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Author: Bc. Radek Zikmund

Department: Department of Distributed and Dependable Systems

Supervisor: Mgr. Pavel Ježek, Ph.D., Department of Distributed and Dependable
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Abstract: QUIC is a general-purpose transport layer network protocol proposed
as the replacement for TCP and TLS in HTTP/3. QUIC is based on UDP and
provides always-encrypted connections able to transmit multiple streams of data
in parallel. Compared to TCP, QUIC promises lower latency, better congestion
control flexibility, and a solution to head-of-line blocking occurring in multiplexed
HTTP/2 connections.

The latest release of .NET — .NET 5 — has shipped with experimental support
for QUIC based on the MsQuic C library. However, when implementing new
features in standard .NET libraries, purely .NET implementations are preferable
to adding dependencies on native libraries because .NET implementations offer
better maintainability and — in some cases — even better performance. This
thesis explores the viability of a purely C# QUIC implementation as a future
replacement for .NET 6 or later release.

This thesis’s result is a fork of the official .NET runtime repository with partial
C# implementation of the QUIC protocol. We implemented a subset of the QUIC
specification, which is sufficient for a basic performance evaluation. As part of the
thesis, we have benchmarked the throughput and latency of our and the MsQuic-
based QUIC implementation and compared them to TCP’s performance in two
environments: LAN and simulated cellular network. While the benchmarking
results show that our implementation is slower than the MsQuic-based one, we
identified the primary performance limiting factors in our implementation and
suggested the course for future development.
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1. Introduction
The internet, as we know it today, heavily relies on the use of the HTTP protocol.
Is it used not only by web browsers for interacting with web applications, but
it may also be used at the server side for communication between individual
nodes in a cluster. Such use of HTTP is commonly seen in, e.g., microservices
architecture. Finally, HTTP is also used as a transport medium for RESTful web
APIs and technologies such as gRPC and GraphQL.

The latest version of the HTTP protocol is HTTP/2, published in 2015 [1].
HTTP/2 improved on its predecessor HTTP/1.1 [2] by introducing request header
compression, request multiplexing over a single TCP connection, and server-push
features. These features led to reduced loading times of web pages and generally
improved the efficiency of the web [3].

1.1 Remaining Performance Issues in HTTP/2
HTTP/2, however, does not solve all the performance issues HTTP/1.1 had.
HTTP/2 introduced new features and changes only to the topmost layer of the
HTTP stack, and these changes could not address the performance limiting phe-
nomenons caused by the layers underneath. For the context of this thesis, the
following two performance problems are the most relevant.

Head-of-Line Blocking
Request multiplexing was introduced in HTTP/2 to reduce the number of web
servers’ resources required to serve requests made by web browsers. Because
modern web pages are composed of many parts (HTML, images, Javascript files,
CSS style sheets), web browsers have to make multiple HTTP requests to load
the entire page. HTTP/1.1 creates multiple independent HTTP connections to
download individual parts of the webpage, one connection per HTTP request.
HTTP/2, on the other hand, can make multiple HTTP requests in parallel in
a single connection. Although this change improved HTTP’s performance, its
current design is limited by a phenomenon known as head-of-line blocking.

The individual HTTP frames which make up the HTTP requests and re-
sponses are interleaved and transferred over TCP as a single stream of data.
When a TCP packet carrying a part of this stream is lost, delivery of the data in
all following packets is delayed until the lost packet is retransmitted. This will
cause a delay in all HTTP requests currently in progress, even those requests
whose data were not carried by the lost packet. More information on head-of-line
blocking can be found, e.g., on the dedicated Wikipedia page [4].

HTTPS Connection Establishment Latency
HTTPS [5] is an extension to HTTP, which makes the connection encrypted by
inserting the TLS protocol layer between HTTP and TCP. Therefore, estab-
lishing an HTTPS connection requires establishing a TCP connection first —
performing the three-way handshake — and then performing another separate
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handshake for the TLS layer. As can be seen on the illustration in Figure 1.1,
three round trips are needed at minimum before the HTTP request can be even
sent.

Client Server
SYN

TCP
SYN + ACK

ClientHello

ServerHello + Cert + ServerKeyExchange

ClientKeyExchange + ChangeCipherSpec

ChangeCipherSpec

GET HTTP

TLS

ACK +

Figure 1.1: Packets sent during HTTPS connection establishment

More and more websites enforce the use of HTTPS in order to protect the
privacy of their users. In August 2020, 96 out of the top 100 viewed websites
actively redirected to HTTPS, and more than 75% of all network traffic from the
Chrome web browser used HTTPS [6]. Even server to server communication in
the cloud is trending towards HTTPS to protect against partially compromised
networks. With HTTPS becoming the norm, almost all connections suffer from
the increased latency caused by the additional TLS handshake.

1.2 HTTP/3 and QUIC
The next version of the HTTP protocol — HTTP/3 [7] — addresses the is-
sues mentioned above by replacing the TCP and TLS layers with a brand new
UDP-based protocol named QUIC1. The QUIC protocol features allow moving
multiplexing capability from the application layer into the transport layer of the
HTTP protocol stack. The responsibilities and relationships between protocols
on the HTTP/2 and HTTP/3 stacks are illustrated in Figure 1.2.

Security

IP

TLS

TCP UDP

Loss Recovery

Security
Multiplexing

Multiplexing

Transport Transport
Loss Recovery

HTTP/2
HTTP/3

QUIC

Figure 1.2: Comparison between HTTP/2 and HTTP/3 protocol stacks
1Originally intended as the acronym for Quick UDP Internet Connections. However, it has

been changed to be the protocol’s actual name during the standardization process
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Although QUIC development is tied with that of HTTP/3, it is designed as a
general-purpose transport layer protocol that can be used for other application-
layer protocols. The following points summarize the main improvements of QUIC
over TCP+TLS:

• Stream multiplexing: QUIC provides an abstraction of multiple streams of
data multiplexed on a single connection. Moreover, because QUIC itself
also implements loss detection and recovery, packet loss can be managed in
a way that reduces the scope of the head-of-line blocking problem described
above to only the streams whose data need to be retransmitted.

• Faster connection establishment: Internally, QUIC also performs the TLS
handshake, but it does so in parallel with the base protocol’s handshake.
The combined handshake requires fewer round-trips and is faster than the
combination of TCP and TLS.
QUIC also supports opt-in Zero round trip time resumption (0-RTT) from
TLS 1.3. The 0-RTT mode of operation allows a client to cache some session
information, allowing it to send application layer data with the first packet
in future connections to the same server. 0-RTT effectively reduces the con-
nection establishment latency by another round trip but makes applications
vulnerable to repeat attacks. A more detailed description of 0-RTT can be
found online, e.g., on Cloudflare’s blog [8].

• Always encrypted: TLS handshake is a mandatory part of connection es-
tablishment, and encryption, therefore, cannot be turned off. This makes
QUIC secure-by-default.

• Separating connection identity from peer’s IP address: QUIC protocol does
not use peers’ IP addresses to identify connections but instead uses Con-
nection IDs, which are 8 to 20-byte sequences negotiated during connection
establishment.
This makes QUIC very attractive for mobile devices, which can change IP
addresses due to switching between Wi-Fi and cellular data network. In
TCP and — by extension — HTTP/2, the existing connection must be
terminated, and a new connection established from the new IP address.
QUIC, on the other hand, can migrate the connections in a way that is
transparent to the application layer.
This feature also enables QUIC extensions like Multipath QUIC [9], which
allows simultaneous use of multiple network interfaces for a single connec-
tion to achieve greater throughput.

As of August 2020, the specifications of HTTP/3 and QUIC are still at the
draft stage, but the standardization process is believed to be very close to com-
plete. There are already multiple implementations of QUIC being developed
based on the draft versions of the standard. These implementations are backed
by big companies such as Google, Cloudflare, Facebook, and Microsoft.

Experiments with these implementations allowed early performance compar-
ison between HTTP/3 and HTTP/2, yielding promising results. In 2015, the
Chromium team’s experimental implementation showed a 3% improvement in
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mean page load time and 30% fewer rebuffer events when watching YouTube
videos [10]. Cloudflare launched preliminary support for HTTP/3 in April 2020
and has measured a 12.4% decrease in the time to the first byte metric [11],
which is consistent with the QUICs promise of reduced latency. In measurements
done by Orange Labs, QUIC protocol significantly outperforms TCP in unstable
networks such as wireless mobile networks [12].

1.3 Support for QUIC in .NET
Microsoft’s .NET development team has long-term plans to provide full support
for QUIC and HTTP/3 in .NET. Support for HTTP/3 should be completely
transparent to users because the implementation of HttpClient automatically
chooses the best available HTTP version [13]. However, since QUIC can be used
to build other protocols than HTTP/3, its implementation will be exposed via
public classes residing most likely inside the System.Net.Quic namespace.

The QUIC support has been initially intended for the .NET 5 release planned
for November 2020. However, it turned out that the standardization process
would not be completed in time for QUIC to be implemented for the release.
.NET 5, therefore, ships with only a preview (non-production ready) HTTP/3
and QUIC support. A production-ready HTTP/3 and QUIC implementation was
postponed until .NET 6 release.

Existing QUIC Implementation in .NET
The current work-in-progress support for QUIC in .NET 5 is a wrapper around
the MsQuic library [14], which is a C implementation of QUIC developed by
Microsoft. The MsQuic library was designed for high-performance scenarios and
has been recently made open-source.

The decision to use MsQuic as the QUIC protocol implementation is not final.
There are compelling arguments for implementing the QUIC protocol in managed
.NET code — and, more specifically, in C# — for the production release.

The existing QUIC implementation in .NET uses a layer of indirection which
allows multiple implementations to exist side by side. Furthermore, it is even pos-
sible to choose which QUIC implementation should be used at runtime. This fact
can be used to implement benchmarks comparing the performance of available
QUIC implementations.

Motivation for Implementing QUIC in Managed Code
Code written in ahead-of-time compiled languages such as C or C++ (referred to
as native code) is likely to be faster than code written in .NET languages (referred
to as managed code), which rely on the just-in-time compilation. However, there
are other aspects than raw performance to be considered when deciding to use
native libraries such as MsQuic :

• Cross-platform compatibility/availability: The .NET platform officially sup-
ports multiple versions of Windows, macOS, and several Linux distribu-
tions. If the native library does not support all these platforms, then the
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implementation must use an alternative library on other platforms, intro-
ducing more complexity into the codebase and possible incompatibilities
between platforms.

• Support for different library versions: Currently, no native libraries that
managed .NET libraries depend on are part of the .NET distribution itself.
Instead, .NET runtime expects that the library is already installed on the
target machine and can be dynamically loaded. There is no way to enforce
a specific version of the library, which means that the .NET code must work
correctly with multiple versions of the native library.

• Maintainability: Maintenance of the interop code requires the developer to
read and understand the language in which the native library is written.
Debugging the code around the language boundaries can be difficult if the
necessary tooling for mixed-language debugging is not available.

• Library’s API: One of the aspects which greatly influences the resulting
performance is the similarity between the public API of the .NET library
and the API of the native library. Some aspects are the following:

– Event-based (using callbacks) vs. method based
– Blocking vs. non-blocking
– Synchronous vs. asynchronous
– Which side allocates memory buffers

Managed code needs to translate the differences between APIs, which may
result in noticeable performance overhead and even negate the performance
gained from the native library’s use.

• Overhead of interop calls: When execution transitions between managed
and unmanaged code, the runtime must ensure the correct behavior of ex-
ceptions and garbage collector. The cost of the so-called managed-to-native
transition is relatively small. However, it may be noticeable when the tran-
sition occurs very frequently.

• Future development: Exposing new features from newer versions of the na-
tive library can be problematic because the code needs to work with older
versions of the library as well.

In the past, the .NET development team has encountered multiple problems
with the libcurl [15] library, which was used to implement HTTP request han-
dling on macOS and Linux. Different Linux distributions contained different
versions of the libcurl library and, therefore, supported different features and
had different bugs. The .NET development team had to expend many resources
to make sure the managed code written by other .NET developers behaved con-
sistently regardless of which libcurl version was present.

Starting with .NET Core 2.1, the default implementation of HTTP request
handling does not rely on native libraries like libcurl . Instead, the function-
ality has been rewritten in pure managed code on top of Socket API. This im-
plementation offered better performance and consistent behavior across all .NET
platforms [16].
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1.4 Goals of this Thesis
The reasons mentioned in the previous section motivated Microsoft developers to
consider implementing QUIC in purely managed C# code. Before the final deci-
sion on which implementation of QUIC will be used, it is necessary to investigate
the performance characteristics of managed QUIC implementation. This thesis
seeks to create a partial implementation of QUIC whose performance can be an-
alyzed and — if the managed implementation approach is found viable — can
form the basis of the production QUIC implementation in future .NET versions.

Because this thesis’s work can potentially become part of future .NET 6 re-
lease, the QUIC implementation development will occur inside a development
branch of the .NET runtime repository [17]. The result should be a compilable
branch of the runtime, which uses the managed QUIC implementation instead of
the MsQuic -based one.

We have mentioned that the .NET QUIC API design was interrupted early.
Although the current version does not expose all QUIC protocol features, it is
sufficient for evaluating our implementation. This thesis will, therefore, avoid
making any modifications to the API.

Implementing the full QUIC specification is outside the scope of a master the-
sis. Fortunately, to evaluate the managed QUIC implementation’s performance,
many parts of the specification can be omitted without affecting the core trans-
port functionality. Therefore, this thesis will focus mainly on the functionality
needed to reliably transport data between two endpoints and leave out advanced
features such as connection migration.

Because we do not expect readers to be thoroughly familiar with the QUIC
protocol specification and all its features, we will present an overview of the
protocol in chapter 2 and defer the selection of the protocol features we will
implement in this thesis to the beginning of the analysis in chapter 3. However,
the implementation design should be such that the rest of the specification can
be implemented in the future.

It would make sense to evaluate our QUIC implementation’s functionality by
providing a partial implementation of HTTP/3 as well. However, even supporting
the most straightforward GET requests would be too complicated. Instead, we
will implement a testing application in which the server will simply echo all data
back to the client.

We briefly mentioned that the current QUIC implementation in .NET uses a
layer of indirection which allows runtime selection of the QUIC implementation
to be used. As an optional goal, this thesis will create a small benchmarking
application and use it to to compare the performance of the two QUIC imple-
mentations. A small step from there would allow us to also compare the two
QUIC implementations’ performance with that of TCP+TLS-based SslStream.

Summary of the Goals
The following list summarizes the goals of this thesis presented in the previous
subsection.

1. Select a sufficient subset of QUIC specification needed to support the most
basic data transfer and implement it inside .NET runtime codebase.
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2. Allow switching between the new managed implementation and the existing
MsQuic -based one.

3. Evaluate the managed QUIC implementation by using it to implement a
simple client-server echo application.

4. (optional) Try to compare the performance of the new implementation with
the previous MsQuic -based one and with TCP+TLS-based SslStream.
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2. QUIC Protocol
This chapter is intended to summarize the QUIC protocol specification and pro-
vide sufficient knowledge about the protocol needed for designing our implemen-
tation. This text is based on version 27 of the draft specification documents from
February 2020, more specifically on the documents describing the core trans-
port protocol [18], TLS integration [19], and congestion control mechanism [20].
Readers familiar with these documents may skip this chapter.

We will start this chapter by first providing a high-level overview of QUIC and
then providing a more detailed description of the individual parts of the protocol.

2.1 Introduction
QUIC protocol provides reliable and secure transport of multiple streams of data
over a single connection. QUIC provides the following services:

• Stream multiplexing

• Stream and connection-level flow control

• Low-latency connection establishment

• Connection migration and resilience to NAT rebinding

QUIC is implemented on top of UDP, which provides only unreliable transfer
of datagrams. Therefore, in addition to stream multiplexing, QUIC also imple-
ments loss recovery, congestion control, transport security, and other features
known from TCP or TLS protocols.

2.1.1 Basic Concepts
Throughout this chapter, and later when analyzing the QUIC protocol specifica-
tion, this text will use several terms in a very specific meaning. This meaning is
the same as defined in the main specification document [18, Section 1.2].

QUIC packet
A complete processable unit of QUIC that is transported using UDP data-
grams. Multiple QUIC packets can be encapsulated in a single UDP data-
gram but a single QUIC packet may not be split into multiple UDP data-
grams.

Out-of-order packet
A packet that does not arrive directly after the packet that was sent before
it. A packet can arrive out of order if it was delayed, if earlier packets were
lost or delayed, or if the sender intentionally skipped a packet number.

Endpoint
An entity that can participate in a QUIC connection by generating, receiv-
ing, and processing QUIC packets. There are only two types of endpoints
in QUIC: client and server.
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Client
The endpoint initiating a QUIC connection.

Server
The endpoint accepting incoming QUIC connections.

Address
When used without qualification, an address is a tuple of IP version, IP
address, and UDP port number.

Network path
A pair of two network address — one for each endpoint — used to exchange
QUIC packets in a connection. Throughout its lifetime, a QUIC connection
can change to a different network-path, e.g., by a process called connection
migration.

Connection ID
An opaque identifier that is used to identify a QUIC connection at an
endpoint. Each endpoint sets a value for its peer to include in packets sent
towards the endpoint.

Stream
A unidirectional or bidirectional channel of ordered bytes within a QUIC
connection. A QUIC connection can carry multiple streams simultaneously.

Application
An entity that uses QUIC to send and receive data. This can mean, e.g., a
higher-level protocol built on top of QUIC or an actual application which
uses QUIC directly.

2.1.2 Notational Conventions
This chapter contains graphical diagrams of several elements, such as QUIC pack-
ets. In those schematics, individual fields include length information as follows:

• X (A): Indicates that X is A bits long.

• X (i): Literal i indicates that X is encoded using the QUIC’s variable-length
encoding. This encoding is described in section 2.1.3.

• X (A..B): Indicates that X can be any length from A to B. The actual
length is generally stored in a different field.

• X (..): Indicates that X can be any length. The actual length is generally
stored in a different field.

• X (A) = C: Indicates that X has a fixed value C.

• X (A) ...: Indicates that X is repeated zero or more times and each instance
is A bits long.
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2.1.3 Wire Encoding
The process of encoding QUIC packets to be sent via the network is optimized for
size. There are two nontrivial encodings used: variable-length integer encoding
and packet number encoding. All values sent over the network are encoded in
big-endian order.

Variable-Length Integer Encoding

Almost all numeric values stored in QUIC packets are encoded using a variable-
length integer encoding. This encoding uses the first byte’s two most significant
bits to encode whether the value is encoded as 1, 2, 4, or 8-byte integer. This
encoding supports only positive numbers. The ranges available for individual
encoding lengths are listed in Table 2.1.

Table 2.1: Variable-length integer encoding lengths

Most significant bits Encoding length (B) Maximum value
00 1 63
01 2 16 383
10 4 1 073 741 824
11 8 262 − 1

In order to optimize the size of QUIC packets, the implementations are en-
couraged to always choose the shortest encoding necessary to represent the given
number.

Packet Number Encoding

Packets in QUIC are sequentially numbered, and, therefore, packet numbers re-
ceived by an endpoint form a mostly ascending sequence with occasional reorder-
ing or gaps due to network unreliability. This causes the packet number of a newly
received packet to be close to that of the previously received packet. QUIC lever-
ages this fact by sending only the lower bytes of the packet number. The number
of bytes sent varies between one to four bytes and is always chosen so that the
receiver can reconstruct the original packet number using the previously received
packet numbers and the bytes from the arriving packet.

When determining how many bytes of the packet number need to be included
in the packet, the sender uses the highest acknowledged packet number. The
encoding length must use enough bytes to be able to represent at least twice
the difference between the current packet number and the highest acknowledged
number.

As an example, consider the following situation: sender prepares to send
packet 0x4417 and its highest acknowledged packet number is 0x43a0. The dif-
ference between the two numbers is 0x77 which is smaller than 128 and, therefore,
requires only the least significant byte (0x17) of the packet number to be sent
in the packet. Suppose that by the time the packet arrives at the receiver, the
highest packet number it previously received was 0x43f5. Based on the encoded
packet number length, the deconstructed packet number must be from the range
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0x4375–0x4475. The only number from this range that matches the least signifi-
cant byte sent in the packet is 0x4417 which is the correct packet number.

2.2 QUIC Packets
In QUIC connection, endpoints exchange QUIC packets enclosed in UDP data-
grams. A single UDP datagram can contain multiple packets, although in most
cases, they contain only one. Packing multiple QUIC packets into a single UDP
datagram is called coalescing. A single QUIC packet cannot span multiple UDP
datagrams. QUIC uses a total of six different packet types:

1. Version Negotiation: sent by the server when the client tries to establish a
connection with QUIC version that is not supported by the server;

2. Retry: optionally used by servers for Client Address Validation when estab-
lishing new connections, address validation is described in section 2.8.3;

3. Initial: used to initiate a new connection and exchange the initial informa-
tion;

4. Handshake: used during the connection handshake;

5. 0-RTT: when TLS 1.3 0-RTT mode of operation is enabled, 0-RTT packets
carry early data — application data that is sent before the TLS handshake
is complete in order to reduce latency; and

6. 1-RTT: main packet type used throughout the lifetime of QUIC connection.
1-RTT and 0-RTT packets are the only packet types that carry application
data.

Version Negotiation and Retry packets are sent as one-time responses in par-
ticular scenarios and are not individually numbered. QUIC is designed to let
the server send these packets without maintaining any state for the connection.
These packets are not used in an established connection.

Packets of the other types — Initial, Handshake, 0-RTT, and 1-RTT — are
individually numbered. The packet numbers do not form a single sequence, as
is the case with TCP packets. Instead, QUIC organizes these packets into three
separate packet number spaces and uses a separate sequence of numbers for each
packet number space. These packet number spaces are:

1. Initial: Used for initiating new connections and exchanging initial crypto-
graphic information. Contains only Initial packets.

2. Handshake: Used during the connection handshake process. Contains only
Handshake packets.

3. Application: Used throughout the lifetime of the connection to transfer ap-
plication data. This packet space contains both 0-RTT and 1-RTT packets.
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In addition to being numbered separately, packets from each packet number
space are processed entirely independently of the other packet number spaces.
For example, Initial packets can be acknowledged only by another Initial packet.
The four packet types also use different keys for encryption and offer increasingly
stronger level of protection, with Initial packets being the least secure and 1-RTT
packets the most secure. In their payload, the Initial, Handshake, 0-RTT, and 1-
RTT packets carry QUIC Frames which are low-level protocol messages carrying,
e.g., acknowledgments and parts of streams sent by the application.

Each packet type has a header and a payload. The packet header contains in-
formation such as Source Connection ID (SCID) and Destination Connection ID
(DCID) which are Connection IDs used to match the packets to the correct receiv-
ing connection. QUIC optimizes the packet encoding to maximize the amount of
application data sent in a single UDP datagram. Therefore, two types of packet
headers exist. 1-RTT packets use a short header, and all other packet types use
the long header. The long header contains fields like the protocol version identi-
fier which are relevant only during connection establishment. The short header
reduces the packet size by including only the DCID.

The type of the header is determined by the most significant bit of the first
byte in the packet — the Header Form bit. The second most significant bit —
the Fixed Bit — is always set to 1 in a valid QUIC packet. The following sections
describe the structure of the rest of the packet for individual packet types.

2.2.1 Long Packet Header
Long headers contain information that is necessary for the connection estab-
lishment. It includes both the Source and Destination Connection IDs. It also
contains Version and Packet Type fields. A few leftover bits of the header are
reserved for type-specific information. Figure 2.1 illustrates the structure of the
long header.

H=1 F=1 T (2) Type Specific Bits (4)
Version (32)

Destination Connection ID Length (8)
Destination Connection ID (..)

Source Connection ID Length (8)
Source Connection ID (..)

H = Header Form, F = Fixed Bit, T = Packet Type

Figure 2.1: Long packet header structure

The semantics of the individual fields of the long header is as follows:

Header Form (H)
Used to distinguish between packets with so-called long header and short
header format. In the case of the long header packets. The Header Form
bit is set to 1.
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Fixed Bit (F)
A bit that is always set to 1 in a valid QUIC packet.

Packet Type (T)
Discriminator of the packet type. the possible values are listed in Table 2.2.

Table 2.2: Values of the Packet Type field in long packet header

Packet Type Value
Initial 00
0-RTT 01

Handshake 10
Retry 11

Version
Indicates which version of QUIC is in use. The location of this field will be
the same across all QUIC versions. However, the structure of the rest of
the packet may be different in future versions of QUIC.

Destination Connection ID Length
Length of the Destination Connection ID field.

Destination Connection ID
The Connection ID issued by the recipient of the packet.

Source Connection ID Length
Length of the Source Connection ID field.

Source Connection ID
The Connection ID issued by the sender of the packet.

Reserved Bits
Bits reserved for use in the future QUIC versions. In the initial QUIC
version, these bits must be set to 0.

2.2.2 Version Negotiation Packet
The Version Negotiation packet is sent by the server when it receives a long header
packet requesting a version of QUIC which is not supported by the server. As
an exception to other long header packets, the Version Negotiation packet is not
discriminated by a specific value in the Packet Type field in the header, but by a
special value 0x00000000 in the Version field.

After the header, the packet contains a list of supported versions, each one
listed as a 32-bit integer in big-endian. Also, since future QUIC versions may
allow larger Connection IDs than 20 bytes, a valid Version Negotiation packet can
contain up to 255-byte Connection IDs. The structure of the Version Negotiation
packet is illustrated in Figure 2.2.
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H=1 Unused
Version (32) = 0x00000000

Destination Connection ID Length (8)
Destination Connection ID (0..2040)

Source Connection ID Length (8)
Source Connection ID (0..2040)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

long
header

Supported Version 1 (32)
Supported Version 2 (32)

...

H = Header Form
Figure 2.2: Version Negotiation packet structure

The identifier of the initial QUIC version is 0x00000001. There are also unique
identifiers for draft versions of the protocol valid only until the QUIC specification
is finalized.

2.2.3 Retry Packet
Retry packets are distinguished by bits 11 in the Packet Type field of the long
header. A server sends Retry packets as part of the optional Address Valida-
tion mechanism used to protect against traffic amplification attack described in
section 2.8.3. Figure 2.3 illustrates the structure of the Retry packet.

H=1 F=1 T = 11 Unused
Version (32)

Destination Connection ID Length (8)
Destination Connection ID (0..160)
Source Connection ID Length (8)

Source Connection ID (0..160)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

long
header

Retry Token (..)
Retry Integrity Tag (128)

H = Header Form, F = Fixed Bit, T = Packet Type

Figure 2.3: Retry packet structure

The semantics of the fields specific to the Retry packet are:

Retry Token
Contains an opaque token generated by the server. This token must be
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echoed back in an Initial packet during the next connection attempt. The
token must be difficult to guess by the attacker and verifiable in a stateless
manner, i.e., without saving it in memory for future comparisons.

Retry Integrity Tag
Tag used to check the integrity of the packet. Detailed information on
how the integrity tag is calculated can be found in the TLS integration
specification [19, Section 5.8].

2.2.4 Initial, Handshake, and 0-RTT Packets
Initial, Handshake, and 0-RTT packets are almost identical in structure. All three
types use the Type-Specific Bits from the long header to store Reserved Bits and
the Packet Number Length. After the long packet header, these packets contain
the Length field containing the packet length, Packet Number field, and the actual
payload consisting of QUIC frames. The only exception to this structure is the
Initial packet, which contains two additional fields just after the long header:
Token Length and Token, which are used to carry the Retry Token from the
Retry packet in case Address Validation is requested by the server. Figure 2.4
illustrates the structure of these three packet types.

H=1 F=1 T (2) R = 00 L (2)
Version (32)

Destination Connection ID Length (8)
Destination Connection ID (0..160)
Source Connection ID Length (8)

Source Connection ID (0..160)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

long
header

Token Length (i)
Token (..)

Initial
only

⎧⎨⎩
Length (i)

Packet Number (8..32)
Packet Payload (..)
Integrity Tag (16)

H = Header Form, F = Fixed Bit, T = Packet Type,
R = Reserved Bits, L = Packet Number Length

Figure 2.4: Structure of the Initial, Handshake, and 0-RTT packets

The semantics of the new fields in these packets are:

Token Length (Initial only)
Length of the Token field.
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Token (Initial only)
Contains an opaque token if the server provided one in the Retry packet as
part of Address Validation.

Reserved Bits (R)
Bits reserved for use in the future QUIC versions. In the initial QUIC
version, these bits must be set to 0.

Packet Number Length (L)
The length of the encoding used for the packet number.

Length
The length of the remainder of the packet. This includes the Packet Num-
ber, the packet’s payload, and the AEAD integrity tag.

Packet Number
The sequence number of this packet in the respective packet number space.
This field uses the packet number encoding described in section 2.1.3.

Packet Payload
Serialized sequence of QUIC frames.

Integrity Tag
Opaque checksum produced by the AEAD cipher during packet encryption.
Packet encryption is described in detail in section 2.8.2.

2.2.5 1-RTT Packet

1-RTT packets are the only packet that uses the short header to make more
space for application data in the UDP datagram. In addition to the Header
Form, Fixed, Reserved Bits, and Packet Number Length fields, which have the
same meaning as in the long header, the short header contains Spin Bit and Key
Phase Bit fields.

1-RTT packets can be sent only after the connection has been successfully
established. This implies that Connection IDs used for the connection by both
endpoints are already known, and there is no need to repeat the SCID or specify
the length of the DCID. 1-RTT packets also lack the Length field. It is assumed
that 1-RTT packets fill the rest of the UDP datagram. Therefore, after the short
header, only the Packet Number field and the QUIC frame payload follows. The
structure of the 1-RTT frame is illustrated in Figure 2.5.
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H=0 F=1 S R = 00 K L (2)
Destination Connection ID (0..160)

⎫⎬⎭ short
header

Packet Number (8..32)
Packet Payload (..)
Integrity Tag (16)

H = Header Form, F = Fixed Bit, S = Spin Bit,
R = Reserved Bits, K = Key Phase Bit, L = Packet Number Length

Figure 2.5: 1-RTT packet structure

The semantics of the fields specific to 1-RTT packets are:

Spin Bit
A bit used for an optional QUIC feature which allows on-path nodes to
measure connection latency by observing changes in this bit. For a de-
tailed description of the Spin Bit feature, see the complete specification [18,
Section 17.3.1].

Key Phase Bit
A bit used to communicate that the keys used for the packet encryption
need to be updated. After the keys have been used to encrypt a certain
number of packets, it is necessary to update them in order to maintain the
level of protection in the connection. section 2.8.2 describes the mechanism
of Key Update in detail.

2.3 QUIC Frames
QUIC frames are low-level QUIC protocol messages carried in the payload of
Initial, Handshake, 0-RTT, and 1-RTT packets. Examples of these frames in-
clude, e.g., ACK frames carrying acknowledgments for received packets, STREAM
frames carrying the application data, and CRYPTO frames carrying data for the
TLS handshake.

During the lifetime of the connection, all QUIC packets must be acknowledged
by sending an ACK frame in another packet in the same packet number space.
However, not all packets have to be acknowledged immediately; e.g., acknowledg-
ing packets containing only ACK would cause an endless flood of ACK packets.
In such cases, sending an acknowledgement is delayed and sent later together
with more urgent data. Frame types that require immediate acknowledgments
are called ack-eliciting frames, and the packets with at least one such frame are
called ack-eliciting packets.

Because packets in different packet number spaces offer a different level of
confidentiality, not all frames can be sent in any packet type. For example,
STREAM frames — which carry the application data — must not be sent in Initial
and Handshake packets to avoid compromising security. Table 2.3 lists all frame
types used in QUIC, whether they are ack-eliciting and which packets can carry
them.
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Table 2.3: QUIC frame types

Allowed in packet type

Frame type Ack-eliciting Initial Handshake 0-RTT 1-RTT

PADDING
PING
ACK
RESET_STREAM
STOP_SENDING
CRYPTO
NEW_TOKEN
STREAM
MAX_DATA
MAX_STREAM_DATA
MAX_STREAMS
DATA_BLOCKED
STREAM_DATA_BLOCKED
STREAMS_BLOCKED
NEW_CONNECTION_ID
RETIRE_CONNECTION_ID
PATH_CHALLENGE
PATH_RESPONSE
CONNECTION_CLOSE
HANDSHAKE_DONE

2.4 QUIC Connection
This section describes the details of Connection ID management and the QUIC
connection lifetime.

2.4.1 Connection ID

Traditional network protocols use the combination of remote endpoint IP address
and port to identify the connection. QUIC, on the other hand, uses a dedicated
Connection ID identifier. This, in essence, enables migrating the connection to
different network paths and interfaces, e.g., from cellular data to a Wi-Fi network,
because the connection identity does not depend on the peer’s IP address.

Connection IDs are opaque byte sequences between 8 to 20 bytes in length.
Each endpoint in a QUIC connection independently selects Connection IDs it
will use to identify the QUIC connection. These Connection IDs are then used
to populate the Source Connection ID and Destination Connection ID fields of
the QUIC packets.

The endpoints exchange the first pair of Connection IDs during connection
establishment. Additional Connection IDs can be issued independently by each
endpoint during the connection’s lifetime using the NEW_CONNECTION_ID frame.
These additional Connection IDs are primarily used when migrating the connec-
tion to a new network path because QUIC specification requires that the same
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Connection ID be used only on one network path in order to prevent correlation
of the network traffic by external observers.

Connection IDs can also be retired by the other endpoint using the RETIRE_-
CONNECTION_ID frame. By retiring a Connection ID, the endpoint communicates
that it will no longer use the Connection ID to send packets and that the other
endpoint should drop any incoming packets that use that Connection ID. At the
same time, retiring a Connection ID also serves as a request to the peer to issue
a new Connection ID as a replacement.

Alternatively, endpoints can use a zero-length Connection ID. In that case,
the connection’s identity is tied to the remote endpoint’s IP address and port.
Using zero-length Connection ID saves space in the sent datagrams but imposes
several limitations on the connection. For example, if an endpoint uses a zero-
length Connection ID, it cannot issue additional connection IDs and, therefore,
it cannot migrate a connection to a new local address.

2.4.2 Matching Packets to Connections
When a packet arrives at an endpoint, it needs to be associated with an existing
connection or — for servers — potentially initiate a new connection. If packet
contains a non-zero-length Connection ID in the DCID field, the Connection ID
is used to find an existing connection. If the packet uses a zero-length Connection
ID, the local and remote addresses determine the target connection.

Figure 2.6 illustrates how server endpoint processes incoming packets from
client connections. The server maintains a table mapping between DCIDs cor-
responding connections and dispatches the incoming packets accordingly. If a
packet cannot be associated with an existing connection, it may be a new con-
nection attempt; otherwise, the packet is discarded.

Incoming QUIC packets

Server

Socket

Connection A Connection B

New connection attempt

DCID 3
...

DCID 2
...

DCID 1
...

DCID Connection
1
2
3

A
B
A

DCID = 2DCID = 1
DCID = 3

lookup

not found

Network

Figure 2.6: Multiple QUIC connections on the same machine port

In case the packet cannot be associated with an existing connection, client
endpoints simply ignore the packet. Server, on the other hand, check the packet
type and version of the protocol it requires. For valid Initial packets with sup-
ported versions, the server proceeds with the handshake described in the previous
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section. For invalid Initial packets, the server responds with an Initial packet con-
taining a CONNECTION_CLOSE frame signaling the refusal of the connection.

In case the client packet requests an unsupported QUIC version, the server
replies with a Version Negotiation packet (described in section 2.2.2). After re-
ceiving such a packet, the client can try again using one of the supported versions.
Figure 2.7 illustrates such an exchange. In the figure, the client tries to establish
a connection using an unsupported version denoted by X. The server then replies
with a Version Negotiation packet listing versions 1, 2, and 3. The client then
tries to establish the connection again using version 1.

Client Server

CRYPTO(CH)Initial Version=X CRYPTO(CH)Initial Version=X

CRYPTO(CH)Initial Version=XVersion Negotiation Supported Versions = 1,2,3

CRYPTO(CH)Initial Version=X CRYPTO(CH)Initial Version=1

UDP Datagram

QUIC Packet
QUIC Frame ACK(0)

Initial

Handshake continues ...

Figure 2.7: Example Version Negotiation packet exchange

Lastly, the server may choose to send a Stateless Reset (see later in sec-
tion 2.4.5) for any other packet that it cannot match to an existing connection.

2.4.3 QUIC Transport Parameters
QUIC has several options for parameterizing the connection. These are called
Transport Parameters, and they essentially represent constraints for the other
endpoint. Each endpoint sets the transport parameters for the other endpoint.
QUIC leverages the extensibility of the TLS protocol to exchange transport pa-
rameters during the connection handshake. Transport parameters contain infor-
mation such as

• initial flow control limits,

• whether connection migration is allowed,

• maximum delay before sending an acknowledgment for ack-eliciting packets,

• maximum idle timeout before the connection is silently closed, and

• maximum size of a UDP packet the endpoint is willing to receive.

Many parameters have a default value, which is used when the given trans-
port parameter is not sent. Other transport parameters are mandatory. The
exhaustive list of the transport parameters can be found in the core transport
specification [18, Section 7.3].

25



2.4.4 Connection Establishment
To initiate a new connection, clients send an Initial packet to the server, which
initiates the handshake process. After the handshake completes, both peers have
derived protection keys necessary to send and receive 1-RTT packets with appli-
cation data.

Figure 2.8 illustrates a possible sequence of QUIC packets sent during a con-
nection handshake. The figure lists the contents of the individual QUIC frames,
including the TLS records sent inside CRYPTO frames. However, contents of the
CRYPTO frames are listed only for illustrative purposes because QUIC itself does
not interpret their contents in any way. Instead, the contents of CRYPTO frames
are forwarded to a TLS implementation.

1 ACK(0)Handshake

Client Server

0 CRYPTO(CH)Initial

0 CRYPTO(SH)Initial ACK(0)
0 CRYPTO(EE, CERT, CV, FIN)Handshake
0 STREAM(1, ”...”)1-RTT

0 CRYPTO(FIN)Handshake ACK(0)
0 STREAM(0, ”...”)1-RTT ACK(0)

1 ACK(0)Initial

1 STREAM(1, ”...”)1-RTT ACK(0) HANDSHAKE DONE
1

UDP Datagram

QUIC Packet
QUIC Frame ACK(0)

1Initial

Figure 2.8: Example QUIC handshake flow

In its first datagram, the client sends an Initial packet with initial information
consisting of a single CRYPTO(CH) frame. This frame contains the Client Hello
TLS message.

The server replies with a UDP datagram containing three coalesced QUIC
packets. The first is an Initial packet that acknowledges the client’s Initial packet
using the ACK(0) frame, and a CRYPTO(SH) frame with a Server Hello message.
The TLS implementation uses the contents of Client Hello and Server Hello mes-
sages to derive the Handshake protection keys. The server then advances the
TLS handshake by sending another CRYPTO frame in the Handshake packet. The
server also has enough information to derive the 1-RTT keys, so it can also start
sending data on Stream 1 using the STREAM(1, “...”) frame in a 1-RTT packet.

Because the server’s Initial packet contained an ack-eliciting CRYPTO(SH)
frame, the client needs to acknowledge it by sending an Initial frame with an
ACK(0) frame. The client possesses both Client and Server Hello messages and
can derive the Handshake keys, enabling him to process the server’s Handshake
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packet. The Handshake packet needs to be separately acknowledged by another
ACK(0) frame, and a reply from the TLS layer must be sent using another CRYPTO
frame. From the information in the server’s Handshake packet’s CRYPTO frame,
the client derives 1-RTT protection keys and processes the server’s 1-RTT packet.
In addition to sending an ACK(0) frame for the server’s 1-RTT packet, the client
can now start sending application data on stream 0 using a STREAM(0, “...”) frame.

After the server detects that the handshake has completed, it sends a HAND-
SHAKE_DONE frame to communicate it to the client. The figure also shows that
servers sends ACK(0) frame for the clients Handshake packet but not for the client’s
last Initial packet because it was not ack-eliciting.

2.4.5 Connection Termination
QUIC connection can be terminated in three ways:

• Idle timeout

• Immediate close

• Stateless reset

Idle Timeout

If idle timeout is enabled, the endpoint silently closes the connection if it does
not receive a packet from the peer for a specified time period. Each peer may
advertise a timeout period using the max_idle_timeout transport parameter,
but the effective value is the minimum of the two values.

In order to prevent timeouts, endpoints can send a PING or another ack-
eliciting frame to test the liveness of the connection. However, sending PING
frames should be initiated by the application protocol, not QUIC implementation,
to prevent unnecessary network traffic.

Immediate Close

An immediate close can be initiated either by QUIC implementation or by the
application. Either of the endpoints can initiate an immediate close by sending
a CONNECTION_CLOSE frame. By sending a CONNECTION_CLOSE frame, the peer
enters a closing state, in which it includes the CONNECTION_CLOSE frame in all
packets, it sends in reply to incoming packets. The closing state is also entered if
the endpoint receives a CONNECTION_CLOSE frame from the peer. In that case, the
endpoint also echoes the CONNECTION_CLOSE frame back to the other endpoint.

The closing state lasts until the endpoint is sure the other endpoint is also
in the closing state — e.g., until it also receives CONNECTION_CLOSE — or until a
closing timeout expires. The closing timeout period is calculated from the current
estimate of the round-trip time of the connection.

The CONNECTION_CLOSE frame carries an error code and, optionally, a human-
readable error phrase. When initiated by QUIC, the error codes semantics are
defined by the QUIC specification. However, when initiated by the application
protocol, the semantics of all possible error code values sent in the frame are
defined by the application protocol itself. This implies that the implementations
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must require an error code when closing the connection and should not provide
a default error code value.

Stateless Reset

A stateless reset is an option of last resort for an endpoint that does not have
access to the state of a connection, possibly as a result of a crash or outage.
An endpoint may send a stateless reset in response to receiving a packet that it
cannot associate with an active connection.

In such cases, the endpoint sends a specially crafted packet that ends with a
Stateless Reset Token generated for the DCID from the incoming packet. The
Stateless Reset Token requirements are quite complex, and we encourage readers
to read the full specification if they are interested in details [18, Section 10.4].

2.4.6 Connection Migration

A novel feature of QUIC is migrating connections to a different network path.
This is enabled by using a dedicated Connection ID instead of using the end-
point’s address to identify the connection. In the initial QUIC version, only
client endpoints can migrate the connection to a different address.

Before migrating a connection, the endpoint can optionally check the reach-
ability of the other endpoint using the process called path validation. Path val-
idation consists of exchanging probing packets, and is described in section 2.8.4.
The migration itself is initiated by client by simply switching to the new local
address for sending all outbound packets. After the server receives the first non-
probing packet from the new client’s address, it sends all future packets to that
new address.

QUIC uses additional measures to prevent network traffic from being corre-
lated by the outside observers. In section 2.4.1 we mentioned that each endpoint
could use multiple Connection IDs to refer to the same connection. QUIC re-
quires that each Connection ID be used only on one network path. Therefore,
both endpoints must switch to using different Connection IDs when the connec-
tion is migrated. Therefore, connection migration can only be initiated if both
endpoints issued additional Connection IDs using the NEW_CONNECTION_ID frame.

The connection migration process is illustrated in Figure 2.9. Client and
servers use Connection IDs C1 and S1, respectively. The client first probes the
server’s reachability with a probing packet containing a PATH_CHALLENGE frame.
Because this packet is sent from a different local address, it uses a different
Connection ID (S2) issued previously by the server. Likewise, the server uses a
different Connection ID C2 to reply with a packet containing a PATH_RESPONSE
frame, confirming the reachability from the client’s new local address. The server,
meanwhile, still uses the old network path for all other communication with the
client. After confirming reachability, the client migrates the connection by sending
all packets via the new local address. After receiving the next non-probing packet
from the new address, the server switches to the new client’s address for all
outgoing packets. From that point, Connection IDs C1 and S1 are no longer
used.
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Figure 2.9: Flow of packets during connection migration

Connection migration is an optional feature and can be disabled by send-
ing the disable_active_migration transport parameter during the connection
handshake.

2.5 QUIC Streams
QUIC can transport multiple streams of data in a single connection. Each stream
is identified by its Stream ID and is processed independently of the other streams.
Each QUIC packet can carry data for one or more QUIC streams. Figure 2.10
illustrates how QUIC may pack two streams into QUIC packets such that those
streams are transported in parallel.

Sender Receiver

Stream A

Stream B

QUIC Packets

010111000010
110010............

010100............

110010............

010100............

Figure 2.10: Stream multiplexing in QUIC
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2.5.1 Streams Types

Streams transported by QUIC can be either unidirectional or bidirectional. Uni-
directional streams carry data from the initiator to its peer, and bidirectional
streams carry data in both directions. Both client and server can open new
streams. QUIC recognizes four types of streams, and the type of the stream is
encoded in the two least significant bits of the Stream ID. The stream types and
their associated encoding is summarized in Table 2.4.

Table 2.4: Mapping of QUIC Stream types to Stream ID bits

Stream type Least significant bits
Client-Initiated, Bidirectional 00
Server-Initiated, Bidirectional 01
Client-Initiated, Unidirectional 10
Server-Initiated, Unidirectional 11

Bidirectional streams can be viewed as the combination of two unidirectional
streams in opposing directions. After opening a bidirectional stream, each di-
rection of the stream behaves as separate inbound and outbound unidirectional
streams. This implies, e.g., that the sending and receiving parts of the bidirec-
tional stream can be closed independently of each other.

2.5.2 Stream Lifetime

Opening a stream does not require any particular action. Streams are opened
simply by sending the first STREAM frame carrying data for that stream. However,
streams of a particular type can be opened only in ascending order of their Stream
IDs. For example, a stream 2 must be opened before opening stream 6. Sending
data for higher-numbered streams will automatically open all lower-numbered
streams of the same stream type.

Streams can be closed either gracefully or abortively. Graceful stream close
is signaled by a Fin bit in the STREAM frame, signaling that data carried by this
packet are the last part of the stream. The stream then is gracefully closed once
all stream data is confirmed received by the other endpoint.

Abortive stream close is achieved using the RESET_STREAM frame and, there-
fore, this action is also referred to as resetting the stream. Streams can be reset
only by the sender. The receiver can request aborting the stream by sending a
STOP_SENDING frame which indicates that the application no longer wishes to re-
ceive data from that particular stream. Both RESET_STREAM and STOP_SENDING
frames carry an application-level error code which is reported to the applicaiton
on the other side.

After the stream is closed, its Stream ID may not be reused. Instead, the
next available Stream ID must be used. QUIC uses the variable-length integer
encoding (see section 2.1.3) and, therefore, there is no shortage of available stream
IDs, which range from 0 to 262 − 1.
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2.5.3 Required Operations on Streams
The implementation should provide the following operations on sending part of
the stream:

• write data;

• end the stream by specifying that all data has been written; and

• terminate the stream with an application-level error code.

On receiving part of the stream, application protocols must be able to:

• read data; and

• abort reading with an application-level error code.

2.6 Flow Control
QUIC aims to be a general-purpose transport protocol to be used over a poten-
tially untrusted network, and as such, it needs to protect endpoints from malicious
peers. To prevent malicious senders from exhausting all available memory on the
receiver by sending large amounts of data, or fast senders from overwhelming
slow receivers, QUIC employs a credit-based flow control scheme.

All QUIC streams are flow controlled both individually and together as an
aggregate. Each endpoint also controls the number of streams the other peer is
allowed to open. All flow control limits are communicated to the peer using three
types of frames:

• MAX_STREAM_DATA: maximum offset of data sent on a stream with specified
Stream ID.

• MAX_DATA: the maximum sum of all offsets of data sent on all streams.

• MAX_STREAMS: the maximum number of streams of a particular stream type.

Endpoints can only increase the flow control limits. Their peers must ignore
any attempts to decrease the flow control limits to ensure consistency when two
consecutive QUIC packets with flow control updates are reordered during transit.
In case the peer violates any of the control flow limits mentioned above, the QUIC
implementation must immediately terminate the connection.

2.7 Loss Detection and Recovery
Because UDP is an unreliable transport protocol, QUIC must implement mea-
sures to recover from packet loss. The packet loss detection is implemented
similarly to TPC — endpoints send acknowledgments for each received packet.
However, an essential difference from TCP is that QUIC endpoints do not re-
transmit entire lost packets with the same packet number. Instead, each QUIC
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frame in the original packet is updated and sent in some future packet or dropped
altogether if the information contained in the frame is no longer relevant.

The endpoints communicate the acknowledgment using the ACK frame contain-
ing ranges of received packet numbers. A packet number can be sent multiple
times (in ACK frames in different packets) until the endpoint can determine that
the other endpoint received the acknowledgment.

For packets containing an ack-eliciting frame (see section 2.3), acknowledge-
ments must be sent within the period specified by the max_ack_delay transport
parameter. For other packets, such as packets containing only an ACK frame, the
acknowledgement can be delayed until an ack-eliciting packet is received.

Figure 2.11 illustrates the loss detection and retransmission process in action.
In the figure, frame STREAM(0,[0..9]) denotes a STREAM frame carrying the first 10
bytes of the stream with Stream ID 0. When the server receives the acknowledg-
ment for packet 3, but not for packet 2 sent earlier, it infers that packet 2 never
reached the receiver and retransmits the bytes 10 to 19 of stream 0 in packet 4.
The server does not have to retransmit the ACK(1) frame because it was sent in
packet 3, which the client acknowledged. Therefore, packet 4 acknowledges only
the client’s packet 2.

Client Server

UDP Datagram

QUIC Packet
QUIC Frame ACK(0)

11-RTT

STREAM(0,[0..9])11-RTT

...

STREAM(0,[10..19]) ACK(1) Packet loss21-RTT

STREAM(0,[20..29]) ACK(1)31-RTT

STREAM(0,[10..19]) ACK(2)41-RTT

ACK(1)11-RTT

ACK(3)21-RTT

ACK(4)31-RTT

Loss of packet 2 detected,
Retransmitting data from packet 2

Figure 2.11: Loss detection and retransmission example

The exact criteria for a packet to be deemed lost by a QUIC endpoint are
following:

1. The packet was not acknowledged.

2. A packet which was sent later has been acknowledged.
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3. Either the packet has been sent long enough in the past, or its packet num-
ber is sufficiently smaller than the highest acknowledged packet number.

The third condition is dependent on the values of particular constants. The
specification recommends that the packet is considered lost if the gap between its
packet number and the highest acknowledged packet number is at least 3, or if it
was sent for longer than 9/8 times the estimate of the current round-trip time.

The first condition mentioned above requires receiving a packet from the peer
to declare any packet as lost. However, the loss of the last packet in a sequence
could go undetected because there is no following packet that can be acknowl-
edged. In order to avoid possible deadlocks in such scenarios, QUIC endpoint
sends up to two ack-eliciting probe packets if it does not receive a packet from a
peer in a period called probe timeout (PTO for short). The PTO duration doubles
each time probe packets are sent until either a reply is received or the connection
is terminated due to idle timeout (see section 2.4.5)

Similarly to TCP, QUIC also uses congestion control to manage the congestion
window — the amount of data that can be in-flight. The selection of the conges-
tion control algorithm is left on the implementation. As an example, The QUIC
specification document for loss detection and recovery [20, Section 7] describes a
congestion control algorithm similar to TCP NewReno [21] algorithm.

2.8 Security
This section describes the mechanisms used to ensure the security of the protocol.
Besides encrypting all packets sent throughout the lifetime of the connection,
QUIC uses additional mechanisms to ensure that the servers using the protocol
are resistant to denial-of-service and other cyber-attacks.

2.8.1 TLS Integration
Instead of designing a new handshake protocol, QUIC offloads the encryption
negotiation to TLS protocol (more precisely, TLS version 1.3). The low-level
messages used in TLS, such as Server Hello and Client Hello are transported
by QUIC inside CRYPTO frames (as illustrated in section 2.4.4) and passed to
a TLS implementation on the other side. This way, QUIC can offer the same
confidentiality level as conventional TLS connections.

The TLS protocol is extensible. Among the standard extensions which are
also used by QUIC are Application-Layer Protocol Negotiation (ALPN) [22] and
Server Name Indication (SNI) [23].

ALPN is used when multiple application protocols or their multiple versions
are supported on the same TCP or UDP port. ALPN allows the application layer
to negotiate — as part of the TLS handshake — which application protocol will
be used in the established connection.

Clients use SNI to specify the hostname of the server to which they are con-
necting. When multiple websites are hosted on the same IP address and port, SNI
allows the server to customize the security configuration for each hosted website.
During connection establishment, proper security configuration, such as the SSL
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certificate to be used, can be selected based on the hostname provided by the
client.

QUIC also uses a custom TLS extension to exchange transport parameters
during the handshake. The QUIC transport parameters were described in sec-
tion 2.4.3.

2.8.2 Packet Protection
All QUIC packets of type Initial, Handshake, 1-RTT, and 0-RTT are encrypted
to ensure the integrity and confidentiality of the transmitted data. Negotiation
of the cryptographic ciphers and the encryption keys is handled by the TLS
handshake. This section focuses on how the negotiated encryption is applied to
QUIC packets.

Authenticated Encryption with Associated Data

QUIC uses type of encryption called Authenticated encryption with associated
data (AEAD) [24]. This type of encryption ensures both the confidentiality and
authenticity of the encrypted data. In addition to encrypted data — called ci-
phertext — AEAD encryption outputs an authentication tag, which is used to
check the integrity of the payload during decryption. The encryption can be au-
thenticated by supplying additional authentication data (AAD for short), which
are not encrypted but influence the authentication tag and, therefore, must also
be supplied during decryption. As additional protection, AEAD also accepts a
nonce parameter, which is an additional input that is supposed to be unique for
each encrypted message. By using a unique nonce parameter for each message,
the algorithm ensures that two otherwise identical messages produce different
ciphertexts.

The programming interface for AEAD provides the following operations:

• Encryption:

– input: plaintext, key, nonce, AAD (optional)
– output: ciphertext, authentication tag

• Decryption:

– input: ciphertext, key, nonce, authentication tag, AAD (if provided
during encryption)

– output: plaintext or error if the authentication tag does not match the
rest of the input

Deriving QUIC Protection Keys

QUIC derives multiple distinct keys that are used in different parts of the packet
protection procedure. Furthermore, each packet type uses a different set of such
keys. This allows QUIC to provide confidentiality and integrity protection even
for Initial and Handshake packets, which are sent before the TLS handshake
negotiates the application-level encryption.
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Each set of encryption keys is derived from a secret — a sequence of bytes
known only to the two endpoints. Secrets for deriving the Handshake and 1-RTT
keys are produced by the TLS handshake. Secrets for Initial keys are derived
using the DCID of the client’s first Initial packet and a version-specific initial
salt which ensures that newer versions of QUIC derive different protection keys.
The derivation process uses the HKDF-Extract and HKDF-Expand-Label func-
tions from RFC 5869 [25] to derive secrets of the desired length. The following
equations show how QUIC derives distinct secrets for client and server.

initial secret = HKDF-Extract(dcid, initial salt)
client secret = HKDF-Expand-Label(initial secret, "client in", "", 32)

server secret = HKDF-Expand-Label(initial secret, "server in", "", 32)

Once the necessary secrets are obtained, a total of three keys are derived using
the following equations.

key = HKDF-Expand-Label(secret, "quic key", "", 32)
iv = HKDF-Expand-Label(secret, "quic iv", "", 12)
hp = HKDF-Expand-Label(secret, "quic hp", "", 32)

The following subsections describe how the key, iv, and hp keys are used in
the actual process of packet encryption.

Packet Protection Procedure

When encrypting the packets, QUIC first encrypts the packet payload — the
sequence of QUIC frames — using the AEAD cipher negotiated by the TLS
implementation. QUIC specification allows the use of all AEAD ciphers allowed
in TLS 1.3. These ciphers are:

• TLS AES 128 GCM SHA256

• TLS AES 256 GCM SHA384

• TLS CHACHA20 POLY1305 SHA256

• TLS AES 128 CCM SHA256

• TLS AES 128 CCM 8 SHA256

The parameters for AEAD for packet payload protection are:

• key: the key derived in the previous section

• nonce: the iv derived in the previous section, with the last 8 bytes XORed
with the packet number

• AAD: the contents of the packet header

• plaintext: the payload of the packet.
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The produced authentication tag is appended to the packet as the Integrity
Tag field and, in case of the packet types with long headers, its size is included
in the payload size in the Length field.

QUIC also protects the header of the packet. The header protection mech-
anism is more complicated than that of the payload protection. The process
requires calculating a header protection mask, which is then applied using XOR
to selected fields of the packet header and the Packet Number field. The algorithm
for calculating the header protection mask depends on the negotiated cipher, but
it always uses the hp key and a 16-byte sample of the encrypted payload.

The parts of the packets protected by the payload encryption and header
protection mechanisms are illustrated in Figure 2.12 for long headers and in
Figure 2.13 for short headers.

Header protection Payload encryption

H=1 F=1 T (2) R = 00 L (2)
Version (32)

Destination Connection ID Length (8)
Destination Connection ID (0..160)
Source Connection ID Length (8)

Source Connection ID (0..160)
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Packet Payload (..)
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Figure 2.12: Protected fields in the long packet header
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Figure 2.13: Protected fields in the short packet header
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Updating 1-RTT Protection Keys

AEAD ciphers slowly lose the levels confidentiality and integrity protection with
each encrypted packet. Therefore, QUIC — like TLS — tracks the number of
packets encrypted using a particular encryption key and updates the key before
an attacker can gain substantial advantage from observing the encrypted pack-
ets. Analysis in the specification document shows that updating the protection
keys after sending at most 223 packets provides the same confidentiality level as
provided by TLS [19, Appendix B].

The protection keys are updated using a process called key update. The pro-
cess is signalled to the peer by flipping the Key Phase bit in the 1-RTT packet
header. After observing a change in the Key Phase, an endpoint derives new
secret and key and iv keys using the HKDF-Expand-Label function:

secretn+1 = HKDF-Expand-Label(secretn, "quic ku", "", 32)
keyn+1 = HKDF-Expand-Label(secretn+1, "quic key", "", 32)

ivn+1 = HKDF-Expand-Label(secretn+1, "quic iv", "", 12)

Because the Key Phase bit is protected by header protection, the hp key must
remain unchanged to ensure that the other endpoint can correctly remove the
header protection.

2.8.3 Client Address Validation

After receiving the first Initial packet from a new client, the server can request
address validation by sending a Retry packet (see section 2.2.3). The Retry packet
carries a token, which the client must echo back to the server in all following Initial
packets. As long as an attacker cannot generate a valid token for its address, and
the client can return that token, this exchange proves to the server that the client
has received the token.

Figure 2.14 illustrates the use of Retry packet to validate client address during
connection establishment. By default, clients do not fill the Token field of the
Initial packet. The server rejects the initial connection attempt and issues a
Retry Token (denoted “ABCD” in the figure). The client then tries again with
another Initial with the provided token, and the server proceeds with the usual
handshake.
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Figure 2.14: Client address validation using a Retry packet.

2.8.4 Path Validation
QUIC is layered on top of UDP, which is a connection-less protocol. This means
that changes in endpoint address can also happen without active migration on
the endpoint’s part, e.g., because of NAT rebinding along the network path.

The other endpoint may also spoof the endpoint address in an attempt to
perform traffic amplification attack. For this reason, the amount of data sent to
the new endpoint address must be limited until path validation determines that
the address belongs to the endpoint. Path validation is performed by sending a
probing packet containing a PATH_CHALLENGE frame with an unpredictable token.
The other endpoint must echo the token back in a PATH_RESPONSE frame. After
that, the new address is considered validated, and the sending rate restrictions
are lifted.
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3. Analysis
This chapter analyzes the protocol and selects the necessary subset needed to
evaluate a .NET implementation of the QUIC protocol. Afterward, we design
the architecture and outline the implementation of its major parts. Lastly, we
investigate the means for unit testing and debugging of the implementation.

3.1 Implemented Feature Subset Selection
The decision which features of the QUIC protocol we implement is guided by the
goals we set in section 1.4. For feature selection, these goals can be rephrased
into the following:

1. Support basic data transport, enabling some experimentation with QUIC
as the transport for application layer protocols. (goals 1 and 2)

2. Enable performance measurements that are representative of the potential
full QUIC implementation. (goals 1 and 3)

The first goal requires full implementation of the multiplexed stream abstrac-
tion as defined by the QUIC specification. It also requires implementing loss
detection and recovery to ensure that no data gets lost during the transport.

In order to get representative performance measurements, we should imple-
ment all performance affecting features. The most important are packet protec-
tion and flow control because they influence performance throughout the lifetime
of the QUIC connection. To summarize, the thesis should implement at least the
following features:

• Connection lifetime support (establishment, termination)

• Stream multiplexing

• Packet protection

• Loss detection and recovery

• Flow control

On the other hand, we can disregard many QUIC features that react to
one-time events or do not otherwise influence the implementation’s performance.
These features include:

• Connection migration, and therefore multiple Connection IDs support

• Complex (token-based) address validation

• Network path MTU detection

• Version negotiation

• 1-RTT key updates
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• Advanced security measures (see Section 21 in transport specification [18])

The rest of the features form a grey area that can be implemented fully,
partially, or even not at all if convenient.

3.2 Design Considerations
Before we start the actual analysis, we will briefly outline the design principles
used for the actual design of the implementation and their rationale.

3.2.1 Performance
One of the critical factors in the decision between managed .NET implementation
of QUIC or using an external library like MsQuic is performance. Therefore, the
implementation design decisions should focused on greater performance, possibly
sacrificing maintainability if the trade-off was justified.

As a general rule, the implementation will:

• Avoid excessive heap allocations: Although heap allocation is cheap in
.NET, the actual price is paid during garbage collection. The more objects
are allocated, the more frequent garbage collections are. Each collection in-
troduces a small stall into the program which could disrupt internal timing
of the QUIC implementation. Therefore, heap allocations on hot paths of
the code executions should be minimized.

• Prefer return codes over exceptions: Throwing an exception is an expen-
sive operation, and their frequent use would have negative impact on the
performance.

3.2.2 Testability
The second design aspect we focusd on is the testability of the implementation.
Ideally, the design would minimize the need for live debugging of the implemen-
tation. This is especially important because stopping the implementation on a
breakpoint inevitably disrupts the connection, possibly leading to termination
because of idle timeout (see section 2.4.5).

The design intention was to allow writing deterministic automated tests that
can inspect the packets sent by the endpoint and verify that they are consistent
with the behavior defined by the QUIC specification.

3.3 Target .NET API
The public API, which was designed by the .NET team for use by other devel-
opers, uses similar concepts like TCP and UDP .NET networking APIs. There
is a QuicListener class intended to be used by servers for listening for incoming
connections, similarly to using the TcpListener class. The actual connection is
represented by the QuicConnection class, which can be compared to TcpClient
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class. The individual QUIC streams are exposed using the QuicStream class,
which implements the Stream abstraction.

The API is expected to be used asynchronously using the async/await model.
Most methods return a ValueTask which should be awaited to efficiently wait
until the operation completes. The full list of methods with detailed description
can be found later in section 5.3.

3.4 High-Level Architecture
The QuicConnection implementation will require some sort of background pro-
cessing thread1 to send acknowledgments for incoming packets and to resend
data after being determined lost due to a timeout. Because the correctness of a
multithreaded code is hard to test, our implementation of QuicConnection will
not interface with the underlying Socket instance directly. Instead, the imple-
mentation will provide an internal interface for exchanging the datagrams to be
sent/received. The actual sending of these datagrams will be handled by a sep-
arate class named QuicSocketContext. By separating the socket I/O from the
connection logic implementation, we can write unit tests that inspect the sent
datagrams and assert that their content conforms to the protocol specification.

On the server’s side, the QuicSocketContext class will also handle any state-
less packet processing, such as sending Retry and Version Negotiation packet. It
will be also responsible for matching packets to the appropriate QuicConnection
instances and queueing new connections to QuicListener to be read by the ap-
plication. Figure 3.1 illustrates the relationship between QuicSocketContext,
QuicConnection and QuicListener classes.

Server Client

QuicSocket
Context

QuicSocket
Context

Socket

Network

QuicConnectionQuicListener

Socket

Background
processingBackground

processing
New

connections

Application codeApplication code

QuicConnectionQuicConnectionQuicConnection

Figure 3.1: High-level background processing architecture.

3.4.1 Servicing the Socket
The QuicSocketContext class will implement the necessary background process-
ing management. Its responsibilies are:

• routing incoming datagrams from Socket to the proper QuicConnection
instance;

• calling timeout handlers after a timeout set by the connection expires; and
1In order to reduce verbosity, this text will be using the term thread to mean both a dedicated

Thread instance or a Task running on a thread-pool thread.
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• sending outgoing datagrams provided by the QuicConnection.

For performance reasons, it may be better to process timeouts and send the
datagrams using one thread and process received datagrams using another thread.
However, the cost of synchronization of the shared state may outweigh the per-
formance gain. Our prototype implementation will use a single thread to service
both types of events but will allow for the possibility of future experimentation
with separate threads for sending and receiving.

Processing Multiple Connections in Parallel

For client connections, the background processing provided by the QuicSocket
Context class needs to service only a single connection. However, on the server’s
side, there can be multiple connections receiving datagrams from the same socket
and, therefore, being served by a single QuicSocketContext instance. Servicing
multiple QuicConnection instances by only one thread could limit the server’s
throughput.

In order to allow processing multiple QUIC connections in parallel, our im-
plementation will use a dedicated background Task for each QuicConnection
instance. Our implementation separates the per-connection logic into separate
QuicConnectionContext class. The QuicSocketContext class will be directly
responsible only for stateless packet processing like sending a Version Negotia-
tion packet for incoming packets with unsupported versions. Packets belonging
to existing connections will be queued for processing by the appropriate Quic
ConnectionContext instance using the Channel<> class which provides efficient
implemntation of a producer-consumer queue. A possible runtime structure of
the QuicSocketContext servicing two separate connections is illustrated in Fig-
ure 3.2. The two QuicConnectionContext instances are serviced by separate
dedicated threads. The QuicSocketContext itself does not need a dedicated
thread. Instead, its logic is performed in whatever thread that completes the
pending asynchronous socket receive call.
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Figure 3.2: Architecture of the server-side background processing.
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Future Support for Connection Migration

Lastly, we need to review the architecture for possible support for the connec-
tion migration feature. Thanks to the QuicConnectionContext not depending
directly on a particular Socket instance, it is conceivable that a single Quic
ConnectionContext instance could be part of two QuicSocketContexts — one
for the old endpoint address, and the other for the new one. Use of the Channel
<> class already ensures that the incoming datagrams could be queued concur-
rently by both QuicSocketContext instances. The only modification needed on
the architecture level would be allowing the QuicConnectionContext to select
the right Socket from which the outgoing datagrams should be sent.

3.4.2 Public API Threading model
The target API uses the ValueTask type designed for efficient asynchronous meth-
ods. The user code will start an asynchronous operation that can be completed
by a background thread servicing the connection. This way, the user code cannot
block the connection’s background thread, which could otherwise cause timeouts
to be missed.

The QuicConnection can be potentially used in a multithreaded environment,
and the implementation should allow concurrent usage of QuicConnection and
QuicStream classes when it makes sense. For example, it makes sense for an
application code to process each QuicStream in a different thread. However, it
does not make sense to concurrently write into one QuicStream from two threads
without any synchronization. Our implementation will, therefore, provide the
following thread-safety guarantees for the API:

• Individual streams can be used concurrently from different threads. How-
ever, each direction of the stream (reading and writing) can be accessed
only by one thread at a time and must be, therefore, synchronized.

• Accepting/opening new streams on a connection can be done concurrently
from multiple threads.

• All other operations on QuicConnection must be synchronized, including,
e.g., starting and aborting the connection.

3.5 Packet Serialization/Deserialization
Special care needs to be taken when implementing the QUIC packets’ serialization
to the wire format. Inefficient data representation can negatively impact overall
performance because processing individual QUIC packets and frames will likely
be a hot path in the implementation. The packet and frame representation should
be, therefore, carefully designed to avoid allocations.

The incoming packets can contain arbitrary encoding errors that should be
handled efficiently and gracefully, i.e., without throwing exceptions. Possible
errors include values being outside of the range of allowed values and incomplete
or damaged packets.
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3.5.1 QUIC Packet and Frame Representation
Some packets contain many fields. Therefore, passing them around as individual
variables would make the implementation harder to maintain. The QUIC frames
form coherent messages that should be represented by individual .NET types.
This gives us also an opportunity to keep the serialization and deserialization
code next to each other, making it easier to ensure that, e.g., the order of the
serialized fields matches in both methods.

Representing QUIC frames as individual classes would introduce many heap
allocations for every received QUIC packet. This thesis, therefore, will model
QUIC frames and the QUIC packet headers as value types. Also, the payload of
some frames may consist of large blocks of memory. Examples include STREAM and
CRYPTO frames, which can fill the entire payload of the QUIC packet. Duplicating
this block of memory into a separate byte[] would be another unnecessary mem-
ory allocation. .NET Core 2.1 introduced the Span<T> type, which can be used
to efficiently reference an arbitrary memory block, including memory allocated
on the stack using the stackalloc keyword.

The Span<T> type is a ref struct — a special kind of value type which can
be stored only in local variables or inside another ref structs. Limitations on
the usage of ref structs also forbid their use as generic type arguments, e.g.,
for Func<> and other generic delegates. This limitation is acceptable for Quic
Connection implementation because the QUIC frames can be processed one after
another right after being deserialized from the QUIC packet.

3.5.2 QuicReader and QuicWriter
Both serialization and deserialization require maintaining the current position in
the buffer being read from or written into. In order to simplify the serialization or
deserialization code, our implementation introduces QuicReader and QuicWriter
classes as a primary means of reading and writing QUIC primitives to memory.
We have chosen QuicReader and QuicWriter to be reference types allocated on
the heap, because we expect to cache and reuse their instances multiple times.

The QuicReader and QuicWriter classes also take care of converting the
endianity of the data between big-endian used by QUIC and the endianity used
by the machine running the application. This is done by forwarding the calls to
respective methods on the BinaryPrimitives class.

3.6 Stream Implementation
QUIC is a transport protocol. Therefore, its entire purpose is transferring streams
of data. Since it is likely to be the hot path of the implementation, the internal
handling of stream data must be efficient and avoid unnecessary copying of stream
data blocks.

QUIC recognizes four types of streams. These streams can have a sending
part, receiving part, or both. The fact which endpoint initiated the stream con-
trols only which flow control limits apply to that stream. Otherwise, all streams
are handled equally. As mentioned in section 2.5.1, bidirectional streams can
be implemented as two unidirectional streams. Therefore, our implementation
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will divide the QUIC stream logic into SendStream and ReceiveStream classes,
which will handle the sending and receiving behavior of the stream.

3.6.1 Receiving Part of the Stream

The implementation of ReceiveStream must buffer the received data before de-
livering them to the application in case the data are received out-of-order. It also
needs to track the amount of buffered memory and how much data was delivered
to the application in order to correctly update flow control limits for the peer.

Stream Data Buffering

Ideally, the stream implementation would be structured so that the stream data
were copied straight from the decrypted packet to the memory provided by the
application. This would be possible if the API used an event-based model with
callbacks for incoming data. However, the current API design utilizes a method-
based model of the Stream abstraction. If the application does not call the Read
or ReadAsync method, there is no application buffer to deliver into.

This implies that in order to avoid intermediate copies of the stream data,
the buffer holding the QUIC packet in which the stream data arrived cannot
be reused to receive other QUIC packets until the contained stream data are
delivered to the application. Tracking which buffers can be reused for receiving
the following QUIC packets can be complicated because QUIC packets can carry
multiple STREAM frames.

We believe that the implementational complexity of avoiding intermediate
copies outweighs the possible performance gain. For this reason, our pilot im-
plementation will use a two-copy approach: the first copy from the packet into
an intermediate buffer, the second copy from the intermediate buffer into the
destination memory provided by the application.

Packet Reordering and Data Deduplication

Unreliability of the UDP protocol can cause QUIC packets to be reordered, lost or
received multiple times. Because of that, sections of the stream may be received
multiple times, and the contents of STREAM frames can arbitrarily overlap.

Even though QUIC Flow control provides an upper limit on the data that
needs to be buffered at any given moment, allocating one large buffer may be a
waste of memory, as the entire buffer might not be needed at any given point in
time. Therefore, our implementation uses a list of smaller buffers and allocates
only the necessary number of buffers needed to buffer currently received data.
In order to reduce the pressure on the garbage collector (GC), buffers are reused
using the ArrayPool<byte> class to avoid their frequent allocation.

Reading Data by the Application

Because user code runs on a different thread from the internal QuicConnection
logic, access to the buffered data must be synchronized. Our implementation uses
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the Channel<> class, which provides an efficient implementation of the producer-
consumer queue with support for asynchronous operations using the ValueTask
<> type.

Each time data are received for the stream, the implementation checks if there
is a contiguous block of memory that could be delivered to the application. For
this reason, the implementation needs to keep track of the parts of the stream
which have already been received. If there is a new part of the stream that can be
delivered, a view into the relevant region of the buffer is queued into the Channel
<> using the Memory<byte> type.

Figure 3.3 illustrates how all parts of the ReceiveStream work together. The
data from the incoming STREAM frame are copied to the proper offset in interme-
diate buffers. These buffers are rented from an ArrayPool<byte> as needed. A
Memory<byte> instance providing a view into the newly deliverable parts of the
stream is then queued into a Channel<> instance for delivery. The application
thread retrieves the memory regions as needed and copies the data into the buffer
provided by the application. Once all data from an intermediate buffer are deliv-
ered, the intermediate buffer is returned to the ArrayPool<byte> to be reused
for buffering future data.

Application
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incoming QUIC Packet with
a STREAM frame

destination
buffer

thread
synchronization

boundary
Channel

reordering
buffers

rent

free space

byte[]
Memory<byte>

Data being delivered
Just received data

View into buffer

enqueue

dequeue

copy

copyQUIC Connection

ArrayPool<byte>return

Figure 3.3: Implementation of the receiving part of the stream

Flow Control Considerations

QUIC Flow control limits for streams specify the maximum offset of data that
an endpoint can send. An endpoint needs to update these limits by sending a
MAX_STREAM_DATA frame after the data are delivered to the application. However,
sending updated limits in every packet could waste space that could be used by
the application data. On the other hand, updating the limits too late could lead
to the other endpoint being blocked and signal the fact by sending a STREAM_-
DATA_BLOCKED frame. In such a state, the endpoint cannot send more application
data until it receives an update via MAX_STREAM_DATA frame.
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Our implementation will send a MAX_STREAM_DATA frame after the client uses
more than half of the limit provided since the last update. This should prevent
updates being too often and at the same time early enough that the sender does
not run out of flow control credit.

3.6.2 Sending Part of the Stream
The sending part of a QUIC stream must keep track of the state of all outbound
data on the stream. Any part of the stream can be lost during transmission,
requiring its retransmission, and any previously sent part of the stream can be
acknowledged.

Stream Data Buffering

Similarly to buffering received data, we will analyze how many times the out-
going data need to be copied before they are sent. The semantics of the Write
and WriteAsync methods on the Stream class are such that when the method
completes, the provided memory can be reused for other purposes.

In this case, a single-copy implementation approach would require that the
Write and WriteAsync methods complete after the peer acknowledges that the
data were received. In the best-case scenario where no packet loss occurs, this
approach implies a full round trip delay for calling either of the methods. This
approach would make the QuicStream implementation inconsistent with the other
network-enabled Stream implementations. Moreover, substantial time would be
spent waiting for acknowledgment instead of sending more data. In order to fully
saturate the available bandwidth, users of the QuicStream would have to either
provide very large data buffers or use the WriteAsync method and overlap its
execution by maintaining multiple outstanding ValueTasks.

In order to fit with the other Stream implementations, our implementation
will create an intermediate copy of the data, and the Write and WriteAsync will
complete once the data is internally buffered. This allows applications to queue
enough data to maximally utilize the connection’s bandwidth. In order to be
memory-efficient, our implementation will, as in ReceiveStream implementation,
use an ArrayPool<byte> to reduce the pressure on the garbage collector.

Acknowledgement, Loss, and Retransmission

Each byte that in the stream can be, conceptually, in three different states:

• Pending: The byte needs to be sent to the peer in some future STREAM
frame.

• In-flight: The byte has been sent, but it is uncertain if the containing packet
was received.

• Acknowledged: The packet containing the byte has been acknowledged by
the other endpoint. It is no longer necessary to buffer this byte.

The transitions between these states are straightforward. The data transition
from pending to in-flight by sending them in a STREAM frame. When the packet
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is deemed lost by the loss detection algorithm, the data transition back to the
pending state, and if the packet has been acknowledged, the data transition to
the acknowledged state. The state of the individual parts of the stream can be
tracked by maintaining three sets of ranges — starts and ends of the blocks of
data in the same state.

Writing Data by the Application

Similarly to the receiving part of the stream, our implementation will use Channel
<> type to provide synchronization with the application thread. However, since
Channel<> does not allow random access to the provided data, a separate list of
buffers is maintained for data which were sent but not yet acknowledged.

Figure 3.4 illustrates the process of writing data into the SendStream. The
application data are copied to an internal buffer. This buffer comes from a shared
ArrayPool<byte>. When the buffer is full or the stream is flushed, the buffer
is enqueued into the synchronization Channel<>. The background thread then
dequeues buffers from the Channel<> and appends them into a list of retrans-
mission buffers. Each time a new STREAM frame for this stream is written into a
QUIC packet, the earliest not-yet-sent data are selected and copied into the out-
going QUIC packet buffer. Once all data in a particular retransmission buffer are
acknowledged, the buffer can be removed and returned to the ArrayPool<byte>.
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Figure 3.4: Implementation of the sending part of the stream

3.6.3 Abort/Dispose Model for Streams
The QuicStream class implements the IDisposable interface which should pro-
vide automatic closing of the stream when QuicStream is used in a using state-
ment or using block. This implies resetting the writable part of the stream using
RESET_STREAM frame and requesting reset of the readable part of the stream using
STOP_SENDING frame.
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However, both these frames require an application-level error code. QUIC
specification does not define any transport-level error codes for these stream op-
erations and there is no way for the application to specify which error code should
be used. This has been established as a flaw of the current API and is expected
to change in future iterations design iterations [26].

Leaving IDisposable unimplemented would be misleading to users in the
prototype implementation. Therefore, our implementation will deviate from the
specification by using error code 0 regardless of its semantics in the application
protocol, unless the stream has been explicitly closed by the application using
the AbortRead or AbortWrite methods.

Another area where the QUIC API is not well defined is the behavior of
pending AcceptStream calls on QuicConnection when the connection is closed.
In case the connection has been closed gracefully from the application protocol’s
perspective, it would be better if this method did not throw an exception but
returned null reference. However, the semantics of the error codes are defined
by the application protocol and, therefore, the QUIC implementation cannot
distinguish between graceful or abortive connection close. Until the behavior of
these methods in such scenarios is better defined, our implementation will throw
QuicConnectionAbortedException for all pending async calls.

3.7 TLS Implementation
TLS handshake forms an integral part of the QUIC connection establishment.
Because correct TLS implementation is crucial for ensuring the security of the
resulting implementation, this thesis should avoid implementing TLS algorithms
by itself. Instead, it should reuse some existing and well-tested implementation.

The novel way QUIC integrates with TLS requires a specific API from the TLS
implementation. Below is a non-exhaustive list of operations the TLS library’s
API must provide:

• Querying the current state of the handshake

• Retrieving both the application-level secrets and secrets used to protect the
handshake process

• Retrieving raw, unencrypted TLS messages to be sent to the other endpoint

• Obtaining the negotiated cipher

• Specifying protocols used for ALPN

• Specifying a custom TLS extension in order to exchange QUIC transport
parameters

The .NET runtime libraries use different native libraries to provide TLS
functionality on different operating systems. On Windows, .NET uses Secure
Channel [27] (Schannel for short) which is part of the Windows operating sys-
tem. On Linux and macOS systems, the OpenSSL library [28] is used.
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Secure Channel
The Schannel versions present in the latest Windows 10 builds support
only TLS 1.2. However, future updates will also implement TLS 1.3. A
preview of the Schannel with TLS 1.3 support can be obtained by installing
an Insider build of Windows 10. Because MsQuic uses the Schannel library
when compiled for Windows, we assume that Schannel exposes the API
necessary for a QUIC implementation.

OpenSSL
None of the mainstream versions of OpenSSL library expose necessary API
for integration into QUIC, and there are no plans to include such API in the
next OpenSSL 3.0.0 release [29]. However, developers at Akamai maintain
a fork of OpenSSL which adds the QUIC-enabling API [30]. This modified
version of OpenSSL is used by MsQuic (in Linux builds) and some other
QUIC libraries like quiche from Cloudflare [31]. Akamai’s changes may
be merged into OpenSSL for the following 3.1.0 or later releases.

In conclusion, the APIs required for our QUIC implementation are currently
only accessible in only the preview versions of Windows 10. Relying solely on
Schannel for TLS 1.3 support would severely impact cross-platform availability
of our prototype implementation. We have, therefore, decided to integrate with
the modified OpenSSL library which supports all platforms supported by .NET.
This solution, however, has some drawbacks:

• The modified OpenSSL binary must be present on the machine running our
QUIC implementation. This implies that the library must be compiled from
source beforehand for the target machine because pre-built binaries for the
modified library are not available.

• Only a limited integration with X.509 certificates is possible because the
X509Certificate class implementation will be using a different binary —
CryptoAPI on Windows, unmodified OpenSSL on Linux and macOS.

These drawbacks are acceptable for the prototype implementation and will be
eliminated once the support for QUIC is released in mainstream versions of the
OpenSSL and Schannel libraries.

3.8 Packet Protection
As described in section 2.8.2, the packet encryption process consists of two phases
— payload protection and header protection. The combined process requires the
following inputs:

• Protection keys derived using the process explained in section 2.8.2

• Negotiated cipher

• Packet number (for encryption), or expected packet number (for decryption)

• The QUIC packet to encrypt or decrypt
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The cipher is negotiated once and cannot be changed during the lifetime of the
connection. Protection keys can be changed only for the 1-RTT packets using the
process of key update (see section 2.8.2), which can be expected to be relatively
infrequent. The rest of the inputs change with every packet. Therefore, our im-
plementation encapsulates the packet protection implementation in a CryptoSeal
class, which does not depend on the rest of the QUIC implementation.

The process of receiving packets requires intermediate validation of the header
fields. The individual steps — header protection and payload protection — must
be, therefore, exposed separately. Also, the encryption and decryption should
happen in-place to avoid unnecessary allocations and copying of the packets.

Important consideration needs to be made for performing the actual encryp-
tion/decryption once all inputs to AEAD have been gathered. .NET does not
contain an implementation of the CHACHA family of ciphers. Fortunately, the
OpenSSL library can be configured to not allow this cipher to be negotiated and,
therefore, our prototype can work without the CHACHA cipher support.

The other ciphers are based on the AES family of ciphers, which are sup-
ported by .NET. However, individual classes implementing these ciphers do
not share a common base class or interface. Therefore, our implementation
wraps the concrete AES implementations in classes derived from an abstract
CryptoSealAlgorithm class which defines a common interface required by the
CryptoSeal class. Figure 3.5 illustrates how the CryptoSeal and CryptoSeal
Algorithm classes are connected.

CryptoSeal

- ProtectHeader()
- UnprotectHeader()
- ProtectPayload()
- UnprotectPayload()

CryptoSealAlgorithm

- Protect()
- Unprotect()
- CreateHeaderProtectionMask()

CryptoSealAesCcmCryptoSealAesGcm CryptoSealChaCha

Figure 3.5: Relationship between CryptoSeal and CryptoSealAlgorithm classes

The key update operation can be implemented by replacing the existing in-
stance of the CryptoSeal class with a new one with the updated protection keys.

3.9 Loss Detection and Loss Recovery
In order to detect lost packets and retransmit any lost data, the QuicConnection
implementation must keep track of which data have been sent in which packets
and the timestamp when the packet was sent for timeout detection. Our im-
plementation will encapsulate this information and the loss detection algorithm
in a dedicated RecoveryController class, which does not depend on the Quic
Connection class. This way, its implementation can be unit tested separately
from the rest of the connection logic.
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Another responsibility of the RecoveryController class is maintaining the
congestion window. Although the specification defines only a single algorithm
for congestion control based on TCP NewReno [20, Section 7], there are already
experiments with other algorithms like HyStart++ and CUBIC [32]. The ability
to support multiple such algorithms could provide an opportunity for future ex-
perimentations. For that reason, the RecoveryController will use the strategy
pattern [33] to allow choosing the congestion control algorithm at runtime.

3.10 Automated Testing
It is necessary to implement automated tests that assert that the implementation
conforms to the QUIC protocol specification. Additionally, the public API makes
use of existing concepts, namely the Stream abstraction for QUIC streams, and
thus it is necessary to ensure that QuicStream conforms to the expected Stream
behavior.

The .NET runtime repository into which we wish to integrate our QUIC im-
plementation uses the xUnit testing framework [34]. The xUnit framework is
one of the most mature testing frameworks for .NET. Therefore, we will use it
as well for writing tests for our implementation.

3.10.1 Testing the QUIC Protocol
The QUIC protocol specification [18] mostly specifies the protocol behaviors in
terms of what endpoint may or may not send in specific scenarios. This implies
that the correctness of the implementation as a whole can be tested by inspecting
the contents of the generated UDP datagrams.

Because our implementation separates QUIC connection logic from the socket
IO, the unit tests can be written against the internal QuicConnection API. Ex-
change of QUIC packets between two QuicConnection instances can be simulated
by the unit testing code. An advantage of using this internal API is that the unit
tests can be written as single-threaded — without any background processing
thread which could introduce nondeterminism to the tests. However, in order to
make the tests completely deterministic, the testing code also must be able to
control the exact timing of events. In order to achieve that, our QuicConnection
implementation will not obtain the current timestamp directly, e.g., by calling
the Stopwatch.GetTimestamp() method. Instead, the current timestamp will
be provided as an argument to the internal API, either by the QuicConnection
Context class or the unit testing code.

Testing Harness

A large number of the unit tests will consist of inspecting contents of the QUIC
packets exchanged between a pair of QuicConnection instances or checking the
internal state of a connection after a particular packet exchange. However, cor-
rectly implemented QuicConnection will never violate the protocol and, there-
fore, additional logic is required to test error conditions.

In order to test the behavior in erroneous conditions, the testing code needs to
be able to either compose an invalid packet to be sent or intercept a valid packet
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and modify it to elicit an error response. However, doing this is difficult for two
reasons:

• All packets are encrypted and protected against modification. The test-
ing code must first retrieve the correct CryptoSeal from the sender Quic
Connection instance and unprotect the packet. After any modification, the
encryption must be reapplied.

• Modifying a particular QUIC frame may change the encoded frame’s size
because of the variable-length encoding used (see section 2.1.3). If the size
of the QUIC frame changes, then all following frames must be shifted, and
the Length field in the packet header must be adjusted.

Doing this manually would make unit testing function very verbose and make
the code hard to understand. To keep the tests concise and easy to understand, we
will implement a testing harness which will provide the functionality mentioned
above via a set of helper methods. These methods will provide a declarative way
to specify what the QUIC packet or datagram must contain and register callbacks
for packet modification to elicit error responses.

Listing 3.1 shows an example how the desired testing harness would be used in
conjunction with xUnit testing framework to test if the first UDP datagram sent
by the client has the correct size2. The GetDatagramToSend method will get the
next UDP datagram to be sent and present it in a structured manner. Later, the
ShouldHaveFrame<TFrame> method will internally check if a frame represented
by TFrame type is present in the packet and will invoke the provided callback for
further assertions.

Listing 3.1: Example unit test inspecting QUIC packets contents.

1 [Fact]
2 public void ClientInitialDatagramHasInitialPacketWithCryptoFrame()
3 {
4 var datagram = GetDatagramToSend(Client);
5 Assert.Equal(
6 QuicConstants.MinimumClientInitialDatagramSize,
7 datagram.Size);
8

9 var initial = Assert.IsType<InitialPacket>(
10 Assert.Single(datagram.Packets));
11 Assert.Equal(0, initial.PacketNumber);
12

13 initial.ShouldHaveFrame<CryptoFrame>(crypto =>
14 {
15 Assert.Equal(0, crypto.Offset);
16 Assert.NotEmpty(crypto.CryptoData);
17 });
18 }

However, in section 3.5.1, we mentioned that the types representing QUIC
frames must be ref structs in order to contain Span<T> instances, and that

2As part of the prevention against traffic amplification attacks, all UDP datagrams contain-
ing an Initial packet sent by client must be larger than 1200 bytes [18, Section 8.1].
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ref structs cannot be used as type arguments for generic classes or methods.
This could be overcome by using Memory<T> instead of Span<T>, but the use of
structs for frame types still poses a problem for modification of the QUIC frames
by a callback.

Structs are normally passed by value; therefore, the callback would either have
to accept the frame by reference using the ref keyword or return the modified
frame as the return value. Neither of these solutions is perfect. Parameters types
with ref modifiers cannot be inferred for lambdas and need to be stated explic-
itly, and having to return the modified frame is unintuitive for non-modifying
callbacks. Furthermore, structs representing QUIC frames should be preferably
made readonly to allow more compiler optimizations, so modifying the frame
would require creating a new instance of the frame, overwriting the old value.

For the above reasons, we decided to duplicate the types for frame represen-
tation using mutable classes. This duplication will allow expressing the unit
tests in a succinct, natural declarative manner. This is illustrated in the test in
Listing 3.2 which uses an Intercept1RttFrame<TFrame> method to intercept a
frame of type TFrame and modify it. In this case, we shift the range of acknowl-
edged packets by one and, by doing so, simulate acknowledging a packet that the
server has not sent yet, which is a violation of the protocol which should result
in connection termination via a CONNECTION_CLOSE frame.

Listing 3.2: Example unit test simulating error conditions.

1 [Fact]
2 public void ConnectionCloseWhenAckingFuturePacket()
3 {
4 // ... setup ommited for brevity
5

6 Intercept1RttFrame<AckFrame>(Client, Server, ack =>
7 {
8 // ack one packet more than originally intended
9 ack.LargestAcknowledged++;

10 });
11

12 Get1RttToSend(Server).ShouldHaveFrame<ConnectionCloseFrame>(f =>
13 {
14 Assert.Equal(TransportErrorCode.ProtocolViolation, f.ErrorCode);
15 Assert.Equal(FrameType.Ack, f.ErrorFrameType);
16 Assert.Equal(QuicError.InvalidAckRange, f.ReasonPhrase);
17 });
18 }

3.10.2 Testing the Public API

The .NET runtime repository already contains a suite of tests used to test the
MsQuic -based QUIC implementation. Another large separate suite of tests ex-
ists for ensuring that all Stream implementation behave consistently. All these
tests can be used to ensure that our implementation of QuicListener, Quic
Connection, and QuicStream classes conforms to the public API specification.
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3.11 Diagnostics
QUIC is a very complex protocol, and bug investigation can be complicated. By
stopping the application on a breakpoint, the developer inadvertently changes the
application’s behavior. Extended pauses for inspecting internal connection state
make the implementation miss important timeouts, possibly leading to connection
being closed due to the idle timeout. This makes interactive debugging of issues
which span multiple roundtrips almost impossible.

There are two possible ways of gaining better insight into the connection’s
behavior — externally inspecting the packets sent over the network and producing
verbose logs (called traces) by the implementation.

3.11.1 Inspecting the Sent Packets
Inspecting the connection behavior by observing the packets sent over the network
is a non-invasive way of diagnosing issues in any networking protocol. An example
of a tool that can be used for this task is Wireshark [35], which also supports
QUIC.

However, since QUIC is always encrypted, inspecting QUIC packets via Wire-
shark is not as straightforward as for other network protocols like plain TCP.
Implementations must leak the encryption secrets used in the connection, e.g.,
into a log file, and these keys must be provided to Wireshark to enable decrypting
the packets. While this approach is relatively simple to implement, it provides
little concrete information about the internal state of the connection. The de-
veloper must infer the internal connection state from his knowledge about the
implementation and the contents of the captured QUIC packets.

3.11.2 Producing Traces from the Connection
A better insight into the connection’s behavior can be gained by emitting verbose
logs that can be later analyzed. However, such traces can consist of thousand lines
of output which may be difficult to read and reason about. Fortunately, there are
tools which can visualize individual events in the connection in a graphic format
that is easier to understand. One of these tool is qvis [36] which is part of the
quiclog suite [37]. The qvis tool consumes logs in a JSON format, which can be
produced directly or generated from implementation-specific log format or even
from generated from network traffic captured using Wireshark, provided that the
encryption secrets used in the connection are known.

For our implementation, we have decided to keep the tracing implementation
simple by directly emitting traces in the JSON format which can be directly
consumed by the qvis tool without any further conversions. However, serializing
packet information into JSON format is likely to incur noticeable overhead and,
therfore, a better logging format should be considered for future development.

3.12 Integration into .NET Runtime Codebase
The work of this thesis aims to be eventually mergeable into the .NET run-
time codebase. As of writing this thesis, there already exists a project for Sys-
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tem.Net.Quic.dll. Therefore, the source code may be placed there directly without
additional changes.

There is, however, the issue with the OpenSSL dependency. The OpenSSL
library is written in C and must be compiled for the target machine. Integrat-
ing the OpenSSL compilation into the .NET runtime build process would impose
additional requirements for the .NET runtime compilation. The additional de-
pendencies would complicate building the .NET runtime as part of the continuous
integration process. For this reason, it is necessary to provide also a mock TLS
implementation that would be used in automated tests as part of continuous
integration.

The mock TLS implementation can also be used locally to avoid building the
OpenSSL dependency. The only limitation of the mock TLS implementation is
that it does not allow interop with other QUIC implementations.
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4. Developer Documentation
The Managed QUIC implementation developed in this thesis is contained in a fork
of the official .NET runtime repository. The source code of this fork is attached
in src/dotnet-runtime/ directory in the thesis attachments.

The documentation inside the .NET runtime repository contains detailed
workflow instructions necessary for the development of the .NET runtime. These
instructions list the necessary prerequisites and explain how to build the prod-
uct and run unit tests. The workflow instructions’ top-level file is located at
docs/workflow/README.md.

This chapter will focus on the System.Net.Quic library, which contains the
QUIC protocol implementation. The source code for this library is located
inside the src/libraries/System.Net.Quic/ directory inside the .NET run-
time codebase. The directory listing in Listing 4.1 shows the structure of the
System.Net.Quic project directory. The listing also emphasizes the Managed
and UnitTests directories, which contain the code developed as part of this the-
sis. These directories are the main focus of this chapter.

Listing 4.1: Directory structure of the System.Net.Quic project. Emphasised
items contain the implementation developed in this thesis.

src/dotnet-runtime/src/libraries/System.Net.Quic/
ref.......................................................Refererence assembly code
src.........................................................Main library source code

Resources
Strings.resx............Definition of localizable strings like exception messages.

System
Net

Quic
Implementations..............Root directory for all QUIC implementations

Managed .............................This thesis’ implementation sources
MsQuic............................MsQuic -based implementation sources
Mock.............................Mock implementation used only in tests

Interop...................................... Imports from native libraries
System.Net.Quic.csproj

tests ...................................................... Library tests source code
certs...............................................X.509 certificates used in tests

cert.crt..................................................Public certificate file
cert.key ....................................................... Private key file

FunctionalTests.....................................Tests against the public API
System.Net.Quic.Functional.Tests.csproj

UnitTests .....................................Managed implementation unit tests
System.Net.Quic.Unit.Tests.csproj

Directory.Build.props
System.Net.Quic.sln
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4.1 QUIC Implementation Providers
The System.Net.Quic project internally contains an infrastructure for switch-
ing between multiple implementations of the QUIC protocol. The API classes
themselves are sealed but they delegate all methods to polymorphic implementa-
tion providers. Each QuicListener, QuicConnection, and QuicStream instance
contains a reference to a QuicListenerProvider, QuicConnectionProvider, or
QuicStreamProvider instance, respectively. Implementations of each provider
are provided by each QUIC implementation in the System.Net.Quic library.
Figure 4.1 illustrates this indirection layer using a class diagram.

Public Internal

QuicListener QuicListener
Provider

Managed
QuicListener

MsQuicListener

QuicConnection QuicConnection
Provider

Managed
QuicConnection

MsQuicConnection

QuicStream QuicStream
Provider

Managed
QuicStream

MsQuicStream

QuicImplementation
Provider

Managed
QuicImplementation

Provider

MsQuicImplementation
Provider

Class

Class

Class

Class

Public API

Managed implementation
MsQuic implementation
Abstract class

Inheritance
Association

Figure 4.1: Implementation providers for the QUIC API classes

The infrastructure implements the abstract factory pattern [38]. New in-
stances of QuicListenerProvider and QuicConnectionProvider are created
by concrete implementations of the QuicImplementationProvider class. The
singleton instances of QuicImplementationProvider class implementations are
exposed as static properties on the QuicImplementationProviders static class.

There were two pre-existing QuicImplementationProviders in the System.
Net.Quic project. Implementation of these two providers is not the primary
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focus of this text and, therefore, this text will not provide further details on these
providers:

• MsQuic: QUIC implementation backed by MsQuic native library

• Mock: A mock QUIC implementation for use in tests

As part of this thesis, we implemented the following two new providers:

• Managed: Managed implementation with TLS backed by OpenSSL fork with
QUIC enabling API.

• ManagedMockTls: Managed implementation with mock TLS implementa-
tion, which does not depend on external libraries, but cannot interoperate
with other QUIC implementations.

Additionally, there is the Default provider. This provider can be influ-
enced by setting the DOTNETQUIC_PROVIDER environment variable to the desired
provider name. If the environment variable is not set, then the Managed provider
is used.

The QuicListener and QuicConnection classes have a constructor overload
which accepts an instance of the QuicImplementationProvider to be used. This
way, the QUIC implementation can be selected during runtime. This also allows
reusing a suite of functional tests for all implementations by simply changing the
implementation provider.

4.2 Managed QUIC Implementation Overview
The source code for the managed implementation developed in this thesis is
located under the System.Net.Quic/src/System/Net/Quic/Implementations/
Managed/ subdirectory. Listing 4.2 outlines the directory structure of the imple-
mentation.

Listing 4.2: Directory structure of the managed QUIC implementation

System.Net.Quic/src/System/Net/Quic/Implementations/Managed
Internal.........................................Internal code of the implementation

Crypto....................................................Cryptographic facilities
Frames.................................................Definition of QUIC frames
Headers ........................................ Definition of QUIC packet headers
Packets ..................................... QUIC packet number spaces handling
Parsing...............................................Parsing of QUIC primitives
Recovery..............................................Loss detection and recovery
Sockets.......................................................Servicing socket IO
Streams ......................................................... Stream buffering
Tls...............................................................TLS integration

Mock.................................................Mock TLS implementation
OpenSsl..............................................OpenSSL TLS integration

Tracing..............................................Tracing and logging facilities
ManagedQuicConnection.cs............................Implementation of public API
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ManagedQuicConnection.Frames.cs.......................Processing of QUIC frames
ManagedQuicConnection.Packets.cs.....................Processing of QUIC packets
ManagedQuicConnection.Recovery.cs...........................Handling packet loss
ManagedQuicConnection.Stream.cs.............................Stream management
ManagedQuicImplementationProvider.cs............Abstract factory implementation
ManagedQuicListener.cs.............................. Implementation of public API
ManagedQuicStream.cs.................................Implementation of public API

The implementation is exposed using the ManagedQuicListener, Managed
QuicConnection, ManagedQuicStream implementation provider classes and the
ManagedQuicImplementationProvider factory. The source code for these classes
can be found in the root directory of the implementation.

The high-level architecture has been described in section 3.4. This and fol-
lowing sections will provide further implementation details. The class diagram
in Figure 4.2 shows the releationship between the key architecture classes which
were also mentioned in Figure 3.1 and Figure 3.2. These classes are:

• ManagedQuicConnection: Implementation provider for QuicConnection.
Implements stateful connection logic.

• ManagedQuicListener: Implementation provider for QuicListener. Main-
tains a queue of incoming connections to be accepted by the application.

• QuicConnectionContext: Class hosting the background thread for ser-
vicing a single ManagedQuicConnection, including timeout expiration and
sending or receiving UDP datagrams with QUIC packets.

• QuicSocketContext: Abstract class handling basic sending and receiving
of UDP datagrams, base class for QuicClientSocketContext and Quic
ServerSocketContext.

• QuicServerSocketContext: Implements server-side stateless UDP data-
gram processing and dispatch of incoming UDP datagrams to appropriate
QuicConnectionContext instance.

• QuicClientSocketContext: Implements client-side QuicSocketContext
behavior, passing all packets to a single single QuicConnectionContext.

QuicListener
Provider

Managed
QuicListener

QuicConnection
Provider

Managed
QuicConnection

QuicStream
Provider

Managed
QuicStream

QuicSocket
Context

QuicClient
SocketContext

QuicServer
SocketContext

QuicConnection
Context

Class

Class

Class
Abstract class

Association (single)
Inheritance

Association (multiple)

Socket

Figure 4.2: Relationship between key classes of managed QUIC implementation
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4.3 Supporting Data Structures
The QUIC implementation requires a few specialized data structures for internal
implementation.

4.3.1 RangeSet
Efficient representation of ranges of acknowledged packet numbers and main-
taining information about which parts of the QUIC stream have been sent or
acknowledged require a data structure capable of efficiently performing set oper-
ations on ranges of integers. The RangeSet class represents such a set.

It is expected that the number of ranges in one RangeSet instance will be
relatively small. Therefore, our implementation uses a List<T> instance to store
individual ranges which are sorted in ascending order. The ranges themselves are
represented by RangeSet.Range struct which contains the first and last element
represented by the range.

4.3.2 PacketNumberWindow
The PacketNumberWindow class is used to test if QUIC packet with the given
packet number has already been received. Internally, it contains two 64-bit ulong
fields: a bitmask marking the received packet numbers and the offset of the
window. All packet numbers above the window are considered not received, and
all packet numbers below the window are considered received. Packet numbers
inside the window are considered received if the corresponding bit is set to 1.
When a new packet number is received, the window is shifted, if necessary, and
the corresponding bit is set. This allows tracking 64 consecutive packet numbers
at any given moment with very low overhead.

Figure 4.3 illustrates the concept with an smaller 8-bit window. Figure 4.3a
shows the state of the PacketNumberWindow after receiving packets 0–5. When
packet 11 is received, the window is shifted by 4 and the highest bit — which
now corresponds to the packet number 11 — is set to 1, as shown in Figure 4.3b.
Figure 4.3c shows the state of the window when packet 15 is received next. The
window needs to be shifted by another 4 bits, moving unreceived packet numbers
6 and 7 outside the window (marked by red color in the figure).

offset = 0 ...0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
(a) State after receiving packets 0–5

offset = 4 ...0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1
(b) State after receiving packet 11

offset = 8 ...0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1
(c) State after receiving packet 15

Figure 4.3: Maintaining window of received packet numbers

The packet numbers marked in red in Figure 4.3c demonstrate that the data
structure may falsely label some old packet numbers as already received. In
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such a case, the packets are simply discarded by the ManagedQuicConnection
implementation. This may be acceptable for the following reasons:

• The discarded packet will not be acknowledged, and the data will, therefore,
be eventually retransmitted in some other packet. The only possible harm
to the connection will come in the form of degraded performance because
the other endpoint will interpret it like a packet loss and will reduce his
congestion window.

• For a packet N to be falsely discarded in this way with a 64-bit packet
window, it must have been delayed long enough for packet N + 64 or newer
to be received first.

• Even if we used an exact method to track received packet numbers and
correctly received packet N , it is almost sure that it already was or will
be marked as lost on the sender’s side. This is because, by that point, an
acknowledgment had already been sent for packet N + 3 or higher, which
will cause the packet to be considered lost due to the packet reordering
threshold1.

Returning to the situation illustrated in Figure 4.3. When packet 11 is re-
ceived (Figure 4.3b), an acknowledgment is immediately sent. Once the sender
receives the acknowledgement — which may be before or after the situation from
Figure 4.3c — it will mark packets 6 and 7 as lost and resend the data in some
future packets.

4.4 ManagedQuicConnection Implementation
The ManagedQuicConnection class implements the stateful QUIC connection
logic, which makes up most of the managed QUIC implementation. The source
code of the ManagedQuicConnection class is separated by area into multiple files,
as outlined previously in Listing 4.2:

• Public API: Implementation of the public API methods inherited from the
QuicConnectionProvider class.

• Packets: Processing individual QUIC packets, applying and removing the
packet protection, generating packets to be sent.

• Frames: Processing individual QUIC frames and generating frames for out-
going packets.

• Stream: Management of created QUIC streams and flow control limits.

• Recovery: Tracking of sent QUIC packets, handling of acknowledgments
and packet loss. Congestion window management.

The following subsections describe the major parts of the implementation.
1Receiving an acknowledgment for packet N will mark all packets N −

kReorderingThreshold or lower as lost. The QUIC specification recommends value 3
for the kReorderingThreshold constant. The QUIC loss detection algorithm has been
described in greater detail in section 2.7
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4.4.1 Integration with Socket Management
The ManagedQuicConnection implementation is separated from socket IO man-
agement. Also, to allow for deterministic unit testing, the implementation does
not maintain an internal timer that would automatically invoke some logic on
expiration. Instead, all interactions with a Socket are driven externally by a
QuicConnectionContext class that maintains a background processing thread
for handling timeouts and sending and receiving QUIC packets. The interface
used by QuicConnectionContext consists of following members on ManagedQuic
Connection:

QuicConnectionState ConnectionState { get; }
The current state of the connection. Used to detect transitions to, e.g.,
connected state or closed state.

void SendData(QuicWriter, out EndPoint, QuicSocketContext.SendContext)
Allows the connection to write a UDP datagram into the QuicWriter in-
stance and specify the EndPoint to which the UDP datagram should be
sent. The SendContext instance contains additional data like the current
timestamp.

void ReceiveData(QuicReader, EndPoint, QuicSocketContext.RecvContext)
Processes a datagram from the provided QuicReader instance. The Recv
Context instance contains additional data like current timestamp.

long GetNextTimerTimestamp()
Retrieves the timestamp when the next internal timer of expires. Examples
of such timers are loss detection timer, draining timer before closing the
connection, or pacing timer, which evens out the outbound packet flow.
When the timer expires, the ManagedQuicConnection instance may have
more data to send.

The value of GetNextTimerTimestamp is then used to suspend the background
processing thread in order not to consume CPU resources. The background pro-
cessing thread waits until either the timer expires or until a new QUIC packet
arrives. However, some application code actions like writing data to stream re-
quire interrupting the wait. This is achieved by calling the QuicConnection
Context.WakeUp() method from the ManagedQuicConnection.

4.4.2 Managing Packet Number Spaces
The ManagedQuicConnection class maintains an internal array of three Packet
NumberSpace instances which encapsulate all state relevant for individual packet
number spaces. The data maintained in the PacketNumberSpace include:

• next packet number to be sent,

• PacketNumberWindow of received packet numbers,

• largest received packet number and timestamp when the packet was re-
ceived,
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• RangeSet of received packet numbers that are not yet acknowledged,

• whether an ack-eliciting packet was received and an ACK needs to be sent,

• CryptoSeal instances for protecting and unprotecting QUIC packets, and

• SendStream and ReceiveStream for buffering cryptographic data from TLS
to be sent in CRYPTO frames.

The data in PacketNumberSpaces is updated by the ManagedQuicConnection
each time a QUIC packet is sent or received.

4.4.3 Packet Loss Detection, Recovery and Congestion
Control

The implementation of loss detection and recovery are delegated to Recovery
Controller class to allow easier testing. Each sent packet is represented by an
instance of SentPacket which contains information about the packet which is
relevant to the loss detection and recovery algorithms, such as packet number,
the timestamp when the packet was sent, packet number ranges acknowledged by
the packet, size of the packet, and list of data ranges sent in STREAM frames.

Similarly to PacketNumberSpace class used to maintain connection-wide state
for each packet number space, the RecoveryController maintains an array of
RecoveryController.PacketNumberSpace instances which contain about each
packet number space that are relevant only for recovery purposes. These include:

• largest packet number acknowledged by the peer,

• timestap of last ack-eliciting packet sent,

• SentPackets awaiting acknowlegement,

• SentPackets that are newly acknowledged, and

• SentPackets that are newly considered lost,

Additionally, the RecoveryController maintains some data that is shared
across all packet number spaces. These are mostly data relevant for congestion
control algorithm and packet pacing. Packet-pacing is a mechanism that evens out
outgoing packets to prevent micro-bursting — a phenomenon in which packets
arrive in short rapid bursts which may overflow the receiver and cause packet
loss. The data managed by RecoveryController itself include:

• estimates of the current round trip time,

• timestamp of the next packet loss event,

• timestamp when the last UDP datagram was sent,

• size of the last sent UDP datagram,

• number of bytes currently in-flight,
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• current size of the congestion window, and

• ICongestionController instance implementing the selected algorithm for
congestion control.

The main interface methods exposed to the ManagedQuicConnection imple-
mentation are:

long LossRecoveryTimer { get; }
Timestamp when the next packet loss will occur unless an ACK from peer is
received.

void OnLossDetectionTimeout()
Performs loss detection and populates collections of SentPacket instances
on appropriate PacketNumberSpace instance with packets which are now
considered lost.

void OnPacketSent(PacketSpace space, SentPacket packet)
Registers the SentPacket instance as sent and tracks it in loss detection
algorithm.

void OnAckReceived(PacketSpace space, RangeSet acknowledged)
Acknowledges packet numbers from provided RangeSet and moves appro-
priate SentPacket instances the collection of newly acknowledged packets.

int GetSendingAllowance(long timestamp)
Gets the maximum size of a UDP datagram that the pacer will allow to be
sent at the given timestamp.

long GetPacingTimerForNextFullPacket()
Gets timestamp when the pacer will allow sending next QUIC packet of
maximum size2.

4.4.4 QUIC Stream Management
The management of QUIC streams is delegated to StreamCollection class. The
StreamCollection tracks already created streams by their type and checks that
neither endpoint exceeds the maximum number of created streams. It also im-
plements efficient lookup of ManagedQuicStream instances by their Stream IDs
and tracks queues of streams with QUIC frames to be sent in the following QUIC
packets.

The StreamCollection class maintains two independent queues of Managed
QuicStream instances:

• Flushable: Streams that have data to send within the flow control limits on
that stream.

2The maximum size of an outgoing QUIC packet depends on multiple factors. Most signifi-
cantly, it must be small enough to avoid fragmentation of the UDP datagram by lower network
layers. The other endpoint can also set an upper limit on the UDP datagram size it is willing to
receive. This limit is provided using the max_udp_payload_size transport parameter during
the connection handshake.

65



• Updateable: Streams for which some other than the STREAM frame needs to
be sent. This includes updating flow control limits or aborting the stream.

The reasoning for a separate queue for flushable streams is that when com-
posing a packet, STREAM frames should be the last frames written into the QUIC
packet and fill all remaining space in the datagram. By processing the updateable
queue first, the implementation ensures that updates for all streams — such as
flow control limits — are sent as soon as possible.

4.4.5 Packet Encryption
Applying and removing packet protection is delegated to CryptoSeal class, as
described in section 3.8. The CryptoSeal class implements only the logic in-
dependent of the specific AEAD cipher used. The steps which are specific to
each AEAD cipher, such as the actual in-place encryption and decryption and
calculating the header protection mask, are delegeated to an implementation of
CryptoSealAlgorithm abstract class. Each supported AEAD cipher has its own
CryptoSealAlgorithm implementation.

The interface exposed by CryptoSeal to the ManagedQuicConnection con-
sists of following methods:

void ProtectPacket(Span<byte> packet, int pnOffset, long pn)
Applies packet payload protection and writes AEAD integrity tag at the
end of the packet.

void ProtectHeader(Span<byte> packet, int pnOffset)
Applies header protection.

void UnprotectHeader(Span<byte> packet, int pnOffset)
Removes header protection.

bool UnprotectPacket(Span<byte> packet, int pnOffset, long expectedPn)
Attempts to remove the payload protection, returns true on success.

The meaning of the method arguments has been left out for brevity, but their
purpose should be evident from their usage in source code.

4.4.6 Incoming QUIC Packet Processing
The majority of the ManagedQuicConnection implementation is focused on pro-
cessing QUIC packets and the QUIC frames they contain. Processing of a QUIC
packet can end with one of three possible results which are represented by the
ProcessPacketResult enum:

• Ok: Packet was processed without errors.

• DropPacket: Packet should be discarded without informing the peer.

• Error: Received packet violates the protocol and the connection should be
closed with an error code.
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The process of receiving the UDP datagram with QUIC packets begins in the
ManagedQuicConnection.ReceiveData method. The individual QUIC packets
are processed independently one after another using the following steps:

1. detect the packet type,

2. remove packet protection,

3. parse and validate the packet header fields,

4. check if the packet with same packet number has already been received,

5. register the packet for future acknowledgment, and

6. parse and process all contained QUIC frames.

Because the parsed QUIC frames are represented using ref structs (as ex-
plained in section 3.5.1), QUIC frames contained in the QUIC packet are parsed
and immediately processed one by one, independently of the other QUIC frames.
The code processing the individual frame types is organized into separate methods
— one for each frame type — for better maintainability.

4.4.7 Generating Outgoing QUIC Packets
The logic which generates outgoing UDP datagrams starts in the ManagedQuic
Connection.SendData method. When generating outgoing packets, the imple-
mentation must first determine whether it has any data to send and, if so, in
which QUIC packet type it should be sent. This logic is implemented in the
ManagedQuicConnection.GetWriteLevel method. Once the packet type to be
sent is known, the generation of the actual QUIC packet consists of the following
steps:

1. determine the maximum size of the packet that can be sent,

2. compose the packet header,

3. write QUIC frames into the packet payload up to the available packet size,

4. add padding to the packet if necessary3,

5. apply packet protection, and

6. add the packet to be tracked by the RecoveryController.

The order in which the QUIC frames are generated is based on the frames’
relative importance to make sure that the important packets fit into the packet
and are not unnecessarily postponed. Most importantly, ACK frames are written
first to avoid delaying acknowledgments, and STREAM frames are written last to
use up the remainder of the available space.

3Header protection (described in section 2.8.2) uses bytes 5 to 20 from the packet payload
as a sample for generating the header protection mask. The packet payload includes the packet
number, QUIC frames and 16 B AEAD integrity tag. This implies that packet number and
QUIC frames together must be at least 4 B long.
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4.5 TLS Integration
The TLS handshake related logic of the ManagedQuicConnection class is dele-
gated to an implementation of ITls interface. The ITls interface defines methods
needed by ManagedQuicConnection. These methods include:

bool TryAdvanceHandshake()
Advances the TLS handshake by calling methods on the ManagedQuic
Connection (listed later).

void OnHandshakeDataReceived(EncryptionLevel level, ReadOnlySpan<byte> data)
Provides the TLS implementation with data received from the peer via
CRYPTO frames.

TlsCipherSuite GetNegotiatedCipher()
Gets the identifier of the AEAD cipher that was negotiated during the TLS
handshake.

TransportParameters GetPeerTransportParameters()
Returns a TransportParameters instance which contains the transport pa-
rameters set by the peer for this connection.

bool IsHandshakeComplete { get; }
Returns true if the TLS handshake is considered complete by the TLS
implementation.

Implementations of ITls are expected to maintain a reference to the Managed
QuicConnection and call following functions from the TryAdvanceHandshake
method when appropriate:

void SetEncryptionSecrets(EncryptionLevel level, ReadOnlySpan<byte> read,
ReadOnlySpan<byte> write)

Provides the ManagedQuicConnection with read and write secrets negoti-
ated for the specified encryption level. The encryption level refers to one
of the four encrypted QUIC packet: Initial, Handshake, Application
(1-RTT) and EarlyData (0-RTT).

void AddHandshakeData(EncryptionLevel level, ReadOnlySpan<byte> data)
Adds TLS handshake data to be sent to the peer via CRYPTO frames. The
encryption level specifies which QUIC packet should be used to send the
CRYPTO frame. This method can be called multiple times.

void FlushHandshakeData()
Called after AddHandshakeData to inform ManagedQuicConnection that
the handshake data should be sent.

void SendTlsAlert(EncryptionLevel level, int alertCode)
When TLS implementation encounters an error, this function is used to
provide the TLS alert code which is then used to construct a CONNECTION_-
CLOSE frame for terminating the connection.

There are two ITls interface implementations:
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• OpenSslTls: Backed by modified OpenSSL with QUIC-enabling API main-
tained by Akamai [30]. This implementation can be used to interoperate
with other QUIC implementations and is used by the QuicImplementation
Providers.Managed provider.

• MockTls: Intended to be used when runing functional tests in the con-
tinuous integration environment where the modified OpenSSL library is
not available. This implementation cannot be used to interoperate with
other QUIC implementations. MockTls is used by the QuicImplementation
Providers.ManagedMockTls provider.

The integration with TLS uses the abstract factory pattern to create new
instances of ITls when needed. The ManagedQuicImplementationProvider in-
stance keeps a reference to QuicTlsProvider which is used to create new ITls
instances for ManagedQuicConnections. The concrete factory classes are realized
by the OpenSslQuicTlsProvider and MockQuicTlsProvider classes.

Following subsections describe the two ITls implementations in greater detail.

4.5.1 OpenSslTls Implementation
The OpenSslTls class is a managed wrapper around the SSL class from OpenSSL
library written in C. As per the established practice in the .NET runtime reposi-
tory, the managed QUIC implementation separates the definitions of the extern
methods from the OpenSSL library into a separate Interop.OpenSslQuic class.

The primary classes used from the OpenSSL library are SSL_CTX which is a top
level object maintaining global SSL/TLS configuration, and SSL which represents
one SSL/TLS session. The OpenSslTls implementation uses one global SSL_CTX
object, and one SSL object for each OpenSslTls instance.

The main part of the QUIC-enabling API exposed by the OpenSSL library
consists of SSL_set_quic_method function which registers callbacks from the
TLS handshake state machine. Listing 4.3 lists the definition of the OpenSSL
QUIC callback functions (written in C).

Listing 4.3: Callback definitions in OpenSSL library source code

1 struct ssl_quic_method_st {
2 int (*set_encryption_secrets)(SSL *ssl, OSSL_ENCRYPTION_LEVEL level,
3 const uint8_t *read_secret,
4 const uint8_t *write_secret,
5 size_t secret_len);
6 int (*add_handshake_data)(SSL *ssl, OSSL_ENCRYPTION_LEVEL level,
7 const uint8_t *data, size_t len);
8 int (*flush_flight)(SSL *ssl);
9 int (*send_alert)(SSL *ssl, enum OSSL_ENCRYPTION_LEVEL level,

10 uint8_t alert);
11 };
12 typedef struct ssl_quic_method_st SSL_QUIC_METHOD;
13

14 int SSL_CTX_set_quic_method(SSL_CTX *ctx, const SSL_QUIC_METHOD *quic_method);
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Listing 4.4 lists the definition of the QuicMethodCallbacks defined by the
interop layer of the managed QUIC implementation which mirrors the ssl_-
quic_method_st on the managed .NET side. The QuicMethodCallbacks class
uses the C# function pointers feature introduced in .NET 5 to represent unman-
aged pointers to C# methods 4.

Listing 4.4: C# mirror of the ssl_quic_method_st C struct. The comments
above the fields list C-like definition of the function pointer type.

1 [DllImport(Libraries.Ssl, EntryPoint = "SSL_set_quic_method")]
2 internal static extern unsafe int SslSetQuicMethod(IntPtr ssl,
3 QuicMethodCallbacks* methods);
4

5 [StructLayout(LayoutKind.Sequential)]
6 internal unsafe struct QuicMethodCallbacks
7 {
8 // int (*)(IntPtr ssl, OpenSslEncryptionLevel level, byte* readSecret,
9 // byte* writeSecret, UIntPtr secretLen)

10 internal delegate* unmanaged[Cdecl]<IntPtr, OpenSslEncryptionLevel,
11 byte*, byte*, UIntPtr, int> SetEncryptionSecrets;
12

13 // int (*)(IntPtr ssl, OpenSslEncryptionLevel level, byte* data,
14 // UIntPtr len)
15 internal delegate* unmanaged[Cdecl]<IntPtr, OpenSslEncryptionLevel,
16 byte*, UIntPtr, int> AddHandshakeData;
17

18 // int (*)(IntPtr ssl)
19 internal delegate* unmanaged[Cdecl]<IntPtr, int> FlushFlight;
20

21 // int (*)(IntPtr ssl, OpenSslEncryptionLevel level, byte alert)
22 internal delegate* unmanaged[Cdecl]<IntPtr, OpenSslEncryptionLevel, byte,
23 int> SendAlert;
24 }

The pointer to QuicMethodCallbacks structure passed to the SSL_set_-
quic_method function must be valid throughout the lifetime of the SSL_CTX
object. Therefore, the OpenSslTls class allocates the QuicMethodCallbacks
instance into an unmanaged memory region using the Marshal.AllocHGlobal()
method and stores the resulting pointer in a private static field.

In order to be able to create unmanaged function pointers to C# methods, the
actual methods must be annotated using the UnmanagedCallersOnlyAttribute
specifying that the caller will use the cdecl calling convention.

The last piece of the OpenSSL callback integration is calling apropriate meth-
ods on the ManagedQuicConnection class from the callbacks. Because the call-
backs are converted to unmanaged function pointers, they must be static meth-
ods. Their implementation must, therefore, translate the SSL* pointer to the
original OpenSslTls instance. This is done by allocating a GCHandle for the
OpenSslTls instance and storing the unmanaged pointer to the handle as user
data inside the SSL instance.

Figure 4.4 illustrates the process of calling the AddHandshakeData callback
4More information about C# function pointers and other native code interop improvements

done in .NET 5 can be found on Microsoft dev blog [39].
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as an example. The ManagedQuicConnection instance tries to advance the
TLS handshake by calling TryAdvanceHandshake which in turn calls the SSL_-
do_handshake native method in the OpenSSL library. This invokes the next
step in the internal state automaton and as a result, the OpenSSL calls the
static OpenSslTls.AddHandshakeData method which was registered as the add_-
handshake_data callback. This function retrieves the GCHandle from the SSL
instance passed in the callback and invokes the AddHandshakeData method on
the original ManagedQuicConnection instance.

ManagedQuicConnection OpenSslTls SSL SSL_CTX

OpenSSLManaged Code

TryAdvanceHandshake
SSL_do_handshake

TLS handshake
state automaton

var ptr = Interop.OpenSslQuic.SslGetExData(...);
var handle = GCHandle.FromIntPtr(ptr);
var tls = (OpenSslTls)handle.Target;
...

add_handshake_data

AddHandshakeData

Figure 4.4: Callback integration with OpenSSL library

4.5.2 MockTls Implementation

The MockTls implementation is used for running tests without the dependency
on the OpenSSL library and is not intended for use in production environment.
The implementation imitates the OpenSslTls behavior during a successful TLS
handshake and exchanges randomly generated secrets.

4.6 ManagedQuicListener Implementation
The ManagedQuicListener class is only a simple wrapper around the QuicServer
SocketContext instance and a Channel<ManagedQuicConnection> of newly ac-
cepted connections. The QuicServerSocketContext implementation observes
changes in the ManagedQuicConnection.ConnectionState property and inserts
the newly established connections into the Channel. The application later re-
trieves these connections using the ManagedQuicListener.AcceptConnection
Async() method.

When the ManagedQuicListener is closed, it is necessary to keep the currently
established connections alive. Disposing the ManagedQuicListener, therefore,
means only that the QuicServerSocketContext instance will not accept new
connections. The QuicServerSocketContext class tracks active connections and
is disposed when the last ManagedQuicConnection is closed.
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4.7 ManagedQuicStream Implementation
As described in section 3.6, the behavior of sending and receiving parts of a
QUIC stream is implemented by the ReceiveStream and SendStream classes.
The ManagedQuicStream class only checks the validity of arguments passed to
the public API and informs the ManagedQuicConnection about the amount of
data read/written to update flow control limits.

4.7.1 ReceiveStream Implementation
Buffering and control flow considerations for the ReceiveStream class have been
analyzed in detail in section 3.6.1. The ReceiveStream class exposes the following
interface to be used by the ManagedQuicStream class from the application thread:

long? Error { get; }
If the sender aborted the stream, this property contains the application-level
error code to be reported to the application.

void RequestAbort(long errorCode)
Requests that the stream is aborted by the sender. Results in sending a
STOP_SENDING frame with the specified application-level error code.

int Deliver(Span<byte> destination)
Copies application data from the stream into the provided Span<byte>.
Blocks until at least some data are available.

ValueTask<int> DeliverAsync(Memory<byte> destination, CancellationToken)
Asynchronous version of the Deliver method.

From the internal background processing thread, the main methods called
from the ManagedQuicConnection are:

void OnResetStream(long errorCode)
Called when RESET_STREAM frame for this stream was received.

void Receive(long offset, ReadOnlySpan<byte> data, bool fin)
Called when STREAM frame has been received.

4.7.2 SendStream Implementation
Buffering and control flow considerations for the SendStream class have been
analyzed in detail in section 3.6.2. The SendStream class exposes the following
interface to be used by the ManagedQuicStream class from the application thread:

int Enqueue(ReadOnlySpan<byte> data)
Adds the provided application data into the stream. If the internal buffering
capacity is full, this method blocks until the data can be buffered.

ValueTask<int> EnqueueAsync(ReadOnlyMemory<byte> data)
Asynchronous version of the Enqueue method.
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void MarkEndOfData()
Marks the stream as finished. No more data can be written into the stream
after calling this function. The FIN bit will be set in the appropriate STREAM
frame.

void RequestAbort(long errorCode)
Requests that the stream be aborted with specified errorCode. This method
is also called when STOP_SENDING frame was received for this stream.

From the internal background processing thread, the main methods called
from the ManagedQuicConnection are:

(long offset, long count) GetNextSendableRange()
Returns the next consecutive range of data that is in pending state (see
section 3.6.2). The next data to be sent in STREAM frame will be from
this range.

void CheckOut(Span<byte> destination)
Copies the data from the range returned from GetNextSendableRange into
the destination buffer. The copied data is transitoned into in-flight state.

void OnLost(long offset, long count)
Marks the range of data as lost, transitioning them back into pending state.

void OnAck(long offset, long count, bool fin)
Marks the range of data as acknowleged. Allowing the underlying buffers
to be reused.

4.7.3 Tracing and Diagnostics
The managed QUIC implementation can produce verbose logs (called traces) to
provide an insight into the implementation’s behavior. By default, no trace is
generated. Generating a trace can be enabled by defining the DOTNETQUIC_TRACE
to one of the following values:

console
Produces logs to the console output. This type of tracing produces a large
amount of console logs, which are hard to reason about. However, the
console logs are the fastest way of checking if any packets are sent/received
or for diagnosing refused connections.

qlog
Produces traces which can be visualized by the qvis [36] tool. The qvis tool
provides deep insight into the connection, such as the timeline of sent/re-
ceived packets, bytes in flight, size of the congestion window, and latency
throughout the lifetime of the connection. The traces are written into the
current working directory into a separate file for each connection. Note
that for very busy connections, the trace files can grow into hundreds of
megabytes in a few seconds.

Both types of tracing incur a noticeable overhead and should not be used in
the production environment.
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4.8 Tests Implementation

The QUIC implementation is covered by an extensive suite of unit tests and
functional tests. The unit tests are located in the System.Net.Quic/tests/
UnitTests directory and focus on the correctness of the individual parts of the
managed QUIC implementation. The unit tests also check that the QUIC packets
sent by the implementation conform to the QUIC protocol specification.

The functional tests are located in the System.Net.Quic/tests/Functional
Tests directory and test high-level functionality like being able to send and re-
ceive data, and that the public API behavior conforms to the public API speci-
fication.

4.8.1 Unit Tests

The most important part of the unit tests are tests that inspect the contents of
the individual QUIC packets sent between the server and client. In order to sim-
plify writing these tests, the System.Net.Quic.Unit.Tests project implements
a testing harness, which provides helper methods for inspecting and modifying
QUIC packets, as discussed in section 3.10.1. The test harness functionality is
provided as a ManualTransmissionQuicTestBase class intended to be used as a
base class for unit test classes. This class provides:

• prepared connected ManagedQuicConnection instances;

• automatic logging of sent QUIC packets to the test output;

• manual time stepping to make tests deterministic; and

• interception callbacks for inspecting and possibly modifying QUIC packets
in-flight;

Because the ManagedQuicConnection implementation uses ref structs to
represent individual QUIC frames. The testing harness must duplicate the types
for QUIC frames and QUIC packets as classes. The classes used to represent
QUIC packets and QUIC frames in test harness derive from FrameBase and
PacketBase abstract classes, which provide a common type for aggregating QUIC
packets and QUIC frames in collections.

The classes representing QUIC frames and QUIC packets are mutable, which
allows modification by the testing code to elicit a particular error response. Fig-
ure 4.5 illustrates the process. First, the ManagedQuicConnection produces the
UDP datagram containing the QUIC packets to be sent. The testing harness then
parses the datagram into mutable representation. The parsed packets are then
passed into the inspection callback provided by the test method, which can per-
form any assertions and modifications. The QUIC packet is then serialized back
into binary representation and provided to the receiver ManagedQuicConnection
instance.
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Figure 4.5: Intercepting a QUIC packet by the testing harness

4.8.2 Functional Tests
The System.Net.Quic project contains a large suite of functional tests against
the public QUIC API. The tests are structured in a way that allows them to
be run against all QUIC implementation providers in the library. Also, the Quic
Stream class is tested using stream conformance tests — a suite of tests run
for each implementation of the Stream class to ensure consistent behavior of all
implementations.

In order to allow running tests against different implementation providers, the
test methods are defined in QuicListenerTests<T>, QuicConnectionTests<T>
and QuicStreamTests<T> generic classes, which share a common base class Quic
TestBase<T>. The type argument for all four of these classes is constrained to be
an implementation of IQuicImplProviderFactory interface which allows creat-
ing QuicListener and QuicConnection instances with desired implementation
provider.

The xUnit framework does not run tests from generic classes by itself. In-
stead, the generic test suite must be “instantiated” by declaring a non-generic
class deriving from the generic type. For example, QuicStreamTests_Managed
Provider derives from the QuicStreamTests<ManagedProviderFactory> class
which makes xUnit run the tests from QuicStreamTests<T> class against the
QuicImplementationProviders.Managed provider. These specific test classes
are also annotated by ConditionalClassAttribute which instructs xUnit to
run the tests only if the given provider is supported in the current environment.

A similar mechanism is used to run stream conformance tests against all QUIC
implementation providers.
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5. User Documentation
This section provides guidance on how to obtain the build of the .NET runtime
with managed QUIC implementation, how to install it, and how to use the code
to develop other applications.

5.1 Getting Started
This thesis provides a branch of the .NET runtime codebase with managed QUIC
implementation. Since our branch contains changes only in the System.Net.
Quic.dll, the easiest way of composing a fully working .NET distribution is
obtaining a full SDK installation of the latest master development version of
.NET 6 and replacing the System.Net.Quic.dll. This section explains how to
do this without affecting other .NET SDK installations present on the machine.

The managed implementation depends on a particular OpenSSL version to
interoperate with other QUIC implementations. This section also explains how
to deploy a locally built OpenSSL to be automatically used by user code.

The complete setup process consists of the following steps, which we explained
in greater detail in the subsequent subsections:

1. Build the System.Net.Quic.dll library from our branch of the .NET run-
time sources.

2. Compose a new local .NET 6 SDK installation with locally built System.
Net.Quic.dll.

3. (optional) Compile a QUIC-supporting OpenSSL from source and deploy it.

4. Configure the development environment to use the new .NET installation
when compiling and running user applications.

Because the setup process is complex and compiling the necessary binaries
requires a lot of prerequisite tools to be installed on the machine, this thesis
attachments include binaries and .NET 6 SDK built and prepared according the
instructions in this section. The files can be found in the bin/win-x64/ directory
for Windows and bin/linux-x64/ directory for Linux.

5.1.1 Building the System.Net.Quic Library from Source
The source code for the .NET runtime with managed QUIC implementation is
part of this thesis’ attachments in the src/dotnet-runtime/ directory. The lat-
est version of the source code can also be found on the thesis author’s GitHub [40].
For the remainder of this section, all paths will be relative to the .NET runtime
repository directory.

The .NET runtime repository contains a descriptive guide on how to build the
sources. The necessary prerequisites are listed in files inside the docs/workflow/
requirements/ directory, separately for each operating system. Once all nec-
essary prerequisities are installed, the entire .NET runtime can be built using
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the build.cmd batch file (on Windows) or build.sh script (on Linux). The
arguments are the same for both operating systems.

> ./build.cmd -subset clr+libs -configuration release

The above command will build the Common Language Runtime (CLR) and all
libraries in Release configuration. The artifacts are available in the artifacts/
bin/System.Net.Quic directory. The important artifacts from this directory are:

• ref/net6.0-Release/System.Net.Quic.dll: The so-called reference as-
sembly [41] that specifies the public API of the library.

• net6.0-{OS}-Release/System.Net.Quic.dll: Where {OS} is the identi-
fier for the operating system running on the machine. This is the .NET
assembly with the actual QUIC implementation.

5.1.2 Creating a Local Installation of .NET
Now we need to download the latest .NET 6 SDK and patch it with the locally
built System.Net.Quic.dll. A zip archive containing the SDK can be down-
loaded from a link listed in the official SDK installer GitHub repository [42].
Download the “Master (6.0.x Runtime)” build for your platform and extract it
to a convenient location. In the remainder of this guide, the directory containing
the extracted contents will be referred to as DOTNET_ROOT.

The System.Net.Quic.dll produced in the previous subsection must be
copied to appropriate locations in the DOTNET_ROOT. The reference System.
Net.Quic.dll assembly should be copied over the existing one in the DOTNET_
ROOT/packs/Microsoft.NETCore.App.Ref/6.0.0-{version}/ref/net6.0/ di-
rectory, and the implementation assembly to should be copied to the DOTNET_
ROOT/shared/Microsoft.NETCore.App/6.0.0-{version}/ directory, overwrit-
ing the existing files.

5.1.3 Building the OpenSSL Library
The implementation requires a QUIC-supporting OpenSSL library build from
a development branch maintained by Akamai. Because this branch does not
offer official builds for downloading, the library must be compiled from source.
Alternatively, a built version of the library is attached in the bin/{platform}/
openssl/ directory.

The appropriate source codes can be found in the extern/openssl direc-
tory in the thesis attachments. The source code is also available online on Aka-
mai’s GitHub [30]. The implementation has been developed and tested with the
OpenSSL_1_1_1g-quic branch of the code, but other QUIC-enabled branches of
OpenSSL version 1.1.1 should work as well.

Before building the OpenSSL library form source, check the NOTES.{OS} file in
the repository and make sure all prerequisites are installed on the machine. After
that, the OpenSSL library can be built by running the following command inside
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the repository. Note that for Windows OS, you must run these commands using
the x64 Native Tools Command Prompt for VS in order to have the necessary
tools in PATH.

# Windows
> perl Configure VC-WIN64A
> nmake

# Linux
> ./config
> make

This will produce the libcrypto and libssl libraries in the OpenSSL repos-
itory root. On windows, these libraries are named libcrypto-1_1-x64.dll and
libssl-1_1-x64.dll. These libraries are loaded by the managed QUIC imple-
mentation during runtime and, therefore, must be present in a location where the
OS loader can find them. This can be achieved by putting the libraries in any of
the following locations:

• Next to the compiled program executable.

• A directory listed in the PATH environment variable

• (preferred) next to the System.Net.Quic.dll library in the .NET instal-
lation directory, i.e., DOTNET_ROOT/shared/Microsoft.NETCore.App/6.0.
0-{version}/.

Note that if there is already a different version of OpenSSL installed on the
system, it is necessary to ensure that the system loads the correct OpenSSL ver-
sion. This is different for each operating system:

• On Windows, this can be ensured by placing the DLL files in the same
directory as the program executable. The entire library search process,
including the order of directories searched, is described in Windows docu-
mentation [43] in detail.

• On Linux, this can be achieved by defining the LD_LIBRARY_PATH environ-
ment variable to the directory containing the OpenSSL libraries. Additional
information about loading of dynamic libraries on Linux can be found in the
manual pages for ld.so. These manual pages are also available online [44].

5.1.4 Configuring the Development Environment
Lastly, we need to configure the environment variables so that the .NET SDK
installation created in the previous step is used when building the user code. For
this, the following environment variables need to be defined correctly.

DOTNET_ROOT
Path to the .NET installation directory. This instructs the build process to
use the SDK installed in this directory. Use the path to the local .NET 6
SDK installation created in section 5.1.2.
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DOTNET_MULTILEVEL_LOOKUP
Set this to “0”. This instructs the build process not to look for SDK instal-
lation in other places than DOTNET_ROOT.

PATH
Prepend the DOTNET_ROOT directory to the beginning of the PATH variable
to make sure the dotnet executable from the DOTNET_ROOT is used over the
system-wide installed one.

After configuring the variables, check the output of the dotnet --info com-
mand. Assuming DOTNET_ROOT is C:\dotnet\\, then the output should be
similar to the Listing 5.1. The list of installed .NET runtimes should contain
Microsoft.NETCore.App from the local .NET 6 SDK installation prepared in
?? (check the path inside the brackets). Note that the listing contains version
numbers of the latest .NET 6 SDK at the time of writing this text, and the SDK
installer would be updated since then to a newer version.

Listing 5.1: Output of the dotnet --info command in correctly configured
environment. The unimportant portions of the output in grey has been left out
brevity

> dotnet --info
.NET SDK (reflecting any global.json):
...

Runtime Environment:
...

Host (useful for support):
...

.NET SDKs installed:
6.0.100-alpha.1.20563.2 [C:\dotnet\sdk]

.NET runtimes installed:
Microsoft.AspNetCore.App 6.0.0-alpha.1.20526.6 [C:\dotnet\shared\...]
Microsoft.NETCore.App 6.0.0-alpha.1.20560.10 [C:\dotnet\shared\...]
Microsoft.WindowsDesktop.App 6.0.0-alpha.1.20560.7 [C:\dotnet\shared\...]

To install additional .NET runtimes or SDKs:
https://aka.ms/dotnet-download

With the environment configured as described, .NET applications can be com-
piled against the .NET 6 SDK either using the dotnet build command-line
command, or using Visual Studio or any other IDE.

5.1.5 Creating a Sample .NET 6 Project
The last step is creating a new project and configuring it to use .NET 6. This
section demonstrates how this can be done using the dotnet command-line tool.
Assuming the environment variables have been configured as specified in sec-
tion 5.1.4, you can create a new project using the following commands:
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> mkdir hello-net6
> cd hello-net6
> dotnet new console

These commands will create a hello-net6/hello-net6.csproj file. Use of
.NET 6 preview requires minor changes to the project file. Namely changing the
TargetFramework property to net6.0. The modified project file contents are
listed in Listing 5.2.

Listing 5.2: Project file for .NET 6 console application project.

1 <Project Sdk="Microsoft.NET.Sdk">
2

3 <PropertyGroup>
4 <OutputType>Exe</OutputType>
5 <TargetFramework>net6.0</TargetFramework>
6 <RootNamespace>hello_net6</RootNamespace>
7 </PropertyGroup>
8

9 </Project>

Lastly, the NuGet package feed must be configured to use the correct package
source for the preview packages for .NET 6. This can be done by creating a
NuGet.Config file in the project directory with contents as listed in Listing 5.3.
The contents can also be copied from the webpage from which the .NET 6 SDK
was downloaded [42].

Listing 5.3: NuGet configuration file for .NET 6 projects.

1 <configuration>
2 <packageSources>
3 <add key="dotnet6"
4 value="https://pkgs.dev.azure.com/dnceng/public/_packaging/dotnet6/nuget/v3/index.json" />
5 </packageSources>
6 </configuration>

To check that the development environment is configured correctly, the pro-
gram in Listing 5.4 can be used.

Listing 5.4: C# program for testing the SDK installation.

1 using System;
2 using System.Diagnostics;
3 using System.IO;
4 using System.Net.Quic;
5

6 namespace hello_net6._0
7 {
8 class Program
9 {

10 static void Main(string[] args)
11 {
12 string assemblyPath = typeof(object).Assembly.Location;
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13 string assemblyDir = Path.GetDirectoryName(assemblyPath);
14 var info = FileVersionInfo.GetVersionInfo(assemblyPath);
15 Console.WriteLine($"Hello from .NET {info.ProductVersion}");
16 Console.WriteLine($"Runtime location: {assemblyDir}");
17 Console.WriteLine($"QUIC: {QuicImplementationProviders.Default}");
18 }
19 }
20 }

Running the program should produce output similar to the following:

> dotnet run
Hello from .NET 6.0.0-alpha.1.20560.10+72b7d236ad634c2280c73499ebfc2b594995ec06
Runtime location: C:\dotnet\shared\Microsoft.NETCore.App\6.0.0-alpha.1.20560.10
QUIC: System.Net.Quic.Implementations.Managed.ManagedQuicImplementationProvider

If the output lists a different runtime location, verify that the environment
variables have been set correctly. If the QUIC provider is different, it means
that the System.Net.Quic.dll with our managed QUIC implementation was
not copied to the correct directory.

5.1.6 Deploying .NET Applications
The applications built against the preview .NET 6 SDK will run only if the
environment is configured according to section 5.1.4. In order to run the ap-
plications outside the configured environment, it is necessary to build them as
self-contained [45]. Self-contained builds of .NET applications contain a copy of
the .NET runtime and other necessary binaries. Self-contained applications can
be built using following command:

> dotnet publish --self-contained --runtime <RID>

Where <RID> is the runtime identifier for which to publish. Commonly used
values are win-x64 and linux-x64. Full list of supported runtime identifiers can
be found in the official .NET documentation [46].

Unfortunately, the packaged application contains the unmodified System.
Net.Quic.dll without managed QUIC support. Therefore, the last step is man-
ually overwriting the System.Net.Quic.dll with the one locally built from the
.NET runtime sources in section 5.1.1. The modified OpenSSL libraries also need
to be copied over to the application directory.

5.2 Simple Echo Server using QUIC
This section is a walkthrough on how to use QUIC in .NET. In this section, we
will create a trivial echo server. When a new connection is established, clients
will open a single bidirectional stream and send arbitrary data over it. The
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server will then echo the data back to the client using the same stream. For
simplicity, we will use a single .NET program to represent both client and server
and conduct the connection over the loopback network interface. We will also
omit error checking from this example for brevity. The complete source code for
this example can be found in the src/supplementary/samples/Echo/ directory
in the thesis attachments.

5.2.1 Echo Server Implementation
The use of TLS 1.3 for encryption is mandatory for QUIC. This requires providing
an X.509 certificate on the server’s side. The current QUIC API requires that
the certificate and the private key be saved in separate files in the PEM format.
Certificate files that can be used in this example are provided in the attachments.
The public certificate file is at certs/cert.crt and the private key is at certs/
cert.key. Alternatively, a new certificate can be created using the openssl
command-line utility using the following commands.

> openssl req -x509 -newkey rsa -keyout key.pem -out cert.pem -days 365 -nodes

In order to accept incoming QUIC connections, we need to create an instance
of QuicListener. Listing 5.5 shows how the QuicListener can be created and
provided with:

• listening endpoint;

• identifier of the application-layer protocol to be used1, even though we are
not implementing any standard protocol, we still need to provide one; for
our example, we chose to use "echo" as the ALPN identifier; and

• paths to the X.509 certificate and private key file.

The QuicListener class implements IDisposable and, therefore, we can also
use the using statement to make sure the QuicListener is closed when the
method returns.

Listing 5.5: Creating and starting a new QuicListener for the echo server

1 public static async Task<int> RunServer(IPEndPoint listenEp,
2 string certificateFile, string privateKeyFile, CancellationToken token)
3 {
4 using QuicListener listener = new QuicListener(new QuicListenerOptions
5 {
6 ListenEndPoint = listenEp,
7 CertificateFilePath = certificateFile,
8 PrivateKeyFilePath = privateKeyFile,

1QUIC is not intended to be used standalone, but as a transport protocol for other
application-layer protocols. Since servers can support multiple versions of the application pro-
tocol, QUIC uses the ALPN extension to TLS to negotiate the application-layer protocol as
part of the QUIC connection handshake.
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9 ServerAuthenticationOptions = new SslServerAuthenticationOptions
10 {
11 ApplicationProtocols = new List<SslApplicationProtocol>
12 {
13 new SslApplicationProtocol("echo")
14 }
15 }
16 });
17

18 // ...
19 }

We can then use the AcceptConnectionAsync method to wait for new incom-
ing connections asynchronously. Listing 5.6 shows how to accept new connections
and process them asynchronously in a separate Task so that multiple connections
can be served concurrently.

Listing 5.6: Accepting new connections on QuicListener

1 // QuicListener must be started before accepting connections.
2 listener.Start();
3

4 // tasks that need to be awaited when trying to exit gracefully
5 List<Task> tasks = new List<Task>();
6

7 try
8 {
9 QuicConnection conn;

10 while ((conn = await listener.AcceptConnectionAsync(token)) != null)
11 {
12 // copy the connection into a variable with narrower scope which
13 // can be safely captured inside the lambda function
14 QuicConnection captured = conn;
15 var task = Task.Run(
16 () => HandleServerConnection(captured, token));
17 tasks.Add(task);
18 }
19 }
20 finally
21 {
22 // wait until all connections are closed
23 await Task.WhenAll(tasks);
24 }

Listing 5.7 Shows the implementation of HandleServerConnection which
does the actual echoing of the incoming data. The QuicStream is accepted using
the AcceptStreamAsync method on the QuicConnection class and, because it is
a bidirectional stream, we can use it to send the data back to the client. Lastly,
once all data is sent, we gracefully close the connection using the CloseAsync
method.

84



Listing 5.7: Echo server reading and writing data to QuicStream

1 public static async Task HandleServerConnection(QuicConnection connection,
2 CancellationToken token)
3 {
4 try
5 {
6 QuicStream stream = await connection.AcceptStreamAsync(token);
7

8 int read;
9 byte[] buffer = new byte[4 * 1024];

10 while ((read = await stream.ReadAsync(buffer, token)) > 0)
11 {
12 await stream.WriteAsync(buffer, 0, read, token);
13 await stream.FlushAsync(token);
14 }
15 }
16 finally
17 {
18 // gracefully close the connection with 0 error code
19 await connection.CloseAsync(0);
20 }
21 }

5.2.2 Echo Client Implementation
The client implementation is more straightforward than that of the server. List-
ing 5.8 shows how to create a client QuicConnection using the using the server
endpoint address and the ALPN identifier. The connection can be then estab-
lished by calling the ConnectAsync method.

Listing 5.8: Creating a client QuicConnection instance

1 public static async Task<int> RunClient(IPEndPoint serverEp,
2 CancellationToken token)
3 {
4 using var client = new QuicConnection(new QuicClientConnectionOptions
5 {
6 RemoteEndPoint = serverEp,
7 ClientAuthenticationOptions = new SslClientAuthenticationOptions
8 {
9 ApplicationProtocols = new List<SslApplicationProtocol>

10 {
11 new SslApplicationProtocol("echo")
12 }
13 }
14 });
15

16 await client.ConnectAsync(token);
17

18 // ...
19 }
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Once the connection is established, the client opens a bidirectional Quic
Stream using the OpenBidirectionalStream method. The QuicStream can be
used like any other Stream instance. Listing 5.9 shows the rest of the echo client
implementation.

Listing 5.9: Sending standard input via QuicStream

1 try
2 {
3 await using QuicStream stream = client.OpenBidirectionalStream();
4

5 // spawn a reader task to not let server be flow-control blocked
6 _ = Task.Run(async () =>
7 {
8 byte[] arr = new byte[4 * 1024];
9 int read;

10 while ((read = await stream.ReadAsync(arr, token)) > 0)
11 {
12 string s = Encoding.ASCII.GetString(arr, 0, read);
13 Console.WriteLine($"Received: {s}");
14 }
15 });
16

17 string line;
18 while ((line = Console.ReadLine()) != null)
19 {
20 // convert into ASCII byte array before sending
21 byte[] bytes = Encoding.ASCII.GetBytes(line);
22 await stream.WriteAsync(bytes, token);
23 // flush the stream to send the data immediately
24 await stream.FlushAsync();
25 }
26

27 // once all stdin is written, close the stream
28 stream.Shutdown();
29

30 // wait until the server receives all data
31 await stream.ShutdownWriteCompleted(token);
32 }
33 finally
34 {
35 // gracefully close the connection with 0 error code
36 await client.CloseAsync(0, token);
37 }

5.2.3 A More Complex Example Application

In this thesis, we developed a more complex version of the echo server example
from the previous section for benchmarking purposes. The source code for this
benchmarking application can be found in the src/supplementary/benchmark/
ThroughputTests/ directory of the thesis attachments. We will provide more
information about the application in section 6.1.3.
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5.3 QUIC API Reference
This section describes the API designed by the .NET development team to expose
QUIC to other developers. As mentioned in the introduction chapter, the current
design is a work-in-progress and is subject to change in the future. All of the
mentioned classes are located in the System.Net.Quic namespace.

5.3.1 QuicListener Class
The QuicListener class is the equivalent of the TcpListener for TCP connec-
tions. Servers use this class to accept incoming QUIC connections.

QuicListener(QuicListenerOptions)
Constructor.

IPEndPoint ListenEndPoint { get; }
The IP endpoint being listened to for new connection. Read-only.

ValueTask<QuicConnection> AcceptConnectionAsync(CancellationToken)
Accepts a new incoming QUIC Connection.

void Start()
Starts listening.

void Close()
Stops listening and closes the listener. Does not close already accepted
connections.

5.3.2 QuicListenerOptions Class
The QuicListenerOptions class holds all configuration used to construct new
QuicListener instances.

SslServerAuthenticationOptions ServerAuthenticationOptions { get; set; }
SSL related options like certificate selection/validation callbacks, and sup-
ported protocols for ALPN.

string CertificateFilePath { get; set; }
Path to the X.509 certificate used by the server.

string CertificateKeyPath { get; set; }
Path to the private key for the used X.509 certificate.

IPEndPoint ListenEndPoint { get; set; }
The IP endpoint to listen on.

int ListenBacklog { get; set; }
Number of connection to be held waiting for acceptance by the application.
Upon reaching this limit, further connections will be refused.

long MaxBidirectionalStreams { get; set; }
Limit on the number of bidirectional streams the client can open in an
accepted connection.
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long MaxUnidirectionalStreams { get; set; }
Limit on the number of unidirectional streams the client can open in an
accepted connection.

TimeSpan IdleTimeout { get; set; }
The period of inactivity after which the connection will be closed via idle
timeout.

5.3.3 QuicConnection Class
The QuicConnection class represents the QUIC connection itself. Clients open
new connections by creating a new instance of this class and calling the Connect
Async method. Servers receive new connections using the QuicListener class.

QuicConnection(QuicClientConnectionOptions)
Constructor. The newly created instance must be explicitly connected using
the ConnectAsync method.

bool Connected { get; }
Indicates whether the QuicConnection is connected (the handshake has
completed).

IPEndPoint LocalEndPoint { get; }
Local IP endpoint of the connection.

IPEndPoint RemoteEndPoint { get; }
Remote IP endpoint of the connection.

ValueTask ConnectAsync(CancellationToken)
Connects to the remote endpoint.

QuicStream OpenUnidirectionalStream()
Opens a new unidirectional stream. Throws a QuicException if the stream
cannot be opened.

QuicStream OpenBidirectionalStream()
Opens a new bidirectional stream. Throws a QuicException if the stream
cannot be opened.

ValueTask<QuicStream> AcceptStreamAsync(CancellationToken)
Accepts an incoming stream.

ValueTask CloseAsync(long, CancellationToken)
Closes the connection with the specified given error code and terminates all
active streams.

long GetRemoteAvailableUnidirectionalStreamCount()
Gets the maximum number of unidirectional streams that this endpoint can
open.

long GetRemoteAvailableBidirectionalStreamCount()
Gets the maximum number of bidirectional streams that this endpoint can
open.
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5.3.4 QuicClientConnectionOptions
The QuicClientConnectionOptions is used by clients to configure new QUIC
conections.

SslClientAuthenticationOptions ClientAuthenticationOptions { get; set; }
Client authentication options to use when establishing the connection.

IPEndPoint LocalEndPoint { get; set; }
The local IP endpoint that will be bound to.

IPEndPoint RemoteEndPoint { get; set; }
The IP endpoint to connect to.

long MaxBidirectionalStreams { get; set; }
Limit on the number of bidirectional streams the server can open.

long MaxUnidirectionalStreams { get; set; }
Limit on the number of unidirectional streams the server can open.

TimeSpan IdleTimeout { get; set; }
The period of inactivity after which the connection will be closed via idle
timeout.

5.3.5 QuicStream Class
The QuicStream class represents a single stream in a QUIC connection and
derives from the abstract Stream class. The Stream class is a bidirectional
stream abstraction and since not all QUIC streams are bidirectional, user should
check if the specific QuicStream instance supports supports the operation by
inspecting the CanRead and CanWrite properties. Invoking write methods on
read-only — more specifically, incoming unidirectional — stream will cause an
InvalidOperationException to be thrown and vice versa.

The list below mentions the members specific for the QuicStream class and
some important members inherited from the Stream class.

long StreamId { get; }
The Stream ID.

bool CanRead { get; }
Returns true if the stream supports reading.

bool CanWrite { get; }
Returns true if the stream supports reading.

void AbortRead(long)
Aborts the receiving part of the stream with the provided error code.

void AbortWrite(long)
Aborts the sending part of the stream with the provided error code.
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int Read(Span<byte>)
Reads the content of the stream into the provided buffer, blocks if no data
is available. Returns 0 only when there will be no more data in the stream.

ValueTask<int> ReadAsync(Memory<byte>, CancellationToken)
Reads the content of the stream into provided buffer, blocks until some data
is available. Returns 0 only when there will be no more data in the stream.

void Write(Span<byte>)
Writes the content of the provided buffer into the stream, returns when the
data have been buffered internally.

ValueTask WriteAsync(*, CancellationToken) (multiple overloads)
Multiple overloads of this method offer writing from various types of buffers:
ReadOnlyMemory<byte>, ReadOnlySequence<byte>, and ReadOnlyMemory
<ReadOnlyMemory<byte>>. The last one can be used to perform Vectored
I/O [47]. The returned task completes when the provided data have been
buffered internally and the buffers can be reused for other purposes.

ValueTask WriteAsync(*, bool, CancellationToken) (multiple overloads)
Like the methods above, but also allow specifying that the provided data
are the last on the stream and that the stream should be gracefully closed.

ValueTask ShutdownWriteCompleted(CancellationToken)
The returned task completes when the stream shutdown completes. Mean-
ing that acknowledgment from the peer is received.

ValueTask Shutdown()
Gracefully closes the writing direction of the stream, indicating that no
more data will be sent.

5.3.6 Exceptions
The QUIC API can throw the following exceptions:

QuicException
Base class for all thrown exceptions, used when a more specific exception
is not available

QuicConnectionAbortedException
Thrown when the connection is forcibly closed either by the transport or
by the remote endpoint.

QuicStreamAbortedException
Thrown when the stream was aborted by the remote endpoint.

QuicOperationAbortedException
Thrown when the pending operation was aborted by the local endpoint.
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6. Evaluation
This chapter evaluates the performance of the managed QUIC implementation
developed in this thesis and compares it to the existing MsQuic -based imple-
mentation. We will also compare both managed and MsQuic -based QUIC im-
plementations to SslStream which uses a combination of TCP and TLS. In our
evaluation, we will focus on two performance characteristics relevant for network
communication:

• Throughput: The rate at which the application data are sent. High total
throughput is essential for servers when handling a large number of parallel
connections.

• Round Trip Time Latency: The delay between sending a request and re-
ceiving a response. This metric is important mainly for clients, where lower
latencies mean faster responses from the server. Rather than measuring
the average latency, it is more common to measure, e.g., the 99th percentile
of latency, which indicates minimum expected latencies in the slowest 1%
replies. This metric is vital in the context of webpages and communication
with browsers, especially for websites for which web browsers generate a
large number (even hundreds) of HTTP requests for a single page access.
In such cases, the probability of at least one of the requests being slower
than the 99th percentile raises significantly and, therefore, a high value of
the 99th percentile would negatively affect the total page load time for a
significant number of users [48].

6.1 Evaluation Environment
We have evaluated our implementation in two different environments. Our pri-
mary evaluation environment consists of two blade servers on the same LAN
network. For short, we will reffer to this environment as the Linux LAN envi-
ronment. The relevant software and hardware parameters of the servers are:

• CPU: Intel® Xeon® E3-1270 v6 @ 3.80 GHz (4.20 GHz turbo boost, 4 cores,
2 threads per core)

• RAM: 32 GB (2400 MHz)

• Network Interface Card: Intel® Ethernet Controller I350 (1 Gbit/s)

• OS: Fedora 32

Unfortunately, the two servers are connected only by 1 Gbit/s Ethernet, which
implies a theoretical upper limit for TCP’s throughput at 117.5 MB/s and similar
limit for UDP. In some measurements, we reached values that approached this
limit. Therefore, when appropriate, we also evaluated our implementation using a
loopback network interface on a desktop workstation PC. For short, we will reffer
to this environment as Win loopback. The machine has following specifications:
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• CPU: Intel® Core® i7-8700 @ 3.20 GHz (4.60 GHz turbo boost, 6 cores, 2
threads per core)

• RAM: 32 GB (2400 MHz)

• OS: Windows 10 version 20H21

In both environments, the testing application was run in a a 64-bit process
on preview .NET 6.0.0 host (CoreCLR 6.0.20.55508, CoreFX 6.0.20.255508).

6.1.1 Drawbacks of Measuring Loopback Performance

Measuring over the loopback interface removes any upper limit on bandwidth
because the loopback interface is implemented purely in software inside the oper-
ating system. It also minimizes the transport latency and guarantees zero packet
loss during transport. The software-based implementation of the loopback in-
terface allows optimizations that are not feasible on Ethernet networks. As an
example, on Windows operating system, loopback connections can send 64 KiB
IP packets — which is the maximum size allowed by the IP protocol — with-
out any link-layer fragmentation. On the other hand, Ethernet connections can
carry only up to 1500 B IP datagrams without fragmentation. The greater size
of datagrams on the loopback interface reduces overhead when TCP is used for
inter-process communication on the same machine.

Both managed and MsQuic -based QUIC implementations send IP datagrams
which are at most 1500 B even on loopback connections, because of a hardcoded
upper limit on UDP datagram size in both implementations2. In order to make
the loopback connection measurements more comparable to those done on Eth-
ernet connections, we leveraged the ability to limit the maximum outbound IP
packet size to 1500 B on Windows sockets API for all loopback TCP connections
in our tests. From C#, this can be achieved using following statement:

socket.SetSocketOption(SocketOptionLevel.IP,
(SocketOptionName)76 /* IP_USER_MTU */, 1500 /* size */);

However, the IP_USER_MTU option is only available on Windows 10 version
20H2 or newer. On other platforms, the SetSocketOption call above would throw
an exception. In order to keep cross-platform compatibility, the relevant lines have
been commented out in the attached version of the source code. However, they
was used to obtain the results presented in this chapter.

1Update to Windows 10 20H2 includes significant TCP and UDP performance improve-
ments [49]. Measurements taken on older versions of Windows would yield significantly different
results.

2QUIC does not impose an upper limit on the UDP datagram size. However, it requires
that the UDP datagrams be small enough to avoid fragmentation. The hardcoded limit has
been chosen to simplify the implementation and to work well on Ethernet connections. This
limit may be removed in future versions of the libraries
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6.1.2 Running with MsQuic Support
MsQuic -based QUIC implementation does not work in the default installation
of .NET because .NET does not distribute the MsQuic binary. Applications
that wish to use the MsQuic -based QUIC implementation should reference the
System.Net.Experimental.MsQuic NuGet package [50] which provides the nec-
essary MsQuic binary. However, the Windows MsQuic binary distributed in the
NuGet package requires a Windows Insider Preview build of Windows because
it depends on newer Schannel version for TLS implementation, which is not
available in the mainstream Windows version.

Unfortunately, we cannot install a preview build of Windows on the worksta-
tion we will use for running the tests. Fortunately, in order to support Linux,
MsQuic can also use the same modified OpenSSL version for the TLS implemen-
tation as our managed QUIC implementation. Even though building MsQuic
with OpenSSL for Windows is not officially supported, we were able to produce
such a build with small changes in the MsQuic build configuration. Therefore,
the MsQuic library used in experiments in this chapter has been compiled locally
using source code from commit dc2a6cf0dd12e27 from the official MsQuic repos-
itory [14] and configured to use the same OpenSSL library as the managed QUIC
implementation. It should be noted that our custom Windows build of MsQuic
may show slightly different performance characteristics than the official build for
Windows, which uses the Schannel library.

On Linux, we could use the above mentioned System.Net.Experimental.
MsQuic NuGet package, but that would complicate the build process because
the package would have to be referenced only on Linux builds. Therefore, we
have decided to compile the Linux build of MsQuic locally as well. Like the
Windows build, the Linux build of MsQuic used in our tests was compiled from
commit dc2a6cf0dd12e27 but did not require changes to build configuration, as
it uses the modified OpenSSL library by default. Built MsQuic binaries for both
Windows and Linux operating systems which were used in tests can be found in
the bin/{platform}/msquic/ directory of this thesis attachments.

All measurements of the MsQuic -based QUIC support for .NET include any
overhead introduced by the interop layer bridging the native library API to .NET
QUIC API. The measured results, therefore, do not represent raw MsQuic library
performance, but the performance observed by .NET applications which use the
MsQuic -based implementation provider which can be validly compared to the
performance of our managed QUIC implementation.

6.1.3 Benchmarking Application
The actual throughput and latency measurements are done using a dedicated
benchmarking .NET application whose source code can be found in the src/
supplementary/benchmark/ThroughputTests/ directory in the attachments of
this thesis. The attachments also include a self-contained build of the applica-
tion for both Windows and Linux operating systems in the bin/{platform}/
ThroughputTests/ directory. The self-contained application does not require
.NET to be installed on the target machine. Note that on Linux, the LD_-
LIBRARY_PATH must be defined to the directory with the compiled binary for
MsQuic to be loaded correctly.
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The application implements a trivial echo server and clients which exchange
messages of the specified size. The first parameter to the application selects one
of the following modes:

server
Starts only the server-side part of the application.

client
Starts only the client-side part of the application. In this mode, the appli-
cation spawns multiple clients and reports the measurement results on the
standard output.

inproc
Starts both the server and client in the same process. All network commu-
nication is done over the loopback network interface.

The benchmarking application accepts multiple parameters. A list of the most
important follows. The full list of parameters can be found in the Program.cs
file, or by running the program with the --help parameter.

-e, --endpoint
The endpoint on which to listen (server) or to which to connect (client).
Not applicable for inproc mode.

-t, --tcp
Use TCP instead of QUIC.

-c, --connections
The number of connetions to create.

-s, --streams
The number of streams to create in each connection. Only for QUIC.

-m, --message-size
The size of sent messages in bytes.

-w, --warmup-time
Time before starting to take measurements. This can be used to give the
application time to JIT all methods used on the hot path.

-d, --test-duration
Time after which the measurement should stop and the application exit.

-n, --no-wait
Whether clients wait for a reply before sending another message.

By default, the implementation uses managed QUIC implementation. Switch-
ing to MsQuic -based implementation is achieved by defining the DOTNETQUIC_-
PROVIDER environment variable to msquic.

The client mode of the application switches between two behaviors. By de-
fault, clients wait for a reply from the server and measure the delay until a reply
is received. When using the -n switch, clients send as many messages as possible
without waiting for the server and only count the number of replies. This lets us
measure the total throughput of the system.
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6.2 Measurement Results
In the following subsections, we present the results of the individual performance
experiments. The throughput and latencies were measured as follows:

• Throughput: Throughput of the entire server. This is the total amount of
application data echoed back to clients across all connections. The through-
put measurements were taken with the use of -n flag in the benchmark
application.

• Latency: The delay between client writing the message to the Stream and
reading back the full reply. In our tests, we will measure the 99th percentile
of latency.

We will perform three kinds of performance comparisons:

• Multiple Parallel Streams Performance: These tests compare how the man-
aged and MsQuic -based QUIC implementations scale with increasing server
load. These tests will utilize the stream multiplexing of QUIC to send mes-
sages using multiple parallel QUIC streams.

• Single Stream Performance: These tests use only a single stream in a con-
nection. These tests should allow us to compare the performance between
QUIC implementations and TCP+TLS-based SslStream.

• Performance in Simulated Cellular Network: In these tests, we will try to
approximate the characteristics of a real-world cellular network by increas-
ing lag and packet loss in the Linux LAN environment.

In all experiments in this section, client and server parts of the benchmarking
application were run in separate processes. Each test case had a 5 s warm-up time
and collected data for another 15 s. These intervals were long enough to produce
stable measurements across multiple test runs.

In the benchmarking application, clients and server exchange messages of
the size specified by the -m parameter. In our tests, we will use mainly two
message sizes: 256 B and 4096 B. The 256 B message are small enough to fit into
a single QUIC packet, while the larger 4096 B messages are guaranteed to be split
across multiple QUIC packets. We expect that increasing the message size should
increase the latency because more packets need to be sent for both the message
and the reply. Also, increasing the message should increase throughput because
there are fewer calls to the Write and WriteAsync methods for the same amount
of data.

Running the benchmarking application for tests in this section has been
automated using a PowerShell [51] script. The script can be found at src/
supplementary/benchmark/ThroughputTests/run.ps1 in this thesis’ attach-
ments. Comments at the top of the file explain the usage of the script.
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6.2.1 Multiple Parallel Streams Performance

The first set of tests compared the managed and MsQuic -based QUIC implemen-
tations. These tests were run with increasingly larger messages and with a greater
number of parallel connections and streams to see how the two implementations
scale.

Figure 6.1 shows the measured throughput. Figure 6.1a shows the baseline
performance when 256 B messages are sent using a single stream per connection.
The other figures show measurements after increasing message size to 4096 B (Fig-
ure 6.1b), increasing number of streams to 32 (Figure 6.1c), or both (Figure 6.1d).
An immediate observation can be made that the managed implementation pro-
duced very similar pattern in all four test runs, with the highest throughput at 4
parallel connections and then decreasing. On the other hand, the MsQuic -based
implementation maintains almost the same throughput regardless of the number
of connections, but increases throughput both when increasing the message size
and number of streams in a connection.
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Figure 6.1: Multiple stream QUIC throughput measurements (Linux LAN)
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In case with 4096 B messages, the MsQuic -based implementation consistently
saturates the 1 Gbit network connection between the two blade servers. To give
more perspective on the relative performance between the two implementations,
Figure 6.2 shows results of the two test runs on the Windows workstation over
the loopback interface. Depending on the number of connections, the through-
put of the MsQuic -based implementation was up to four times greater than our
implementation. Results of runs with 256 B messages were left out for brevity
because they did not differ from the ones in the Linux LAN environment.
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Figure 6.2: Multiple stream QUIC throughput measurements (Win loopback)

The peak of the throughput of our managed QUIC implementation at four
connections can be explained by the fact that we are spawning a long-running
background task for each connection. Four connections lead to a number of
parallel Tasks that were enough to completely utilize the entire CPU.

As for the decline of the throughput of managed QUIC implementation when
16 or more connections were used, profiling showed that a substantial amount of
time was spent in the garbage collection. At 256 connections, up to 50% of the
total CPU time was spent in GC, divided into relatively large pauses of 20 ms
or more. The pauses introduced by GC led to QUIC packets being considered
lost, which led to the collapse of the congestion window in the QUIC connection,
further reducing the rate at which data were sent. This points to the fact that
even though we carefully avoided needless allocations in our implementation,
there are still enough sources of allocation left to degrade a server’s performance
under heavy load.

An example of a large allocation source in the managed QUIC implementation
is pooling the buffers for sending or receiving QUIC packets. Our implementation
uses ArrayPool<byte>.Shared to reuse allocated buffers. However, it does not
work well with a large number of connections because ArrayPool<byte>.Shared
pools only a few byte[] instances and lets GC collect the rest3. With a large num-

3In .NET 5, the implementation of ArrayPool<byte>.Shared maintains a separate pool for
each CPU core. Each per-CPU core pool organizes pooled arrays into 17 buckets with array
sizes ranging from 16 B to 1 MiB. Each bucket retains up to 8 array instances of similar size.
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ber of connections, the buffers are rented and returned in large bursts, leading to a
lot of large arrays being discarded upon return to the ArrayPool<byte>.Shared
and subsequently allocated anew.

Another source of allocations are Socket.SendTo and Socket.ReceiveFrom
methods which allocate of a new EndPoint instance for each call. In order to
remove this particular source of allocations, an allocation-free API for sending or
receiving UDP datagrams needs to be designed and implemented on the Socket
class. Such API has already been proposed in the past [52] but has not been
prioritized to be implemented.

MsQuic -based implementation shows similar throughput regardless of the
number of parallel connections. Instead, it dramatically increases with message
size and only slightly with the number of streams in the connections. When we
tried sending messages larger than 4096 B, the total throughput did not increase
significantly anymore. Upon closer inspection of the MsQuic network traffic using
Wireshark [35], it turns out that in tests with 256 B messages, many of the sent
packets were very small, possibly containing only ACK frames. Thus, the total
available network bandwidth was mostly unutilized. When 4096 B messages are
used, more space in QUIC packets is utilized, which increases the throughput.
Our investigation, however, did not uncover why the total throughput of MsQuic
does not increase with the number of connections in the tests with 256 B message.

Figure 6.3 shows the latencies measured in the Linux LAN environment for
the same four test cases as above. In all tests, the MsQuic -based implementation
exhibits a lower 99th percentile of latency, especially in test cases with a high
number of connections. The same measurement on Windows loopback did not
yield significantly different results.

When measuring latency, the benchmarking application waits for the server
to respond before sending another message. However, with many parallel con-
nections and streams, the total network traffic becomes similar to that produced
when measuring throughput. This was the case, especially when we see signifi-
cant differences between the latencies of the two implementations. Therefore, the
change in latency can be attributed to the frequent and long pauses introduced
by the GC that we have described above. On the other hand, in the test runs
where the managed implementation is close to that of MsQuic , the GC activity
was under 5% and did not cause long frequent pauses.

By increasing the message size, we increased the probability that the appli-
cation message will be affected by the packet loss introduced by the GC pauses.
This happens because the message is spread over multiple QUIC packets, and the
loss of any of those packets will delay the entire message until the missing part is
retransmitted. This explains why increasing the message size drastically affects
the latency with a large number of parallel connections.
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Figure 6.3: Multiple stream QUIC latency measurements (Linux LAN)

Increasing the number of streams also increases network traffic, making our
implementation susceptible to the increased GC pauses. Also, after a certain
threshold, increasing the number of streams does not increase the traffic because
the maximum throughput of the implementation has been reached. Instead, it
leads to an increase in latency because it still increases the number of outstanding
parallel requests.

Lastly, we would like to remind the reader that we measured the 99th per-
centile of the latency, which considers only the slowest 1% of requests. To give
more perspective on the latency distribution on the two implementations, Fig-
ure 6.4 shows the median measurements of the latency. For brevity, we include
only the measurements for the cases with 4096 B messages. The median mea-
surements of latencies of our implementation are similar or lower than that of the
MsQuic -based one.
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Figure 6.4: Multiple stream QUIC latency median measurements (Linux LAN)

We believe that the difference in the latency distributions between the two
implementations is due to their different architectures. MsQuic spawns several
worker threads (depending on the number of CPU cores) which process events for
individual connections from an event queue. The event queue ensures that the
connections are serviced evenly and at regular intervals. When the load on the
server increases, the extra latency is spread evenly across all active connections.
This is further supported by the fact that the median values for the latency of
MsQuic are only slightly lower than its 99th percentile from Figure 6.3.

Our implementation, on the other hand, relies solely on the .NET Task sched-
uler, which schedules all background tasks independently and without any priority
information. This allows for greater variance in the latency of our QUIC imple-
mentation as replies can be delayed due to unfortunate scheduling. In the future,
our implementation’s architecture should be improved to reduce the scheduling
variance and, therefore, the 99th percentile of the latency.

In summary, our QUIC implementation outperforms the MsQuic -based one
in scenarios where small messages are exchanged between client and server using
a small number of streams. However, our implementation does not scale as well
as the MsQuic -based one. A large number of parallel connections and streams
increases pressure on the GC, which introduces frequent and long pauses in the
application. Lastly, our implementation’s latency distribution is much less uni-
form than that of the MsQuic -based one because of the way background work is
scheduled on the .NET thread-pool.

6.2.2 Single Stream Performance
In the second test, we compared the single-stream performance of managed QUIC
implementations to the performance of the combination of TCP and TLS avail-
able via the TcpClient and SslStream .NET classes. We will also include the
measurements for MsQuic for completeness.

Figure 6.5 shows the results of the throughput measurements taken between
the two blade servers connected by 1 Gbit Ethernet. In both 256 B messages
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(Figure 6.5a) and 4096 B messages (Figure 6.5b) scenario, TCP implementation
outperforms both QUIC implementations. Also, out of the three implementa-
tions, our QUIC implementation is the only one which is not bottlenecked by the
1 Gbit LAN.
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Figure 6.5: Single stream throughput measurements (Linux LAN)

Because the throughput of some implementations in the previous figure was
limited by the 1 Gbit network, Figure 6.6 shows the results measured over the
loopback interface on the Windows workstation. We can see clearly that TCP still
provides greater throughput than the MsQuic -based implementation. We would
like to remind the reader that these measurements were taken with the size of the
IP datagram limited to 1500 B (see section 6.1.1). Otherwise TCP would send
the maximum 64 KiB packets and would reach throughput up to 900 MiB/s.
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Figure 6.6: Single stream throughput measurements (Win loopback)

By comparing the numbers in Figure 6.6b to that from Figure 6.2b, we see
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that the performance of TCP is also greater than that of MsQuic -based imple-
mentation when using 32 parallel streams per connection streams.

Figure 6.7 shows the latency measurement results in the Linux LAN environ-
ment. These results show that TCP exhibits substantially lower latencies than
either QUIC implementation. Very similar results were also obtained on the
Windows workstation.
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Figure 6.7: Single stream latency measurements (Linux LAN)

It is worth noticing that in Figure 6.7a, the latency of managed QUIC im-
plementation is very low until it reaches a certain threshold and then increases
rapidly as a consequence of increased GC pauses.

The results presented in this section suggest that neither QUIC implementa-
tion can compete with the SslStream in neither local LAN networks nor over the
loopback interface (even with the MTU reduction we explained in section 6.1.1).
It is possible, however unlikely, that the performance over real 10 Gbit/s net-
work will yield different results. A possible explanation for these results is that
the TCP networking stack is far better optimized than UDP. Also, in the Linux
LAN environment, some hardware optimizations may have been in place for TCP,
such as TCP offload engine [53] which offloads the TCP/IP stack implementation
onto the controller on the network interface card.

6.2.3 Performance in Simulated Cellular Network
In the last test, we compared the resilience of QUIC and TCP+TLS implemen-
tations in a simulated network with delay and packet loss. When choosing the
values of delay and packet loss parameters, we tried to approximate a 4G cellular
broadband network’s behavior. We performed a trivial connection speed test of
local 4G network using a smartphone and the speedtest.net testing web appli-
cation. This test reported latency of 25 ms, which we then chose as the latency
in the simulated network in our tests.

As for the packet loss in 4G network, in 2012, Chen et al. have measured
characteristics of 4G networks of major US cellular network carriers and measured
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packet loss percentages from 0.004% to 0.1% [54]. Even though the cellular
network technology may have evolved since then, we could not find more recent
measurements. Therefore, we will use those two packet loss values in our test
parameters.

It should be noted that our approximation of the cellular network is not per-
fect. The latency in a real-world network is not constant but has a random
distribution, and the 25 ms we measured earlier was only the mean value. Sim-
ilarly, packet loss does not affect each packet independently. Instead, packets
are often lost in bursts. There are multiple models for modeling more realistic
packet loss, such as the Gilbert-Elliot model [55]. However, we were unable to
find enough data to compute appropriate parameters for such models.

To simulate the 4G network, we used the Traffic Control capabilities of the
Linux kernel on the two blade servers in the Linux LAN evaluation environment.
The necessary configuration can be set using the tc utility. For example, the
following command issued on both machines would simulate 25 ms lag and 0.004%
packet loss:

tc qdisc change dev eth0 root netem delay 12.5ms loss 0.004%

Note that the set delay parameter is half of the desired latency because the
traffic shaping done by tc applies only to outbound traffic. Each endpoint, there-
fore, adds half of the total latency.

Figure 6.8 shows the measured throughput for 0.004% packet loss (Figure 6.8a)
and 0.1% packet loss (Figure 6.8b). As expected, The increase in packet loss leads
to a decrease in throughput. In the presence of only low packet loss, the TCP
implementation exhibits an order of magnitude greater throughput. However,
the throughput of the TCP protocol decreased at a greater rate than that of the
two QUIC implementation. The throughput of the two QUIC implementation is
comparable in all tests.
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Figure 6.8: Single stream throughput measurements in simulated network
(Linux LAN)
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Upon closer inspection, it turns out that the managed QUIC implementa-
tion is bottlenecked by the stream buffering implementation. In section 3.6.2,
we explained the design behind the sending part of the stream, namely the Send
Stream class. The implementation uses up to eight 16 KiB buffers to store the
application data. Once these buffers are filled, subsequent calls to the Write or
WriteAsync method will block until some data are acknowledged. The applica-
tion data must be buffered until the other endpoint acknowledges their reception.
This takes at least one roundtrip, i.e., 25 ms in our test. Our implementation
can, therefore, send at most 8 · 16 = 128KiB on a single stream during a round
trip period. This sending rate implies a theoretical maximum throughput as
128KiB ÷ 0.025 = 5MiB/s.

This hypothesis can be tested by doubling the delay on the simulated network.
Figure 6.9 shows measurements with 50 ms latencies (Figure 6.9a) and 100 ms
latencies (Figure 6.9b). In these variations of the test we see that the throughput
of the managed implementation is highly correlated with the network latency as
it halves everytime the latency is doubled.
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Figure 6.9: Single stream throughput measurements in simulated network with
long delays (Linux LAN)

This performance limitation could be fixed simply by increasing the number
of buffers used to buffer application data. However, a large number of such
buffers would lead to inefficient memory utilization in low-latency environments
like a LAN network. Instead, the amount of data buffered should be changed
dynamically based on information such as the congestion window’s size or the
flow control limit advertised by the other endpoint. We leave the implementation
of such dynamic buffering for future work.

Figure 6.10 shows the latency measurements results. Each implementation
exhibits the same latency for both 0.004% (Figure 6.10a) and 0.1% (Figure 6.10b)
packet loss. This means that even 0.1% packet loss rate is still low enough to not
affect the 99th percentile of latency.
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Figure 6.10: Single stream latency measurements in simulated network (Linux
LAN)

All implementations show almost the same latency in almost all tests. The
single exception is our implementation, which exhibits greater latencies for 4096 B
messages. This is because this message size does not fit a single packet and our
packet pacing implementation (see section 4.4.3) spaces out individual packets
one by one and thus increases the delay between sending the first and last QUIC
packet carrying the 4096 B message. The MsQuic -based implementation, on the
other hand, sends small batches of packets for each tick of the pacer and the small
batches are enough to transmit the entire 4096 B message.

By using only a single stream in each QUIC connection in these tests, it could
be argued that we did not utilize one of the big advantages of QUIC over TCP
— the reduced head-of-line blocking. Figure 6.11 shows the measurements of
throughput like we did previously (for Figure 6.8), but with QUIC connections
transmitting data using 32 parallel streams. Contrary to the expectation, the
throughput of the QUIC implementations increases only slightly.

Because we were sending data using multiple streams, the managed QUIC
implementation was no longer blocked by the limited buffering discussed above.
Instead, investigation shows that it was limited by the size of the congestion
window. After more investigation, it turned out that the throughput of both
QUIC implementation was very high at the beginning, possibly even higher than
that of TCP. However, during the 5 s warmup period, the packet loss led to a
significant reduction of the congestion window, and the throughput was reduced
to the values we can see on the plot.
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Figure 6.11: Multiple stream throughput measurements in simulated network
(Linux LAN)

We believe that this behavior was caused by the too uniform distribution of
the packet loss we used in our testing environment. In an environment with
uniform packet loss, almost all lost packets induce a separate congestion event
and reducing the congestion window. When packets are lost in bursts — as is
more common in real-world networks — the loss of multiple consecutive packets
is handled as a single congestion event, leading to less frequent reductions of the
congestion window.

In this case, the protocol’s behavior depends on the implementation of the
congestion control algorithm. The managed QUIC implementation uses an adap-
tation of the NewReno algorithm described by the QUIC specification [20, Sec-
tion 7]. The MsQuic -based QUIC implementation and TCP used the CUBIC
algorithm [56]. Because of the substantial difference in performance, we consider
it worthwhile to experiment with different congestion control algorithms for our
implementation. Studying the behavior and implementation of TCP congestion
control in the Linux kernel should also provide useful insight for improving our
implementation’s behavior. However, due to the complexity, we leave such ex-
periments and investigations for future work.

6.3 Interop between QUIC Implementations
The benchmarking application can also test the managed QUIC implementation’s
interoperability with the MsQuic -based implementation. This can be done by
starting one application in server mode using one implementation provider and
another instance of the application in client mode using the other provider.

We have tested both combination with following results:

• Managed client and MsQuic server: With a small number of connections,
the two implementations interoperated without any noticeable problems.
However, starting the benchmarking application with a very large num-
ber of parallel connection sometimes made MsQuic server respond with a
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Retry packet for some connections. This is because MsQuic engages client
address validation (see section 2.8.3) if there are too many simultaneous
connections attempts. Our implementation does not implement support
for client address validation via Retry packets, and, therefore, the connec-
tion was terminated immediately.

• MsQuic client and Managed server: The version of the MsQuic library we
used in our tests started all client connections using the draft 29 version
of the protocol, while our implementation supports only the draft 27 ver-
sion. Because we did not implement version negotiation, the server did not
attempt negotiating the draft 27 protocol version, and the MsQuic client
connections eventually closed due to idle timeout. Even if we decided to
ignore the protocol version in our implementation, these two versions use
a different initial salt for deriving Initial packet protection keys (see sec-
tion 2.8.2). Therefore, our server would drop all incoming packets because
they could not be decrypted.

Because the only problems with interop between the two QUIC implemen-
tations were due to features we explicitly decided to omit from our prototype
implementation during our analysis in section 3.1, we are satisfied with these
results.

Our benchmarking application did not perform an exhaustive interop test. A
better interop tests could be achieved using the open-source QUIC Interop Test
Runner project [57] which tests interoperabilty of popular QUIC implementations
in various scenarios. However, this level of testing is outside of the scope of this
thesis and is subject to future work.

6.4 Summary
Compared to MsQuic -based QUIC implementation provider, the managed QUIC
implementation developed as part of this thesis can provide higher throughput
when using a small number of parallel connections while maintaining comparable
latencies. However, in the current state, the managed QUIC implementation
does not scale very well, and both throughput and observed latencies degrade
when large number of connections are created. When under substantial load,
the MsQuic -based implementation delivered throughput up to four times greater
than our implementation.

However, in our tests, the TCP+TLS stack has significantly larger through-
put and lower latencies than either QUIC implementation in our LAN evaluation
environment. A possible explanation of this is the presence of hardware opti-
mizations for the TCP stack on the network interface card.

We also compared the QUIC and TCP implementations in a simulated 4G
network. In our tests, we again measured significantly higher throughput using
TCP+TLS stack than either QUIC implementation, even if we used multiple
streams in QUIC connections. As for latencies, all implementations exhibit almost
identical latency, except for our implementation, which had larger latencies once
the messages exceeded the maximum size of a QUIC packet.

From our measurements, we conclude that our prototype QUIC implementa-
tion will need further development and performance tuning in order to provide
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performance similar to that of MsQuic . We have identified some of the underlying
problems in the current managed implementation and proposed future improve-
ments. However, both QUIC implementations will require a significant amount
of optimizations before reaching performance comparable to present TCP imple-
mentations.
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Conclusion
To conclude our thesis, we will revisit the goals we set in the introduction chapter
in section 1.4.

1. Select a sufficient subset of QUIC specification needed to support the most
basic data transfer and implement it inside .NET runtime codebase.

In section 3.1, we analyzed parts of the QUIC protocol and selected the
necessary parts for our prototype implementation. All features selected in
this section were implemented to the extent that the implementation can
successfully and reliably transfer data over the network.

2. Allow switching between the new managed implementation and the existing
MsQuic-based one.

Our implementation integrates into the pre-existing implementation indi-
rection layer, which allows explicitly selecting the QUIC implementation
provider for newly created QuicListener and QuicConnection instances.
Additionally, the default provider can be selected using the DOTNETQUIC_-
PROVIDER environment variable.

3. Evaluate the managed QUIC implementation by using it to implement a
simple client-server echo application.

In section 5.2, we provided directions on implementing a simple echo server
and client. Additionally, we implemented a benchmarking application for
use in performance measurements in chapter 6.

4. (optional) Compare the performance of the new implementation with the
previous MsQuic-based one and with TCP+TLS-based SslStream.

In section 6.2, we presented the results of our performance measurements.
Our QUIC implementation outperforms the MsQuic -based one in a small
number of scenarios. However, in most cases and especially under heavy
load, the MsQuic -based QUIC implementation performs better both in
terms of throughput and latency. However, neither of the QUIC implemen-
tations performed better in our tests than the combination of TCP+TLS.

At the time of writing this conclusion, our managed QUIC implementation
has caught the attention of the .NET development team, and this implementation
will be added to the list of experiments in the runtimelab repository [58] in the
feature/ManagedQuic branch.

The next big release — .NET 6 — will ship with production-ready QUIC im-
plementation. In early 2021, a decision will be made whether this QUIC support
will be based on MsQuic or our QUIC implementation. However, even if the
more mature MsQuic implementation is chosen for the .NET 6 release, our im-
plementation will be considered as a managed replacement for subsequent .NET
releases.
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Future Work
The prototype QUIC implementation developed in this thesis will require more
development and substantial performance tuning before becoming production-
ready. Some parts of the QUIC specification were left unimplemented, and other
parts were simplified to fit into the scope of this master thesis. However, the core
part of the implementation should provide a solid foundation upon which a fully
conformant QUIC implementation could be built. The following list outlines the
next development steps for the implementation.

• Update the implementation to match the latest QUIC specification. QUIC
specification drafts evolved both during implementation and writing of the
text of this thesis. At the time of writing this conclusion, the 33rd version of
the QUIC specification draft is awaiting a last-call before it becomes a valid
RFC document. The implementation presented in this document is based
on draft version 27. Updating the implementation should be, therefore, the
first future goal.

• Implement missing parts of the protocol. This thesis implements only a
subset of the QUIC specification. Many features like connection migration,
stateless reset, and path validation have been omitted from the prototype
but should be implemented to make the implementation fully conform to
the QUIC specification.

• Performance improvements for scalability. The performance measurements
done in section 6.2.1 show that our implementation does not scale very well
in the face of large amounts of parallel connections. Possible improvements
to the backend processing architecture include allowing parallel sending and
receiving on a single connection and using a single thread to process multiple
connections like done in MsQuic .

• Experiment with congestion control algorithms. This thesis implemented
only the NewReno [20, Section 7] congestion control algorithm described in
the QUIC protocol specification. However, other algorithms such as CUBIC
or HyStart++ [32] have shown better performance in some scenarios.

• More realistic performance measurements. This thesis performed measure-
ments using 1 Gbit/s Ethernet connection in LAN network. Some imple-
mentations easily saturated such a network, and we had to extrapolate
from results measured over the software-based loopback network interface.
It would be better to confirm the measurements over 10 Gbit/s connection.

• Interoperability tests with other QUIC implementations. This thesis has
done only a straightforward interoperability test with MsQuic . There is an
open-source QUIC Interop Test Runner [57] which repeatedly tests com-
patibility between the latest versions of popular QUIC implementations.
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README.md..................................File describing the contents of the archive

121



122



Glossary
Abstract Factory Pattern

A design pattern encapsulating creation of families of related classes. A typ-
ical example are factories for creating GUI widgets, where different factories
can create various types of widgets backed by a particular GUI rendering
library. 58

Ack-eliciting Packet
A QUIC packet which contains at least one frame which is not PADDING,
ACK, or CONNECTION_CLOSE 22

Application-Layer Protocol Negotiation (ALPN)
A TLS extension that allows the application layer to negotiate which appli-
cation protocol will be in the connection. The negotiation is done as part
of the TLS handshake and avoids additional round trips. ALPN is used,
e.g., for HTTP version negotiation in HTTPS connections. 33

Authenticated Encryption With Associated Data (AEAD)
Form of encryption which simultaneously assure the confidentiality and au-
thenticity of data. 34

Connection ID
An opaque identifier that is used to identify a QUIC connection at an
endpoint. Each endpoint sets a value for its peer to include in packets sent
towards the endpoint. 14

Destination Connection ID (DCID)
Connection ID used by the receiver of the QUIC packet. 17

Garbage Collector (GC)
A part of the .NET runtime which provides automatic memory manage-
ment. 45

Head-of-line Blocking
Performance limiting phenomenon caused by a line of packets being held
up by the first packet 5

Key Update
A process in which QUIC endpoints derive new encryption keys to use
for encrypting 1-RTT packets. This process limits the number of packets
encrypted by the same encryption key, increasing the level of protection.
The process of key update is described in section 2.8.2. 37

Managed Code
Code written in one of the .NET languages running on the .NET virtual
machine. 8
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Micro-bursting
A performance limiting phenomenon in which packets arrive in short rapid
bursts. These bursts may cause overflow in the receiving buffers and cause
the receiver to discard incoming packets. 64

Native Code
Code written in ahead-of-time compiled language. This code runs directly
on the target CPU. 8

Network Path
An imaginary path between two network addresses. Each end of a network
address consists of a pair of local address and port number. 14

Out-of-order Packet
A packet that does not arrive directly after the packet that was sent before
it. A packet can arrive out of order if it is delayed, if earlier packets are lost
or delayed, or if the sender intentionally skips a packet number. 13

Packet Pacing
A mechanism which evens out microbursts of packets in order to prevent
network congestion. An ideal network pacer spreads entire congestion win-
dow worth of traffic evenly over the round trip time period. 64

Path Validation
A process during which QUIC endpoint validates that it’s peer is reachable
via a particular network path. Consists of an exchange of PATH_CHALLENGE
and PATH_RESPONSE frames. 38

QUIC Packet
A complete processable unit of QUIC that can be encapsulated in a UDP
datagram. Multiple QUIC packets can be encapsulated in a single UDP
datagram. 13

Server Name Indication (SNI)
A TLS extension that allows the client to specify the hostname it is at-
tempting to connect to at the start of the handshake process. This allows
using different security configurations for each different website hosted on
the server. 33

Source Connection ID (SCID)
Connection ID used by the sender of the QUIC packet. 17

Strategy Pattern
A behavioral design pattern which allows selecting an internal implementa-
tion (algorithm) at runtime. 52

Traffic Amplification Attack
A type of distributed denial-of-service (DDoS) attack in which attacker
sends a small amount of data to a server and the server responds with
larger amount of data to the target. An example of such attack is initiating
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new connections with a falsified source IP address which make the server
flood the victim with handshake attempts. 38

Zero Round Trip Time Resumption (0-RTT)
TLS mode of operation allowing clients to send application data in the very
first but possibly exposing the server to reply attacks. 7
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