
MASTER THESIS

Bc. Pavel Mikuš

Simulating image formation in an
electron microscope by electron tracing

Department of Software and Computer Science Education

Supervisor of the master thesis: Mgr. Tomáš Iser
Consultant of the master thesis: Mgr. Lukáš Maršálek

Study programme: Computer Science
Study branch: Computer Graphics and Game

Development

Prague 2020

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to express my tremendous gratitude to all who made the realization
of this thesis possible, especially to: Mgr. Lukáš Maršálek for the topic idea and
passion for this subject, Mgr. Václav Alt for providing the fundamental physical
blocks of the simulation, Mgr. Eva Havelková for her patience and critical eye
when discussing mathematical obstacles, and my supervisor Mgr. Tomáš Iser
for his careful and accurate guidance. I would also like to thank the Eyen SE
company for providing me with resources and knowledge of the subject. Finally,
special thanks belong to my parents, family, and people close to me, for the
amazing help and support both in and outside my studies.

ii

Title: Simulating image formation in an electron microscope by electron tracing

Author: Bc. Pavel Mikuš

Department: Department of Software and Computer Science Education

Supervisor: Mgr. Tomáš Iser, Department of Software and Computer Science
Education

Consultant: Mgr. Lukáš Maršálek, Eyen SE

Abstract: Cryogenic electron microscopy (cryo-EM) is an evolving field allow-
ing molecular visualizations with picometer resolutions. Images are acquired by
shooting electrons through molecular samples and detecting the scattered elec-
trons. From such data, 3D shapes of the molecules can be inversely reconstructed.
Currently, describing and simulating the cryo-EM image formation is based either
on naive transmittance models or complicated wave-function formalisms.

In this thesis, we explore the possibility of simulating cryo-EM image forma-
tion via Monte Carlo electron tracing. We combine a delta-tracking algorithm
with an electron elastic differential cross-section function and Rutherford formu-
lae to derive two Monte Carlo estimators. The derived models are implemented
in a high-performance C++/CUDA environment and compared with other com-
mon models. Our particle-based simulated images show considerable similarity
to the wave-based state-of-the-art multislice model. We also evaluate our mod-
els on class averages of real measurements. Both of our proposed models have
significantly higher normalized cross-correlation scores with the measured class
averages when compared to the most commonly used transmittance model. The
thesis proves the viability of a particle-based Monte Carlo simulation of electron
microscope images and provides insight into the processes in cryo-EM. The effi-
cient GPU implementation and high real data cross-correlation demonstrate the
potential of our models to replace the transmittance model commonly used for
molecular structure reconstructions.

Keywords: cryo-electron microscopy delta-tracking electron tracing elastic scat-
tering

iii

Contents

Preface 5

1 Electron elastic scattering image formation 11
1.1 Electron-sample interactions . 11

1.1.1 Elastic scattering . 11
1.1.2 Inelastic scattering . 11

1.2 Simplified image formation process 12
1.2.1 Emitter . 12
1.2.2 Input . 12
1.2.3 Detector . 13

1.3 Electron elastic cross section . 14
1.3.1 Cross-section . 14
1.3.2 Electron elastic differential cross section 15
1.3.3 Screened Rutherford formulae 16

1.4 Electron tracing . 17
1.4.1 Problem formulation . 17
1.4.2 Null-collision algorithms 19
1.4.3 Transmission estimator . 19
1.4.4 Scattering estimator . 21

2 Optimizations 23
2.1 Units . 23
2.2 Fourier transform of the Coulomb potential 23
2.3 Majorant choice . 24

2.3.1 Element estimation . 25
2.3.2 Mean free path . 25

2.4 Rutherford scattering model . 26

3 Implementation 27
3.1 Libraries . 27

3.1.1 GPU library . 27
3.1.2 Other external libraries . 28

3.2 Simulator implementation . 29
3.2.1 Data preparation . 29

3.3 Electron microscope components 31
3.3.1 Scattering function . 33
3.3.2 Image formation . 35
3.3.3 Ray observers . 37

3.4 Electron microscope simulator . 38
3.4.1 Rendering . 39

4 Experiments 44
4.1 Data . 44
4.2 Scattering function . 45

4.2.1 DCS scattering function 45

1

4.2.2 Rutherford scattering function 46
4.3 Projections . 47

4.3.1 Electron dose . 47
4.3.2 Fourier radius influence . 47
4.3.3 Rutherford scattering influence 47
4.3.4 Defocus influence . 48
4.3.5 Electron energy influence 49

4.4 Comparison . 49
4.4.1 Projections . 50
4.4.2 Class averages . 51

Conclusion 58

Bibliography 60

List of Figures 62

List of Tables 66

A Attachments 67
A.1 User guide . 67

A.1.1 Compilation . 67
A.1.2 Execution . 67

2

Acronyms
CPU central processing unit, central processor.

cryo-EM cryogenic electron microscopy.

CTF contrast transfer function.

DCS differential cross section.

FFT fast Fourier transform.

GPU graphics processing unit.

PDF probability density function.

RTE radiative transfer equation.

SPA single particle analysis.

3

List of Symbols
σ total cross section of elastic scattering.

µ̄ majorant scattering coefficient of elastic scattering.

V Coulomb potential map.

V̂ Fourier transform of the Coulomb potential map.

Vc,r localized Coulomb potential map section with center c and radius r.

V̂ c,r Fourier transform of the localized Coulomb potential map section with center
c and radius r.

T transmission term - fraction of particles that remain unscattered.

4

Preface
Introduction to cryo-EM
Cryogenic electron microscopy (cryo-EM) is an evolving field that allows visu-
alization of three-dimensional structures of living organisms at nearly atomic
resolutions. Structural information of various molecules and proteins at all scales
is necessary to understand how different components of the living organisms in-
teract and what their purpose is. The use of electron microscopes and the ability
to reconstruct large macromolecules at atomic levels revolutionized molecular
biology [1].

Electron microscope
The first electron microscope was constructed in the 1930s by Ernst Ruska. Com-
pared to the standard light microscope, an electron microscope has superior res-
olution due to the very short wavelength of high energy electrons (about 2-5 pm)
compared to the wavelength of the visible light (400-700 nm). The light micro-
scope can achieve resolution of only 0.2 µm, while the state-of-the-art electron
microscopes have resolution of 50 pm = 0.000 05 µm [2]. In theory, electron mi-
croscopes can achieve even smaller resolutions. However, there are limitations
in the lens aberrations and small numerical aperture. Figure 1 shows a generic
schema of an electron microscope. In the following paragraph, we provide a high
level description of the microscope components adopted from [3]:

Electron source Electron source is usually an electron gun - a sharp piece of
metal with high current going through it.

Condenser lens In an electron microscope, lenses are electromagnetic coils.
The stronger the magnetic field, the shorter the focal length. Condenser
lens focuses the emitted beam of electrons onto the sample.

Condenser aperture Limits the cone angle of the electrons that can interact
with the sample. It works in conjunction with the condenser lens to elimi-
nate high angle electrons.

Sample Sample consists of a tiny lattice covered by a water-based solution with
the target molecule. The sample is frozen to cryogenic temperatures before
insertion into the microscope.

Objective lens Objective lens is the strongest and most important lens of the
whole system. It generates a highly magnified first intermediate image,
which determines the resolution and quality of the final image.

Objective aperture Similarly to the condenser aperture, the objective aperture
limits which electrons contribute to the final image.

Selected area aperture Selected area aperture is a second aperture after the
sample. It selects which part of the sample is projected.

5

Figure 1: The schema of an electron microscope. Individual components are
briefly described in the Electron microscope section. Image was taken from [4].

Intermediate lens and projective lens Final set of lenses, which further
magnifies the first intermediate image and finally projects it on the screen
of the detector.

Data acquisition
Electron microscopes are utilized in a variety of scientific fields. In this thesis,
we focus on single particle analysis (SPA) for the description of the electron
microscope utilization. However, our simulation algorithm is based on general
electron interactions and thus has a potential to be usable in other fields as well.
In the following paragraphs, we describe the general idea of SPA and the role of
the electron microscope.

During image acquisition, electrons are emitted from the electron gun in var-
ious directions. The first pair of lenses bends the electrons into a coherent beam
and focuses them on the sample. Those electrons that were not succesfully fo-
cused are stopped by the condenser aperture. After interacting with the sample,
the electron beam is transmitted through several lenses to achieve a high mag-
nification factor, and finally measured on the detector. Electrons that scattered
too much away are stopped by the objective aperture.

High energy electrons have very short wavelengths and thus can provide a
very fine resolution. This requires that the microscope operates in a high vacuum,
otherwise the electrons would interact with air molecules, adding a substantial
amount of noise to the projected image. However, biological samples are not
stable in a vacuum environment. Other difficulties arise in a form of a constant

6

thermodynamic movement of the sample molecules and radiation damage from
the electrons. For these reasons, after applying the purified molecules to a metal
grid, the sample is rapidly frozen in liquid ethane [5]. This protects the sample
from the vacuum and prevents the movement.

During illumination by the electron beam, 2D projections of the sample are
acquired. The acquired images are called micrographs and each micrograph con-
tains hundreds of projections of the target molecule from various directions, as
shown in Figure 2. However, the micrographs (example is shown in Figure 3)
suffer from a low signal to noise ratio due to low suitable radiation dose. Fur-
ther software processing is required to extract the desired information from the
images.

Figure 2: Image displays a sample with many instances of the target molecule.
The sample is then projected on the screen of the microscope detector, forming
a micrograph. The next step is then software processing of the micrographs and
3D reconstruction of the target molecule. Image taken from [6].

Reconstruction
After a sufficient amount of data has been acquired, it needs to be computa-
tionally processed. First, the projections are picked from the micrographs using
templates and other classification algorithms. Next, the new dataset of molecule
projections is used in an iterative process with two steps taking turns. One step
is projecting the reconstructed potential, computing the residuum, and updat-
ing the potential map. The second step is direction and shift estimation of the
projections, as we do not know these properties from micrographs. For further
details about the process see [8].

7

Figure 3: An example of a micrograph with picked projections of the target
molecule. The noise level is very high because of the low electron dose. Higher
doses would destroy the molecules, yielding invalid images (Dataset 10013 from
EMPIAR [7])

Modeling the projections
In order to simulate the projections of the sample in the electron microscope, two
different models are commonly used: the transmittance model and the multislice
model.

Transmittance model

The transmittance model is the most common model used during the reconstruc-
tion process [9]. It takes the potential map as an input and generates its 2D
projection. It does so by tracing a parallel beam of rays from a given direction,
integrating the potential map along each ray. The process is illustrated in Fig-
ure 4 and its result approximates the transmittances through the sample along
the direction. This model is also known as the X-ray transform.

8

Figure 4: Illustration of the transmittance model projection in 2D. TThe pro-
jection P is generated by integrating volume f over a set of parallel rays. Image
taken from [10].

Multislice model

The multislice model is the state-of-the-art model for electron microscope sim-
ulation. It utilizes an electron wave formalism to simulate the behavior of an
electron within a potential map. In the first step, the potential map is divided
along the projection axis into several slices that are then sequentially processed.
The thinner the slices, the more precise the method, as it is derived on a basis
of infinitely thin slices. The next step is the electron wave propagation through
the slices, where at each step the wave is attenuated by the processed slice. For
details see [2]. The iterative process is depicted in Figure 5. To our knowledge,
this model is not currently used for the structural reconstructions.

Figure 5: Illustration of the iterative process of the multislice model. The input
volume is divided into a number of slices marked by the bold lines. A wave
function is propagated slice by slice through the volume, performing forward and
inverse Fourier transforms in each step. Image taken from [11].

9

Thesis objectives
In this thesis, we aim to derive and implement a new model for simulating electron
microscope projections. Our model utilizes an electron tracing simulation based
on the particle-like behavior of the electrons. We focus on the simulation of
electron-specimen interactions and a correct image formation, neglecting some of
the processes occuring during image acquisition, such as radiation damage. The
precise specification of the simulation setup is described in the first chapter.

To our best knowledge, the particle-based approach to the simulation has
not yet been implemented. The purpose of this thesis is two-fold. First, it
provides an intuitive insight into the processes within the electron microscope
from a different perspective than the traditional wave function approach. Sec-
ond, our implementation can optionally replace the transmittance model popular
with cryo-EM reconstruction methods and provide a testing tool for generating
artificial projections.

Thesis outline
In the first chapter, we define our simplified simulation setup and characterize
the electron interactions within the sample. We formulate the image formation
problem as a radiative transfer equation (RTE), for which we propose scattering
models. We provide a formulation of the Monte Carlo estimators that solve the
presented RTE.

The second chapter is dedicated to several problems that arise during the
implementation of the proposed models. We describe the used solutions and
their impact on the simulation.

The third chapter describes the implementation of the accompanying library.
The description follows the same order as the code execution in the provided
test program. We explain how we reused the same ray-tracing algorithm core for
different model implementations.

In the fourth chapter, we provide examples of the rendered projections. We
visually compare both our models with the multislice model. We also evaluate
the quality of our simulated projections with the measured class averages and
compare the results to the transmittance model.

“What you aim at determines what you see.”
—Jordan B. Peterson

10

1. Electron elastic scattering
image formation
In this chapter, we describe the algorithm for image formation via electron trac-
ing. As mentioned in Thesis objectives, our algorithm aims to encompass the same
extent of functionality as Transmittance model and Multislice model, namely
without the additional effects of optics, detector, radiation damage, and inelasti-
cally scattered electrons.

In the following section, we characterize electron interactions with the sample.
Then, we define our simplified setup of the simulation. Finally, we describe the
image formation as RTE for which we derive a Monte Carlo estimator with two
viable scattering models.

1.1 Electron-sample interactions
Electrons interact with the Coulomb potential of the target molecules and the
surrounding vitreous ice molecules. The image obtained from the electron micro-
scope is a form of projection of this potential onto the detector. The commonly
used energies for electron acceleration are from a few keV to a few MeV. It cor-
responds to one Volt unit multiplied by the electron’s elementary charge. For
lower acceleration energies, the emitted electrons become indistinguishable from
the sample electrons, while for energies higher than a few MeV, relativistic ef-
fects and knock-on damage become significant [12]. The interaction event can be
classified either as elastic or inelastic scattering. Figure 1.1 shows both types of
interaction and other secondary effects. Simply said, the elastic scattering carries
information while the inelastic scattering damages the sample. In the following
subsections, we provide closer look into the events, for detailed info see [13].

1.1.1 Elastic scattering
Elastic interactions are characterized by identical initial and final quantum states
of the molecule atoms. In other words, very little energy has been transferred
from an electron to atoms of the sample during the interaction. Due to the large
mass of the molecule compared to the mass of the electron, the average energy
lost by the electron during elastic scattering is a tiny fraction of its energy and
can be safely neglected. This is equivalent to assuming that the target has infinite
mass [14]. The elastically scattered electrons transfer the structural information
about the molecule onto the detector. The elastic scattering occurs more often
in the cryo-EM setup than inelastic, and its effects are less damaging. For these
reasons elastic scattering events are the main contributors to the signal in the
final image [2].

1.1.2 Inelastic scattering
During inelastic scattering, the energy of the electron is deposited into the sam-
ple. This causes excitations and ionisations of the atoms, loss of energy of the

11

electron, and larger deflection angles compared to the elastic scattering [14]. In-
elastic scattering contributes heavily to the radiation damage and noise in the
final image [5]. Inelastically scattered electrons also contribute in the form of
amplitude contrast. However, their contribution is low and blurry because the
electrons lose their coherency [2]. For these reasons they are filtered out and
do not reach the detector. The transferred energy and caused damage may also
result in the secondary effects of interaction displayed in Figure 1.1.

Figure 1.1: The image shows various radiation types that can appear after the
scattering event. Many of these types are secondary effects of the inelastic scat-
tering and the subsequent radiation damage. Image taken from [15].

1.2 Simplified image formation process
In this section, we describe the implemented formation process and simulated
electron microscope components. Figure 1.2 illustrates the simplified setup of
our simulation. We do not simulate the effects of lenses and apertures, and we do
not explicitly model the noise caused by the vitreous ice. We mainly focus our
attention on the elastic scattering of electrons, neglecting all other interactions.

1.2.1 Emitter
We simplify the emitter and the lenses that focus electrons on the sample by a
virtual plane emitting beam of parallel electrons in a perfectly orthogonal direc-
tion. This corresponds to an ideal situation, in which the electrons in the beam
are perfectly parallel before they hit the sample.

1.2.2 Input
The input to our simulator is a 3D representation of the Coulomb potential map of
the molecule, because electrons interact elastically with the Coulomb potential of
the sample. The Coulomb potential map can be either outcome of some cryo-EM
reconstruction, artificially generated potential from PDB files or potential map

12

Figure 1.2: Schema of the simplified image formation process. Electrons are
emitted perpendicular to the emitter plane. They elastically interact with the
potential map of a single molecule. Finally, all emitted electrons are counted on
the detector plane.

acquired by some other method. Similarly to other simulation models, we cannot
rely on the physical plausibility of the values in the potential map, otherwise the
applicability of this simulation would be severely limited. The impact of this
input property is explored in Subsection 2.3.2.

1.2.3 Detector
In our simulation setup, it is not essential to model the lenses because our virtual
detector does not need magnification. We simulate a perfect counter detector,
which counts each electron impact in a pixel of the detector and the pixels can
be as small as we choose. However, to compare the output images with the
real measured projections, we model a part of the defocus effect through this
component. In a real microscope, defocus is the distance of the sample from the
focal point of the objective lens, as shown in Figure 1.3. The distance has a great
impact on the acquired projections. As in a classic light microscope, defocus
causes blurring of the image. But it also strongly influences the spread radius of
the electrons on the detector plane, which in turn strongly changes the acquired
image, see Figure 4.8 for examples. To approximate the electron spread effect,
we move the detector away from the sample by the defocus value. When we refer
to the defocus in the following text of the thesis, we mean by it the distance of
the detector.

13

Figure 1.3: The figure shows an overfocused and underfocused sample in a real
electron microscope. The distance of the sample from the focal plane determines
the spread radius of the scattered electrons on the detector plane.

1.3 Electron elastic cross section
For this thesis, we limit the electron interactions to elastic scattering only, as
explained in Subsection 1.2.2. The elastic scattering occurs when the electron is
somewhat deflected from its current path by the Coulomb potential of the sample.
Similarly to other particle-matter interactions, we can describe the phenomena
with a differential cross section (DCS) equation [16]. In this section, we provide
two means of estimating the differential and total cross-section for electron elastic
scattering, but before we introduce the electron differential cross section (DCS),
we describe the cross-section value.

1.3.1 Cross-section
A cross-section is a quantification of scattering effects of atoms on an electron.
Differential cross section is a hypothetical area that captures the amount of flux of
electron for the given incoming and outgoing directions. If we multiply the DCS
by the flux of incoming electrons, we get the number of electrons per second that
are crossing the DCS area. It ends up being the same as the number of electrons
scattered into the given direction. In a way, the differential cross section can
be interpreted as a size of an area that will scatter the particles into the given
direction, and total cross-section σ as an area that the electron must hit for the

14

scattering to occur.

1.3.2 Electron elastic differential cross section
The elastic scattering DCS is directly tied to the Coulomb potential of the atoms.
The relation of the electron elastic DCS to the Coulomb potential V is given by:

dσ

dΩ(p′ ← p) = (m

2π
)2|V̂ (q)|2, (1.1)

where Ω is a solid angle, V̂ is a Fourier transform of the potential, m is the electron
mass, p is the original momentum of the electron, p′ is the new momentum after
scattering and q = p′ − p [16].

Elastic scattering is characterized by a negligible loss of energy of the electron
from which follows that |p′| = |p|. We can make the observation that the relevant
values of the Fourier transform of the potential are located on a sphere with radius
|p| and center in −p, see Figure 1.4. From now on, we might use the symbols p
and p′ both as directions and as momentums of the electron. It should be clear
from the context whether the magnitude property of the term is important or
not. Keep in mind that the electron does not lose any of its energy, thus the
magnitude of the momentum remains constant during simulation.

Figure 1.4: Visualization of the sphere appearing in Equation (1.1). Vector p is
the original momentum of the electron and vector p′ represents one of possible
new momentums of the electron. The sphere then displays all possible values for
expression q = p′ − p. Image created via geogebra tool [17].

15

(a) (b) (c) (d)

Figure 1.5: Examples of the DCS scattering computed from the Equation (1.1)
model. The images show DCS scattering directions on different positions within
the potential. The original direction points into the middle of the image and the
pixel in the middle of each side represent a scattering angle of 6 degrees. It can
be viewed as a projection of the values on the cap of the sphere (see Figure 1.4),
centered around the p vector.

Total cross section and mean free path

By integrating Equation (1.1) over all scattering directions∫︂
Ω

dσ

dΩ(p′ ← p)dΩ, (1.2)

we compute the total cross section σ of the elastic scattering. The total cross
section value σ is also tied with the mean free path λ via the following formula:

λ = 1
ρnσ

, (1.3)

where ρn is the number density of scattering centers, in our case the number of
atoms [18]. This formula becomes useful later, as it fits nicely into the imple-
mented delta-tracking algorithm.

Frame size of the Coulomb potential

In Equation (1.1), we have introduced the dependency of the cross-section on the
Coulomb potential of the sample. However, it is undesirable to use the poten-
tial map of the whole sample. The first Born approximation assumes electron
incoming from infinity, interacting with an isolated potential, and observing the
scattering at infinite distance [16]. In other words, it assumes an isolated inter-
action. We reflect this idea by limiting the area that can affect the cross-section
computation.

We tested different sizes of the surrounding area used to compute the DCS.
In theory, the Born approximation should work the best for very low radii of
the area, around 2 to 4 Bohrs [16]. From now on, we will denote the localized
Coulomb potential with center c and radius r as Vc,r and the corresponding Fourier
transform as V̂ c,r.

1.3.3 Screened Rutherford formulae
Screened Rutherford formuale are a mathematical model that describes DCS of
an elastic electron scattering for a single atom of any chemical element [19]. The

16

model provides analytical forms for both the electron differential cross section
and total cross section:

dσ

dΩ = Z2r2
e

(︄
1− β2

β4

)︄
1

(1− cosθ + 2η)2 (1.4)

σ = Z2r2
e

(︄
1− β2

β4

)︄
1

2η(η + 1) (1.5)

where θ is the scattering angle between the incident and the outgoing electron,
Z is the atomic number of the atom, re is the classical electron radius, β is the
ratio between relativistic speed of the electron and the speed of light and η is
the screening parameter, which reduces DCS at small scattering angles. The
Rutherford formulae are dervied from the first Born approximation and thus
are valid only for low atomic numbers and high energies [20]. Fortunately, this
fits the situation within the considered cryo-EM. In our implementation, we use
Rutherford formulae as a fast but less precise alernative to the Equation (1.1).

Screening parameter

A number of screening parameters has been derived for the Rutherford formulae,
their overview can be found in [21]. In our software, we have used the Moliere
screening parameter as described in [20]. The implemented Moliere screening
parameter formula looks as follows:

ηm = Z
2
3

4

(︃
α

0.885

)︃2 1− β2

β2

⎡⎣1.13 + 3.76
(︄

αZ

β

)︄2
⎤⎦ , (1.6)

where α is the fine structure constant. We have compared the quality of the
Rutherford approximation with the chosen Moliere sceening parameter by com-
paring it with a measured data from NIST database [22] for Sulfur. Figure 1.6
shows comparison of the differential cross sections values from NIST database and
from Rutherford formula for low scattering angles. There is a slight difference in
magnitude which influences the determination of the mean free path described
in Subsection 2.3.2. However, the magnitude difference does not influence the
scattering direction probabilites. The Rutherford approximation seems to fit the
measured data very nicely.

1.4 Electron tracing
In Section 1.3, we have introduced equations to compute the scattering directions
of the electron. The proposed problem to find the image formed by elastically
scattered electrons can be formulated as particle transport in volume and thus
can be solved via Monte Carlo (MC) electron tracing. Numerous MC algorithms
are designed to solve the general problem of particle transport in volume [23].

1.4.1 Problem formulation
Within each detector pixel, we are interested in the number of electrons incoming
from all directions. The problem can be formulated as an integral radiative

17

Figure 1.6: The figure shows a comparison of the Rutherford model computed
differential cross sections and measured differential cross sections for Sulfur from
NIST database [22]. The values fall off quickly to zero as we approach larger scat-
tering angles. This corresponds with the DCS visualization images in Figure 1.5
generated via the model described by Equation (1.1).

transfer equation (RTE) described in [23]. Let E(x, ω) be a number of electrons
incoming to a point x from a solid angle ω. We can modify the standard RTE with
properties of our model. We intentionally leave out the absorption term, as our
model does not support absorption. Moreover, we replace the scattering function
with one of the electron scattering functions described later in Subsection 1.4.4:

E(x, ω) =
∫︂ ∞

0
T (x, y)

[︃
µ(y)

∫︂
Ω

fE(ω ← ω̄)E(y, ω̄)dω̄
]︃

dy, (1.7)

where T is a transmission between x and y, fE is an electron scattering function
and µ(y) is the scattering coefficient at point y. The T term corresponds to the
probability that the particle will not encounter any collision on the path between
points x and y. We describe the used scattering functions in Subsection 1.4.4.

Scattering coefficient

The scattering coefficient µ is defined by the relation µ = σρn, where ρn is the
number density in m−3 describing how many matter particles there are in one
volume unit. We also know the relation between the Coulomb potential and
the total scattering section σ from Equation (1.2). Combined together with the
localized version described in Section 1.3.2, it yields:

µ(c) = ρn(c, r)
∫︂

Ω
(m

2π
)2|V̂ c,r(q)|2. (1.8)

Assuming an infinitely small radius of the Coulomb potential Vc,r, the term V̂ c,r

becomes a Fourier transform of a constant, which is a Dirac delta function:

µ(c) = ρn(c)
∫︂

Ω
(m

2π
)2|V (c)δ0(q)|2,

18

where V (c) is a Coulomb potenial at center c. Now, we can bring out the constant
terms from the integral and use the fact that integration over Dirac delta function
is 1 to get a relation of the scattering factor and the Coulomb potential V :

µ(c) = ρn(c)(m

2π
)2V (c)2. (1.9)

From our input, we cannot deduce the number density ρn because we do not know
which elements generated the Coulomb potential at the given point c. Therefore,
we neglect the effects of this value and set ρn = 1. This likely increases a scattering
ratio of the less dense portions of the molecule and similarly reduces the scattering
ratio of denser portions.

1.4.2 Null-collision algorithms
In Equation (1.7), the radiative transfer equation (RTE) has been established.
It must be taken into account that the Coulomb potential map of the molecule
is heterogeneous, which complicates the computation of the transmission. There
are several approaches for the computation of the radiation transport in heteroge-
neous media [23]. One family of algorithms that solve the transmission estimation
part of the RTE are null-collision algorithms.

The core step of the null-collision algorithms is homogenization of the het-
erogeneous volume by adding an artificial null volume, such that the scatter-
ing terms add up to the same constant scattering coefficient µ̄ for each corre-
sponding point of the homogenized volume, see illustration in Figure 1.7. The
null volume does not cause any scattering, it has Dirac delta scattering function
fN(ω ← ω̄) = δ(ω − ω̄).

By introducing the null volume, we have artificially increased the scattering
events of each particle because of an increased majorant µ̄ value. To compen-
sate for that, we also proportionally decide whether the scattering happened or
whether it was an artificial scattering, in which case we do not modify the particle
properties. The effects cancel out and keep the physical plausibility of the RTE:

−µn(x)E(x, ω) + µn(x)
∫︂

S2
δ(ω − ω̄)E(x, ω̄)dω̄ = 0,

where µn is the null portion of the scattering coefficient, brought in by the null vol-
ume [23]. The equation can be easily proved by solving the integral for the Dirac
delta scattering function. Inserting this formula into the RTE Equation (1.7)
yields:

E(x, ω) =
∫︂ ∞

0
Tµ̄(x, y)

[︃
µ(y)

∫︂
Ω

fE(ω ← ω̄)E(y, ω̄)dω̄ + µn(y)E(y, ω)
]︃

dy,

(1.10)
where µn(y) = µ̄− µ(y) represents the ratio of null collisions at the point y.

1.4.3 Transmission estimator
The transmission Monte Carlo estimator for the null-collision RTE given in Equa-
tion (1.10) has the following form:

⟨E(x, ω)⟩ = Tµ̄(x, y)
pdf(x, y)

[︃
µ(y)

∫︂
Ω

fE(ω ← ω̄)E(y, ω̄)dω̄ + µn(y)E(y, ω)
]︃

, (1.11)

19

Figure 1.7: The image illustrates homogenization of the heterogeneous volume
(blue). At each position within the considered volume bounds, the input volume
and the null volume add up to the same majorant µ̄. Image taken from [23].

where pdf(x, y) is the probability of picking the point y, or alternatively, picking
a distance from x to y. We further simplify the estimator evaluation via delta-
tracking in the following subsection.

Delta-tracking

Delta-tracking algorithm makes samples per the homogenized transmission term
Tµ̄. For elastically scattered electron, the transmission term T (t) corresponds to
the probability that the electron will not scatter within distance t, i.e.,

T (t) = P (X > t) = e−
∫︁ t

0 µ(s)ds.

From that, we can derive the probability function that the electron scatters within
distance t:

F (t) = P (X ≤ t) = 1− T (t) = 1− e−
∫︁ t

0 µ(s)ds.

The function F (t) corresponds to the cumulative distribution function for distance
sampling. Before we can make it into a generator for path samples, we take
advantage of the homogenized volume which has constant µ̄ value everywhere.
This simplifies the terms:

Tµ̄(t) = e−
∫︁ t

0 µ̄ds = e−tµ̄ (1.12)

and so:
Fµ̄(t) = 1− e−

∫︁ t

0 µ̄ds = 1− e−tµ̄.

By inverting this formula, we get the recipe for generating samples with the
correct distribution within the homogenized volume:

t = F−1
µ̄ (ξ) = − 1

µ̄
ln(ξ),

where ξ is a uniformly distributed random number between 0 and 1. We also
need the probability density function (PDF) of the generated samples, which is:

pdf(t) = d
dt

1− e−tµ̄ = µ̄e−tµ̄. (1.13)

20

Let t be the distance between points x and y. By plugging the derived for-
mulae from Equation (1.12) and Equation (1.13) into the estimator described by
Equation (1.11), we can further simplify it:

⟨E(x, ω)⟩ = e−tµ̄

µ̄e−tµ̄

[︃
µ(y)

∫︂
Ω

fE(ω ← ω̄)E(y, ω̄)dω̄ + µn(y)E(y, ω)
]︃

=

µ(y)
µ̄

∫︂
Ω

fE(ω ← ω̄)E(y, ω̄)dω̄ + µn(y)
µ̄

E(y, ω),
(1.14)

where µ(y) + µn(y) = µ̄. Since we want to trace only a single electron and not
both the scattering and null-collision interactions at the same time, we estimate
also the inner terms by randomly choosing which branch to evaluate:

⟨E(x, ω)⟩ =
⎧⎨⎩
∫︁

Ω fE(ω ← ω̄)E(y, ω̄)dω̄ if ε1 ≤ µ(y)
µ̄

E(y, ω) if ε1 > µ(y)
µ̄

.
(1.15)

The ε1 term is a random sample in range [0, 1] with a uniform distribution. It
corresponds to a random decision whether to follow the null-scattering or real
scattering function.

1.4.4 Scattering estimator
In the previous section we have derived a delta-tracking transmission estimator
(see Equation (1.15)) for our RTE Equation (1.7). In this section, we provide two
viable electron scattering functions and develop MC estimator for the scattering
term: ∫︂

Ω
fE(ω ← ω̄)E(y, ω̄)dω̄.

The scattering functions are the Rutherford scattering function and the DCS
scattering function.

Rutherford scattering function

We have described an analytical formulation of the electron DCS for single atom
via Rutherford formulae in Subsection 1.3.3. We can turn this differential equa-
tion into a probability density function of cos θ via normalization:

pdf(cos θ) =
Z2r2

e

(︂
1−β2

β4

)︂
1

(1−cos θ+2η)2

σ
= 2η(η + 1)

(1− cos θ + 2η)2 . (1.16)

We integrate Equation (1.16) over the interval [−1, cos θ] in order to derive cu-
mulative distribution function:∫︂ cos θ

−1

2η(η + 1)
(1− cos θ + 2η)2 d cos θ = η cos θ + η

2η − cos θ + 1 . (1.17)

Finally, by inverting the cumulative distribution function in Equation (1.17), we
get a formula for sampling cos θ proportionally to the DCS:

cos θ = 2ηε− η + ε

η + ε
, (1.18)

21

where ε is a uniformly distributed random sample between 0 and 1. Because we
sample ω̄ proportionally to fE, then fE(ω ← ω̄)

pdf(ω̄) = 1, and we can omit the term

in the MC estimator. The estimation formula from Equation (1.15) simplifes to:

⟨E(x, ω)⟩ =
⎧⎨⎩E(y, ω̄) if ε1 ≤ µ(y)

µ̄

E(y, ω) if ε1 > µ(y)
µ̄

.
(1.19)

DCS scattering function

In this section, we derive the second viable scattering function from the DCS
Equation (1.1). By normalizing Equation (1.1) with total cross section, we can
derive the scattering function:

pdf(p′) = fE(p′ ← p) =
dσ
dΩ(p′ ← p)

σ
=

(m
2π

)2|V̂ (q)|2

σ
. (1.20)

Note that we use the localized version of the Coulomb potential, to emphasize
that the function depends on the position within the volume. If we wanted to
sample this function directly, we would have to integrate its PDF to get the
cumulative distribution function, and then invert it, as we did for the distance
sampling. However, this approach is not viable for this scattering function.

One solution would be to somehow precompute the values and then sample
the acquired discrete distribution. But there is a problem with aliasing, which the
discrete distribution will very likely cause unless we do a very fine discretization,
which would require a substantial amount of memory. Another problem is the
function dependency on the position within the Coulomb potential map. We
would have to have the precomputed samples for every position of that volume.
However, we can also use the importance sampling technique, which is a common
approach in computer graphics.

Importance sampling of DCS

The idea of importance sampling is to draw samples from a distribution that is
proportional to our scattering function fE. This allows us to use scattering func-
tion that we cannot explicitly sample. The better the correspondence between
the sampling function and the scattering function, the less variance we get in our
estimations. With importance sampling, the estimator is:

⟨E(x, ω)⟩ =
⎧⎨⎩

fE(p′←p)
pdfS(ω̄) E(y, ω̄) if ε1 ≤ µ(y)

µ̄

E(y, ω) if ε1 > µ(y)
µ̄

.
(1.21)

where fE is the DCS scattering function and fS is the sampling function with the
probability density function pdfS. In our implementation, we used the Rutherford
fromula as fS to importance sample the DCS scattering function.

22

2. Optimizations
In the previous chapter, we described the simplified microscope model and the
corresponding Monte Carlo estimator for the elastic electron scattering simula-
tion. However, we intentionally did not discuss some of the obstacles that arise
during the theory to program transformation. In this chapter, we explore more
in-depth implementation difficulties of the proposed models. We focus on the
Fourier transform of the Coulomb potential. Next, we analyze the choice of the
majorant and undesired properties of the input data. After that, we explore
the mean free path and its impact on the rendering, and lastly, we inspect the
implementation complications of the Rutherford scattering model.

2.1 Units
We use atomic units throughout our implementation, mainly the Bohr units [a0]
for length. While Angstrom [Å] is usually used within the cryo-EM reconstruc-
tions and research, atomic units simplify the physics and equations that describe
the behavior of an electron within the potential field and thus are more convenient
for us, as explained in [16]. The relation between Bohr and Angstrom is:

1 a0 ≈ 0.529 177 210 903 Å.

2.2 Fourier transform of the Coulomb potential
The elastic DCS depends on the Fourier transform of the localized Coulomb
potential Vc,r as described in Section 1.3.2. To simplify the equations and imple-
mentation, we consider the location to be cube-shaped. The formal expansion of
the Fourier transform of the potential in center c and with radius r is:

dσ

dΩ(p′ ← p) = (1
2π

)2|V̂ c,r(q)|2 =

(1
2π

)2
∫︂ cx+r

cx−r

∫︂ cz+r

cz−r

∫︂ cz+r

cz−r
V (x, y, z)e−2πiq((x−cx)+(y−cy)+(z−cz))dxdydz. (2.1)

Note that we have replaced the electron mass with 1 thanks to the application of
atomic units. After discretization of the integrals, we have the following formula
for a discrere Fourier transform:

dσ

dΩ(p′ ← p) =

(1
2π

)2
cx+r∑︂

x=cx−r
x+=s

cy+r∑︂
y=cy−r

y+=s

cz+r∑︂
z=cz−r

z+=s

V (x, y, z)e−2πiq(x−cx
2r

+ y−cy
2r

+ z−cz
2r), (2.2)

where s is the sampling step size, which can be computed as 2r
#samples

.
There exist a number of implementations of the fast Fourier transform (FFT)

algorithm, even for the 3D case presented here. However, we are only interested
in frequencies that lie on a sphere, as depcited in Figure 1.4. That is because for

23

the given momentums p and p′ we want the value for the frequency q = p′ − p,
where the magnitude of p′ and p is the same. We would throw away most of the
frequencies acquired from full 3D FFT.

Also, to avoid Moiré patterns, the number of samples must be sufficiently
high. For example, for electron with an energy of 300 keV, the magnitude of
its momentum is 148.49 a0

−1. The forward direction always corresponds with
the zero frequency value. However, for larger scattering angles the corresponding
frequencies increase rapidly. For the largest scattering angle (essentially reversing
the direction of the electron) we need to compute the value of frequency of up to
2 × 148.49 a0

−1 = 296.98 a0
−1 for this electron. Note that the frequency still has

units.
To correctly compute a value of a signal with such frequency, the sampling

step must be half the wavelength of the signal, which is 1
2·296.98 ≈ 0.0017 a0 in this

case. Because the radius values that we intend to use range from 1 a0 to 16 a0,
this leads to an enormous number of samples. At the same time, failing to respect
this limit leads to undesired Moiré patterns in the undersampled frequencies and
affects the weights of the importance sampling.

Fortunately, from Figure 1.6 and from the experiments in Figure 1.5, we
can observe that vast majority of electrons do not scatter to angles wider than
approximately 4 degrees. Based on this observation, we have done the following
steps:

• First, we have implemented the Fourier transform as described by the Equa-
tion (2.2) above. Compared to the standard discrete FFT algorithm, this
allows us to correctly represent any frequency up to the precision of the
numeric type. We also do not have to compute the values for frequencies
outside those that are of interest. The algorithm is simpler than FFT and
can be executed within a single CUDA thread. Lastly, with importance
sampling, it is sufficient to compute only a single frequency, which is faster.

• Second, we parse the number of samples per axis and the locality radius of
the Fourier transform from the input parameters of the simulator. We then
compute the maximum scattering angle that we can correctly represent with
this setup and restrict the importance sampling accordingly.

2.3 Majorant choice
Before we discuss how to choose the majorant value, we first need to acquire a
volume that is used for distance sampling, as described in Subsection 1.4.3. As we
have declared in Subsection 1.2.2, the input to our simulator is a map represent-
ing a Coulomb potential. In Section 1.4.1, we have derived the relation between
scattering coefficient and the Coulomb potential. To get a volume for render-
ing, we take the input potential map and transform it by the derived relation,
acquiring a map of scattering coefficients.

Setting the maximum value of the generated scattering coefficients volume as
majorant is not ideal. We can expect outliers in both the reconstructed data,
and also artificially generated data because the equations for the atom Coulomb
potential diverge to infinity at zero distance from the atom. Thus, there would be

24

a very high chance that the maximum value of the volume is an outlier, resulting
in low scattering tendency everywhere else in the volume and low contrast in the
final image.

2.3.1 Element estimation
To avoid this problem, we take advantage of a chemical composition of the
molecule known from e.g. spectroscopy. We assume that the largest scattering
coefficient belongs to the atoms with the highest atomic number - an assumption
that seems to be correct from the behavior of the Rutherford formula. We com-
pute the percentual representation of this element in the studied molecule and
choose the lowest scattering coefficient from the volume, which is still within the
percentile of the largest atomic number. The percentile is set manually through
the parameters and recommended values are above 0.99. For example, the β-
galactosidase molecule used in the experiments has a chemical distribution shown
in Table 2.1. The highest atomic number is Sulfur, so we use as the majorant
a value with 1 − 0.474834

100 ≈ 0.995 percentile. This is a heuristic approach and
it would not work for molecules where the highest atomic number is extensively
present, so we advocate to use a reasonably high percentile.

Element Atomic number Count Percentage
Carbon- C 6 20816 61.7759
Oxygen- O 8 6896 20.4653
Nitrogen- N 7 5808 17.2365
Sulfur- S 16 160 0.474834
Sodium- Na 11 8 0.0237417
Magnesium- Mg 12 8 0.0237417

Table 2.1: Element distribution of the β-galactosidase molecule.

2.3.2 Mean free path
Another problem tied with the majorant scattering coefficient is choosing the
sampling mean free path. In classic delta-tracking, the majorant scattering co-
efficient also determines the sampling mean free path via the following formula
λ = 1

µ̄
. However, as declared in Subsection 1.2.2, we cannot rely on the scale of

the input values. Even though we have chosen a majorant scattering coefficient,
plugging it into the path estimation described in Subsection 1.4.3 would return
incorrect values.

To solve this problem, we re-use the element estimation. From the approach
in Subsection 2.3.1, we have established which element represents the majorant
scattering coefficient. From the Rutherford formula, we can compute the realistic
total cross-section for the estimated majorant element. We can then use this re-
alistic total cross-section to compute a realistic mean free path from the following
formula from Section 1.3.2:

λ = 1
ρnσ

. (2.3)

25

From the knowledge of the estimated majorant element, we can compute the
density of the scattering centers ρn:

ρn = NAρ

A
,

where NA is the Avogadro constant, ρ is the weight density of the element and A
is the atomic weight [18].

By associating the mean free path with a majorant scattering coefficient,
instead of computing it, we essentially normalized the volume. It does not matter
what the scale of the values in the input molecule is, because the sampling mean
free path will always be determined by the estimated majorant element. However,
it also overloads the meaning of the majorant value - now it does not influence
only the noise of the final image, but also the contrast of the image, because of
its association with a set mean free path.

Unscattered dose propagation

The typical elastic mean free paths of high energy electrons within cryo-EM are
several times longer than the size of the molecule. This means that the vast
majority of electrons do not interact with the specimen and contribute only to
the background of the image. To save computational time, we do not simulate
these electrons explicitly. Instead, we compute the unscattered dose from the
cumulative distribution function for distances described in Section 1.4.3. Let t
be the distance from the emitter to the detector, then the probability that the
electron will not scatter is:

P (X > t) = e
t
λ .

The detector is initialized with the unscattered dose before the simulation. To
keep the estimator unbiased, we have to compensate for this by sampling the first
scattering distance only within the distance t. For distance sampling, we use the
following formula:

s = −λ ln(1− ε),
where s is the sampled distance and ε is a random number with uniform distri-
bution. To restrict the sampling to distances between 0 and t, we restrict the ε
to the range [0, 1− e

−t
λ].

2.4 Rutherford scattering model
In Subsection 1.4.4, we have described the Rutherford scattering function and
how to utilize it in the estimator. However, the Rutherford formulae from Sub-
section 1.3.3 are derived for a single atom of a known type, not for a potential map
or scattering coefficients map. We tried to use the approach from Subsection 2.3.1
again and during scattering within the volume, we estimated the atomic number
of the local atom based on the local scattering coefficient and the majorant scat-
tering coefficient, for which we know the element it represents. Unfortunately,
this did not work very well because the estimated scattering angles were too wide.
In the experiments in Chapter 4, we show that a good approximation model is
to simply use one Rutherford formula for all scattering events.

26

3. Implementation
In this chapter, we describe the implementation of the Monte Carlo simulation
from Chapter 1. We utilized the C++ language and modern graphics processing
units (GPUs) in order to make the simulation reasonably fast. In the description,
we use the term device memory to refer to the memory of the GPU, and the
term host memory to refer to the traditional central processing unit, central
processor (CPU) accessible memory. In the first part of this chapter, we discuss a
considered options of library or framework that could be used to simplify the GPU
utilization. We also mention several other external libraries that are integrated
into the developed software. We finish the chapter with a description of the
functional units from which the simulator is composed.

3.1 Libraries
In this section we describe the chosen library BoltView [24] that helps us with
the GPUs utilization. We also mention other GPUs libraries that we considered.
In the next part, we briefly describe other libraries that we have utilized in the
software.

3.1.1 GPU library
We have considered the following libraries/frameworks when deciding how to sim-
plify the integration of GPU: OptiX NVIDIA library [25], GVDB Voxels [26] and
BoltView. We have decided to use BoltView, which offers the most flexibility of
those options. Moreover, we have a considerable experience with the framework.
It also allowed us to develop the simulation in such a way that the same code can
be run both on NVIDIA GPUs and on CPUs only, with minor code changes. In
the following text, we offer a brief description of the BoltView and the reasons
why we discarded other considered libraries.

BoltView

We have decided to use the BoltView library as a core of our simulator. BoltView
library is a C++ header-only library that offers unified interface for both GPU
and CPU computations. It provides data structures and implementations of
meta-algorithms for structured data processing. Most of the library functionality
is based around the concept of the Image and View. The instance of the Image
class represents the actual data, stored in an n-dimensional array. Instances
of View class are then only proxies that can access and manipulate the data
of Images but do not own the data. The majority of the BoltView algorithms
operate over the Views, not the Images themselves. The memory management is
up to the developer. The usual pattern is to allocate the memory with the Image
class and use the acquired View instances for actual computations.

27

OptiX

OptiX is a ray-tracing engine from NVIDIA. At first, it seemed to be a good choice
for a particle tracing algorithm. However, after developing a demo version, we
concluded that this framework restricts us more than it helps us. Perhaps the
greatest issue with OptiX is its limited interface when it comes to the device
functions that control the ray. The code that is supposed to run on the device
has to be written in C language and compiled separately into the ptx format.
During the linking time, the device code is connected with the OptiX via C
bindings.

It became clear from the design that OptiX is intended for triangular mesh
rendering, not for volumetric simulations. We did not need its optimized data
structures for fast ray-triangle intersection computation, which is arguably one
of the core features of OptiX. Overall, it restricted us in many ways while not
contributing much to simplify the implementation of our algorithm.

GVDB Voxels

We have not tested the GVDB Voxels library directly. Compared to the OptiX
this library is focused on fast volumetric rendering. However, at the time of start-
ing the development, this library was only several months old and it seemed that
there is no clear way to implement custom device code. Instead, the rendering
was based on setting up the parameters and letting the framework use its general
pre-implemented functions. We could not also figure out if it is possible to change
the direction of the ray, which is a crucial part of our simulation.

3.1.2 Other external libraries
In this section, we describe libraries that are integrated within the software. Most
of them deal with the parsing of input and output formats.

JsonParams

JsonParams [27] is a side project that has been developed to simplify the input
parsing. It is a simple library for loading parameters from a file in JSON format.
The parameters are specified in program as structures with static members. For
each parameter, the developer specifies a name, type, and optionally default value.
The library is easily extendable with new types if the proper parsing function is
specified. We use this library to load all parameters of the simulation, including
a path to the potential map.

MRC and STAR File formats

Source codes for loading and writing the MRC and the STAR File format has
been provided by the Eyen SE company. The MRC is a binary format for n-
dimensional numeric data and is commonly used for biological data, e.g. potential
maps, electron density maps, measured projections, etc. The STAR File format
is a metadata format accompanying projections data. It contains information
about each projection from the MRC file, e.g. view angles, estimated defocus,
magnification, and electrons energy. We have used STAR File data to setup the

28

simulation and compare our images with the measured images from the same
view angle.

Potential reconstruction

For tests and experiments, we have included a library for generating Coulomb
potential maps from PDB files. The source codes can be found in the folder
/src/density_reconstruction. The source codes for the generation of a
Coulomb potential for a given atom and distance were provided by Alt [16].
The algorithm accepts a PDB file and voxel size. Then it constructs a 3D array
of floats representing the potential map. Next, it iterates over all atoms and
distributes their potential into the map, which is then returned as a result.

gemmi

Gemmi [28] is a C++ and Python library developed for use in macromolecular
crystallography. We use it mainly for parsing and working with PDB file format.
The PDB format contains a list of atoms with their positions and type. The PDB
files for many molecules are publicly accessible from an online database.

3.2 Simulator implementation
The program is written in C++ with an extensive use of template programming
and the BoltView library. It is written in a duck typing style, a programming
style extensively used also by the BoltView library. The style is an application
of the so-called duck test - If it walks like a duck and it quacks like a
duck, it is a duck. In programming, it means that the type of the objects is
not that important. Instead, the members and methods of the object determine
its applicability within the rest of the program.

Everything needed for the electron simulation is enclosed within a names-
pace ems. The core of the software is a header-only ems library. An example
executable implementation that demonstrates the usage of the ems library is pro-
vided. Several core classes facilitate the simulation, all of which are described in
the following section. The program is described according to the data flow of the
test_exe program, from parsing the input parameters to the image formation
step. Please refer to the file /src/test_main.cu which demonstrates these steps
and is being utilized in the description of the simulator.

3.2.1 Data preparation
In this section, we describe several classes that are utilized for parsing parameters
and loading the input data. We also describe the implementation of the simplified
unit system that provides some level of compile-time type safety for physical units.
It improves the readability of the code as it makes clear where which unit should
be used.

29

StrongType system

Here we introduce the StrongType class, defined in the file /src/ems/strong_
type.h. The class serves as a thin wrapper around a numeric value with no im-
plicit conversions. This allows us to define our units and have a limited compile-
time checking of their correctness. It makes the implementation of physical equa-
tions easier and improves the readability of the code. It is not as powerful as
template-based unit systems from e.g. Boost library, but provides basic unit
type safety and is easy to use even within the CUDA environment.

Units and constants are defined in the /src/ems/defines.h. All units and
their multidimensional versions realized with a BoltView class bolt::VectorX are
defined using the StrongType class. Examples are Bohr, Bohr3, Angstrom, Ra-
dians, Pixel2 etc. A Bohr3 instance stands for a 3-dimensional vector of Bohr
units. We do not use powers with the units, so many computations involving
these are done with unit type removed and reassigned at the end.

Setup

Upon the start of the test application, it first loads the parameters from the JSON
file. Then it loads the potential, scattering, and total cross sections volumes. It
is expected that all three volumes are cube-shaped and have the same full size
and voxel size. The potential and cross-sections volume are important only for
the DCS scattering function defined in Section 1.4.4. The scattering volume is
however necessary both for the Rutherford scattering function and DCS scat-
tering function. If the scattering volume is not provided, it is computed from
the potential volume from the relation defined in Section 1.4.1. Please refer to
Subsection 3.3.1 for the description of the scattering functions and the required
volumes.

Setup class: Setup class is defined in the /src/ems/setup.h file. It requires
the parsed parameters, voxel size of the loaded data, and a count of voxels per
volume side. For this reason, it is constructed after the volumetric data are
loaded. The Setup class instance contains:

Interaction bounding box The interaction bounding box, represented by class
BoundingBox, defines a bounding box within which the electron can undergo
scattering events. If any electron leaves this area, it either hits the detector
or is thrown away. The box is always axis aligned and centered in zero
position.

Detector and emitter position and size Emitter and detector are assigned
their initial positions, which are along the Z-axis, aligned with the volume.
The frame, represented by the class ImageLocation defined in file /src/
ems/locations.h, has the same size as one side of the bounding box.

Dose The dose of the electrons is loaded from the parameters in count per
squared Bohr. The scattered and unscattered fractions are then estimated
as described in Section 2.3.2.

Mean free path The mean free path for the majorant element is estimated, as
described in Subsection 2.3.2. The mean free path is then passed to the
scattering functions if they require it.

30

Max scattering event count The max scattering event count is parameter
loaded from the input file. It is the upper bound for the number of scatter-
ing events per single electron. By default it is unbounded.

These were the important members of the Setup class instance initialized in the
constructor. If we compile the program for GPUs, the class is copied into the
device memory, so restrictions of the CUDA environment must hold for this class.

Physical volume

After the Setup class instance is ready, the volumetric data are loaded into the
memory. Whether it is a device or host memory is decided during the compile-
time by a type defined in the file /src/helper_func.h. The memory type of the
volumes also determines whether the simulation runs on GPU or CPU. In further
text, we assume GPU enabled simulation, and we explicitly mention when a code
is executed on the device. For the host, the only difference is that everything
happens within the host memory.

Volumetric data are in fact loaded into the texture images of the GPU via
bolt::TextureImage class (or interpolated bolt::HostImage for host version), which
can be imagined as three dimensional array with hardware-accelerated linear
interpolation. However, before the volumetric data can be used within the sim-
ulation, they need to be wrapped in an instance of the PhysicalVolume class,
defined in the file /src/ems/raycast_data.h. The PhysicalVolume extends the
volumetric data with the BoundingBox, position and size, and methods to access
the data easily, e.g. indexing with world coordinates. In short, it gives the volume
a physical representation within our simulator.

3.3 Electron microscope components
The core class of the simulation is the ElectronMicroscope class. However, it re-
quires several key components for its construction, which determine the image
formation algorithm. These components are a scattering function, an image for-
mation, and optionally one or two ray observers. In this section, we describe in
detail these components, and the next section is then dedicated to the simulation
itself. First, we present a list of objects and expressions that might appear in the
description of the components:

BOLT_DECL_HYBRID The BOLT_DECL_HYBRID macro is a function annotation, that
tells the compiler that this function must be compiled for both the host and
the device. It is used extensively throughout the library.

Ray The Ray class a simple C++ struct containing position of the ray in Bohr3
units and unit-less direction of the ray with its inverse for faster intersection
computations.

Payload Payload is a term used for the data transported by the ray. The actual
class is determined from the image formation component. One of the key
members transported in this class is particle importance, called weight,
which is altered during the importance sampling of the DCS scattering
function.

31

RutherfordFormulae The RutherfordFormulae class is defined in the file
/src/ems/screened_rutherford_formulae.h. The class is initialized by
a chemical element and electron energy. It contains implementations of the
Rutherford formulae described in Subsection 1.3.3, as well as the derived
sampling and PDF functions from Section 1.4.4. Most of the methods can
be called from a device code.

LocalizedFourierTransform The LocalizedFourierTransform class is defined
in the file /src/ems/localized_fourier_potential.h. It implements a
localized 3D Fourier transform as described in Section 2.2. It is initial-
ized with a potential volume, position, radius and a number of samples.
It contains a method BOLT_DECL_HYBRID ComplexType at(const Num3&
frequency, size_t& samples_count) const, which returns a Fourier
value and total number of samples for the the requested frequency.

1 BOLT_DECL_HYBRID
2 ComplexType at (const Num3& frequency , s i z e_t& samples_count)

const
3 {
4 samples_count = bo l t : : product (Num3 : : f i l l (

max_per_axis_samples_count)) ;
5 ComplexType sum { } ;
6 i f (! (Num { 2 } / bo l t : : maxElement (u(s t ep_s i z e)) >= bo l t : :

maxElement (bo l t : : abs (f requency)))) {
7 return sum ;
8 }
9

10 using namespace bo l t ;
11 for (s i z e_t x = 0 ; x < max_per_axis_samples_count ; ++x) {
12 for (s i z e_t y = 0 ; y < max_per_axis_samples_count ; ++y) {
13 for (s i z e_t z = 0 ; z < max_per_axis_samples_count ; ++z)

{
14 Bohr3 p o s i t i o n = min + o f f s e t + bo l t : : product (

s tep_s ize , Num3 { x , y , z }) ;
15 auto shift_param = Num(−2 ∗ M_PI) ∗ bo l t : : sum(bo l t : :

product (frequency , bo l t : : d iv (p o s i t i o n − min , s i z e)
)) ;

16 auto s h i f t = ComplexType { cos (shift_param) , s i n (
shift_param) } ;

17 sum = sum + ComplexType { volume . a c c e s s (p o s i t i o n) } ∗
s h i f t ;

18 }
19 }
20 }
21 return sum ;
22 }

At line 6, it checks via the Nyquist theorem, whether the sampling is suffi-
cient for the requested frequency. If not, it returns complex zero. This way,
we avoid repeated patterns stemming from undersampled frequencies. The
rest of the method is an implementation of the discrete Fourier transform.

32

3.3.1 Scattering function
The scattering function is the main component of the microscope. It is an object
defined by the following interface:

1 template<typename TRandomGenerator , typename TPayload>
2 BOLT_DECL_HYBRID
3 Ray s c a t t e r (
4 const Ray& orig_ray ,
5 TRandomGenerator& rng ,
6 Bohr& next_event_distance ,
7 TPayload& payload ,
8 Bohr max_distance = Bohr { 0 }) const

The goal of this function call is to process a scattering event, determine the
distance to the next scattering event and return a new Ray object.

orig_ray The orig_ray argument contains the current position, where the scat-
tering should happen, and the original direction of the particle.

rng The rng is a callable functor that returns random numbers in range [0, 1].

next_event_distance The next_event_distance argument is passed by refer-
ence and should be assigned in this function. It determines the distance to
the next scattering event.

payload The payload¸ argument contains the payload of the particle. The class
is determined by the image formation component, but it usually contains
at least simulation importance weight of the particle.

max_distance This argument is used to importance sample lower distances and
sets the upper bound of the next_event_distance. As described in Sec-
tion 2.3.2, most of the particles do not scatter within the BoundingBox
of the sample, so the next_event_distance is set for the first scattering
event to that distance. The default value zero means unbounded maximum
distance.

Note that the function is const, as many particles are using the scattering func-
tion at the same time during the simulation. In the following text, we describe
some of the implemented scattering functions, all of which can be found in the
file /src/ems/scattering_function.h. The first is the NoScattering scatter-
ing function for illustration purposes, followed by the two functions described in
Subsection 1.4.4.

Tracing in transmittance model

The NoScattering scattering function is very simple object that almost conforms
to the interface described above.

1 struct NoScatter ing {
2 expl ic it NoScatter ing () {
3 }
4
5 template<typename TRandomGenerator , typename TPayload>
6 BOLT_DECL_HYBRID

33

7 Ray s c a t t e r (
8 const Ray& orig_ray ,
9 TRandomGenerator& rng ,

10 Bohr& next_event_distance ,
11 TPayload& payload ,
12 Bohr max_distance = Bohr { 0 }) const
13 {
14 next_event_distance = Bohr { INF } ;
15 return orig_ray ;
16 }
17 } ;

It does not change the direction of the ray and sets the next_event_distance
variable to infinity, essentially saying that this ray does not scatter. It does not
respect the max_distance parameter, because this scattering function is not used
to simulate electron transport. It is used to facilitate the common transmittance
model from Section Transmittance model. Not respecting the max_distance
parameter causes the dose estimation to be biased, but it has no effect on the
transmittance model, because the model does not respect dose.

Rutherford scattering function

The RutherfordSimpleScattering class represents the Rutherford scattering func-
tion. The body of the scatter function looks like this:

1 {
2 Num random_sample = rng () ;
3 i f (max_distance > Bohr { 0 }) {
4 Num bound = Num { 1 } − exp(−max_distance / mean_free_path) ;
5 random_sample ∗= bound ;
6 }
7
8 next_event_distance = sampleNextEventDistance (random_sample) ;
9

10 auto s c a t t e r i n g _ s c a t t e r i n g _ c o e f f i c i e n t = scatter ing_volume . a c c e s s (
or ig_ray . o r i g i n) ;

11 auto r a t i o = s c a t t e r i n g _ s c a t t e r i n g _ c o e f f i c i e n t / majorant ;
12 i f (rng () < r a t i o) {
13 Num ruther_pdf { } ;
14 auto new_dir = sampleDirect ion (or ig_ray . d ir , rng () , rng () ,

ruther_pdf) ;
15 return Ray { orig_ray . o r i g i n , new_dir } ;
16 } else {
17 return orig_ray ;
18 }
19 }

The first conditional block (line 3) handles the random_sample bounds according
to the dose propagation from Section 2.3.2. It is followed by the next event dis-
tance estimation (line 8). The rest of the code illustrates the implementation of
the delta tracking described in Section 1.4.3. If a random number is smaller than
the ratio of the local scattering coefficient and the majorant (line 12), it is a real
scattering event, otherwise, it is a null scattering event and we continue in the
same direction. If it is a real scattering event, we use the derived sampling func-
tion from Section 1.4.4 to sample a new direction (line 15). The atomic number

34

used in the Rutherford sampling function has been parsed from the parameters
file.

DCS scattering function

The DCS scattering function is represented by the class RutherElectronScattering.
The Ruther portion of its name refers to the applied importance sampling via
Rutherford formulae. The body of its scatter function is nearly identical with
the Rutherford scattering function described above, so we show only the different
part.

1 i f (rng () < r a t i o) {
2 Num ruther_pdf { } ;
3 auto new_dir = sampleDirect ion (or ig_ray . d ir , rng () , rng () ,

ruther_pdf) ;
4 auto e l ec t ron_pdf = getPdfForDir (orig_ray , new_dir ,

total_cs_volume . a c c e s s (or ig_ray . o r i g i n)) ;
5 payload . weight ∗= elect ron_pdf / ruther_pdf ;
6 return Ray { orig_ray . o r i g i n , new_dir } ;
7 }

We sample a new direction using Rutherford formulae (line 4). We do not estimate
an atom, but we use the atom estimated from the majorant value. Then we
compute the PDF of this direction (line 5) from Equation (1.20) and use both
the sampling PDF and the Rutherford PDF to weight the electron contribution
(line 6).

1 BOLT_DECL_HYBRID
2 Num getPdfForDir (const Ray& orig_ray , const Num3& new_dir , Num

tota l_c ro s s_sec t i on) const
3 {
4 auto l o c a l i z e d _ f p = ems : : makeLocal izedFourierTransform (
5 potential_volume ,
6 orig_ray . o r i g i n ,
7 cross_sect ion_frame_size ,
8 max_fourier_samples_per_axis) ;
9

10 auto value = computeSampleValue (l o ca l i z ed_fp , or ig_ray . d ir ,
new_dir) ;

11 return value / to ta l_c ro s s_sec t i on ;
12 }

The PDF computation is done via the class LocalizedFourierTransform. Note that
the normalizing total cross section is not computed during scattering, but pre-
computed in the total_cs_volume, otherwise the simulation would be extremely
slow.

3.3.2 Image formation
The image formation component is responsible for the interpretation of the elec-
trons hitting the detector. It is defined by the following interface:

1 using Payload = ∗ ;
2
3 template<typename TProjectionView>
4 BOLT_DECL_HYBRID

35

5 void operator () (
6 const TProjectionView& pro j e c t i on ,
7 const I P i x e l 2& pro j e c t i on_p ixe l ,
8 const Payload& payload ,
9 const Ray& ray_deviat ion ,

10 const Bohr2& p i x e l _ s i z e) const

The first line is a definition of the payload class, which is then used throughout
the simulator. Note that the payload class must have a constructor with no
arguments. The content of the class can be modified by the three customizable
components of the microscope: the scattering function, the image formation,
and the ray observers. It is up to the programmer to make sure that all those
components are sensibly modifying the electron payload.

The image formation component must be callable with the listed arguments.
The object is called each time an electron hits the detector. Passed arguments
have the following meaning:

projection The projection argument is an instance of the bolt::View class that
contains the final image.

projection_pixel The projection_pixel argument contains coordinates of a
pixel that has been hit by the electron. It is always within bounds of the
projection view.

payload This argument contains the payload of the electron.

ray_deviation The ray_deviation contains exact position of the impact and
a direction under which the impact has occurred. However, the direction is
related to the detector in such a way that perpendicular impact has always
a direction of [0, 0, 1].

pixel_size The pixel_size argument contains a pixel size of the detector.

The class is supposed to modify the projection data to record the electron
impact. However, as with other components, this member function can be exe-
cuted by many threads at the same time. Therefore the modifications must be
thread-safe, otherwise, race conditions are to be expected.

Counter image formation

All of the implemented image formation components can be found in a file /src/
ems/image_formations.h. Here we present the CounterImageFormation class
that is used in all examples in the provided test program and works in accordance
with the description in Subsection 1.2.3.

1 struct DistancePayload {
2 Num weight { 1 } ;
3 Bohr d i s t anc e { 0 } ;
4 } ;
5
6 struct CounterImageFormation {
7 using Payload = DistancePayload ;
8
9 template<typename TProjectionView>

36

10 BOLT_DECL_HYBRID
11 void operator () (
12 const TProjectionView& pro j e c t i on ,
13 const I P i x e l 2& pro j e c t i on_p ixe l ,
14 const Payload& payload ,
15 const Ray& ray_deviat ion ,
16 const Bohr2& p i x e l _ s i z e) const
17 {
18 #i f de f ined (__CUDA_ARCH__)
19 atomicAdd(& p r o j e c t i o n [u(p r o j e c t i o n _ p i x e l)] , payload . weight) ;
20 #else
21 p r o j e c t i o n [u(p r o j e c t i o n _ p i x e l)] += payload . weight ;
22 #endif
23 }
24 } ;

We use the DistancePayload class as our payload. While we do not use the dis-
tance member of the class in the provided test program, it has been used for
debugging and other experimental image formation models. The CounterImage-
Formation class is quite simple, for each electron impact, it adds its weight to
the pixel value. Note that there are two versions for the device and the host.
The host is not thread-safe, as the current version of the software does not enable
multithreading on the host.

3.3.3 Ray observers
Ray observers provide a means to modify the payload of an electron when it
moves through the volume bounding box defined in Setup class. They are an
optional component. They are not used for the simulation of electrons in our
test program, but they facilitate a simulation of the transmission model. The ray
observers are defined by the following interface:

1 template<typename TPayload>
2 BOLT_DECL_HYBRID
3 void operator () (TPayload& payload , const Ray& ray , const Bohr&

step) const

It is again a callable object and the same rules apply as in the previous compo-
nents - mainly that the method can be called by many electrons at once. The
arguments have the following meaning:

payload This argument contains the payload of the electron.

ray The ray argument represents the observed ray. It provides an origin of the
observation and direction. Each electron is observed on the path between
scattering events and the in the segments from the emitter and to the
detector.

step The step argument contains the distance for which the electron should be
observed. Together with the ray argument, it gives a full description of the
observed path.

37

Weighting ray observer

Here we provide an example of a ray observer. This observer implements the
transmittance model together with the NoScattering scattering function. We
have intentionally left out the body of the getWeightedDistance method, as it
is unnecessary for the illustration of an observer and quite long.

1 template<typename TVolumeView>
2 struct WeightingVolumeRayObserver {
3 BOLT_DECL_HYBRID WeightingVolumeRayObserver (PhysicalVolume<

TVolumeView> physical_volume , f loat outs ide_weight) :
4 physical_volume (physical_volume) ,
5 outs ide_weight (outs ide_weight) ,
6 min_step_size (bo l t : : minElement (physical_volume . getS izeOfVoxe l ())

/ 100 .0 f)
7 {
8 }
9

10 template<typename TPayload>
11 BOLT_DECL_HYBRID
12 void operator () (TPayload& payload , const Ray& ray , const Bohr&

step) const {
13 payload . d i s t anc e +=Bohr { getWeightedDistance (ray , s tep) } ;
14 }
15
16 private :
17
18 BOLT_DECL_HYBRID
19 f loat getWeightedDistance (const Ray& start_ray , const Bohr& step)

const {
20 ∗∗∗
21 }
22
23 PhysicalVolume<TVolumeView> physical_volume ;
24 f loat outs ide_weight ;
25 Bohr min_step_size ;
26 } ;

The observer adds a weighted distance to the payload distance member. It com-
putes the weighted distance within the getWeightedDistance as a sum of tra-
versed voxels times the value within that voxel, essentially computing the path
integral.

3.4 Electron microscope simulator
After we have described the components of the simulator, we can construct an
instance of the class ElectronMicroscope defined in the file /src/ems/ems.h. The
class has a following helper function for construction which enables the C++
template argument deduction:

1 template<typename TScatter ing , typename TImageFormation , typename
TRayObserverOne = NullRayObserver ,

2 typename TRayObserverTwo = NullRayObserver>
3 ElectronMicroscope<TScatter ing , TImageFormation , TRayObserverOne ,

TRayObserverTwo> const ruc tE lec t ronMicroscope (
4 const ElectronMicroscopeSetup setup ,

38

5 TScatter ing s c a t t e r i n g ,
6 TImageFormation image_formation ,
7 TRayObserverOne observer_one = { } ,
8 TRayObserverTwo observer_two = { })
9 {

10 return ElectronMicroscope<TScatter ing , TImageFormation ,
TRayObserverOne , TRayObserverTwo> { setup , s c a t t e r i n g ,
image_formation ,

11 observer_one , observer_two } ;
12 }

The constructor of the simulator class requires an instance of the ElectronMi-
croscopeSetup class and the components described in the previous section - one
scattering component, one image formation component, and optionally one or
two observer components. Each of those components is a templated argument.
It can be any object that follows the interfaces described in the previous section
- mainly that they will potentially operate on the GPU device, and each of the
interface methods may be called from multiple threads at the same time. Note
that we do not pass any volumetric data into the microscope directly. This is
because the components themselves should carry the pointers/views of the data
they require. The microscope class works only with the BoundingBox instance
initialized in the setup argument.

3.4.1 Rendering
The instance of the ElectronMicroscope class offers a single public method render,
which performs the simulation and writes the result into the provided memory.
However, before we describe the render method, we introduce a function to create
a BoltView image of random generators, which is necessary to run the simulation.

1 template<bool TRunOnDevice , typename TSizeType>
2 auto createRandomGeneratorsImage (TSizeType s i z e , unsigned seed) {
3 i f (seed == 0) {
4 seed = std : : random_device { } . operator () () ;
5 }
6 return std : : move(d e t a i l : : createRandomGeneratorsImageImpl<

TRunOnDevice >: : run (s i z e , seed)) ;
7 }

The view derived from this image is then used during the simulation to generate
random numbers for each of the electrons. Special generators view is needed
because on the device, the standard random generators are not present, and the
CUDA random generators are good for a one-time generation of a fixed count
of numbers. The created image of random generators contains a pseudorandom
generator in each pixel, and all of the pixels are independent, meaning that the
simulation can be run in as many threads as there are pixels in the image.

The render method of the ElectronMicroscope class has the following defini-
tion:

1 template<typename TProjectionView , typename TGeneratorsView>
2 Detector render (
3 TProjectionView pro j e c t i on ,
4 bo l t : : Quaternion<Num> or i en ta t i on ,
5 const Pixe l3& subp ixe l_sh i f t ,

39

6 const Bohr& detector_dis tance ,
7 TGeneratorsView gene ra to r s)
8 {
9 Num unscattered_dose_per_pixel ;

10 auto emit te r_detector = constructEmitterAndDetector (
11 t<IPixe l2 >(p r o j e c t i o n . s i z e ()) ,
12 t<IPixe l2 >(gene ra to r s . s i z e ()) ,
13 o r i en ta t i on ,
14 subp ixe l_sh i f t ,
15 detector_di s tance ,
16 unscattered_dose_per_pixel) ;
17 Emitter emi t t e r = emit te r_detector . f i r s t ;
18 Detector de t e c t o r = emit te r_detector . second ;
19 auto r a y t r a c e r = constructRayTracer (∗ this , p r o j e c t i on , generator s ,

emitter , d e t e c t o r) ;
20 bo l t : : f i l l (p ro j e c t i on , typename TProjectionView : : Element {

unscattered_dose_per_pixel }) ;
21 EmsIndexView <2, TProjectionView : : kIsDeviceView> emitting_view { u(

emi t t e r . s i z e) } ;
22 bo l t : : forEach (emitting_view , r a y t r a c e r) ;
23 return de t e c t o r ;
24 }

The arguments have the following meaning:

projection The projection is preferably an instance of a 2D BoltView view
object. The number of pixels determines the pixel size of the virtual detector
because the ImageLocation is already determined by the electron setup.
The memory type of this object (host or device) also determines whether
the simulation is executed on the host or the device. The rendered image
is stored in this view.

orientiation The orientation argument is a quaternion describing the ori-
entation of the microscope with respect to the simulation BoundingBox.
During the simulation, the BoundingBox remains static, but the emitter
and detector are rotated according to this parameter.

subpixel_shift This argument shifts the emitter and detector, which visually
shifts the projection of the sample.

detector_distance The detector distance value corresponds to the defocus ef-
fect described in Subsection 1.2.3. The larger is the distance, the greater
the electron spread can be observed in the rendered image.

generators The generators a 2D BoltView view of a generators image de-
scribed previously. Each pixel of this object must provide a callable object
that returns a uniform random number in the range [0, 1]. The memory type
of this object should correspond to the memory type of the projection.
The size of this view determines the size of an emitter pixel, similarly to
how the projection determines the size of the detector pixel. The num-
ber of emitter pixels also determines the number of possible threads of the
simulation.

The method first constructs and instance of the Emitter class and the Detec-
tor class, both if which are defined in the file /src/ems/rayast_data.h. They

40

connect together the ImageLocation class instances for emitter and detector with
the views to give them physical representation, similarly to what PhysicalVolume
class does. The variable unscattered_dose_per_pixel is also initialized during
the construction and then written into the result projection (line 20).

The simulation of the electrons is executed on line 22. For each emitter pixel,
a raytracer object is executed. The code within the raytracer is executed
either on the device or the host, depending on the configuration. In the following
text, we describe the RayTracer class which represents the core of the simulation.
After the call to the render method is finished, the final image is stored in the
provided projection view.

Ray tracer

The RayTracer class is defined in the file /src/ems/ray_tracer.h. For the
execution on device, a copy of the instance of this class is passed to each executed
thread, along with a corresponding emitter pixel index. The construction function
is defined as:

1 template<typename TElectronMicroscope , typename TProjectionView ,
typename TGeneratorsView>

2 BOLT_DECL_HYBRID
3 RayTracer<TElectronMicroscope , TProjectionView , TGeneratorsView>

constructRayTracer (
4 const TElectronMicroscope& microscope ,
5 TProjectionView pro j e c t i on ,
6 TGeneratorsView generator s ,
7 const Emitter& emitter ,
8 const Detector& de t e c t o r)
9 {

10 return RayTracer<TElectronMicroscope , TProjectionView ,
TGeneratorsView >(microscope , p ro j e c t i on , generator s , emitter ,
d e t e c t o r) ;

11 }

It takes the following arguments:

microscope This argument contains an instance of the ElectronMicroscope class
in which the simulation occurs. The microscope provides a simulation
bounding box and the components that control the simulation of the elec-
tron.

projection A view that serves as result storage.

generators A view that provides a random generator for this emitter pixel.

emitter The class instance provides methods to get a position and direction of
an initial electron from the emitter pixel coordinates. It also contains a
count of electrons that need to be simulated for each emitter pixel.

detector This is a physical representation of the projection. It has a pixel
size, position, and rotation. It is used to compute the impact location of
the electrons that hit the detector.

In the render method of the ElectronMicroscope, for each emitter pixel a
RayTracer instance is executed in the following method:

41

1 BOLT_DECL_HYBRID
2 void operator () (const bo l t : : Int2& o r i g i n _ p i x e l) const {
3 tracePixe lRays (t<IPixe l2 >(o r i g i n _ p i x e l)) ;
4 }

Which is only a wrapper function for the tracePixelRays function, that iterates
over all electrons of the pixel and traces them:

1 BOLT_DECL_HYBRID
2 void t racePixe lRays (const I P i x e l 2& o r i g i n _ p i x e l) const {
3 for (s i z e_t sample = 0 ; sample < emit t e r . samples_per_pixel ; ++

sample) {
4 Payload payload { } ;
5 Bohr3 o r i g i n = emit t e r . getSourceLocat ion (o r i g in_p ixe l , getRnd (

o r i g i n _ p i x e l) , getRnd (o r i g i n _ p i x e l)) ;
6 Ray ray { o r i g i n , emi t t e r . i n i t_ray_d i r e c t i on } ;
7 t raceS ing l eRay (ray , o r i g in_p ixe l , payload) ;
8 }
9 }

As described before, the emitter provides a number of electrons that should be
simulated for the current pixel, as well as the initial position and direction of the
electron. The following two functions demonstrate, how the generators view is
used to generate random numbers:

1 BOLT_DECL_HYBRID
2 typename TGeneratorsView : : AccessType getGenerator (const I P i x e l 2&

o r i g i n _ p i x e l) const {
3 return gene ra to r s [u (o r i g i n _ p i x e l)] ;
4 }
5
6 BOLT_DECL_HYBRID
7 f loat getRnd (const I P i x e l 2& o r i g i n _ p i x e l) const {
8 return getGenerator (o r i g i n _ p i x e l) () ;
9 }

The main tracing body of a single electron is in the method traceSingleRay:
1 BOLT_DECL_HYBRID
2 void t raceS ing l eRay (const Ray& start_ray , const I P i x e l 2&

or i g in_p ixe l , Payload& payload) const {
3 s i z e_t event_count = 0 ;
4 Bohr next_event_distance ;
5 Ray ray = start_ray ;
6 ray = microscope . s c a t t e r i n g . s c a t t e r (
7 ray ,
8 getGenerator (o r i g i n _ p i x e l) ,
9 next_event_distance ,

10 payload ,
11 microscope . setup . distance_from_emitter_to_detector) ;
12
13 Bohr detector_plane_distance ;
14 I P i x e l 2 de t e c to r_p ixe l ;
15 bool va l id_detec to r_p ixe l ;
16 va l id_detec to r_p ixe l = de t e c t o r . g e t I n t e r s e c t e d P i x e l (ray ,

detec tor_pixe l , detector_plane_distance) ;
17
18 while (detector_plane_distance > next_event_distance &&

event_count < microscope . setup . max_scattering_event_count

42

19 && wi l l In t e r s e c tVo lume (ray)) {
20 observe (payload , ray , next_event_distance) ;
21 ray = { ray . o r i g i n + ray . d i r ∗ next_event_distance , ray . d i r } ;
22 // LOG(" prev ious ray : " << t o S t r i n g (ray . d i r)) ;
23 ray = microscope . s c a t t e r i n g . s c a t t e r (ray , getGenerator (

o r i g i n _ p i x e l) , next_event_distance , payload) ; //Warning :
next_event_dis tance i s changed here

24 // LOG(" new ray : " << t o S t r i n g (ray . d i r)) ;
25 event_count++;
26 va l id_detec to r_p ixe l = de t e c t o r . g e t I n t e r s e c t e d P i x e l (ray ,

detec tor_pixe l , detector_plane_distance) ;
27 }
28
29 i f (va l id_detec to r_p ixe l) {
30 observe (payload , ray , detector_plane_distance) ;
31 ray = { ray . o r i g i n + ray . d i r ∗ detector_plane_distance , ray . d i r

} ;
32
33 Frame emitter_frame { emit t e r . l o c a t i o n . xDir () , emi t t e r . l o c a t i o n .

yDir () , emi t t e r . i n i t_ray_d i r e c t i on } ;
34
35 auto ray_deviat ion = emitter_frame . toLoca l (ray . d i r) ;
36 microscope . image_formation (p ro j e c t i on , detec tor_pixe l , payload ,

Ray { ray . o r i g i n , ray_deviat ion } , d e t e c t o r . p i x e l _ s i z e) ;
37 }
38 }

In the first several lines, variables used in the simulation are declared. On line 6,
the ray is attenuated by the microscope scattering function for the first time. It
is not there to change the direction but to initialize the next_event_distance
variable. Also note, that this is the only place where the optional argument
max_distance of the scattering function is used and it is given the value of
microscope.setup.distance_from_emitter_to_detector. Beware that this
distance is not affected by the defocus shift that modified the position of the
detector.

In the while cycle defined on line 18, the electron progresses through the
volume. First, observers are called on it (line 20), then the electron is shifted to
a new position based on the next_event_distance value. This is followed by
a scattering event on line 23. Lastly, a detector pixel, towards which the elec-
tron aims, is updated. The boolean variable valid_detector_pixel describes
whether the detector pixel is within the detector boundaries or lies on the detec-
tor plane but outside the detection area. This cycle is repeated as long as the
following conditions hold:

• The next_event_distance is shorter than the distance to the detector
plane.

• The event count is within the limit.

• The ray aims towards or is within the microscope BoundingBox.

If any of those conditions are not fulfilled, the electron has either hit the detector
or has scattered away from both the sample and the detector. In a case, that the
electron hits the detector and it is a valid detector pixel, the image component is
executed with the appropriate arguments (line 36).

43

4. Experiments
In this chapter, we study the quality of the image formation algorithm. In the
first section, we describe the potential map used in the experiments. In the next
section, we study the behavior of the scattering functions for various parameters.
In later sections, we show the simulated projections and compare them to the
projections of the transmittance and the multislice models. In the last section,
we evaluate the correctness of the simulation via normalized cross-correlation
with the measured dataset.

4.1 Data
For experiments, we use the β-galactosidase molecule, determined by cryo-EM at
an average resolution of 2.2 Å [29]. Both the reconstructed map and the atomic
model files of the molecule are publicly available. We use the atomic model from
the PDB file format and reconstruct the potential map in our software, to make
sure that we have a map of the Coulomb potential of the molecule. Figure 4.1
displays the atomic model of the molecule and Figure 4.2 shows the Coulomb
potential of the molecule generated from the atomic model.

Figure 4.1: Visualization of the publicly available atomic map of the β-
galactosidase. Rendered in the UCSF Chimera tool.

44

Figure 4.2: Visualization of the generated potential map of the β-galactosidase
used in experiments. Rendered in the UCSF Chimera tool.

4.2 Scattering function
In this section, we illustrate the behavior of the implemented scattering func-
tions: the DCS scattering function, and the Rutherford scattering function. For
both functions, we plot their PDF for various positions and settings. For these
experiments, we used a generated potential map with a voxel size of 0.6375 Å and
the electron energy of 300 keV, which is the same energy used for the acquisition
of the β-galactosidase and commonly used in cryo-EM.

4.2.1 DCS scattering function
With the DCS scattering function, we are mainly interested in the influence of
the size of the considered potential location - the radius term r in the localized
potential Fourier transform. In Figure 4.3, we show the differential cross-section
values for a cone of angles around the forward direction. While there are some
changes in the shape, the preferred direction is always the forward direction and
the directions of interest are within 4 degrees from the forward direction, which
fits the theory that elastic scattering angles are very small [2]. For this reason, we
use only as many samples as required to correctly reconstruct scattering angles
up to 4 degrees, see Section 2.2. For higher scattering angles, we approximate
the DCS with zero. The bias introduced by this cut-off of angles is expected to
be small.

45

(a) r=2a0 (b) r=4a0 (c) r=8a0 (d) r=16a0 (e) r=32a0

Figure 4.3: The figure displays the PDF of the DCS scattering function around
the forward direction represented by the pixel in the middle, for different radii r
of the molecule potential. The spread angle in the image is 6 degrees, meaning
that a pixel in the center of each side of the image represents a direction with
a scattering angle of 6 degrees. Very low scattering angles are to be anticipated
and match the theory.

4.2.2 Rutherford scattering function
The Rutherford scattering function is defined for a single atom of a known atomic
number and does not depend on the potential values. Nevertheless, it makes
a good analytical alternative to the DCS scattering function. We found two
applications of this function. We use it as a fast analytical approximation of
the DCS scattering function and compare those functions in the image formation
simulation. We also use the function to importance sample the DCS function
thanks to their similarity.

In Figure 4.4 we display the Rutherford PDF for different elements which are
present in the β-galactosidase and common in other biological molecules. The
image shows that the scattering function for Hydrogen (atomic number 1) is
visually most similar with the DCS scattering function examples shown above.
The suitability of this atomic number is later confirmed by the cross correlation
experiments with real data (Figure 4.14).

(a) H, Z=1 (b) C, Z=6 (c) O, Z=8 (d) Mg, Z=12 (e) S, Z=16

Figure 4.4: The figure displays the PDF of the Rutherford scattering function
around the forward direction, represented by the pixel in the middle for various
elements and their atomic numbers Z. The spread angle in the image is 6 degrees,
meaning that a pixel in the center of each side represents a direction with the
scattering angle of 6 degrees. Hydrogen visually fits the DCS the most, compare
to 4.3. The suitability of the lowest atomic number is later confirmed by the
experiments (Figure 4.14).

46

4.3 Projections
In this section, we show projections of the molecule with different simulation
setups and later compare them to the projections from the transmittance and
multislice model. Note that all images are normalized to increase the perceived
contrast. This may cause the diversions in the color of the background. The
setup is similar as before, we used a generated potential map with a voxel size of
0.6375 Å and the electron energy of 300 keV.

4.3.1 Electron dose
In Figure 4.5 we show projections with the DCS scattering function at an increas-
ing electron doses. As expected, with the increasing dose the noise within the
image recedes. For illustration, the dose used to acquire the β-galactosidase data
is 45 e−

/︂
Å2 which corresponds to approx. 12 e−/a0

2 . However, the estimated
mean free path for the majorant element, which is Sulfur for the β-galactosidase,
is approx. 3800 a0, while the length of the volume is about 700 a0. This means
that only 2 electrons per Bohr squared undergo a scattering event and many of
these events will result in null scattering, essentially contributing no information
to the image. The real projections contain noise from other sources (scattering
from the air and water molecules, detector noise, variances in the electron beam
density, etc.) and it is not possible to directly compare them, as shown in Sec-
tion 4.4. Thus, we cannot verify the validity of the noise of our model caused by
undersampling.

4.3.2 Fourier radius influence
In Figure 4.6 we illustrate how the projections differ for various radii of the
Fourier transform of the potential in the DCS scattering function. The projections
differ more than was anticipated. Note that the radius does not influence where
the electrons scatter, only in which directions. With an increasing radius, low-
frequency effects of the scattered electrons seem to be exchanged for higher-level
clusters of scattered electrons. It may be explained by the fact that for larger
scattering radii, a larger portion of the molecule influences the new direction,
leading to the scattered electron carrying lower frequency information, but it is
only a speculation. We also evaluate the different radii in comparison with the
measured data in Figure 4.13. However, these measurements do not give a clear
answer to which of the radii approximates the real behavior of the electron most
correctly, it remains an open question.

4.3.3 Rutherford scattering influence
Figure 4.7 displays the simulated projections with the Rutherford scattering func-
tion for varying atomic numbers. We later show that this approximation works
quite well with the lowest atomic number. We have used a dose of 100 000 e−/a0

2 .
The image shows that for increasing atomic number the halo effect around the
molecule becomes larger. This is due to the scattered electrons having tendency
to scatter into larger angles for heavier atoms, as shown in Figure 4.4.

47

(a) 2 e−/︁a0
2 (b) 12 e−/︁a0

2 (c) 50 e−/︁a0
2 (d) 120 e−/︁a0

2

(e) 250 e−/︁a0
2 (f) 1000 e−/︁a0

2 (g) 5000 e−/︁a0
2 (h) 10000 e−/︁a0

2

(i) 50000 e−/︁a0
2 (j) 100000 e−/︁a0

2

Figure 4.5: The figure shows the influence of the electron dose on the acquired
image. The dose of 12 e−/a0

2 corresponds to a realistic dose of 45 e−
/︂

Å2 , which
has been used to acquire the real β-galactosidase data. The images are normalized
which can cause diversions in the backgroud color. As anticiapted, the percieved
amount of noise is reduced with increased electron dose.

4.3.4 Defocus influence
In this subsection, we show the influence of various defocus distances for the
Rutherford scattering model, however, the effect is nearly identical for the DCS
model. As described in Subsection 1.2.3, we model the defocus only as a distance
of the detector from the sample, because our model does not contain any lenses.
As shown in Figure 4.8, the important effect of this parameter is the area that
the scattered electrons cover on the detector. Again a dose of 100 000 e−/a0

2 has
been used to produce the images. In the β-galactosidase dataset, the estimated
defocus values range between 3000 Å and 40 000 Å. In the figures, we show a
similar range of defocus values. We have also included the projection at a very
low defocus of 192 Å to illustrate the vast difference. Our model does not allow
smaller defocus than half of the size of the input volume. Also note that for our
model a value of zero defocus would mean loss of all information for the potential
in focus. A similar problem is also present in the real microscopes and is the
reason why the measurements are done in defocus.

48

(a) r=1a0 (b) r=2a0 (c) r=4a0

(d) r=8a0 (e) r=16a0

Figure 4.6: Projections from the DCS scattering model with different radius of
the scattering. The radius of 1 a0 causes the scattered electrons to be mostly
weighted down to zero, corresponding to tiny scattering angles. With an increas-
ing radius, low frequency effects of the scattered electrons seem to create more
centered clusters of scattered electrons. The effect was not anticipated and more
experiments are needed for explanation.

4.3.5 Electron energy influence
Figure 4.9 illustrates how the projections differ for various initial electron energies.
We have used the DCS model for this experiment, as the energy of the electron
influences not only the electron mean free path, but also the magnitude of the
electron momentum which is used in the DCS evaluation. However, as can be
observed in the image, the major effect is in the amount of noise stemming from
longer mean free paths for higher energies, as shown in Table 4.1. If we return
once more to the sphere graph from Figure 1.4, the electron energy influences the
radius of the sphere, but the low scattering angles are still located around the
frequencies close to zero. This means that the DCS distribution for low scattering
angles probably remains similar for various energies of the electrons.

4.4 Comparison
In this section, we compare simulated images from our model with both the trans-
mittance and multislice models. The measured projections from the microscope
are not viable for direct comparison due to a very low signal to noise ratio, see
Figure 4.10. Instead, in Subsection 4.4.2 we compare the quality of the simulation

49

(a) Z=1 (b) Z=3 (c) Z=8

(d) Z=12 (e) Z=16

Figure 4.7: Images show projections from the Rutherford scattering model with
different atomic number used in the scattering formula. For higher atomic num-
bers, the scattering angles became larger (Figure 4.4), leading to an increased
halo distance around the molecule. The Hydrogen with Z=1 is later shown to be
the best approximation when compared with the measured data.

with averages of the measured projections.

4.4.1 Projections
Figure 4.11 displays the projections of the β-galactosidase molecule from the same
angle using different models. The multislice model shows the amplitude of the
exit plane wave, without the effects of the lenses and defocus. The transmittance
model does not simulate defocus at all. Our DCS and Rutherford models have
the lowest possible defocus of half the size of the potential volume, which is
about 160 Å. There is a relatively good visual correspondence of the DCS and
Rutherford models with the multislice model. Note that while the multislice
model simulates a plane wave function propagating through the potential map,
our models simulate electrons as particles and we simply detect their numbers on
the detector, so the similarity is remarkable. The transmittance model is not a
good approximation of the image formation, at least not at low defocus. However,
as shown in Figure 4.8, the defocus causes scattered electrons to cover a larger
area and the transmittance model actually becomes a very good approximation.
This is beacuse the contrast effect of the scattered electrons becomes weaker, and
the transmittance model treats the volume as a purely absorbtion volume, in
which electrons disapear during interactions.

50

(a) 192 Å (b) 300 Å (c) 600 Å (d) 1200 Å

(e) 2400 Å (f) 5000 Å (g) 13750 Å (h) 22500 Å

(i) 31250 Å (j) 31250 Å

Figure 4.8: The figure illustrates how the simulated images differ for various defo-
cus values. In these figures, we used the Rutherford scattering function with the
Hydrogen scattering parameter, which provided the finest fit with the measured
data, as we show in Section 4.4.

4.4.2 Class averages
In this subsection, we compare the simulation with the measured data from the
β-galactosidase dataset. As shown in Figure 4.10, the measured projections them-
selves are too noisy for direct comparison. Instead, we use class averages from the
preprocessing step of the reconstruction - after the projections of the molecule are
found and cut from the micrograph, they are classified by similarity into various
classes representing projections from a similar angle. The classification was done
by the RELION tool [30]. Figure 4.12 shows four averages that we used for the
model quality estimation.

Setup

During the reconstruction process, the direction of each projection is estimated.
From the RELION tool, we have four sets of projections with similar viewing angle
and the corresponding average image. We simulate a set of projections with the
same angles and parameters, and then compare the average of the simulated set
with the average of the measured set. As a similarity metric of the averages, we

51

Energy [keV] λ [a0]
50 1278.46
100 2049.53
150 2652.42
200 3132.67
250 3521.41
300 3840.50
350 4105.63
400 4328.31
450 4517.15
500 4678.67

Table 4.1: Table shows estimated mean free paths (in Bohr units) for different
electron energies. Note that the distance from the emitter to detector at the
lowest defocus setup, which is used in this test, is around 700 a0.

use a normalized cross-correlation defined as:

ncc(A, B) =
∑︁n−1

x=0
∑︁m−1

y=0 A[x, y] ∗B[x, y]√︂∑︁n−1
x=0

∑︁m−1
y=0 A[x, y]2 ∗∑︁n−1

x=0
∑︁m−1

y=0 B[x, y]2
(4.1)

where A and B are the compared images with sizes n and m.
For comparison, we use both the DCS model, the Rutherford model, and

the transmittance model. In the DCS model we test the influence of the radius
parameter and in the Rutherford model, we modify the scattering atomic number
parameter. The transmittance model is tested with one ray per pixel and with
random supersampling with six rays per pixel.

We do not generate and compare the projections of the multislice model be-
cause it is difficult to set up fair conditions. The multislice approach models
defocus through a contrast transfer function (CTF). However, the CTF function
also models other lens properties which are not desirable in our setup, because we
have CTF corrected real data averages. That means that the effect of the CTF
has been suppressed and comparing CTF affected images with corrected images
yields poor correlation.

Also, as described previously, the class averages generated by the RELION
tool have inverted contrast. This results in a negative sign of the computed
cross-correlation. In the following sections, we will compare only the absolute
values of the normalized cross-correlation and ignore the sign. In real unmodified
measurements, the particle projections are represented by lower values compared
to the background, which is in correspondence with both the DCS and Rutherford
model.

Results

DCS model Figure 4.13 shows normalized cross-correlation of the DCS scat-
tering model with each of the class averages. The figure also displays how
does the localized Fourier transform radius influence the normalized cross-
correlation. Three of the four class averages show similar behavior con-
cerning the radius influence, but the behavior is not linear. Together with

52

(a) 50 keV (b) 100 keV (c) 150 keV (d) 200 keV

(e) 250 keV (f) 300 keV (g) 350 keV (h) 400 keV

(i) 450 keV (j) 500 keV

Figure 4.9: The figure illustrates how the simulated images differ for various
electron energies. The main difference is the amount of noise in the images,
which stems from different estimated mean free paths (shown in Table 4.1).

the fact that the fourth class average displays nearly inverse behavior, it is
difficult to establish which radius is the best or how the correlation might
progress for higher radii.

Rutherford model Figure 4.14 shows normalized cross-correlation of the
Rutherford scattering model with each of the class averages and the ef-
fect of the scattering atomic number. There is a clear relationship between
the atomic number and the normalized cross-correlation which is consistent
across all classes. The figure also shows that the lowest atomic number 1
(Hydrogen) has the best fit across all classes.

Transmittance model With the transmittance model we tested one ray per
pixel and random supersampling with six rays per pixel. The difference in
the achieved cross-correlation was minimal between those two setups, with
the supersampled version being always very slightly better. Thus we have
used only the supersampled results and in Table 4.2 we show a comparison
of the transmittance model and the other two models.

53

Figure 4.10: Figure shows examples of measured projections from the β-
galactosidase dataset. The particle is difficult to see due to the low signal to
noise ratio.

(a) DCS (b) Rutherford (c) Multislice (d) Transmittance

Figure 4.11: Figure shows the simulated projection of the molecule via different
models. For the DCS model we have used the radius of 4 a0. For the Rutherford
model, the sampling atomic number is set to 1. The multislice projection has
been generated by the Matlab simulator by Vulović [2]. The slice thickness is
set to a resolution of one voxel, which is 0.7 Å. It uses a blurred potential
because the Fourier transform does not handle high-frequency information well
and produces sinc-like artifacts. For the transmittance model, we have used a
random supersampling with six rays per pixel.

Table 4.2 shows the best cross-correlation for each model and each class.
Both the DCS and Rutherford model outperform the transmittance model in the
correlation with the class averages. The DCS scattering model is better than
Rutherford in all but the class average 50, where the behavior of all models is
distinct. We expected the DCS model to outperform the Rutherford, as it is
in theory better approximation of the scattering directions. Ideally, comparison
with more class averages could help to rule out the strange properties of class 50.

For illustration purposes, Figure 4.15 shows class averages and the generated
averages for each class and each of the models. The positions of the images
corresponds with the organization of Table 4.2.

54

(a) class10 (b) class38 (c) class42 (d) class50

Figure 4.12: The figure shows class averages that we used for comparison with
the simulated data. There is a noticeable circle in each average, which is caused
by the classification algorithm. Due to the different rotation of each projection,
the area outside of the intersection of these projections is nulled. The averages
are generated using the RELION software [30].

class
model DCS Rutherford Transmittance

class10 -0.972441 -0.962295 0.922992
class38 -0.975895 -0.963070 0.925164
class42 -0.975895 -0.967548 0.932671
class50 -0.976039 -0.977107 0.945431

Table 4.2: Each row of the table represents one class average and each column
represents one of the models. Each entry is the best achieved normalized cross-
correlation of the given model and the given class average. Clearly, DCS yields the
highest correlation with the real data class averages and both DCS and Rutherford
models outperform the Transmittance model.

Figure 4.13: The figure shows a normalized cross-correlation of the DCS model
and the class average. On the X-axis are radii used for the localized Fourier
transform and each line represents correlations with one class average. The figure
shows similar behavior for all class averages except for the average of class 50. It
might be due to the angle of the average or higher noise levels. Also, note that
the behavior is not linear - it is not clear whether any of the radii are better than
others. More measurements are needed.

55

Figure 4.14: The figure shows a normalized cross-correlation of the Rutherford
model and the class average. Each line represents correlations with one class
average. The X-axis represents the atomic number used for the scattering of the
electrons. There is a clear trend of decreasing normalized cross-correlation with
increasing atomic number.

56

(a) class10 (b) DCS (c) Rutherford (d) Transmittance

(e) class38 (f) DCS (g) Rutherford (h) Transmittance

(i) class42 (j) DCS (k) Rutherford (l) Transmittance

(m) class50 (n) DCS (o) Rutherford (p) Transmittance

Figure 4.15: Each row of the table represents one class average and each column
represents one of the models. The first column contains class averages with
inverted values, to optically correspond with the real measurements. The second
column is the average generated by the DCS model with the best cross-correlation
with the given class average. Similarly, the third and fourth columns show the
best average for the Rutherford model and transmittance model, respectively.

57

Conclusion
In this thesis, we studied the applicability of a Monte Carlo particle-based sim-
ulation to electron-specimen interaction in an electron microscope, specifically
with setup common in cryogenic electron microscopy single particle analysis. We
started with a description of the electron microscope and its components and pro-
vided a short introduction to the field of cryo-EM SPA. We also briefly mentioned
two alternative models that aim to simulate the image formation.

Then, we provided characterizations of the electron interactions with the sam-
ple and their contribution to the final image. From this, our simplified virtual
microscope setup and input of the simulation were defined. We presented two
scattering models of the elastic interactions, one based on the differential cross
section function described by [16] and one derived from the Rutherford formulae.
Next, we formulated the image formation process as a modified radiative transfer
equation for heterogeneous media, a problem commonly emerging in computer
graphics. To solve the RTE, we showed how to adapt a delta-tracking algorithm
and create a Monte Carlo estimator for the electron transmission. To complete
the estimator, we have derived an explicit scattering sampling function for the
Rutherford model. We have also applied it as an importance sampling function
in the DCS scattering model, which does not have explicit scattering formulation.

Extensive attention was given to the computationally demanding Fourier
transform emerging in the DCS scattering model. We also considered the physical
implausibility of the input data and solved it by the proposed estimation of the
majorant chemical element.

The implemented simulation library is written in C++ and CUDA languages.
The core of the library is a flexible ray-tracing algorithm implementation, that
allowed us to implement both of the proposed scattering models and also the
transmittance simulation model. The flexibility stems from the key components
of the simulation: the scattering function, ray observers, and the image formation,
which are all swappable for different implementations. The library builds upon
the functionality of BoltView [24] and allows simple switching between CPU only
and GPU accelerated program, which is very useful for debugging purposes.

We performed tests and evaluations on both simulated data and measured
data from the publicly available β-galactosidase dataset. The simulations were
executed on an artificially generated potential map based on atom positions from
the same dataset. The low defocus projections showed good visual correspondence
with the multislice model. The similarity is remarkable given the vastly differ-
ent approach to the simulation. We also compared simulated class averages with
the real class averages emerging in the classification step of the reconstruction
algorithm. The experiments show a good visual correspondence of the simulated
and measured averages. Both proposed scattering models outperform the trans-
mittance model in terms of normalized cross-correlation with the measured class
averages.

In summary, we have implemented a novel approach to the electron micro-
scope simulation, which is based on electron tracing. The implemented model
shows good results and provides insight into the image formation of an electron
microscope on an intuitive particle-based level.

58

The fast CUDA implementation demonstrates the potential of our models to
replace the transmittance model commonly used in the reconstruction process,
due to their relatively low computational cost and very high cross-correlation
with the measured data. One of the further research options is a thorough inves-
tigation of the localized Fourier transform radius influence in the DCS scattering
model since our datasets did not show a clear pattern. The simulation can fur-
ther be expanded to a full electron microscope, with all its components. Such
a simulator would provide a complete particle-based insight into the noise and
patterns present in the electron microscope images.

59

Bibliography
[1] R. A. Crowther. The resolution revolution: recent advances in cryoEM.

Academic Press, 2016.

[2] M. Vulović, R. B. G. Ravelli, L. J. van Vliet, A. J. Koster, I. Lazić, U. Lücken,
H. Rullgård, O. Öktem, B. Rieger, I. Lazić, C. Bajaj, and A. Rand. Mod-
eling of Image Formation in Cryo-Electron Microscopy. PhD thesis, Delft
University of Technology, 2013.

[3] P. Dey. Electron microscopy: Principle, components, optics and specimen
processing. In Basic and Advanced Laboratory Techniques in Histopathology
and Cytology, pages 253–262. Springer, 2018.

[4] N. Marturi. Vision and visual servoing for nanomanipulation and nanochar-
acterization in scanning electron microscope. PhD thesis, Université de
Franche-Comté, 2013.

[5] R. Fernandez-Leiro and S. H. W. Scheres. Unravelling biological macro-
molecules with cryo-electron microscopy. Nature, 537(7620):339–346, 2016.

[6] H. Wang. Cryo-electron microscopy for structural biology: current status
and future perspectives. Science China Life Sciences, 58(8):750–756, 2015.

[7] A. Iudin, P. K. Korir, J. Salavert-Torres, G. J. Kleywegt, and A. Patwardhan.
Empiar: a public archive for raw electron microscopy image data. Nature
methods, 13(5):387–388, 2016.

[8] S. H. W. Scheres. A bayesian view on cryo-em structure determination.
Journal of molecular biology, 415(2):406–418, 2012.

[9] E. Havelková. Regularization methods for discrete inverse problems in single
particle analysis. Master’s thesis, Charles University, Prague, 2019.

[10] M.F.L. Pereira and P. Cruvinel. A model for soil computed tomography
based on volumetric reconstruction, wiener filtering and parallel processing.
Computers and Electronics in Agriculture, 111, 2015.

[11] E. Kirkland. Image simulation in transmission electron microscopy. 2006.

[12] L. Reimer. Transmission electron microscopy: physics of image formation
and microanalysis. Springer, 2013.

[13] M. J. Peet, R. Henderson, and C. J. Russo. The energy dependence of
contrast and damage in electron cryomicroscopy of biological molecules. Ul-
tramicroscopy, 203:125–131, 2019.

[14] F. Salvat, J. M. Fernández-Varea, and J. Sempau et al. Penelope-2008: A
code system for monte carlo simulation of electron and photon transport. In
the Workshop Proceedings, 2008.

[15] H. Ali. Study of surface passivation behavior of crystalline silicon solar cells.
PhD thesis, University of Central Florida, 2017.

60

[16] V. Alt. Simple potential scattering and approximations. Technical report,
Eyen SE, 2020.

[17] M. Hohenwarter, J. Hohenwarter, Y. Kreis, and Z. Lavicza. Teaching and
learning calculus with free dynamic mathematics software geogebra. In 11th
International Congress on Mathematical Education. Monterrey, Nuevo Leon,
Mexico, 2008.

[18] S. N. Ahmed. Physics and engineering of radiation detection. Academic
Press, 2007.

[19] H. Nikjoo, S. Uehara, D. Emfietzoglou, and A. Brahme. Heavy charged
particles in radiation biology and biophysics. New journal of physics,
10(7):075006, 2008.

[20] M. Čalkovskỳ, E. Müller, M. Hugenschmidt, and D. Gerthsen. Differential
electron scattering cross-sections at low electron energies: The influence of
screening parameter. Ultramicroscopy, 207:112843, 2019.

[21] R. Idoeta and F. Legarda. Small angle screening factors for elastic scattering
of electrons. Nuclear Instruments and Methods in Physics Research Section
B: Beam Interactions with Materials and Atoms, 83(1-2):42–46, 1993.

[22] A. Jablonski, F. Salvat, and C. J. Powell. Nist electron elastic-scattering
cross-section database–version 3.1. National Institute of Standards and Tech-
nology, 2003.

[23] J. Novák, I. Georgiev, J. Hanika, J. Křivánek, and W. Jarosz. Monte Carlo
methods for physically based volume rendering. In ACM SIGGRAPH 2018
Courses, New York, USA, 2018. ACM.

[24] Eyen SE. BoltView. https://www.boltview.org/. Accessed: 2020-11-26.

[25] Nvidia Corporation. NVIDIA OptiX™ Ray Tracing Engine. https:
//developer.nvidia.com/optix. Accessed: 2020-1-17.

[26] Nvidia Corporation. NVIDIA® GVDB Voxels. https://developer.
nvidia.com/gvdb. Accessed: 2020-2-23.

[27] P. Mikuš. jsonParams. https://gitlab.com/Godrak/jsonparams. Ac-
cessed: 2020-8-23.

[28] GEMMI - library for structural biology. https://gemmi.readthedocs.io/.
Accessed: 2020-8-23.

[29] A. Bartesaghi, A. Merk, S. Banerjee, D. Matthies, X. Wu, J. L. S. Milne,
and S. Subramaniam. 2.2 Å resolution cryo-EM structure of β-galactosidase
in complex with a cell-permeant inhibitor. Science, 348(6239):1147–1151,
2015.

[30] S. H. W. Scheres. RELION: implementation of a Bayesian approach to cryo-
EM structure determination. Journal of structural biology, 180(3):519–530,
2012.

61

https://www.boltview.org/
https://developer.nvidia.com/optix
https://developer.nvidia.com/optix
https://developer.nvidia.com/gvdb
https://developer.nvidia.com/gvdb
https://gitlab.com/Godrak/jsonparams
https://gemmi.readthedocs.io/

List of Figures
1 The schema of an electron microscope. Individual components are

briefly described in the Electron microscope section. Image was
taken from [4]. 6

2 Image displays a sample with many instances of the target
molecule. The sample is then projected on the screen of the mi-
croscope detector, forming a micrograph. The next step is then
software processing of the micrographs and 3D reconstruction of
the target molecule. Image taken from [6]. 7

3 An example of a micrograph with picked projections of the target
molecule. The noise level is very high because of the low electron
dose. Higher doses would destroy the molecules, yielding invalid
images (Dataset 10013 from EMPIAR [7]) 8

4 Illustration of the transmittance model projection in 2D. TThe
projection P is generated by integrating volume f over a set of
parallel rays. Image taken from [10]. 9

5 Illustration of the iterative process of the multislice model. The
input volume is divided into a number of slices marked by the
bold lines. A wave function is propagated slice by slice through
the volume, performing forward and inverse Fourier transforms in
each step. Image taken from [11]. 9

1.1 The image shows various radiation types that can appear after the
scattering event. Many of these types are secondary effects of the
inelastic scattering and the subsequent radiation damage. Image
taken from [15]. 12

1.2 Schema of the simplified image formation process. Electrons are
emitted perpendicular to the emitter plane. They elastically in-
teract with the potential map of a single molecule. Finally, all
emitted electrons are counted on the detector plane. 13

1.3 The figure shows an overfocused and underfocused sample in a
real electron microscope. The distance of the sample from the
focal plane determines the spread radius of the scattered electrons
on the detector plane. 14

1.4 Visualization of the sphere appearing in Equation (1.1). Vector p
is the original momentum of the electron and vector p′ represents
one of possible new momentums of the electron. The sphere then
displays all possible values for expression q = p′−p. Image created
via geogebra tool [17]. 15

1.5 Examples of the DCS scattering computed from the Equation (1.1)
model. The images show DCS scattering directions on different
positions within the potential. The original direction points into
the middle of the image and the pixel in the middle of each side
represent a scattering angle of 6 degrees. It can be viewed as a
projection of the values on the cap of the sphere (see Figure 1.4),
centered around the p vector. 16

62

1.6 The figure shows a comparison of the Rutherford model computed
differential cross sections and measured differential cross sections
for Sulfur from NIST database [22]. The values fall off quickly
to zero as we approach larger scattering angles. This corresponds
with the DCS visualization images in Figure 1.5 generated via the
model described by Equation (1.1). 18

1.7 The image illustrates homogenization of the heterogeneous volume
(blue). At each position within the considered volume bounds, the
input volume and the null volume add up to the same majorant µ̄.
Image taken from [23]. 20

4.1 Visualization of the publicly available atomic map of the β-
galactosidase. Rendered in the UCSF Chimera tool. 44

4.2 Visualization of the generated potential map of the β-galactosidase
used in experiments. Rendered in the UCSF Chimera tool. 45

4.3 The figure displays the PDF of the DCS scattering function around
the forward direction represented by the pixel in the middle, for
different radii r of the molecule potential. The spread angle in
the image is 6 degrees, meaning that a pixel in the center of each
side of the image represents a direction with a scattering angle of
6 degrees. Very low scattering angles are to be anticipated and
match the theory. 46

4.4 The figure displays the PDF of the Rutherford scattering function
around the forward direction, represented by the pixel in the mid-
dle for various elements and their atomic numbers Z. The spread
angle in the image is 6 degrees, meaning that a pixel in the center
of each side represents a direction with the scattering angle of 6
degrees. Hydrogen visually fits the DCS the most, compare to 4.3.
The suitability of the lowest atomic number is later confirmed by
the experiments (Figure 4.14). 46

4.5 The figure shows the influence of the electron dose on the acquired
image. The dose of 12 e−/a0

2 corresponds to a realistic dose of 45
e−
/︂

Å2 , which has been used to acquire the real β-galactosidase
data. The images are normalized which can cause diversions in the
backgroud color. As anticiapted, the percieved amount of noise is
reduced with increased electron dose. 48

4.6 Projections from the DCS scattering model with different radius
of the scattering. The radius of 1 a0 causes the scattered elec-
trons to be mostly weighted down to zero, corresponding to tiny
scattering angles. With an increasing radius, low frequency effects
of the scattered electrons seem to create more centered clusters
of scattered electrons. The effect was not anticipated and more
experiments are needed for explanation. 49

63

4.7 Images show projections from the Rutherford scattering model
with different atomic number used in the scattering formula. For
higher atomic numbers, the scattering angles became larger (Fig-
ure 4.4), leading to an increased halo distance around the molecule.
The Hydrogen with Z=1 is later shown to be the best approxima-
tion when compared with the measured data. 50

4.8 The figure illustrates how the simulated images differ for various
defocus values. In these figures, we used the Rutherford scattering
function with the Hydrogen scattering parameter, which provided
the finest fit with the measured data, as we show in Section 4.4. . 51

4.9 The figure illustrates how the simulated images differ for various
electron energies. The main difference is the amount of noise in
the images, which stems from different estimated mean free paths
(shown in Table 4.1). 53

4.10 Figure shows examples of measured projections from the β-
galactosidase dataset. The particle is difficult to see due to the
low signal to noise ratio. 54

4.11 Figure shows the simulated projection of the molecule via different
models. For the DCS model we have used the radius of 4 a0.
For the Rutherford model, the sampling atomic number is set to
1. The multislice projection has been generated by the Matlab
simulator by Vulović [2]. The slice thickness is set to a resolution
of one voxel, which is 0.7 Å. It uses a blurred potential because
the Fourier transform does not handle high-frequency information
well and produces sinc-like artifacts. For the transmittance model,
we have used a random supersampling with six rays per pixel. . . 54

4.12 The figure shows class averages that we used for comparison with
the simulated data. There is a noticeable circle in each average,
which is caused by the classification algorithm. Due to the different
rotation of each projection, the area outside of the intersection of
these projections is nulled. The averages are generated using the
RELION software [30]. 55

4.13 The figure shows a normalized cross-correlation of the DCS model
and the class average. On the X-axis are radii used for the local-
ized Fourier transform and each line represents correlations with
one class average. The figure shows similar behavior for all class
averages except for the average of class 50. It might be due to
the angle of the average or higher noise levels. Also, note that the
behavior is not linear - it is not clear whether any of the radii are
better than others. More measurements are needed. 55

4.14 The figure shows a normalized cross-correlation of the Rutherford
model and the class average. Each line represents correlations
with one class average. The X-axis represents the atomic number
used for the scattering of the electrons. There is a clear trend
of decreasing normalized cross-correlation with increasing atomic
number. 56

64

4.15 Each row of the table represents one class average and each col-
umn represents one of the models. The first column contains class
averages with inverted values, to optically correspond with the
real measurements. The second column is the average generated
by the DCS model with the best cross-correlation with the given
class average. Similarly, the third and fourth columns show the
best average for the Rutherford model and transmittance model,
respectively. 57

65

List of Tables

2.1 Element distribution of the β-galactosidase molecule. 25

4.1 Table shows estimated mean free paths (in Bohr units) for differ-
ent electron energies. Note that the distance from the emitter to
detector at the lowest defocus setup, which is used in this test, is
around 700 a0. 52

4.2 Each row of the table represents one class average and each col-
umn represents one of the models. Each entry is the best achieved
normalized cross-correlation of the given model and the given class
average. Clearly, DCS yields the highest correlation with the real
data class averages and both DCS and Rutherford models outper-
form the Transmittance model. 55

66

A. Attachments
A.1 User guide
In this section, we provide a user guide for the library and for the test_exe
program compilation and execution.

A.1.1 Compilation
The compilation is driven by the CMake tool. The /src/CMakeLists.txt file
is present in the root folder. Following libraries are necessary to compile the
executables defined in the /src/CMakeLists.txt:

CMake Cmake tool in version 3.10 and higher.

CUDA CUDA in version 10.0 and higher must be present on the machine. This
also means that the program requires a CUDA compatible graphic card.
Path to the nvcc tool must be set in the root /src/CMakeLists.txt file.

cuRAND and cuFFT Additional CUDA APIs.

Boost Boost components system, filesystem and program_options in version
1.53 and higher are required.

A.1.2 Execution
The compilation step will produce several executable files. Here we describe only
the mrcBuild and test_exe executables.

mrcBuild

The mrcBuild executable accepts two arguments - a PDB file with the molecular
description and voxel size in Å. If the voxel size is not provided, the executable
will print a chemical distribution of the molecule - the percentual amount of each
chemical element in the PDB file. If the voxel size is provided, the executable
generates a potential map of the given PDB file and saves it in the MRC file
format in the current work directory. Sensible voxel size is larger than 0.7 Å,
recommended is 1.5 Å.

test_exe

The test_exe executable accepts one argument - name of a JSON file with
execution parameters. The file looks like this:

1 {
2 " ems_projectionsFile " : "/ data/ Particles / particles .

mrcs",
3 " ems_projectionsStarFile " : "/ data/ particles .star",
4

5 " ems_dose ": 10000 ,

67

6 " ems_electronEnergy " : 300,
7 " ems_randomizedElectronEmission " : 1,
8 " ems_applyDefocus ": true ,
9

10 " ems_samplingAtomicNumber ":16 ,
11 " ems_majorantAtomicNumber ": 16,
12 " ems_majorantPercentile ": 0.9952 ,
13

14 " ems_emitterPixelSize ":[1264 ,1264] ,
15 " ems_detectorPixelSize ":[316 ,316] ,
16 " ems_samples ":50 ,
17 " ems_directions ":1,
18

19 " scatterEL_crossSectionFrameRadius ": 2,
20 " scatterEL_maxSamplesPerAxis ": 15,
21

22 " ems_renderType ":" rele",
23

24 " crossSection_FrameRadius ": 2,
25 " crossSection_maxSamplesPerAxis " : 16,
26 " crossSection_sampleCount " : 50,
27

28 " ems_potentialFile " : "/ data /5 a1a_potential .mrc",
29 " ems_scatteringFile " : "",
30 " crossSection_crossSectionsFile " : "",
31 " crossSection_dumpPath " : "/ data /5 a1a_crossSections .

mrc"
32 }

ems_projectionsFile contains path to the file with measured projections. The
program uses it to estimate the projections size, if ems_detectorPixelSize
is not set.

ems_projectionsStarFile describes the content of the previous file. It con-
tains metadata of each measured projection, including their defocus and
estimated angle. The simulated projections are done from the same angles
as defined in this file.

ems_dose is dose of the electrons per Bohr squared. A value of 12 is realistic but
tens of thousands are necessary for noise-free images.

ems_randomizedElectronEmission sets the origin of the electron within the
emitter pixel - 0 means always in center, 1 means random position within
the pixel and 2 means random position anywhere on the emitter.

ems_applyDefocus is flag whether to apply a defocus from the projections star
file metadata.

ems_samplingAtomicNumber is atomic number for the Rutherford formula. For
sruther render type, it sets the scattering atomic number of the Rutherford

68

model. For rele, it sets the importance sampling atomic number of the
DCS scattering model.

ems_majorantAtomicNumber is an atomic number that corresponds to the
largest potential value in the volume. In our approximation, it is the ele-
ment with the highest atomic number present in the molecule.

ems_majorantPercentile describes which value of the potential should be con-
sidered as majorant. If there is a large noise peak in the volume, it is
beneficial to set this number to lower than 1.

ems_emitterPixelSize sets the size of the emitter image. Since each emitter
pixel is executed in parallel, this parameter can influence the computational
performance of the execution. Multiples of the ems_detectorPixelSize
are recommended for aliasing reasons.

ems_detectorPixelSize sets the size of the detector and in turn of the result
projections. Also determines the pixel size of the detector, as the physical
size of the detector always matches the size of the potential volume. If not
provided, the value is parsed from the provided projections file.

ems_samples sets how many projections of the current metadata line from the
projections metadata file should be generated.

ems_directions sets how many directions from the projection star
file should be generated. The final amount of projections is
ems_samples*ems_directions.

scatterEL_crossSectionFrameRadius sets localized Fourier transform radius
for the DCS scattering model.

scatterEL_maxSamplesPerAxis sets how many samples per axis are done
in the localized Fourier transform. At least eight times the value of
scatterEL_crossSectionFrameRadius is recommended, otherwise viable
directions are cut off due to the Nyquist.

ems_renderType sets in which mode does the simulation operate, three options
are possible: rele uses the DCS scattering model, sruther uses the Ruther-
ford scattering model and int uses the transmittance model.

crossSection_FrameRadius sets the localized Fourier transform radius during
the computation of the total cross section in each voxel. Should be same as
scatterEL_crossSectionFrameRadius.

crossSection_maxSamplesPerAxis sets how many samples per axis are done
in the localized Fourier transform during the computation of the total cross
section in each voxel. Should be same as scatterEL_maxSamplesPerAxis.

crossSection_sampleCount sets how many samples are done in each voxel for
the Monte Carlo estimation of the total cross-section.

ems_potentialFile is path to the input potential file.

69

ems_scatteringFile is a path to the file with the scattering coefficients. If not
provided, it is computed from the potential file.

crossSection_crossSectionsFile is path to the file with the precomputed
total cross sections in each voxel. If not provided, the total cross sections
are computed from the potential file.

crossSection_dumpPath is a path to which the volume with the computed total
cross-section is saved if they were computed. It can save time, as computing
the total cross sections is slow and unnecessary for each execution.

70

	Preface
	Electron elastic scattering image formation
	Electron-sample interactions
	Elastic scattering
	Inelastic scattering

	Simplified image formation process
	Emitter
	Input
	Detector

	Electron elastic cross section
	Cross-section
	Electron elastic differential cross section
	Screened Rutherford formulae

	Electron tracing
	Problem formulation
	Null-collision algorithms
	Transmission estimator
	Scattering estimator

	Optimizations
	Units
	Fourier transform of the Coulomb potential
	Majorant choice
	Element estimation
	Mean free path

	Rutherford scattering model

	Implementation
	Libraries
	GPU library
	Other external libraries

	Simulator implementation
	Data preparation

	Electron microscope components
	Scattering function
	Image formation
	Ray observers

	Electron microscope simulator
	Rendering

	Experiments
	Data
	Scattering function
	DCS scattering function
	Rutherford scattering function

	Projections
	Electron dose
	Fourier radius influence
	Rutherford scattering influence
	Defocus influence
	Electron energy influence

	Comparison
	Projections
	Class averages

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Attachments
	User guide
	Compilation
	Execution

