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Introduction
One-dimensional time-independent Schrödinger equation plays a crucial role in
quantum mechanics. There exist only few systems, for which we know the ana-
lytical solution. Therefore, several numerical techniques were developed to tackle
the equation.
The subject of our interest are bound states and quasibound states. Systems de-
scribed by the first include, for example, a symmetrical linear harmonic oscillator
or unsymmetrical Morse oscillator and Lennard-Jones potential. The last two
mentioned can be used to model a diatomic molecule and can serve as testing
systems for more complicated diatomic molecules. Quasibound states including
resonances demonstrate themselves in nature as a tunneling rate in α decay [1];
another example is tunneling decay in the case of molecules and molecular ions
being in metastable states. Generally, for one-dimensional systems there is a sub-
stantial number of applications in electronics and optoelectronics such as LEDs,
diodes and photodetectors [2].
In this thesis, we find bound-state energies of chosen symmetrical and unsym-
metrical potentials and resonance energies of a diatomic molecule. In the first
chapter, we show the relation between the Schrödinger and the Milne equation.
We explain how to solve the latter equation and define quantities for determina-
tion of bound states. Then we demonstrate the method on examples of the linear
harmonic oscillator, the octic oscillator and the Morse potential.
In the second chapter, we explain the need of modification of the Milne method
for the search of quasibound states. We discuss the search of resonance widths
and illustrate the use of the phase-amplitude method on the example of 3He4He2+.
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1. Milne Method

1.1 Theoretical Background of the Method

1.1.1 Relation between the Schrödinger Equation and the
Milne Equation

Our goal is to find the solution of the linear differential equation

u′′(x) + k2(x)u(x) = 0. (1.1)

It can be solved with the help of the non-linear equation [3]

w′′(x) + k2(x)w(x) = 1
w3(x) (1.2)

since once w(x) is known, u(x) can be generated by means of [4]

u(x) = cw(x) sin
(︃

a
∫︂ x

x0
w−2(x′)dx′ − b

)︃
, (1.3)

where a, b, c ∈ R. For our purposes we can assume c ̸= 0 and also a = 1.

Proof. Let α(x) =
∫︁ x

x0
w−2(x′)dx′.

u′′(x) = [cw′(x) sin(α(x) − b) + cw(x) cos(α(x) − b) · α′(x)]′ =
= c sin (α(x) − b)

[︂
w′′(x) − w(x)(α′(x))2

]︂
+

+ c cos(α(x) − b) [2w′(x)α′(x) + w(x)α′′(x)] .

(1.4)

According to the fundamental theory of calculus α′(x) = w−2(x). Hence α′′(x) =
−2w′(x)w−3(x) and we may cancel out the second term in (1.4). We get

u′′(x) = c sin(α(x) − b)
[︂
w′′(x) − w−3(x)

]︂
,

which along with (1.3) turns (1.1) into

c sin(α(x) − b)
[︂
w′′(x) + k2(x)w(x) − w−3(x)

]︂
= 0.

Since the expression in the square bracket is nothing but (1.2), (1.3) is the con-
trived solution.

On the other hand [3],[5]

w(x) =
(︂
Au2

1(x) + Bu2
2(x) + 2Cu1(x)u2(x)

)︂1/2
, (1.5)

where {u1(x), u2(x)} is a fundamental set of solutions of (1.1) and A, B and C
are constants connected with AB − C2 = W −2, where Wronskian W (u1, u2) =
u1u

′
2 − u2u

′
1.

Proof. To show that (1.5) is valid, one may study [6].
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We have just shown the relations between w(x) and u(x). Back to Equations
(1.1) and (1.2), respectively, we presume

p(x, E) =
√︂

2m(E − V (x)) (1.6)
k(x, E) = p(x, E)/ℏ. (1.7)

Again, V represents the potential energy, m is the mass, ℏ is the so-called reduced
Planck constant and E is the energy. For simplicity, let us write p(x) and k(x).
The same dependence and simplification will appear in the following paragraphs
for functions w(x, E), K(x, E), ϕ(x, E) and u(x, E). With Assumptions (1.6) and
(1.7) Equation (1.1) becomes the Schrödinger equation. Equation (1.2) is named
after Milne, who first derived it [3], [4].

1.1.2 Quantum Number Function
Let x ∈ R. Our goal is to find the bound-state energies En, i.e. eigenvalues
of Hamiltonian from (1.1). To manage this, we define the quantum number
function N(E) and the density of states D(E). Let w(x) be an arbitrary solution
of (1.2), then u(x) (1.3) gives the general solution of (1.1). The energy E and
u(x) have real values. As u1(x), u2(x) in (1.5) are linearly independent, w(x)
cannot be equal to 0 on the real axis. While there are no boundary conditions on
w(x), at a bound-state energy E = En we require u ∈ L2(R) and consequently
limx→±∞ u(x) = 0. Considering the argument of the sine function in (1.3), we
get the quantisation condition for En:∫︂ +∞

−∞
w−2(x)dx = (n + 1)π, n ∈ N0, (1.8)

where obviously n shows the number of nodes of u(x). Quantum momentum
defined as P (x) = K(x)ℏ, where K(x) given by

K(x) = w−2(x). (1.9)

If we substitute K(x) into (1.8), we get

N(E) = 1
π

∫︂ +∞

−∞
K(x)dx = n + 1, n ∈ N0. (1.10)

This is the quantum number function, which shows us that when E = En, the
area under the K(x) curve is quantised. In other words, it is the function from
which En will emerge — see the next section. The integral exists also for E ̸= En.
For such energies N is not unique — it depends on the choice of w(x) and is only
limited by the condition n < N(E) < n + 1 [5]. In the article [5], the authors
illustrated graphically that N(E) grows with energy. It is demonstrated on the
example of the potential, where V (x) = 0 for x ∈ (−d, d) and tends to infinity
elsewhere.
Example. Such behaviour of N(E) is proven for a special case of initial conditions
more rigorously in [7]. In that paper the solution of the Schrödinger equation (1.1)

u(x) = v1(x) + iv2(x) (1.11)
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satisfies the initial conditions

vk(x0) = δk1 v′
k(x0) = δk2. (1.12)

We assume that V (x) is such that at least one of the vk’s diverges as x →
±∞ and x0 is the location of its minimum. Let us write one solution in the
form u(x) = w(x) exp [iϕ(x)], where ϕ satisfies ϕ(x0) = 0. The other solution
u∗(x) = w(x) exp [−iϕ(x)]; W (u∗, u) = u∗u′ − (u∗)′u. Using (1.11) and (1.12)
one gets W (u∗, u) = (v1 − iv2)(v′

1 + iv′
2) − (v′

1 − iv′
2)(v1 + iv2) = v1v

′
1 − v1v

′
1 +

2iv1v
′
2 − 2iv2v

′
1 + v2v

′
2 − v2v

′
2 = 2i(v1v

′
2 − v2v

′
1) = 2i. Now, substituting the expo-

nential form of u, u∗ and their derivatives into the Wronskian yields W (u∗, u) =
w exp(−iϕ)[w′ exp(iϕ)+iϕ′w exp(iϕ)]−w exp(iϕ)[w′ exp(−iϕ)−iϕ′w exp(−iϕ)] =
ww′ − ww′ + iϕ′w2 + iϕw2. Then 2iw2ϕ′ = 2i, which along with (1.9) provides
the definition of the quantum action [3]

ϕ(x) =
∫︂ x

x0
K(x′)dx′. (1.13)

This quantity will also be used further on in this section. Let us calculate the
first derivative of (1.13) with respect to E, employing (1.9). On the basis of the
theory about differentiation under the integral sign, we may change the order of
differentiation and integration. Hence

∂ϕ(x)
∂E

=
∫︂ x

x0
−2w−3(x′)∂w(x′)

∂E
dx′.

Since uu∗ = w2, its derivative w.r.t. E yields

∂u

∂E
u∗ + u

∂u∗

∂E
= 2w

∂w

∂E
,

∂ϕ(x)
∂E

= −
∫︂ x

x0

[︄
∂u

∂E
u∗ + u

∂u∗

∂E

]︄
· w−4dx′. (1.14)

On the other hand, we have the Schrödinger equation (1.1), which after substi-
tution of k using (1.7) and (1.6) and rearranging the terms yields[︄

− ℏ2

2m

∂2

∂x2 + V (x) − E

]︄
u(x) = 0.

Then applying ∂
∂E

this yields[︄
∂2

∂x2 − 2m

ℏ2 (V (x) − E)
]︄

∂u(x)
∂E

= −u(x). (1.15)

Now we solve Equation (1.15) using the variation of constants, i.e. we search the
general solution of (1.15) in the form

∂u(x)
∂E

= A(x)u1(x) + B(x)u2(x),
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where

A(x) = −
∫︂ x

x0

1
W (u1, u2)

u2(x′)f(x′)dx′,

B(x) =
∫︂ x

x0

1
W (u1, u2)

u1(x′)f(x′)dx′,

where f(x′) is the right hand-side of Equation (1.15). Let u1 → u∗ and u2 → u.
Then

A(x) = 1
2i

∫︂ x

x0
u2(x′)dx′,

B(x) = − 1
2i

∫︂ x

x0
|u(x′)|2 dx′,

∂u(x)
∂E

= 1
2i

[︃
u∗(x)

∫︂ x

x0
u2(x′)dx′ − u(x)

∫︂ x

x0
|u(x′)|2 dx′

]︃
, (1.16)

∂u∗(x)
∂E

= − 1
2i

[︃
u(x)

∫︂ x

x0
u∗2(x′)dx′ − u∗(x)

∫︂ x

x0
|u(x′)|2 dx′

]︃
. (1.17)

Now we can substitute (1.16) and (1.17) into (1.14).

∂ϕ(x)
∂E

= 1
2i

∫︂ x

x0

[︄(︄⃓⃓⃓
u(x′)

⃓⃓⃓2 ∫︂ x′

x0

⃓⃓⃓
u(x′′)

⃓⃓⃓2
dx′′ − u∗2(x′)

∫︂ x′

x0
u2(x′′)dx′′

)︄

−
(︄⃓⃓⃓

u(x′)
⃓⃓⃓2 ∫︂ x′

x0

⃓⃓⃓
u(x′′)

⃓⃓⃓2
dx′′ − u2(x′)

∫︂ x′

x0
u∗2(x′′)dx′′

)︄]︄
w−4(x′)dx′ =

= 1
2i

∫︂ x

x0

[︄
w2(x′) exp

[︂
i2ϕ(x′)

]︂ ∫︂ x′

x0
w2(x′′) exp

[︂
−i2ϕ(x′′)

]︂
dx′′−

− w2(x′) exp
[︂
−i2ϕ(x′)

]︂ ∫︂ x′

x0
w2(x′′) exp

[︂
i2ϕ(x′′)

]︂
dx′′

]︄
w−4(x′)dx′ =

=
⃓⃓⃓⃓
⃓ϕ(x0) = 0

⃓⃓⃓⃓
⃓ = 1

2i

∫︂ x

x0
w2(x′′)

∫︂ ϕ(x)

ϕ(x′′)
exp

[︂
i2(ϕ(x′) − ϕ(x′′))

]︂
−

− exp
[︂
−2i(ϕ(x′) − ϕ(x′′))dx′

]︂
dϕ(x′)dx′′.

Setting α = ϕ(x′) − ϕ(x′′) (i.e. dα = dϕ(x′)) and knowing [exp(i2α)−exp(−i2α)]
2i

=
sin(2α) = 2 sin α cos α = ∂α sin2 α, we finally get

∂ϕ(x)
∂E

=
∫︂ x

x0
w2(x′′) sin2 [ϕ(x) − ϕ(x′′)] dx′′. (1.18)

Let β(x) =
∫︁ x

x0
w2(x′′) sin2 [ϕ(x) − ϕ(x′′)]. Using the definition of N(E) (1.10) and

(1.13) we get

dN(E)
dE

= 1
π

(β(x)|x=+∞ − β(x)|x=−∞) . (1.19)

Because of the positivity of the function β, the difference of the integrals is always
positive. Hence N grows with E.
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Back to Equation (1.3), unlike K(x), u(x) does not hinge on the particular
choice of w(x), i.e. on the initial conditions w(x0), w′(x0), x0 ∈ R. In order to
have a smooth w(x), we choose classical initial conditions [3]

w(x0) = K−1/2(x0) = k−1/2(x0)

w′(x0) = −1
2K−3/2(x0)K ′(x0) = 0.

(1.20)

Moreover, let us assume that V (x) has a single minimum V (x0). The case of
double-well potentials is discussed in the Section 1.3.1. Equations (1.20) were
arrived at via the WKB theory.

Similarly to (1.13), we define the right-hand and the left-hand action integrals

N±(E) = 1
π

∫︂ ±∞

x0
K(x′)dx′. (1.21)

Therefore, (1.10) yields

N(E) = N+(E) − N−(E) = n + 1 n ∈ N0. (1.22)

The wavefunction (1.3) with (1.9)

u(x) = c√︂
K(x)

sin
(︃∫︂ x

x0
K(x′)dx′ − b

)︃
(1.23)

and the bound-state wavefunction [3]

un(x) = cn√︂
K(x)

sin
∫︂ x

−∞
K(x′)dx′, (1.24)

where we require un(x) to be square integrable and normalised with cn > 0, that
is

1 =
∫︂ ∞

−∞
|u2

n(x)|dx.

Now we will subtract the mathematical identities [8]:

u
∂u′′

∂E
= ∂

∂x

[︄
u

∂u′

∂E

]︄
− u′ ∂u′

∂E

u′′ ∂u

∂E
= ∂

∂x

[︄
u′ ∂u

∂E

]︄
− u′ ∂u′

∂E
.

∂

∂x

[︄
u′ ∂u

∂E
− u

∂u′

∂E

]︄
= u′′ ∂u

∂E
− u

∂u′′

∂E
= u2 ∂k

∂E
. (1.25)

The last equality emerges from the Schrödinger equation (1.1). Now we can
substitute (1.23) into (1.25). Let γ denote (

∫︁ x
x0

K(x′)dx′ − b) or (ϕ − b) (1.13),
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respectively. Then

∂u′

∂E
u = ∂

∂E

(︃(︂
K−1/2

)︂′
sin γ + K1/2 cos γ

)︃
K−1/2 sin γ =

= ∂(K−1/2)′

∂E
sin2 γ + (K−1/2)′K−1/2 sin γ cos γ

∂γ

∂E
+

+ 1
2K−1 sin γ cos γ

∂K

∂E
− sin2 γ

∂γ

∂E
,

u′ ∂u

∂E
=
[︃(︂

K−1/2
)︂′

sin γ + K1/2 cos γ
]︃

·
[︄

∂(K−1/2)
∂E

sin γ + K−1/2 cos γ
∂γ

∂E

]︄
=

= ∂(K−1/2)
∂E

(K−1/2)′ sin2 γ + (K−1/2)′K−1/2 sin γ cos γ
∂γ

∂E
−

− 1
2K−1 sin γ cos γ

∂K

∂E
+ cos2 γ

γ

∂E
.

What the integration of (1.25) yields is then[︄{︄(︄
K−1/2

)︄′
∂(K−1/2)

∂E
− K−1/2 ∂(K−1/2)′

∂E

}︄
sin2(ϕ − b) + ∂(ϕ − b)

∂E
−

− 1
K

∂K

∂E

sin[2(ϕ − b)]
2

]︄x

x0

=
∫︂ x

x0

1
K

sin2(ϕ − b)∂k2

∂E
dx′. (1.26)

Since b ∈ R, we may choose b = ϕ(x), which means that concerning the left
hand-side of (1.26), there is no contribution of the “x-term”.

∂k2

∂E
= 2m

ℏ2 ;

(K−1/2)′(x0) = 0,
∂(K−1/2)′(x0)

∂E
= 0, ϕ(x0) = 0.

Therefore,

∂ϕ(x)
∂E

= 2m

ℏ2

∫︂ x

x0

dx′

K(x′) sin2 (ϕ(x′) − ϕ(x)) +

+ 1
2K(x0)

∂K(x0)
∂E

sin [2ϕ(x)] .

(1.27)

This result corresponds with (1.18) from [7] since their initial conditions ∂K(x0)
∂E

=
0. In our case, i.e. for the classical initial conditions

∂N±

∂E
= 2m

πℏ2

∫︂ ±∞

x0

dx′

K(x′) sin2 (ϕ(x′) − πN±) + m

2πp2(x0)
sin (2πN±) =

= 2m

πℏ2

∫︂ ±∞

x0

dx′

K(x′) sin2
(︄∫︂ x′

±∞
K(x′′)dx′′

)︄
+ m

2πp2(x0)
sin (2πN±) .

(1.28)

The density of states is equal to

D(E) = ∂N

∂E
= ∂N+

∂E
− ∂N−

∂E
. (1.29)
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When E = En, sin(2πN+) − sin(2πN−) = 2 sin[π(N+ − N−)] cos[π(N+ + N−)] =
2 sin[π(n + 1)] cos[π(N+ + N−)] = 0, i.e.

D(En) = 2m

πℏ2

[︄∫︂ +∞

x0

dx′

K(x′) sin2
(︄∫︂ x′

+∞
K(x′′)dx′′

)︄
−

−
∫︂ −∞

x0

dx′

K(x′) sin2
(︄∫︂ x′

−∞
K(x′′)dx′′

)︄]︄
= 2m

πℏ2
1
c2

n

, (1.30)

which means that the normalisation constant of the wavefunction (1.24)

cn =
√︄

2m

ℏ2π

1
D(En) . (1.31)

1.2 Numerical Illustration
Using FORTRAN 77 programming language and GNU compiler, we conducted
numerical calculations. The code is attached to this work – see the Attachment
1. In it we specify the potential function. As the output we get the set of
bound-state energies {E0, . . . , EM} and the wavefunction connected to one of the
energies belonging to {E0, . . . , EM}.

The input consists of the potential function already mentioned, number of bound
states M + 1 (NUE in notation of the program) that we aim to find, step and
number of points, by which the grid is constructed, plus three trial energies E1,
E2 and E3. With such an input we call subroutine “Quant” for E1, E2 and E3.
After we generate the grid (field X(N)), potential function V (N) and K2 (k(x)
in terms of the naming in the previous section), we draw our attention to the
Milne equation (1.2).

1.2.1 Predictor-Corrector Method
For solving Equation (1.2) we use the “predictor-corrector” method, which was
suggested in 1933 by Milne [3], [5]. Generally, the method deals numerically with
the second-order differential equation

d2y

dx2 = f(x, y).

In our case

f(x, y) = y−3 − k2(x)y. (1.32)

From this point we stick to the original notation, i.e. we set y equal to w.
Corrector-predictor method is specified by the equidistant set of points {xi}. We
start the integration at the potential minimum x0. Four initial points are needed
to be calculated first. To manage this, we have to expand the solution w(x) of
(1.2) in the neighborhood of x0:

w =
5∑︂

ν=0
λν(x − x0)ν =

= λ0 + λ1(x − x0) + λ2(x − x0)2 + ...

(1.33)
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For proceeding calculations we multiply Equation (1.2) by w3(x). We obtain

w3(x)w′′(x) + k2(x)w4(x) = 1. (1.34)

Our goal is to find {λi} for i = 0, 1, . . . , 5. We substitute (1.33) into (1.34) and
expand k2(x) about x0:

k2(x) = 2m[E − V (x0)]
ℏ2 − 2m

ℏ2 V ′(x0)(x − x0) − m

ℏ2 V ′′(x0)(x − x0)2

− m

3ℏ2 V ′′′(x0)(x − x0)3 − m

12ℏ2 V IV (x0)(x − x0)4 − m

60ℏ2 V V (x0)(x − x0)5.

From the initial conditions (1.20) we know that w(x0) = k−1/2(x0). Therefore,
from (1.33) obviously λ0 = k−1/2(x0). Now we inspect the coefficients λi in front
of the (x − x0)0 power of (1.34). We get

2λ3
0λ2 + 2m[E − V (x0)]

ℏ2 λ4
0 = 1

2k−3/2(x0)λ2 + 2m[E − V (x0)]
ℏ2 k−2(x0) = 1.

The second term on the left hand-side of this equation is equal to 1. Hence λ2 = 0.
From the second initial condition (1.20) we know that w′(x0) = 0. On the other
hand

w′(x) = λ1 + 2λ2(x − x0) + ...,

therefore w′(x0) = λ1 and necessarily λ1 = 0. Now we look at the (x − x0) power:

6λ3
0λ3 + 2λ23λ2

0λ1 + 2m[E − V (x0)]
ℏ2 · 4λ3

0λ1 − 2m

ℏ2 V ′(x0) = 0.

Substituting λ1, λ2 = 0 and V ′(x0) = 0 (potential minimum), we gain λ3 = 0.
Let us inspect coefficients of (x − x0)2:

12λ4λ
3
0 + 18λ0λ1λ3⏞ ⏟⏟ ⏞

=0

+ 6λ2
0λ2⏞ ⏟⏟ ⏞

=0

+2m[E − V (x0)]
ℏ2 · (6λ2

0λ
2
1⏞ ⏟⏟ ⏞

=0

+ 4λ3
0λ2⏞ ⏟⏟ ⏞

=0

)+

+ 0 − λ4
0
m

ℏ2 V ′′(x0) = 0.

Then λ4 = m
12ℏ2 V ′′(x0)λ0 = m

12ℏ2 V ′′(x0)w(x0). Last but not least, let us inspect
the (x − x0)3 power:

20λ5λ
3
0 + 36λ2

0λ1λ4⏞ ⏟⏟ ⏞
=0

+ 6λ2
0λ3λ2⏞ ⏟⏟ ⏞
=0

+2m[E − V (x0)]
ℏ2 · (4λ0λ

3
1⏞ ⏟⏟ ⏞

=0

+ 12λ2
0λ1λ2⏞ ⏟⏟ ⏞
=0

+ 4λ3
0λ3⏞ ⏟⏟ ⏞

=0

)+

+ 0 − 4m

ℏ2 V ′′(x0)λ3
0λ2⏞ ⏟⏟ ⏞

=0

− m

3ℏ2 V ′′′(x0)λ4
0 = 0.
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As a result λ5 = m
60ℏ2 V ′′′(x0)w(x0).

Altogether

w = k−1/2(x0) + m

12ℏ2 V ′′(x0)w(x0)(x − x0)4 + m

60ℏ2 V ′′′(x0)w(x0)(x − x0)5 =

= k−1/2(x0)
[︄
1 + m

12ℏ2 V ′′(x0)(x − x0)4 + m

60ℏ2 V ′′′(x0)(x − x0)5
]︄
.

(1.35)

As we may observe, it was fully sufficient to take into account the powers i of
(x − xi)i corresponding with λi and omit the rest. We use formula (1.35) to
calculate first four initial points xi = x0 + ih of w(x), where step h = xi+1 − xi.
If we integrate to the right hand-side, then i = −1, 0, 1, 2; integration to the left
inverts the sign of i. In the next step we calculate points f(xi) using (1.32) for
the values of i already mentioned and we get w(x3), w(x4) or w(x−3), w(x−4),
respectively, with the use of the equations

wi+1 = wi + wi−2 − wi−3 + ℏ2

4 (5fi + 2fi−1 + 5fi−2),

fi+1 = f(xi+1, wi+1),

wi+1 = 2wi − wi−1 + ℏ2

12(fi+1 + 10fi + fi−1).

For other points the following formulas are needed:

wi+1 = wi + wi−4 − wi−5 + ℏ2

48(67fi − 8fi−1 + 122fi−2 − 8fi−3 + 67fi−4),

wi+1 = wi + wi−2 − wi−3 + ℏ2

240(17fi+1 + 232fi + 222fi−1 + 232fi−2 + 17fi−3).

In the program we set the lower limit of the magnitude of the calculated func-
tion w(x) equal to 10−15. This corresponds with the fact that we work in double
precision. Precision is discussed further in the thesis. The lower limit concretely
concerns the end points, where from our calculations we find out that w(x) → 0.

In the case of symmetrical potentials, it is fully sufficient to integrate to one
of the hand-sides and set the unknown values of w(x) equal to the ones on the
other hand-side.

1.2.2 Integration and Iteration
In the following step we demand that the number of points NMIN and NMAX
is divisible by four, so that in all proceeding calculations the condition for the
number of integration points is correct.

According to the formula (1.9), we calculate “KK(N)”. Then we integrate it
in the way as written in (1.21) and get the right-hand and the left-hand action
integrals NQR and NQL. We use Composite Simpson’s rule, which we have
tested before on simpler functions. Using (1.22) we finally get the quantum num-
ber function NQ, which is the output of the subroutine “Quant”. Now we can
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proceed to the calculation of bound states En.

Back to the main program, now with the three known values of NQ — let us
label them N1, N2 and N3 — we calculate coefficients α1, α2 and α3 via solving
the linear equations

Eν(Nν) = α1Nν + α2N
2
ν + α3N

3
ν , (1.36)

where Eν , ν = 1, 2, 3, stands for E1, E2 and E3, and analogically we substitute
N1, N2 and N3 for Nν . We use Cramer’s rule. The known coefficients α1, α2
and α3 can be now substituted back into Equation (1.36) and what we obtain is
a “trial energy”, for which we call another subroutine called “DensG”.

In the first part of this subroutine, we call “Quant”. In it we do some tech-
nical work with fiels X(N) and KK(N) (the reason is explained further in this
section): we shift the fields so that they start at N = 0. This rearrangement is
needed for the functions “spline” and “splint”, which follow.

In “spline” one calculates the second derivative of KK in the defined points.
Then new “x-values” of KK are constructed: our goal is to divide each interval
xi+1 − xi into two pieces or in other words add to the “x-field” the points in the
middle of each interval xi+1 − xi. After that, using the values from “spline”, we
proceed to the function “splint” to gain “y-values” of KK.

Now we have a new field KK with a double number of points compared to
the original field. At this point we find the density of states (1.29). We calculate
(1.28). The inner integral is summed using the already mentioned Composite
Simpson’s rule, the outer integral is counted with the use of Trapezoidal rule,
which have been again tested on simpler functions first. Because of the division
of the intervals of KK, we get values for all original points. This is the reason,
why we used functions “spline” and “splint” — to keep the original input. Trape-
zoidal rule is accurate enough - there is no need to use more precise methods of
integration such as Simpson’s rule or Boole’s rule. On the basis of our calcula-
tions we found out that it would have no effect on the precision of the calculation.

Back to the main program, we use the calculated values of quantum number
function NQ along with the density of states DD and calculate another energy
E using

E = E + [(M + 1) − NQ]/DD,

where E on the right hand-side represents the “trial energy” and (M + 1) is con-
nected to the M -th eigenvalue. We iterate until we receive the M -th eigenvalue.
This procedure is repeated for other values of M corresponding with NUE. As a
final result we obtain the set of bound-state energies {E0, . . . , EM}. The number
of iterations needed is discussed further in this section.

Now let us find eigenstates. In the main program we choose an eigenvalue for
which we seek the wavefunction. Again, we call subroutine “DensG”, now with
an additional part consisting of the calculation of a normalisation constant via
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(1.31) to calculate the integral in (1.23) with the help of Composite Simpson’s
rule.

In the case of symmetrical potentials, it is sufficient to integrate to one of the sides
and set the unknown values of w(x) equal to the other side (Side contains the
interval starting at the potential minimum and ending at NMIN or NMAX.).

1.2.3 Examples
LHO

As an illustrative example we take the 1D linear harmonic oscillator, where
m, ℏ, ω = 1 and the potential function is V (x) = 1

2x2. Our goal is to solve the
Schrödinger equation 1.1. We use the standard abbreviation LHO. Since we know
the analytic solution un(x) = 1√

2nn!π
−1/4 exp(−x2/2)Hn(x) and En = (n+ 1

2) from
theory, where Hn represents the Hermite polynomials and n is the (n+1)-th bound
state, we use this system as a test example.

We will be interested in how many times it is needed to iterate before we ob-
tain bound-state energies with desired accuracy. Also, we will investigate how
the calculated energies En depend on the choice of trial energies E1, E2, E3 and
on the number of integration points and the magnitude of the step h for fixed
values of E1, E2, E3 and the number of iterations it.

We will also demonstrate the behaviour of the functions K(x, E), which play
a major role in the method. We will plot several wavefunctions for chosen en-
ergies, by which we will show that the calculation of a wavefunction is correct.
Consequently, this will allow us to calculate wavefunctions of other symmetrical
potentials. Also, we will illustrate the N(E) and D(E)-dependence for this par-
ticular system.

At this place we could also discuss the general accuracy of the program, how-
ever, we will leave this onto a separate section, where we will also investigate the
behaviour at the end points.

We choose E1 = 45, E2 = 20 and E3 = 0.5. In Table 1.1 we present the
dependence of calculated bound-state energies En on the number of iterations it.
NMIN and NMAX is connected with the step h in a way that both X(NMIN)
and X(NMAX) have always the same value. In this case we take the step
h = 0.01 and the number of points NMIN = −1000 and NMAX = 1000.
Tables 1.2 and 1.3 illustrate the same dependence with a different step and a
number of points. In the first case, we take h = 0.0025, NMIN = −4000 and
NMAX = 4000, while in the other case, we set h = 0.025, NMIN = −400 and
NMAX = 400. Let us focus on each table separately and then compare them
with each other.

As for Table 1.1, it can be observed that comparing the resulting energies af-
ter two iterations with the ones after three iterations, the resulting energies are
more precise in the second case. Mostly by 2 digits. In the case of E0 the differ-
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ence counts 0 digits; on the contrary in the cases of E2 and E3, the difference is 5
digits. We may assume that the iteration invariance of E0 corresponds with the
exact solution taken as E3.

We will take a closer look at the choice of trial energies in the following para-
graphs. As for more iterations, there is almost no difference in accuracy between
it = 3, it = 4 and it = 5. Therefore, we naturally expect higher values of it to
demonstrate the same phenomenon, which is indeed confirmed with it = 10.

From Table 1.2 we can see that in the case of a smaller step h, i.e. higher number
of integration points, we receive similar results. If we opt for a lower number of
integration points — see Table 1.3, we find out that for it > 3 we obtain the same
accuracy as for it = 3 with no exception. Comparing Table 1.1 with Table 1.2,
we see, that we generally get the results of the same accuracy even for it = 2,
however, if we decide to count with a higher number of integration points, the
comparison of results for different it gives us the condition to use it > 2. To keep
the time of calculations the lowest, we choose it = 3.

To sum it up, in the case of symmetrical potentials (asymmetrical potentials
will be studied later) it is sufficient and needed to iterate three times in order to
get satisfying accuracy, which is also a matter of convenience because it of such
a low value speeds up the calculation.

Now let us inspect the choice of trial energies E1, E2 and E3. On the basis
of previous results, we set it = 3. From Table 1.4 it is obvious that we can choose
E1, E2 and E3, which are further from En.
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Table 1.1: Dependence of the calculated bound-state energies En of LHO on
the number of iterations it for the step h = 0.01 and the number of points
NMIN = −1000, NMAX = 1000. We list the first 11 energies.

n En, it = 2 En, it = 3 En, it = 4
0 0.50000000004460 0.50000000004462 0.50000000004459
1 1.50000000507697 1.50000000000914 1.50000000000915
2 2.49999886500916 2.50000000009996 2.50000000009996
3 3.50000026660797 3.50000000000584 3.50000000000584
4 4.49999998397862 4.50000000013407 4.50000000013406
5 5.50000000069406 5.50000000000653 5.50000000000649
6 6.49999999735715 6.50000000016159 6.50000000016164
7 7.50000000213856 7.50000000000569 7.50000000000570
8 8.49999999916786 8.50000000018131 8.50000000018130
9 9.50000000047519 9.50000000000792 9.50000000000792

10 10.50000000002764 10.50000000020212 10.50000000020210
n En, it = 5 En, it = 10
0 0.50000000004461 0.50000000004462
1 1.50000000000916 1.50000000000915
2 2.50000000009995 2.50000000009993
3 3.50000000000582 3.50000000000583
4 4.50000000013403 4.50000000013406
5 5.50000000000652 5.50000000000653
6 6.50000000016162 6.50000000016163
7 7.50000000000571 7.50000000000571
8 8.50000000018129 8.50000000018129
9 9.50000000000793 9.50000000000793

10 10.50000000020212 10.50000000020210

Table 1.5 shows the dependence of bound-state energies of LHO on the num-
ber of integration points and the step. It can be observed that in the case of /a/
and /b/ odd energies are by 1-3 digits more precise. This phenomenon ceases
with a higher number of integration points /c/ and /d/. The accuracy of En

depends on the number of integration points and the step. We can reach the
accuracy 10−12.

Figure 1.1 shows how the quantum number function N and the density of states
D depend on energy. Figure 1.2 illustrates the function K(x) for certain bound-
state energies En. Corresponding wavefunctions un are plotted in Figure 1.3.
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Table 1.2: Dependence of the calculated bound-state energies En of LHO on
the number of iterations it for the step h = 0.0025 and the number of points
NMIN = −4000, NMAX = 4000. We list the first 11 energies.

n En, it = 2 En, it = 3 En, it = 4
0 0.50000000000562 0.50000000000549 0.50000000000552
1 1.50000000516774 1.50000000000665 1.50000000000640
2 2.49999886898550 2.50000000000566 2.50000000000587
3 3.50000026318464 3.50000000000589 3.50000000000578
4 4.49999998433134 4.50000000000606 4.50000000000590
5 5.50000000068621 5.50000000000563 5.50000000000587
6 6.49999999736013 6.50000000000586 6.50000000000584
7 7.50000000195649 7.50000000000583 7.50000000000590
8 8.49999999912288 8.50000000000581 8.50000000000577
9 9.50000000039703 9.50000000000561 9.50000000000539

10 10.49999999986822 10.50000000000594 10.50000000000592
n En, it = 5 En, it = 10
0 0.50000000000545 0.50000000000543
1 1.50000000000637 1.50000000000640
2 2.50000000000582 2.50000000000597
3 3.50000000000571 3.50000000000557
4 4.50000000000625 4.50000000000621
5 5.50000000000563 5.50000000000558
6 6.50000000000585 6.50000000000585
7 7.50000000000563 7.50000000000589
8 8.50000000000582 8.50000000000574
9 9.50000000000564 9.50000000000544

10 10.50000000000594 10.50000000000594
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Table 1.3: Dependence of the calculated bound-state energies En of LHO on
the number of iterations it for the step h = 0.025 and the number of points
NMIN = −400, NMAX = 400. We list the first 11 energies.

n En, it = 2 En, it = 3 En, it = 4
0 0.50000000370057 0.50000000370057 0.50000000370058
1 1.50000000459684 1.50000000003827 1.50000000003828
2 2.49999885153179 2.50000000924097 2.50000000924098
3 3.50000028588758 3.50000000005840 3.50000000005840
4 4.49999999356111 4.50000001250217 4.50000001250217
5 5.50000000076970 5.50000000006826 5.50000000006827
6 6.50000001145418 6.50000001507693 6.50000001507694
7 7.50000000315859 7.50000000007129 7.50000000007129
8 8.50000001560191 8.50000001730162 8.50000001730162
9 9.50000000091168 9.50000000005690 9.50000000005690

10 10.50000001894249 10.50000001929450 10.50000001929451
n En, it = 5 En, it = 10
0 0.50000000370057 0.50000000370057
1 1.50000000003828 1.50000000003827
2 2.50000000924099 2.50000000924099
3 3.50000000005840 3.50000000005840
4 4.50000001250217 4.50000001250216
5 5.50000000006827 5.50000000006827
6 6.50000001507694 6.50000001507693
7 7.50000000007129 7.50000000007129
8 8.50000001730162 8.50000001730162
9 9.50000000005690 9.50000000005690

10 10.50000001929450 10.50000001929451

Table 1.4: Dependence of the calculated bound-state energies En of LHO on the
choice of trial energies E1, E2 and E3 for h = 0.0025, no. of points 8001, /1/
E1 = 12, E2 = 5, E3 = 0.3, /2/ E1 = 90, E2 = 5, E3 = 0.6, /3/ E1 = 50,
E2 = 20, E3 = 0.6.

n /1/ /2/ /3/
0 0.50000000000546 0.50000000000527 0.50000000000566
1 1.50000000000663 1.50000000000668 1.50000000000634
2 2.50000000000591 2.50000000000568 2.50000000000583
3 3.50000000000580 3.50000000000581 3.50000000000593
4 4.50000000000620 4.50000000000616 4.50000000000611
5 5.50000000000558 5.50000000000554 5.50000000000554
6 6.50000000000616 6.50000000000601 6.50000000000602
7 7.50000000000569 7.50000000000576 7.50000000000553
8 8.50000000000577 8.50000000000576 8.50000000000570
9 9.50000000000547 9.50000000000569 9.50000000000557

10 10.50000000000591 10.50000000000601 10.50000000000574
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Table 1.5: Computed bound-state energies of LHO using the Milne method: [a]
h = 0.025, no. of points 801, [b] h = 0.01, no. of points 2001, [c] h = 0.0025, no.
of points 8001, [d] h = 0.001, no. of points 20001.

n [a] [b] [c]
0 0.50000000370057 0.50000000004462 0.50000000000549
1 1.50000000003827 1.50000000000914 1.50000000000665
2 2.50000000924099 2.50000000009996 2.50000000000566
3 3.50000000005840 3.50000000000584 3.50000000000589
4 4.50000001250216 4.50000000013407 4.50000000000606
5 5.50000000006827 5.50000000000653 5.50000000000563
6 6.50000001507693 6.50000000016159 6.50000000000586
7 7.50000000007129 7.50000000000569 7.50000000000583
8 8.50000001730162 8.50000000018131 8.50000000000581
9 9.50000000005690 9.50000000000792 9.50000000000561

10 10.50000001929451 10.50000000020212 10.50000000000594
n [d]
0 0.50000000000598
1 1.50000000000577
2 2.50000000000481
3 3.50000000000543
4 4.50000000000544
5 5.50000000000555
6 6.50000000000483
7 7.50000000000627
8 8.50000000000485
9 9.50000000000554

10 10.50000000000484
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Figure 1.1: Quantum number function N(E) (full-line) and density od states
D(E) (dashed-line) of LHO. First 11 bound-state energies are marked.

Figure 1.2: Function K(x) of LHO for n = 0, n = 1, n = 8 and n = 9.
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Figure 1.3: Calculated wavefunctions un(x) of LHO for chosen bound-state ener-
gies En marked by n.

Other Symmetrical Potentials

Let us test the method on another symmetrical potential — the octic oscillator
V (x) = x8/2 with the parameters m, ℏ, ω = 1 and x0 = 0 [3]. On the basis of
previous results we use it = 3. In Table 1.6 we can see the dependence of En on
h and the number of integration points with E1 = 50, E2 = 20 and E3 = 0.5.

Figure 1.5 depicts the N(E)- and D(E)-dependence. Calculated bound-state
energies (with parameters from Table 1.6, /II/) are marked. We plotted K(x)
and u(x) for n = 0, 1, 6, 7 — see Figure 1.5 and 1.6, respectively.

One may also be interested in the case of symmetrical double-well potentials.
For some of these, the analytical solution exists, but this is just a small num-
ber [3]. The standard Milne method can be applied to double-well potentials,
however, we are able to gain energies only above the central maximum of the
potential. As for the energies below the central maximum, one cannot obtain the
function K(x), since when we start calculating w(x) in one of the wells (one of
the minima), it diverges in the other. Consequently, N(E) has some irregularities
and does not behave so elegantly as it does in the cases of single-well potentials.

We may choose a higher number of integration points – with a reasonably smaller
h. One gets energies even below the level of the central maximum then. Nonethe-
less, it prolongs the time of the calculation, which means that the method looses
its efficiency. Even if one decides to start the integration from the central maxi-
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Table 1.6: Computed bound-state energies of the octic oscillator using the Milne
method:/I/ h = 0.025, NMIN = −400, NMAX = 400 /II/ h = 0.01, NMIN =
−1000, NMAX = 1000, /III/ h = 0.0025, NMIN = −4000, NMAX = 4000.
The first 11 bound-state energies are listed.

n /I/ /II/ /III/
0 0.61291007867788 0.61291005699677 0.61291005690205
1 2.37793729561293 2.37793720737761 2.37793720698397
2 5.12247369710752 5.12247348953308 5.12247348862261
3 8.67154438085891 8.67154398704025 8.67154398529727
4 12.90450404316453 12.90450337863008 12.90450337565740
5 17.74895043982706 17.74894940717804 17.74894940259340
6 23.15638677248602 23.15638525431555 23.15638524752610
7 29.08982711996058 29.08982498438697 29.08982497485493
8 35.51963175193474 35.51962885095933 35.51962883794862
9 42.42131614451011 42.42131231343459 42.42131229615888

10 49.77418139421832 49.77417645111993 49.77417642884164

mum of the potential, the energies can be obtained only above the central maxi-
mum. Hence, one must search for another approach to the problem.

F. Robicheaux at al. [9] and S. Y. Lee and J. C. Light [10] tackle this issue
by dividing of the domain of V (x) into intervals. In each interval the wavefunc-
tion is calculated and these wavefunctions are matched, so that one obtains a C1
solution.
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Figure 1.4: Quantum number function N(E) (full-line) and density of states
D(E) (dashed-line) of the octic oscillator. Bound-state energies are marked.

Figure 1.5: Function K(x) of the octic oscillator for n = 0, n = 1, n = 6 and
n = 7.
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Figure 1.6: Calculated wavefunctions un(x) of the octic oscillator for chosen
bound-state energies En, n = 0, 1, 6, 7.

Morse Potential

Let us inspect one case of asymmetrical potentials. We consider the Morse
potential from [3] given by V (x) = D[exp(−αx) − 1]2, where D = 5 and α =
1/

√
10. We assume m, ℏ, ω = 1 and x0 = 0. We know that En = (n + 1

2) −
0, 05(n + 1

2)2 [3]. We derive the potential function and as (1.35) we obtain

w(x) = k−1/2(x0)
{︄

1 + 1
12x4 + 1

60

(︄
−2

√
2√

5
+ 1√

10

)︄
x5
}︄

. (1.37)

Table 1.7 shows the dependence of En on h and the number of integration points
with E1 = 0.5, E2 = 3, E3 = 4.8 and it = 5. The second column shows the
exact energies. From the next columns we can see that we are able to reach the
accuracy up to 10−11.

Again, we ought to inspect the dependence of the calculated En on E1, E2 and
E3 along with it. We choose h = 0.01, NMIN = −500 and NMAX = 1500.
We find out that in this case, we should iterate at least five times to get satis-
factory results. As for the choice of the trial energies, there is, again, a wider
range of possible choices. The results are illustrated in Table 1.8. We list En for
n = 0, 1, . . . , 7.

Figure 1.7 depicts the N(E)- and D(E)-dependence. Exact bound-state ener-
gies are marked. Figure 1.8 shows the computed bound-state energies of the
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Table 1.7: Computed bound-state energies of the Morse oscillator using the Milne
method: [a] exact, [b1] h = 0.025, NMIN = −200, NMAX = 600, [b2] h = 0.01,
NMIN = −500, NMAX = 1500, [b3] h = 0.001, NMIN = −5000, NMAX =
15000

n [a] [b1] [b2] [b3]
0 0.48750 0.48750000282430 0.48750000003735 0.48750000000651
1 1.38750 1.38750000160551 1.38750000002389 1.38750000000681
2 2.18750 2.18750000087238 2.18750000001660 2.18750000000659
3 2.88750 2.88750000525415 2.88750000006003 2.88750000000691
4 3.48750 3.48750000567683 3.48750000006493 3.48750000000586
5 3.98750 3.98750000288674 3.98750000003559 3.98750000000635
6 4.38750 4.38750000076720 4.38750000001372 4.38750000000588
7 4.68750 4.68750000009700 4.68750000000624 4.68750000000576

Morse potential. We can observe the gradually decreasing spacing between the
neighbouring energy levels when the energy increases.

We choose four En, for which we plot the values of K(x) and u(x) — see Figure
1.9 and 1.10, respectively.

General Remarks

At this place, before we move onto the next chapter, a few comments on the
number of grid points given by NMIN and NMAX should be noted. As it is
mentioned at the very beginning of the chapter Numerical Illustration, we choose
them as input parameters. Later (see the section Predictor-Corrector Method),
they are cut by the condition limitating w(x) to the magnitude of 10−15.

There is no reason to set a lower boundary to the limit, since we use double
precision. In fact, we find out that the accuracy of the method has its bound-
ary in the end points. We have tested the program also in quad precision and
changed the condition limiting w(x) to the magnitude of 10−34. The results show
that from a certain point, wavefunctions start to change their behaviour, they
can even diverge. We can observe it on the example of LHO in Figure 1.11. This
result does not correspond with theory, which requires u(x) → 0 for x → ±∞. It
is fully sufficient to use double precision in the program.
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Table 1.8: Computed lowest eight bound-state energies En of the Morse potential
using the Milne method. For /1/-/3/ it = 3, for /4/-/6/ it = 5 and for /7/-/9/
it = 10. For the first column E1 = 0.5, E2 = 3 and E3 = 5, for the second
column E1 = 0.5, E2 = 6 and E3 = 10 and for the last column E1 = 0.5,
E2 = 10 and E3 = 20.

/1/ /2/ /3/
0.48750000003734 0.48750000003731 0.48750000003735
1.38750000002440 1.38750000004564 1.38750000004800
2.18750000001661 2.18750000015046 2.18750000020205
2.88750000006001 2.88750000490285 2.88750000692754
3.48750000006836 3.48750001040841 3.48750001785018
3.98750005952636 3.98750000185422 3.98750000705012
4.38756960115965 4.38750000004452 4.38750000001370
4.69351822632350 4.68750001971269 4.68751384353718

/4/ /5/ /6/
0.48750000003735 0.48750000003735 0.48750000003735
1.38750000002389 1.38750000002388 1.38750000002390
2.18750000001660 2.18750000001659 2.18750000001659
2.88750000006002 2.88750000006003 2.88750000006002
3.48750000006493 3.48750000006492 3.48750000006492
3.98750000003559 3.98750000003559 3.98750000003558
4.38750000001372 4.38750000001373 4.38750000001371
4.68750000091284 4.68750000000622 4.68750000000624

/7/ /8/ /9/
0.48750000003735 0.48750000003735 0.48750000003736
1.38750000002389 1.38750000002390 1.38750000002388
2.18750000001661 2.18750000001660 2.18750000001661
2.88750000006002 2.88750000006002 2.88750000006002
3.48750000006493 3.48750000006492 3.48750000006492
3.98750000003559 3.98750000003558 3.98750000003558
4.38750000001371 4.38750000001371 4.38750000001370
4.68750000000623 4.68750000000624 4.68750000000624
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Figure 1.7: Quantum number function N(E) (full-line) and density od states
D(E) (dashed-line) of the Morse oscillator. Bound-state energies are marked.

Figure 1.8: Bound-state energies En of the Morse oscillator for n = 0, . . . , 7.
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Figure 1.9: Function K(x) of the Morse potential for n = 0, n = 1, n = 6 and
n = 7.

Figure 1.10: Calculated wavefunctions un(x) of the Morse potential for chosen
bound-state energies En, n = 0, 1, 6, 7.
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Figure 1.11: Wavefunction un(x) of LHO for chosen bound-state energies En(x),
n = 0 and n = 9. There is a small growing tendency of un(x) for n = 9 and
divergence for n = 0 as x → 10.
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2. Phase-Amplitude Method

2.1 Theoretical Background of the Method

2.1.1 Modification of the Milne Method
In the first chapter, our goal was to find bound states of 1D potentials. In this
chapter, we will look for quasibound states embedded in a classically trapped
region. We will be interested in their resonance energies ER and widths Γ, which
can be used for determination of mean resonance lifetimes τ [1], defined as

τ = ℏ
Γ .

Let us consider the wavefunction in the form (1.3). Let us assume that a = 1
and b = 0. Then using Equation (1.13) we may write

u(x) = cw(x) sin (ϕ(x)) , (2.1)

where w(x) is the phase, ϕ(x) is the amplitude, c satisfies the same assumptions
as in Chapter 1. The Milne method uses k(x) (1.7), which is by definition always
positive in the classically allowed regions. The question is how to deal with the
classically forbidden regions, where k(x) is always imaginary.

We will adopt approach from [1], where the authors suggest to rewrite (2.1)
into

u(x) = c exp(z(x)) sin(ϕ(x)), (2.2)

where c =
√︂

2µ/π and µ represents the mass.

Our goal is to find and solve equations for ϕ(x) and z(x), i.e. we need two
equations. From the previous chapter we know that dϕ(x)/dx = K(x) = w−2(x).
As it can be seen

w(x) = exp(z(x)). (2.3)

Then we get the first equation

dϕ(x)
dx

= exp(−2z(x)). (2.4)

Substituting exp(z(x)) into the Milne equation (1.2), we obtain

d

dx

(︄
dz(x)

dx
exp(z(x))

)︄
+ k2(x) exp(z(x)) = exp−3(z(x)),

d2z(x)
dx2 exp(z(x)) + exp(z(x))

(︄
dz(x)

dx

)︄2

+ k2(x) exp(z(x)) = exp−3(z(x)),
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d2z(x)
dx2 +

(︄
dz(x)

dx

)︄2

+ k2(x) = exp−4(z(x)).

As exp−4(z(x)) = exp(−4z(x)) = (dϕ(x)/dx)2, we found the second equation

d2z(x)
dx2 +

(︄
dz(x)

dx

)︄2

−
(︄

dϕ(x)
dx

)︄2

+ k2(x) = 0. (2.5)

The initial conditions come from the WKB theory. These hold

w(x0) = k−1/2(x0)

w′(x0) = d(k−1/2(x))
dx

⃓⃓⃓⃓
⃓
x=x0

ϕ(x0) = 0,

(2.6)

where x0 is the potential minimum. The third condition is arbitrary. We assume
that ℏ = 1, while µ can be different from 1. Hence

k(x) =
√︂

2µ[E − V (x)]. (2.7)

Substituting (2.7) into (2.6), we obtain

w(x0) = [2µ(E − V (x0))]−1/4 (2.8)

and

w′(x0) = µV ′(x0)[2µ(E − V (x0))]−5/4. (2.9)

Now we aim to change the first two conditions into the conditions for z(x). From
the reverse relation of (2.3) we gain

z(x0) = ln(w(x0)), (2.10)

which along with (2.8) gives

z(x0) = −1
4 ln[2µ(E − V (x0))].

This is the first initial condition for z(x). From (2.10) it is furthermore obvious
that

z′(x)|x=x0
= w′(x)

w(x)

⃓⃓⃓⃓
⃓
x=x0

.

Substituting (2.8) and (2.9) into this equation yields

z′(x0) =
1
2µV ′(x0)[2µ(E − V (x0))]−5/4

[2µ(E − V (x0))]−1/4 = V ′(x0)
4(E − V (x0))

.

This is the second initial condition for z(x).
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We opt for these classical conditions to simplify the calculations, i.e. the in-
tegration of Equations (2.4) and (2.5) – in this case z(x) has a non-oscillatory
behaviour [11].

In order to solve Equations (2.4) and (2.5), we devide the domain of V (x) into
classically allowed and forbidden regions. In each segment, we start the integra-
tion with different initial conditions. This means that it is needed to carry out
matching of the solutions z(x) and ϕ(x). It is conducted in the following way: we
add a constant c1 to z(x) in the first region, while another constant d1 is added to
ϕ(x) in the second region, so that the resulting function is a C1 function. Then,
we add a constant d2 to the just formed ϕ(x), so that it satisfies the third condi-
tion of (2.6).

If we substitute these functions z(x) and ϕ(x) into Equation (2.2), we receive
a wavefunction for a certain energy E. Moving to the next subsection, our goal
will be to find resonance energies ER, for which the knowledge of ϕ(x) is essential.

2.1.2 Resonance Positions and Widths
In order to find ER, one plots ϕ = ϕ(E) for a chosen xout located in the forbidden
region. The resonances are characterised by jumps of ϕ by π. We will demon-
strate this behaviour on the example from [1] – see the following section.

Calculating the derivative ∂ϕ(xout, E)/∂E and plotting it against energy E, we
can read out resonance energies and then find the resonance widths Γ from the
Breit-Wigner formula [1]

∂ϕ(xout, E)
∂E

= Γ/2
(E − ER)2 + (Γ/2)2 + C, (2.11)

where a constant C is the derivative of the background phase. The process of
locating Γ will be described more in the next section.

2.2 Numerical Illustration
The program input consists of a grid [xmin, . . . , xmax], a potential function V (x),
a reduced mass µ, an energy range [Emin, . . . , Emax], in which we aim to find res-
onances, and Ewave, which is the energy, where the corresponding wavefunction
is desired.

The first of the following subsections describes the way one solves Equations
(2.4) and (2.5). The second one explains how to find resonances. In the last
subsection we list an example of a resonance search.

2.2.1 Solving the Modified Milne Equations
Depending on a specific potential function, one may firstly interpolate it us-
ing the cubic spline algorithm listed in [12]. Then for each value of E from
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[Emin, . . . , Emax] we devide the grid into a classically allowed and forbidden re-
gion and calculate the initial values of z(x) and ϕ(x), i.e. z(x0) and ϕ(x0). For
both regions x0 is the potential minimum. The values z(x0) and ϕ(x0) are calcu-
lated via (2.6).

Once we know the initial values of z(x) and ϕ(x), we can start the integration of
(2.4) and (2.5). We use the 4-th order fixed step size Runge-Kutta algorithm. In
the case of z(x), we concretely take the algorithm for the second-order ordinary
differential equations, while to calculate ϕ(x), it is sufficient to use the algorithm
for the first-order ordinary differential equations.

Once we have the solutions z(x) and ϕ(x) in both regions, we match them as
described in the previous subsection and move ϕ(x) by the magnitude of d2, so
that the last condition of (2.6) is valid. Now we can proceed to locating reso-
nances.

2.2.2 Three Criteria for a Resonance
As it was foreshadowed in the section Resonance Positions and Widths, we ex-
amine ϕ(xout, E). We simply choose xout = xmax and look for jumps by π, which
can be found due to the fact that ϕ(xmax, E) is a monotonic function. In order
to locate all jumps by π, the difference between adjacent values of ϕ(xmax, E) is
set to be less than π/40 radians.

We calculate ∂ϕ(xmax, E)/∂E. We classify its local maxima as resonance peaks.
With these data using (2.11) we find resonance widths Γ. In some cases it may
happen that not all of the peaks are true resonances. We demand for the reso-
nance peaks to satisfy three criteria:

• The phase ϕ(xmax, E) has a jump of π.

• The peak has the form of (2.11).

• The wavefunction u(x) is strongly peaked in the well region of V (x) at ER.

For example, some of the “fake” resonances have the Breit-Wigner form, but the
jump in the ϕ(xmax, E)-dependence does not equal π.

2.2.3 Examples
As an illustrative example we choose 3He4He2+ from [1]. They use the potential
curve from [13] and take µ = 3134.3 a.u. We present the potential curve with
the interpolated values from [13] in Figure 2.1. Our program could not have been
debugged due to time constraints.

In the first figure of the article there are shown the calculated functions for cer-
tain energies near the second resonance energy Eν=1 = −3.658682803223646 a.u.
The local minimum of the curve lies at r = 1.328 a.u. and its local maximum
is located at r ∼ 2.172 a.u. It can be seen that γabove(r), which is zabove(x) in
the language of our previous notation, reaches high values near r = 0 a.u., i.e.
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Figure 2.1: Interpolated potential energy curve of 3He4He2+ from [13]. Resonance
energy Eν=1 and regions I and II are marked.

x = 0 a.u., and r = 2.7 a.u., i.e. x = 2.7 a.u. This illustrates the standard Milne
approach, which the phase-amplitude modifies.

Also, one can observe the discontinuity of γabove and ϕabove between two regions
(classically forbidden and allowed region) separated by the dashed line. As it was
mentioned before, this is caused by the different initial conditions in regions I
and II for the two functions. In region I the integration started at r = 1.328 a.u.,
while in region II the integration began at r = 5 a.u.

Let us focus strictly on resonance energies ER. In the next figure of [1] we
observe four true resonances ER of 3He4He2+. There is another jump in ϕ(r) but
its magnitude is different from π. Therefore, it is not a vibrational state. It is
the case of above mentioned “fake” resonance. The figure also shows (see graph
below) the shape of the peak of ∂ϕ(rout, E)/∂E. The resonance width Γ is marked.

In an analogical way we can find resonances of a variety of 1D potentials. As
for the accuracy of the method, we are only limited by the numerical accuracy of
the calculations. Therefore, it is highly convenient to use a quadruple precision.
With a double precision, not all resonance widths can be calculated. In the case
of the examples listed in [1], Γ ranges from ∼ 10−4 to ∼ 10−22 a.u.
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Conclusion
In the beginning of this thesis, in the theoretical part of the first chapter, we have
derived the relation between the Schrödinger and the Milne equations. We have
explained how to solve the Milne equation via the predictor-corrector method.
We have chosen the classical initial conditions. We have defined the quantum
number function and found out that it grows with energy. We have illustrated
this behaviour on examples. Another important quantity is the quantum action,
which has served us as a standing point for the definition of the derivative of the
quantum number function and the density of states.
In the practical part of the first chapter, we have listed numerical tools used in
our program and described the calculation of bound states. As the first example
we have taken the linear harmonic oscillator. We have calculated the first eleven
bound states. Considering the input parameters, we have found out that the ideal
number of iterations counts three and that we can choose from a wider range of
trial energies. Similarly, we have tested the method on the octic oscillator and
discussed the case of double-wells.
We have calculated the first eight bound states of the Morse potential. In that
case the ideal number of iterations is five. Trial energies can be, again, chosen
from a wider range.
We have plotted function K(x) for our systems and have shown that for symmet-
rical potentials it is symmetrical. We have illustrated the shape of wavefunctions
and have shown their even and odd character for symmetrical potentials. We
have plotted energy levels of the Morse oscillator and demonstrated the decreas-
ing level spacing between energies.
We have conducted a brief discussion on the end points of the calculated functions
and set boundary conditions equal to 10−15. From the results in our tables it can
be seen that the accuracy of calculated bound states depends on the number of
integration points and the step; with the Milne method we can reach the accuracy
up to 10−11 - 10−12.
In the second chapter, we have introduced an altered form of the wavefunction.
We have derived the modified Milne equation for the phase and the amplitude
function. We have derived the corresponding initial conditions. In the next sec-
tions we have explained the resonance search. We have described the method on
the example of 3He4He2+. We have examined its phase and amplitude functions.
3He4He2+ has four true resonances. The accuracy of the phase-amplitude method
is given by the numerical precision of the calculations.
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A. Attachments

A.1 Attachment 1 - Source Code
************************************************************

* BOUND-STATE PROBLEM
**********************

include ’globc_20D.f’

INTEGER NMINM, NMAXM, j, k, NMINM_FIXED, NMAXM_FIXED
DOUBLE PRECISION E1, E2, E3, hM
DOUBLE PRECISION N1, N2, N3, N4, N5, N6, N7, N8, N9
DOUBLE PRECISION det, detNN, detNN1, detNN2, detNN3
DOUBLE PRECISION alpha1, alpha2, alpha3
INTEGER N_ENERGY, NUE_MIN, NUE_MAX
PARAMETER (N_ENERGY = 100)
DOUBLE PRECISION E_T(0:N_ENERGY), E_WAVE
INTEGER N_WAVE
DOUBLE PRECISION EN_WAVE(0:N_ENERGY)

************************************************************
* MAIN PROGRAM
************************************************************

* choose one of the systems:
** CIAL=1...Morse oscillator
** CIAL=2...LHO
** CIAL=8...octic oscillator

CIAL=2

* hM...step
* NMINM, NMAXM...range

hM= 0.0025d0
NMINM = -4000
NMAXM = 4000

NMINM_FIXED=NMINM
NMAXM_FIXED=NMAXM

* choose trial energies:
E1 = 12.d0
E2 = 5.d0
E3 = 0.3d0
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* potencial CIAL = 1, calculation of exact energies:
* DO j=0,9
* EN_WAVE(j) = DBLE(j)+0.5d0
* EN_WAVE(j)=EN_WAVE(j)-0.05d0*(DBLE(j)+0.5d0)**(2.d0)
* ENDDO
* open(100, file=’j,EN_WAVE(j).dat’)
* do j=0, 9
* write(100,12) j,’’,EN_WAVE(j)
* enddo
*12 FORMAT(I4,A4,F25.8)
* close(100)

* number of energies we look for plus one:
NUE_MIN = 0
NUE_MAX = 11

* calculation of alpha(i) for i=1,2,3:
CALL Quant(E1,hM,NMINM,NMAXM)
N1 = NQ
write(*,*)’Quant called 1’
write(*,*) NMINM, NMAXM
write(*,*) E1,N1

CALL Quant(E2,hM,NMINM,NMAXM)
N2 = NQ
write(*,*)’Quant called 2’
write(*,*) NMINM, NMAXM
write(*,*) E2,N2

CALL Quant(E3,hM,NMINM,NMAXM)
N3 = NQ
write(*,*)’Quant called 3’
write(*,*) NMINM, NMAXM
write(*,*) E3,N3

N4 = N1**2
N5 = N2**2
N6 = N3**2
N7 = N1**3
N8 = N2**3
N9 = N3**3

detNN=det(N1,N2,N3,N4,N5,N6,N7,N8,N9)
detNN1=det(E1,E2,E3,N4,N5,N6,N7,N8,N9)
detNN2=det(N1,N2,N3,E1,E2,E3,N7,N8,N9)
detNN3=det(N1,N2,N3,N4,N5,N6,E1,E2,E3)
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alpha1=detNN1/detNN
alpha2=detNN2/detNN
alpha3=detNN3/detNN

* Newton iteration:
DO j=NUE_MIN,NUE_MAX-1
write(*,*) ’Energy’,j
E_T(j+1) = alpha1*DBLE(j+1)+alpha2*DBLE(j+1)**2
E_T(j+1) = E_T(j+1)+alpha3*DBLE(j+1)**3
DO k=1,3
CALL DensG(E_T(j+1),hM,NMINM_FIXED,NMAXM_FIXED,0)
write(*,*) E_T(j+1)
write(*,*) NMINM_FIXED,NMAXM_FIXED
open(219,position=’append’,file=’NMINM_FIXED,NMAXM_FIXED.dat’)
write(219,90) NMINM_FIXED,’’,NMAXM_FIXED
90 FORMAT(I15,A4,I15)
close(219)
NMINM_FIXED=NMINM_FIXED+DIFF_MIN
NMAXM_FIXED=NMAXM_FIXED+DIFF_MAX
write(*,*) NMINM_FIXED,NMAXM_FIXED
open(219,position=’append’,file=’NMINM_FIXED,NMAXM_FIXED.dat’)
write(219,90) NMINM_FIXED,’’,NMAXM_FIXED
close(219)
E_T(j+1) = E_T(j+1)+(DBLE(j+1)-NQ)/DD
write(*,*) ’energie’
write(*,*) E_T(j+1)
IF (k .eq.10)THEN
open(219,position=’append’,file=’NMINM_FIXED,NMAXM_FIXED.dat’)
write(219,*) ’ ’
close(219)
ENDIF
ENDDO
ENDDO

open(111, file=’energie.dat’)
do j=NUE_MIN,NUE_MAX-1
write(111,38) E_T(j+1)
enddo
38 FORMAT(F25.14)
close(111)

write(*,*)’energies were calculated’
stop

* calculation of the wavefunction:
* odd / even bound state:
* wave_const = 1
* choose energy for which the wavefunction is desired:
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* E_WAVE=E_T(wave_const)

* CALL DensG(E_WAVE,hM,NMINM_FIXED,NMAXM_FIXED,1)
* write(*,*)’wavefunction was calculated’

END

* end of the program
************************************************************
* SUBROUTINES
************************************************************
*
* Quantisation condition
* """"""""""""""""""""""

SUBROUTINE Quant(E,h,NMIN,NMAX)

include ’globc_20D.f’

* local variables:
INTEGER N, NMIN, NMAX, NMIN_FIXED, NMAX_FIXED
DOUBLE PRECISION K2(-MAX_PT:MAX_PT), W(-MAX_PT:MAX_PT)
DOUBLE PRECISION WA(-MAX_PT:MAX_PT), WB(-MAX_PT:MAX_PT)
DOUBLE PRECISION WR(-1:MAX_PT),WL(-MAX_PT:1)
DOUBLE PRECISION WRA(-1:MAX_PT), WRB(-1:MAX_PT)
DOUBLE PRECISION WLA(-MAX_PT:1), WLB(-MAX_PT:1)
DOUBLE PRECISION WR3(0:MAX_PT), WL3(-MAX_PT:0)

DOUBLE PRECISION WR1(-1:MAX_PT),WL1(-MAX_PT:1)
DOUBLE PRECISION WR2(-1:MAX_PT),WL2(-MAX_PT:1)
DOUBLE PRECISION FR(0:MAX_PT), FL(-MAX_PT:0)
DOUBLE PRECISION E, h, QR, QL
DOUBLE PRECISION RHS, SIMPS
DOUBLE PRECISION PRC

* inicialization of the number of grid points:
X(0) = 0.d0

DO N = NMIN, NMAX
X(N) = X(0) + DBLE(N)* h
ENDDO

* potential inicialisation:
* m=1, h-bar = 1, omega = 1
* V(0)...potential minimum

IF(CIAL .EQ. 2) THEN
DO N = NMIN, NMAX
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V(N) = 0.5d0*(X(N))**2.d0
ENDDO
ELSEIF(CIAL .EQ. 8) THEN
DO N = NMIN, NMAX
V(N) = 0.5d0*(X(N))**8.d0
ENDDO
ELSEIF(CIAL .EQ. 1) THEN
DO N = NMIN, NMAX
V(N) = 5.d0*(EXP((-1/(SQRT(10.d0)))*X(N))-1.d0)**(2.d0)
ENDDO
ENDIF

* PREDICTOR-CORRECTOR METHOD (Milne (1933)) for solving
* the Milne equation

DO N = NMIN, NMAX
K2(N) = 2.d0*(E-V(N))
ENDDO
P2(0)= K2(0)

* cutting of the integration interval:
PRC = 1.d-15
NMIN_FIXED=NMIN
NMAX_FIXED=NMAX

* integration ’to the right’:
*****************************

* initial points depend on the derivatives of V(N) at N=0:
IF(CIAL .EQ. 2) THEN
DO N = -1, 2
WR(N) =(1.d0+((X(N)-X(0))**4.d0)/12.d0)/((K2(0))**(1.d0/4.d0))
ENDDO
ELSEIF(CIAL .EQ. 8) THEN
DO N = -1, 2
WR(N) =1.d0/((K2(0))**(1.d0/4.d0))
ENDDO
ELSEIF(CIAL .EQ. 1) THEN
DO N = -1, 2
WR1(N)= 1.d0+((X(N)-X(0))**4)/12.d0
WR2(N)= -2.d0*SQRT(2.d0)/SQRT(5.d0)
WR2(N)= (WR2(N)+(1.d0/(SQRT(10.d0))))*((X(N)-X(0))**5)/60.d0
WR(N) = (WR1(N)+WR2(N))/((K2(0))**(1.d0/4.d0))
IF (N.EQ.0) THEN
write(*,*) ’WR(0)’
write(*,*) WR(N)
ENDIF
ENDDO
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ENDIF

DO N = 0, 2
WR3(N)= WR(N)**(-3.d0)
FR(N) = RHS(WR3(N),WR(N),K2(N))
ENDDO

DO N = 2, 3
WRA(N+1)= WR(N)+WR(N-2)-WR(N-3)
WRB(N+1)=(h**2)*(5.d0*FR(N)+2.d0*FR(N-1)+5.d0*FR(N-2))/4.d0
WR(N+1) = WRA(N+1)+WRB(N+1)
WR3(N+1)= WR(N+1)**(-3.d0)
FR(N+1) = RHS(WR3(N+1),WR(N+1),K2(N+1))

WR(N+1) = 2.d0*WR(N)-WR(N-1)
WR(N+1) = WR(N+1)+(h**2)*(FR(N+1)+10.d0*FR(N)+FR(N-1))/12.d0
WR3(N+1)= WR(N+1)**(-3.d0)
FR(N+1) = RHS(WR3(N+1),WR(N+1),K2(N+1))
ENDDO

DO N = 4, NMAX-1
WR(N+1) = WR(N)+WR(N-4)-WR(N-5)
WA(N+1)= 67.d0*FR(N)-8.d0*FR(N-1)+122.d0*FR(N-2)-8.d0*FR(N-3)
WA(N+1)= (h**2)*(WA(N+1)+67.d0*FR(N-4))/48.d0
WR(N+1) = WR(N+1)+ WA(N+1)
WR3(N+1)= WR(N+1)**(-3.d0)

IF(WR3(N+1) .LT. PRC) THEN
NMAX = N
EXIT
ELSE
FR(N+1) = RHS(WR3(N+1),WR(N+1),K2(N+1))
WR(N+1) = WR(N)+WR(N-2)-WR(N-3)
WB(N+1)= 17.d0*FR(N+1)+232.d0*FR(N)+222.d0*FR(N-1)
WB(N+1)= WB(N+1)+232.d0*FR(N-2)
WB(N+1)= (h**2)*(WB(N+1)+17.d0*FR(N-3))/240.d0
WR(N+1) = WR(N+1)+ WB(N+1)
WR3(N+1)= WR(N+1)**(-3.d0)
FR(N+1) = RHS(WR3(N+1),WR(N+1),K2(N+1))
ENDIF
ENDDO

* integration ’to the left’
***************************
IF(CIAL .EQ. 1)THEN
DO N = 1, -2, -1
WL1(N)= 1.d0+((X(N)-X(0))**4)/12.d0
WL2(N)= -2.d0*SQRT(2.d0)/SQRT(5.d0)
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WL2(N)= (WL2(N)+(1.q0/(SQRT(10.d0))))*((X(N)-X(0))**5)/60.d0
WL(N) = (WL1(N)+WL2(N))/((K2(0))**(1.q0/4.d0))
ENDDO

DO N = 0, -2, -1
WL3(N)= WL(N)**(-3.d0)
FL(N) = RHS(WL3(N),WL(N),K2(N))
ENDDO

DO N = -2, -3, -1
WLA(N-1) = WL(N)+WL(N+2)-WL(N+3)
WLB(N-1)=(h**2)*(5.d0*FL(N)+2.d0*FL(N+1)+5.d0*FL(N+2))/4.d0
WL(N-1)= WLA(N-1)+WLB(N-1)
WL3(N-1)= WL(N-1)**(-3.d0)
FL(N-1) = RHS(WL3(N-1),WL(N-1),K2(N-1))

WL(N-1) = 2.d0*WL(N)-WL(N+1)
WL(N-1) = WL(N-1)+(h**2)*(FL(N-1)+10.d0*FL(N)+FL(N+1))/12.d0
WL3(N-1)= WL(N-1)**(-3.d0)
FL(N-1) = RHS(WL3(N-1),WL(N-1),K2(N-1))
ENDDO

DO N = -4, NMIN+1, -1
WL(N-1) = WL(N)+WL(N+4)-WL(N+5)
WA(N-1)= 67.d0*FL(N)-8.d0*FL(N+1)+122.d0*FL(N+2)-8.d0*FL(N+3)
WA(N-1)= (h**2)*(WA(N-1)+67.d0*FL(N+4))/48.d0
WL(N-1) = WL(N-1)+ WA(N-1)
WL3(N-1)= WL(N-1)**(-3.d0)

IF(WL3(N-1) .LT. PRC) THEN
NMIN = N
EXIT
ELSE
FL(N-1) = RHS(WL3(N-1),WL(N-1),K2(N-1))
WL(N-1) = WL(N)+WL(N+2)-WL(N+3)
WB(N-1)= 17.d0*FL(N-1)+232.d0*FL(N)+222.d0*FL(N+1)
WB(N-1)= WB(N-1)+232.d0*FL(N+2)
WB(N-1)= (h**2)*(WB(N-1)+17.d0*FL(N+3))/240.d0
WL(N-1) = WL(N-1)+ WB(N-1)
WL3(N-1)= WL(N-1)**(-3.d0)
FL(N-1) = RHS(WL3(N-1),WL(N-1),K2(N-1))
ENDIF
ENDDO

ELSE
DO N = 0, NMIN
WL(N) = WR(-N)
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ENDDO
ENDIF

* correction of NMIN, NMAX for the Simpson’s rule:
DO WHILE(MOD(NMAX,4).NE.0)
NMAX=NMAX-1
ENDDO

IF (CIAL .EQ. 1) THEN
DO WHILE(MOD(NMIN,4).NE.0)
NMIN=NMIN+1
ENDDO
ELSE
NMIN=-NMAX
ENDIF

DIFF_MIN=NMIN_FIXED-NMIN
DIFF_MAX=NMAX_FIXED-NMAX

DO N=0,NMAX
W(N)=WR(N)
ENDDO
DO N=0,NMIN,-1
W(N)=WL(N)
ENDDO

* quantum momentum K(x)...KK:
DO N = 0,NMAX
KK(N)=(WR(N))**(-2.d0)
ENDDO
IF(CIAL .NE. 1)THEN
DO N=0,NMIN,-1
KK(N)=KK(-N)
ENDDO
ELSE
DO N = 0,NMIN,-1
KK(N)=(WL(N))**(-2.d0)
ENDDO
ENDIF

* right-hand NQR and left-hand NQL integrals:
* (Simpson’s rule)
QR = SIMPS(0,NMAX,h,KK)
NQR = QR/PI

IF(CIAL .NE. 1)THEN
NQL = -NQR
ELSE
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QL = SIMPS(0,NMIN,h,KK)
NQL = QL/PI
ENDIF

* quantum number function:
NQ = NQR-NQL

RETURN
END SUBROUTINE

* end of the subroutine Quant
************************************************************
*
* Density of states
* """""""""""""""""

SUBROUTINE DensG(EE,hh,DNMIN,DNMAX,WF)

include ’globc_20D.f’

* local variables:
INTEGER DNMIN, DNMAX, k, DMINM, DMAXM, N, M, WF
INTEGER NMIN_f, NMAX_f
DOUBLE PRECISION EE, hh, h2, h_int
DOUBLE PRECISION SIMPS, TRAPEZ
DOUBLE PRECISION PHI(-MAX_PT:MAX_PT)
DOUBLE PRECISION TR, TL, DR, DL, FR, FL

DOUBLE PRECISION RBL(-MAX_PT:MAX_PT)
DOUBLE PRECISION KYD1,KYDN
DOUBLE PRECISION KYDD(MAX_PT), KK_int(MAX_PT)
DOUBLE PRECISION KX_INT(MAX_PT), X_int(MAX_PT)
DOUBLE PRECISION KY_INT(MAX_PT)
DOUBLE PRECISION KKY(-MAX_PT:MAX_PT)
DOUBLE PRECISION c
DOUBLE PRECISION u(-MAX_PT:MAX_PT)

CALL Quant(EE,hh,DNMIN,DNMAX)

* interpolation:
* we set the derivative equal to infinity (zero second der.)
KYD1 = .99d32
KYDN = .99d32

NMIN_f = DNMIN-DNMIN+1
NMAX_f = DNMAX-DNMIN+1

do N=DNMIN,DNMAX
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KK_int(N-DNMIN+1)=KK(N)
enddo
do N=DNMIN,DNMAX
X_int(N-DNMIN+1)=X(N)
enddo

CALL spline(X_int,KK_int,NMIN_f,NMAX_f,KYD1,KYDN)
do N=NMIN_f,NMAX_f
KYDD(N)=y2(N)
enddo

h_int = hh/2.d0
NMAX_f = (2*NMAX_f)-1

KX_INT(NMIN_f)=X_int(NMIN_f)

DO M=NMIN_f,NMAX_f-1
KX_INT(M+1)=KX_INT(NMIN_f)+DBLE(M)*h_int
ENDDO

kklo = NMIN_f
kkhi = NMAX_f

DO M=NMIN_f,NMAX_f
CALL splint(X_int,KK_int,KYDD,NMAX_f,KX_INT(M))
KY_INT(M)=y
ENDDO
* end of the interpolation

DNMIN = DNMIN*2
DNMAX = DNMAX*2

do N=NMIN_f,NMAX_f
KK(N+DNMIN-1)=KY_INT(N)
enddo

do N=NMIN_f,NMAX_f
X(N+DNMIN-1)=KX_INT(N)
enddo

DO k = 0, DNMAX, 2
RBL(k) = SIMPS(DNMAX,k,h_int,KK)
R(k) = ((SIN(RBL(k)))**(2.d0))/KK(k)
ENDDO

TR = TRAPEZ(0,DNMAX,hh,R)
FR = (SIN(2.d0*PI*NQR))/(2.d0*PI*P2(0))
DR = 2.d0*TR/PI + FR
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IF (CIAL .EQ. 1) THEN
DO k = 0, DNMIN, -2
RBL(k) = SIMPS(DNMIN,k,h_int,KK)
R(k) = ((SIN(RBL(k)))**(2.d0))/KK(k)
ENDDO
TL = TRAPEZ(0,DNMIN,hh,R)
FL = (SIN(2.d0*PI*NQL))/(2.d0*PI*P2(0))
DL = 2.d0*TL/PI + FL
ELSE
DO k = 0, DNMIN, -2
RBL(k) = RBL(-k)
R(k) = R(-k)
ENDDO
TL = -TR
FL = -FR
DL = -DR
ENDIF

DD = DR-DL

* calculation of the wavefunction:
IF (WF .EQ. 1) THEN
* normalisation constant of the wavefunction:
c = 2.d0/(DD*PI)
c = SQRT(c)

IF (CIAL .EQ. 1) THEN
DO k = DNMIN, DNMAX, 2
RBL(k) = SIMPS(DNMIN,k,h_int,KK)
u(k) = c*SIN(RBL(k))/SQRT(KK(k))
ENDDO
ELSEIF (MOD(wave_const,2).EQ.0) THEN
write(*,*) ’sign is being changed’
DO k = DNMIN, 0, 2
RBL(k) = SIMPS(DNMIN,k,h_int,KK)
u(k) = c*SIN(RBL(k))/SQRT(KK(k))
ENDDO
DO k = 0, DNMAX, 2
RBL(k) = -RBL(-k)
u(k) = -u(-k)
ENDDO
ELSE
write(*,*) ’sign stays the same’
DO k = DNMIN, 0, 2
RBL(k) = SIMPS(DNMIN,k,h_int,KK)
u(k) = c*SIN(RBL(k))/SQRT(KK(k))
ENDDO
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DO k = 0, DNMAX, 2
RBL(k) = RBL(-k)
u(k) = u(-k)
ENDDO
ENDIF
ENDIF

RETURN
END

* end of the subroutine DensG
************************************************************
SUBROUTINE spline(fx,fy,minn,maxx,yp1,ypn)

include ’globc_20D.f’

INTEGER maxx, minn
DOUBLE PRECISION yp1,ypn,fx(MAX_PT),fy(MAX_PT)
INTEGER i,k
DOUBLE PRECISION p,qn,sig,un
DOUBLE PRECISION u(MAX_PT)

if (yp1.gt..99d30) then
y2(minn)=0.d0
u(minn)=0.d0
else
y2(minn)=-0.5d0
u(minn)=3.d0/(fx(minn+1)-fx(minn))
u(minn)=u(minn)*((fy(minn+1)-fy(minn))/(fx(minn+1)-fx(minn))-yp1)
endif

do 11 i=minn+1,maxx-1
sig=(fx(i)-fx(i-1))/(fx(i+1)-fx(i-1))
p=sig*y2(i-1)+2.d0
y2(i)=(sig-1.d0)/p
u(i)=(fy(i+1)-fy(i))/(fx(i+1)-fx(i))
u(i)= u(i)-(fy(i)-fy(i-1))/(fx(i)-fx(i-1))
u(i)=(6.d0*u(i)/(fx(i+1)-fx(i-1))-sig*u(i-1))/p
11 continue

if (ypn.gt..99d30) then
qn=0.d0
un=0.d0
else
qn=0.5d0
un=3.d0/(fx(maxx)-fx(maxx-1))
un=un*(ypn-(fy(maxx)-fy(maxx-1))/(fx(maxx)-fx(maxx-1)))
endif
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y2(maxx)=(un-qn*u(maxx-1))/(qn*y2(maxx-1)+1.d0)
do 12 k=maxx-1,1,-1
y2(k)=y2(k)*y2(k+1)
y2(k)=y2(k)+u(k)
12 continue
return
END SUBROUTINE

* end of the subroutine spline
***********************************************************
SUBROUTINE splint(xa,ya,y2a,maxx,xx)

include ’globc_20D.f’

INTEGER maxx
DOUBLE PRECISION xx,xa(maxx),y2a(maxx),ya(maxx),z
INTEGER k,khi,klo
DOUBLE PRECISION a,b,hh

klo=kklo
khi=kkhi

IF(xx.GT.xa(khi))THEN
kkhi=kkhi+1
kklo=kklo+1
klo=kklo
khi=kkhi
ENDIF

IF (((khi-klo).GT.1).AND.(MOD(khi-klo,2)).NE.0)THEN
1 if (khi-klo.gt.1) then
k=(khi+klo)/2
if(xa(k).gt.xx)then
khi=k
else
klo=k
endif
goto 1
endif
ENDIF
IF (((khi-klo).GT.1).AND.(MOD(khi-klo,2)).EQ.0)THEN
2 if (khi-klo.gt.1) then
k=(khi+1+klo)/2
if(xa(k).gt.xx)then
khi=k
else
klo=k
endif
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goto 2
endif
ENDIF

kklo=klo
kkhi=khi

hh=xa(khi)-xa(klo)
a=(xa(khi)-xx)/hh
b=(xx-xa(klo))/hh
z=a*ya(klo)+b*ya(khi)
y=z+((a**3-a)*y2a(klo)+(b**3-b)*y2a(khi))*(hh**2)/6.d0

return
END SUBROUTINE

* end of the subroutine splint
************************************************************
* FUNCTIONS
************************************************************
*
* RHS of Milne’s equation
* """""""""""""""""""""""

DOUBLE PRECISION FUNCTION RHS(Y3,Y,L)

IMPLICIT NONE
DOUBLE PRECISION Y3, Y, L

RHS = Y3-L*Y

RETURN
END

* end of the function RHS
************************************************************
*
* Composite Simpson’s rule
* """""""""""""""""""""""""

FUNCTION SIMPS(lmin,lmax,STEP,FC)

include ’globc_20D.f’

DOUBLE PRECISION FC(-MAX_PT:MAX_PT), STEP, SIMPS, SUMM
INTEGER k, lmin, lmax

IF(lmin .EQ. lmax) THEN
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SIMPS = 0.d0
ELSEIF(lmin .LT. lmax) THEN
SUMM = (FC(lmax)+FC(lmin))

IF (MOD((lmax-lmin),2) .EQ. 0) THEN
DO k=lmin+2, lmax-2, 2
SUMM = SUMM + 2.d0*FC(k)
ENDDO

DO k=lmin+1, lmax-1, 2
SUMM = SUMM + 4.d0*FC(k)
ENDDO

SIMPS = SUMM*STEP/3.d0

ELSE
WRITE(*,*) ’n in SIMPS is not divisible by 2!’
ENDIF
ELSE
SUMM = (FC(lmax)+FC(lmin))

IF (MOD((lmax-lmin),2) .EQ. 0) THEN
DO k=lmin-2, lmax+2, -2
SUMM = SUMM + 2.d0*FC(k)
ENDDO

DO k=lmin-1, lmax+1, -2
SUMM = SUMM + 4.d0*FC(k)
ENDDO

SIMPS = -SUMM*STEP/3.d0

ELSE
WRITE(*,*) ’n in SIMPS is not divisible by 2!’
ENDIF
ENDIF

RETURN
END

* end of the function SIMPS
************************************************************
*
* Trapezoidal rule
* """"""""""""""""

FUNCTION TRAPEZ(lmin,lmax,STEP,FC)
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include ’globc_20D.f’

DOUBLE PRECISION FC(-MAX_PT:MAX_PT), STEP, TRAPEZ, SUMM
INTEGER k, lmin, lmax

IF(lmin .EQ. lmax) THEN
TRAPEZ = 0.d0
ELSEIF(lmin .LT. lmax) THEN
SUMM = (FC(lmax)+FC(lmin))/2.d0

DO k=lmin+2, lmax-2, 2
SUMM = SUMM + FC(k)
ENDDO
TRAPEZ = SUMM*STEP

ELSE
SUMM = (FC(lmax)+FC(lmin))/2.d0

DO k=lmin-2, lmax+2, -2
SUMM = SUMM + FC(k)
ENDDO
TRAPEZ = -SUMM*STEP
ENDIF

RETURN
END

* end of the function TRAPEZ
************************************************************
*
* Determinant 3x3
* """""""""""""""

FUNCTION det(t1,t2,t3,t4,t5,t6,t7,t8,t9)
DOUBLE PRECISION det,t1,t2,t3,t4,t5,t6,t7,t8,t9

det=((t1*t5*t9)+(t4*t8*t3)+(t7*t2*t6))
det=det-((t1*t8*t6)+(t4*t2*t9)+(t7*t5*t3))

END FUNCTION

* end of the function det
************************************************************
************************************************************
* file globc_20D.f
*
IMPLICIT NONE
*
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* Global constants (in all program units must be identical):
*
* MAX_PT - Maximum number of points for the integration.
*
************************************************************
*
INTEGER MAX_PT
PARAMETER (MAX_PT = 2000001)
DOUBLE PRECISION PI
PARAMETER (PI=3.1415926535897932384626433832795028d0)
*
************************************************************
*
* Global variables
*
***********************
*
* General variables
*

INTEGER divisor, DIFF_MIN, DIFF_MAX, CIAL
INTEGER kklo, kkhi, wave_const
DOUBLE PRECISION NQ, DD, D, NQQ
DOUBLE PRECISION NQR, NQL
DOUBLE PRECISION P2(0:0)
DOUBLE PRECISION y
COMMON /GenVarsI/ divisor, DIFF_MIN, DIFF_MAX, CIAL, kklo, kkhi
COMMON /GenVarsII/ P2, wave_const
COMMON /GenVarsD1/ NQL, NQR, NQ, D, DD, NQQ, y

DOUBLE PRECISION X(-MAX_PT:MAX_PT),R(-MAX_PT:MAX_PT)
DOUBLE PRECISION KK(-MAX_PT:MAX_PT)
DOUBLE PRECISION V(-MAX_PT:MAX_PT)
DOUBLE PRECISION y2(-MAX_PT:MAX_PT)
COMMON /ContVarsD/ V, KK, X, R, y2

************************************************************
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