Abstract

Penicillin G acylases (PGAs) belong among enantioselective enzymes catalyzing a hydrolysis of stable amide bond in a broad spectrum of substrates, often having high application potential. PGA^{*Ec*} from *Escherichia coli* and PGA^{*A*} from microorganism *Achromobacter* sp. CCM 4824 were used to catalyze enantioselective hydrolyses of seven selected N-phenylacetylated (N-PhAc) α/β -amino acid racemates. The PGA^{*A*} showed higher stereoselectivity for three (*S*) enantiomers: N-PhAc- β -homoleucine, N-PhAc- α -*tert*-leucine and N-PhAc- β -leucine. We have constructed a homology model of PGA^{*A*} that was used in molecular docking experiments with the same substrates. *In-silico* experiments reproduced the data from experimental enzymatic resolutions confirming validity of employed modeling protocol. We employed this protocol to evaluate enantiopreference of PGA^{*A*} towards seven new substrates with application potential. For five of them, high enantioselectivity of PGA^{*A*} was predicted for.

PGA^{*A*} was further studied in kinetically controlled syntheses of β -lactam antibiotics (SSBA). The PGA^{*A*} was significantly more efficient at synthese of ampicillin and amoxicillin (higher S/H ratio and product accumulation) compared with PGA^{*Ec*}. Analogously to prediction of enantioselectivity of PGA^{*A*} towards new substrates this protocol was applied for SSBA syntheses catalyzed by PGA^{*A*}.

To improve parameters of SSBA syntheses, we performed *in-silico* directed modification of PGA^{*A*} at position Phe24 β and Phe146 α . As a promising modification appeared to be PGA^{*A*} Phe24 β →Cys. The distance between the NH₂ group of nucleophile and carbonyl group of acyl-donor dropped from 4.1 Å to 3.3 Å for amoxicillin. We subsequently constructed *pga^A* gene encoding this amino acid modification. The gene was expressed and recombinant PGA^{*A*}Phe β 24Cys was purified. The enzyme exhibited very similar values of all tested parameters in syntheses of amoxicillin and ampicilin compared with PGA^{*A*}.

The recombinant PGA^{*A*}Phe β 24Cys was further tested in the synthesis of amoxicillin under industrial conditions 1) at a concentration of nucleophile above 400 mM and the molar ratio AD / N 1.05 and 2) at a concentration of nucleophile of 160 mM and the same molar ratio.

Efficiency of stabilized Phe β 24Cys as CLEA was studied in synthesis of amoxicillin at nucleophile concentrations above 400 mM and the molar ratio AD / N 1.05. The value of S / H has increased compared with the soluble form of approximately 8% (from the value of 4.9 to 5.0). The degree of conversion increased greatly, from 22 to 61%.