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ABSTRACT 

 Neutrophils are essential cells of the immune system. They engage in pathogen 

clearance, inflammatory response, and wound healing. Proper production and activation of 

neutrophils is critical for the health of an individual, since several disorders are related to 

neutrophilic alterations. In this thesis, we explore three previously uncharacterized 

mechanisms that might be involved in the regulation of neutrophilic differentiation. First, we 

addressed the role of the canonical Wnt signaling pathway. This signaling is executed by 

interaction of -catenin with TCF/LEF transcription factors. We employed a murine model 

that specifically inactivates -catenin-TCF/LEF-mediated transcription by expressing 

a dominant negative form of TCF4 (dnTCF4). Using this model in combination with several 

in vitro and in vivo assays we demonstrated that -catenin-TCF/LEF signaling directly 

upregulates expression of G-CSF receptor in hematopoietic progenitors, imposing myeloid 

commitment and favoring neutrophilic differentiation. This appeared to be especially 

important during the response to systemic infection, termed emergency granulopoiesis, as 

dnTCF4-expressing mice showed high susceptibility to Candida albicans infection. 

Remarkably, the critical role of -catenin-TCF/LEF signaling for neutrophil differentiation 

was demonstrated also in human primary cells. Second, we investigated the function of the 

transcription factor C/EBP, whose function in granulopoiesis was, unlike the function of 

other members of the C/EBP family, uncharacterized. To this aim, we generated 

a hematopoietic-specific Cebpg knock-out mouse. Surprisingly, our results demonstrated 

that C/EBP is dispensable for both steady-state and emergency granulopoiesis. Third, we 

focused on a completely unknown gene, EVI2B, which was found to be directly upregulated 

by the transcription factor C/EBP a master regulator of neutrophilic differentiation. With 

the use of EVI2B knock-down approaches in human and murine cell lines, primary cells, and 

Evi2b deficient mice we showed that the transmembrane protein EVI2B is necessary for 

proper neutrophil differentiation. Altogether, our work deepens our understanding of the 

processes regulating the production of neutrophils, and presents novel mechanisms that could 

be clinically modulated to interfere with granulopoiesis.   



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

ABSTRAKT 

 Neutrofily jsou nedílnou složkou imunitního systému, zodpovědnou za zneškodnění 

patogenů, eskalaci zánětlivé reakce a hojení poškozených tkání. Drastické snížení krevních 

neutrofilů, zvané neutropenie, je život ohrožující patologie spojená s neschopností pacienta 

čelit běžným infekcím. Neúplná neutrofilní diferenciace zároveň vede ke vzniku fatálních 

meloidních leukémií. Zvýšený počet či aktivita neutrofilů je naopak zase častou příčinou 

patologií autoimunitních. Je tedy zřejmé, že množství neutrofilů musí být pro udržení 

hemostázy a správné funkce imunitního systému přesně regulováno. V rámci této práce jsme 

prozkoumali tři dosud nepopsané mechanismy, které by mohly neutrofilní diferenciaci 

regulovat. Prvním z nich je kanonická signální dráha Wnt. Aktivace této dráhy probíhá 

prostřednictvím interakce -kateninu s transkripčními faktory TCF/LEF. Úlohu této signální 

dráhy jsme zkoumali s použitím myšího modelu, ve kterém byla transkripce, indukovaná 

komplexem -kateninu s faktory TCF/LEF, inhibována prostřednictvím dominantně 

negativní varianty proteinu TCF4 (dnTCF4). S pomocí řady in vitro a in vivo metod jsme 

zjistili, že -katenin v interakci s faktory TCF/LEF zvyšuje v hematopoetických 

progenitorech expresi receptoru G-CSF, molekuly, která navozuje diferenciaci myeloidních 

buněk. Tento regulační prvek se ukázal být důležitý zejména v průběhu odpovědi organismu 

na systémovou infekci, jejíž nedostatečnost se při systémové kandidémii projevila vysokou 

úmrtností dnTCF4 myší. V rámci druhého projektu jsme zkoumali, jakou úlohu během 

diferenciace neutrofilů zastává transkripční faktor C/EBP, jediný člen své proteinové rodiny 

jehož funkce v tomto procesu nebyla dosud řádně popsána. S použitím myši s tkánově 

specifickou ablací Cebpg jsme navzdory očekávání zjistili, že tento transkriční faktor není 

pro vývoj neutrofilů potřebný. Třetí projekt byl zaměřen na gen se zcela neznámou funckcí 

EVI2B, jehož exprese je však v průběhu diferenciace granulocytů zvýšena prostřednictvím 

transkripčního faktoru C/EBP, jednoho ze zásadních regulátorů granulocytárního vývoje. 

Naše exerimenty na buněčných liniích a myších i lidských primárních buňkách ukázaly, že 

snížení exprese genu EVI2B pomocí shRNA vede k zástavě diferenciace granulocytů, a tedy 

že tento gen je pro jejich vývoj nezbytný. Naše práce tedy ve výsledku popsala dva nové, 

dříve neznámé mechanismy jejichž prostřednictvím je produkce neutrofilů regulována, 

a přispěla tedy k celkovému porozumění komplikovaného a složitého procesu neutrofilní 

diferenciace.  
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1. INTRODUCTION 

1.1. The hematopoietic system 

Blood is an essential tissue that secures multiple fundamentally important processes 

for the organism’s survival, such as tissue oxygenation, pathogen clearance, antibody 

production, or blood coagulation. To secure all these functions, 1012 functionally and 

morphologically diverse blood cells are produced every day in a highly dynamic process 

called hematopoiesis. Blood cells can be categorized into three functionally and 

ontologically distinct clusters – erythroid (erythrocytes), myeloid (platelets, monocytes, 

macrophages, dendritic cells, granulocytes, mast cells), and lymphoid (mainly T-cells, B-

cells and natural killer cells) lineages. While erythrocytes are responsible for O2 and CO2 

exchange and transport, myeloid and lymphoid cells protect the organism from pathogens 

and tissue malfunction or damage. Despite myeloid and lymphoid cells share their general 

purpose, the mechanisms they employ to protect the organism are essentially different. In 

particular, lymphoid cells are part of an adaptive immunity that is able to specifically respond 

towards new stimuli that individuals encounter during their lives. In contrast, myeloid cells 

provide less specific but crucial rapid pathogen clearance, death cell removal, and facilitate 

inflammation. The production of all these cell types needs to be in balance (or hemostasis) 

to maintain the organism in healthy conditions. Insufficient or extensive production of 

distinct cell types results in severe, life-threatening pathologies, such as anemia, 

thrombocytopenia, neutropenia, leukemia, or various autoimmune disorders. Thus, this 

massive daily blood cell production must be tightly and precisely regulated. [1] Moreover, 

the hematopoietic system must retain considerable plasticity in order to be able to adjust 

blood cell production in response to conditions of increased hematopoietic need, such as 

recovery after excessive blood loss or during infection. [2] Therefore, our ability to 

therapeutically address many blood-related pathological conditions depends on our 

understanding of the complex and intricate process of hematopoietic differentiation. 

In this thesis, we will focus on mechanisms regulating differentiation of granulocytes, 

a blood cell type that is, as an important part of the innate immune system, absolutely crucial 

to resolve bacterial and fungal infections. 
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1.2. Biology of neutrophils 

Together with basophils, eosinophils, and mast cells, neutrophils belong to the group 

of myeloid cells called granulocytes. Healthy human body produces daily approximately 1011 

neutrophils, which makes them the most frequent leukocyte type in the blood tissue [3]. 

Neutrophils are predominantly characterized by their unique morphology (granular 

cytoplasm and rather small segmented nucleus) and expression of specific combination of 

surface markers (CD11b, Ly6G, and Ly6C in mice and CD11b, CD13, CD15, CD16, CD66b 

in humans) (Figure 1).   

 

 

 

 

 

 

 

 

Figure 1 – Characterization of murine neutrophils by their morphology and expression of 

surface markers. (A) Microphotograph of May-Grunwald Giemsa stained neutrophils differentiated 

from 32D/G-CSF-R cell line, adapted from [4]. (B) Mature (blue square) and immature (red square) 

neutrophils from peripheral blood defined by expression of CD11b, Ly6G, and Ly6C surface markers 

by flow cytometry. 

 

Neutrophils are essential executors of the innate immune system equipped with a 

battery of antimicrobial and pro-inflammatory molecules within their cytoplasmic granules 

[5] and with the ability to phagocyte. [6] They are rapidly recruited to the site of an injury or 

infection, [7] where they degranulate and activate an inflammatory response facilitating 

elimination of the pathogen and consequent tissue healing [8]. Low neutrophil numbers 

(neutropenia) caused either by genetic mutations, chemotherapeutic agent, or during poor 
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recovery after hematopoietic stem cell transplantation, is an hematological disorder that leads 

to life-threatening immunodeficiency [9]–[11]. On the contrary, excessive production or 

activation of neutrophils might have deleterious effects on a patient’s health too. Pathologies 

derived from aberrant neutrophilic production and function include various inflammatory 

and autoinflammatory diseases (e.g. pyoderma gangrenosum, inflammatory bowel diseases, 

chronic recurrent multifocal osteomyelitis, obstructive pulmonary disease, inflammatory 

arthritis) or leukemia. [12]–[17] Thus, in order to successfully prevent or treat neutrophil-

related pathologies, it is necessary to study and understand the mechanisms employed during 

neutrophil development and function. 

The vast majority of neutrophils are localized in the bone marrow and peripheral 

blood; physically separated from the tissues they protect by the vascular endothelium. In 

order to overcome the endothelial barrier of microvasculature and to accumulate at the site 

of an injury, neutrophils, endothelial cells, and damaged tissue have to coordinate a cascade 

of specific signaling events. This cascade is triggered by the release of damage associated 

molecular patterns – DAMPs (e.g. adenosine triphosphate, extracellular histones, high 

mobility group box 1 – HMGB1 protein) and pathogen associated molecular patterns – 

PAMPs (e.g. lipopolysaccharide, flagellin, formylated peptides, etc.) from injured cells. 

DAMPs and PAMPs are promptly detected by pattern recognition receptors (e.g. toll-like 

receptors - TLRs) on the surface of tissue-residing leukocytes, triggering secretion of pro-

inflammatory molecules (tumor necrosis factor  − TNF , interleukin 1 − IL-1), and 

activating endothelial cells in their proximity. [18]–[21] 

Endothelial cells subsequently enhance surface expression of P- and E- groups of 

selectins, high affinity receptors that transiently bind glycosylated molecules on the surface 

of neutrophils. [22]–[28] Selectin-mediated interaction tethers neutrophils from blood stream 

to the inflamed endothelial wall and together with blood flow induces a process called 

“neutrophil rolling”. [29] Neutrophils rolling on the surface of inflamed endothelial cells are 

subsequently exposed to secreted chemokines. [30] Upon stimulation, chemokine GPCR (G 

protein coupled receptors) trigger conformational changes of integrins (e.g. CD11b), 

enabling their firm and stable interaction with integrin ligands on the surface of endothelial 

cells. Integrin-ligand interaction between neutrophils and endothelial cell surface gradually 
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reduces the speed of neutrophil movement until it is completely arrested at the endothelium. 

[31]–[34] Following redistribution of the ectopic proteins on the endothelial cells navigates 

neutrophils towards endothelial cell junctions, [35], [36] a predominant site of transmigration 

from microvasculature to the inflamed tissue. [37], [38]  

Once extravasated, neutrophils are guided to the site of injury by a gradient of “end-

target” chemoatractants. Their activity in the afflicted site is, however, strongly dependent 

on the nature of the insult. While pathogen-induced damage causes strong pro-inflammatory 

and aggressive antimicrobial response accompanied with relatively large-scale collateral 

tissue damage, neutrophils responding to sterile injury rather contribute to wound healing 

and tissue regeneration. [39] As described above, neutrophils arriving to the afflicted tissue 

contain a broad palette of mechanisms that can be used to eliminate pathogens, including 

production of reactive oxygen species (ROS), degranulation, phagocytosis, secretion of pro-

inflammatory molecules, and NETosis.  

Neutrophil activation is accompanied by enhanced expression of nicotinamide 

adenine dinucleotide phosphate (NADPH) oxidase, a major source of cellular ROS. [40] 

NADPH oxidase-mediated ROS production augmentation, sometimes referred as respiratory 

burst, has a potent antimicrobial activity. Mutations of NADPH oxidase prohibit human 

phagocytes to effectively eradicate microorganisms and are associated with severe and 

recurrent infections. On contrary, excessive ROS can inflict serious damage to the host 

tissues, cells, and macromolecules. [41], [42] Another crucial anti-microbial activity of 

neutrophils is degranulation, during which neutrophils release complex mixture of 

antibacterial agents from their granules into the environment. Granules contain for example 

myeloperoxidase, serine and cysteine proteases, cathepsins G, elastase, α-defensins, 

azorucidin, matrix metallopeptidase 9 (MMP-9), β-glucoronidase, interleukin 16, and 

chemokines (C-X-C motif chemokine ligand 1 and 12 - CXCL1, CXCL12). [43]–[45] 

Granule content has not only the potential to fight pathogens, remodel damaged tissue, and 

attract additional immune cells, but also to cleave and maturate pro-inflammatory 

interleukins of the IL-1 family, further escalating the ongoing inflammation. [46]  

When the activating signal is too strong, overstimulated neutrophils might undergo 

an alternative type of cell death with a powerful antimicrobial properties - NETosis. During 
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NETosis, chromatin is decondensed, dissolved, covered with granular contents (proteases, 

antimicrobial and pro-inflammatory agents, etc.), and propelled from the cell forming 

neutrophil extracellular traps (NETs). On one hand, NETs incapacitate pathogens, restraining 

them from spreading, inducing their prompt clearance, and providing strong activating 

stimuli for other immune cells. [39], [47] On the other hand, NETs have been linked to 

several pathological states, such as thrombus formation, chronic inflammation, myocardial 

infarction, or COVID-19 related thrombosis and mortality. [48]–[50] 

1.3. Hematopoietic stem cells (HSCs) 

All blood cells, including neutrophils, originate from HSCs, a rare population of cells 

that reside in the bone marrow. [1] Despite the hematopoietic system produces millions of 

blood cells every minute, single HSC can go only through very limited number of cell 

divisions. Therefore, HSCs are kept in a dormant state and their direct contribution to 

hematopoiesis is rather minimal. [51] Dormant HSCs are characterized by slow cell-cycle 

progression, low metabolic activity, [52] energetic metabolism relying on glycolysis, [53] 

intracellular hypoxia, [54] and low proteosynthesis. [55] These properties protect HSCs from 

genotoxic stress, caused for example by DNA replication or by byproducts of basal 

metabolism, such as physiologically occurring reactive oxygen species (ROS). Since proper 

HSC function secures life-long hematopoiesis that is essential for the individual’s survival, 

it is crucial to continuously maintain the integrity of the HSC pool by preserving their 

protective dormant state. Indeed, dormant HSCs have the highest reconstitution capacity in 

transplantation-based assays, while their proliferation or genomic instability is associated 

with loss of HSC function. [51], [56] Despite the importance of preserving the HSC pool, 

the HSC population is being slowly shortened by an infrequent cell death, eventual HSC 

differentiation, and bone marrow egress. 

In order to compensate for this HSC loss, HSCs need to occasionally divide and 

propagate their population in a process called self-renewal, which is one of the unique stem 

cells properties. There are two major theoretical concepts of cell division that resolve self-

renewal – symmetric and asymmetric. During symmetric division, the HSC goes through a 

cell cycle, creating two daughter cells that are functionally and morphologically 

indistinguishable from the maternal HSC. Asymmetric division, in contrast, produces two 
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functionally different daughter cells. One of them inherits properties of the original HSC, 

and the other gains the potential to further differentiate. [57] 

Leaving aside dormancy and self-renewal, HSCs are also characterized by their 

multipotency – an ability to produce every blood cell type and, consequently, to reconstitute 

the whole hematopoietic system. Transplantation experiments clearly demonstrated that as 

few as one single HSC is able not only to repopulate the hematopoietic system of an 

irradiated recipient mouse, but also to expand the HSC pool (by self-renewal) and repopulate 

secondary recipients. [58], [59] Importantly, multipotency of HSC was utilized in human 

medicine, where HSC transplantation became a major, powerful, and up-to-day irreplaceable 

tool in the treatment of severe hematological disorders. [60], [61] However, despite its broad 

application in both clinical and experimental settings, the mechanisms regulating 

hematopoietic differentiation and HSC fate-decisions remain obscured. 

1.4. HSC commitment and differentiation 

From an ontological point of view, all hematopoietic cells can be segregated into 

three major hierarchically ordered categories: HSCs, hematopoietic progenitors, and 

differentiated cells. These categories differ mostly in their self-renewal abilities, 

differentiation capacity, and proliferation, with HSC being at the apex of the system. [1] 

In general, commitment and differentiation to erythroid, myeloid, or lymphoid 

lineage is progressively acquired at the expense of multipotency and self-renewal. Dormant 

HSC, sometimes referred as long-term HSC (LT-HSC) for their ability to self-renew and 

sustain complete hematopoietic reconstitution in serial transplantation assays, differentiate 

with very low frequency (1% of LT-HSCs per day). As shown in Figure 2, differentiating 

LT-HSCs produce a population of short-term HSC (ST-HSC) that are still multipotent, but 

that lost their ability to reconstitute blood production in serial transplantations. On the other 

hand, ST-HSCs still possess high capacity to self-renew and to preserve their population 

without significant contribution from the LT-HSC pool. A heterogeneous population of 

multipotent progenitors (MPPs) descends further from ST-HSCs. MPPs show rapid 

proliferation, certain degree of self-renewal, lineage specification, and their production of 
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committed progenitors exceeds the input from ST-HSCs 280 times, suggesting MPPs are a 

major source of daily steady-state blood production. [62] 

 The classical model of hematopoietic differentiation (Figure 2), based on expression 

of cell surface markers, HSCs transplantations, and colony forming assays, assumes that 

MPPs produce two types of progenitor cells: common myeloid progenitors (CMPs) and 

common lymphoid progenitors (CLPs). According to this model, CMPs further differentiate 

into megakaryocyte-erythrocyte progenitors (MEPs) or into granulocyte-monocyte 

progenitors (GMPs). While MEPs gradually form erythrocytes and platelets, GMPs precede 

the generation of monocytes and granulocytes. [63] However, recent development of novel 

techniques enabling analysis on a single-cell level questioned the classical hematopoietic 

model and the very existence of this hierarchy. For example, single-cell RNA sequencing 

(scRNA-seq) of CMP, MEP, and GMP populations discovered 18 transcriptionally distinct 

subpopulations within these progenitor pools. [64]–[66] Additionally, it has been reported 

that myeloid-restricted progenitors might be produced from LT-HSCs directly, bypassing the 

ST-HSC and MPP stages. [67] Moreover, Grinenko et al. demonstrated that HSCs can 

acquire myeloid commitment even without progressing through a single cell division. [68] 

Thus, these observations gradually raised a need for establishing a new, alternative model of 

hematopoietic development. 

 To resolve this question, Velten et al. integrated flow cytometry phenotyping, 

scRNA-seq, and functional in vitro and in vivo assays in unbiased analysis of human 

immature blood cells. [69] They showed that developing cells are not required to differentiate 

step-by-step through distinct defined stages, nor to do binary branching decisions, as 

described by the classical hematopoietic model. According to their analysis, hematopoietic 

stem and progenitor cells (HSPCs) rather form a continuum of low-primed undifferentiated 

hematopoietic stem and progenitor cells (CLOUD-HSPCs), where cells are present in 

resilient transitional states. In this ambiguous form, cells are continuously acquiring 

transcriptomic priming for multiple lineages, stochastically selecting one, and finally 

producing lineage-committed progenitors as an output of CLOUD-HSPCs. 
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Figure 2 – The classical hierarchical model of hematopoietic differentiation. Schematic 

representation of the classical concept of differentiation pathways of blood cells, starting from 

multipotent LT- and ST-HSC. Differentiation proceeds through populations of MPP, which show the 

first signs of lineage specification. Consequently, the progeny of MPP bifurcate into progenitors of 

two separated lineages: myeloid (CMP) and lymphoid (CLP). CLP can further differentiate via stages 

of specifically committed precursors into dendritic cells (DC), natural killer cells (NK), B-, or T-cells 

(B and T, recpetively). CMP differentiate into either MEP, producing further erythroblasts (Ery) or 

megakaryocytes (Mk), or GMP that give rise to granulocytes (neutrophils, basophils, eosinophils) 

and monocytes. 
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Regardless of the type of hematopoietic model, the developmental stage where 

lineage commitment primarily occurs still remains elusive. It seems probable that 

transcriptomic changes resulting into lineage specification and commitment are orchestrated 

by an intricate combination of cell intrinsic (e.g. expression of specific transcription factors 

and epigenetic changes) and extrinsic factors (e.g. cytokines and niche signals). It has been 

additionally suggested that the HSC pool is heterogeneous itself and contains a mixture of 

HSCs with already predisposed potential for distinct lineages which are only further 

propagated during differentiation. [70] Nonetheless, this hypothesis was established mostly 

on biased transplantation assays [71] and experiments burdened by pre-selection of 

phenotypically defined HSC populations, which always contain high frequency of HSC-like 

cells that do not possess full HSC properties. [69]  

Despite the indisputable contribution of epigenetic factors [72]–[75] and metabolism, 

[76] the most characterized and decisive intrinsic elements driving HSC lineage commitment 

are transcription factors. [77] Development of certain lineage is usually associated with few 

specific transcription factors. For instance, generation of erythrocytes is driven by GATA 

binding factor 1 (GATA1), Krüeppel-like factor 1 (KLF1), and E2F transcription factor 4 

(E2F4), while megakaryocyte differentiation is orchestrated by GATA1, Myeloid ecotropic 

integration site 1 (MEIS1) and pre-B-cell leukemia transcription factor 1 (PBX1). [64], [69] 

Consistently, absence of these factors results in a differentiation arrest and loss of the affected 

lineage, [78]–[84] while their overexpression might induce trans-differentiation of 

committed cells to different lineage. [85]–[89] Nonetheless, primary cell cultures and in vitro 

differentiation assays clearly demonstrate that lineage commitment and HSC fate can be 

imposed and driven by cell extrinsic factors as well. [90]–[92] Extrinsic factors are usually 

provided by the bone marrow microenvironment (mostly endothelial and mesenchymal 

stromal cells) and are essential for many aspects of proper HSC function including survival, 

self-renewal, dormancy, or homing. [93] There are various types of cell extrinsic factors, 

however, those regulating HSC lineage commitment and differentiation are mostly 

cytokines. Indeed, sole exposure to specific cytokines [94], [95] or overexpression of 

cytokine receptors [96] is sufficient to induce lineage switch in developing cells. 

Remarkably, the most important cytokines for myeloid development are macrophage colony 

stimulating factor (M-CSF) and granulocyte colony stimulating factor (G-CSF), as shown by 
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several lines of evidence. First, mice deficient in G-CSF, M-CSF, or their corresponding 

receptors exhibited myeloid differentiation block and showed diminished populations of 

neutrophils or monocytes, respectively. [97]–[101] Second, M-CSF and G-CSF were shown 

to directly impose myeloid comitment to HSCs. [90], [102]  

1.5. Transcriptional regulation during myeloid commitment and differentiation 

All cells in the organisms harbor the same genetic information. Lineage specification, 

commitment, and differentiation are therefore inevitably driven by changes in gene 

expression. These stage-specific expression patterns might be very complex and are 

predominantly driven by transcription factors and subsequently maintained by epigenetic 

changes. [103] Since this thesis is focused on the regulation of neutrophil development, we 

will discuss the mechanisms regulating myeloid differentiation in more detail. Interestingly, 

only a limited number of transcription factors (and their combinations) are critical for proper 

myeloid development; the most explored ones are Runt-related transcription factor 1 

(RUNX1), Spi-1 proto-oncogene (PU-1), GATA1, growth factor 1 independent 

transcriptional repressor (GFI1), and transcription factors of the CCAAT/enhancer binding 

protein (C/EBP) family. [64], [69] Despite their necessity for the development of a given 

lineage, the expression of many transcription factors is not exclusive for one cell type or 

tissue and their function might substantially differ in distinct cellular contexts. 

1.5.1. RUNX1 

 RUNX1 is necessary for the very emergence of HSCs and for the establishment of 

hematopoiesis during embryonic development. Runx1 deficient mice therefore show 

complete lack of liver hematopoiesis and consequent embryonic lethality. [104] In order to 

study the function of Runx1 in adult HSC, a conditional knock-out murine model was 

developed. Interestingly, Runx1 was dispensable for the maintenance of adult HSCs, but it 

was necessary for the differentiation of more committed cells into multiple lineages. The 

conditional Runx1 loss was particularly characterized by impaired neutrophil and 

lymphocyte development, profound decline of platelet counts accompanied by block of 

megakaryocytic maturation, expansion of hematopoietic progenitors, and mild 

myeloproliferative disorder. [79], [80], [105] Consistently, RUNX1 mutations are associated 
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with thrombocytopenia, myelodysplasia, and development of acute myeloid leukemia 

(AML) in humans. [106], [107] Given the heterogeneity of phenotypes of Runx1 deficient 

mice, it is clear that Runx1 is able to impose distinct transcriptional programs depending on 

the cellular context. In B-cell development, Runx1 supports survival of B-cell progenitors 

and induces expression of signaling proteins that drive pre-B-cell maturation. [108] In 

contrast, Runx1 regulates CD4/CD8 lineage choice via direct repression of decisive T-

helper-inducing POZ/Krüeppel-like factor (Th-POK) transcription factor in T-cells. [109] In 

the myeloid compartment, Runx1 mediates chromatin changes that allow expression of other 

crucial regulators of myeloid commitment and differentiation, such as PU.1, C/EBP, or M-

CSF receptor (M-CSF-R). [110], [111] Thus, together with its function during embryonic 

hematopoiesis, RUNX1 seems to be a pioneer transcription factor that imposes myeloid 

commitment to HSCs. 

1.5.2. GFI1 

GFI1 is a transcriptional repressor that has multiple functions in the hematopoietic 

system, such as HSC self-renewal maintenance, [112] protection from genotoxic stress, [113] 

B-cell development, [114] and T-cell maturation. [115] Nonetheless, the most profound 

function of GFI1 is the promotion of neutrophil development. It was reported that Gfi1 

deficient mice showed complete ablation of neutrophils, accumulation of GMPs, and 

consequent fatal immunodeficiency. [81], [116] Further, GFI1 loss-of-function mutations 

were consistently found in human patients suffering from severe congenital neutropenia, a 

genetic hematological disorder characterized by low neutrophils counts and expansion of 

immature cells. [117]–[119] Laslo et al. additionally described how Gfi1-dependent 

neutrophilic differentiation occurs. According to this study, Gfi1 imposes neutrophilic 

commitment to bipotential GMP progenitors (GMPs can produce either neutrophils or 

macrophages) by repressing macrophage-specific genes. [120] 
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1.5.3. GATA1 

The transcription factor GATA1 affects the development of multiple hematopoietic 

lineages, heavily depending on the cellular context, but it is predominantly expressed in 

erythroid cells, megakaryocytes, eosinophils, and mast cells. Initial studies demonstrated that 

Gata1 deficiency caused erythropoietic arrest at the proerythroblast stage, complete loss of 

red blood cells, and prenatal lethality in murine embryos. [121]–[124] Later, more specific 

models showed that loss of Gata1 activity impairs also maturation of eosinophils, [125] mast 

cells, [126] and megakaryocytes. [127] Despite it seems that Gata1 promotes rather terminal 

maturation of cells, [128] it possesses the striking ability to reprogram and transdifferentiate 

various blood progenitors to erythroid, megakaryocytic, and eosinophilic lineages when 

overexpressed. [87], [129]–[131] How can a single transcription factor instruct commitment 

to such different lineages is not completely understood. The most current hypothesis assumes 

that different cell types provide distinct binding partners that are able to shift Gata1 activity 

towards specific promoters and enhancers. Erythroid maturation is, for instance, driven by 

Gata1 in complex with its cofactor Friend of Gata1 (Fog1); disruption of this complex or 

Fog1 deficiency results in an erythroid differentiation arrest observed also in Gata1 loss-of-

function models. [132], [133] Additionally, Gata1 activity can be enhanced on specific 

promoters by its synergistic interaction with other erythroid-specific transcription factors, 

such as (Specificity protein 1) Sp1 or Klf1. [134]  

In contrast, GATA1 expression can be suppressed by transcription factors specific 

for different lineages. For instance, GATA1 and the transcription factor PU.1, an essential 

regulator of neutrophil and B-cell development, exerts reciprocal inhibitory activity. In other 

words, presence of PU.1 results in the absence of GATA1 and vice versa. [135] This 

functional antagonism and mutual exclusivity therefore illustrates how a sole stoichiometry 

of two instructive factors can impose the commitment to a specific lineage in HSPCs.  

1.5.4. PU.1 

The transcription factor PU.1 is absolutely essential for the entire hematopoietic 

system, as PU.1 null mice suffer from lethal multi-lineage hematopoietic failure and die 

shortly after a birth. Interestingly, erythroid and megakaryocytic lineages, regulated by PU.1 
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antagonist GATA1, [135] were preserved in these mice. [82], [136] In HSCs, PU.1 

expression is initiated by the transcription factor RUNX1 [137] and preserves HSCs 

dormancy and function by balancing cell cycle regulators. [138] In more committed 

populations, PU.1 is involved in the production of CLP and CMP progenitors, CMP to GMP 

transition, and further maturation of monocytes and granulocytes. [139], [140] Additionally, 

high PU.1 expression is necessary for B-cell lineage commitment and formation of early B-

cell progenitors, while its downregulation is a critical event during T-cell development in 

thymus. [141], [142] This pleiotropic PU.1 activity and its capacity to regulate differentiation 

of multiple lineages is secured by its variable DNA binding properties. [143] Thus, PU.1 

coordinates cell cycle regulators in HSCs, [138] upregulates G-CSF-R, M-CSF-R, and 

granulocyte-macrophage colony stimulating factor receptor (GM-CSF-R) in myeloid cells, 

[144], [145] while it suppresses genes involved in T-cell receptor production [141] and 

stimulates expression of interleukin-7 receptor (IL-7-R) in lymphoid lineage. [146] The 

binding affinity of PU.1 towards specific gene regulatory regions depends mostly on PU.1 

concentration [143], [147] and binding partners. The early myelopoietic program, for 

instance, is thought to be initiated by PU.1 interacting with members of the C/EBP family of 

transcription factors. [148] 

1.5.5. C/EBP transcription factors 

C/EBP transcription factors (C/EBP, C/EBP, C/EBP, C/EBP, C/EBP, and 

C/EBP) are widely expressed proteins belonging to the basic-leucine zipper (bZIP) 

superfamily, which regulate crucial processes such as cell differentiation, proliferation, 

energy metabolism, or inflammation. They harbor highly variable N-terminal transactivation 

domains and a conserved C-terminal region containing dimerization and DNA binding 

domains (bZIP). Since the C-terminal region is conserved in all C/EBP family members, it 

is not surprising they all have a similar consensus binding sequence, i.e. TTACGTAA. But 

despite this very similar DNA binding sequence, each C/EBP factor has distinct tissue and 

developmental-stage specific functions. This functional heterogeneity of C/EBP 

transcription factors is therefore ascribed to a) their N-terminus that is variable in sequence, 

length, posttranslational modifications, and interacting partners; and b) their ability to form 
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intra- and interfamily homo- and heterodimers that provide each dimer with unique DNA 

binding specificity. [149] 

1.5.5.1. C/EBP  

C/EBP is the most extensively studied C/EBP transcription factor in the 

hematopoietic system and it is an essential “master” regulator of early neutrophil 

development. Cebpa deficiency is manifested by downregulation of myeloid-related genes 

and complete loss of granulocytic lineage from GMPs to further stages.[150]–[153] 

Consistently, inactivation of an hematopoietic-specific C/EBP enhancer located 42 kb 

upstream from Cebpa gene resulted in loss of C/EBP expression and consequent ablation 

of GMPs and neutrophils. [154] Mechanistically, C/EBP binds to the cis-regulatory 

elements that were made accessible by PU.1, and orchestrates CMP-to-GMP transition, after 

which C/EBP is dispensable for terminal stages of granulopoiesis. [155] Nevertheless, 

others reported that C/EBP is also necessary for proper HSC maintenance. In these studies, 

Cebpa deficient HSCs showed loss of C/EBP-mediated quiescence [156] followed by 

functional impairment and exhaustion of the HSC pool. [154], [157]  

 

Moreover, mutations in CEBPA that prevent proper granulocytic differentiation are 

frequently identified in patients suffering from AML, a disease characterized by a 

granulocytic differentiation arrest. [158] CEBPA mutations were detected in 8.8 % of AML 

cases. A broad spectrum of mutation types occurred in these patients including various 

insertions, deletions, and nonsense mutations. However, particularly interesting and the most 

frequent point mutations were nonsense mutations localizing in the second N-terminal ATG 

codon of CEBPA. These mutations enabled augmented translation of a truncated isoform of 

C/EBP marked as p30, whereas full-length C/EBP is called p42, based on their molecular 

mass. [159] Despite p30 lacks only one N-terminal transactivation domain, it exerts an ability 

to counteract the function of full length p42 C/EBP in a dominant negative manner and 

possesses a diminished DNA binding activity. Consequently, a monoallelic p30 mutation is 

able to completely hinder C/EBP activity in the cell and to provoke a differentiation arrest 

resulting in leukemia onset. [160] 
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The transcriptional program induced by C/EBP is rather strong. C/EBP 

overexpression can, in coordination with PU.1, even trigger T- or B-cell transdifferentiation 

to the myeloid lineage. [85], [161] The set of genes directly upregulated by C/EBP called 

C/EBP signature, was obtained by combining data generated by chromatin 

immunoprecipitation followed by sequencing (ChIPseq) with transcriptomic analyses and 

was found to be downregulated in AML patients harboring CEBPA mutations. [162], [163] 

Despite C/EBP is primarily a transcriptional activator, a recent study revealed it can also 

actively repress genes driving differentiation into other lineages. [64] 

Although the transcriptomic analyses searching for C/EBP target genes identified 

genes that were previously known to be involved in granulopoiesis, they also discovered a 

novel set of C/EBP target genes with so far uncharacterized role in the process of myeloid 

differentiation. An interesting target was the ectopic virus integration site 2b (EVI2B). 

1.5.5.1.1. EVI2B 

EVI2B was originally identified as a common viral integration site in murine 

leukemias, suggesting it might be involved in leukemogenesis. [164] EVI2B gene is localized 

within an intron of neurofibromatosis type1 gene (NF1) and encodes 448 amino acid residues 

long transmembrane glycoprotein. The highest EVI2B expression was detected in the bone 

marrow, but it is also expressed on the surface of B- and T-cells, granulocytes, macrophages, 

DCs, and NK cells. [165], [166] Despite the function of EVI2B in hematopoiesis is 

completely uncharacterized, several studies indicate it might play a role in cell differentiation 

and leukemia. First, EVI2B is involved in the differentiation of certain non-hematopoietic 

cells, specifically melanocytes and keratinocytes. [167] Second, elevated expression of 

EVI2B is associated with poor prognosis in patients with chronic lymphocytic leukemia 

(CLL) [168] and colorectal cancer. [169]  

Together, the evidence that EVI2B is a direct target of C/EBP with high expression 

in granulocytes and with the potential to regulate cell differentiation and leukemia outcome 

allowed us to speculate that EVI2B might be also involved in the process of granulocytic 

development. Thus, one of the goals of this study is to elucidate in detail how is EVI2B 



34 
 

regulated by C/EBP and what is the function of EVI2B in the differentiation of 

granulocytes. 

1.5.5.2. C/EBP 

Interestingly, increased expression of neutrophil-stimulating cytokines (G-CSF, GM-

CSF, and IL-3) in the hematopoietic system of Cebpa deficient mice was able to overcome 

the complete neutrophilic differentiation arrest and to produce functional neutrophils. It was 

shown that these cytokines (present also in the blood during systemic infection) enhance 

expression of C/EBP Consistently, C/EBP loss impaired neutrophil production during 

systemic infection but not in steady-state hematopoiesis, demonstrating C/EBP is crucial 

for emergency granulopoiesis. [170]  

1.5.5.2.1. Emergency granulopoiesis 

Until this chapter, the thesis was focused on mechanisms driving the development of 

neutrophils in unperturbed hematopoiesis. However, there are situations during an 

individual’s life requiring enhanced and rapid production of new neutrophils via a process 

called emergency granulopoiesis. These situations typically involve reconstitution of the 

hematopoietic system after severe bleeding, bone marrow injury (by chemotherapeutics or 

ionizing radiation), or during the course of systemic microbial infections. [171]  

As shown by Boettcher et al., pathogen presence is detected by TLRs expressed on 

the surface of endothelial cells. [172] Endothelial cells respond to this stimulus by releasing 

a potent stimulant of neutrophilic production, G-CSF, into the blood stream. G-CSF is a 

crucial signaling molecule and has multiple roles during emergency granulopoiesis. First, it 

induces egress of neutrophils from bone marrow to peripheral blood. And second, it 

stimulates G-CSF-R-expressing HSPC, skewing their differentiation towards GMPs and, 

consequently, augmenting de novo production of neutrophils. [173], [174]  

The importance of G-CSF in emergency granulopoiesis is well documented in both 

humans and mice. First, elevated levels of G-CSF were detected in septic patients in 

numerous studies. [175]–[178] Second, Csf3 and Csf3r deficient mice were not able to 

expand their neutrophil pool and resolve infections effectively. [97], [98] However, it is 
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important to note that mice lacking G-CSF or its receptor still produce neutrophils and are 

able, to some extent, to enhance their production in response to the presence of pathogens. 

This is probably not caused by the anticipated functional redundancy of G-CSF, GM-CSF, 

and M-CSF, since neutrophils are still present in mice deficient in all three aforementioned 

factors. [101] According to other studies, it is more likely that cytokine-independent 

mechanisms might be involved in myelopoiesis enhancement. Nagai et al. for example 

showed that HSC are able to detect and respond to PAMPs directly with their own TLRs. 

[179] 

Mechanistically, stimulation of G-CSF-R activates downstream JAK/STAT 

signaling that provides pro-survival and pro-proliferative signal, and induces expression of 

the key regulator of emergency granulopoiesis, the transcription factor C/EBP. [170], [180] 

Three different C/EBP isoforms referred as liver-enriched inhibitory protein (LIP), liver-

enriched activating protein (LAP), and liver-enriched activating protein* (LAP*) are 

sequentially produced from Cebpb mRNA. The first isoform that occurs in the HSC upon 

stress induction is LIP. LIP activates expression c-myc and promotes cell cycle progression 

and an expansion of HSC. Thereafter, LIP is replaced with LAP and LAP* isoforms, that 

induce rapid myeloid differentiation and secure enhanced granulocyte production. [181], 

[182] Interestingly, gradual increase of C/EBP expression is accompanied by declined 

expression of C/EBP in G-CSF-stimulated HSPCs. [183] Since C/EBP blocks cell cycle 

progression, this antagonism is probably essential for the HSPC expansion and sufficiently 

enhanced production of neutrophils. 

Despite that C/EBP is the key driver of emergency granulopoiesis, a recent study 

demonstrated that expanding GMPs form clusters in the bone marrow and activate -catenin 

signaling, suggesting that canonical Wnt signaling might be involved in the regulation of 

emergency granulopoiesis as well. [184] 

1.5.5.3. C/EBP 

Other C/EBPs, such as C/EBP have been linked to granulopoiesis as 

well C/EBP a less prominent member of the family, synergizes with C/EBP and helps to 

stimulate cytokine synthesis during response to an infection. [185] Additionally, C/EBP is 
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considered as a tumor suppressor. C/EBP is transcriptionally silenced in 35 % of AML 

patients, [186] its low expression is associated with blast crisis stage of chronic myeloid 

leukemia (CML), [187] and experimental restoration of C/EBP expression promoted 

differentiation of leukemic blasts. [188] 

1.5.5.4. C/EBP 

 Unlike previously described C/EBP transcription factors, C/EBP is crucial for later 

stages of granulopoiesis, and was shown to be required rather during GMP transition to 

neutrophil committed progenitors called preNeu. C/EBP deficient mice accordingly showed 

accumulation of GMPs, loss of preNeu progenitors and neutrophils, and higher susceptibility 

to infections. [78], [189] 

1.5.5.5. C/EBP 

Remarkably little is known about C/EBP transcription factor and its function in the 

hematopoietic system. C/EBP is the shortest, ubiquitously expressed member of the C/EBP 

family that lacks the N-terminal transactivation domains. [149] Consistently, C/EBP has not 

been reported to have trans-regulatory activity on its own. It was suggested that C/EBP 

heterodimerizes with C/EBP and C/EBP to inhibit their activity as a dominant negative 

regulator. [190], [191] Available mouse studies, however, provide rather incoherent and 

limited information. The first murine model, Cebpg full-body knock-out (KO) mice, showed 

neonatal lethality caused by respiratory failure. To overcome this issue, chimeras of wild 

type (WT) and Cebpg deficient bone marrow were constructed Using this approach, the role 

of C/EBP was investigated in the lymphoid lineage and it was reported that Cebpg deficient 

cells exhibited reduced cytotoxic activity of NK cells. [192] The overexpression of 

C/EBP in contrast,  affected and impaired fetal liver erythropoiesis in mice. [193]  

Considering these conflicting lines of evidence, the function of C/EBP in the 

hematopoietic system remains rather elusive. However, there are several independent 

observations pointing towards its role in the granulocytic differentiation. First, C/EBP 

belongs to the family of transcription factors that predominantly regulate granulocyte 
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differentiation. [149], [194] Second, it was suggested that C/EBP might act as a dominant 

negative inhibitor of C/EBP and C/EBP. [190], [191] Third, Alberich-Jorda et al. showed 

that Cebpg expression is downregulated during granulocytic differentiation, while its 

overexpression effectively blocks this process. Authors of this study also consistently 

observed augmented CEBPG expression in a subset of AML patients harboring granulocytic 

differentiation arrest and CEBPA hypermethylation. [195]  

In order to further elucidate the potential role of C/EBP in granulopoiesis, we 

generated blood-tissue specific Cebpg knock-out mice. In this thesis, we analyzed how its 

loss affects HSC function and granulocytic development in steady-state and emergency 

granulopoiesis. 

1.6. The Canonical Wnt signaling pathway 

 The canonical Wnt signaling was originally discovered as a pathway regulating organ 

development in Drosophila melanogaster. Its name is derived from wingless (wg) gene 

which is necessary for the wing development and pattern formation in fruit flies. [196] 

Previous research gradually discovered one canonical and two non-canonical Wnt signaling 

pathways (planar cell polarity and Wnt/calcium pathways), and it was demonstrated that Wnt 

signaling has a crucial role in the development and homeostasis of mammalian tissues. [197], 

[198]  

 The Wnt signaling pathway has primarily a paracrine or autocrine character. The 

initiating event in the pathway activation is binding of secreted Wnt glycolipoprotein to one 

of the Frizzled receptors (FZD) [199], [200] and their co-receptors, low-density-lipoprotein-

receptor-related-protein 5 or 6 (LRP5 and LRP6 respectively), on the surface of the receiving 

cell (Figure 3). [201], [202] Wnt ligands are 40 kDa large hydrophobic proteins that need to 

be palmitoylated by palmitoyl transferase Porcupine prior to secretion. [200], [203], [204] 

Interestingly, Wnt ligands are not secreted in a free form, but rather incorporated into 

exosomes. [205]–[207] The complexity of this system is vast. Human genome contains 19 

Wnt ligands harboring different types of lipid modifications further increasing the variety of 

their biochemical properties, 10 FZD receptors with various activities and specificities for 

canonical and non-canonical pathway activation, and 2 LRP tissue-specific co-receptors. 
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Moreover, a battery of secreted antagonists and scavengers which affect availability of Wnt 

ligands or FZD receptors is involved as well. [208] Thus, this signaling system has the 

capacity to induce large number of diverse context-dependent outcomes. In case of the 

canonical Wnt signaling pathway, all these different signals are integrated to a single 

molecule, the scaffold protein -catenin. [209] 

 

 

 

Figure 3 – Schematic description of canonical Wnt signaling pathway. Unless Wnt ligand binds 

to FZD receptor and its co-receptor LRP, the -catenin destruction complex is assembled. Scaffold 

proteins Axin and APC bring -catenin into proximity of GSK3 and CK1 kinases. Subsequent -

catenin phosphorylation provides a binding site for E3 ligase -TrCP, that ubiquitinates -catenin 

and targets it for proteasomal degradation. Thus, TCF/LEF transcription factors remain in their 

repressive form and prohibit transcription of Wnt responsive genes. Structural changes occurring 

upon Wnt ligand recognition enable LRP-DVL interaction. Following LRP aggregation gradually 

induces CK1-mediated phosphorylation of LRP, scavenging Axin and GSK3, and, therefore, 

disintegrating the -catenin destruction complex. Stabilized, unphosphorylated -catenin 

accumulates, translocates to the nucleus, where it interacts with TCF/LEF transcription factors, 

replaces Groucho, and activates transcription of Wnt responsive genes. 
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 -catenin is a 781 amino acids (aa) long protein composed of short (approximately 

140 aa), structurally flexible N- and C-terminal domains (NTD and CTD) flanking the 

central superhelical core. The core of -catenin is composed of 12 armadillo repeats that 

shape the positively charged groove, providing a binding site for the majority of -catenin 

interacting partners (Figure 4). [210] The majority of -catenin localizes to the focal 

adhesions where it interacts with E-cadherin and facilitates the interaction with the actin 

cytoskeleton. Residual unbound -catenin serves as signaling molecule that transduces 

signals from FZD receptor to the nucleus. When the canonical Wnt signaling pathway is not 

active, free -catenin is rapidly targeted for proteasomal degradation by catenin-destruction 

complex (Figure 3). [211] The key components of catenin-destruction complex are: scaffold 

proteins AXIN and adenomatous polyposis coli (APC), casein kinase I (CK1), and glycogen 

synthase kinase 3 (GSK3). [212] APC attracts -catenin to the destruction complex 

through binding to its core groove. [213] CK1 subsequently phosphorylates -catenin NTD 

on Ser45, providing a priming signal for GSK3-mediated phosphorylation of -catenin on 

Thr41, Ser37, and Ser33. [214] These phosphorylated residues form a binding site for beta-

transducing repeat containing protein (TrCP) E3 ligase, [215] that finally ubiquitinilates -

catenin and targets it for degradation. [216] In other words, free -catenin is constantly 

degraded and can not mediate signal transduction in the absence of Wnt-FZD-LRP 

interaction. In this scenario, the transcription of Wnt responsive genes is repressed by T-cell 

factor/lymphoid enhancer-binding factor (TCF/LEF) transcription factors that occupy their 

regulatory regions [217] in association with transcriptional repressors, such as Groucho 

protein. [218], [219]  

Binding of Wnt ligand to a FZD-LRP5/6 receptor complex triggers a sequence of 

signaling events that gradually disassemble the catenin-destruction complex, and therefore 

stabilize free cytoplasmic -catenin. Since -catenin is constantly synthesized in the cells, 

its stabilization causes immediate accumulation and subsequent nuclear translocation. 

Mechanistically, FZD receptors, structurally altered by Wnt binding, recruit protein 

Disheveled (DVL) which induces aggregation of LRP co-receptors, enabling LRP 

phosphorylation by CK1 Phosphorylated LRP aggregates sequester AXIN and GSK3 and, 

consequently, deconstruct the catenin-destruction complex. [220] Unphosphorylated -
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catenin accumulates in the cytoplasm and translocates to the nucleus, [221] where it interacts 

with the TCF/LEF family of transcription factors.  

 

 

Figure 4 – Structure of -catenin interacting with N-terminal -catenin binding domain of 

TCF/LEF transcription factors. Figure shows structurally disordered N-terminal -catenin binding 

domain of TCF/LEF transcription factors (red ribbon) docking to positively charged core groove of 

-catenin from two angles. Black “N” and “C” letters in the upper panel depicts N- and C-terminal 

end of -catenin. Numbers in the bottom panel (1-12) mark the order of individual armadillo repeats. 

Figure was adapted from [222] 

 

TCF/LEF transcription factors, belonging to the high mobility group (HMG) protein 

family, and are exclusive effectors of the canonical Wnt signaling pathway. [217] The 

vertebrate genomes harbor four different TCF/LEF genes, designated as TCF7, TCF7L1, 

TCF7L2, and LEF1, which encode for TCF1, TCF3, TCF4, and LEF1 proteins, respectively. 

[223] TCF/LEF transcription factors contain five conserved domains: N-terminal -catenin 
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binding domain, Groucho binding sequence (GBS), HMG, basic tail functioning as nuclear 

localization signal, and C-clamp. [224] The -catenin binding domain functions generally as 

a transactivation domain. [222] GBS is a binding site for transcriptional repressors of the 

Groucho family, which mediate gene repression preceding TCF/LEF transactivation. [218] 

The HMG domain, together with the basic tail, is responsible for the DNA binding activity 

of TCF/LEF transcription factors, [225], [226] recognizing the ACATCAAG sequence, also 

known as Wnt responsive element (WRE). [227], [228] Finally, the C-clamp, presented in 

TCF1 and TCF4, functions as an additional DNA binding domain specific for GC rich 

“Helper site” that can be present in close proximity to WRE, favoring binding of specific 

TCF1 and TCF4 factors. [229] 

TCF/LEF factors work as molecular switches between repression and activation of 

Wnt-responsive genes (Figure 3). [219] In their repressive state, TCF/LEF factors suppress 

the expression of Wnt-responsive genes by interacting with Groucho transcriptional 

repressors. [218] In order to change their activity from repressive to active state and to induce 

expression of Wnt-responsive genes, TCF/LEF transcription factors need to interact with -

catenin. This interaction is facilitated by the -catenin core groove and by highly conserved, 

structurally disordered N-terminal -catenin binding domain of TCF/LEF transcription 

factors (Figure 4). [222], [230] The -catenin-TCF/LEF interaction induces conformational 

changes of TCF/LEF factors that subsequently displace Groucho repressors from the GBS 

domain, [231] allowing association with general transcription factors and p300/CREB-

binding protein (CBP) histone deacetylases which induce transcriptional activation of target 

genomic loci. [232]–[234]  

Nonetheless, this is rather simplistic view obtained from invertebrates which contain 

only one TCF factor per genome. Genes coding for TCF/LEF transcription factors in 

vertebrates are, in contrast, equipped with numerous alternative promoters that enable 

intricate production of many alternatively spliced TCF/LEF isoforms with remarkably 

altered properties. [235]–[237] Not only that particular TCF/LEF isoforms have distinct 

functions on their own, but their final signaling activity is also regulated by their ratios and 

stoichiometry. For instance, enhanced production of shorter TCF4 isoform results in 

transcriptional de-repression of regulated regions. [238] 
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Moreover, a genome-wide ChIPseq analysis identified a whole set of loci enriched 

for -catenin scattered across the genome that were not occupied by TCF/LEF factors, 

suggesting that -catenin possess an additional TCF/LEF-independent transactivating 

function. [239] In particular, it was shown that -catenin can interact and activate 

transcription through octamer-binding transcription factor (OCT4), hypoxia inducing factor 

1-alpha (HIF1), androgen receptor, liver receptor homologue 1 (LRH1), or forkhead box 

protein O1 (FOXO) transcription factors. [240]–[244] 

1.6.1. The canonical Wnt signaling pathway in hematopoiesis 

 Several studies addressing the function of the canonical Wnt signaling pathway in 

the hematopoietic development have been conducted. However, its function in 

hematopoiesis remains controversial and no scientific consensus has been reached. [245] The 

majority of these studies targeted -catenin or other upstream pathway components. Studies 

relying on -catenin gain-of-function approaches demonstrated that constitutive activation 

of -catenin has a deleterious effect on the entire murine hematopoietic system. Introduction 

of stable, constitutively active -catenin resulted in erythroid, myeloid, and lymphoid 

differentiation arrest and loss of HSCs function. [246], [247] In line with this evidence, 

similar hematopoietic failure was observed also in APC-deficient mice whose -catenin-

destruction complex was permanently disintegrated. [248] Intriguingly, authors of another 

study using APC-deficient mice came to different conclusion. On one hand, Famili et al. 

observed, in agreement with aforementioned study, diminished HSC reconstituting ability. 

On the other hand, they found that stable -catenin rather promoted myeloid differentiation 

instead of impairing it. [249]  

Moreover, experiments using -catenin loss-of-function approaches showed no 

major differentiation defects. For instance, blood tissue-specific -catenin knock-out mice 

exhibited reduced ability of HSC to reconstitute hematopoiesis in recipient mice after 

transplantation, but did not cause any hematopoietic abnormalities in steady-state conditions 

in young adult mice. [250] In contrast to this observation, HSC harboring inducible double 

knock-out of - and -catenin (-catenin can potentially compensate for -catenin loss) 

showed no functional deficiency. [251] Additionally, the hematopoietic system of mice 
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whose secretion of Wnt ligands was genetically inhibited was indistinguishable from wild 

type control, suggesting that Wnt signaling is dispensable in the hematopoietic system. [252]  

TCF/LEF transcription factors are in the context of the hematopoietic system, 

according to phenotypes of individual TCF/LEF deficient mice, most frequently described 

as important regulators of lymphoid development. [253], [254] Nevertheless, several studies 

suggested that TCF/LEF factors might be involved also in the regulation of granulocytic 

differentiation. For instance, Skokowa et al. proposed that LEF1 can directly regulate 

expression of CEBP. [255] Additionally, enhanced secretion of Wnt ligands [256] and 

canonical Wnt pathway activation [184] were observed during hematopoietic stress.  

Together, the conflicting evidence summarized in the previous paragraphs might be 

explained by several technical or biological limitations of the experimental approaches that 

were employed. First, -catenin loss- and gain-of-function experimental approaches do not 

allow to distinguish between TCF/LEF-dependent and -independent -catenin activity. 

Second, different level of Wnt activation is probably needed in different cell types and 

overactivation or complete loss of canonical Wnt signaling might result in artificial and 

unspecific effects. Third, deletion of TCF/LEF factors does not cause a specific loss of 

-catenin-TCF-LEF-mediated transcription, but rather permanent de-repression of regulated 

regions. Thus, it is necessary to employ more specific models in order to investigate the 

function of the canonical Wnt signaling pathway in the hematopoietic system. 

Thus, to elucidate the specific function of the canonical Wnt signaling pathway 

mediated by -catenin-TCF/LEF signaling axis, it will be necessary to employ a model 

system inactivating specifically and exclusively this terminal part of the pathway; for 

instance by disrupting -catenin-TCF/LEF interaction. Disintegration of the -catenin-

TCF/LEF transcription mediating complex can be achieved by multiple strategies. First, by 

small molecular inhibitors that bind to the -catenin core groove and block its interaction 

with TCF/LEF transcription factors. [257]–[259] Second, by cell penetrating peptides 

derived from the N-terminal -catenin binding domain of TCF/LEF transcription factors that 

compete with TCF/LEF for the interaction with -catenin. [260] And third, by introducing a 

truncated, dominant negative form of TCF/LEF transcription factors lacking -catenin 
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binding domain. These truncated TCF/LEF factors occupy WRE but as they can not interact 

with -catenin, they prevent -catenin-mediated transcription activation. [261], [262] Since 

the last option allow us to investigate effects of canonical Wnt signaling in vivo without any 

invasive insults, in this thesis we decided to investigate the function of -catenin-TCF/LEF 

transcription mediating complex in the hematopoietic system with the use of this approach. 
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2. OBJECTIVES 

The overall goal of this thesis is to characterize novel molecular mechanisms that 

might be involved in the regulation of neutrophil differentiation during physiological 

conditions and hematopoietic stress. We will focus on three distinct, but inevitably 

interrelated, topics divided into three aims. Importantly, data from each aim were published 

as scientific articles in peer reviewed journals; these publications can be found attached to 

this work. 

Aim 1 – The role of the -catenin-TCF/LEF complex during neutrophilic 

differentiation in both steady-state and emergency granulopoiesis and its importance 

for the biology of hematopoietic stem and progenitor cells. 

 The canonical Wnt signaling pathway, mediated by the -catenin-TCF/LEF complex, 

is crucial for maintenance of many types of somatic stem cells and proper tissue architecture. 

In the hematopoietic system, however, the function of this pathway remains obscured. Here, 

we will determine what is the specific function of -catenin-TCF/LEF-mediated 

transcription in steady-state and emergency granulopoiesis. In particular, we will decipher 

whether and how this pathway affects distinct populations of hematopoietic stem and 

progenitor cells, their stemness, proliferation, and ability to differentiate into neutrophils. We 

will additionally investigate how the canonical Wnt signaling regulates neutrophilic 

differentiation during systemic infection, and how it affects the ability of the organism to 

fight the infection. Finally, we will determine whether our conclusions, derived mainly from 

murine models, are relevant in human primary cells. 

Aim 2 – To elucidate the role of the transcription factor C/EBP on differentiation of 

neutrophils during steady-state and emergency granulopoiesis. 

 The transcription factors of the C/EBP family are crucial and essential regulators of 

neutrophilic development. While C/EBP and C/EBP are important for the differentiation 

of granulocytic progenitors, other members of the family, such as C/EBP are employed at 

later stages of neutrophil maturation. Interestingly, little is known about C/EBP and its 

function in steady-state or emergency granulopoiesis. Therefore, we will generate a 



46 
 

conditional KO mouse model and assess how C/EBP deficiency affects the murine 

hematopoietic system, its ability to maintain hemostasis, the potential to produce functional 

neutrophils, and the capacity to clear pathogens. 

Aim 3 – To investigate how C/EBP regulates expression of EVI2B, and determine the 

function of this transmembrane protein during granulocyte differentiation. 

 EVI2B is a transmembrane glycoprotein with largely uncharacterized function. 

Recently, EVI2B was identified as a gene directly upregulated by an essential regulator of 

neutrophil development, the transcription factor C/EBP Additionally, EVI2B was 

previously associated with the differentiation of keratinocytes, melanocytes, and leukemia. 

Together with high EVI2B expression in granulocytes, these lines of evidence allow us to 

hypothesize that EVI2B is involved in the regulation of granulocytic differentiation. To 

investigate this possibility, we will use Evi2b knock-down in cell lines, murine and human 

primary cells, and Evi2b knock-out mouse strain and show how Evi2b deficiency affects 

functionality of HSPC and myeloid development. 
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3. RESULTS AND DISCUSSION 

 The overall goal of this thesis is to identify novel molecular mechanisms regulating 

production of neutrophils, critically important cells of the innate immune system. Three 

distinct potential regulatory mechanisms were investigated in the scope of this thesis. These 

include: the -catenin-TCF/LEF transcription-mediating complex, the transcription factor 

C/EBP, and the transmembrane glycoprotein EVI2B. 

3.1. Aim 1 – The role of the -catenin-TCF/LEF complex during neutrophilic 

differentiation in both steady-state and emergency granulopoiesis and its 

importance for the biology of hematopoietic stem and progenitor cells. 

Here, I present the main results of the thesis. They were compiled in a publication 

entitled “β-catenin-TCF/LEF signaling promotes steady-state and emergency granulopoiesis 

via G-CSF receptor upregulation”. I am the first author of this publication and I contributed 

with the experimental design, performing most of the experiments, data analysis and 

interpretation, figure design, and writing the manuscript. For additional experimental details, 

please refer to the manuscript included in Chapter 7. 

3.1.1. Description and validation of hematopoietic-specific dnTCF4 transgenic 

mice 

 The choice of an appropriate model system for the investigation of canonical Wnt 

signaling, mediated by -catenin-TCF/LEF interaction in hematopoiesis, is not trivial. By 

definition, TCF/LEF transcription factors are the sole effectors of canonical Wnt signaling. 

[217] However, -catenin harbors both TCF/LEF-dependent and -independent activities and 

is involved in various biological processes. [240]–[244] Thus, a model system allowing 

specific inactivation of -catenin-TCF/LEF mediated gene expression is needed. Genetic 

manipulation of -catenin is not suitable, as it would debilitate all -catenin activities. 

Knock-out of genes coding for TCF/LEF factors is not appropriate either. First, because 

TCF/LEF factors display high degree of functional redundancy, the construction of 

quadruple KO mouse would be necessary. Second, this complete loss of TCF/LEF factors 
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would cause genome-wide de-repression of TCF/LEF-regulated regions. Third, loss of all 

TCF/LEF factors would disturb their -catenin-independent activity as well. 

Therefore, we employed a previously published [261], [262] approach of 

overexpressing a truncated dominant negative form of human TCF4 (dnTCF4) that lacks the 

N-terminal -catenin binding domain. When expressed, dnTCF4 occupies WRE in the 

regulatory regions of Wnt-responsive genes and since it can not bind -catenin, it constantly 

keeps these regions in a transcriptionally repressed state.  

 To generate dnTCF4 mice repressing TCF/LEF transcription in the hematopoietic 

system, we employed the following strategy. As described by Janeckova et al., [262] the 

dnTCF4 cassette, harboring floxed tdTomato (followed by transcriptional blocker) and 

dnTCF4-EGFP fusion gene, was inserted into murine Rosa26 allele. In this system, dnTCF4 

can be expressed only after Cre-mediated excision of the transcriptional blocker. The 

excision is marked by the switch from tdTomato to EGFP expression in Cre+ cells. We have 

crossed dnTCF4 mouse to a Vav-iCre mouse strain, expressing Cre recombinase from the 

hematopoietic-specific Vav-1 promoter.  

In this thesis, we used three different genotypes of experimental animals. One, 

expressing dnTCF4 (Rosa26dnTCF4 Vav-iCre+, referred as dnTCF4 or dn), and two types of 

controls lacking dnTCF4 expression. The first control had Cre recombinase along with wild 

type Rosa26 allele (Rosa26wt Vav-iCre+, referred as WT). The second control contained the 

dnTCF4 cassette while lacking Cre recombinase (Rosa26dnTCF4 Vav-iCre-, referred as WTT 

for its tdTomato expression). Importantly, we demonstrated that dnTCF4 is expressed in a 

gene-dose dependent manner. While no dnTCF4 transcript or protein was detected in WT 

animals, homozygotes harboring two alleles of dnTCF4 displayed twice as high dnTCF4 

expression as heterozygotes with one wild-type Rosa26wt and one Rosa26dnTCF4 allele. EGFP 

or tdTomato expression levels detected by flow cytometry were in agreement with the 

expected genotype and dnTCF4 expression. To test whether dnTCF4 presence represses 

transcription of Wnt responsive genes in our system, we treated primary murine myeloid 

progenitors (defined by expression of c-kit surface marker, referred as c-kit+) with a Wnt 

activator (inhibitor of GSK3 - CHIR99021) and measured the expression of the Wnt-

responsive genes Axin2 and Nkd1. As expected, dnTCF4 cells did not respond to the 
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treatment, while expression of Wnt responsive genes in WTT cells was elevated. Thus, we 

validated that dnTCF4 transgenic mice are functional and suitable for subsequent phenotypic 

analysis. 

3.1.2. -catenin-TCF/LEF signaling promotes neutrophil differentiation 

First, we have analyzed peripheral blood (PB) and bone marrow (BM) of WT and 

dnTCF4 mice by flow cytometry. dnTCF4 mice showed reduced frequency of neutrophils 

(defined as CD11b+ Ly6G+ Ly6C+) when compared to WT (27.5 % vs 52.5 %, respectively), 

while frequencies of other blood cells were not altered. This observation was additionally 

confirmed by establishing neutrophil cell counts in PB with the use of a veterinary 

hematological analyzer; neutrophil cell count for dnTCF4 mice was 0.72×109/L while WT 

contained 1.05×109/L of PB neutrophils. Accordingly, we observed reduced neutrophil 

frequency and counts also in the BM of dnTCF4 mice. In contrast, frequencies and numbers 

of B- and T-cells were similar in WT and dnTCF4 animals. This might be surprising as 

TCF/LEF factors are necessary for proper lymphocyte development, [253], [254] however, 

our data are in line with the evidence showing that it is rather the repressive TCF/LEF activity 

that needs to be present during lymphocyte development. [263], [264] 

In depth analysis of the immature cell compartment within the BM discovered 

significantly increased numbers of ST-HSC (Lin-, c-kit+, Sca-1+, CD48+, CD150-), LKS (Lin-

, c-kit+, Sca-1+), c-kit+(Lin-, c-kit+), MEP (Lin-, c-kit+, Sca-1-, CD34-, CD16/32-), CMP (Lin-

, c-kit+, Sca-1-, CD34+, CD16/32-), and GMP (Lin-, c-kit+, Sca-1-, CD34+, CD16/32+) 

populations in dnTCF4 mice. Previous studies [250], [265] showed the importance of -

catenin-TCF/LEF signaling for various type of stem cells, including HSC. To our surprise, 

we did not observe any changes in the abundance of phenotypically defined LT-HSC (Lin-, 

c-kit+, Sca-1+, CD48-, CD150+) in dnTCF4 mice. Deficiency of mature neutrophils 

accompanied by accumulation of myeloid progenitors therefore implies that inhibition of -

catenin-TCF/LEF mediated transcription causes partial block of neutrophilic differentiation. 

Accordingly, a flow cytometry panel designed by Satake et al. [183] that allows to 

discriminate different stages of neutrophilic development revealed accumulation of cells in 

myeloblast and promyelocyte stages in the dnTCF4 bone marrow. However, to rule out the 
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possibility that expansion of myeloid precursors in the BM of dnTCF4 animals is not caused 

by their enhanced proliferation, we performed in vivo BrdU (bromodeoxyuridine) 

incorporation assays and in vitro cell cycle analysis by pyronin Y/Hoechst flow cytometry 

staining. Percentages of BrdU+ LT-HSC, ST-HSC, and c-kit+ cells were comparable in WT 

and dnTCF4 BM as well as proportions of WT and dnTCF4 c-kit+ cells in G0, G1, and S/G2/M 

phases, demonstrating that proliferation of HSPC is not affected by inhibition of -catenin-

TCF/LEF signaling. 

The ability of WT and dnTCF4 progenitors to differentiate was further assessed by 

colony forming assays. In this assay, the number of functional progenitors is reflected by the 

number of present colonies (progenitors are therefore evaluated as colony forming units – 

CFU). Colonies can be harvested every 7-10 days, re-plated, and cellular composition of the 

culture can be evaluated by assessing cellular morphology (May-Grünwald Giemsa staining) 

and by flow cytometry. Consistently to our previous results, the dnTCF4 BM formed 

significantly more colonies compared to WT. WT cells also differentiated mostly to mature 

neutrophils during 2nd plating, while dnTCF4 culture retained rather an immature phenotype 

with enhanced expression of elastase and cathepsins G, markers expressed typically in 

myeloblasts and promyelocytes. [266] Finally, WT cells did not form any colonies during 3rd 

plating (as all immature cell were already differentiated), whereas dnTCF4 cells showed 

differentiation towards macrophages, but not granulocytes. 

Together, these results demonstrate that inhibition of -catenin-TCF/LEF mediated 

transcription by dnTCF4 causes a partial block of neutrophilic differentiation reflected by 

accumulation of myeloid progenitors and mild neutropenia. In other words, our data show 

that -catenin-TCF/LEF signaling promotes neutrophilic differentiation of myeloid 

progenitors. Consistently, it was previously shown that expression of LEF1 is dramatically 

reduced in patients suffering from congenital neutropenia. It is interesting that these patients, 

coherently with our data, displayed a differentiation arrest in the promyelocytic stage. On the 

other hand, LEF1 decrement was also associated with decreased proliferation and enhanced 

apoptosis of HSPC, which we did not observe in dnTCF4 mice. [255] Nonetheless, it is 

important to mention that the vast decrement of LEF1 expression might lead to TCF/LEF 

isoform imbalance, unspecific de-repression of LEF1-controlled regions, [238], [267], [268], 
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and loss of -catenin-independent activity of LEF1. [269] Specific disruption of the -

catenin-TCF/LEF complex (e.g. by dnTCF4) might therefore inflict a less severe phenotype. 

Additionally, it is important to take into account that the necessity of intact -catenin-

TCF/LEF signaling for the development of neutrophils might differ in humans and mice. 

3.1.3. -catenin-TCF/LEF is dispensable for proper function of HSC 

 As mentioned in the previous chapter, the frequency of LT-HSC assessed by flow 

cytometry was comparable in dnTCF4 and WT mice. However, presence of cells with 

expression of surface markers typical for LT-HSC does not necessarily reflect their 

functionality and “stemness”. Therefore, we performed a series of transplantation 

experiments to assess functional properties of dnTCF4 expressing HSC. 

 First, we sorted LT-HSC from WT and dnTCF4 animals (Ly5.2) and transplanted 

distinct doses (10, 20, or 40 LT-HSC) into lethally irradiated congenic (Ly5.1) recipients 

together with the supporting BM (Ly5.1). Four months later, we assessed the number of 

animals which were successfully reconstituted with cells of Ly5.2 origin. Subsequently, we 

used a poison distribution statistics algorithm [270] to quantify numbers of functional HSC 

within the phenotypically defined LT-HSC compartment. WT contained 1 functional HSC 

per 29.7 LT-HSC and dnTCF4 1 HSC per 25.2 LT-HSC (p = 0.688, chisq = 0.168), 

suggesting that loss of the -catenin-TCF/LEF-mediated transcription does not compromise 

functionality of LT-HSC. However, cell sorting is dependent on the expression of cell surface 

markers. To overcome this issue, we transplanted whole BM from WT and dnTCF4 mice 

(Ly5.2) into lethally irradiated congenic recipients (Ly5.1) in a competitive manner. 

Frequency of donor derived (Ly5.2) WT and dnTCF4 cells was similar 16 weeks after 

transplantation, when contribution of LT-HSC to hematopoiesis should be visible. 

Interestingly, we observed transiently enhanced engraftment of dnTCF4 BM 1 month after 

transplantation, reflecting elevated numbers of progenitors in the dnTCF4 BM detected 

previously by flow cytometry. 

 Taken together, we can conclude that inhibition of -catenin-TCF/LEF-mediated 

transcription is dispensable for proper function of HSC. This conclusion is in contrast with a 

previously published study by Zhao et al., where loss of -catenin functionally impaired LT-
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HSC activity and reduced their engraftment after transplantation. [250] In their study, -

catenin was ablated from embryonic day 13.5 further, suggesting it might be important for 

the function of fetal HSC. [271], [272] Thus, functional impairment of adult LT-HSC 

observed by Zhao et al. could be a reminiscent effect of their aberrant embryonic 

development. Since dnTCF4 is in our model also expressed from embryonic day 13.5 in, it 

is probable that fetal HSC require rather TCF/LEF-independent -catenin activity in order 

to functionate properly. Our conclusions are additionally supported by the fact that inducible 

-catenin KO mice showed no functional deterioration of LT-HSCs in adult mice. [251] 

3.1.4. -catenin-TCF/LEF signaling directly upregulates G-CSF-R in HSPC 

 In order to decipher mechanisms through which -catenin-TCF/LEF signaling 

promotes neutrophil differentiation, we performed a transcriptomic analysis of WT and 

dnTCF4 ST-HSC, the earliest population during hematopoietic development affected by the 

presence of dnTCF4. Using RNAseq, we identified 743 downregulated and 754 upregulated 

genes (log2 fold change > 0.5, p < 0.05) in dnTCF4 ST-HSC compared to WT ST-HSC. As 

dnTCF4 acts primarily as a transcriptional repressor, we focused on the list of downregulated 

genes. Several genes involved in myeloid development were downregulated in dnTCF4 ST-

HSC (e.g. Csf3r, Irf4, Il1r1, or Il18r1). Interestingly, the list of differentially expressed genes 

in dnTCF4 ST-HSC was significantly (q < 10-8) enriched for genes deregulated in murine 

C/EBP deficient progenitors (GSE61468), further supporting our hypothesis that -catenin-

TCF/LEF signaling promotes neutrophilic differentiation. A particularly interesting gene that 

was downregulated in dnTCF4 is Csf3r, a gene encoding a crucial regulator of neutrophil 

development, G-CSF-R. 

First we confirmed Csf3r downregulation (3.5 % of Gapdh in WT vs. 1.9 % of Gapdh 

in dnTCF4) on mRNA level in c-kit+  by RT-qPCR. To ascertain whether Csf3r transcript 

reduction translates also into reduced expression of G-CSF-R on the surface of the cells, we 

treated c-kit+ and LKS populations with biotinylated G-CSF, stained them with streptavidin-

PE conjugate, and analysed its abundance at the cell surface by flow cytometry. Indeed, 

dnTCF4 LKS and c-kit+ cells diplayed significantly reduced G-CSF-R levels compared to 

WT. Importantly, when stimulated by G-CSF, dnTCF4 c-kit+ and LKS populations exhibited 
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an attentuation of downstream [273] Stat3 phosphorylation without any alteration in Stat5 

phosphorylation levels. Since Stat3 phosphorylation promotes differentiation of HSPC [274] 

while Stat5 phosphorylation induces cell cycle progression, [275] this result is in agreement 

with our previous observation that dnTCF4 presence causes block of neutrophilic 

differentiation but has negligible effect on the proliferation rate of HSPC. To finally proove 

that these G-CSF-R expression changes do have a biological consequence, we subjected WT 

and dnTCF4 BM to colony forming assays containing only two cytokines: G-CSF 

(supporting differentiation of neutrophils) and stem cell factor (SCF; supporting survival of 

HSPC). dnTCF4 BM formed more colonies (34 CFU in WT vs. 60 CFU in dnTCF4), 

contained more c-kit+ cells (2 % in WT vs 10 % in dnTCF4), and less neutrophils (55 % in 

WT vs. 30 % in dnTCF4), demonstrating dnTCF4 HSPC display diminished G-CSF-induced 

differentiation. 

Next, we asked whether the -catenin-TCF/LEF signaling pathway regulates G-CSF-

R levels directly. We analyzed publicly available ChIPseq data showing genomic occupancy 

of TCF4 in various human cell lines (HEK293, HepG2, MCF7, PANC, and HeLa; available 

under following accession numbers: ENCSR000EUY, ENCSR000EVQ, ENCSR000EWT, 

ENCSR000EXL, ENCSR000EVF, and ENCSR000AOF, respectively). TCF4 was enriched 

in Csf3r transcription start site (TSS) and putative enhancer located -3.5 kb from TSS. 

Because non of these cell lines is of the hematopoietic origin, we performed ChIP-qPCR 

assessing enrichment of LEF1 in Csf3r TSS and putative enhancer (-3.5 kb) in K562 cells. 

Of note, LEF1 was selected as a representative member of the whole TCF/LEF family as it 

is highly expressed in K562 cells and there is an available ChIP-grade antibody against it. 

Indeed, we detected LEF1 enrichment in both TSS and putative enhancer, but not in control 

region (located -6.1 kb from TSS) or no-antibody control. These results suggest that -

catenin-TCF/LEF signaling pathway directly regulates G-CSF-R expression on 

transcriptional level in hematopoietic cells. 

Together, we demonstrated that the -catenin-TCF/LEF complex directly regulates 

expression of G-CSF-R through TCF/LEF trancription factors that are present in Csf3r 

regulatory regions. Inactivation of the pathway by dnTCF4 resulted in both, reduction of 

Csf3r transcript and G-CSF-R surface protein levels in HSPC. Further, decrease of G-CSF-
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R on HSPC provoked attentuation of downstream Stat3 signaling and, consequently, reduced 

response to G-CSF. 

Our conclusions are strongly supported by scientific literature. Remarkably, the 

populations of neutrophils in mice lacking G-CSF or G-CSF-R are reduced 2-10 times, but 

are not eliminated completely. [97], [98] These residual neutrophils are probably produced 

by yet unidentified compensatory mechanism. [101] Therefore, a decrease of G-CSF-R 

expression is consistent with the rather mild reduction of neutrophils that we observed in 

dnTCF4 mice. Interestingly, inhibition of -catenin-TCF/LEF signaling reduced G-CSF-R 

levels in the very immature population of LKS cells. The fact that cytokines (namely G-CSF 

and M-CSF) are able to impose distinct lineage comittment to HSPC and affect the whole 

course of blood cell production [90], [102] allowed us to speculate that the -catenin-

TCF/LEF-mediated G-CSF-R upregulation imposes neutrophilic commitment to LKS cells. 

Additionally, Skokowa et al. reported that LEF1 acts dowstream from G-CSF-R during 

neutrophil development. [276] Thus, our data together with this observaton suggest an 

existence of a previously uknown positive feedback loop between TCF/LEF factors and G-

CSF-R.  

3.1.5. -catenin-TCF/LEF signaling is essential for emergency granulopoiesis 

 G-CSF is an important mediator of emergency granulopoiesis that promotes egress 

of neutrophils from BM to PB and induces augmented myeloid differentiation. The enhanced 

differentiation is mediated by stimulation of G-CSF-R, subsequent downstream STAT3 

phosphorylation, and expression of C/EBP transcription factor in HSPC. [170], [174], [180] 

Taking into account our finding that -catenin-TCF/LEF signaling regulates expression of 

G-CSF-R, we next elucidated whether this transcriptional complex plays a role during 

emergency granulopoiesis. To simulate a systemic infection, we intravenously injected 35 

g of bacterial lipopolysaccharide (LPS) or PBS twice into WT and dnTCF4 animals and 

analyzed their response to the stimulus 72 hours later (as described in [174]). Both mature 

(Ly6Ghi, Figure 1B) and immature (Ly6Glo, Figure 1B) neutrophils egressed BM in a 

comparable way in WT and dnTCF4 mice, suggesting that dnTCF4 neutrophils are not 

functionally impaired. Indeed, ROS production, migration, and phagocytosis of dnTCF4 
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neutrophils were comparable to WT. However, we observed a decline in c-kit+ myeloid 

progenitors and immature neutrophils in the BM of dnTCF4 animals compared to WT. 

Moreover, dnTCF4 animals failed to skew the ratio of myeloid progenitors towards the GMP 

population, which was defined as a hallmark of emergency granulopoiesis, [174] and which 

was accordingly present in WT mice.  

This observation suggests that neutrophilic commitment imposed to HSPC by -

catenin-TCF/LEF-G-CSF-R signaling axis is critical for massive de novo production of 

neutrophils during emergency granulopoiesis. This hypothesis is supported by work of 

Hérault et al., showing -catenin activation in proliferating GMPs during chemically induced 

emergency granulopoiesis. [184] Consistently with this study, dnTCF4 mice injected with 

myeloablative agent 5-fluorouracil showed insufficient myeloid recovery compared to WT 

animals. Moreover, repetitive administration of the drug and resulting hematopoietic stress 

was fatal for dnTCF4 mice while all WT animals were able to recover.  

Based on our observation, we hypothesized that emergency granulopoiesis in mice 

with inactive -catenin-TCF/LEF signaling should not be sustainable during continuous 

infectious events. Consequently, continuous and progressive sub-optimal production of 

neutrophils would compromise effective pathogen clearance and would inevitably result in 

higher susceptibility of dnTCF4 mice to infection. To test our hypothesis, we injected WT 

and dnTCF4 animals with a low dose of Candida albicans and assessed their survival. 

Despite neutrophils of dnTCF4 mice were functional, dnTCF4 mice displayed increased 

sensitivity to Candida albicans and significantly higher mortality rate compared to WT, 

confirming further our hypothesis. 

3.1.6. -catenin-TCF/LEF-mediated transcription is essential for 

differentiation of human neutrophils 

Next we investigated whether -catenin-TCF/LEF mediated transcription is crucial 

also for the differentiation of human neutrophils. We isolated primary human CD34+ cells 

from frozen cord blood samples, transduced them with either dnTCF4-containing or control 

empty MSCV retroviral vector, and subjected them to in vitro differentiation as described by 

Jie et al. [91] Expression of neutrophil markers was assessed before, and after 15 days of 
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differentiation by flow cytometry. Cells transduced with dnTCF4 showed reduced expression 

of CD11b, CD18, and CD66b neutrophilic markers compared to empty vector control at 

differentiation day 15. To demonstrate that the observed block of differentiation is not just 

an artifact of our genetic model, we differentiated primary cord blood CD34+ cells into 

neutrophils in the presence of cercosporin, a small molecule inhibitor of -catenin-TCF/LEF 

interaction, or vehicle control (DMSO). Consistently, cercosporin-treated cells showed 

reduced expression of CD11b, CD15, CD16, and CD66b neutrophilic markers when 

compared to vehicle-treated cells, demonstrating that both genetic and pharmacological 

inactivation of -catenin-TCF/LEF mediated transcription impairs proper differentiation of 

human neutrophils in cell cultures assays. Finally, primary cord blood CD34+ cells cultivated 

in colony formation assays treated with Wnt activators BIO or CHIR99021 harbored 

increased CD11b expression when compared to DMSO treated cells, suggesting that 

activation of -catenin-TCF/LEF signaling can also enhance differentiation of human 

neutrophils in culture. Together, our result suggest that -catenin-TCF/LEF signaling 

promotes differentiation of human HSPCs into neutrophils. Our conclusion is additionally 

supported by several studies that associate the absence of nuclear LEF1, a member of the 

TCF/LEF family of transcription factors, with reduced neutrophilic differentiation in 

congenital neutropenia patients. [255], [276], [277] 

Taken together, we have employed a novel murine model that allowed us to 

specifically inhibit -catenin-TCF/LEF mediated transcription by overexpressing dnTCF4 

transgene. These mice exhibited mild neutropenia accompanied by accumulation of HSPC 

in their bone marrow. In following colony forming assays we demonstrated that dnTCF4 

HSPC tend to retain their immature phenotype and possess partial block of neutrophilic 

differentiation. Subsequent transcriptomic and ChIP analyses revealed that -catenin-

TCF/LEF signaling directly regulates expression of Csf3r, a gene coding the potent regulator 

of neutrophil production, G-CSF-R, in HSPC. Importantly, dnTCF4-mediated 

downregulation of G-CSF-R on the surface HSPC resulted in attenuation of downstream 

signaling and reduced biological response to G-CSF stimuli. Consistently with the fact that 

G-CSF-R is important player during emergency granulopoiesis, our results suggest that -

catenin-TCF/LEF mediated G-CSF-R upregulation is necessary for the continuous massive 
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de novo production of neutrophils during emergency granulopoiesis. In other words, -

catenin-TCF/LEF signaling promotes neutrophilic differentiation of HSPC via direct 

upregulation of G-CSF-R, which seems to be especially crucial in the conditions of increased 

hematopoietic need, or during systemic infection. 
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3.2. Aim 2 – To elucidate the role of the transcription factor C/EBP on differentiation 

of neutrophils during steady-state and emergency granulopoiesis 

In this aim, I contributed to design and performance of the experiments described in 

paragraphs 3.2.1. and 3.2.2. To place my contribution into scientific context, I present the 

whole project in paragraphs 3.2.1. - 3.2.4. Experimental details and extended results can be 

found in the manuscript entitled “C/EBPγ is dispensable for steady-state and emergency 

granulopoiesis”, attached in Chapter 7. 

3.2.1. Generation and validation of hematopoietic-specific Cebpg knock-out 

mice 

 To investigate the function of a rather unexplored transcription factor of the C/EBP 

family, C/EBP, in granulocyte development, we have constructed a tissue specific Cebpg 

KO mouse strain. A targeting vector, containing tdTomato reporter, neomycin resistance 

gene, and the whole Cebpg coding sequence flanked by LoxP sites, was inserted into 

C57Bl/6NCrl by homologous recombination. The resulting Cebpgfl/fl mice were crossed to a 

mouse strain expressing Cre recombinase from the hematopoietic tissue-specific Vav-1 

promoter (Vav-iCre mouse), providing 2 types of progeny. First, Cebpgfl/fl Vav-iCre+ 

(referred as KO) and second, Cebpgfl/fl Vav-iCre- (referred as WT). Excision of Cebpg was 

validated using PCR. Importantly, Cebpg transcript (assessed by RT-qPCR) or protein 

(assessed by western-blotting) was not detected in KO cells. 

3.2.2. C/EBP is dispensable for steady-state granulopoiesis 

 First, we analyzed the BM composition of WT and KO animals. Surprisingly, both 

absolute numbers and frequencies of mature neutrophils (CD11b+, Ly6G+), B-cells (B220+), 

and T-cells (CD3+) were comparable in WT and Cebpg KO mice. In order to investigate 

different stages of neutrophil development in greater detail, we segregated SSCint, CD3-, 

CD19-, B220-, Ter119- cell population into 5 distinct developmental stages based on their 

surface expression of c-kit and Ly6G markers as described by Satake et al. [183] 

Nonetheless, the process of neutrophilic development was comparable in WT and Cebpg 

deficient mice. The most immature BM compartment, including LKS, c-kit+, CMP, MEP, 
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and GMP populations, was not altered in Cebpg-deficient mice neither. Following colony 

forming assays consistently showed no functional alteration of Cebpg KO BM cells 

compared to WT, suggesting C/EBP is not involved in myeloid development in steady-state 

conditions. Importantly, WT and Cebpg KO mice were also monitored during the course of 

ageing, but we did not observe any age-related or progressive phenotypes.  

Alberich-Jorda et al. described Cebpg as a negative regulator of granulocytic 

differentiation that is upregulated in C/EBP deficient mice and whose knock-down was 

sufficient to restore arrested granulopoiesis in this model. [195] Based on this study, we 

originally anticipated that Cebpg loss would alter HSPC populations and enhance 

differentiation of granulocytes. The unaltered hemostasis of our Cebpg KO mice is therefore 

surprising, however, this discrepancy can be explained by different experimental approaches 

that were applied. Alberich-Jorda et al. showed that Cebpg blocks granulocytic 

differentiation solely in immortalized cell lines and primary leukemic cells harboring 

overexpression of C/EBP. It is therefore possible that C/EBP overexpression contributes 

to the granulocytic differentiation arrest in leukemic cells, while its endogenous levels are 

dispensable for healthy unperturbed granulopoiesis. 

 Nevertheless, not all members of the C/EBP family are involved in differentiation 

per se. While C/EBP and C/EBP are employed rather during stress conditions of 

emergency granulopoiesis, [78], [170], [185] C/EBP is for example essential for the 

functionality and proper composition of neutrophil granules. [278] To test whether C/EBP 

loss affects these processes, we assessed morphology and granule content of WT and Cebpg 

KO granulocytes. Nonetheless, the cell morphology and expression of Mmp9, cathepsins G, 

lactoferrin, neutrophil elastase 2 (Ela2), and myeloperoxidase (Mpo) was comparable in WT 

and Cebpg KO granulocytes. Taken together, our data document that C/EBP is dispensable 

for proper granulocytic differentiation and maturation in steady-state conditions.  

3.2.3. C/EBP is dispensable for emergency granulopoiesis 

 As discussed in the previous paragraph, C/EBP and C/EBP are critical during 

emergency granulopoiesis, but their contribution to steady-state hematopoiesis is rather 

insignificant. [78], [170], [185] Interestingly, we have detected C/EBP-C/EBP 
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heterodimers present in nuclear extracts from murine BM and spleen by electrophoretic 

mobility shift assay, suggesting C/EBP might regulate emergency granulopoiesis by 

modulating C/EBP activity. Therefore, we decided to investigate the function of C/EBP 

during situations of enhanced granulocytic need. To simulate a systemic bacterial infection, 

we repeatedly injected WT and Cebpg KO mice with LPS or PBS as a control. [174] The 

response to the LPS administration was, however, comparable in WT and Cebpg KO 

animals. 

 During emergency granulopoiesis, endothelial cells from the vascular tissue detect 

LPS though TLR4 and respond by G-CSF secretion into the blood stream, mediating egress 

of granulocytes from BM to PB and induction of C/EBP expression in myeloid progenitors. 

[170], [172], [174], [183] Since LPS simulates only the infection by gram negative bacteria, 

we additionally stimulated the emergency granulopoietic program in WT and Cebpg KO 

mice by direct intravenous injection of general inducer of emergency granulopoiesis - G-

CSF. [170], [174] G-CSF administration decreased BM cellularity (by granulocyte egress) 

and markedly elevated numbers of immature granulocytes (CD11b+ Gr1lo) as a result of their 

enhanced de novo production. However, these changes were indistinguishable in WT and 

Cebpg KO mice. 

 In order to challenge the hematopoietic system of C/EBP deficient mice with a more 

physiologically relevant stimulus, we induced acute systemic candidemia in WT and Cebpg 

KO mice. Interestingly, Cebpg KO displayed slightly enhanced numbers of PB granulocytes 

in comparison to WT after Candida albicans infection but the biological relevance of this 

observation is undermined by two facts. First, other measured parameters (neutrophil counts 

in different developmental stages, BM cellularity, and numbers of MEP, CMP, and GMP 

progenitors) were comparable between WT and Cebpg KO mice. Second, kidney burden of 

infected animals and their overall survival of candidemia was similar in WT and Cebpg KO 

mice. Thus, our thorough analysis demonstrated that C/EBP is probably not involved in the 

regulation of emergency granulopoiesis in mice. 
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3.2.4. C/EBP does not regulate functionality of HSC 

 On one hand, our results demonstrated that the absence of C/EBP does not impair 

the development and maturation of granulocytes. On the other hand, Cebpg expression 

culminates in immature LKS cells and is gradually diminished as these cells differentiate 

into granulocytes. [195] It is therefore possible that C/EBP might be important for the 

maintenance and functionality of HSC. 

 To assess the functionality of Cebpg deficient HSC, limiting dilution transplantation 

assays were performed. We sorted 50, 100, 150, 200, and 1000 LT-HSC from WT and Cebpg 

KO mice (both of Ly5.2 genetic background), transplanted them into lethally irradiated 

congenic (Ly5.1) recipients, and analyzed the number of repopulated individuals 4 months 

after the transplantation. Surprisingly, the algorithm using poison distribution statistics [270] 

did not discover any difference in the functionality of WT and Cebpg KO HSC. Contribution 

of WT and Cebpg KO donor cells to different hematopoietic lineages was also comparable. 

Moreover, transcriptomic analysis of WT and Cebpg KO LT-HSC discovered only minor 

changes in gene expression. Considering these results, we concluded that C/EBP is 

dispensable for the functionality of HSC. Nevertheless, based on this experiment we can not 

rule out the possibility that C/EBP might play a role in HSC self-renewal and maintenance. 

In order to investigate the function of C/EBP in this process, secondary transplantation 

assays with WT and Cebpg KO donor BM need to be carried out in the future. 

 Taken together, using a tissue specific murine model of C/EBP deficiency, we 

showed that C/EBP is dispensable for differentiation and maturation of granulocytes in both 

steady-state and emergency granulopoiesis induced by LPS, G-CSF, or Candida albicans. 

Additionally, we showed that despite its relatively high expression in LKS cells, C/EBP 

does not affect the functionality, differentiation capacity, or lineage commitment of HSC. 

Therefore, we did not confirm our previously anticipated [195] function of C/EBP in 

hematopoiesis. Nonetheless, we can not exclude that a potential hematopoietic phenotype of 

Cebpg deficient mice might be masked by an unknown compensatory mechanism. The 

structural and sequential similarity of the bZIP domains of C/EBP factors and their ability to 

bind the same binding sequence suggest that there is a certain level of functional redundancy 
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within the C/EBP protein family members. [149] It is therefore possible that another C/EBP 

transcription factor might compensate for Cebpg loss in our murine model. 
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3.3. Aim 3 – To investigate how C/EBP regulates expression of EVI2B, and determine 

the function of this transmembrane protein during granulocyte differentiation. 

In this section, I have contributed by designing and performing experiments 

described in sections 3.3.1. and 3.3.2. Experimental details and extended results can be found 

in two manuscripts attached to this thesis in Chapter 7. I have contributed as a coauthor to 

the first manuscript entitled “EVI2B is a C/EBPα target gene required for granulocytic 

differentiation and functionality of hematopoietic progenitors” and as a shared first author to 

the second manuscript entitled “Proliferation and Differentiation of Murine Myeloid 

Precursor 32D/G-CSF-R Cells”. In both manuscripts I contributed by performing 

experiments, analyzing data, figure design, and writing the manuscript. 

3.3.1. EVI2B expression is directly induced by the myeloid master regulator 

C/EBP  

C/EBP is a well-studied driver of early neutrophilic development. Malfunction or 

loss of C/EBP activity is associated with block of neutrophil differentiation [150]–[153] 

and consequent leukemogenesis. [158]–[160] In search for C/EBP-driven transcriptomic 

changes, microarray and ChIPseq analyses identified 33 genes that are directly upregulated 

by C/EBP. EVI2B, almost a completely uncharacterized gene, was among them. [162] To 

validate this observation, we employed the K562 cell line overexpressing full-length 

C/EBP fused to estrogen receptor (p42 C/EBP-ER), truncated non-functional isoform of 

C/EBP fused to estrogen receptor (p30 C/EBP-ER), or estrogen receptor alone (ER). 

Treatment with -estradiol, triggered nuclear translocation of ER-fused proteins and induced 

expression of EVI2B on both mRNA and protein levels in p42 C/EBP-ER expressing cells. 

Truncated p30 C/EBP-ER or ER alone were not able to induce EVI2B expression. We 

performed ChIP-qPCR on the same cell lines and demonstrated p42 C/EBP-ER enrichment 

in EVI2B promoter region upon -estradiol treatment. Luciferase assays additionally 

confirmed that p42 C/EBP-ER is able to activate luciferase expression from a reporter 

vector containing EVI2B promoter, while p30 C/EBP-ER is not.  
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Taken together, these results demonstrate that EVI2B is directly upregulated by 

functional full-length C/EBP binding to its promoter. This allowed us to hypothesize that 

EVI2B, as a C/EBP target gene, might be important for the execution of C/EBP-driven 

neutrophilic differentiation. This hypothesis is also supported by our observation that EVI2B 

is abundantly expressed in mature human and murine granulocytes.  

3.3.2. EVI2B is essential for proper granulopoietic development in vitro and in 

vivo 

 To investigate EVI2B function in granulocyte development, we employed murine 

32D/G-CSF-R cells, whose granulocytic differentiation can be induced by G-CSF 

administration. First, we observed that both C/EBP and EVI2B are upregulated in 

32D/G-CSF-R cells upon G-CSF stimulation and their expression was gradually increasing 

as the differentiation progressed. Second, Evi2b knock-down by two different shRNAs was 

sufficient to effectively block granulocytic differentiation of these cells (based on cellular 

morphology). In order to find out whether Evi2b knock-down can block granulocytic 

differentiation in primary cells as well, we sorted murine LKS cells, transduced them with 

Evi2b shRNA containing lentiviral particles, and assessed their ability to differentiate in 

colony formation assays. Interestingly, Evi2b-silenced cells formed less colonies that were 

also smaller in size and produced almost no mature granulocytes compared to non-silencing 

controls. Next, we transplanted Evi2b-silenced LKS cells (Ly5.2+) to lethally irradiated 

congenic recipient animals (Ly5.1+) and observed significant reduction in number of Evi2b 

shRNA-transduced granulocytes compared to non-silencing controls in vivo. 

 Since in vitro and transplantation-based experimental systems are biased, [71] we 

developed Evi2b full body KO mouse strain (referred as Evi2b KO) and use it to study Evi2b 

function in hematopoiesis. Taking into account previous results, it is surprising we did not 

observe any abnormalities in the frequencies of hematopoietic populations in steady-state 

hematopoiesis in Evi2b KO mice. It is possible that an unknown compensatory mechanism 

was applied to cope with long-term Evi2b deficiency during development. In agreement with 

this speculation, we observed that when subjected to colony formation assays in the presence 

of G-CSF, Evi2b KO BM cells formed less colonies, produced fewer granulocytes, and 

harbored reduced clonogenic capacity. 
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 To elucidate whether EVI2B is essential also for human granulopoiesis, we 

transduced human primary CD34+ cells with lentiviral vectors expressing non-silencing 

control or two shRNAs targeting human EVI2B mRNA. Transduced cells were sorted, 

cultured for 10 days in semi-solid medium supporting myeloid differentiation, and the 

differentiation status of these cells was assessed by expression of CD11b and CD15 

granulocyte markers. Consistently with our murine data, EVI2B shRNA-transduced CD34+ 

progenitors produced significantly less CD11b+ and CD15+ cells, suggesting that EVI2B is 

important for proper differentiation of human granulocytes. 

 Together, these results provide novel evidence that EVI2B, a membrane glycoprotein 

with previously unknown function, is necessary for granulocytic differentiation in both mice 

and humans. Its expression is directly induced by full-length functional myeloid master 

regulator C/EBP and is gradually increasing during the course of differentiation. 

Additionally, binding motifs of other transcription factors (other C/EBP family members, 

GFI-1, and PU.1) involved in granulopoietic development are located within EVI2B 

promoter, suggesting that EVI2B can be upregulated also by other regulators of granulocyte 

differentiation. EVI2B loss or downregulation was sufficient to block the differentiation of 

granulocytes in vitro and in vivo. These observations therefore illustrate the importance of 

EVI2B for proper differentiation of both murine and human granulocytes. Nonetheless, the 

mechanistic explanation how a transmembrane glycoprotein that has no similar counterpart 

within the mammalian genome contributes to the granulopoiesis remains obscured. 

Despite the exact mechanism how EVI2B regulates myeloid differentiation is not 

known, the observation that one of the most frequent mutated forms of CEBPA (p30 

C/EBP) lacks the ability to induce EVI2B expression is particularly interesting in relation 

to the biology of certain types of AML. Publicly available transcriptome analysis of 529 

AML patients [279] indeed showed that loss of C/EBP activity was associated with reduced 

EVI2B expression. Since we demonstrated that EVI2B deficiency hinders granulocytic 

differentiation, it is possible that the ablation of EVI2B contributes to the pathogenesis of 

AML characterized by C/EBP activity loss. Though, it would be necessary to perform 

additional experiments to further explore this possibility. Contrary to our hypothesis, other 

studies associating EVI2B with a cancer revealed that EVI2B presence has rather negative 
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consequences. In detail, EVI2B expression was identified as a diagnostic marker in acute 

lymphoblastic leukemia [280] and was associated with a poor prognosis of patients suffering 

from CLL and colorectal cancer. [168], [169] However, the function of transmembrane 

glycoprotein EVI2B might substantially differ in myeloid and lymphoid cells and further 

investigation is needed in order to decipher its functions in these cell lineages. 
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4. CONCLUSIONS 

The objective of this thesis was to dissected three previously unknown mechanisms 

that might have been, according to our hypotheses, involved in the regulation of granulocytic 

differentiation. In particular, we focused on the function of -catenin-TCF/LEF signaling, 

transcription factor C/EBP, and transmembrane glycoprotein EVI2B.  

The first aim of this thesis was to describe the function of -catenin-TCF/LEF 

signaling during neutrophil development in steady state and emergency granulopoiesis. Here 

we showed that -catenin-TCF/LEF signaling promotes differentiation of HSPCs into 

neutrophils via direct G-CSF-R upregulation. The influence of -catenin-TCF/LEF signaling 

on neutrophil differentiation from HSPC was rather moderate during steady state conditions. 

However, it was absolutely critical during the second step of emergency granulopoiesis, 

where a massive de novo production of neutrophils occurs. Loss of -catenin-TCF/LEF 

activity and consequent reduction in G-CSF-R levels resulted in insufficient neutrophil 

generation and fatal inability of the organism to regenerate after hematopoietic injury or to 

fight the infection. 

The second objective was to investigate the function of the vastly uncharacterized 

transcription factor C/EBP, a member of the C/EBP family of essential regulators of 

granulocyte differentiation. Despite we employed a plethora of experimental approaches to 

characterize multiple aspects of granulocyte development, we surprisingly did not find any 

abnormalities upon C/EBP loss. Therefore, it seems that C/EBP is the only member of the 

C/EBP family which is not involved in neutrophil production during steady state, nor 

emergency granulopoietic programs. 

The third aim of this thesis was to characterize the role EVI2B during granulocyte 

differentiation. First, we described that EVI2B is directly upregulated by C/EBP during the 

course of granulocytic differentiation. Interestingly, this upregulation was abrogated in AML 

patients harboring loss of functional C/EBP. Next we demonstrated that EVI2B knock-

down is sufficient to impair differentiation of granulocytes in both murine and human 

primary cells in vitro and in vivo. Despite we did not manage to provide mechanistic insight 
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into the molecular function of EVI2B, our data clearly show that EVI2B is crucial for the 

establishment and the execution of granulocytic differentiation program. 

 Together, our work extends the understanding of the molecular mechanisms that 

contribute to granulocyte generation. In this thesis, we demonstrate that by activating or 

inhibiting certain proteins or pathways in stem and progenitor cells we can diminish the 

granulocytic production, whereas by activating them we can potentiate granulopoiesis. 

Interestingly, this possibility to fine-tune granulocytic differentiation opens a new venue for 

potential clinical interventions, in which modulation of granulocyte counts needs to be 

adjusted. 

 However, it is not clear how these novel regulatory modules described in this thesis 

interact to ultimately orchestrate granulocytic differentiation. Thus, further investigation 

needs to be conducted in order to identify their potential interplay and to describe this 

regulatory network as a whole. 
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