 

A Schlenk flask was charged with 

the protected dodecayne (-)-(R,R)-

119 (466 mg, 0.246 mmol) and 

dissolved in distilled THF (4 mL). 

Under argon atmosphere, a solution 

of TBAF·3H2O (1 M in THF, 75 µl, 

0.75 mmol, 3.0 equiv.) was added. 

The reaction mixture was stirred at 

rt for 40 min. The solvent was evaporated in a stream of nitrogen and the crude product 

(R,R)-120 was directly used without further purification. 

 (-)-1,1'-{(4,6-Bis{[3-(4-methylphenyl)prop-2-yn-1-yl]oxy}benzene-1,3-

diyl)bis[ethyne-2,1-diyl(4,6-bis{[3-(4-methylphenyl)prop-2-yn-1-yl]oxy}benzene-

3,1-diyl)ethyne-2,1-diyl]}bis(2-{[(2R)-4-(4-methylphenyl)but-3-yn-2-

yl]oxy}naphthalene) 121 

The crude product (R,R)-120 

(389 mg, 0.246 mmol) was 

dissolved in degassed toluene 

(10 mL) under argon and 

dropwise added to a mixture of 

4-iodotoluene (218 mg, 

1.00 mmol, 4.0 equiv.), 

Pd(PPh3)4 (29 mg, 0.025 mmol, 

10 mol%), CuI (10 mg, 

0.053 mmol, 20 mol%) in degassed DIPA (5 mL) at rt within 3 h. The reaction mixture 

was stirred at the same temperature overnight. The solvents were evaporated under 

reduced pressure and the residue was purified by flash chromatography on silica gel 

(hexane:ethyl acetate, 80:20) to afford dodecayne (-)-(R,R)-121 (333 mg, 77%, after 

2 steps) as a yellowish amorphous solid. 

Optical rotation: [α]20
D -45° (c 0.220, THF). 
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1H NMR (500 MHz, CDCl3): 1.88 (d, J = 6.5, 6H), 2.27 (s, 12H), 2.28 (s, 6H), 2.32 

(s, 6H), 5.10 (s, 8H), 5.13 (s, 4H), 5.42 (q, J = 6.5, 2H), 7.01 – 7.05 (m, 16H), 7.06 (s, 

2H), 7.064 (s, 1H), 7.26 – 7.30 (m, 16H), 7.35 (ddd, J = 8.2, 6.8, 1.3, 2H), 7.48 (d, J = 9.0, 

2H), 7.50 (ddd, J = 8.5, 6.8, 1.3, 2H), 7.77 (dd, J = 8.2, 1.3, 2H), 7.77 (bd, J = 9.0, 2H), 

7.773 (s, 1H), 7.80 (s, 2H), 8.52 (dd, J = 8.5, 1.3, 2H). 

13C NMR (126 MHz, CDCl3): 21.40, 21.42, 21.44, 21.46, 22.64, 57.56, 58.13, 

58.22, 58.30, 82.75, 82.85, 82.88, 86.23, 87.69, 88.02, 88.16, 88.21, 88.23, 88.32, 88.42, 

94.71, 100.67, 100.86, 107.34, 107.46, 107.64 (2C), 110.16, 118.59, 119.05 (2C), 119.43, 

124.65, 126.00, 127.11, 127.83, 128.94 (2C), 129.01 (2C), 129.02 (2C), 129.04 (2C), 

129.22, 129.48, 131.59 (2C), 131.70 (4C), 131.75 (2C), 134.36, 137.39, 137.70, 138.44, 

138.76, 138.80, 138.84, 157.10, 159.27 (2C), 159.44. 

 

IR (CHCl3): 3082 w, 3056 w, 2236 w, 2215 w, 1620 w, 1607 m, 1589 w, 1572 w, 

1565 w, 1510 s, 1503 m, 1439 w, 1423 w, 1408 w, 1320 m, 1268 m, 1254 m, 1236 m, 

1174 m, 1120 w, 1083 m, 1057 w, 1023 m, 1016 m, 867 w, 818 s, 709 w, 542 w, 

528 w cm-1. 

MALDI MS: 1759 ([M+H]+), 1758 (M+). 

HR MALDI MS: calculated for C128H94O8 1758.6949, found 1758.6943.  
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(-)-(M,R,R)-Oxa[19]helicene 86 

Oxa[19]helicene (-)-(M,R,R)-86 was prepared 

according to the General procedure for reaction in 

a flow reactor from dodecayne (-)-(R,R)-121 (70 mg, 

0.040 mmol) and CpCo(CO)2 (15 mg, 0.083 mmol, 

2.0 equiv.) in THF (14 mL) at a flow rate of 

0.5 mL/min (residence time of 16 min). The 

purification by a flash chromatography on silica gel (hexane:ethyl acetate, 3:2) gave 

(-)-(M,R,R)-86 (14 mg, 20%) as a pale yellow solid. 

M.p.: >350 oC (acetone-acetonitrile). 

Optical rotation: [α]20
D = -1027° (c 0.026, THF). 

UV/Vis (THF): λmax (log ε) = 235 (5.02), 264 (4.99), 273 (4.98), 317 (4.61) nm. 

1H NMR (600 MHz, acetone-d6): 1.04 (d, J = 8.6, 6H), 2.27 (s, 6H), 2.30 (s, 6H), 

2.31 (s, 6H), 2.36 (s, 6H), 4.11 (bd, J = 13.0, 2H), 4.24 (bd, J = 13.9, 2H), 4.42 (d, 

J = 13.9, 2H), 4.49 (d, J = 13.7, 2H), 4.60 (d, J = 13.7, 2H), 4.69 (d, J = 13.0, 2H), 4.97 (q, 

J = 8.6, 2H), 6.02 (s, 2H), 6.32 (s, 2H), 6.40 (s, 1H), 6.75 (m, 2H), 6.80 (bdd, J = 8.5, 6.8, 

2H), 6.82 (m, 2H), 6.85 (m, 2H), 6.94 (m, 2H), 6.95 (bdd, J = 8.3, 6.8, 2H), 7.00 (m, 4H), 

7.00 (s, 1H), 7.01 (m, 4H), 7.02 (m, 4H), 7.04 (m, 2H), 7.05 (d, J = 8.6, 2H), 7.06 (m, 

2H), 7.06 (bd, J = 8.5, 2H), 7.13 (m, 2H), 7.135 (m, 2H), 7.165 (m, 2H), 7.20 (m, 2H), 

7.33 (bd, J = 8.3, 2H), 7.55 (bd, J = 8.6, 2H). 

13C NMR (151 MHz, acetone-d6): 18.32, 21.19 (2C), 21.26, 21.32, 68.28, 68.59, 

69.05, 73.88, 105.06, 105.84, 116.27, 117.68, 117.78, 118.50, 120.24, 123.31, 123.63, 

125.28, 125.52, 125.53 (2C), 125.71, 127.21, 128.28, 129.20, 129.24, 129.32, 129.41, 

129.47, 129.48, 129.53 (2C), 129.74, 129.99, 130.27, 130.35 (2C), 130.56, 130.84, 

131.00, 131.11, 131.24, 131.27, 132.15, 133.52, 134.11, 135.09, 136.03, 136.12, 136.19 

(2C), 136.28, 136.37, 136.88, 137.14, 137.22, 137.29, 137.31, 137.33, 140.29, 153.55, 

156.89, 156.95, 158.22. 
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IR (CCl4): 3049 w, 2956 m, 2924 s, 2854, 1666 m, 1618 m, 1591 m, 1518 m, 

1489 m, 1464 m, 1425 s, 1379 m, 1304 w, 1260 m, 1226 m, 1183 m, 1157s, 1109 m, 

1087 m, 1022 m, 982 m, 958 w, 943 w, 896 w, 812 m, 788 m, 751 m, 643 w, 605 w, 

552 w, 528 m cm-1. 

APCI MS: 1760 ([M+H]+).  

HR APCI MS: calculated for C128H95O8 1759.70215, found 1759.70217.  

(-)-3,3'-[(4,6-Bis{[3-(4-methylphenyl)prop-2-yn-1-yl]oxy}benzene-1,3-diyl)diethyne-

2,1-diyl]bis(4-{[(1R)-1-methyl-3-(4-methylphenyl)prop-2-yn-1-yl]oxy}pyridine) 124 

The Schlenk flask A was charged with iodide  

(-)-(R)-123148 (94 mg, 0.26 mmol, 2.4 equiv.), 

Pd(PPh3)2Cl2 (4 mg, 0.005 mmol, 5 mol%), CuI (2 mg, 

0.01 mmol, 10 mol%), flushed with argon and a 

degassed mixture of DIPA and toluene (10 mL, 1:1) 

was added. The Schlenk flask B was charged with 103 (60 mg, 0.107 mmol, 1.0 equiv.) 

and dissolved in distilled toluene (8 mL). Then TBAF·3H2O (1 M solution in THF, 260 

µL, 2.4 equiv.) was added, the reaction mixture was stirred for 30 min at rt and slowly 

cannulated into the Schlenk flask A during 1.5 h. The solvents were evaporated under 

reduced pressure and the residue was purified by flash chromatography on silica gel 

(DCM:MeOH, 98:2) to afford hexayne (-)-(R)-124 (80 mg, 84%) as a yellowish 

amorphous solid. 

Optical rotation: [α]20
D -450° (c 0.337, CHCl3). 
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1H NMR (400 MHz, CDCl3): 1.86 (d, J = 6.5, 6H), 2.32 (s, 12H), 5.10 (s, 4H), 5.21 

(q, J = 6.5, 2H), 7.05 (d, J = 7.9, 4H), 7.08 (d, J = 7.9, 4H), 7.08 (s, 1H), 7.12 (d, J = 5.6, 

2H), 7.28 (d, J = 8.2, 4H), 7.29 (d, J = 8.1, 4H), 7.72 (s, 1H), 8.42 (bs, 2H), 8.65 (bs, 2H). 

13C NMR (101 MHz, CDCl3): 21.60 (2C), 22.26, 58.26, 65.27, 82.63, 86.06, 86.29, 

87.39, 88.52, 91.48, 100.62, 106.92, 108.79, 111.19, 118.91, 119.02, 129.17 (2C), 131.74, 

131.81, 138.13, 139.06, 139.10, 150.03, 153.88, 159.80, 163.62. 

IR (CHCl3): 3084 vw, 3051 w, 2960 m, 2925 m, 2870 w, 2238 w, 2217 w, 1605 m, 

1581 m, 1563 m, 1510 vs, 1500 s, 1490 s, 1486 s, 1417 m, 1405 m, 1377 m, 1328 s, 

1265 s, 1247 s, 1185 m, 1177 m, sh, 1120 m, 1086 s, 1032 s, 1020 m, 1015 m, sh, 965 w, 

sh, 948 m, 894 w, 818 vs, 708 w cm-1.  

ESI MS: 885 ([M+H]+). 

HR ESI MS: calculated for C62H49N2O4 885.3687, found 885.3691. 

(-)-(M,R,R)-Pyridooxa[9]helicene 87 

Methode A: Microwave vial was charged with 30 mg 

of ionic liquid (1-butyl-2,3-dimethylimidazolium 

tetrafluoroborate) a solution of the (-)-(R,R)-124 

(24 mg, 0.027 mmol) in THF (5 mL) CpCo(CO)(fum) 

(8 mg, 0.03 mmol, 1.0 equiv.) was added in one portion 

under argon. The reaction mixture was heated to 170 °C for 10 min in the microwave 

reactor. The resulting reaction mixture was concentrated in vacuo. The purification by 

a flash chromatography on silica gel (hexane:ethyl acetate, 5:1) gave (-)-(M,R,R)-87 

(10 mg, 42%) as a slightly yellow solid. 

Methode B: In a glove box a vial was charged with Ni(cod)2 (5 mg, 0.02 mmol, 0.5 equiv.) 

and PPh3 (9 mg, 0.03 mmol, 1.0 equiv.). A second vial was filled with hexayne (-)-(R,R)-

124 (30 mg, 0.034 mmol) and purged with argon. To both vials freshly distilled 

tetrahydrofuran (2 x 1 ml) was injected through a septum and stirred at room temperature 

for 2 min. Then a solution of hexayne (-)-(R,R)-124 was slowly added to a solution of 

catalyst and the resulting dark solution was stirred at room temperature for 16 h. The 

resulting reaction mixture was concentrated in vacuo. The purification by a flash 

chromatography on silica gel (hexane:ethyl acetate, 5:1) gave (-)-(M,R,R)-87 (13 mg, 

43%) as a slightly yellow solid. 

 

NO

O

N

O

O

Tol

Tol Tol

Tol



121 

Methode C: Pyridooxa[9]helicene (-)-(M,R,R)-87 was prepared according to the General 

procedure for reaction in a flow reactor from hexayne (-)-(R,R)-124 (24 mg, 0.027 

mmol) and CpCo(CO)2 (5 mg, 0.03 mmol, 1.0 equiv.) in THF (5 mL) at a flow rate of 

1.0 mL/min (residence time of 8 min). The purification by a flash chromatography on 

silica gel (hexane:ethyl acetate, 5:1) gave (-)-(M,R,R)-87 (13 mg, 54%) as a slightly 

yellow solid. 

M.p.: 323.0 - 324.0 oC (methanol). 

Optical rotation: [α]20
D = -651° (c 0.239, CHCl3). 

UV/Vis (THF): λmax (log ε) = 277 (4.88), 317 (4.30), 366 (3.98) nm. 

1H NMR (600 MHz, CDCl3): 0.91 (d, J = 6.7, 6H), 2.19 (s, 12H), 4.53 (d, J = 14.2, 

2H), 4.78 (d, J = 14.2, 2H), 5.05 (q, J = 6.7, 2H), 6.59 (s, 1H), 6.70 (d, J = 5.5, 2H), 6.77 

(m, 2H), 6.79 (m, 2H), 6.87 (m, 2H), 6.90 (m, 2H), 6.91 (m, 2H), 6.93 (m, 2H), 6.95 (m, 

2H), 6.98 (m, 2H), 7.55 (s, 1H), 8.10 (d, J = 5.5, 2H), 8.49 (s, 2H).  

13C NMR (151 MHz, CDCl3): 18.84, 21.15, 21.17, 68.13, 73.90, 106.59, 114.00, 

117.39, 119.89, 120.92, 125.92, 126.98, 128.27, 128.50, 128.71 (2C), 128.95, 129.04, 

129.78, 130.73, 134.33, 134.42, 134.62, 136.35, 136.36, 136.56, 138.31, 138.72, 149.05 

(2C), 157.10, 159.86. 

 

IR (CHCl3): 3087 vw, 3048 w, 2957 s, 2927 vs, 2855 m, 1617 m, 1593 s, 1579 m, 

1564 w, sh, 1549 vw, sh, 1519 m, 1493 m, 1485 s, 1431 m, 1423 s, 1404 vw, 1379 m, 

1371 m, 1328 w, 1258 s, 1253 s, 1175 s, 1112 w, 1085 m, sh, 1078 s, 1022 s, 1018 s, 

1008 w, sh, 968 m, sh, 900 m, 824 m, 690 vw, 531 w cm-1. 

ESI MS: 885 ([M+H]+). 

HR ESI MS: calculated for C62H49N2O4 885.3687, found 885.3688. 
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4,4’-bis(thioacetyl)biphenyl 129166 

A Schlenk flask was charged with sodium ethanethiolate freshly 

prepared from sodium (690 mg, 30.0 mmol, 20.0 equiv.) and 

ethanethiol (2.24 g, 2.60 mL, 36.0 mmol, 24.0 equiv.) in freshly distilled NMP (20 mL), 

and flushed with argon. A degassed suspension of 4,4’-dibromobiphenyl 128 (468 mg, 

1.50 mmol) in NMP (5 mL) was added and the reaction mixture was stirred at 250 °C for 

2 h. The reaction mixture was cooled down to rt and acetyl chloride (3.53 g, 3.30 mL, 

45.0 mmol, 30.0 equiv.) was added. The reaction mixture was stirred at rt for 2 h, poured 

into ice, and extracted with DCM (3 × 70 mL). The organic layer was washed with brine 

(3 × 50 mL), the solvents were evaporated under reduced pressure, and the residue was 

purified by flash chromatography (hexane:ethyl acetate, 80:20) to afford 129 (415 mg, 

92%) as a white solid. 

The spectra were in an agreement with the published data.166 

rac-3,16-Bis(Thioacetyl)Dibenzo[5]helicene 131 

Method A: A Schlenk flask was charged with sodium ethanethiolate 

freshly prepared from sodium (230 mg, 10.0 mmol, 20.0 equiv.) and 

ethanethiol (746 mg, 0.87 mL, 12.0 mmol, 24.0 equiv.) in freshly 

distilled NMP (10 mL), and flushed with argon. A degassed 

suspension of rac-130168 (224 mg, 0.50 mmol) in NMP (5 mL) was 

added and the reaction mixture was stirred at 250 °C for 2 h. 

The reaction mixture was cooled down to rt and acetyl chloride (1.18 g, 1.10 mL, 

15 mmol, 30.0 equiv.) was added. The reaction mixture was stirred at rt for 2 h, poured 

into ice, and extracted with DCM (3 × 50mL). The organic layer was washed with brine 

(3 × 30 mL), the solvents were evaporated under reduced pressure, and the residue was 

purified by flash chromatography (hexane:ethyl acetate, 80:20) to afford rac-131 

(249 mg, 94%) as white solid. 

Method B: A Schlenk flask was charged with sodium methanethiolate freshly prepared 

from sodium (289 mg, 12.5 mmol, 50.0 equiv.) and dimethyl disulfide (731 mg, 0.69 mL, 

7.8 mmol, 31.0 equiv.) in freshly distilled NMP (10 mL), and flushed with argon. 

A degassed solution of rac-130168 (112 mg, 0.25 mmol) in NMP (10 mL) was added and 

the reaction mixture was stirred at 200 °C for 4 h. The reaction mixture was cooled down 

to rt and acetyl chloride (1.74 g, 1.35 mL, 18.8 mmol, 70.0 equiv.) was added. The 
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reaction mixture was stirred at rt for 2 h, poured into ice, and extracted with DCM (3 × 

30 mL). The organic layers were washed with brine (3 × 20 mL), the solvents were 

evaporated under reduced pressure, and the residue was purified by flash chromatography 

(hexane:ethyl acetate, 80:20) to afford rac-131 (123 mg, 93%) as a white solid. 

M.p.: 281.0-283.0 °C (hexane–ethyl acetate). 

UV/Vis (THF): λmax (log ε) = 245 (5.05), 260 (5.06), 288 (5.05), 315 (5.05), 

357 (4.42) nm. 

1H NMR (400 MHz, CDCl3): 2.51 (s, 6H), 7.22 (dd, J = 8.6, 1.8, 2H), 7.64 – 7.85 

(m, 4H), 8.27 (d, J = 8.6, 2H), 8.56 – 8.70 (m, 8H). 

13C NMR (101 MHz, CDCl3): 30.47, 122.49, 123.45, 123.82, 126.69, 127.23, 

127.70, 128.11, 129.72, 129.83, 130.14, 130.56, 130.77, 130.98, 131.28, 131.53, 194.09. 

IR (CHCl3): 3104 vw, 3075 w, 3065 w 2956 w, 2927 m, 2855 w, 1702 s, 1634 vw, 

1606 vw, 1599 vw, 1563 vw, 1533 vw, 1492 m, 1473 m, 1443 m, 1416 w, 1392 m, 

1354 m, 1301 vw, 1287 w, 1278 vw, 1251 w, 1172 vw, 1158 w, 1126 s, 1120 s, 1105 s, 

1054 vw, 1049 vw, 1021 w, 1000 w, 951 m, 882 w, 861 w, 855 w, 828 m, 821 w, 628 m, 

618 m, 595 w, 592 w, 535 vw, 523 vw, 497 vw, 457 vw, 430 vw cm-1. 

ESI MS: 527 ([M+H]+), 549 ([M+Na]+). 

HR ESI MS: calculated for C34H22O2NaS2 549.0953, found 549.0954. 

rac-Dibenzo[5]helicene-3,16-dithiol 132 

A Schlenk flask was charged with rac-131 (20 mg, 0.038 mmol), 

flushed with argon, and degassed MTBE (10 mL) was added. Then 

a solution of cesium hydroxide monohydrate (51 mg, 0.30 mmol, 

8.0 equiv.) in methanol (300 µL) was added dropwise at rt. The 

reaction mixture was stirred for 5 min. Then the reaction mixture was 

slowly acidified with hydrochloric acid (1M in water, 760 µL, 

20.0 equiv.) during 10 min. The mixture was extracted with MTBE (3 × 10 mL). The 

organic layers were left to evaporate under flow of argon to afford rac-132 (12 mg, 71%) 

as a yellow powder. 

M.p.: Decomposition ~310 °C (water). 

1H NMR (400 MHz, CDCl3): 3.68 (s, 2H), 7.08 (dd, J = 8.6, 2.0, 2H), 7.70 – 7.80 

(m, 4H), 8.09 (d, J = 8.7, 2H), 8.46 (d, J = 2.0, 2H), 8.58 – 8.66 (m, 8H). 
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13C NMR (101 MHz, CDCl3): 121.86, 123.31, 123.64, 123.88, 126.81, 127.19, 

127.55, 128.01, 128.80, 129.52, 129.86, 129.94, 130.21, 130.78, 131.40. 

IR (CHCl3): 3419 m, 3064 w, 2963 m, 2922 m, 2852 w, 2555 vw, 1944 vw, 1598 m, 

1532 vw, 1491 m, 1473 w, 1439 m, 1394 m, 1343 w, 1262 s, 1220 m, 1157 m, 1099 s, 

1022 s, 869 w, 851 m, 816 s, 803 s, 744 s, 719 w, 688 w, 625 w, 582 w, 493 w, 461 w, 

430 w cm-1. 

ESI MS: 441 ([M-H]-). 

HR ESI MS: calculated for C30H17S2 441.0777, found 441.0775. 

rac-3,12-Bis(thioacetyl)pentahelicene 134 

A Schlenk flask was charged with sodium methanethiolate freshly 

prepared from sodium (331 mg, 14.4 mmol, 50.0 equiv.) and DMDS 

(850 mg, 0.80 mL, 8.9 mmol, 31.0 equiv.) in freshly distilled NMP 

(7 mL), and flushed with argon. A degassed solution of rac-133170 

(100 mg, 0.29 mmol) in freshly distilled NMP (3 mL) was added and the reaction mixture 

was stirred at 200 °C for 4 h. The reaction mixture was cooled down to rt and acetyl 

chloride (1.71 g, 1.55 mL, 21.8 mmol, 75.0 equiv.) was added. The reaction mixture was 

stirred at rt for 2 h, poured into ice, and extracted with DCM (3 × 25 mL). The organic 

layers were washed with brine (3 × 30 mL), the solvents were evaporated under reduced 

pressure, and the residue was purified by flash chromatography (cyclohexane:DCM, 

40:60 → 20:80) to afford rac-134 (105 mg, 86%) as a white solid. 

M.p.: 205.4 - 206.0 °C (DCM-cyclohexane). 

UV/Vis (THF): λmax (log ε) = 244 (5.00), 260 (5.06), 273 (4.83), 315 (4.89), 

352 (4.21) nm. 

1H NMR (400 MHz, CDCl3): 2.49 (s, 6H), 7.28 (dd, J = 8.8, 2.0, 2H), 7.89 (s, 2H), 

7.91 (s, 4H), 8.06 (d, J = 1.9, 2H), 8.50 (d, J = 8.8, 2H). 

13C NMR (101 MHz, CDCl3): 30.48, 125.87, 126.80, 127.28, 127.54, 127.93, 

129.63, 129.72, 130.96, 133.01, 133.11, 134.19, 194.11. 

IR (CHCl3): 3087 vw, 3048 w, 3028 w, 1703 vs, 1616 w, 1594 w, 1553 w, 1504 w, 

1481 w, 1469 wm, 1433 m, 1334 vw, 1313 w, 1268 vw, 1260 vw, 1258 vw, 1122 s, 

1102 m, 1051 vw, 1035 vw, 1003 vw, 952 m, 945 m, 925 w, 889 m, 851 m, 840 m, 834 m, 

826 m, 650 m, 620 w, 589 vw, 570 w, 545 w, 525 vw, 473 vw, 469 vw, 457 vw, 

409 vw cm-1. 
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ESI MS: 449 ([M+Na]+). 

HR ESI MS: calculated for C26H18O2S2Na 449.064, found 449.0634. 

rac-2,13-Bis(thioacetyl)pentahelicene 136 

A Schlenk flask was charged with sodium methanethiolate freshly 

prepared from sodium (331 mg, 14.04 mmol, 50.0 equiv.) and 

dimethyl disulfide (840 mg, 0.79 mL, 8.9 mmol, 31.0 equiv.) 

in freshly distilled NMP (13 mL), and flushed with argon. A degassed 

solution of 135168 (100 mg, 0.29 mmol) in NMP (13 mL) was added and the reaction 

mixture was stirred at 200 °C for 4 h. The reaction mixture was cooled down to rt and 

acetyl chloride (1.69 g, 1.10 mL, 21.6 mmol, 75,0 equiv.) was added. The reaction 

mixture was stirred at rt for 2 h, poured into ice, and extracted with DCM (3 × 50 mL). 

The organic layers were washed with brine (3 × 30 mL), the solvents were evaporated 

under reduced pressure, and the residue was purified by flash chromatography 

(hexane:ethyl acetate, 80:20) to afford rac-136 (94 mg, 77%) as a white solid. 

M.p.: 193.5 - 194.5 °C (hexane-ethyl acetate). 

UV/Vis (THF): λmax (log ε) = 238 (5.31), 260 (5.06), 276 (5.05), 307 (4.89), 315 sh 

(4.87), 337 sh (4.61) nm. 

1H NMR (400 MHz, CDCl3): 2.36 (s, 6H), 7.54 (dd, J = 8.3, 1.6, 2H), 7.87 (s, 2H), 

7.89 – 7.95 (m, 4H), 7.99 (d, J = 8.4, 2H), 8.59 (d, J = 1.1, 2H). 

13C NMR (101 MHz, CDCl3): 30.29, 124.51, 126.52, 127.48, 127.76, 127.82, 

129.04, 130.96, 132.20, 132.74, 132.91, 134.33, 194.50. 

IR (CHCl3): 3049 w, 3013 m, 2976 vw, 2298 vw, 1924 vw, 1906 vw, 1797 vw, 

1700 s, 1615 vw, 1597, vw, 1563 vw, 1548 vw, 1500 w, 1475 w, 1431 w, 1422 w, 1396 w, 

1354 m, 1339 vw, 1298 w, 1261 vw, 1227 m, 1199 vw, 1153 w, 1142 m, 1123 m, 1102 m, 

1066 vw, 1003 vw, 947 m, 910 w, 877 vw, 861 w, 851 s, 839 m, 826 w, 811 vw, 719 vw, 

685 vw, 664 w, 638 m, 623 s, 607 m, 587 vw, 568 w, 538 m, 502 w, 469 vw 455 vw, 

430 vw, 418 vw, 408 vw cm -1. 

ESI MS: 427 ([M+H]+), 449 ([M+Na]+). 

HR ESI MS: calculated for C26H19O2S2 427.0821, found 427.0822. 
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rac-Pentahelicene-2,13-dithiol 137 

A Schlenk flask was charged with rac-136 (30 mg, 0.07 mmol), flushed 

with argon, and degassed THF (1.4 mL) was added. Then a solution of 

sodium hydroxide (112 mg, 2.8 mmol, 40.0 equiv.) in degassed 

methanol (2.8 mL) was added dropwise at rt. The reaction mixture was 

stirred for 3 h. Then the reaction mixture was slowly acidified with a solution of citric 

acid (0.5 M in water, 7.0 mL, 35 mmol, 50 equiv.) and stirred at rt for 10 min. The product 

was filtered off, washed with water (3 × 10 mL) and was dried under argon to afford 

rac-137 (15 mg, 62%) as a grey powder. 

M.p.: 214.0 – 216.0 °C (water). 

1H NMR (400 MHz, CDCl3): 3.52 (s, 2H), 7.42 (bd, J = 8.1, 2H), 7.80 – 7.85 (m, 

8H), 8.47 (bs, 2H). 

13C NMR (101 MHz, CDCl3): 125.95, 126.28, 127.10, 127.31, 127.76, 128.00, 

128.85, 129.00, 130.78, 130.91, 132.94. 

IR (CHCl3): 3049 w, 3010 m, 2928 vw, 2880 vw, 2583 vw, 1898 vw, 1637 w, 

1559 m, 1588 w, 1510 vw, 1500 m, 1482 w, 1475 w, 1431 w, 1399 w, 1375 w, 1355 vw, 

1336 vw, 1299 w, 1277 vw, 1262 vw, 1199 vw, 1177 vw, 1155 w, 1141 w, 1108 m, 

1095 vw, 1086 vw, 1068 vw, 1030 vw, 1013 vw, 987 w, 960 w, 946 w, 917 vw, 860 m, 

849 s, 835 w, 822 w, 810 vw, 719 vw, 710 vw, 685 vw, 649 vw, 616 m, 579 vw, 559 vw, 

527 s, 501 w, 457 vw, 427 vw, 417 vw cm-1. 

APCI MS: 341 ([M-H]-). 

HR APCI MS: calculated for C22H13S2 341.0464, found 341.0459. 

rac-7,8-Bis(thioacetyl)pentahelicene 139 

A Schlenk flask was charged with sodium methanethiolate freshly 

prepared from sodium (270 mg, 11.7 mmol, 50.0 equiv.) and 

dimethyl disulfide (680 mg, 0.65 mL, 7.3 mmol, 31.0 equiv.) 

in freshly distilled NMP (6 mL), and flushed with argon. A degassed 

solution of 138170 (100 mg, 0.23 mmol) in freshly distilled NMP (6 mL) was added and 

the reaction mixture was stirred at 200 °C for 4 h. The reaction mixture was cooled down 

to rt and acetyl chloride (1.38 g, 1.25 mL, 17.6 mmol, 75.0 equiv.) was added. The 

reaction mixture was stirred at rt for 2 h, poured into ice, and extracted with DCM 

(3 × 25 mL). The organic layers were washed with brine (3 × 30 mL), the solvents were 
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evaporated under reduced pressure, and the residue was purified by flash chromatography 

(cyclohexane:DCM, 40:60 → 0:100) to afford rac-139 (69 mg, 71%) as a yellow solid. 

M.p.: 240.0 - 242.2 °C (DCM-cyclohexane). 

UV/Vis (THF): λmax (log ε) = 241 (4.98), 260 (5.06), 269 (4.68) sh, 279 (4.77), 304 

(4.69), 318 (4.85), 336 sh (4.50), 363 sh (4.05) nm. 

1H NMR (600 MHz, CD2Cl2): 2.53 (s, 6H), 7.24 (ddd, J = 8.5, 6.8, 1.5, 2H), 7.54 

(ddd, J = 8.1, 6.8, 1.5, 2H), 7.94 (dd, J = 8.1, 1.5, 2H), 7.97 (d, J = 9, 2H), 8.30 (bd, 

J = 8.5, 2H), 8.45 (bd, J = 9.0, 2H). 

13C NMR (150.3 MHz, CD2Cl2): 30.37, 123.98, 124.94, 127.30, 127.55, 128.47, 

129.28, 129.87, 130.50, 132.53, 132.67, 132.82, 193.97. 

IR (CHCl3): 3064 m, 3046 m, 2963 w, 2927 w, 2856 vw, 1704 vs, 1613 vw, 1601 w, 

1554 vw, 1514 m, 1504 w, 1468 m, 1433 m, 1354 m, 1341 m, 1325 m, 1306 w, 1269 vw, 

1250 w, 1167 m, 1118 s, 1095 s, 1036 m, 1002 w, 950 s, 872 vw, 857 m, 826 m, 814 s, 

681 m, 660 m, 653 w, 631 m, 615 s, 603 m, 583 w, 563 vw, 530 m, 514 m, 453 w, 443 w, 

411 vw cm -1. 

ESI MS: 427 ([M+H]+), 449 ([M+Na]+). 

HR ESI MS: calculated for C26H19O2S2 427.0821, found 427.0820. 

rac-2,17-Bis(thioacetyl)heptahelicene 143 and rac-2-(thioacetyl) heptahelicene 145 

Method A: A Schlenk flask was charged with sodium ethanethiolate freshly prepared from 

sodium (221 mg, 9.60 mmol, 40.0 equiv.) and ethanethiol (730 mg, 0.85 mL, 11.7 mmol, 

50.0 equiv.) in freshly distilled NMP (10 mL) and flushed with argon. A degassed 

suspension of 142171 (109 mg, 0.240 mmol) in NMP (5 mL) was added and the reaction 

mixture was stirred at 270 °C for 2 h. The reaction mixture was cooled down to rt and 

acetyl chloride (1.09 g, 0.99 mL, 14.4 mmol, 60.0 equiv.) was added. The reaction 

mixture was stirred at rt for 2 h, poured into ice and extracted with DCM (3 × 30 mL). 

The organic layers were washed with brine (3 × 30 mL), evaporated under reduced 

pressure, and the residue was purified by flash chromatography (hexane:ethyl acetate, 

80:20) to afford 143 (41 mg, 32%) and 145 (47 mg, 43%) as yellow solids. 

Method B: A Schlenk flask was charged with sodium methanethiolate freshly prepared 

from sodium (257 mg, 11.2 mmol, 50.0 equiv.) and dimethyl disulfide (653 mg, 

0.620 mL, 6.93 mmol, 31.0 equiv.) in freshly distilled NMP (5 mL) and flushed with 

argon. A degassed solution of rac-142171 (100 mg, 0.224 mmol) in freshly distilled NMP 
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(3 mL) was added and the reaction mixture was stirred at 200 °C for 4 h. The reaction 

mixture was cooled down to rt and acetyl chloride (1.32 g, 1.20 mL, 16.8 mmol, 

75.0 equiv.) was added. The reaction mixture was stirred at rt for 2 h, poured into ice, and 

extracted with DCM (3 × 20 mL). The organic layers were washed with brine 

(3 × 20 mL), the solvents were evaporated under reduced pressure, and the residue was 

purified by flash chromatography (cyclohexane:DCM, 40:60 → 0:100) to afford rac-143 

(76 mg, 65%) as a yellow solid. 

rac-2,17-Bis(thioacetyl)heptahelicene 143 

M.p.: 216.0 - 218.0 °C (hexane-EtOAc). 

UV/Vis (THF): λmax (log ε) = 279 (4.82), 311 (4.26), 

341 (4.05) nm. 

1H NMR (400 MHz, CDCl3): 2.19 (s, 6H), 6.96 (dd, J = 8.3, 1.7, 

2H), 7.23 – 7.25 (m, 2H), 7.38 (d, J= 8.3, 2H), 7.52 (d, J = 8.5, 2H), 7.83 (d, J = 8.5, 2H), 

7.98 (d, J = 8.2, 2H), 8.04 (d, J = 8.6, 2H), 8.05(s, 2H). 

13C NMR (101 MHz, CDCl3): 30.06, 123.71, 124.80, 127.04, 127.29, 127.51, 

127.62, 127.67, 127.71, 127.73, 129.43, 130.59, 130.69, 131.49, 132.08, 132.41, 194.56. 

IR (CHCl3): 3055 w, 2961 vw, 2928 vw, 2872 vw, 2856 vw, 1698 s, 1612 vw, 

1596 w, 1488 w, 1424 w, 1404 vw, 1393 vw, 1354 m, 1338 vw, 1308 w, 1275 w, 

1261 vw, 1246 w, 1130 m, 1119 s, 1097 w, 1002 vw, 971 w, 951 m, 909 w, 892 w, 850 s, 

838 s, 830 w, 809 vw, 713 vw, 659 w, 642 w, 623 m, 607 m, 586 w, 550 s, 525 vw, 

501 vw cm-1. 

ESI MS: 527 ([M+H]+), 549 ([M+Na]+), 565 ([M+K]+). 

HR ESI MS: calculated for C34H22O2NaS2 549.0953, found 549.0954. 

rac-2-(Thioacetyl)heptahelicene 145 

M.p.: 267.0 - 269.0 °C (hexane-EtOAc). 

UV/Vis (THF): λmax (log ε) = 275 (4.80), 307 (4.28), 

338 (4.04) nm. 

1H NMR (400 MHz, CDCl3): 2.20 (s, 3H), 6.41 (ddd, J = 8.4, 6.9, 

1.4, 1H), 6.92 (ddd, J = 8.0, 6.8, 1.2, 1H), 6.97 (dd, J = 8.3, 1.7, 1H), 7.16 (m, 1H), 7.27 

– 7.29 (m, 1H), 7.32 – 7.38 (m, 2H), 7.52 (t, J = 8.1, 2H), 7.78 (d, J = 5.7, 1H), 7.81 (d, 

J = 5.7, 1H), 7.93 (d, J = 8.2, 1H), 7.98 – 8.06 (m, 5H). 
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13C NMR (101 MHz, CDCl3): 30.02, 123.51, 123.77, 124.31, 124.99, 125.05, 

125.17, 126.02, 126.83, 126.87, 126.95, 127.11, 127.18, 127.31, 127.45, 127.46, 127.56, 

127.71, 127.87, 128.07, 129.20, 129.71, 130.53, 130.55, 131.08, 131.22, 131.81, 132.02, 

132.16, 132.27, 194.70. 

IR (CHCl3): 3055 w, 3011 w, 2961 vw, 2929 vw, 2876 vw, 2856 vw, 1700 s, 

1608 vw, 1492 w, 1424 w, 1404 vw, 1354 m, 1316 w, 1280 w, 1263 vw, 1247 w, 1191 w, 

1128 m, 1117 s, 1035 vw, 1000 vw, 951 m, 909 w, 888 vw, 850 s, 831 s, 712 vw, 664 vw, 

653 vw, 640 w, 619 m, 610 m, 587 vw, 567 m, 527 m, 521 w, 504 w, 473 w, 438 vw, 

419 vw cm-1. 

ESI MS: 453 ([M+H]+), 475 ([M+Na]+), 491 ([M+K]+). 

HR ESI MS: calculated for C32H20ONaS 475.1127, found 475.1127. 

rac-Heptahelicene-2,17-dithiol 144 

Method A: A Schlenk flask was charged with 143 (20 mg, 0.038 mmol), 

flushed with argon, and degassed MTBE (10 mL) was added. Then 

a solution of cesium hydroxide monohydrate (51 mg, 0.30 mmol, 

8.0 equiv.) in methanol (300 µL) was added dropwise at rt. The 

reaction mixture was stirred for 5 min. Then the reaction mixture was slowly acidified 

with hydrochloric acid (1M in water, 760 µL, 0.76 mmol 20.0 equiv.). The mixture was 

extracted with MTBE (3 × 10 mL). The organic layers were left to evaporate under flow 

of argon to afford 144 (13 mg, 76%) as a yellow powder. 

Method B: A Schlenk flask was charged with 143 (15 mg, 0.028 mmol), flushed with 

argon, and degassed THF (0.6 mL) was added. Then a solution of cesium hydroxide 

monohydrate (38 mg, 0.23 mmol, 8.0 equiv.) in methanol (230 µL) was added dropwise 

at rt. The reaction mixture was stirred for 5 min. Then the reaction mixture was slowly 

acidified with citric acid (0.5 M in water, 570 µL, 10 equiv.). The mixture was diluted 

with water (20 mL) and the precipitated solid was filtered off on a frit to afford 144 

(11 mg, 87%) as a light yellow powder. 

M.p.: 274.0 - 276.0 °C (MTBE). 

UV/Vis (THF): λmax (log ε) = 273 (4.58), 310 (4.02), 339 (3.89) nm. 

1H NMR (400 MHz, CDCl3): 2.90 (d, J = 0.5, 2H), 6.85 (dd, J = 8.5, 1.8, 2H), 7.12 

(dd, J = 1.8, 0.8, 2H), 7.26 (d , J = 8.2, 2H), 7.57 (d, J = 8.4, 2H), 7.77 (d, J = 8.5, 2H), 

7.98 (d, J = 8.2, 2H), 8.04 (d, J = 8.2, 2H), 8.06 (s, 2H). 

SH SH
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13C NMR (101 MHz, CDCl3): 25.51, 124.88, 125.88, 126.08, 126.78, 127.08, 

127.21, 127.29, 127.45, 127.61, 127.63, 129.49, 130.24, 131.61, 132.23. 

IR (CHCl3): 3423 w, 3047 m, 2962 m, 2923 m, 2852m, 2539 w, 1898 vw, 1721 w, 

1658 vw, 1593 m, 1506 w, 1490 m, 1462 w, 1421 w, 1403 w, 1393 w, 1360 w, 1336 w, 

1307 m, 1261 s, 1191 w, 1098 s, 1021 s, 969 w, 954 w, 899 w, 889 w, 846 s, 833 s, 806 s, 

752 w, 711 m, 656 w, 635 vw, 611 w, 584 vw, 530 s, 480 w, 441 vw cm-1. 

ESI MS: 441 ([M-H]-). 

HR ESI MS: calculated for C30H17S2 441.0777, found 441.0775. 

rac-2,17-Bis(methylsulfanyl)-heptahelicene 146 

A Schlenk flask was charged with 143 (80 mg, 0.15 mmol) and NaH 

(60% suspension in mineral oil, 49 mg, 1.2 mmol, 8.0 equiv.) 

in freshly distilled NMP (3 mL) was added. The reaction mixture was 

stirred for 30 min, then methyl iodide (120 µL, 260 mg, 1.8 mmol, 

12 equiv.) was added. The reaction mixture was stirred at rt for 2 h, 

poured into water, and extracted with DCM (3 × 20 mL). The organic layers were washed 

with brine (3 × 20 mL), the solvents were evaporated under reduced pressure, and the 

residue was purified by flash chromatography (cyclohexane:DCM, 40:60) to afford 

rac-146 (51 mg, 71%) as a yellow solid. 

M.p.: 262.1 - 264.2 °C (cyclohexane-DCM). 

UV/Vis (THF): λmax (log ε) = 228 (4.92), 265 (5.02) sh, 275 (5.08), 338 (4.42) nm. 

1H NMR (400 MHz, CDCl3): 1.93 (s, 6H), 6.87 (dd, J = 8.4, 1.9, 2H), 7.00 (d, 

J = 1.8, 2H), 7.28 (d, J = 8.4 , 2H), 7.55 (d, J = 8.4, 2H), 7.73 (d, J = 8.4, 2H), 7.93 (d, 

J = 8.2, 2H), 8.02 (d, J = 8.2, 2H), 8.05 (s, 2H). 

13C NMR (101 MHz, CDCl3): 14.89, 121.30, 124.79, 125.07, 125.19, 126.92, 

127.19, 127.31, 127.37, 127.55, 127.59, 129.77, 129.83, 131.63, 132.08, 134.34. 

IR (CHCl3): 3054 w, 3011 w, 2963 vw, 2924 vw, 2856 vw, 2835 wv, 1599 m, 

1594 m, 1572 vw, 1515 vw, 1505 vw, 1491 w, 1457 vw, 1439 w, 1424 w, 1403 vw, 

1392 vw, 1369 vw, 1359 vw, 1318 w, 1306 vw, 1276 vw, 1263 vw, 1247 w, 1230 vw, 

1199 vw, 1191 vw, 1180 vw, 1154 vw, 1141 w, 1125 m, 1095 w, 1075 w, 1036 vw, 

963 w, 954 w, 903 vw, 890 vw, 880 w, 848 vs, 837 vs, 827 m, 808 w, 711 vw, 658 w, 

634 vw, 629 vw, 613 w, 586 w, 537 s, 481 m, 441 vw cm-1. 

APCI MS: 471 ([M+H]+). 
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HR APCI MS: calculated for C32H23S2 471.1236, found 471.1227. 

rac-9,10-Bis(thioacetyl)heptahelicene 148 

A Schlenk flask was charged with sodium methanethiolate freshly 

prepared from sodium (180 mg, 7.82 mmol, 50.0 equiv.) and 

dimethyl disulfide (467 mg, 0.440 mL, 4.85 mmol, 31.0 equiv.) in 

freshly distilled NMP (4 mL), and flushed with argon. A degassed 

solution of rac-147170 (70 mg, 0.16 mmol) in freshly distilled NMP 

(2.5 mL) was added and the reaction mixture was stirred at 200 °C 

for 4 h. The reaction mixture was cooled down to rt and acetyl chloride (920 mg, 0.85 mL, 

11.7 mmol, 75.0 equiv.) was added. The reaction mixture was stirred at rt for 2 h, poured 

into ice, and extracted with DCM (3 × 20 mL). The organic layers were washed with brine 

(3 × 20 mL), the solvents were evaporated under reduced pressure, and the residue was 

purified by flash chromatography (cyclohexane:DCM, 40:60 → 80:20) to afford rac-148 

(49 mg, 59%) as a yellow solid. 

M.p.: 216.0 - 217.1 °C (DCM-cyclohexane). 

UV/Vis (THF): λmax (log ε) = 233 (5.12), 275 (5.36), 308 (4.96), 335 (4.80) nm. 

1H NMR (600 MHz, CD2Cl2): 2.57 (s, 6H), 6.46 (ddd, J = 8.6, 6.8, 1.4, 2H), 6.92 

(bd, J = 1.15, 2H ), 6.94 (ddd, J = 7.9, 6.8, 1.2, 2H), 7.32 (ddt, J = 7.9, 0.7, 0.7 2H), 7.52 

(dt, J = 8.6, 0.7, 2H), 7.74 (d, J = 8.6, 2H), 8.03 (d, J = 8.8, 2H), 8.59 (d, J = 8.8, 2H). 

13C NMR (150.9 MHz, CD2Cl2): 30.84, 124.65, 124.89, 125.42, 125.57, 125.66, 

127.10, 127.48, 128.43, 128.93 (2C), 132.05, 129.54, 132.22, 132.66, 132.99, 193.31. 

IR (CHCl3): 2960 vw, 2929 vw, 1707 vs, 1619 vw, 1603 vw, 1590 vw, 1549 vw 

1505 vw, 1495 w, 1455 vw, 1437 vw, 1414 vw, 1388 vw, 1369 vw, 1354 w, 1317 vw, 

1290 vw, 1230 w, 1206 vw, 1159 w, 1113 s, 1074 vw, 1037 vw, 995 vw, 951 m, 926 vw, 

870 vw, 856 vw, 835 vs, 794 vw, 778 vw, 657 vw, 642 w, 633 m, 629 m, 615 s, 587 vw, 

577 vw, 563 vw, 539 w, 523 vw, 510 vw, 489 vw, 473 vw, 439 vw cm -1. 

ESI MS: 527 ([M+H]+), 549 ([M+Na]+). 

HR ESI MS: calculated for C34H22O2NaS2 549.0953, found 549.0954. 
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4-Chloro-2-iodophenol 150 

A solution of KI (15.50 g, 93.4 mmol, 3.0 equiv.) and I2 (7.90 g, 31.1 mmol, 

1.0 equiv.) in distilled water (30 mL) was added dropwise into a solution of 

4-chlorophenol 149 (4.00 g, 31.1 mmol) in aqueous ammonia (20 mL) 

precooled to 0 °C. The reaction mixture was stirred at 0 °C for 2 h, then acidified 

with 1M HCl (15mL) and extracted with ethyl acetate (3 × 50 mL). The combined organic 

layers were dried over anhydrous Na2SO4. The solvent was removed in vacuo and the 

residue was purified by flash chromatography on silica gel (hexane:DCM, 75:25) to 

afford iodophenol 150 (5.05 g, 64%) as a pale pink solid. 

NMR spectra were in agreement with the published ones.173 

4-Chloro-2-[(trimethylsilyl)ethynyl]phenol 151 

A Schlenk flask was charged with phenol 150 (3.50 g, 13.8 mmol), 

Pd(PPh3)2Cl2 (193 mg, 0.275 mmol, 2 mol%) and CuI (114 mg, 

0.599 mmol, 4 mol%) and purged with argon. The degassed toluene 

(20 mL) and DIPA (2.30 mL, 16.4 mmol, 1.2 equiv.) were added. Then 

TMSA (3.00 mL, 21.7 mmol, 1.6 equiv.) in degassed toluene (5 mL) was added dropwise 

via cannula to a reaction mixture and the reaction was stirred at rt for 3 h. The solvent 

was evaporated in vacuo and the residue was flash chromatographed on silica gel 

(hexane:ethyl acetate, 10:1) to afford phenol 151 (2.90 g, 94%) as an oil. 

1H NMR (400 MHz, CDCl3): 0.28 (s, 9H), 5.78 (s, 1H), 6.87 (bd, J = 8.8, 1H), 7.19 

(dd, J = 8.8, 2.6, 1H), 7.31 (bd, J = 2.6, 1H). 

13C NMR (101 MHz, CDCl3): 0.15, 97.50, 103.72, 110.93, 115.86, 124.84, 130.62, 

130.88, 155.66. 

IR (CHCl3): 3515 w, 3076 vw, 2963 w, 2901 w, 2156 w, 2146 w, 1568 w, 1480 vs, 

1413 w, 1400 vw, 1253 s, 1170 w, 1152 vw, sh, 1111 w, 1085 w, 942 vw, 847 vs, 821 m, 

702 w, 645 m, 480 w cm‐1. 

EI MS: 224 (M•+, 47), 211 (69), 209 (100), 193 (35), 149 (6), 104 (4), 73 (6). 

HR EI MS: calculated for C11H13
35ClOSi 224.0424, found 224.0423. 
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(+)-[(5-Chloro-2-{[(1R)-1-methyl-3-(4-methylphenyl)prop-2-yn-1-

yl]oxy}phenyl)ethynyl](trimethyl)silane 153 

To a solution of phenol 151 (854 mg, 3.80 mmol), PPh3 (1.10 g, 

4.18 mmol, 1.1 equiv.), alcohol (-)-(S)-152174 (670 mg, 4.18 mmol, 

1.1 equiv.) in distilled benzene (4.5 mL), DIAD (825 μl, 

4.18 mmol, 1.1 equiv.) was added dropwise under argon. The 

reaction mixture was stirred at rt for 3 h, then the solvent was evaporated in vacuo. The 

residue was chromatographed on silica gel (hexane) to afford diyne (+)-(R)-153 (1.28 g, 

91%) as a pale yellow oil. 

Optical rotation: [α]20
D +19.5° (c 0.410 M, CHCl3). 

1H NMR (400 MHz, CDCl3): 0.26 (s, 9H), 1.77 (d, J = 6.5, 3H), 2.34 (s, 3H), 5.08 

(q, J = 6.5, 1H), 7.07 – 7.13 (m, 3H), 7.22 (dd, J = 8.8, 2.7, 1H), 7.26 – 7.27 (m, 2H), 

7.41 (bd, J = 2.7, 1H). 

13C NMR (101 MHz, CDCl3): 0.03, 21.62, 22.40, 66.66, 86.69, 87.15, 99.89, 

100.35, 115.95, 117.45, 119.30, 126.54, 129.60, 131.71, 133.14, 138.90, 157.63. 

IR (CHCl3): 3083 vw, 3053 vw, 2962 w, 2900 w, 2235 w, 2160 w, 1608 vw, 

1591 w, 1567 vw, 1510 m, 1483 s, 1465 m, 1407 vw, 1396 w, 1375 w, 1331 m, 1266 m, 

sh, 1251 vs, 1237 w, sh, 1120 w, 1113 w, 1095 w, sh, 1084 m, 1035 w, 1020 w, 946 w, 

872 m, 846 vs, 819 s, 808 w, 708 vw, 700 vw, 683 vw, 646 w, 483 w cm‐1. 

ESI MS: 367 ([M+H]+). 

HR ESI MS: calculated for C22H24O
35ClSi 367.1280, found 367.1280. 

 (-)-4-Chloro-2-[(5-chloro-2-{[(1R)-1-methyl-3-(4-methylphenyl)prop-2-yn-1-

yl]oxy}phenyl)ethynyl]phenol 154 

A Schlenk flask A was charged with phenol 150 (330 mg, 

1.3 mmol, 1.3 equiv.), Pd(PPh3)2Cl2 (14 mg, 0.02 mmol, 2 mol%), 

CuI (8 mg, 0.04 mmol, 4 mol%), flushed with argon. Degassed 

DIPA (132 mg, 185 µL, 1.3 mmol, 1.3 equiv.) was added and 

dissolved in degassed toluene (5 mL). A Schlenk flask B was 

charged with protected diyne (+)-(R)-153 (367 mg, 1.0 mmol) dissolved in degassed 

toluene (10 mL) and the degassed solution TBAF·3H2O (1M in THF, 1.2 mL, 1.2 mmol, 

1.2 equiv.) was dropwise added. The resulting solution was stirred for 30 min and then 

added dropwise into the Schlenk flask A at rt within 1.5 h. The reaction mixture was 
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stirred at the same temperature overnight (16 h). The solvents were evaporated under 

reduced pressure and the residue was purified by flash chromatography on silica gel 

(cyclohexane:DCM, 70:30) to afford alcohol (-)-(R)-154 (343 mg, 81%) as a white 

microcrystalline solid. 

M.p.: 155.8 - 156.3 °C (cyclohexane-DCM). 

Optical rotation: [α]20
D -195° (c 0.239, THF). 

1H NMR (400 MHz, CDCl3): 1.85 (d, J = 6.6, 3H), 2.33 (s, 3H), 5.15 (q, J = 6.6, 

1H), 6.55 (s, 1H), 6.93 (d, J = 8.8, 1H), 7.08 – 7.12 (m, 2H), 7.17 (d, J = 8.8, 1H), 7.21 

(d, J = 2.6, 1H), 7.25 (dd, J = 8.8, 2.4, 1H), 7.27-7.29 (m, 2H), 7.35 (d, J = 2.6, 1H), 7.45 

(d, J = 2.6, 1H). 

13C NMR (101 MHz, CDCl3): 21.63, 22.41, 65.95, 86.27, 87.28, 88.43, 93.31, 

111.03, 113.79, 114.77, 115.98, 118.90, 124.90, 126.28, 129.20, 129.61, 129.98, 130.72, 

131.39, 131.79, 139.18, 156.26, 156.61. 

IR (CHCl3): 3457 w, 3083 vw, 3051 vw, 2994 w, 2939 vw, 2871 vw, 2235 w, 

2204 vw, 1606 vw, 1592 w, 1567 vw, 1510 m, 1486 s, 1478 vs, 1452 w, 1422 vw, 1400 w, 

1378 vw, 1347 w, 1331 m, 1299 vw, 1281 m, 1272 m, 1264 m, 1243 s, 1196 m, 1182 w, 

1156 vw, 1131 m, 1121 w, 1107 w, 1090 w, 1084 m, 1035 m, 1020 w, 945 m, 920 m, 

881 w, 843 w, 819 m, 807 m, 657 w, 620 vw, 584 vw, 570 w, 543 vw, 519 vw, 478 vw, 

462 vw, 439 vw cm-1. 

ESI MS: 443 ([M+Na]+). 

HR ESI MS: calculated for C25H18O2
35Cl2Na 443.0576, found 443.0576. 

(-)-1,1'-Ethyne-1,2-diylbis(5-chloro-2-{[(1R)-1-methyl-3-(4-methylphenyl)prop-2-

yn-1-yl]oxy}benzene) 155 

To a solution of phenol 154 (333 mg, 0.79 mmol), PPh3 (228 g, 

0.87 mmol, 1.1 equiv.), alcohol (-)-(S)-152174 (137 mg, 0.87 mmol, 

1.1 equiv.) in distilled benzene (10 mL), DIAD (176 mg, 170 μl, 

0.87 mmol, 1.1 equiv.) was added dropwise under argon while 

cooling in an ice bath. The reaction mixture was stirred at rt for 3 h, 

quenched with MeOH (1 mL) then the solvents were evaporated 

in vacuo. The residue was chromatographed on silica gel (hexane:ethyl acetate, 90:10) to 

afford diyne (-)-(R,R)-155 (336 mg, 75%) as a white solid. 

M.p.: 124.0 - 125.0 °C (hexane-ethyl acetate). 
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Optical rotation: [α]20
D -327° (c 0.254, THF). 

1H NMR (400 MHz, CDCl3): 1.82 (d, J = 6.5, 6H), 2.33 (s, 6H), 5.15 (q, J = 6.5, 

2H), 7.06 – 7.11 (m, 4H), 7.14 (d, J = 8.8, 2H), 7.25 (dd, J = 8.8, 2.6, 2H), 7.27 – 7.29 

(m, 4H), 7.47 (d, J = 2.6, 2H). 

13C NMR (101 MHz, CDCl3): 21.61, 22.57, 66.50, 86.71, 87.12, 89.92, 115.90, 

117.06, 119.26, 126.50, 129.16, 129.53, 131.74, 133.01, 138.90, 156.98. 

IR (CHCl3): 3083 vw, 3053 vw, 2994 m, 2939 w, 2924 w, 2892vw, 2869 vw, 

2234 w, 2203 vw, 1607 vw, 1594 w, 1568 w, 1510 vs, 1490 vs, 1480 vs, 1461 m, 1410 m, 

1375 m, 1338 m, 1331 m, 1280 s, 1259 s, 1237 s, 1181 vw, 1158 vw, 1139 m, 1131 m, 

1121 s, 1107 m, 1085 s, 1037 m, 1020 m, 946 m, 931 w, 917 w, 882 m, 841 w, 831 w, 

819 vs, 807 m, 709 vw, 682 vw, 657 w, 647 vw, 617 vw, 573 w, 556 w, 541 w, 529 w, 

527 w, 506 vw, 497 vw, 470 w, 432 vw, 410 vw cm-1. 

ESI MS: 585 ([M+Na]+). 

HR ESI MS: calculated for C36H28O2
35Cl2Na 585.1359, found 585.1361. 

(-)-(M)-1,1'-Ethyne-1,2-diylbis(5-chloro-2-{[(1R)-1-methyl-3-(4-

methylphenyl)prop-2-yn-1-yl]oxy}benzene) 156 

A microwave vial was charged with a solution of the triyne 

(-)-(R,R)-155 (40 mg, 0.071 mmol), dissolved in chlorobenzene 

(4 mL) and bubbled for 15 min with nitrogen. Then CpCo(CO)2 

(10 µL, mg, 0.071 mmol, 1.0 equiv.) was added in one portion under 

nitrogen. The reaction mixture was heated to 180 °C for 20 min in a microwave reactor. 

The resulting reaction mixture was concentrated in vacuo. The purification by a flash 

chromatography on silica gel (cyclohexane:DCM, 70:30) gave (-)-(M,R,R)-156 (28 mg, 

70%) as a yellowish solid. 

M.p.: 158.0 - 160.9 °C (cyclohexane-DCM). 

Optical rotation: [α]20
D -676° (c 0.337, THF). 

UV/Vis (THF): λmax (log ε) = 262 (4.74), 270 (4.81), 307 (4.35), 341 (4.48) nm. 

1H NMR (400 MHz, CDCl3): 0.95 (d, J = 6.7, 6H), 2.26 (s, 6H), 5.25 (q, J = 6.6, 

2H), 6.65 (dd, J = 7.9, 1.6, 2H), 6.87 (d, J = 7.9, 2H), 6.96 (d, J = 8.6, 2H), 7.06 – 7.13 (m, 

4H), 7.17 (dd, J = 8.6, 2.5, 2H), 7.41 (d, J = 2.5, 2H). 

13C NMR (101 MHz, CDCl3): 18.44, 21.33, 73.28, 120.71, 124.35, 124.42, 126.20, 

128.64, 128.75, 128.83, 129.03, 129.30, 130.69, 134.56, 136.47, 138.02, 139.29, 152.17. 
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IR (CHCl3): 3086 vw, 3050 vw, 2985 m, 2928 w, 2868 vw, 1600 vw, 1579 vw, 

1544 vw, 1517 m, 1483 s, 1446 m, 1429 vs, 1356 m, 1336 m, 1328 w, 1316 vw, 1309 vw, 

1263 s, 1244 m, 1235 m, 1198 vw, 1183 vw, 1154 m, 1123 w, 1105 m, 1092 m, 1061 s, 

1042 vw, 1023 w, 1006 s, 940 vw, 905 w, 899 w, 868 m, 855 m, 839 m, 819 m, 808 w, 

704 w, 686 vw, 652 m, 641 m, 631 m, 628 m, 592 vw, 578 vw, 565 w, 534 w, 529 w, 

500 w, 469 m, 447 vw, 440 vw, 427 w, 412 vw cm-1. 

ESI MS: 585 ([M+Na]+). 

HR ESI MS: calculated for C36H28O2
35ClNa 585.1359, found 585.1361. 

7-Chloro-1-iodonaphthalen-2-ol 159168 

Naphthol 158 (10.1 g, 56.5 mmol), sodium carbonate (12.0 g, 

113 mmol, 2.0 equiv.), were dissolved in a mixture of THF (200 mL) 

and water (50 mL). Then iodine (14.4 g, 56.5 mmol, 1.0 equiv.) was 

added at once to the solution. The reaction mixture was stirred at rt for 4 h, the reaction 

was quenched with a saturated solution of NH4Cl (300 mL) and the saturated Na2S2O3 

solution (100 mL). The water phase was extracted with DCM (3 × 250 mL) and 

the combined organic layers were dried over anhydrous Na2SO4. The solvents were 

removed in vacuo and to afford iodonaphtol 159 (17.10 g, 99%) as off-white needles.  

The spectra were in an agreement with literature.168 

7-Chloro-1-iodonaphthalen-2-yl acetate 160168 

To a solution of naphthol 159 (17.10 g, 56.2 mmol), triethylamine 

(20 mL, 140 mmol, 2.5 equiv.) in distilled DCM (225 mL), acetyl 

chloride (6.0 mL, 84.2 mmol, 1.5 equiv.) was added dropwise at 0 °C 

under argon. The reaction mixture was stirred at rt for 5 h, the solvent was evaporated in 

vacuo and the residue was purified by flash chromatography on silica gel (hexane:diethyl 

ether, 2:1) to afford the compound 160 (19.20 g, 99%) as an off-white amorphous solid. 

The spectra were in an agreement with literature.168 
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7-Chloro-1-{[tris(1-methylethyl)silyl]ethynyl}naphthalen-2-yl acetate 161168 

A Schlenk flask was charged with iodide 160 (18.00 g, 52.9 mmol), 

PdCl2(PPh3)2 (729 mg, 1.04 mmol, 2 mol%), CuI (495 mg, 

2.60 mmol, 5 mol%), and purged with argon, and degassed toluene 

(210 mL) and DIPA (8.74 mL, 62.3 mmol, 1.2 equiv.) were added. 

Then TIPSA (14.0 mL, 62.3 mmol, 1.2 equiv.) was added dropwise 

to the reaction mixture and the reaction was stirred at rt for 13 h. The solvent was 

evaporated in vacuo and the residue was flash chromatographed on silica gel 

(hexane:ethyl acetate, 80:20) to afford 161 (18.90 g, 91%) as an oil, which solidified in 

the fridge. 

The spectra were in an agreement with literature. 168  

7-Chloro-1-{[tris(1-methylethyl)silyl]ethynyl}naphthalen-2-ol 162168 

Acetate 161 (16.90 g, 42.2 mmol) was dissolved in THF (170 mL) 

and MeOH (170 mL), and K2CO3 (11.7 g, 84.3 mmol, 2.0 equiv.) 

was added in one portion. The reaction mixture was stirred at rt for 

3 h, then it was quenched with a saturated solution of NH4Cl 

(150 mL) and extracted with DCM (3 × 200 mL). The combined 

organic layers were dried over anhydrous Na2SO4. The solvents were evaporated in vacuo 

to afford napthol 162 (15.00 g, 99%) as an oil, which solidified in the fridge. 

The spectra were in an agreement with literature.168 

(-)-[(7-Chloro-2-{[(1R)-1-methyl-3-(4-methylphenyl)prop-2-yn-1-

yl]oxy}naphthalen-1yl)-ethynyl][tris(1-methylethyl)]silane 163168 

To a solution of naphthol 162 (16.5 g, 46.0 mmol), 

(-)-(S)-152174 (8.10 g, 50.6 mmol, 1.1 equiv.), PPh3 

(13.2 g, 50.6 mmol, 1.1 equiv.) in toluene (140 mL), 

DIAD (10.0 mL, 50.6 mmol, 1.1 equiv.) was added 

dropwise under argon while cooling in an ice bath. The 

reaction mixture was let to heat up to rt and stirred for 3 h. The reaction was quenched 

with methanol 10 mL, the solvents were evaporated in vacuo, and the residue was purified 

by flash chromatography on silica gel (hexane:ethyl acetate, 35:1) to afford the protected 

diyne (-)-(R)-163 (18.2 g, 79%) as a white amorphous solid. 
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The spectra were in an agreement with literature.168 

(-)-7-Chloro-1-ethynyl-2-{[(1R)-1-methyl-3-(4-methylphenyl)prop-2-yn-1-

yl]oxy}naphtha-lene 164168 

To a solution of the protected diyne (-)-(R)-163 (7.00 g, 

14.0 mmol) in a mixture of THF (56 mL) and methanol 

(6 mL), a solution of TBAF·3H2O (13.7 g, 43.3 mmol, 

3.1 equiv.) in THF (44 mL) was added. The reaction 

mixture was stirred at rt for 1 h. The solvent was removed in vacuo and the residue was 

passed through a short pad of silica gel (DCM) to give diyne (-)-(R)-164 (4.76 g, 99%) as 

an amorphous white solid. 

The spectra were in an agreement with literature.168 

(-)-2-[(7-Chloro-2-{[(1R)-1-methyl-3-(4-methylphenyl)prop-2-yn-1-

yl]oxy}naphthalen-1-yl)ethynyl]phenol 165 

A Schlenk flask A was charged with 2-iodophenol (1.32 g, 

6.00 mmol, 3.0 equiv.), Pd(PPh3)4 (231 mg, 0.20 mmol, 

10 mol%), CuI (76 mg, 0.40 mmol, 20 mol%), flushed with 

argon, degassed DIPA (223 mg, 310 µL, 2.20 mmol, 

1.1 equiv.) was added in degassed toluene (5 mL). A Schlenk 

flask B was charged with the protected diyne (-)-(R)-163 (1.00 g, 2.00 mmol) dissolved 

in degassed toluene (20 mL) and the degassed solution TBAF·3H2O (1M in THF, 2.4 mL, 

2.4 mmol, 1.2 equiv.) was dropwise added. The resulting solution was stirred for 30 min 

and then added dropwise into the Schlenk flask A at 45 °C within 3 h. The reaction 

mixture was stirred at 45 °C overnight (16 h). The solvents were evaporated under 

reduced pressure and the residue was purified by flash chromatography on silica gel 

(cyclohexane:DCM, 70:30) to afford alcohol (-)-(R)-165 (581 mg, 67%) as white needles. 

M.p.: 168.0 - 170.4 °C (cyclohexane-DCM). 

Optical rotation: [α]20
D -217° (c 0.314, THF). 

1H NMR (400 MHz, CD2Cl2): 1.91 (d, J = 6.5, 3H), 2.31 (s, 3H), 5.41 (q, J = 6.5, 

1H), 6.73 (s, 1H), 6.97 (ddd, J= 7.5, 1.1, 1.1, 1H), 7.03 (dd, J = 8.3, 1.1, 1H), 7.07 – 7.12 

(m, 2H), 7.25 – 7.29 (m, 2H), 7.32 (ddd, J = 8.7, 7.4, 1.7, 1H), 7.38 (dd, J = 8.7, 2.1, 1H), 
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7.55 – 7.57 (m, 1H), 7.59 (d, J = 9.4, 1H), 7.79 (d, J = 8.7, 1H), 7.85 – 7.92 (m, 1H), 

8.27 – 8.33 (m, 1H). 

13C NMR (101 MHz, CD2Cl2): 21.71, 22.84, 66.72, 87.25, 87.35, 91.68, 94.39, 

106.74, 110.45, 115.04, 115.58, 119.36, 120.76, 124.59, 124.62, 126.11, 127.59, 129.61, 

130.40, 130.46, 130.84, 131.12, 132.09, 134.23, 134.63, 139.77, 157.82, 158.22. 

IR (CHCl3): 3458 w, 3086 vw, 3058 w, 3015 m, 2990 w, 2939 vw, 2924 w, 

2894 vw, 2869 vw, 2282 w, 2250 vw, 2203 vw, 1617 m, 1586 w, 1574 m, 1510 m, 1502 s, 

1486 m, 1464 m, 1447 m, 1433 w, 1427 w, 1405 vw, 1379 w, 1368 m, 1349 m, 1330 m, 

1311 m, 1294 m, 1288 m, 1251 s, 1247 s, 1227 s, 1195 m, 1178 w, 1164 w, 1153 m, 

1120 m, 1105 m, 1083 s, 1061 m, 1038 m, 1028 m, 1020 w, 1002 vw, 956 vw, 938 vw, 

917 m, 885 m, 877 m, 864 m, 830 s, 819 m, 719 m, 693 vw, 664 m, 646 vw, 638 vw, 

629 vw, 584 vw, 565 w, 559 w, 550 m, 542 w, 523 w, 511 w, 501 w, 482 w, 473 w, 

435 m, 411 w cm-1. 

APCI MS: 459 ([M+Na]+). 

HR APCI MS: calculated for C29H21O2
35ClNa 459.1122 found 459.1115. 

(-)-7-Chloro-2-{[(1R)-1-methyl-3-(4-methylphenyl)prop-2-yn-1-yl]oxy}-1-[(2-

{[(1R)-1-methyl-3-(4-methylphenyl)prop-2-yn-1-

yl]oxy}phenyl)ethynyl]naphthalene 166 

To a solution of alcohol 165 (500 mg, 1.14 mmol), 

(-)-(S)-152174 (202 mg, 1.26 mmol, 1.1 equiv.), PPh3 (360 mg, 

1.37 mmol, 1.2 equiv.) in benzene (15 mL), DIAD (250 µL, 

1.26 mmol, 1.1 equiv.) was added dropwise under argon 

while cooling in an ice bath. The reaction mixture was let to 

heat up to rt and stirred for 3 h. The reaction mixture was quenched with methanol (3 mL) 

and the solvents were evaporated in vacuo, and the residue was purified by flash 

chromatography on silica gel (cyclohexane:DCM, 70:30) to afford the triyne 

(-)-(R,R)-166 (534 mg, 81%) as a white solid. 

M.p.: 104.7-106.3 °C (cyclohexane-DCM). 

Optical rotation: [α]20
D = -427° (c 0.235, THF). 

1H NMR (400 MHz, CD2Cl2): 1.88 (d, J = 6.5, 3H), 1.95 (d, J = 6.5, 3H), 2.31 (d, 

J = 1.9, 6H), 5.28 (q, J = 6.5, 1H), 5.42 (q, J = 6.5, 1H), 7.04 (ddd, J = 7.6, 1.2, 1.2 1H), 
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7.10 (d, J = 7.9, 4H), 7.25 - 7.32 (m, 5H), 7.35 – 7.42 (m, 2H), 7.53 (d, J = 9.0, 1H), 7.63 

(dd, J = 7.6, 1.7, 1H), 7.78 (d, J = 8.7, 1H), 7.80 – 7.85 (m, 1H), 8.50 – 8.54 (m, 1H). 

13C NMR (101 MHz, CD2Cl2): 21.72, 22.95, 23.13, 66.00, 67.39, 86.63, 86.85, 

87.95, 87.97, 88.01, 96.70, 109.10, 114.39, 118.00, 119.66, 119.77, 121.80, 125.09, 

126.07, 128.07, 129.56, 129.59, 129.91, 130.19, 130.27, 132.05, 132.08, 133.96, 135.84, 

139.45, 139.53, 158.34, 158.66. 

IR (CHCl3): 3077 w, 3056 m, 3032 m, 3011 s, 2993 s, 2938 m, 2924 m, 2906 w, 

2889 m, 2232 m, 1866 m, 1780 vw, 1765 vw, 1652 vw, 1615 s, 1596 m, 1587 m, 1574 m, 

1510 vs, 1499 vs, 1491 vs, 1451 s, 1444 vs, 1420 m, 1408 w, 1369 s, 1329 vs, 1308 s, 

1294 m, 1274 s, 1253 vs, 1227 vs, 1196 m, 1180 m, 1163 s, 1145 m, 1121 vs, 1111 vs, 

1102 s, 1085 vs, 1062 m, 1036 vs, 1020 s, 1001 w, 997 w, 946 s, 917 s, 888 m, 877 s, 

865 s, 839 s, 829 s, 819 vs, 719 w, 709 vw, 666 m, 648 vw, 637 vw, 628 w, 613 w, 

586 vw, 574 vw, 554 m, 544 m, 535 m, 524 m, 508 w, 480 w, 436 m, 408 w cm-1. 

ESI MS: 601 ([M+Na]+). 

HR ESI MS: calculated for C40H31O2
35ClNa 601.1905, found 601.1896. 

(-)-(2R,5R)-11-Chloro-2,5-dimethyl-3,4-bis(4-methylphenyl)-2,5-

dihydrobenzo[f]benzo[1,2-c:4,3-c']dichromene 167 

Microwave vial was charged with a solution of the triyne 

(-)-(R,R)-166 (100 mg, 0.17 mmol) in chlorobenzene (5 mL) 

CpCo(CO)2 (23 µL, 31 mg, 0.17 mmol, 1.0 equiv.) was added in one 

portion under argon. The reaction mixture was heated to 180 °C for 

20 min in the microwave reactor. The resulting reaction mixture was 

concentrated in vacuo. The purification by a flash chromatography on silica gel 

(cyclohexane:DCM, 70:30) gave (-)-(M,R,R)-167 (59 mg, 59%) as a yellowish solid. 

M.p.: 213.0 – 215.2 °C (DCM-cyclohexane). 

Optical rotation: [α]20
D = -555° (c 0.277, THF). 

1H NMR (400 MHz, CD2Cl2): 0.97 (d, J = 6.7, 3H), 1.00 (d, J = 6.6, 3H), 2.29 (s, 

6H), 5.27 (q, J = 6.5, 1H), 5.29 (q, J = 6.5, 1H), 6.15 – 6.21 (m, 1H), 6.41 (d, J = 7.8, 

1H), 6.83 (ddd, J = 11.3, 7.8, 1.9, 2H), 6.93 – 6.98 (m, 4H), 7.08 (dd, J = 8.7, 2.1, 1H), 

7.13 – 7.22 (m, 4H), 7.28 (d, J = 8.7, 1H), 7.43 (d, J = 2.1, 1H), 7.64 (d, J = 8.7, 1H), 7.74 

(d, J = 8.7, 1H). 
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13C NMR (101 MHz, CD2Cl2): 18.12, 18.98, 21.46, 73.44, 74.22, 118.26, 119.15, 

120.57, 121.08, 123.81, 124.49, 124.52, 125.61, 126.55, 127.72, 128.82, 128.95, 129.01, 

129.08, 129.11, 129.28, 129.69, 129.79, 129.84, 130.33, 130.70, 131.25, 131.49, 132.18, 

135.55, 135.58, 136.90, 136.96, 137.54, 137.62, 139.51, 140.45, 153.62, 154.30. 

IR (CHCl3): 3086 vw, 3049 w, 3024 s, 3007 m, 2985 m, 2868 w, 1908 vw, 1614 s, 

1585 m, 1568 vw, 1517 s, 1502 s, 1485 m, 1460 m, 1434 s, 1422 m, 1369 s, 1357 m, 

1336 w, 1318 w, 1306 w, 1287 vw, 1272 w, 1246 m, 1194 w, 1183 w, 1151m, 1143 m 

1140 m, 1119 w, 1115 m, 1101 m, 1086 s, 1073 s, 1059 m, 1052 m, 1043 m, 1022 m, 

1013 m, 997 m, 973 w, 954 vw, 943 vw, 934 vw, 906 vw, 886 w, 864 m, 836 vs, 819 m, 

811 m, 719 s, 691 w, 664 s, 650 vw, 642 vw, 638 vw, 626 w, 607 w, 573 vw, 562 vw, 

551 w, 532 w, 522 w, 504 m, 495 m, 470 w, 464 w, 439 w cm-1.  

ESI MS: 601 ([M+Na]+). 

HR ESI MS: calculated for C40H31O2
35ClNa 601.1905, found 601.1897. 

(-)-S-[(2R,5R)-2,5-Dimethyl-3,4-bis(4-methylphenyl)-2,5-dihydrobenzo[f]benzo[1,2-

c:4,3-c']dichromen-11-yl] ethanethioate 168 

A Schlenk flask was charged with sodium methanethiolate freshly 

prepared from sodium (108 mg, 4.67 mmol, 20.0 equiv.) and 

dimethyl disulfide (272 mg, 0.260 mL, 2.89 mmol, 12.5 equiv.) in 

freshly distilled NMP (2.3 mL), and flushed with argon. A degassed 

solution of (-)-(M,R,R)-167 (135 mg, 0.23 mmol) in freshly distilled 

NMP (3.5 mL) was added and the reaction mixture was stirred at 200 °C for 4 h. The 

reaction mixture was cooled down to rt and acetyl chloride (550 mg, 0.50 mL, 7.0 mmol, 

30.0 equiv.) was added. The reaction mixture was stirred at rt for 2 h, poured into ice, and 

extracted with DCM (3 × 25 mL). The organic layers were washed with brine (3 × 30 mL), 

the solvents were evaporated under reduced pressure, and the residue was purified by 

flash chromatography (cyclohexane:DCM, 40:60 → 0:100) to afford (-)-(M,R,R)-168 

(122 mg, 85%) as a white solid. 

M.p.: 280.0 - 282.0 °C (DCM- cyclohexane). 

Optical rotation: [α]20
D = -725° (c 0.548, THF). 

UV/Vis (THF): λmax (log ε) = 262 (4.89), 270 (4.81), 313 (4.36), 363 (4.43) nm. 

1H NMR (400 MHz, CD2Cl2): 0.99 (d, J = 6.7, 3H), 1.00 (d, J = 6.7, 3H), 2.29 (s, 

6H), 2.31 (s, 3H), 5.26 (q, J = 6.5, 1H), 5.30 (q, J = 6.7, 1H), 6.14 (ddd, J = 7.5, 1.6, 1.6, 
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1H), 6.38 (dd, J = 7.8, 1.6, 1H), 6.84 (ddd, J = 8.0, 6.7, 1.6, 2H), 6.90 (ddd, J = 8.0, 7.6, 

1.6, 1H), 6.93 – 7.00 (m, 3H), 7.10 – 7.24 (m, 5H), 7.35 (d, J = 8.8, 1H), 7.53 (d, J = 1.6, 

1H), 7.74 (d, J = 8.5, 1H), 7.79 (d, J = 8.8, 1H). 

13C NMR (101 MHz, CD2Cl2): 17.62, 18.41, 20.91, 29.92, 72.90, 73.64, 118.23, 

118.44, 120.56, 121.06, 123.25, 123.91, 125.46, 126.11, 127.42, 128.40, 128.45, 128.53, 

128.54, 128.65, 128.75, 129.11, 129.21, 129.33, 129.83, 129.91, 130.70, 130.92, 132.03, 

134.98, 136.34, 136.39, 137.00, 137.09, 138.92, 139.97, 152.98, 153.44, 194.30. 

IR (CHCl3): 3130 vw, 3081 vw, 3047 vw, 3028 m, 2985 m, 2928 s, 2867 w, 

2853 m, 1697 vs, 1612 m, 1605 m, sh, 1585 m, 1517 m, 1500 m, 1485 m, 1461 m, 1443 m, 

1434 m, 1420 m, 1405 w, 1393 w, 1369 vs, 1355 s, 1336 w, 1318 vw, 1310 w, 1306 w, 

1288 vw, 1272 m, 1246 m, 1231 s, 1194 w, 1183 w, 1151 m, 1147 m, 1141 m, 1127 m, 

1118 m, 1111s, 1102 m, 1090 m, 1073 s, 1060 m, 1051 m, 1033 m, 1022 m, 1013 m, 

997 m, 976 w, 952 m, 935 w, 903 w, 887 vw, 864 m, 838 vs, 818 w, 812 w, 691 vw, 

686 vw, 656 vw, 641 w, 631 m, 617 m, 606 m, 580 w, 562 vw, 532 w, 523 w, 522 vw, 

494 w, 470 w, 464 w, 440 w, 433 w, 426 vw cm -1. 

ESI MS: 641 ([M+Na]+). 

HR ESI MS: calculated for C42H34O3NaS 641.2121 found 641.2115. 

(-)-7-Chloro-1-[(5-iodo-2,4-bis{[3-(4-methylphenyl)prop-2-yn-1-

yl]oxy}phenyl)ethynyl]-2-{[(1R)-1-methyl-3-(4-methylphenyl)prop-2-yn-1-

yl]oxy}naphthalene 169 

A Schlenk flask was charged with diiodide 102 (1151 mg, 

1.86 mmol, 3.0 equiv.), Pd(PPh3)4 (108 mg, 0.093 mmol, 

15 mol%), CuI (36 mg, 0.19 mmol, 30 mol%), flushed with 

argon before degassed DIPA (10 mL) was added. Diyne 

(-)-(R)-164 (214 mg, 0.62 mmol) was dissolved in degassed 

toluene (16 mL) under argon and added dropwise to a reaction 

mixture at rt within 3 h. The reaction mixture was stirred at 

the same temperature overnight (16 h). The solvents were 

evaporated under reduced pressure and the residue was purified by flash chromatography 

on silica gel (hexane:ethyl acetate:toluene, 80:15:5) to afford iodide (-)-(R)-169 (434 mg, 

84%) as a yellowish amorphous solid. 

Optical rotation: [α]20
D -133° (c 0.123, THF). 
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1H NMR (400 MHz, CDCl3): 1.89 (d, J = 6.5, 3H), 2.32 (s, 6H), 2.33 (s, 3H), 5.04 

(s, 2H), 5.20 (s, 2H), 5.38 (q, J = 6.5, 1H), 7.03 – 7.05 (m, 2H), 7.06 – 7.08 (m, 4H), 7.15 

(s, 1H), 7.24 – 7.31 (m, 4H), 7.32 (d, J= 8.1, 2H), 7.35 (dd, J = 8.7, 2.1, 1H), 7.49 (d, 

J = 8.9, 1H), 7.72 (d, J = 8.7, 1H), 7.75 (d, J = 8.9, 1H), 7.99 (s, 1H), 8.55 (d, J = 2.1, 

1H). 

13C NMR (101 MHz, CDCl3): 21.60, 21.62, 21.65, 22.73, 58.15, 58.54, 67.30, 

76.00, 82.39, 82.80, 86.83, 87.69, 88.02, 88.58, 88.65, 94.60, 100.33, 109.01, 109.39, 

117.94, 118.96, 119.08, 119.37, 125.14, 125.63, 127.64, 129.12 (2C), 129.16 (2C), 

129.21 (2C), 129.32, 129.63, 131.74 (2C), 131.85 (2C), 131.88 (2C), 133.43, 135.45, 

138.77, 139.04, 139.18, 142.33, 157.70, 157.83, 160.16. 

IR (CHCl3): 3125 vw, 3083 w, 3054 w, 3033 m, 3010 m, 2987 m, 2959 w, 2923 m, 

2872 w, 2799 vw, 2735 vw, 2244 w, 2229 m, 1907 w, 1795 vw, 1653 vw, 1615 m, 

1591 m, 1568 w, 1554 m, 1510 s, 1495 s, 1453 m, 1423 w, 1400 m, 1373 m, 1360 m, 

1349 m, 1337 m, 1322 m, 1310 s, 1292 s, 1264 s, 1253 s, 1227 s, 1195 w, 1178 m 1155 m, 

1141 m, 1119 w, 1106 w, 1086 s, 1040 m, 1022 s, 1016 s, 973 w, 962 w, 918 m, 890 w, 

878 w, 865 m, 829 m, 818 s, 709 vw, 688 vw, 664 w, 646 vw, 637 vw, 593 vw, 555 m, 

545 w, 527 m, 509 w, 482 vw, 441 w, 414 w cm-1. 

APCI MS: 835 ([M+H]+). 

HR APCI MS: calculated for C49H37IO3
35Cl 835.1480 found 835.1475. 

(-)-1,1'-{(4,6-Bis{[3-(4-methylphenyl)prop-2-yn-1-yl]oxy}benzene-1,3-

diyl)bis[ethyne-2,1-diyl(4,6-bis{[3-(4-methylphenyl)prop-2-yn-1-yl]oxy}benzene-

3,1-diyl)ethyne-2,1-diyl]}bis(7-chloro-2-{[(1R)-1-methyl-3-(4-methylphenyl)prop-2-

yn-1-yl]oxy}naphthalene) 170 

A Schlenk flask was charged with iodide 

(-)-(R)-169 (177 mg, 0.21 mmol), Pd(PPh3)4 

(22 mg, 0.02 mmol, 9 mol%), CuI (7 mg, 

0.04 mmol, 19 mol%), flushed with argon, and 

a degassed mixture of DIPA (3 mL) and 

toluene (1.5 mL) was added. Then a solution 

of tetrayne 104 (40 mg, 0.097 mmol, 

0.45 equiv.) in toluene (2.5 mL) was slowly added at rt within 1.5 h. The reaction mixture 

was stirred at the same temperature overnight (16h). The solvents were evaporated under 
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reduced pressure and the residue was purified by flash chromatography on silica gel 

(hexane:ethyl acetate:toluene 80:15:5) to afford dodecayne (-)-(R,R)-170 (122 mg, 69%) 

as a yellowish amorphous solid. 

Optical rotation: [α]20
D -127° (c 0.348, THF). 

1H NMR (500 MHz, CDCl3): 1.85 (d, J = 6.6, 6H), 2.28 (s, 6H), 2.283 (s, 6H), 

2.283 (s, 6H), 2.31 (s, 6H), 5.095 (s, 4H), 5.11 (s, 4H), 5.21 (s, 4H), 5.39 (q, J = 6.6, 2H), 

7.02 – 7.05 (m, 16H), 7.06 (s, 1H), 7.14 (s, 2H), 7.26 – 7.30 (m, 16H), 7.34 (dd, J = 8.7, 

2.1, 2H), 7.735 (s, 1H), 7.48 (d, J = 9.0, 2H), 7.71 (d, J = 8.7, 2H), 7.74 (bd, J = 9.0, 2H), 

7.77 (s, 2H), 8.58 (bd, J = 2.1, 2H). 

13C NMR (126 MHz, CDCl3): 21.42, 21.44, 21.45, 21.46, 22.61, 57.88, 58.20, 

58.28, 67.34, 82.71, 82.85, 82.86, 86.41, 87.17, 87.68, 88.19, 88.23, 88.27, 88.35, 88.41, 

95.30, 100.39, 100.81, 107.21, 107.28, 107.29, 109.32, 118.21, 119.01, 119.04, 119.05, 

125.13, 125.48, 127.57, 128.93, 128.96 (2C), 128.99 (2C), 129.00 (2C), 129.03 (2C), 

129.41, 131.59 (2C), 131.70 (2C), 131.71 (2C), 131.72 (2C), 133.24, 135.38, 137.04, 

137.66, 138.56, 138.74, 138.78, 138.79, 157.57, 159.27, 159.44, 159.59. 
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IR (CHCl3): 3125 vw, 3083 vw, 3055 w, 3032 w, 3023 m, 2993 w, 2953 w, 2934 w, 

2875 vw, 2859 vw, 2236 w, 2211 w, 1907 vw, 1653 vw, 1608 m, 1585 w, 1563 w, 1510 s, 

1501 s, 1453 m, 1438 w, 1407 w, 1372 w 1364 w, 1320 m, 1287 w, 1264 m 1254 m, 

1195 vw, 1181 w, 1171 w, 1149 w 1135 w, 1120 w, 1108 w, 1084 m, 1022 m, 1016 m, 

962 w, 917 w, 900 vw, 879 vw, 864 vw, 838 w, 818 s, 719 w, 708 vw, 694 w, 664 w, 

648 vw, 636 vw, 617 vw, 556 w, 543 w, 527 m, 520 w, 510 w, 436 vw, 416 vw, 

403 vw cm-1. 

ESI MS: 1850 ([M+Na]+). 

HR ESI MS: calculated for C128H92O8
35Cl2Na 1849.6062, found 1849.6065. 

(-)-(M,R,R)-2,38-Dichlorooxa[19]helicene 171 

Dichlorooxa[19]helicene 171 was prepared according 

to the General procedure for reaction in a flow 

reactor from dodecayne (-)-(R,R)-170 (300 mg, 

0.16 mmol) and CpCo(CO)2 (59 mg, 0.32 mmol, 

2.0 equiv.) in distilled THF (14 mL, 5 mg/mL) at 

a flow rate of 1.0 mL/min (residence time of 8 min). 

The resulting reaction mixture was concentrated in vacuo. The purification by a flash 

chromatography on silica gel (hexane:ethyl acetate: toluene, 75:20:5) gave 

(-)-(M,R,R)-171 (85 mg, 28%) as a pale yellow solid. 

M.p.: >350 °C (acetone). 

Optical rotation: [α]20
D -962° (c 0.170, THF). 

1H NMR (500 MHz, CD2Cl2): 1.01 (d, J = 6.7, 6H), 2.305 (s, 6H), 2.32 (s, 6H), 

2.33 (s, 6H), 2.38 (s, 6H), 3.96 (d, J = 13.0, 2H), 4.45 (d, J = 14.2, 2H), 4.50 (d, J = 14.2, 

2H), 4.58 (d, J = 13.7, 2H), 4.69 (d, J = 13.0, 2H), 4.70 (d, J = 13.7, 2H), 5.01 (q, J = 6.7, 

2H), 5.82 (s, 2H), 6.35 (s, 1H), 6.42 (s, 2H), 6.70 (m, 2H), 6.74 (m, 2H), 6.78 (m, 2H), 

6.78 (dd, J = 8.5, 2.1, 2H), 6.80 (m, 2H), 6.82 (s, 1H), 6.92 (m, 2H), 6.94 (m, 2H), 6.97 

(m, 2H), 6.98 (m, 2H), 7.00 (m, 2H), 7.01 (m, 2H), 7.03 (m, 4H), 7.04 (bd, J = 2.1, 2H), 

7.05 (s, 2H), 7.065 (m, 2H), 7.07 (d, J = 8.7, 2H), 7.12 (m, 2H), 7.14 (m, 2H), 7.17 (d, 

J = 8.5, 2H), 7.53 (d, J = 8.7, 2H).  

13C NMR (151 MHz, CD2Cl2): 18.12, 21.31, 21.32, 21.38, 21.42, 68.12, 68.77, 

69.32, 73.81, 105.37, 105.42, 116.00, 116.96, 117.02, 118.04, 120.42, 123.20, 125.15, 

125.20, 125.44, 126.56, 127.64, 128.04, 128.19, 128.70, 128.78, 128.93, 128.96, 128.98, 
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129.03, 129.04, 129.10, 129.15, 129.77, 129.78, 129.79, 130.17 (2C), 130.29, 130.36, 

130.47, 131.08, 131.48, 133.18, 133.79, 134.93, 135.50, 135.53, 135.57, 135.66, 135.82, 

135.85, 136.35, 136.76 (2C), 136.89, 136.91, 136.95, 153.95, 156.68, 156.74, 157.66. 

IR (CHCl3): 3088 vw, 3049 w, 3024 m, 2982 w, 2951 vw, 2924 w, 2874 vw, 

2852 w, 1661 w, 1615 s, 1588 w, 1573 w, 1538 vw, 1518 m, 1501 m, 1492 m, 1447 m, 

1422 m, 1401 w, 1379 m, 1365 m, 1357 w, 1322 w, 1302 w, 1265 w, 1244 w, 1227 m, 

1184 w, 1155 s, 1135 w, 1110 w, 1084 m, 1067 w, 1059 w, 1046 w, 1022 m, 1016 w, 

984 w, 973 w, 939 w, 928 w, 896 vw, 885 vw, 878 vw, 870 vw, 852 vw, 832 m, 819 m, 

719 m, 695 vw, 664 m, 638 vw, 619 w, 603 w, 587 w, 538 vw, 562 vw, 542 w, 529 w, 

509 w, 486 w, 451 vw, 433 vw, 418 vw, 414 vw, 404 vw cm-1. 

MALDI MS: 1827 (M+). 

HR MALDI MS: calculated for C128H92O8
35Cl2 1826.6164, found 1826.6202. 

 

(-)-(M,R,R)-2,38-Bis(thioacetyl)-oxa[19]helicene 88 

A Schlenk flask was charged with sodium 

methanethiolate freshly prepared from sodium 

(115 mg, 5.0 mmol, 50.0 equiv.) and dimethyl disulfide 

(293 mg, 280 μL, 3.1 mmol, 31.0 equiv.) in freshly 

distilled NMP (3 mL), and flushed with argon. 

A degassed solution of (-)-(M,R,R)-171 (120 mg, 

0.1 mmol) in NMP (3 mL) was added and the reaction mixture was stirred at 200 °C for 

4 h. The reaction mixture was cooled down to rt and acetyl chloride (590 mg, 0.54 mL, 

7.5 mmol, 75.0 equiv.) was added. The reaction mixture was stirred at rt for 2 h, poured 

into ice, and extracted with DCM (3 × 50 mL). The organic layers were washed with brine 
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(3 × 30 mL), the solvents were evaporated under reduced pressure, and the residue was 

purified by flash chromatography (hexane:ethyl acetate:toluene, 75:20:5) to afford 

(-)-(M,R,R)-88 (52 mg, 42%) as a yellowish solid. 

M.p.: > 350 °C (acetone).  

Optical rotation: [α]20
D -1283° (c 0.037, THF). 

UV/Vis (THF): λmax (log ε) = 265 (5.42) nm. 

1H NMR (500 MHz, CD2Cl2): 1.03 (d, J = 6.7, 6H), 2.27 (s, 6H), 2.305 (s, 6H), 

2.32 (s, 6H), 2.33 (s, 6H), 2.39 (s, 6H), 3.935 (d, J = 13.0, 2H), 4.35 (d, J = 14.2, 2H), 

4.485 (d, J = 14.2, 2H), 4.56 (d, J = 13.7, 2H), 4.685 (d, J = 13.7, 2H), 4.72 (d, J = 13.0, 

2H), 5.02 (q, J = 6.7, 2H), 5.75 (s, 2H), 6.38 (s, 1H), 6.41 (s, 2H), 6.67 (m, 2H), 6.745 

(m, 2H), 6.76 (s, 1H), 6.765 (m, 2H), 6.79 (m, 2H), 6.835 (dd, J = 8.5, 1.7, 2H), 6.91 (m, 

2H), 6.95 (m, 4H), 6.995 (m, 4H), 7.00 (m, 2H), 7.01 (m, 2H), 7.03 (m, 2H), 7.06 (m, 

4H), 7.12, (m, 2H), 7.13 (m, 2H), 7.155 (d, J = 8.7, 2H), 7.175 (bd, J = 1.7, 2H), 7.265 

(d, J = 8.5, 2H), 7.585 (bd, J = 8.7, 2H). 

13C NMR (151 MHz, CD2Cl2): 18.17, 21.32 (2C), 21.39, 21.42, 30.34, 68.12, 

68.33, 68.99, 73.84, 105.38, 105.45, 115.99, 117.00, 117.45, 118.10, 121.52, 122.55, 

124.76, 125.03, 125.16, 126.59, 127.60, 127.94., 128.20, 128.40, 128.70, 128.94, 128.97, 

128.99, 129.05, 129.07, 129.18, 129.43 129.70, 129.76, 129.77, 129.78 (2C), 130.21, 

130.26, 130.36, 130.52, 130.56, 131.48, 132.20, 133.24, 133.80, 134.71, 135.44, 135.47, 

135.57, 135.62, 135.76, 135.89, 136.39, 136.75, 136.87, 136.89, 136.96, 140.01, 153.63, 

156.28, 156.51, 157.77, 194.75. 
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IR (CHCl3): 3131 vw, 3085 vw, 3049 w, 1697 m, 1614 s, 1588 w, 1518 m, 1499 m, 

1491 m, 1426 m, 1375 m, 1369 m, 1358 m, 1325 w, 1303 m, 1296 w, 1244 w, 1200 w, 

1184 w, 1154 vs, 1129 m, 1111 m, 1086 m, 1067 w, 1059 w, 1022 m, 1015 w, 974 w, 

952 w, 929 vw, 897 w, 882 vw, 870 vw, 856 vw, 834 m, 685 vw, 641 vw, 630 vw, 623 w, 

612 w, 603 w, 597 vw, 587 vw, 574 vw, 551 vw, 540 vw, 529 w, 510 vw, 482 vw, 

451 vw cm-1. 

MALDI MS: 1907 (M+). 

HR MALDI MS: calculated for C132H98O10S2 1906.6599, found 1906.6630. 

(-)-(M,R,R)-Oxa[19]helicene-2,38-dithiol 172 

A Schlenk flask was charged with (-)-(M,R,R)-88 

(24 mg, 0.013 mmol), flushed with argon, and 

degassed THF (250 μL) was added. Then a solution of 

sodium hydroxide (21 mg, 0.53 mmol, 40.0 equiv.) in 

degassed methanol (0.5 mL) was added dropwise at rt. 

The reaction mixture was stirred for 3 h. Then the 

reaction mixture was slowly acidified with a solution of citric acid (0.5 M in water, 

1.3 mL, 50.0 equiv.) and stirred for 10 min. The precipitate was filtered off and washed 

with water (3 × 10 mL). The precipitate was dried under vacuum to afford (-)-(M,R,R)-172 

(18 mg, 78%) as a grey powder. 

M.p.: ~350 °C (water). 

Optical rotation: [α]20
D -1675° (c 0.133, THF). 

UV/Vis (THF): λmax (log ε) = 269 (5.37) nm. 

1H NMR (500 MHz, CD2Cl2): 1.01 (d, J = 6.7, 6H), 2.27 (s, 6H), 2.308 (s, 6H), 

2.32 (s, 6H), 2.332 (s, 6H), 2.385 (s, 6H), 3.20 (d, J = 0.5, 2H), 3.95 (d, J = 13.0, 2H), 

4.505 (d, J = 14.2, 2H), 4.59 (d, J = 13.7, 2H), 4.625 (d, J = 14.2, 2H), 4.69 ( d, J = 13.0, 

2H), 4.70 ( d, J = 13.7, 2H), 4.99 (q, J = 6.7, 2H), 5.85 (s, 2H), 6.34 (s, 1H), 6.43 (s, 2H), 

6.69 (m, 2H), 6.71 (dd, J = 8.5, 1.7, 2H), 6.76 (m, 2H), 6.78 (m, 4H), 6.81 (m, 2H), 6.82 

(s, 1H), 6.94 (m, 2H), 6.95 (m, H), 6.96 (m, 2H), 6.99 (m, 2H), 7.00 (m, 2H), 7.01 (m, 

2H), 7.02 (d, J = 8.7, 2H), 7.025 (m, 2H), 7.03 (m, 2H), 7.06 (m, 4H), 7.11 (d, J = 8.5, 

2H), 7.12 (m, 2H), 7.15 (m, 2H), 7.175 (bd, J = 1.7, 2H), 7.49 (d, J = 8.7, 2H). 

13C NMR (151 MHz, CD2Cl2): 18.12, 21.32, 21.33, 21.39, 21.42, 68.11, 68.38, 

68.87, 73.68, 105.22, 105.35, 115.99, 116.43, 117.22, 118.10, 119.69, 122.74, 124.21, 
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125.20, 125.22, 126.42, 126.58, 127.55, 127.56, 127.83, 128.11, 128.22, 128.67, 128.93, 

128.96, 128.97, 129.03, 129.09, 129.14, 129.66, 129.78 (2C), 129.80, 129.82, 130.20, 

130.34, 130.36, 130.52, 130.63, 131.48, 133.13, 133.70, 134.98, 135.50, 135.56, 135.59, 

135.73, 135.82, 135.88, 136.28, 136.72, 136.85, 136.87, 136.92, 136.94, 139.98, 153.71, 

156.70, 156.72, 157.68.  

 

IR (KBr): 3130 w, 3047 m, 3020 m, 2985 m, 2923 m, 2853 m, 2564 w, 1903 w, 

1615 s, 1587 m, 1518 m, 1500 m, 1490 m, 1422 m, 1376 m, 1301 m, 1244 m, 1224 m, 

1212 w, 1183 w, 1161 s, 1110 m, 1088 m, 1059 m, 1047 m, 1022 s, 988 w, 943 w, 928 w, 

896 w, 881 w, 870 w, 827 s, 790 w, 751 m, 732 w, 686 w, 642 w, 637 w, 618 w, 606 w, 

588 w, 567 w, 549 w, 526 w, 508 w, 484 w, 450 w cm-1. 

MALDI MS: 1823 (M+). 

HR MALDI MS: calculated for C128H94O8S2 1822.6390, found 1822.6354. 
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Table 5. X-ray crystallographic data  

Compound 107 136 139 143 146 148 168 171 

CCDC  1814579  1539259 1965622  1965623 1814580 

Formula C58H42O2 C26H18O2S2 C26H18O2S2 C34H22O2S2 C32H22S2 C34H22O2S2 C42H34O3S 
C128H92Cl2O8, 

5 (C3H6O1) 

Molecular weight 770.91 426.52 426.52 526.63 470.61 526.63 618.75 2118.29 

Crystal system triclinic monoclinic monoclinic monoclinic monoclinic triclinic orthorhombic monoclinic 

Space group P -1 P 1 21/c 1 C 1 2/c 1 C 1 2/c 1 P 1 21/n 1 P -1 P 21 21 21  P 21 

a [Å] 11.6807(4) 21.4937(8) 12.3095(6) 14.3809(7) 11.3992(8) 8.6448(4) 9.6920 (3) 13.5694(6) 

b [Å] 18.2345(7) 9.3227(4) 10.4572(5) 9.9419(4) 11.2627(8) 12.4706(5) 19.0442(10) 20.2490(9) 

c [Å] 21.0650(8) 21.3572(9) 15.0756(7) 18.1561(7) 17.6543(12) 13.5602(6) 19.0442(10) 20.8526(9) 

α [°] 105.5470 (10) 90 90 90 90 
116.1240 

(10) 
90 90 

β [°] 104.3840(10) 104.637(2) 98.028(2) 99.657(2) 94.256(2) 93.235(2) 90 90.575(2) 

γ [°] 102.8440(10) 90 90 90 90 99.9460(10) 90 90 

Cell Volume [Å3] 3981.35 4140.7(3) 1921.56(16) 2559.06(19) 2260.3(3) 1278.21 6488.5(5) 5729.3(4) 

Z 4 8 4 8 4 2 8 2 

θmax [°] 72.1436 27.49 27.55 27.52 27.55 27.50 72.1678 74.58 

Crystal shape prism bar prism plate prism prism prism prism 

Crystal color colorless 
colorless-

yellow 

colorless-

yellow 
yellow yellow yellow light yellow yellow 

Dx [g cm-3] 1.286 1.368 1.474 1.367 1.383 1.368 1.267 1.228 

R-Factor [%] 4.83 3.8 3.75 3.3 3.59 4.58 4.52 4.05 

No. of parameters 1085 545 137 173 309 345 877 1440 
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5.3  Break Junction 

Break Junction Experiments  

Single molecule electrical conductance of all studied compounds: [5]helicene 131, 

[7]helicene 143, pyridooxa[9]helicene 87, and [19]helicene 88 as well as standards 

DMBDT 173,179, and BIPY 73,98,180,181 and oligo(phenyl acetylene) 174182 were measured 

experimentally by a mechanically controllable break junction (MCBJ)191 or scanning 

tunneling microscopy-based break junction (STM-BJ)98. The device recently constructed 

in our group at the Institute of Organic Chemistry and Biochemistry of the CAS was used 

for this purpose (Chapter 3.3). As the contact is broken at 5 Hz frequency and data are 

recorded at 50 kSa rate, tens of gigabytes of data are accumulated during each overnight 

measurement. The data were recorded at 100.0 mV. Statistical analysis of the massive 

data and filtration of incomplete traces is accomplished by an in-house computer program 

(Chapter 3.3.4). 

MCBJ Substrate Preparation 

In the MCBJ measurement, the key elements were 25×10×0.3 mm blue-tempered 

spring steel plates spin-coated with several μm of polyimide (Kapton) or a ceramic plates. 

A gold wire (25 μm diameter, 99.99% purity, Goodfellow GmbH) was glued on top of 

the plates and a short gold bridge was modelled with Alteco (30') epoxy. The same resin 

was used for the sample well that was created around the bridge to hold liquid samples. 

The gold bridge was notched in the middle to define the junction and make it easier to 

break in the center. Subsequently, the substrate was baked for ca 48 h at 80 °C in low 

vacuum to cure the epoxy. Copper leads with pins were then connected to the gold wire 

ends using conductive glue. Finally, the whole plate (except for the sample well with the 

notched gold bridge) was coated with a thin epoxy layer to improve mechanical stability 

of the device. For experiments in solution, a custom made measurement cell was placed 

around the sample well. BJ-chips were fabricated by Dr. J. Vacek-Chocholoušová. 
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Figure 60: MCBJ-Chip 

STM-BJ Substrate Preparation 

200 nm of high-purity gold (99.99%) was deposited on the surface of a custom-made 

glass cell by the thermal evaporation in high vacuum (10-6 mBar). A 10 nm layer of 

chromium was used as the adhesion interlayer. A high-purity gold wire (125 μm diameter, 

99.99% purity, Goodfellow GmbH) was electrochemically etched and polished at 

potential of 6 V to create a sharp gold STM probe. An etching solution based on KI was 

used.192 The resulting tip is shown in Figure 61 All metals were purchased from 

Goodfellow GmbH. 

 

Figure 61: SEM image of the gold STM tip used for conductance measurements 

Sample Preparation 

All experiments were performed at 0.1 mM concentration of studied compound in freshly 

distilled mesitylene. 
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Measurement Conditions 

Conditions of the measurement can influence the measurement in many ways. 

Therefore humidity and temperature were investigated to exclude possible influence on 

the experiment. The relative humidity (RH) and temperature probe MiniKin (EMS Brno) 

was used. 

It was found that the temperature is almost constant so the thermal noise would not 

interfere, but the RH was above the acceptable value (Figure 62). To decrease the level 

of humidity, a drying agent (Blaugel) was used to maintain this parameter within the 

acceptable range inside the shielded area (below 50% RH). The graph shows the 

effectivity of the process.  

 

Figure 62: Relative humidity (blue) and temperature (red) graph; operator’s access into 

the shielded area (grey) 

Another issue of break junction experiments are vibrations, which might completely 

devaluate the whole measurement. This issue covers not only mechanical vibration 

caused by many devices such as vacuum pump or refrigerators or even air-conditioning, 

but also sound. The device was covered with a sound absorbing material and seated on a 

vibration-dampening material to eliminate these influences. The vibrations influence 
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mainly the STM-BJ experiments. The MCBJ setup is more resistant towards them due to 

mechanical preloading of the system. 

Theoretical results 

To in-silico model the BJ experiment, Non Equilibrium Green's Function (NEGF) 

approach88,89 and Periodic Density Functional GGA/PBE/DZP method or Slater–Koster 

tight-binding method as implemented in QuantumWise's Atomistix Toolkit184 were used. 

First, molecules were optimized at quantum chemical B3LYP/cc-pVDZ/GD3 level with 

Gaussian09193 ([5]helicene 131, pyridooxa[9]helicene 87, and [19]helicene 88). Molecular 

coordinates obtained from X-ray analysis were used in the case of [7]helicene 143. The 

resulting structures were then placed between two gold (1,1,1) electrodes using the VNL 

graphical interface of QuantumWise194,195 and the entire molecular junction device 

configuration was optimized at PBE/DZP, or semi-empirical DFTB level of theory. Zero 

bias transmission spectrum of a molecule was then calculated by means of NEGF. It 

corresponds to ideal conformation with favorable contacts on both sides of the molecule. 

In-silico conductance calculations were performed by Dr. Jaroslav Vacek (IOCB, 

Prague). 
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6  Abbreviations 

Ac acetyl 

AcCl acetyl chloride 

AFM atomic force microscopy 

APCI atmospheric pressure chemical ionization 

ATK Atomistix ToolKit 

BDT 1,4-benzene dithiol 

BMSB 1,4-bis(methylsulfanyl)benzene 

BIPY 4,4’-bipyridine 

BJ break junction 

Bu butyl 

BuLi butyllithium 

CD circular dichroism 

CDHC photochemical cyclodehydrochlorination 

CISS chiral-induced spin selectivity 

cod cyclooctadienyl 

CSP-HPLC high performance liquid chromatography with chiral stationary phase 

Cy cyclohexyl 

d doublet 

D-A donor-acceptor 

dba dibenzylideneacetone 

DCM dichloromethane 

dd doublet of doublets 

ddd doublet of doublet of doublets 

DFT density-functional theory 

DIPA N,N-di(isopropyl)amine 

DIAD diisopropyl azodicarboxylate 

DMBDT 1,4-bis(methylsulfanyl)benzene 

DMDS dimethyl disulfide 

DMF N,N-Dimethylmethanamide 

dt doublet of triplets 

Et ethyl 

fum dimethylfumarate 
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EI electron impact ionization 

ESI electrospray ionization 

HMPA hexamethylphosphoramide 

HOPG highly oriented pyrolytic graphite 

HOMO highest occupied molecule orbital 

HPFC high-performance flash chromatography 

HPFL high-performance liquid chromatography 

IR infrared spectroscopy 

IVC current to voltage converter 

kSa kiloSamples per second 

LDA lithium diisopropylamide 

LUMO lowest unoccupied molecular orbital 

M.p. melting point 

MALDI matrix-assisted laser desorption/ionization 

MCBJ mechanically controllable break junction 

Me methyl 

MeOH methanol 

men menthyl 

MesH mesitylene 

MS mass spectrometry 

MTBE methyl-t-butyl ether 

NEGF nonequilibrium Green's functions 

NHC N-heterocyclic carbenes 

NMP N-methyl-2-pyrrolidone 

PCDH photocyclodehydrogenation 

Ph phenyl 

Pr propyl 

Py pyridine 

Pyr pyrazol 

RCM ring closing metathesis 

RH relative humudity 

rt room temperature 

s singlet (NMR), strong (IR) 

SEM scanning electron microscope 
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STM scanning tunneling microscopy 

STM-BJ scanning tunneling microscopy-based break junction 

t triplet 

TBAF tetrabutylammonium fluoride 

TBDMS t-butyldimethylsilyl 

THF tetrahydrofuran 

TIPS tri(isopropyl)silyl protecting group 

TIPSA tri(isopropyl)silylacetylene 

TLC thin layer chromatography 

TMS trimethylsilyl 

TMSA trimethylsilylacetylene 

TOF time-of-flight mass analyzer 

Tol tolyl 

TTF tetrathiafulvalene 

UHV ultra-high vacuum (pressures lower than 10-7 Pa) 

vs very strong (IR) 

w weak 

xyl 3,5-xylyl 
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8  Appendix A: 3D structures of helicenes 

 

(P)-107 – X-ray analysis 

 

(M,R,R)-171 – X-ray structure 
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(M)-136-X-ray structure 

 

(M)-139 – X-ray structure 
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(P)-143 – X-ray structure 

 

(P)-146 – X-ray structure 
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(M)-148 – X-ray structure 

 

(M,R,R)-169 – X-ray structure 
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