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Avian song is one of the most prominent traits in the study of animal sexual signalling1. 

Because of its potential importance for intrasexual competition and mate choice, song 

has been considered the acoustic “peacock’s tail”2–5. However, the idea that sexual 

selection has been the driving force behind variation in song complexity across avian 

species remains controversial6–8. Drivers of broad-scale patterns in birdsong complexity 

are generally poorly understood, calling for a global synthesis. Using estimates of song 

complexity for ~5,000 species of passerines (Order: Passeriformes), we here show that, 

both in Oscines, a clade with learned songs, and Suboscines with innate songs, complex 

songs are typical for assemblages characterized by low sexual dimorphism but highly 

colourful males, large proportion of migratory species, and in habitat generalists. 

However, most associations emerged as a result of spatially non-random distribution of 

passerine lineages across assemblages and disappeared in a phylogenetically informed 

cross-species analyses. After controlling for common ancestry in cross-species models, 

we found that song complexity in Oscines, but not Suboscines, was positively correlated 

only with habitat generalism. Our results suggest that, at least in song-learning Oscines, 

sexual selection may be partly involved in the evolution of complex songs, possibly via 

environmentally-driven processes leading to intensified selection on sexual signals of 

quality, or co-evolution with enhanced cognitive abilities associated with living in 

variable environments. 

In many vertebrate and invertebrate groups, conspicuous vocal performances are used during 

intra-sexual, competitive interactions and in the context of attracting potential mates9. Among 

the most obvious examples are the complex male songs of the largest clade of extant birds, 

the passerines (Order: Passeriformes). Song complexity varies widely among species, from 

single notes of many Suboscines to the large repertoires consisting of thousands of different 

elements, in mockingbirds and nightingales7,10,11. Sexual selection has been proposed as the 

major driver explaining the interspecific variation of complex avian song2–5. Previous studies 

have yielded conflicting results as to the role of sexual selection in the evolution of avian song 

complexity probably owing to the (1) the lack of a robust and widely applicable measure of 

song complexity and (2) the use of a restricted number and different sets of species in 

analyses. 

Here, we use birdsong recordings from large, citizen-science databases and quantify song 

complexity for 4,939 species of passerines (~83% of extant passerine species12). To do this 

we derived an easy to measure proxy for avian song complexity which allows for an effective 
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and meaningful comparisons across various passerine clades and with previous studies. We 

counted the number of different element types within a 50-element sequence of the song of 

each individual. This simple measure of song complexity is positively correlated with 

previously used song complexity metrics, such as the syllable repertoire size (r = 0.73), 

number of syllables per song (r = 0.62) and song repertoire size (r = 0.51) (Supplementary 

Table 1). Moreover, it reflects the relative volume of the high vocal centre (HVC), region in 

the avian brain involved in song production and vocal learning (P < 0.001, R2 = 0.21) 

(Supplementary Table 2).  

Overall, song complexity varied markedly across passerine species and world regions (Fig. 1, 

2), yet showing a strong phylogenetic signal (Pagel's λ = 0.75). Several passerine lineages 

were characterized by either very simple or very complex songs. Oscines, members of the 

song-learning passerine clade, produce more complex songs than Suboscines, a clade with 

innate songs (Supplementary Fig. S1). Interestingly, most Oscines still produce relatively 

simple songs (Fig. 1), indicating that vocal learning is a necessary, but not sufficient condition 

for the evolution of complex song19.  

We evaluated a set of life-history, social and environmental indices of sexual selection as 

predictors of avian song complexity. First, we estimated the effects of sexual dimorphism and 

dichromatism, polygyny, territoriality, and social bonds duration on song complexity6,7,13,14. 

We also had a closer look on the long proposed relationship between song complexity and 

male plumage colouration15–17. Passerines rely on multiple signalling modalities and 

ornamental types, and show remarkable variation in both acoustic3,4 and visual18 ornaments. 

Evolution of multiple ornaments could undergo different trajectories: (1) joint evolution to 

increase the efficiency of communication16, (2) evolutionary trade-offs due to signal 

production costliness and maintenance17 or (3) independent evolution when communicating 

different information to receivers15. Furthermore, we estimated effects of environmental 

indices, such as environmental variability, migratory behaviour and species ecological 

generalism19–23. Our analyses were conducted on assemblage level as well as by a 

phylogenetically-informed cross-species approach. Because of the fundamental difference in 

the mechanism of acquiring song in Oscines (song-learning clade) and Suboscines (clade with 

innate songs) passerines, and a clear difference in the levels of song complexity and its 

variation in these two groups, we performed further analyses separately for each clade. 
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Spatial multivariate analyses across Oscine and Suboscines assemblages (112.5 × 112.5 km 

grid cells) revealed that complex songs characterize avian assemblages also characterized by a 

set of certain life-history, social and environmental traits indicative of strong intensity of 

sexual selection (Fig. 3). However, phylogenetic simulations revealed that all these effects fall 

within the distribution of simulated effects, indicating that observed patterns were driven by 

the geography of speciation (Fig. 3) or possibly lineage sorting24. Consistent with these 

findings, multivariate phylogenetically informed cross-species analysis revealed no effect of 

all life-history and social and most of environmental indices of the strength of sexual selection 

on song complexity, neither in Oscines nor in Suboscines (Tables 1, 2). The finding of no 

association between male plumage colouration and song complexity in either Oscines or 

Suboscines in a cross-species analyses indicate that two these types of signalling modalities 

evolved largely independently across passerines, and may transfer different information to 

conspecifics and reflect different selective pressures15,25. 

In the Oscines, only habitat generalism remained a significant predictor of song complexity in 

a multivariate cross-species model controlling for the co-variation between predictors. This 

indicates that species that are found breeding in more biomes produce more complex songs 

than habitat specialists. However, the proportion of variation explained by this predictor was 

rather low (<2%, Table 1). Oscines tolerating heterogeneous environments are, in general, 

both widespread and locally abundant26 which may, in turn, lead to stronger competition for 

mates21. Alternatively, species living in variable environment may face intense competition 

for mates and resources27 which, in turn, may lead to increased elaboration of signals of mate 

quality19,22. It is possible that life in heterogeneous environment produces a direct positive 

selection on song elaboration or a co-opted selection on song elaboration and cognitive skills 

and innovation abilities required for living in variable evironments19,22,28. In the Suboscines, 

we found no association between any of the environmental predictors and song complexity in 

cross-species model (Table 2).  

Our analysis of the largest data set on avian song complexity available to date revealed a clear 

global biogeographic structure in this trait for which several life-history, social and 

environmental factors are important predictors across passerine assemblages. However, 

results accounting for phylogeny indicate that it is the environment occupied by the species 

which to some extent predicts global patterns of song complexity, but only in Oscines, a song-

learning passerine clade. The overall effect size is low, however, and much of the variation in 

avian song complexity is either explained by phylogeny or remains unexplained. The exact 
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processes underlying the environment complexity−song complexity pattern remains to be 

investigated. Our song complexity metric only represents one of several song dimensions. 

Detail studies on intraspecific variation in song found that other aspects of birdsong such as 

performance, consistency or the presence of particular structures may provide other targets of 

sexual selection2. The situation may also be complicated by the multidirectionality of effects 

of selection pressures acting on song complexity or their interactions7. A major challenge lies 

now in a deeper understanding of mechanisms generating acoustic phenotype at the level of 

individual species which may provide important insights into the ecology and evolution of 

this behaviour over large scales and the ongoing debate over the functions of elaborated 

signals.  
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Table 1. Results of multivariate phylogenetically-informed cross-species model assessing 

correlation between song complexity and life-history, social and environmental indices of 

sexual selection across 1,861 species of Oscines. The number of scored elements was 

included as fixed effect in the model. We accounted for phylogenetic uncertainty by running 

models on 100 phylogenies and combining model coefficients using a model averaging 

approach29. We report also conditional (R²cond; variance explained by the fixed and random 

effects) and marginal (R²marg; variance explained by the fixed effects only) proportion of 

variance explained by model. 

Term Estimate Lower Upper Std. Error t P P (2.5%) P (97.5%) 

Number of elements 0.363 0.328 0.398 0.018 20.300 <0.001 <0.001 <0.001 

Sexual size dimorphism 0.016 -0.028 0.060 0.023 0.702 0.490 0.412 0.734 

Sexual dichromatism -0.005 -0.057 0.046 0.026 -0.201 0.831 0.758 0.979 

Male ornamentation 0.028 -0.025 0.081 0.027 1.040 0.304 0.258 0.435 

Social polygyny -0.019 -0.069 0.031 0.025 -0.756 0.454 0.374 0.618 

Sociality -0.006 -0.061 0.049 0.028 -0.212 0.811 0.718 0.983 

Territoriality -0.027 -0.077 0.024 0.026 -1.040 0.306 0.249 0.486 

Precipitation seasonality 0.041 0.001 0.082 0.021 2.020 0.047 0.028 0.091 

Temperature seasonality 0.026 -0.034 0.087 0.031 0.847 0.402 0.349 0.569 

Migration 0.051 -0.007 0.110 0.030 1.720 0.089 0.071 0.144 

Generalism 0.071 0.032 0.110 0.020 3.590 <0.001 <0.001 <0.001 

Pagel’s λ 0.752 0.737 0.791 
     

R²cond 0.575 0.572 0.582 
     

R²marg 0.221 0.218 0.228 
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Table 2. Results of multivariate phylogenetically-informed cross-species model assessing 

correlation between song complexity and life-history, social and environmental indices of 

sexual selection across 277 species of Suboscines. The number of scored elements was 

included as fixed effect in the model. We accounted for phylogenetic uncertainty by running 

models on 100 phylogenies and combining model coefficients using a model averaging 

approach29. We report also conditional (R²cond; variance explained by the fixed and random 

effects) and marginal (R²marg; variance explained by the fixed effects only) proportion of 

variance explained by model.  

Term Estimate Lower Upper Std. Error t P P (2.5%) P (97.5%) 

Number of elements 0.290 0.159 0.42 0.067 4.36 <0.001 <0.001 <0.001 

Sexual size dimorphism -0.003 -0.112 0.107 0.056 -0.048 0.935 0.907 0.995 

Sexual dichromatism -0.021 -0.193 0.151 0.088 -0.238 0.813 0.757 0.963 

Male ornamentation -0.050 -0.210 0.111 0.082 -0.607 0.545 0.511 0.624 

Social polygyny -0.241 -0.481 -0.001 0.122 -1.970 0.050 0.046 0.065 

Sociality -0.064 -0.286 0.158 0.113 -0.564 0.574 0.55 0.649 

Territoriality -0.147 -0.330 0.035 0.093 -1.580 0.115 0.106 0.151 

Precipitation seasonality 0.063 -0.039 0.164 0.052 1.210 0.227 0.211 0.266 

Temperature seasonality 0.017 -0.154 0.187 0.087 0.191 0.849 0.816 0.938 

Migration 0.118 -0.059 0.295 0.090 1.310 0.192 0.174 0.247 

Generalism 0.036 -0.085 0.157 0.062 0.587 0.558 0.537 0.610 

Pagel’s λ 0.581 0.555 0.656 
     

R²full 0.504 0.499 0.519 
     

R²fixef 0.111 0.108 0.121 
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Figure 1. | Evolutionary history of song complexity in passerines. A reconstruction of the evolutionary 

history of song complexity across 4,939 species of passerines. Song complexity (log10-transformed) was 

mapped as a continuous character on a maximum credibility tree which was constructed using 100 trees 

extracted from Bird Tree project30. Internal nodes are coloured according to ancestral states estimated by 

maximum likelihood methods. For reconstruction we used only species with 50 scored elements. 
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Figure 2 | Geographic variation in song complexity across passerines. Mapped song complexity (log10-

transformed) for a, Oscines (N = 10,940 grid cells), and b, Suboscines (N = 3,968 grid cells) across grid cell 

assemblages of 112.5 × 112.5 km. Only cells with more than five species were included. Maps illustrating the 

geographic distribution of predictor variables are included in Supplementary Figures S3−S4. 
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Figure 3 | Predictors of song complexity across passerine assemblages. Linear mixed models examined the 

effects of life-history, social and environmental variables on song complexity across assemblages (112.5 × 112.5 

km) of a, Oscines, and b, Suboscines (black symbols). Grey symbols show 95% confidence intervals of results 

obtained from a sample of 1000 phylogenetic simulations. Models included zoogeographic realm as random 

intercept.  
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METHODS 

The song complexity dataset.  

Data collection. We collected song complexity data from recordings available at two large 

citizen-science databases of bird vocalization: xeno-canto (www.xeno-canto.org) and 

Macaulay Library (The Cornell Lab of Ornithology; www.macaulaylibrary.org). We defined 

song, as primarily long-range acoustic signal used in courtship and territory defence and 

stereotyped in some way. We primarily focused on recordings of adult male birds. Although 

females of many particularly tropical species also sing31,32, we argue that this should not have 

significant effect on patterns observed in our data because (1) females often sing in duets and 

female solo song is rarer33–35; hence, most of recordings with solo song are expected to cover 

male vocal performance; (2) species where female sing represent generally < 20% of all 

species in most (even tropical) assemblages32, (3) males and females of species where both 

sexes sing regularly often produce similarly complex songs36–40. 

Based on availability of recordings for species, one of us (PM) collected 1–5 recordings for 

each species. For most of species we included only recordings spatially separated by ≥ 1 km. 

For small range species or species with poor recording coverage we collected also recordings 

with did not met these criteria but had to differ altitude by ≥ 100 metres and/or were recorded 

in different seasons.  

For each recording (individual), the same person (PM) counted the first 50 elements and 

determined the number of different element types (i.e. element repertoire size) as a measure of 

song complexity. This method provides a simplified approach to quickly assess song 

complexity across species and is useful particularly in species where it is difficult to define 

what is one song (e.g. in continuous singers). Because song complexity could be affected by 

the number of scored elements, for each species we also computed a maximum number of 

scored elements (up to 50). We defined an element as the smallest continuous structure on a 

sonogram, separated from other continuous structures by at least 10 milliseconds15. Elements 

were inspected visually and different element types were defined based on element 

morphology, frequency, and length. In some species, particularly Suboscines, song consisted 

of morphologically similar elements that were repeated many times but gradually changed in 

frequency. Following ref.11, we scored this recording as showing two element types. We 

estimated species-specific song complexity as the upper quantile (0.9) of the number of 

element types of all recordings. In a result, we determined a species position on high–low 
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song complexity continuum; species whose songs had many different element types were 

considered to have complex songs while those with one or few element types have simple 

songs.  

We measured song complexity using spectrograms with a FFT length of 256 Hz and 

Hamming window with 50% overlap in the software Avisoft SASLab Lite, version 5.2.09 

(Avisoft Bioacoustics; www.avisoft.com). Recordings for different species were analysed in 

random order and data collector did not have knowledge on species ID during whole process 

of song complexity data collection. In the final set of measurements entering main analyses 

we included song complexity scores for 4,939 species of passerines (18,061 recordings; mean 

± SD = 3.7 ± 1.6 recordings per species, median = 4).  

 

Predictor variables. 

Sexual size dimorphism. We obtained data on body size estimated as wing length from ref.12 

and calculated sexual size dimorphism (SSD) as log10(male wing length) − log10(female 

wing length). Positive values indicate species with larger males than females, suggesting more 

intense sexual selection41.  

Male plumage colouration and sexual dichromatism. For male plumage colouration, we used 

the scores provided in ref.12, which correlates with other indicators of sexual selection19. 

These scores are based on RGB values of six plumage patches (nape, crown, forehead, throat, 

upper breast, and lower breast) extracted from digital image processing software on scanned 

handbook illustrations and correlate with measures derived from spectrophotometry12,42. Low 

score values correspond to “female-like” plumage, while high values are assigned to 

elaborated, “male-like” plumage. We defined sexual dichromatism as the male plumage score 

minus the female score.  

Social polygyny. Social polygyny data were retrieved from ref.12. Polygyny was scored on a 

four-point scale: 0 = strict social monogamy, 1 = monogamy with infrequent instances of 

polygyny observed (< 5% of males), 2 = mostly social monogamy with regular occurrences of 

facultative social polygyny (5–20% of males), and 3 = obligate resource defence polygyny (> 

20% of males) or lek polygyny. A few passerines species are polygynandrous (e.g. the 

dunnock Prunella modularis). These species were pooled with the monogamous species 
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because we reasoned that sexual selection would be more similar in each sex in 

polygynandrous species compared with polygynous species.  

Territoriality and social bonds. We extracted data on territoriality and on the stability of 

social bonds from ref.32. Territoriality was scored on a three-point scale: 0 = non-territorial, 1 

= seasonally or weakly territorial, and 2 = year-round territorial. Social bond stability was also 

scored on a three-point scale: 0 = solitary, 1 = having short-term pair/group bonds, and 2 = 

having long-term pair/group bonds.  

Breeding ranges. We obtained extant species breeding ranges from ref.43 by subsetting the 

database to “taxonomic order = Passeriformes, season = 1 (resident) and season = 2 (breeding 

Season)” and removing “presence = 5 (extinct before 1500) and origin = 3 (species introduced 

outside of their historical distribution range through either direct or indirect human activity)”. 

Environmental seasonality. Based on the breeding range of each species, we used data on 

temperature and precipitation seasonality from the CHELSA (Climatologies at high resolution 

for the earth’s land surface areas) climatological data (period: 1979–2013) with high spatial 

resolution (30 arc sec)44. Seasonality was estimated as within-year variation in temperature 

and precipitation45. First, we prepared seasonality raster maps by re-scaling the original 

rasters from ref.44 to 10-km resolution and reprojecting them to the Equal Earth projection46 

with GDAL 2.4.1.47. We aggregated variables into three-month averages (three months 

convey a typical avian breeding period45) and computed the standard deviation between the 

four three-month periods per year and over the entire 35 year period. Species-specific 

environmental seasonality was then computed by overlaying each species breeding range with 

the seasonality raster map, extracting all raster cell values under the range and compute mean 

raster cell values. Both variables (temperature and precipitation) were log10-transformed 

(variable + 1) before analysis. 

Migration. We retrieved data on migration from ref.12. Migration was scored on a three-point 

scale: 0 = resident (breeding and non-breeding ranges are identical), 1 = partial migration 

(some overlap between breeding and non-breeding ranges), 2 = complete migration (no 

overlap between breeding and non-breeding ranges).  

Habitat generalism. We estimated ecological generalism as the number of different biome 

types within the distribution range of each species, using the data on distribution of terrestrial 

biomes from ref.48 (https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-
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world; classification into 14 biomes). The breeding range of each species was intersected with 

the biome polygons and the intersection polygon was extracted. Habitat generalism was 

calculated as the total number of distinct biomes remained in the intersection polygon.  

Phylogenetic data. We extracted a species-level phylogeny from the online tool available at 

http://birdtree.org30 (the Hackett backbone). To assess the uncertainty associated with 

phylogenies, we randomly sampled 100 phylogenetic trees from the phylogenetic database. 

For visualization purposes we used a maximum credibility tree (MCC) reconstructed from 

these 100 trees using the function maxCladeCred in the phangorn package49.  

Statistical analyses. All statistical analyses were performed using R v. 3.5.350. 

Validation and reproducibility. We used Pearson's r to validate our scores of song complexity 

against previously published data on an important avian song complexity metric, including 

syllable (N = 120 species) and song repertoire size (N = 206 species), and number of unique 

syllables per song (N = 174 species), from ref.7 (Supplementary Table S1). We explored the 

biological relevance of our metric by investigating the association between song complexity 

and the relative volume of a major song control centre in the passerine brain, the high vocal 

centre (HVC; N = 56 species) assembled primarily from ref.51. This association was explored 

by multivariate phylogenetic generalized least- squares model where HVC was controlled for 

brain and body size of passerine species (both collected from ref.51) by including them as 

fixed effects to the same model (Supplementary Table S2). For validation we used only 

species with 50 scored elements. We found that our metric positively correlates with syllable 

repertoire size and other important song complexity metrics, hence, it is suitable for the 

exploration of large-scale variation in song complexity because it can be effectively 

quantified and interpreted across global diversity of passerines. As proposed by ref.7, metrics 

deriving song complexity from number of different elements and syllables are more resistant 

to the variable song structure and to definitions of basic song unit than other metrics such as 

the song repertoire size and the number of unique syllables per song. Furthermore, we 

validated the reproducibility of our approach by asking six volunteers (all but one were 

untrained and never worked in the field of bioacoustics) to score 25 sonograms (19 for 

Oscines, six for Suboscines; each from different species and family) for the number of 

element types among selected recording frame using abovementioned definition and 

approach. Volunteers had no knowledge about the identity of the recorded species or about 

the aim of the study. Repeatability of our scores of song complexity (log10-transformed) was 
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estimated by the rpt function in the rptR package52. We performed a significance test against a 

null distribution and estimated the 95% confidence interval of repeatability with 1000 

bootstrap samples. Model was fitted using Gaussian family of distribution by the glmer 

function in the lme4 package53. Our song complexity metrics exhibited high repeatability 

between scorers (R = 0.96) (Supplementary Fig. S2). 

Assemblage analyses. Global mapping was performed using rangeMapper v. 0.3.654. Analyses 

were performed on digitized breeding range distributions of passerine species using a grid 

with a cell size of 112.5 × 112.5 km (~1° scale) using an Equal Earth projection46. Only cells 

with more than five species were included, obtaining altogether 10,940 grid cells/assemblages 

for Oscines and 3,968 for Suboscines. For each grid cell, we calculated a mean value of song 

complexity and life-history, social and environmental traits (Supplementary Fig. S3−4). Then, 

we built multivariable model with song complexity as dependant variable and life-history, 

social and environmental factors as predictors. To correct for the unequal sampling across 

species, we also included number of scored elements as fixed predictor in analysis. All 

variables were standardized by centring and dividing by one standard deviation prior to 

analyses55. To account for different evolutionary history across world regions, we included 

terrestrial zoogeographic realms as a random intercept in analysis (11 realms according ref.56). 

Predictor variables were modelled with a random slope, allowing them to have a different 

slope in each realm. We accounted for spatial autocorrelation using a spatial covariate57 by 

extracting response residuals of the non-spatial model58. We computed a spatial auto-

covariate with function autocov_dist in spdep package59 using a symmetric neighbourhood 

matrix57, a neighbourhood distance of 120 km and an inverse squared weighting scheme. The 

visual inspection of the residuals shows that this method is effective in dealing with spatial 

autocorrelation. We found no major departure from the assumptions of normality and 

heterogeneity of variance in model residuals. We calculated variance explained by the fixed 

and random effects (conditional R2) and by the fixed effects only (marginal R2) using MuMIn 

package60. Assemblage models were carried out with the lme4 package61. 

The empirical patterns might be solely driven by phylogenetic clustering24. Hence, we 

generated multivariable dataset simulations from a multivariable Brownian motion model for 

the co-evolution of song complexity with the species life-history, social and environmental 

traits using function fit_bm_model in castor package62. We computed diffusivity matrices of 

the model for each of the 100 phylogenetic trees and averaged them to obtain one final 

diffusivity matrix. We also simulated 1000 datasets using function simulate_bm_model in the 
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same package62. We imported each of the simulated datasets to the rangeMapper project and 

generated maps for each simulated variable54. We constructed the spatial covariate for each 

iteration. We fitted multivariable linear mixed-effect models for each of the simulated life 

history, social and environmental traits. We calculated a 95% inference interval based on the 

effect sizes as 2.5th–97.5th percentiles range and compared the empirical estimates from the 

real data with the simulated data. When the empirical estimate fall within the inference 

interval, we assumed that the reported effect can be caused solely by phylogenetic relatedness. 

Cross-species analyses. We tested for the presence of phylogenetic signal in song complexity 

using Pagel’s λ63 using function phylosig in phytools package64. We tested differences in song 

complexity between Oscines and Suboscines using a two-way ANOVA (Type-III sums of 

squares) using function Anova in car package65. In these analyses, we used only species with 

50 scored elements. Phylogenetically related taxa tend to share more similar characteristics 

than distantly related species. We hence fitted phylogenetic generalized least-squares (PGLS) 

regressions using Pagel’s lambda (λ) model63 to explore associations between song 

complexity and predictor variables while accounting for statistical non-independence between 

species due to shared evolutionary history. We built multivariable models, one for Oscines 

and one for Suboscines, with song complexity as dependant variable and life-history, social 

and environmental factors as predictors. To correct for the unequal sampling across species, 

we also included number of scored elements as fixed predictor in analysis. We checked for 

multicollinearity between predictors, revealing low intercorrelation between most of 

predictors (Supplementary Fig. S5). All variables were standardized by centring and dividing 

by one standard deviation prior to analyses55. We accounted for phylogenetic uncertainty by 

running models on 100 phylogenies and combining model coefficients using a model 

averaging approach29. The proportion of variance (conditional and marginal R²) explained by 

the phylogenetic linear models was computed according to ref.66 using rr2 package67. Model 

residuals showed no major departures from the assumptions of normality and heterogeneity of 

variance. Confidence intervals (95% CI) of fixed effects are based on 1000 bootstrap 

replicates and were calculated using function glht implemented in the multcomp package68 

while controlling for multiple testing. Cross-species analyses were performed using phylolm 

package69.  
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Supplementary Information 

 

Song metric N Pearson's r 95% CI P 

Syllable repertoire size 120 0.73 0.64–0.81 <0.001 

Syllables per song 174 0.62 0.52–0.70 <0.001 

Song repertoire size 206 0.51 0.40–0.61 <0.001 

 

Table S1. Validation of song complexity metric used in a present study against other widely used metrics. 

Association between log10-transformed scores of song complexity used in a present study and metrics used as 

proxies of song complexity in previous studies. We used only species with 50 scored elements. We report 

Pearson's correlation coefficient (Pearson's r), 95% confidence interval (95% CI), associated P values and 

sample sizes (N; number of species).  
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Table S2. Neural correlates of song complexity in passerines. Multivariate phylogenetic generalized least-

squares model1 examining association between song complexity and relative size of high vocal centre (HVC) 

across 56 passerine species. We used only species with 50 scored elements. Model was build using the pgls 

function in the caper package2 and Pagel’s lambda (λ). HVC was controlled for brain and body size of passerine 

species by including body size to the same model. To control for phylogenetic relatedness of species, we used a 

single maximum credibility tree which was constructed using 100 trees extracted from Bird Tree project3 and 

maxCladeCred function in the phangorn package4. Superscripts following the λ values refer to P values of 

likelihood-ratio tests against models with λ = 0 and 1, respectively. R2
adj is adjusted coefficient of determination. 

Variable β ± SE t P λ R2
adj 

Intercept 2.337 ± 0.959 2.437 0.018 0.5350.386;0.076 0.207 

HVC 0.733 ± 0.182 4.033 <0.001   

Brain size -0.366 ± 0.575 -0.637 0.527   

Body size -0.048 ± 0.453 -0.105 0.917   
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Figure S1. Distribution of song complexity in passerines with different song learning ability. Oscines 

(learned songs; N = 2,782 species) produce more complex song than Suboscines (innate songs; N = 865 species) 

(two-way Anova, F1,3645 = 1127.4, P < 0.001). We used only species with 50 scored elements. Box plots show the 

median (thick horizontal line), upper (75%) and lower (25%) quartiles (top and bottom of the box) and 1.5 times 

the inter-quartile range (whiskers). Scatter plots show the raw values. 



- 49 - 

 

Figure S2. Repeatability of song complexity estimates. Repeatability of our scores of song complexity (log10-

transformed) was estimated by the rpt function in the rptR package5. We performed a significance test against a 

null distribution and estimated the 95% confidence interval of repeatability with 1000 bootstrap samples. Model 

was fitted using Gaussian family of distribution by the glmer function in the lme4 package6. 
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Figure S3. Maps illustrating the geographic distribution of predictors of song complexity for Oscines. a, 

number of scored elements, b, sexual size dimorphism, c, sexual dichromatism, d, male plumage colouration, e, 

polygyny, f, social bonds, g, territoriality, h, precipitation seasonality, i, temperature seasonality, j, migration 

and k, habitat generalism.  
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Figure S4. Maps illustrating the geographic distribution of predictors of song complexity for Suboscines. 

a, number of scored elements, b, sexual size dimorphism, c, sexual dichromatism, d, male plumage colouration, 

e, polygyny, f, social bonds, g, territoriality, h, precipitation seasonality, i, temperature seasonality, j, migration 

and k, habitat generalism. 
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Figure S5. Correlation matrices for indices of sexual selection. Figure depicts strength of correlation between 

life-history, social and environmental indices of sexual selection for a, Oscines (N = 1,861) and b, Suboscines (N 

= 277) species. Correlation coefficients were estimated using Spearman's rank correlation approach. 
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Supplementary Information 

 

Supplementary Material 1. Maximum clade credibility tree for the phylogenetic 

relationships between the 45 songbird species involved in the study of relationship between 

syllable repertoire size and song complexity metrics reported by Pearse et al. (2018). The 

phylogenetic tree was built from 1000 randomly generated trees based on a Hackett backbone 

topology using the phylogenetic tool available at http://birdtree.org/ (Jetz et al. 2012). The 

maximum clade credibility tree was generated using "maxCladeCred" function in phangorn 

package (Schliep 2011). 

 

"((((((((Acrocephalus_scirpaceus:9.983206046,Acrocephalus_schoenobaenus:9.983206046):1

.09142841,Acrocephalus_arundinaceus:11.07463446):16.68534674,((Locustella_fluviatilis:9.

82912734,Locustella_naevia:9.829127339):8.315685799,Acrocephalus_palustris:18.1448131

4):9.615168061):5.217882681,((Sylvia_nisoria:10.75498745,Sylvia_curruca:10.75498745):0.

7253998587,Sylvia_communis:11.48038731):21.49747657):0.03122898702,(Phylloscopus_tr

ochilus:29.60218991,(Hirundo_rustica:18.87219484,Riparia_riparia:18.87219484):10.729995

07):3.406902951):4.040204599,(Galerida_cristata:13.75751717,Alauda_arvensis:13.7575171

7):23.29178029):5.743427246,Parus_major:42.79272471):2.053879144,(((Sturnus_vulgaris:2
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9.27453669,Dumetella_carolinensis:29.27453669):6.481933887,((Hylocichla_mustelina:21.4

9415349,((Turdus_migratorius:11.94160983,Turdus_iliacus:11.94160983):0.08610436249,T

urdus_merula:12.02771419):9.4664393):9.170731661,(Luscinia_megarhynchos:19.50151374

,((Ficedula_albicollis:2.27514929,Ficedula_hypoleuca:2.27514929):16.58979639,((Oenanthe

_oenanthe:15.66524204,Saxicola_rubetra:15.66524204):1.047325439,Phoenicurus_ochruros:

16.71256748):2.152378205):0.6365680675):11.1633714):5.09158543):7.995988417,((((Card

uelis_carduelis:29.15271567,Fringilla_coelebs:29.15271567):1.119242134,(((((Emberiza_sch

oeniclus:8.994456009,Emberiza_elegans:8.99445601):1.146862354,Emberiza_citrinella:10.1

4131836):1.840414468,(Spizella_passerina:10.39004744,(Melospiza_melodia:9.522528943,(

Junco_hyemalis:4.879951428,Zonotrichia_albicollis:4.879951427):4.642577516):0.8675184

988):1.59168539):9.204703034,Geothlypis_trichas:21.18643586):1.45585404,((Pheucticus_l

udovicianus:17.30965031,Passerina_cyanea:17.30965031):0.6321066673,Cardinalis_cardinal

is:17.94175698):4.700532926):7.629667902):1.302321593,((Anthus_campestris:13.8618726,

Anthus_trivialis:13.8618726):3.834515009,Motacilla_flava:17.69638762):13.87789179):1.23

7571348,(Passer_montanus:7.210127902,Passer_domesticus:7.210127902):25.60172285):10.

94060825):1.094144855);" 
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Supplementary Material 2. Maximum clade credibility tree for the phylogenetic 

relationships between the 37 songbird species involved in the study of relationship between 

syllable diversity and song complexity metrics reported by Pearse et al. (2018). The 

phylogenetic tree was built from 1000 randomly generated trees based on a Hackett backbone 

topology using the phylogenetic tool available at http://birdtree.org/ (Jetz et al. 2012). The 

maximum clade credibility tree was generated using "maxCladeCred" function in phangorn 

package (Schliep 2011). 

 

"(((((((((Thamnophilus_nigrocinereus:5.675134586,Thamnophilus_aethiops:5.675134585):2.

683203919,Thamnophilus_atrinucha:8.358338504):0.3038331742,(Thamnophilus_ruficapillu

s:1.947176398,Thamnophilus_torquatus:1.947176398):6.71499528):5.589464849,Batara_cin

erea:14.25163653):2.15445436,Cercomacra_tyrannina:16.40609089):0.4252811145,(Myrmot

herula_pacifica:13.87738816,Myrmotherula_axillaris:13.87738816):2.953983846):0.5031490

678,Microrhopias_quixensis:17.33452107):22.56399819,(Nasica_longirostris:33.66951785,G

rallaria_rufula:33.66951785):6.229001402):25.67243962,((Vireo_solitarius:1.625076077,Vir

eo_cassinii:1.625076077):47.7195357,((Thryothorus_ludovicianus:43.62518716,((((((((Icteru

s_pustulatus:2.086908093,Icterus_bullockii:2.086908093):12.53158937,(Euphagus_carolinus

:4.333859253,Euphagus_cyanocephalus:4.333859253):10.28463821):0.8473856442,(Psaroco

lius_angustifrons:5.593612344,Psarocolius_bifasciatus:5.593612343):9.872270766):0.59040
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61159,(Dolichonyx_oryzivorus:10.4169759,Xanthocephalus_xanthocephalus:10.4169759):5.

639313323):0.0001605644979,((Pipilo_erythrophthalmus:9.910834529,(Ammodramus_hensl

owii:3.992244299,Melospiza_lincolnii:3.992244298):5.91859023):0.7835357567,Passerella_

iliaca:10.69437029):5.362079504):2.651103727,((Setophaga_ruticilla:9.515211423,Myiobor

us_miniatus:9.515211423):0.2832254369,Geothlypis_trichas:9.798436861):8.90911666):3.22

7812659,(((Pheucticus_ludovicianus:2.540036243,Pheucticus_melanocephalus:2.540036243)

:14.49765286,Passerina_ciris:17.0376891):2.426519953,Periporphyrus_erythromelas:19.464

20905):2.471157123):1.535049193,(Calcarius_pictus:15.50102707,Plectrophenax_nivalis:15.

50102707):7.9693883):20.15477179):0.06664726223,Baeolophus_bicolor:43.69183443):5.65

277735):16.2263471)" 
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Abstract 

Many animals use acoustic signals for communication, implying that the properties of these 

signals can be under strong selection. The acoustic adaptation hypothesis predicts that species 

living in dense habitats emit lower-frequency sounds than those in open areas, because low-

frequency sounds generally propagate further in denser vegetation. Signal frequency may also 

be under sexual selection, because it correlates with body size and lower-frequency sounds are 

perceived as more intimidating. Here, we evaluate these hypotheses by analysing variation in 

peak song frequency across 5,085 passerine species (Passeriformes). A phylogenetically-

informed analysis revealed that song frequency decreases with increasing body mass and with 

male-biased sexual size dimorphism. However, we found no support for the predicted 

relationship between frequency and habitat. Our results suggest that the global variation in 

passerine song frequency is mostly driven by natural and sexual selection causing 

evolutionary shifts in body size rather than by habitat-related selection on sound propagation.  

 

Keywords: acoustic adaptation hypothesis, allometry, animal communication, bird song, 

macroecology, morphological constraints, sexual selection 
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INTRODUCTION 

Acoustic signalling is widespread among animals (Bradbury & Vehrencamp 1998; Gerhardt 

& Huber 2002; Catchpole & Slater 2008). Successful transmission and reception of acoustic 

signals between conspecifics are essential in diverse contexts, including predation avoidance 

(alerting others to a threat), territory defence, mate attraction, and synchronization of breeding 

activities (Bradbury & Vehrencamp 1998; Catchpole & Slater 2008). One of the fundamental 

characteristics of acoustic signals is the frequency of the sound, because it strongly affects 

signal propagation through the environment (Morton 1975; Wiley & Richards 1982; Padgham 

2004). Low frequency sounds are generally less attenuated during transmission than high 

frequency sounds (Wiley & Richards 1982; Padgham 2004). Nevertheless, the frequency of 

acoustic signals is tremendously diverse across the animal kingdom (Gerhardt 1994; Fitch 

2006; Gillooly & Ophir 2010; Pijanowski et al. 2011) and several hypotheses have been 

proposed to explain this diversity. Here, we focus on the three most compelling ones: (1) the 

acoustic adaptation hypothesis, (2) the morphological constraint hypothesis, and (3) the sexual 

selection hypothesis. 

Since the 1970s, it has been postulated that the frequency of acoustic signals could reflect an 

adaptation to maximize the effectiveness of sound transmission in specific habitats (Morton 

1975). This is known as the acoustic adaptation hypothesis (Boncoraglio & Saino 2007; Ey & 

Fischer 2009). Sounds transmitted through the natural environment are subject to degradation, 

for example due to environmental absorption, reverberation and scattering. The degree of this 

degradation depends both on the sound structure and on the physical characteristics of the 

environment (Wiley & Richards 1982; Brumm & Naguib 2009). Specifically, because of 

frequency-dependent attenuation, low-frequency sounds transmit generally further than high-

frequency sounds. However, the slope of the frequency dependence is steeper in dense, 

forested habitats because of the high degree of sound absorption and scattering from foliage. 

Hence, high-frequency signals are attenuated more strongly in closed than in open habitats 

(Morton 1975; Marten & Marler 1977; Wiley & Richards 1978). Therefore, species living in 

forested habitats are expected to produce vocalizations of lower frequencies than those living 

in open habitats (Ey & Fischer 2009). Despite this strong theoretical underpinning, empirical 

evidence for the acoustic adaptation hypothesis is equivocal (Morton 1975; Wiley 1991; 

Buskirk 1997; Bertelli & Tubaro 2002; Blumstein & Turner 2005; Ey & Fischer 2009). For 

instance, a meta-analysis by Boncoraglio & Saino (2007) showed that song frequency in birds 

tends to be lower in closed compared with open habitats, but the effect size was small. A 
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review by Ey & Fischer (2009) concluded that habitat-related adjustments of frequency 

parameters of acoustic signals of birds, anurans and mammals are not as widespread as 

previously thought. 

The morphological constraint hypothesis simply posits that body size sets a limit on the 

frequency of the sound an animal can produce. Morphological constraints generally seem to 

play a pervasive role in the evolution of animal acoustic communication (Ryan & Brenowitz 

1985; Bradbury & Vehrencamp 1998; Fitch & Hauser 2002). A negative relationship between 

body size and frequency of acoustic signals, i.e. larger species tend to produce lower 

frequency sounds than smaller species, seems to be a general rule in animal bioacoustics and 

has been documented across various groups, including insects, fishes, amphibians, reptiles, 

birds, and mammals (Wallschläger 1980; McClatchie et al. 1996; Fitch & Hauser 2002; 

Gillooly & Ophir 2010; Pearse et al. 2018). In birds, it has been suggested that the frequency 

of vocalizations negatively scales with body size, simply because body size influences the 

morphology and functional aspects of the vocal apparatus, such as the size of vibratory 

structures (Bertelli & Tubaro 2002; Suthers & Zollinger 2008; Seneviratne et al. 2012; 

Gonzalez-Voyer et al. 2013; Tietze et al. 2015). However, body size alone does not explain 

the entire variation in song frequency across animals. Departures from the negative allometric 

relationship between frequency of acoustic signals and body size may reflect (a) differences in 

evolutionary history that caused variation in syrinx or vocal tract morphology (phylogenetic 

constraints) and (b) differences in costs or benefits of producing low-frequency sounds. Thus, 

variation in frequency may inform about current or past selection on acoustic signals (Searcy 

& Nowicki 2005; Ophir et al. 2010; Wagner et al. 2012).  

This brings us to the hypothesis that the frequency of acoustic signals may be sexually 

selected, acting as an indicator of an individual’s size, dominance or fighting ability. In 

various taxa, the frequency of male vocalizations indeed seems to indicate individual body 

size and can influence territory establishment (or other forms of male−male competition), 

attractiveness (female choice) and ultimately an individual’s reproductive success (Morton 

1977; Fitch & Hauser 2002; Apicella et al. 2007; Hardouin et al. 2007; Mager et al. 2007; 

Vannoni & McElligott 2008; Forstmeier et al. 2009; Brumm & Goymann 2017). For instance, 

the frequency of advertising vocalizations negatively correlates with body size in males of 

common toads Bufo bufo and during the mating period smaller males were less often attacked 

by larger males when natural croaks of the small males were experimentally replaced by deep 

croaks (Davies & Halliday 1978). Similarly, heavier individuals of scops owl Otus scops 
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produced lower-frequency hoots and territorial males responded less intensely to hoots 

simulating heavier intruders (Hardouin et al. 2007). Thus, if low-frequency sounds are 

advantageous during agonistic interactions between males and as a means of dominance status 

signalling (Davies & Halliday 1978; Wagner 1989; Briefer et al. 2010; Bro-Jørgensen & 

Beeston 2015), we predict correlated evolution of male vocal frequency and indices of the 

intensity of sexual selection such as male-biased sexual size dimorphism (Trivers 1972; 

Fairbairn 1997).  

Here, we use a large data set of 5,085 passerine species (Order: Passeriformes), representing 

85% of all passerines and 50% of all avian taxa (Jetz et al. 2012), to explore interspecific 

variation in peak frequency of male song. Applying a phylogenetically-informed cross-species 

analysis, we evaluate the association between song frequency and habitat density, body size 

(expressed as body mass), and the intensity of sexual selection (expressed as sexual size 

dimorphism). Based on the hypotheses outlined above, we test the one-tailed predictions that 

lower-frequency songs are associated with (1) more closed (forested) habitats, (2) larger body 

size and (3) stronger male-biased sexual size dimorphism. 

Passerines are an excellent study system for evaluating sources of interspecific variation in 

signal frequency. First, their song represents a textbook example of a long-range acoustic 

signal that plays an important role in mate attraction and territory defence (Catchpole 1987; 

Catchpole & Slater 2008). Second, passerines are globally distributed, show a more than 300-

fold difference in body mass, vary in sexual selection pressures and mating systems, and 

occupy a wide range of habitats (del Hoyo et al. 2018). Although song (or call) frequency has 

been widely studied in birds, previous comparative studies often evaluated the effects of body 

size, sexual selection, and habitat effects separately and without accounting for phylogeny 

(reviewed by Ey & Fischer 2009). Moreover, previous studies were restricted to a few species 

only (Ey & Fischer 2009).  

 

MATERIALS AND METHODS 

Data on peak song frequency 

We collected song recordings primarily from xeno-canto (https://www.xeno-canto.org), a 

citizen science repository of bird vocalizations. When access to recordings of endangered or 

vulnerable species was restricted, we directly contacted the authors. For species with missing 
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recordings on xeno-canto, we used recordings from the Macaulay Library (The Cornell Lab of 

Ornithology, https://www.macaulaylibrary.org/). We focused exclusively on the song, 

ignoring other types of vocalizations (e.g. calls). Song is commonly defined as a long-range 

vocalization that is used mainly in mate attraction and territory defence. The definition of the 

song may, however, vary across sources or authorities, and functions of particular 

vocalizations are still poorly known for several passerine species. Therefore, we used the 

classification of vocalizations as provided on the platform storing the recordings. Although 

some recordings might be misclassified, we primarily focused on high-quality recordings 

(scored as quality “A” or “B” in xeno-canto, or rated four or more stars in Macaulay Library), 

usually collected by skilled observers with in-depth knowledge of particular bird species’ 

vocalizations. Both repositories also provide a space for discussion and correction of 

misclassified recordings by community members, increasing the reliability of the available 

information.  

We collected 1−5 (median = 4, mean ± SD = 3.7 ± 1.5) recordings of adult male song for each 

species (total of 18,789 recordings from 5,085 species). We did not use recordings of female 

and juvenile song. However, recordings often lacked information on sex, age, or the number 

of singing individuals. Although most of such recordings presumably documented adult male 

song, females of many species sing, either solo, in duets (coordinated joint singing of a mated 

pair) or in a chorus (three and more singing individuals) (Odom et al. 2014; Tobias et al. 

2016; Mikula et al. 2020). A few recording annotations mentioned “duet” or “chorus” and in 

some cases we could disentangle parts produced by different individuals. We then measured 

song frequency for the individual producing the more complex song, i.e. containing more 

elements and syllable types (presumably a male). For a few species, we were not able to 

separate the song of multiple individuals. In these cases, we assumed that the recording was 

representative of the song of the males of the species. Although this procedure might have 

introduced some error, we do not expect systematic bias in species-specific frequency values. 

We assigned geographic coordinates to all song recordings as reported by the person who 

made the recording. In widely distributed species, recordings were typically separated by tens 

to thousands of kilometres. However, in species with smaller ranges, we used recordings 

made at least 1 km apart to reduce the possibility that two or more analysed recordings 

contained song of the same individual. In several species (all island or mountain endemics or 

poorly sampled species) this was not possible. In these cases, we a priori maximized the 
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altitudinal and temporal separation of recordings, by only selecting recordings that differed in 

altitude by at least 100 metres or were collected in different years.  

After downloading, all recordings were converted to .wav format with an online converter 

(www.online-audio-converter.com) at a sampling rate of 44.1 kHz. We characterized song 

frequency by a single parameter, namely peak frequency (i.e. the frequency at maximum 

amplitude), using the Raven Pro 1.4 software (Cornell Lab of Ornithology, Ithaca, NY, USA, 

www.ravensoundsoftware.com). We then calculated the median value for each species. Peak 

frequency is central to our hypotheses because: (1) unlike minimum and maximum 

frequencies, it is crucial for signal transmission (Brumm & Naguib 2009), (2) it may differ 

between habitats (see meta-analysis in Boncoraglio & Saino 2007), and (3) it is a key trait in 

other studies investigating the effect of morphological constraints and sexual selection on 

acoustic communication (Gillooly & Ophir 2010; Greig et al. 2013; Mason & Burns 2015; 

Thiagavel et al. 2017). First, we measured peak song frequency based on a fast Fourier 

transform length of 256 points (Hann window), resulting in a frequency resolution of 172 Hz. 

In a second step, we re-measured peak song frequency for species with median peak 

frequency < 1.2 kHz (n = 90 species), using a higher frequency resolution of 21.5 Hz (fast 

Fourier transform length of 2,048 points) to capture the lower end of the range in peak song 

frequency more accurately. To ensure consistency, all recordings were downloaded and 

analysed by a single person (PM). 

 

Predictor variables 

Body size and sexual size dimorphism 

As a proxy of species-specific body size, we used mean body mass (in grams; pooling sexed 

and unsexed individuals from Dunning 2008; n = 4,602 species) or male body mass (from 

Dunning 2008; n = 984 species). To estimate sexual size dimorphism we used data on male 

and female body mass (from Dunning 2008; n = 984 species) or wing length (in millimetres; 

from Dale et al. 2007; n = 2,463 species). We then calculated sexual size dimorphism either 

as log(male body mass) − log(female body mass) or as log(male wing length) − log(female 

wing length). Positive values indicate species where males are larger than females, i.e. male-

biased sexual size dimorphism. Sexual size dimorphism is associated with other indices of the 
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intensity of sexual selection, such as the mating system (polygyny versus monogamy) or testis 

size (Dunn et al. 2001).  

 

Habitat density 

As a proxy for habitat density, we used tree cover data from Collection 2 of the Copernicus 

Global Land Cover project (Buchhorn et al. 2020). For each geographic location of a song 

recording, we extracted the percentage of tree cover in a 100 × 100 metres quadrant using the 

exactextractr package (v.0.2.1) in R (Baston 2020). Species-specific tree cover was then 

estimated as the mean of all conspecific recordings.  

We also extracted data on habitat type for each species based on descriptions in del Hoyo et 

al. (2018). We assigned each species to the most prevalent habitat type on a three-point scale: 

(1) closed (covering species living in densely vegetated habitat types such as forest, woodland 

and mangrove), (2) mixed (covering generalist species and species inhabiting ecotones), and 

(3) open (covering species inhabiting grassland, steppe, desert and semi-desert, savannah, 

bushland, rocky habitats and seashores).  

 

Statistical analyses 

All statistical analyses were performed using R v. 4.0.0 (R Development Core Team 2019).  

 

Data visualization 

To help interpret the investigated relationships, we assessed whether peak song frequency 

evolved within diverged groups of passerines by plotting the evolutionary tree of song 

frequency, as well as of the predictors (Fig. S1). We mapped these variables on a maximum 

credibility tree reconstructed from 100 trees using the function maxCladeCred in the 

phangorn package (v. 2.5.5) (Schliep 2011). Character states at internal nodes were mapped 

using a maximum-likelihood approach implemented in the contMap function (Revell 2013) 

from the phytools package (Revell 2012). To illustrate the geographic distribution of peak 

song frequency, we used the breeding range distribution of all passerines (obtained from 

BirdLife International and NatureServe 2018) to visualize mean peak song frequency values 
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across passerine assemblages with grid cells of 112.5 × 112.5 km (~1° scale) (Valcu et al. 

2012).  

 

General modelling procedures 

All comparative analyses were performed using the phylolm package (v. 2.6) (Tung Ho & 

Ané 2014). To control for non-independence due to common ancestry (Paradis 2011), we 

used phylogenetic generalized least-squares (PGLS) regressions with Pagel’s lambda (λ) 

transformation of a correlation structure (Pagel 1999). This method explicitly models how the 

covariance between species declines as they become more distantly related. If λ = 1, modelled 

traits co-vary in direct proportion to shared evolutionary history, whereas λ = 0 indicates 

phylogenetic independence of traits (Freckleton et al. 2002). We randomly sampled 100 

phylogenetic trees (Hackett backbone) from those available at http://birdtree.org (Jetz et al. 

2012), which included all species in our data set. We ran all models using these 100 

phylogenies to account for uncertainties associated with different tree topologies and 

combined model coefficients by model averaging (Symonds & Moussalli 2011). For each 

model, we also calculated the proportion of variance explained (R²) according to Ives (2019) 

using the rr2 package (Ives & Li 2018), including the conditional R² (the variance explained 

by fixed and random effects) and the marginal R² (the variance explained by the fixed effects 

only), and report these as mean values from 100 models each based on a different 

phylogenetic tree. Model residuals revealed no major violation of the assumptions of 

normality and homogeneity of variance. Peak song frequency and body mass were log-

transformed before analysis. Peak song frequency and all predictors were also mean-centred 

and divided by their standard deviation (Schielzeth 2010). 

Sex-specific body mass and wing length data were only available for 984 and 2,463 species, 

respectively. Hence, we estimated the missing values with the phylogenetic imputation 

method in the Rphylopars package (v 0.2.12) (Goolsby et al. 2017), using Pagel’s lambda 

model of trait evolution. We did this separately for each of the 100 phylogenetic trees, such 

that each tree was associated with specific imputed values. This method performs well in 

predicting missing species’ data (Penone et al. 2014) and imputed data increase the statistical 

power of analysis (Nakagawa & Freckleton 2008). Importantly, the bias in imputed data sets 

tends to be lower than the bias in data sets with missing data omitted, particularly when values 

for many species are missing (Penone et al. 2014). To minimize concerns that imputed data 
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may affect our conclusions, we validated the robustness of our findings by performing all 

analyses also on the subset of species for which we have data on body mass and sexual size 

dimorphism.  

 

Model specification 

We specified two types of models. First, we ran a set of univariate models with peak song 

frequency as the dependent variable and with either body mass (species or male), sexual size 

dimorphism (based on wing length or body mass) or habitat density (tree cover or habitat 

type) as predictor. Second, we ran multivariate models, which included different sets of 

predictors. The first models included combinations of species body mass, wing-based sexual 

size dimorphism and tree cover (or habitat type), the second models included combinations of 

male body mass and body mass-based sexual size dimorphism as predictors. Note that the 

results from univariate and multivariate models, from analyses based on imputed or raw data, 

from analyses with species- or male-specific body mass, as well as from analyses based on 

tree cover or habitat type were qualitatively almost identical (Fig. S2 and Table S1). Hence, in 

the main text we report only findings from multivariate model containing species-specific 

body mass, wing-based sexual size dimorphism and tree cover with imputed missing data for 

body mass and sexual size dimorphism. 

 

RESULTS 

Species-specific median peak song frequency ranged from 215 Hz to 10,659 Hz (n = 5,085 

species), but most passerine species emitted songs of intermediate frequencies (mean ± SD = 

4,030 ± 1,626 Hz; median = 3,790 Hz; Fig. 1a). Median peak song frequency shows a strong 

evolutionary signal with a coefficient λ ≈ 0.87 (see also Table S1). Nevertheless, low and high 

peak song frequencies occur within phylogenetically distinct groups (Fig. 1a).  

Passerines sang at low frequencies predominantly in large parts of Australia, in tropical 

rainforests of the Neotropical, Afrotropical, and Papua New Guinea regions, and possibly in 

the Sahara where data coverage was sparse (Fig. 1b). Conversely, high-frequency songs 

characterize passerine communities in the northern parts of the Nearctic and Palearctic 
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regions, in large mountain ranges such as the Andes and Himalayas, in southern parts of the 

Neotropical region, and in belts of grassland and savannah in Africa (Fig. 1b). 

Body mass was the strongest predictor of global variation in peak song frequency (Fig. 2a and 

Fig. S2), explaining 11−16% of the variation (59−67% together with phylogeny; Table S1). 

As predicted from the morphological constraint hypothesis, heavier species sang at lower 

frequencies (Fig. 2a and Fig. S2); this pattern was observed for all but two families (n = 52 

families with more than 15 species; Fig. 2b and Fig. S3).  

Peak song frequency was also significantly associated with sexual size dimorphism (either 

measured in wing length or in body mass), although the effect size was substantially smaller, 

explaining 1−3% of the variation (Fig. 2a and Fig. S2; Table S1). As predicted based on the 

sexual selection hypothesis, species with a stronger male-biased sexual size dimorphism (i.e. a 

higher intensity of sexual selection) sang with lower frequencies, even after controlling for 

body mass per se (Fig. 2a and Fig. S2; Table S1). This effect of decreasing frequency with 

increasing dimorphism was seen in 67% of families (35 out of 52 families with more than 15 

species) while in the remaining families the trend was in the opposite direction (Fig. 2b and 

S3). Note that in this analysis data on body mass were not sex-specific. Hence, adding sexual 

size dimorphism might improve model fit, simply because our measure of body mass and 

sexual size dimorphism together better reflect male size than species-specific mass alone. 

However, sexual dimorphism in body mass remained influential even when limiting the 

analysis to a subset of 984 species for which data on male body mass were available (Fig. S2).  

Peak song frequency of passerines was weakly, but significantly associated with tree cover or 

habitat type (Fig. 2a and Fig. S2; Table S1); however, the effect explained only around 0.2% 

of the variation and was opposite to that predicted from the acoustic adaptation hypothesis: 

species living in open habitats had lower (not higher) peak song frequencies than those living 

in more dense, forested habitats (Fig. 2a and Fig. S2; Table S1). Moreover, this effect was 

observed in only 24 out of 52 families (46%) with more than 15 species (with the random 

expectation being 50% of the families; Fig. 2b and S3). This unexpected relationship was 

close to zero and not statistically significant in multivariate models that used the original, non-

imputed values of body mass and sexual size dimorphism (based either on wing length or 

body mass; Fig. S2; Table S1).  
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DISCUSSION 

Our data revealed remarkable variation in peak song frequency among the world's passerine 

birds. Our analyses show that most of the interspecific diversity in peak song frequency can 

be explained by evolutionary history and by body mass, with an additional effect of sexual 

size dimorphism as a proxy of the intensity of sexual selection. In contrast, our study does not 

support the acoustic adaptation hypothesis. Opposite to the prediction, we found at best a 

weakly positive association between habitat density and peak song frequency. Our results thus 

indicate that the evolution of peak song frequency in passerines is primarily controlled by 

morphological constraints, as expected from basic physical principles. We further show that 

peak song frequency may be shaped by sexual selection, but not by habitat-driven selection to 

maximize song transmission. 

We found that after controlling for phylogeny 11−16% of interspecific variation in peak song 

frequency of passerines is explained by variation in body mass (Table S1). However, 

phylogeny also explains some of the variation in body mass (Fig. S1) and in a simple linear 

regression body mass explains ~27% of the variance in peak song frequency. Together, body 

mass and phylogeny explained almost 70% of the variation in peak song frequency (Table 

S1). Our results confirm that body size (estimated as body mass in our study) imposes a 

strong morphological limit on the production of vocalizations of certain frequencies, 

presumably through a strong correlation with the length of the vocal tract and the size of the 

labia in the syrinx (Podos 2001; Suthers & Zollinger 2008; Rodríguez et al. 2015). The 

morphological constraint hypothesis can thus be seen as a kind of “null model” (also see 

Pearse et al. 2018) and it is the remaining variation in peak song frequency that needs 

explanation.  

After accounting for body mass, peak song frequency was lower in species where males were 

larger than females, i.e. in species with – presumably − stronger sexual selection on males. 

This result is robust to different ways of analysis (Table S1) and supports the hypothesis that 

sexual selection has shaped the evolution of song frequency (Greig et al. 2013; Hall et al. 

2013; Geberzahn & Aubin 2014; Linhart & Fuchs 2015; Pearse et al. 2018). Our comparative 

study provides evidence that sexual selection led to low-frequency song performance in many 

families of passerines, presumably in those where song frequency is indicative of the 

competitive ability of individuals during male–male interactions (Christie et al. 2004; Seddon 

et al. 2004; Price et al. 2006). Notably, the songs that departed the most in peak frequency 
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from the expected association with body mass − those of three related species from the 

Cotingidae family (the Amazonian umbrellabird Cephalopterus ornatus, the long-wattled 

umbrellabird C. penduliger, and the red-ruffed fruitcrow Pyroderus scutatus) – were also 

those that had the lowest peak frequencies documented for any passerine in our data set (< 

260 Hz); their peak frequencies are so low that they partly overlap with the fundamental 

speech frequencies of humans (100−300 Hz), who are, however, more than 100 times heavier 

(Baken 1987). The umbrellabirds and their close relatives show high male-biased sexual size 

dimorphism (compared to other passerines) and a lekking mating system where males display 

together on traditional “exploded” leks and presumably do not provide parental care (del 

Hoyo et al. 2018). In species that produce substantially lower-frequency songs than predicted 

from the negative frequency−size relationship, sexual selection may have led to the 

development of a specific vocal apparatus to produce these sounds (Riede et al. 2016), such as 

the unique pendulous oesophageal vocal sacs that are used as a resonator in umbrellabirds 

(Sick 1954, see also Riede et al. 2015 for a non-passerine example). Although selection for 

low-frequency sounds may in some cases cause a corresponding change in body size (Fitch 

1999), it seems more likely that natural (Woodward et al. 2005; Ricklefs 2010) and sexual 

(Björklund 1990) selection on body size underlies most evolutionary shifts in the song 

frequency of passerines, with an additional effect of sexual selection on the vocal apparatus.  

Despite the theoretical basis and some empirical evidence for a negative association between 

song frequency and habitat density (Morton 1975; Badyaev & Leaf 1997; Buskirk 1997; 

Bertelli & Tubaro 2002; Blumstein & Turner 2005; Boncoraglio & Saino 2007), our 

comparative study provides clear evidence against the acoustic adaptation hypothesis. Peak 

song frequency across the world's passerines was, if anything, weakly positively instead of 

negatively correlated with habitat density. Thus, forest-inhabiting species produced sounds 

that were higher or similar in peak frequency than those of species living in open areas. While 

other unmeasured biotic and abiotic characteristics of the environment, including consistent 

background noise produced by wind, rain, insects or other birds, may drive the evolution of 

peak song frequencies (reviewed in Brumm & Zollinger 2013), we provide solid evidence that 

habitat density – as used and widely evaluated in bioacoustic studies – had at best a negligible 

effect on peak song frequency of passerines. Of course, this does not exclude singing-

associated behavioural adaptations of birds that improve signal transmission, such as 

microhabitat selection during perch-singing or display flights (Menezes & Santos 2020). It is 

noteworthy that at the intraspecific level, birds can adjust their song frequency to local 
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conditions, but these shifts are relatively minor compared to the interspecific variation in 

frequency we documented in this study (Slabbekoorn & Peet 2003; Slabbekoorn & den Boer-

Visser 2006; Nemeth & Brumm 2010; Brumm & Zollinger 2013).  

In conclusion, using data of most passerine species and half of the global avian diversity, our 

study provides three insights into the evolution of acoustic signals. (1) A strong allometric 

relationship between body size and peak song frequency imposes a clear limit on the 

evolution of song frequency. (2) Sexual selection seems to cause departures from this 

allometric relationship, leading to lower-frequency signals than predicted by body size. 

Further research into the mechanism (e.g. selection on the structure of the vocal apparatus) is 

of interest. (3) There is no evidence that species in more dense, forested habitats produce 

songs of lower frequencies. Our study thus challenges the idea that habitat-dependent 

selection to maximize sound propagation influences the evolution of signal frequency in 

songbirds. Future work should focus on the link between song frequency, behaviour during 

vocal performance (e.g. aerial displays), and habitat properties that influence sound 

transmission and degradation. In general, our study calls for large-scale empirical studies on 

acoustic signal frequency in other animal groups as independent replication studies.
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Figure legends 

Figure 1. Distribution of peak song frequency across passerines. (a) Distribution across a 

maximum credibility phylogenetic tree (based on 100 trees sampled from http://birdtree.org) 

with colour scale reflecting variation (Kernel densities) in species median values (n = 5,085 

species). Highlighted are 10 major groups of passerines with their representative species, 

scaled according to size, except for the downscaled representatives of the Tyrannida (should 

be ~20% larger) and the basal Oscines (should be three times larger); starting with 

Acanthisittia and going counterclockwise, the pictures depict Xenicus gilviventris (10 cm 

body size), Smithornis sharpei (17 cm), Cephalopterus penduliger (41 cm; example of low-

frequency singer: https://www.xeno-canto.org/75792), Campylorhamphus trochilirostris (25 

cm), Menura novaehollandiae (103 cm), Paradisaea raggiana (34 cm), Eupetes macrocerus 

(29 cm), Cisticola chiniana (14 cm), Turdus migratorius (25 cm) and Setophaga tigrina (13 

cm; example of high-frequency singer: https://www.xeno-canto.org/182791). Illustrations 

reproduced by permission of Lynx Edicions. (b) Geographical distribution in peak song 

frequency across species assemblages (based on the species’ breeding range) defined for 

112.5 × 112.5 km (~1° scale) areas. Colour scale reflects variation (Kernel densities) in 

assembly mean peak song frequency (n = 10,856 points; for clearer illustration of differences, 

outliers were assigned a single value causing the "bumps" on both ends of the distribution). 

Figure 2. Associations between peak song frequency and body mass, sexual size dimorphism 

(in wing length) and tree cover across passerines (n = 5,085 species). (a) Standardized effect 

sizes (dots) with their 95% confidence intervals (horizontal lines) based on a multivariate 

analysis with imputed missing data for body mass and sexual size dimorphism (see Material 

and Methods and Table S1 for details). Values represent averages from 100 multivariate 

models, each using a different phylogenetic tree. (b) Relationship between peak song 

frequency and each of the three explanatory variables. Each dot represents the median peak 

song frequency of a given species. Lines show the results of univariate robust linear 

regressions for each of the 52 families with more than 15 species. Positive slopes are 

indicated in dark blue, negative slopes in yellow. Note the log-scale for peak song frequency 

and body mass and that for clearer visualisation two lower and ten higher sexual size 

dimorphism points are not displayed. Robust regressions were fitted to the data with imputed 

missing values using the rlm function from the MASS package (Venables & Ripley 2002). For 

results of univariate models and those using the original, non-imputed data only, see Fig. S2 

and S3, and Table S1.  
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Supplementary Information 
 

 

 

Figure S1. Distribution of peak song frequency, body mass, sexual size dimorphism (in wing length) and percentage of tree 

cover across passerines (n = 5,085 species), using maximum credibility phylogenetic tree (based on 100 trees sampled from 

http://birdtree.org). Missing values for body mass (n = 483 species) and sexual size dimorphism (n = 2,622 species) were 

imputed (see Materials and Methods). Note that for clearer illustration of differences, outliers in (b) and (c) were assigned to a 

single cut off value (i.e. one indicated in the colour scale) 
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Figure S2. Association between peak song frequency and body mass (species or ♂), sexual size dimorphism (in wing length or 
body mass) and tree cover or habitat type across passerines. Triangle and dots depict standardized effect sizes, horizontal lines 
their 95% confidence intervals based on univariate and multivariate cross-species analysis with imputed missing data for body 
mass or sexual size dimorphism (triangles) or with original, non-imputed data only (dots; see Material and Methods). The values 
represent model averaged estimates from 100 models, each using a different phylogenetic tree. Full statistical results are 
reported in Table S1. Note, the dark blue triangle estimates are those reported in Fig. 2a in the main test. 
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Figure S3. Relationship between peak song frequency and body mass (n = 4,602 species) and sexual size dimorphism (in wing 

length; n = 2,463 species) across passerines. Each dot represents the median peak song frequency of a given species. Lines 

show the relationship based on univariate robust linear regressions for each family with more than 15 species (52 families in 

case of body mass and 51 families in a case of sexual size dimorphism). Positive slopes are indicated in the dark blue, negative 

slopes in yellow. Note the log-scale for peak song frequency and body mass. Robust regressions were fitted to the original, non-

imputed data using the rlm function from MASS package (Venables & Ripley 2002).  
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Table S1. Results from comparative analyses examining the effects of body mass, sexual size dimorphism and habitat density 

on peak song frequency across passerines. 

Model Imputed n Term Est. SE Lower est. Upper est. t-value P P (2.5%) P (97.5%) 

Univariate                       
f ~ BM Yes 5,085 Intercept -0.020 0.390 -0.784 0.744 

    
   

BM -0.497 0.020 -0.536 -0.458 -25.004 <0.0001 <0.0001 <0.0001    
Pagel's λ 0.840 

 
0.833 0.858 

    
   

R2
cond 0.669 

 
0.667 0.675 

    
   

R2
marg 0.105 

 
0.103 0.111 

    
 

No 4,602 Intercept -0.029 0.394 -0.801 0.743 
    

   
BM -0.504 0.020 -0.544 -0.465 -25.070 <0.0001 <0.0001 <0.0001    
Pagel's λ 0.846 

 
0.841 0.863 

    
   

R2
cond 0.667 

 
0.664 0.673 

    
   

R2
marg 0.117 

 
0.115 0.123 

    

f ~ BM♂ Yes 5,085 Intercept -0.024 0.388 -0.785 0.737 
    

   
BM -0.496 0.020 -0.535 -0.458 -25.284 <0.0001 <0.0001 <0.0001    
Pagel's λ 0.838 

 
0.832 0.857 

    
   

R2
cond 0.670 

 
0.667 0.676 

    
   

R2
marg 0.107 

 
0.105 0.113 

    
 

No 984 Intercept -0.130 0.321 -0.760 0.499 
    

   
BM -0.542 0.038 -0.616 -0.468 -14.344 <0.0001 <0.0001 <0.0001    
Pagel's λ 0.705 

 
0.688 0.747 

    
   

R2
cond 0.590 

 
0.587 0.601 

    
   

R2
marg 0.155 

 
0.153 0.164 

    

f ~ SSDWL Yes 5,085 Intercept -0.323 0.440 -1.186 0.540 
    

   
SSD -0.115 0.014 -0.143 -0.086 -7.951 <0.0001 <0.0001 <0.0001    
Pagel's λ 0.870 

 
0.865 0.884 

    
   

R2
cond 0.635 

 
0.632 0.642 

    
   

R2
marg 0.012 

 
0.012 0.014 

    
 

No 2,463 Intercept -0.304 0.427 -1.140 0.532 
    

   
SSD -0.113 0.018 -0.149 -0.078 -6.243 <0.0001 <0.0001 <0.0001    
Pagel's λ 0.859 

 
0.852 0.877 

    
   

R2
cond 0.605 

 
0.602 0.615 

    
   

R2
marg 0.016 

 
0.015 0.019 

    

f ~ SSDBM Yes 5,085 Intercept -0.279 0.436 -1.134 0.575 -9.208 <0.0001 <0.0001 <0.0001    
SSD -0.141 0.015 -0.171 -0.111 

    
   

Pagel's λ 0.867 
 

0.862 0.881 
    

   
R2

cond 0.636 
 

0.633 0.643 
    

   
R2

marg 0.016 
 

0.016 0.019 
    

 
No 984 Intercept -0.296 0.393 -1.066 0.474 -5.666 <0.0001 <0.0001 <0.0001    

SSD -0.158 0.028 -0.212 -0.103 
    

   
Pagel's λ 0.789 

 
0.775 0.817 

    
   

R2
cond 0.530 

 
0.526 0.542 

    
   

R2
marg 0.030 

 
0.028 0.035 

    

f ~ TC No 5,085 Intercept -0.283 0.447 -1.160 0.594 
    

   
TC 0.033 0.011 0.011 0.055 2.940 0.0048 0.0016 0.0165    
Pagel's λ 0.875 

 
0.869 0.888 

    
   

R2
cond 0.631 

 
0.628 0.638 

    
   

R2
marg 0.002 

 
0.001 0.003 

    

f ~ HT No 5,063 Intercept -0.277 0.448 -1.154 0.600 
    

   
HT 0.039 0.013 0.013 0.065 2.891 0.0054 0.002 0.02    
Pagel's λ 0.875 

 
0.869 0.888 

    
   

R2
cond 0.631 

 
0.628 0.638 

    
   

R2
marg 0.002 

 
0.001 0.002 

    

Multivariate                       
f ~ BM + SSDWL Yes 5,085 Intercept -0.048 0.388 -0.809 0.713 

    
   

BM -0.482 0.020 -0.522 -0.443 -23.856 <0.0001 <0.0001 <0.0001    
SSD -0.054 0.014 -0.081 -0.027 -3.873 0.0002 <0.0001 0.0009    
Pagel's λ 0.838 

 
0.832 0.857 

    
   

R2
cond 0.670 

 
0.668 0.676 

    
   

R2
marg 0.108 

 
0.106 0.113 

    
 

No 2,357 Intercept -0.065 0.366 -0.783 0.652 
    

   
BM -0.532 0.028 -0.587 -0.477 -18.892 <0.0001 <0.0001 <0.0001    
SSD -0.063 0.018 -0.097 -0.028 -3.573 0.0006 0.0002 0.0023    
Pagel's λ 0.814 

 
0.806 0.842 

    
   

R2
cond 0.649 

 
0.646 0.657 

    
   

R2
marg 0.138 

 
0.136 0.145 
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Table S1 continued            
            
Model Imputed n Term Est. SE Lower est. Upper est. t-value P P (2.5%) P (97.5%) 

f ~ BM♂ + SSDBM Yes 5,085 Intercept -0.032 0.387 -0.789 0.726 
    

   
BM -0.481 0.021 -0.521 -0.441 -23.385 <0.0001 <0.0001 <0.0001    
SSD -0.037 0.015 -0.067 -0.008 -2.463 0.0159 0.0090 0.0368    
Pagel's λ 0.837 

 
0.830 0.855 

    
   

R2
cond 0.670 

 
0.668 0.676 

    
   

R2
marg 0.108 

 
0.106 0.114 

    
 

No 984 Intercept -0.146 0.317 -0.768 0.476 
    

   
BM -0.514 0.039 -0.591 -0.437 -13.136 <0.0001 <0.0001 <0.0001    
SSD -0.067 0.027 -0.119 -0.014 -2.482 0.0138 0.0106 0.0225    
Pagel's λ 0.698 

 
0.681 0.741 

    
   

R2
cond 0.592 

 
0.589 0.603 

    
   

R2
marg 0.160 

 
0.157 0.168 

    

f ~ BM + TC Yes 5,085 Intercept -0.025 0.391 -0.790 0.741 
    

   
BM -0.497 0.020 -0.536 -0.459 -25.030 <0.0001 <0.0001 <0.0001    
TC 0.034 0.011 0.013 0.055 3.186 0.0021 0.0008 0.0064    
Pagel's λ 0.841 

 
0.835 0.859 

    
   

R2
cond 0.670 

 
0.667 0.676 

    
   

R2
marg 0.107 

 
0.105 0.113 

    
 

No 4,602 Intercept -0.035 0.395 -0.810 0.740 
    

   
BM -0.505 0.020 -0.544 -0.465 -25.089 <0.0001 <0.0001 <0.0001    
TC 0.038 0.011 0.016 0.060 3.411 0.0009 0.0003 0.0031    
Pagel's λ 0.848 

 
0.843 0.865 

    
   

R2
cond 0.667 

 
0.665 0.674 

    
   

R2
marg 0.119 

 
0.117 0.126 

    

f ~ BM + HT Yes 5,063 Intercept -0.023 0.392 -0.790 0.745 
    

   
BM -0.496 0.020 -0.535 -0.457 -24.913 <0.0001 <0.0001 <0.0001    
HT 0.043 0.013 0.018 0.068 3.362 0.0012 0.0004 0.004    
Pagel's λ 0.842 

 
0.836 0.861 

    
   

R2
cond 0.670 

 
0.667 0.676 

    
   

R2
marg 0.107 

 
0.104 0.113 

    
 

No 4,586 Intercept -0,033 0,396 -0,809 0,742 
    

   
BM -0,503 0,020 -0,542 -0,463 -24.984 <0.0001 <0.0001 <0.0001    
HT 0,043 0,013 0,018 0,069 3.284 0.0015 0.0006 0.0047    
Pagel's λ 0,849 

 
0,843 0,866 

    
   

R2
cond 0,668 

 
0,665 0,675 

    
   

R2
marg 0,118 

 
0,116 0,125 

    

f ~BM + SSDWL + TC Yes 5,085 Intercept -0.053 0.389 -0.816 0.709 
    

   
BM -0.483 0.020 -0.522 -0.443 -23.884 <0.0001 <0.0001 <0.0001    
SSD -0.054 0.014 -0.081 -0.026 -3.859 0.0002 <0.0001 0.001    
TC 0.034 0.011 0.013 0.055 3.170 0.0022 0.0009 0.0067    
Pagel's λ 0.840 

 
0.834 0.858 

    
   

R2
cond 0.671 

 
0.668 0.677 

    
   

R2
marg 0.110 

 
0.107 0.115 

    

 No 2,357 Intercept -0.064 0.366 -0.781 0.654 
    

   
BM -0.532 0.028 -0.587 -0.477 -18.882 <0.0001 <0.0001 <0.0001    
SSD -0.063 0.018 -0.097 -0.028 -3.576 0.0006 0.0002 0.0022    
TC -0.004 0.016 -0.036 0.027 -0.258 0.783 0.6914 0.9863    
Pagel's λ 0.813 

 
0.806 0.842 

    
   

R2
cond 0.649 

 
0.646 0.657 

    
   

R2
marg 0.138 

 
0.136 0.145 

    

f ~BM + SSDWL + HT Yes 5,063 Intercept -0.051 0.390 -0.815 0.714 
    

   
BM -0.481 0.020 -0.521 -0.442 -23.786 <0.0001 <0.0001 <0.0001    
SSD -0.052 0.014 -0.080 -0.025 -3.767 0.0003 <0.0001 0.0013    
HT 0.041 0.013 0.016 0.066 3.258 0.0016 0.0005 0.0055    
Pagel's λ 0.841 

 
0.835 0.860 

    
   

R2
cond 0.671 

 
0.668 0.677 

    
   

R2
marg 0.109 

 
0.107 0.115 

    
 

No 2,350 Intercept -0.060 0.366 -0.778 0.658 
    

   
BM -0.529 0.028 -0.585 -0.474 -18.799 <0.0001 <0.0001 <0.0001    
SSD -0.063 0.018 -0.097 -0.028 -3.574 0.0006 0.0002 0.0021    
HT -0.013 0.019 -0.05 0.024 -0.687 0.5011 0.4095 0.7631    
Pagel's λ 0.814 

 
0.806 0.842 

    
   

R2
cond 0.649 

 
0.646 0.657 

    

      R2
marg 0.138   0.136 0.144         

Shown are standardized effect sizes, with their SEs, 95% confidence intervals and test statistics based on univariate and 
multivariate cross-species analyses. Values represent averages from 100 multivariate models, each using a different 
phylogenetic tree. For each model we also report whether we used imputed or original values (for body mass and sexual size 
dimorphism), sample size, lambda values and conditional and marginal R2. The abbreviations represent: f = Peak song 
frequency (log-transformed), BM = Body mass (log transformed), BM♂ = Male body mass (log transformed), SSDWL = Sexual 
size dimorphism (log-transformed wing length of male − log-transformed wing length of female), SSDBM = Sexual size 
dimorphism (log-transformed body mass of male – log-transformed body mass of female), TC = Tree cover (%) and HT = 
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habitat type (0 = open, 1 = mixed, 2 = closed; used as continuous variable). All variables, including peak song frequency, were 
z-transformed (mean-centred and divided by standard deviation). 
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Supplementary Information  

 

Table S1. Results of univariable models based on a Markov chain Monte Carlo technique for 

generalized linear mixed-effect models with species-level phylogeny (the maximum credibility 

phylogenetic tree) as a random effect for (a) duetting (vs. no duetting, i.e. no female song and female 

solo song) (N = 269 species), (b) duetting (vs. no female song) (N = 133 species), (c) female solo song 

(vs. duetting) (N = 82 species), (d) female solo song (vs. no female song) (N = 111 species) as a 

response variables and life-history traits (territoriality, social bonds and cooperative breeding) and an 

environmental variable (NDVImax) as explanatory variables in songbirds of the South Africa and 

Lesotho. Estimates of the posterior mean with 95% credible intervals (lower and upper CI), posterior 

mode of the phylogenetic signal (lambda) and pMCMC values are reported. Statistically significant 

results are highlighted by bold. 

Predictor Posterior mean 95% CI lambda pMCMC 

(a)     

Territoriality 402.20 158.82–629.07 0.758 <0.0001 

Social bonds* – – – – 

Cooperative breeding 55.94 -49.79–169.80 0.923 0.274 

NDVImax 134.80 -62.80–348.86 0.998 0.163 

(b)     

Territoriality 376.73 157.43–589.84 0.960 <0.0001 

Social bonds* – – – – 

Cooperative breeding 72.56 -55.10–210.89 0.874 0.248 

NDVImax 205.04 -10.19–456.26 0.996 0.052 

(c)     

Territoriality -277.74 -511.67–-67.84 0.908 0.001 

Social bonds -112.00 -262.40–38.40 0.994 0.139 

Cooperative breeding -52.09 -287.19–166.76 0.953 0.622 

NDVImax -40.77 -423.25–317.69 0.999 0.803 

(d)     

Territoriality 223.27 27.98–437.88 0.705 0.014 

Social bonds 195.89 -5.25–464.46 0.724 0.054 

Cooperative breeding 76.82 -215.08–379.71 0.727 0.572 

NDVImax 377.74 -74.13–940.43 0.653 0.097 

*Because all species singing in duets belonged to one social-bond (long-term) category, it was not possible to 

establish social bonds as an explanatory variable 
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Table S2. Results of multivariable and univariable models based on a Markov chain Monte Carlo technique for generalized linear mixed-effect models with 

species-level phylogeny (100 randomly selected phylogenetic trees, their combined output is reported) as a random effect for (a) duetting (vs. no duetting, i.e. 

no female song and female solo song) (N = 269 species), (b) duetting (vs. no female song) (N = 133 species), (c) female solo song (vs. duetting) (N = 82 

species), (d) female solo song (vs. no female song) (N = 111 species) as a response variables and life-history traits (territoriality, social bonds and cooperative 

breeding) and an environmental variable (NDVImax) as explanatory variables in songbirds of the South Africa and Lesotho. Estimates of the posterior mean 

with 95% credible intervals (lower and upper CI), posterior mode of the phylogenetic signal (lambda) and pMCMC values are reported. Statistically 

significant results are highlighted by bold. 

Predictor Posterior mean 95% CI lambda pMCMC 

 Multivariable Univariable Multivariable Univariable Multivariable Univariable Multivariable Univariable 

(a)         

Territoriality 458.23 291.86 226.26–703.37 81.46–490.81 0.632 0.715 <0.0001 <0.0001 

Social bonds* – – – – – – – 

Cooperative breeding 28.83 40.39 -112.10–172.36 -56.71–148.51 0.899 0.673 0.396 

NDVImax 125.87 114.70 -143.26–410.58 -56.98–315.19 0.963 0.353 0.170 

(b)         

Territoriality 410.65 374.25 207.88–619.87 156.89–590.14 0.977 0.878 <0.0001 <0.0001 

Social bonds* – – – – – – – 

Cooperative breeding 56.57 65.12 -100.25–214.44 -63.53–205.52 0.945 0.464 0.312 

NDVImax 226.83 197.90 -37.67–509.71 -19.60–443.86 0.975 0.085 0.062 

(c)         

Territoriality -270.83 -275.74 -509.34–-51.98 -502.53–-63.85 0.987 0.796 0.006 0.002 

Social bonds -60.19 -111.43 -217.29–101.76 -260.12–37.77 0.933 0.443 0.141 

Cooperative breeding -31.20 -52.05 -270.60–198.06 -281.49–166.54 0.937 0.787 0.629 

NDVImax -37.44 -47.42 -451.20–377.33 -447.29–344.14 0.946 0.827 0.799 

(d)         
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Territoriality 188.06 221.40 -46.24–440.05 29.51–432.89 0.786 0.754 0.104 0.012 

Social bonds 123.18 198.24 -130.56–401.81 -20.18–450.40 0.667 0.335 0.055 

Cooperative breeding 89.73 78.36 -220.76–402.16 -207.90–372.86 0.702 0.535 0.558 

NDVImax 300.60 367.48 -205.54–856.41 -95.32–905.34 0.695 0.224 0.104 

*Because all species singing in duets belonged to one social-bond (long-term) category, it was not possible to establish social bonds as an explanatory variable 
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Tables S3-S5. Every species in our dataset was represented by a single sample within which 

variation was not considered. A potential consequence of this approach is that the random 

effect of the species could potentially be confounded with the residuals (Hadfield 2010). To 

avoid this obstacle and test the robustness of these results, we also performed the same 

models with different parameterization using family-level phylogeny. We used an inverse-

gamma prior for random effects and an uninformative prior for residual variance in all 

MCMCglmms. The choice of priors was determined by the character of our data, sometimes 

containing a small number of samples for some variable categories. All models were run for 

5,000,000 iterations with elimination of the first 20,000 iterations as a burn-in period and 

thinning to every 5000th iteration. For models with a maximum credibility phylogenetic tree, 

we used the Gelman-Rubin statistic to check for convergence of multiple MCMC chains runs 

in parallel. The iteration chains mixed well, exhibiting no observable autocorrelation. The 

Gelman-Rubin statistic threshold was established to 1.09 in all models. 
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Table S3. Results of multivariable and univariable models based on a Markov chain Monte Carlo technique for generalized linear mixed-effect models with 

family-level phylogeny (the maximum credibility phylogenetic tree) as a random effect for (a) duetting (vs. no duetting, i.e. no female song and female solo 

song) (N = 269 species), (b) duetting (vs. no female song) (N = 133 species), (c) female solo song (vs. duetting) (N = 82 species), (d) female solo song (vs. no 

female song) (N = 111 species) as a response variables and life-history traits (territoriality, social bonds and cooperative breeding) and an environmental 

variable (NDVImax) as explanatory variables in songbirds of the South Africa and Lesotho. Estimates of the posterior mean with 95% credible intervals (lower 

and upper CI), posterior mode of the phylogenetic signal (lambda) and pMCMC values are reported. Statistically significant results are highlighted by bold. 

Predictor Posterior mean 95% CI lambda pMCMC 

 Multivariable Univariable Multivariable Univariable Multivariable Univariable Multivariable Univariable 

(a)         

Territoriality 463.38 408.14 238.33–729.25 137.11–667.40 0.360 0.589 <0.001 <0.001 

Social bonds* – – – – – – – 

Cooperative breeding 14.47 34.94 -117.85–156.52 -55.17–140.45 0.801 0.833 0.454 

NDVImax 110.13 100.40 -144.32–387.75 -67.86–298.04 0.832 0.396 0.217 

(b)         

Territoriality 412.47 363.87 230.18–650.76 118.46–588.66 0.570 0.710 <0.001 <0.001 

Social bonds* – – – – – – – 

Cooperative breeding 48.64 71.45 -101.60–205.34 -33.16–212.95 0.769 0.496 0.169 

NDVImax 185.68 136.17 -45.45–462.91 -50.49–367.89 0.896 0.114 0.116 

(c)         

Territoriality -314.39 -282.32 -563.23–-102.21 -510.77–-83.53 0.671 0.765 <0.001 <0.001 

Social bonds -61.48 -116.96 -236.47–101.23 -257.39–33.31 0.823 0.488 0.122 

Cooperative breeding -4.62 -12.90 -250.54–206.77 -207.40–180.00 0.826 0.980 0.898 

NDVImax -18.70 -64.42 -511.52–366.85 -478.10–249.50 0.845 0.918 0.671 

(d)         

Territoriality 237.13 237.17 7.60–507.24 34.21–465.40 0.762 0.742 0.060 0.008 
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Social bonds 114.25 185.70 -127.98–447.22 -37.02–430.91 0.479 0.416 0.086 

Cooperative breeding 170.98 135.89 -139.99–477.11 -137.48–405.90 0.607 0.219 0.267 

NDVImax 210.48 272.18 -259.87–775.81 -147.38–776.89 0.527 0.446 0.233 

*Because all species singing in duets belonged to one social-bond (long-term) category, it was not possible to establish social bonds as an explanatory variable 
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Table S4. Results of multivariable and univariable models based on a Markov chain Monte Carlo technique for generalized linear mixed-effect models with 

family-level phylogeny (100 randomly selected phylogenetic trees, their combined output is reported) as a random effect for (a) duetting (vs. no duetting, i.e. 

no female song and female solo song) (N = 269 species), (b) duetting (vs. no female song) (N = 133 species), (c) female solo song (vs. duetting) (N = 82 

species), (d) female solo song (vs. no female song) (N = 111 species) as a response variables and life-history traits (territoriality, social bonds and cooperative 

breeding) and an environmental variable (NDVImax) as explanatory variables in songbirds of the South Africa and Lesotho. Estimates of the posterior mean 

with 95% credible intervals (lower and upper CI), posterior mode of the phylogenetic signal (lambda) and pMCMC values are reported. Statistically 

significant results are highlighted by bold. 

Predictor Posterior mean 95% CI lambda pMCMC 

 Multivariable Univariable Multivariable Univariable Multivariable Univariable Multivariable Univariable 

(a)         

Territoriality 448.48 308.93 211.35–685.02 96.45–515.31 0.467 0.555 <0.001 <0.001 

Social bonds* – – – – – – – 

Cooperative breeding 12.58 35.90 -119.44–146.57 -54.23–138.02 0.841 0.837 0.419 

NDVImax 113.38 99.16 -132.39–377.81 -65.14–296.38 0.843 0.368 0.221 

(b)         

Territoriality 411.00 358.71 199.02–622.64 119.76–587.41 0.397 0.701 <0.001 <0.001 

Social bonds* – – – – – – – 

Cooperative breeding 48.25 70.70 -95.71–197.02 -36.84–196.87 0.820 0.500 0.179 

NDVImax 189.20 133.84 -55.22–456.34 -47.86–352.20 0.837 0.118 0.129 

(c)         

Territoriality -314.50 -278.92 -556.02–-89.87 -503.43–-62.32 0.706 0.701 0.002 <0.001 

Social bonds -60.85 -116.15 -229.96–109.36 -269.15–32.94 0.850 0.476 0.131 

Cooperative breeding -5.49 -7.36 -235.85–221.95 -205.32–183.05 0.853 0.968 0.949 

NDVImax -20.65 -67.94 -427.01–389.75 -414.72–253.03 0.850 0.827 0.656 

(d)         
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Territoriality 231.73 231.69 -16.98–496.42 28.70–452.63 0.706 0.758 0.062 0.010 

Social bonds 113.71 181.72 -150.49–403.11 -30.73–439.26 0.601 0.404 0.074 

Cooperative breeding 173.23 139.81 -125.23–477.43 -115.86–417.28 0.623 0.240 0.257 

NDVImax 194.76 275.07 -325.32–751.95 -166.64–787.60 0.596 0.453 0.206 

*Because all species singing in duets belonged to one social-bond (long-term) category, it was not possible to establish social bonds as an explanatory variable 
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Table S5. The autocorrelation values among stored samples (Lag 5000) from the posterior of multivariable and univariable models based on a 

Markov chain Monte Carlo technique for generalized linear mixed-effect models with family-level phylogeny (the maximum credibility 

phylogenetic tree) as a random effect. The level of the independence of the samples in the posterior was very high, which means that the iteration 

chains mixed well. The values of autocorrelation refer to the following models: (a) duetting vs. no duetting (i.e. no female song and female solo 

song), (b) duetting vs. no female song, (c) female solo song vs. duetting, (d) female solo song vs. no female song. 

Model Territoriality Social bonds Cooperative breeding NDVImax Family Units 

Multivariable       

(a) -0.0051 – -0.0062 0.0151 -0.0434 -0.0381 

(b) -0.0252 – 0.0473 -0.0029 0.0068 -0.0407 

(c) -0.0565 -0.0235 -0.0160 0.0308 -0.0046 -0.0103 

(d) 0.0119 -0.0030 -0.0501 -0.0053 0.0975 0.0071 

Univariable       

(a) -0.0244 – – – 0.0579 -0.0367 

(a) – – 0.0231 – 0.0208 0.0392 

(a) – – – -0.0226 0.0204 -0.0355 

(b) -0.0007 – – – -0.0054 0.0271 

(b) – – -0.0004 – 0.0439 0.0281 

(b) – – – 0.0455 -0.0406 0.0596 

(c) -0.0262 – – – -0.0007 -0.0035 

(c) – -0.0588 – – -0.0299 -0.0331 

(c) – – -0.0006 – 0.0094 -0.0001 

(c) – – – -0.0164 0.0067 0.0054 

(d) -0.0561 – – – -0.0056 -0.0323 

(d) – 0.0266 – – -0.0118 0.0476 

(d) – – 0.0027 – 0.0552 -0.0421 

(d) – – – 0.0142 0.0027 0.0039 
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Tables S6-S7. In addition to models where territoriality, social bonds and cooperative were 

coded as continuous variables, we prepared a set of models where these variables were coded 

as categorical variables. We performed these models using both species- and family level 

phylogeny. We used an inverse-gamma prior for random effects and an uninformative prior 

for residual variance in all MCMCglmms. The choice of priors was determined by the 

character of our data, sometimes containing a small number of samples for some variable 

categories. All models were run for 5,000,000 iterations with elimination of the first 20,000 

iterations as a burn-in period and thinning to every 5000th iteration. We used a maximum 

credibility phylogenetic tree and the Gelman-Rubin statistic to check for convergence of 

multiple MCMC chains runs in parallel. The iteration chains mixed well, exhibiting no 

observable autocorrelation. The Gelman-Rubin statistic threshold was established to 1.09 in 

all models. 
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Table S6. Results of multivariable and univariable models based on a Markov chain Monte Carlo technique for generalized linear mixed-effect models with 

species-level phylogeny (the maximum credibility phylogenetic tree) as a random effect for (a) duetting (vs. no duetting, i.e. no female song and female solo 

song) (N = 269 species), (b) duetting (vs. no female song) (N = 133 species), (c) female solo song (vs. duetting) (N = 82 species), (d) female solo song (vs. no 

female song) (N = 111 species) as a response variables and life-history traits (territoriality, social bonds and cooperative breeding) and an environmental 

variable (NDVImax) as explanatory variables in songbirds of the South Africa and Lesotho. In contrast to model results reported in Table 1 and Table S1–S5 

where territoriality, social bonds and cooperative breeding were treated as continuous variables, here, these variables were coded as categorical predictors. 

Estimates of the posterior mean with 95% credible intervals (lower and upper CI), posterior mode of the phylogenetic signal (lambda) and pMCMC values are 

reported. Statistically significant results are highlighted by bold. 

Predictor Posterior mean 95% CI lambda pMCMC 

 Multivariable Univariable Multivariable Univariable Multivariabl

e 
Univariable Multivariable Univariable 

(a)         

Territoriality (seasonal) -543.94 -495.72 -829.61–-266.11 -750.70–-222.68 0.478 0.520 <0.001 <0.001 

Territoriality (weak) -484.12 -442.66 -778.30–-216.51 -701.41–-168.25   <0.001 <0.001 

Social bonds* – – – –  – – – 

Cooperative breeding 23.27 47.42 -122.91–158.28 -42.51–152.87  0.873 0.743 0.308 

NDVImax 108.76 134.80 -151.79–423.57 -62.80–348.86  0.998 0.390 0.163 

(b)         

Territoriality (seasonal) -503.85 -459.35 -709.04–-258.84 -706.13–-220.39 0.427 0.667 <0.001 <0.001 

Territoriality (weak) -433.40 -414.69 -662.13–-199.02 -688.84–-196.43   <0.001 <0.001 

Social bonds* – – – – – – – – 

Cooperative breeding 44.12 60.69 -126.83–199.02 -53.34–191.26  0.877 0.567 0.290 

NDVImax 249.50 205.04 -48.04–510.83 -10.19–456.26  0.996 0.078 0.052 

(c)         

Territoriality (seasonal) 473.97 418.56 187.33–754.17 174.04–683.88 0.757 0.732 0.002 <0.001 

Territoriality (weak) 123.12 231.42 -257.74–559.20 -56.02–568.40   0.543 0.129 

Social bonds (short) -414.51 -115.30 -1242.35–396.92 -831.40–554.80  0.867 0.327 0.769 

Social bonds (long) -555.22 -349.80 -1288.72–172.76 -938.40–183.80   0.118 0.257 
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Cooperative breeding 15.05 -38.06 -200.68–243.80 -242.16–149.41  0.873 0.851 0.673 

NDVImax 124.89 -40.77 -358.91–590.10 -423.25–317.69  0.999 0.569 0.803 

(d)         

Territoriality (seasonal) -166.05 -208.83 -510.35–147.59 -505.01–48.61 0.686 0.728 0.290 0.118 

Territoriality (weak) -590.36 -618.66 -1270.55–83.49 -1259.45–-85.99   0.065 0.010 

Social bonds (short) -276.37 208.84 -1104.90–507.99 -335.52–945.22  0.658 0.443 0.500 

Social bonds (long) -85.52 381.09 -873.69–625.25 -140.52–1033.26   0.814 0.141 

Cooperative breeding 106.84 147.12 -262.64–455.41 -130.23–419.45  0.689 0.518 0.259 

NDVImax 306.75 377.74 -262.49–915.19 -74.13–940.43  0.653 0.292 0.097 

*Because all species singing in duets belonged to one social-bond (long-term) category, it was not possible to establish social bonds as an explanatory variable 
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Table S7. Results of multivariable and univariable models based on a Markov chain Monte Carlo technique for generalized linear mixed-effect models with 

family-level phylogeny (the maximum credibility phylogenetic tree) as a random effect for (a) duetting (vs. no duetting, i.e. no female song and female solo 

song) (N = 269 species), (b) duetting (vs. no female song) (N = 133 species), (c) female solo song (vs. duetting) (N = 82 species), (d) female solo song (vs. no 

female song) (N = 111 species) as a response variables and life-history traits (territoriality, social bonds and cooperative breeding) and an environmental 

variable (NDVImax) as explanatory variables in songbirds of the South Africa and Lesotho. In contrast to model results reported in Table 1 and Table S1–S5 

where territoriality, social bonds and cooperative breeding were treated as continuous variables, here, these variables were coded as categorical predictors. 

Estimates of the posterior mean with 95% credible intervals (lower and upper CI), posterior mode of the phylogenetic signal (lambda) and pMCMC values are 

reported. Statistically significant results are highlighted by bold. 

Predictor Posterior mean 95% CI lambda pMCMC 
 Multivariable Univariable Multivariable Univariable Multivariable Univariable Multivariable Univariable 

(a)         

Territoriality (seasonal) -605.91 -544.80 -886.33–-308.21 -855.18–-263.23 0.555 0.595 <0.001 <0.001 
Territoriality (weak) -530.94 -476.81 -812.50–-262.51 -758.20–-196.01   <0.001 <0.001 

Social bonds* – – – –  – – – 

Cooperative breeding -3.58 34.73 -159.54–150.52 -54.01–139.34  0.796 0.956 0.422 

NDVImax 89.24 100.40 -183.35–354.43 -67.86–298.04  0.832 0.532 0.217 

(b)         

Territoriality (seasonal) -520.81 -483.23 -775.70–-296.78 -766.18–-230.24 0.471 0.621 <0.001 <0.001 

Territoriality (weak) -448.59 -431.60 -698.67–-221.69 -684.87–-179.20   <0.001 <0.001 

Social bonds* – – – – – – – – 

Cooperative breeding 31.83 66.67 -134.34–190.09 -46.27–192.70  0.762 0.675 0.211 

NDVImax 217.53 136.17 -44.55–480.98 -50.49–367.89  0.896 0.110 0.116 

(c)         

Territoriality (seasonal) 487.79 425.73 241.67–744.20 175.46–669.43 0.660 0.644 <0.001 <0.001 

Territoriality (weak) 163.27 256.19 -352.42–605.40 -32.28–583.88   0.402 0.100 

Social bonds (short) -411.74 -250.10 -1458.01–403.11 -1271.20–545.80  0.775 0.394 0.631 

Social bonds (long) -537.66 -448.40 -1318.37–362.18 -1309.70–331.10   0.177 0.261 

Cooperative breeding 22.28 -8.88 -187.25–209.85 -203.81–181.99  0.773 0.777 0.918 
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NDVImax 159.67 -64.42 -224.39–573.48 -478.10–249.50  0.845 0.420 0.671 

(d)         

Territoriality (seasonal) -204.35 -208.83 -537.77–121.21 -505.01–48.61 0.686 0.721 0.189 0.118 

Territoriality (weak) -770.66 -618.66 -1689.02–-42.04 -1259.45–-85.99   0.032 0.010 

Social bonds (short) -192.49 208.84 -1205.64–976.49 -335.52–945.22  0.584 0.681 0.500 

Social bonds (long) -66.17 381.09 -1128.72–999.23 -140.52–1033.26   0.908 0.141 

Cooperative breeding 205.42 147.12 -168.16–501.09 -130.23–419.45  0.600 0.249 0.259 

NDVImax 172.18 272.18 -523.10–689.03 -147.38–776.89  0.527 0.568 0.233 

*Because all species singing in duets belonged to one social-bond (long-term) category, it was not possible to establish social bonds as an explanatory variable 
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Figure S1. Geographical patterns in the proportion of particular territoriality type: (a) year-

round territoriality, (b) seasonal territoriality, (c) no territoriality; and environmental 

conditions: (d) NDVImax across local assemblages (0.25° × 0.25° grid cell) of South African 

songbirds (N = 163 species). 
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