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Subtle effects in atoms and molecules

Department of Chemical Physics and Optics

Supervisor of the doctoral thesis: doc. Mgr. Jaroslav Zamastil, Ph.D.
Study programme: Physics

Study branch: Biophysics, Chemical
and Macromolecular Physics

Prague 2018





I declare that I carried out this doctoral thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In ........ date ............ signature of the author

i



ii



Title: Subtle effects in atoms and molecules

Author: Daniel Šimsa
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extended Bethe logarithm is introduced and its advantages are shown and used to
calculate the combined self-energy vacuum polarization contribution to the Lamb
shift in muonic hydrogen. The results given here are more accurate and somewhat
different from others given in literature. In the second part, the ground-state
energy splitting due to the tunneling in a two-dimensional double-well potential
is calculated. A systematic WKB expansion of the energy splitting is given. An
interplay between curvature of the classical tunneling path and quantum nature of
motion is observed. A series is found that describes systems with strong coupling
like the proton transfer in malonaldehyde. The results show a strong sensitivity
of the splitting on slight variations of the parameters entering the Hamiltonian
linearly. This indicates a presence of quantum chaos in this problem.
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Introduction
Small discrepancies between a theory and an experiment can turn out to be the
motivation for a development of new theories. As a prime example one may
mention perihelion precession of Mercury, which helped A. Einstein to establish
a general theory of relativity.

One of the systems where subtle effects can be studied and which also served
many times as an inspiration for new theories is the hydrogen atom. For ex-
ample, the Bohr model, which explains the Rydberg formula for atomic atomic
hydrogen-emission lines, was one of the foundation stones of quantum theory.
Studying subtle features, however, provides even more information. The Dirac
equation was validated by explaining fine details of hydrogen spectrum and later
the measurement of the small energy difference between 2S1/2 and 2P1/2 states,
called the Lamb shift, was the stimulus for a development of modern quantum
electrodynamics (QED) [26]. Nowadays, testing QED on hydrogen-like atoms
still raises some questions of crucial importance, like the size and structure of the
proton.

These subtle effects that are still not fully understood can be found not only in
atoms, but also in molecules. One of such effects is multi-dimensional tunneling.
Although tunneling is well understood in systems that are described by one-
dimensional potentials, the nonseparable multi-dimensional potentials still pose a
problem. Among such systems are molecules like malonaldehyde, where a proton
tunnels through a two-dimensional barrier.

In the first chapter we give a brief and concise theory description of both
electronic and muonic hydrogen-like atoms and then we discuss in detail QED
processes we have studied. In the second chapter we discuss the tunneling in
two-dimensional potentials and we introduce a new method that can be used to
calculate the energy splitting caused by tunneling. In Conclusion we summarize
the results and we outline possible continuation of this work.
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1. Radiative Corrections in
Muonic Hydrogen

1.1 Motivation
Few years back, the 1S−2S transition in atomic hydrogen (e−p+) was determined
to be

ν1S−2S = 2466061413187035(10) Hz, (1.1)
i.e. with relative uncertainty of 4.2 × 10−15 [19]. If we want to achieve such
an extraordinary precision in theoretical predictions, we have to include even
subtle effects like finite size of the nucleus, relativistic or radiative corrections
originating from QED. Unfortunately, the proton charge radius1 rp is not known
with sufficient precision. However, we can change our perspective and treat the
value rp as an adjustable parameter and use both experimental and theoretical
results in atomic hydrogen to extract the value of the proton charge radius [18]

rp = (0.8759 ± 0.0077) fm. (1.2)

Combining these and scattering experiment results we get the CODATA value
[18]

rp = (0.8751 ± 0.0061) fm. (1.3)
The value (1.3) was widely accepted until 2010, when a paper [22] was pub-

lished and a discrepancy was reported therein. The authors measured a transition
frequency between 2S1/2 (F = 1) and 2P3/2 (F = 2) states in muonic hydrogen
(µ−p+)

Eexp = (206.2949 ± 0.0032) meV. (1.4)
This result is not as precise as (1.1), but the muon is approximately 200 times
heavier than electron, thus, it is much more sensitive to the size of the proton.
According to Standard Model (SM), the interaction Lagrangian between either
electron e− or muon µ− and proton p+ is the same with the only difference of
having a different mass. The theoretical prediction of the transitional frequency
(1.4) gives2

Eexp = (209.9974 ± 0.0048 − 5.2262
r2

p

fm2 ) meV. (1.5)

One can compare experimental (1.4) and theoretical (1.5) results and obtain the
proton radius [13]

rp = (0.84169 ± 0.00066) fm. (1.6)
The disagreement between (1.2) and (1.6) is 4.5σ and between (1.3) and (1.6)
it is even 5.6σ [13], where σ is the standard deviation. Similar discrepancy has
been established between deuterium (e−d+) and muonic deuterium (µ−d+) [23].
What might be the problem?

1 It is correctly called bound-state root-mean square charge radius of the proton and is
defined as r2

p =
∫︁

d3r r2ρp(r), where ρp(r) is the charge density distribution of the proton.
2 We keep the units usually used in literature, i.e. Hz for electron hydrogen and meV for

muonic hydrogen.
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1. An error in the experiments. The error in the muonic hydrogen spec-
troscopy experiment seems unlikely. It is both more sensitive to the rp and
more straightforward than hydrogen spectroscopy. Further, a new experi-
ment was conducted [1] and the disagreement persists. On the other hand,
some concerns were raised about the evaluation of hydrogen spectroscopy
and electron-proton scattering experiments [2]. The value of Rydberg con-
stant R∞c has to be taken from other transitions than 1S − 2S and then
plugged into the calculations. Even a small change on the order of un-
certainty in some of those transitions may explain the puzzle. Others [27]
question the statistics and the process of extraction of rp value from scat-
tering experiments. New experiments that can address these concerns are
either under way or in the process of preparation [2].

2. An error in the theoretical calculation of corrections either for elec-
tronic or muonic hydrogen. The determination of the corrections is often
complicated and we cannot discard the possibility that some mistakes or
incorrect aproximations were made. Although many corrections were recal-
culated [13, 34] some have not been independently checked.

3. A fundamental problem with SM. Might this be a glimpse at a com-
pletely new physics? If the previously mentioned attempts to explain the
puzzle are not successful we might consider the possibility that we are de-
tecting physics beyond SM.

In this work we aim to recalculate some corrections relevant for muonic hy-
drogen and we check the values reported in literature [18, 9, 13, 30]. We study
the Wichmann-Kroll term [30], which has not been independently derived so far.
We also study the two-photon self-energy vacuum polarization correction which
was firstly calculated in [21] and then the value was reduced by 60 % in [13].

1.2 Overview of theory of muonic and electronic
hydrogen

The hydrogen-like atom, either muonic or electonic, is an ideal system for test-
ing the agreement between theory and experiment. The Schrödinger and Dirac
equations can be solved analytically, hence the approximations to the theory are
made only in the subsequent steps. When one starts with an approximate solu-
tion, as it is in the case of atoms and molecules containing two or more electrons,
it is much more complicated to control the accuracy in the subsequent steps with
more approximations.

1.2.1 Energy levels given by Schrödinger equation
Transitional frequencies νab between states a and b are given by

νab = Eb − Ea

h
, (1.7)

where Ea, resp. Eb are energies of the states a, resp. b and h is the Planck
constant.
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The crudest estimate of the energy levels of hydrogen-like atoms with the
charge number Z in state a is given by the eigenvalue of the Schrödinger equation
[31]

ESchr
a = −m(Zα)2c2

2n2
a

. (1.8)

where α stands for the fine structure constant, c for the speed of light, na and nb,
are the principal quantum numbers of the states a and b. Finaly, m is the mass of
the lighter particle – in our case either electron m = me or muon m = mµ. The
equation (1.8) is a good estimate which explains the three digits of the 1S − 2S
transition (1.1) in hydrogen. We improve the estimate and explain another two
digits of (1.1) if we treat the nucleus not as an infinitely heavy particle, but
incoroporate the finite mass of the nucleus mN into the relation (1.8). We do it
easily, by replacing the mass m by the reduced mass

mr = mmN

m+mN

= m

1 + m
mN

. (1.9)

This is a direct consequence of the fact that from the perspective of nonrelativistic
theory, we can shift to the center-of-mass system and treat a two-particle problem
as a problem of one particle with the mass mr in the given potential.

If we calculate transition frequencies between states with different principal
quantum numbers we always factor out the nonrelativistic estimate of the en-
ergy (1.8). This approach is widely used because Rydberg constant R∞c can
be measured with higher precision than electron mass, Planck constant and fine
structure constant that are linked to the Rydberg constant through the relation

R∞c = meα
2c2

2h . (1.10)

If we want to go beyond this level of accuracy and theoretically explain the
remaining eleven digits in (1.1), we need to account for even more subtle effects.

In the following part of this section we give an overview of these effects. An
extended introduction to the topic can be found in [9], an overview of the recent
theoretical and experimental results is given in [18].

1.2.2 Classification of the corrections
The corrections are generated by the effects ignored in the Schrödinger equation.
They are included by means of perturbation theory. These corrections are much
smaller than the Schrödinger eigenvalue (1.8) so the utilization of perturbation
approach is justified. Even better, the corretions can be classified by powers of
small paramaters, most importantly α, Zα and m/mN , which have their origin
in electrodynamic corrections3. Other corrections of nonelectromagnetic origin,
which are induced by the weak or strong interaction, give additional small param-
eters such as the Fermi constant or ratio of nuclear radius and either electronic or
muonic Bohr radius. We note that the coefficients may be logarithmic functions

3 In the text, we do not mix parameters Zα and α, although the magnitude is, at least for
low Z, given by magnitude of α. This is because Zα originates from binding between particles
whereas α comes from QED loops. We want to distinguish between those two cases.
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of the small parameters. In most cases the magnitude of the corrections can be
guessed from the power of the parameters. For example, a one-loop radiative
correction proportional to α(Zα)5 is approximately hundred times bigger than a
two-loop correction proportional to α2(Zα)5.

The corrections have larger values for S states than for P , D and other states
with nonzero angular momentum. This is due to the short-range nature of the
QED and other effects. This can be seen from the leading order corrections that
are proportional to the magnitude of a wave function in origin |ψ(0)|2 ∝ δl0/n

3

which is nonzero only for S states.
Let us now classify the corrections according to the powers of the small pa-

rameters mentioned above.

• Corrections which depend only on the parameter Zα are called relativistic
corrections. They arise from the deviation from nonrelativistic theory and
include effects like relativistic dependence of mass on the velocity, spin-orbit
interaction, etc. In the leading order they are proportional to (Zα)4.

• Corrections which depend on the parameters α and Zα are called radiative
corrections and they come from QED. The power of α is exactly equal to
the number of electromagnetic loops. Among these corrections are effects
like electron self-energy or vacuum polarization. They start to contribute
at the order α(Zα)4.

• Corrections which depend on the parameters m/mN and Zα are called
recoil corrections4. They reflect the fact that the nucleus does not have
an infinitely heavy mass. The most important part is reflected by the
substitution of mass m by the reduced mass mr in (1.8). The second most
important recoil contribution is of order (m/mN)(Zα)4.

• Mixing the last two corrections together we get the so called radiative-
recoil corrections. They depend on parameters α, Zα, m/mN . We have
to take into account both the electromagnetic loops and the relativistic
two-body nature of the system.

• Lastly, we have nonelectromagnetic corrections which are induced by
the strong and weak interaction. The most important of these corrections
are associated with nonzero radius of the proton and its structure.

Before we start the calculation, let us discuss magnitude of energy level shifts
and splittings caused by some corrections for both electronic and muonic hydrogen
with emphasis on those which are the most relevant to the measured transitions,
1S − 2S for electronic hydrogen (1.1) and 23S1/2 − 25P3/2 for muonic hydrogen
(1.4). The situation for electronic hydrogen is shown on Fig. 1.1. The most
important are relativistic effects, which explain the fine structure (difference be-
tween 2P3/2 and 2P1/2). They are followed by QED effects, which give rise to the
Lamb shift. Almost on the same scale is the hyperfine structure. The corrections
given by nonzero proton charge radius rp are much smaller, but for the precision
achieved in (1.1) are still very much relevant.

4 If the power of the parameter (Zα)n is n ≥ 5, they are sometimes called relativistic recoil
corrections.
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Figure 1.1: Several energy levels of hydrogen and their shifts and splittings caused
by different effects.

For muonic hydrogen, the situation is not only quantitatively, but also quali-
tatively different, see Fig. 1.2. The 2S1/2 state lies lower than the 2P1/2 state.
This is opposite in the electronic hydrogen, cf. differences between Figs. 1.1
and 1.2. Roughly speaking, this is given by the competition between vacuum
polarization effect, which lowers the S states and is much stronger for muonic
hydrogen, and self-energy effect, which increases the energy of S states and is
relatively stronger for electronic hydrogen. Second difference in muonic hydrogen
is that the fine structure splitting of 2P state is much smaller than the Lamb
shift. This is given by the very strong vacuum polarization effect as well. It is
much stronger not only than the self-energy but also relativistic corrections.

We can see from Fig. 1.2 that the transition 23S1/2 − 25P3/2 is a sum of three
contributions:

1. 2S − 2P1/2 Lamb shift,

2. 2P1/2 − 2P3/2 fine structure splitting,

3. 2S and 2P3/2 hyperfine structure.
The effects studied by us are mostly relevant for the Lamb shift. An overview of
the most important contributions to the Lamb shift in muonic hydrogen is given
in Tab. 1.1.

In the next part of this chapter we first discuss some of the corrections from
Tab. 1.1 and then we give a description of the corrections studied by us. We
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Figure 1.2: Structure of energy levels with n = 2 of muonic hydrogen.

present the derivation of the general formula and then we give the numeric results
for the Lamb shift in muonic hydrogen.

1.2.3 Leading relativistic and recoil corrections
The analytic solution of the Dirac equation gives an energy eigenvalue of the
system which consists of an electron bound in a Coulomb field created by a
nucleus

ED = mc2f (n, j) , (1.11)

where, as usual, j(j + 1) is the eigenvalue of the total angular momenta Ĵ2 and
function f (n, j) is given by

f (n, j) = 1√︄
1 + (Zα)2(︂

n−j− 1
2 +

√
j+ 1

2 −(Zα)2
)︂2

. (1.12)

The equation (1.11) is valid only for an infinitely heavy nucleus. When we want
to incorporate the finite nucleus mass mN into the expression (1.11) the situation
is not as straightforward as in the nonrelativistic case. On the other hand, the
electron motion in the Coulomb field with low Z is substantially nonrelativistic;
therefore, the binding energy should be proportional to the reduced mass mr

rather than just to the mass m. Considering this we can expect the equation in
the form

ED = mrc
2f (n, j) . (1.13)

This might be a good first step but we need to go beyond that.
An unambiguous way to find energy levels of two-interacting-fermion problem

is provided by the Bethe-Salpeter (BS) equation [24]. However, analytical solution
of this equation is not known and calculations beyond the leading order is very
complicated and nontransparent [3, 9].
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# Correction in [meV] Value from
[13, 22]

Uncert. Our value

1 One-loop electron VP (Uehling) 205.0282
2 Two-loop electron VP (Källen-

Sabry)
1.5081

3 Polarization insertion in two
Coulomb lines

0.1509

4 Three-loop electron VP 0.0076
5 Polarization insertion in two and

three Coulomb lines
0.00223

6 Virtual Delbrück scattering 0.00014 ±0.00002
7 Wichmann-Kroll −0.00103 −0.001016
8 Muon SE + VP −0.6677
9 Two-loop SEVP −0.0025 −0.002706
10 Recoil correction (Darwin-Foldy

term)
−0.0575

11 Additional recoil −0.04497
12 Radiative-recoil −0.00960
13 Hadronic polarization 0.0108
14 Nuclear structure correction

(Proton polarizability)
0.015 ±0.004

Sum of all rp-independent correc-
tions

209.9974 ±0.0048 209.9972

Table 1.1: Example of some rp-independent corrections to the Lamb shift in
muonic hydrogen. Values in the third and fourth columns are taken from [13] and
[22]. In the last column are our values. For the comparison, the rp-dependent
contribution is equal to 5.2262 r2

p

fm2 meV.

A different and commonly used approach is based on the construction of an
effective Hamiltonian which has both proper mass and relativistic dependence.
It is called the Breit Hamiltonian and it is derived as a first order expansion
in v2/c2 from a sum of free-particle relativistic Hamiltonians and the relativistic
one-photon exchange which is of order (Zα)4 [3]. Extra photon exchange leads
to at least one extra factor of Zα, thus generating contributions to the energy of
order (Zα)5 and higher [9]. Up to the order (Zα)4 we thus have

EM = −mrc
2 (Zα)2

2n2 − mrc
2 (Zα)4

2n3

(︄
1

j + 1/2 − 3
4n + mr

4n(m+mN)

)︄
+

+ m3
rc

2(Zα)4

m2
N2n3

(︄
1

j + 1/2 − 1
l + 1/2

)︄
(1 − δl0) , (1.14)

where l is the nonrelativistic orbital angular momentum quantum number. The
last term, which is nonzero only for states with l > 0 is called the Darwin-Foldy
contribution.

Using the formula (1.14) we lose the exact treatment of the relativistic cor-
rections embedded in (1.12). On the other hand, we get a practical recipe how
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to treat the recoil corrections5 which is not possible6 from the completely rela-
tivistic approach (BS equation). Above that, we can calculate purely relativistic
corrections to any order in Zα by simply expanding (1.12) in Zα.

1.2.4 Self-energy
The most important radiative correction for electronic hydrogen comes from the
so called self-energy (SE). According to QED an electron interacts with its own
field, i.e. it continuously emits and reabsorbs virtual photons. This can be
represented by a Feynman diagram on Fig. 1.3.

Figure 1.3: Feynman diagram of the one-photon self-energy

Using the Feynman rules [11, 26, 31], the diagram on Fig. 1.3 can be translated
to an expression for the energy shift

∆ESE = α

π

∫︂ d4kF

k2 ⟨ψat|γµ
1

γ · (Π − k) −m
γµ|ψat⟩ . (1.15)

Here d4kF = i(2π)−2d4k, ψat is a wave function of a bound lepton, Π is the four-
momentum of the lepton in an external Coulomb field Π =

(︂
E + Zα

r
,p
)︂

and γµ

are the Dirac matrices. It is customary to write the energy shift (1.15) in the
form

∆ESE = α

π
(Zα)4

(︃
mr

m

)︃3
F (Zα)mc2 , (1.16)

where F (Zα) is a dimensionless function

F (Zα) = A41 ln(Zα)−2 + A40 + A50(Zα)+
+ (Zα)2

[︂
A62 ln2(Zα)−2 + A61 ln(Zα)−2 +GSE(Zα)

]︂
. (1.17)

The remainder function GSE(Zα) can be calculated either from a further expan-
sion in Zα or non-perturbatively. We have shown in [20] that for the perturbative
expansion in Zα the structure of the remainder function GSE(Zα) is as follows

GSE(Zα) = A60 + (Zα)
[︂
ln(Zα)−2A71 + A70

]︂
+

+ (Zα)2
[︂
ln3(Zα)−2A83 + ln2(Zα)−2A82 + ln(Zα)−2A81 + A80

]︂
+

+ (Zα)3
[︂
ln2(Zα)−2A92 + ln(Zα)−2A91 + A90

]︂
+ . . . . (1.18)

The coefficient A70 is not known, it is thus better to calculate the remainder
function GSE(Zα) non-pertubatively (or expand it in a different way). The eval-
uation has been accomplished either by means of extrapolation of a partial wave

5As well as radiative-recoil corrections.
6At least, it is not known.

12



expansion (PWE) [12] or by means of relativistic generalization of multipole ex-
pansion (RME) [32, 33, 34]. In these works the energy splitting was determined
with uncertainty less than 20 Hz. It is not enough to match the accuracy of the
experiment but it is more than enough to independently confirm that the proton
radius puzzle does not come from a mistake in evaluation of this correction.

1.2.5 Vacuum polarization
The Feynman diagram of one-loop VP is illustrated on Fig. 1.4.

Figure 1.4: Feynman diagram of the one-loop vacuum polarization

The vacuum polarization level shift can be written as

EVP = α

π

(Zα)4

n3

(︃
mr

m

)︃3
H(Zα)mc2 (1.19)

where H(Zα) is a dimensionless function of the form

H(Zα) = H
(1)
U + (Zα)2H

(3)
WK + · · · . (1.20)

The first term is due to the Uehling potential and the second is due to the
Wichmann-Kroll potential. For electronic hydrogen these terms can be further
expanded in Zα, for muonic hydrogen such expansion is not valid. We postpone
further discussion at this point because the vacuum polarization will be discussed
in detail in Sec. 1.3.

1.2.6 Two-photon corrections
The two-photon corrections mean that two loops, either of SE or VP type, are
combined. These corrections are at least α/π times smaller than the SE or VP
effects alone. In the muonic hydrogen the third most important contribution is the
two-loop VP, often called Källen-Sabry terms [14]. These effects were recalculated
many times, for example in [13]. There are ten Feynman diagrams of two-photon
corrections which subsets are referred to as SESE, SEVP and VPVP, depending
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on which loops are combined. In this work we describe and calculate some of
SEVP corrections in Sec. 1.4. Three-photon corrections are again at least α/π
smaller than two-photon corrections.

1.2.7 Nuclear size and structure
The nucleus is a bound system of strongly interacting quarks. However, the quan-
tum chromodynamics (QCD), a modern theory of strong interaction, is unable
to provide us with tools which could be used to evaluate the corrections. The
QCD perturbation expansion does not work on the distances relevant in atoms
and non-perturbative methods are not well developed. Fortunately, the main
nuclear parameters affecting the energy levels can be either measured directly or
calculated from other experimental measurements.

The leading nuclear structure contribution gives the level shift

∆E(0)
NS = ENSδl0 . (1.21)

The leading order value ENS depends on the small parameters in the following
way

ENS = 2
3

(︃
mr

m

)︃3 (Zα)4

n3 mc2 r
2
N

λ̄2
C

, (1.22)

where rN is the nuclear charge radius and λ̄C is the Compton wavelength of the
lepton divided by 2π. For an electron, the ratio rN/λ̄C < 10−3 is indeed a small
parameter, for a muon this ratio is only around 10−1 and thus the the nuclear
size effect is the second strongest effect in the muonic hydrogen, see caption of
Tab. 1.1.

As in the case of the level differences, we can add higher-order contributions
which depent not only on small parameters such as α or rN/λ̄C but also other
constants that depend on other characteristics of the nucleus

∆ENS = ENS(δl0 + corrections) . (1.23)

The corrections beyond the leading order link the size of the nucleus with the
relativistic, radiative and other corrections [9].

An important correction is the nuclear polarizability which depends on electric
and magnetic polarizabilities of the nucleus [9]. This correction inserts the highest
uncertainty through the experimental error of polarizabilities [22].

Another important corrections depend on the so called third Zemach moment7

⟨r3
N⟩(2). The relation between rp and ⟨r3

N⟩(2) can be derived. Unfortunately, it
depends on the nuclear charge density which is not known [9]. On the other hand,
the third Zemach radius can be obtained experimentally from scattering data in
a model-independent way [13]. The disadvantage is that it inserts additional
experimental uncertainty to the theoretical prediction (1.5).

Also a very small contribution is generated by exchange of a weak boson, but
that can be ignored on present level of accuracy.

7 Defined via convolution of two nuclear charge densities ρN (r) as ⟨r3
N ⟩(2) =∫︁

d3r1 d3r2 ρN (r1)ρN (r2)|r1 + r2|3.
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1.2.8 Hyperfine splitting

So far, we have completely ignored nuclear spin. It gives rise to additional energy
level splitting which is usually called hyperfine splitting (HFS). Fortunately, it
can be understood within the framework of nonrelativistic quantum mechanics. It
originates from the interaction between magnetic moments of lepton and nucleus
which are nonzero since their inner angular momentum, spin, is nonzero. The
Hamiltonian is given by the analogy with classical electrodynamics. Magnetic
dipole moment in the presence of a magnetic field has a form

Ĥhfs = −gNµN ŜN · B, (1.24)

where gN is the nuclear g-factor, µN is nuclear magneton, ŜN is the spin of the
nucleus and B is the magnetic field. For the splitting of 1S1/2 we get

∆E(0)
hfs = Ehfs = 8

3gN (Zα)4 m

mN

(︃
mr

m

)︃3
mc2 (1.25)

We can see that the energy splitting is suppressed by the factor (Zα)2 m/mN

relatively to the Schrödinger value (1.8), therefore the perturbation treatment is
justified. In order to get sufficient accuracy we again need to calculate numerous
corrections to the hyperfine splitting (1.25).

∆Ehfs = Ehfs × (1 + corrections) (1.26)

There are again the three small parameters α, Zα and me/mN and a machinery
of QED that can be employed to calculate these corrections, such as relativis-
tic (binding), radiative, recoil, nuclear size and polarizability and other type of
corrections discussed earlier. Among the radiative corrections, we also have the
so called electron or muon anomalous moment corrections which are of the
order αnEhfs. These are the simplest radiative corrections because they are in-
dependent of the binding parameter Zα and they coincide with the anomalous
moment of a free electron or muon.

1.3 Vacuum polarization in Coulomb field

The phenomenon of the vacuum polarization (VP) is caused by a photon that
virtually decays into an electron-positron pair. In the vicinity of the nucleus the
electron-positron pair is oriented as suggested on Fig. 1.5, and an induced charge
distribution gives rise to an electrostatic potential which modifies the Coulomb
field.
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Figure 1.5: Illustration of a Vacuum polarization.

The Feynman diagram of one-loop VP has been shown in Fig. 1.4. Of course,
the loop does not have to be electronic, i.e. the virtual decay can be into a
different pair of leptons like muon-antimuon. For this reason we use mloop for the
mass of the virtual particle. In the subsequent calculation of the electronic VP,
which is stronger than muonic or other VP, we insert to the formulae mloop = me.
The treatment of hadronic VP is somewhat different, but it is also much weaker
than electronic VP.

Evaluation of the influence of one-loop electronic VP in Coulomb field on
the atomic energy levels in the leading order was accomplished long time ago by
Uehling [29]. His result was recalculated many times and it is now included in
many introductory texts to quantum field theory, for example [11, 26, 31]. On
the other hand, calculation beyond the leading term was done by Wichmann and
Kroll (WK) [30] and no independent derivation of their result has been made. In
fact, Brown et al. [8] checked the 1/r part of the potential created by vacuum
polarization. Wichmann and Kroll gave expression for the Laplace transform of
the potential created by induced charge density. Their result was transformed
to coordinate space by Blomqvist [6]. Recent evaluations of the influence of
Wichmann and Kroll term on the energy levels of muonic hydrogen [7, 15] are
based on approximations of the corresponding potential given in [9] which are in
turn based on Blomqvist’s work [6]. We also note that in this section we switch
to natural units, i.e. ℏ = 1, c = 1.

1.3.1 Our study
For the energy shift caused by a one-loop VP we have

∆EVP = ⟨ψat|VVP|ψat⟩, (1.27)

where the potential VVP is generated by the vacuum charge density ⟨ρ(r)⟩ which
is given by the expression

⟨ρ(r)⟩ = −ie
∫︂

C

dE
2π ⟨r|Trγ0

1
γ · Π −mloop

|r⟩. (1.28)

where r is the position vector, C is a countour over which we integrate, Π is the
four-momentum of the electron in an external Coulomb field Π =

(︂
E + Zα

r
,p
)︂
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and γµ are the Dirac matrices. Derivation of this formula from the basic principles
and description of the countour can be found in [35], Sec. 2.2.

In this section we give a simplified but transparent description of our method
which is in detail presented in [35]. In short, it consists of three steps:

1. We reduce the problem to a calculation of Laplace transform of the vacuum
charge density ⟨ρ(r)⟩ (1.28).

2. We use the spectral decomposition of the Dirac Hamiltonian and the two
formulae for hypergeometric functions.

3. After charge renormalization we express the Laplace transform of the VVP in
the order of α(Zα)4 (Uehling potential [29]) and α(Zα)6 (Wichmann-Kroll
potential [30]) and calculate the caused energy shifts.

1.3.2 Reduction to Laplace transform
The energy shift of the ground state of the hydrogen-like atom caused by vacuum
polarization reads

∆E =
∫︂

d3r|ψ0(r)|2VVP(r) = N2
0

∫︂
d3r exp{−βr}VVP(r) , (1.29)

where we substituted for the probability density

|ψ0(r)|2 = N2
0 exp{−βr}, N2

0 = (mrZα)3

π
, β = 2mrZα . (1.30)

The energy shift of the excited states can be obtained by differentitation with
respect to parameter β, for details see Sec. 1.3.5.

The potential created by vacuum charge density ⟨ρ(r)⟩ satisfies Poisson equa-
tion

−∇2VVP(r) = e⟨ρ(r)⟩ . (1.31)
Following [30] we take Laplace transform of this equation. That is, we multiply
this equation by exp{−βr} and integrate over the whole space. The parameter β,
later transformed to dimensionless parameter b, is used as a Laplace transformed
function variable. The Laplace transform of the Poisson equation (1.31) leads to
the relation

d

dβ

[︂
β2U(β)

]︂
= q(β) ⇒ U(β) = β−2

∫︂ β

0
dβ′q(β′), (1.32)

where function q(β) is the Laplace tranform of the vacuum charge denstity defined
as

q(β) =
∫︂

d3r exp{−βr}e⟨ρ(r)⟩ ; (1.33)

and function U(β) is the Laplace tranform of the VP potential defined as

U(β) =
∫︂ d3r

r
exp{−βr}VVP(r) . (1.34)

The details of the derivation of the relation (1.32) can be found in [35], Sec. 2.2.
Since the energy shift (1.29) can be easily expressed through the function

U(β), we obtain the sought relation between energy shift and the Laplace trans-
form of the charge density

∆E = N2
0

(︄
− d

dβ

)︄
U(β) = N2

0

(︄
− d

dβ

)︄[︄
β−2

∫︂ β

0
dβ′q(β′)

]︄
. (1.35)

17



1.3.3 Calculation of Laplace transform charge density
In this section we describe the calculation of the function q(β), which is needed
to get the energy shift from the relation (1.35). This consists of several important
steps. First, we rewrite the definition of ⟨ρ(r)⟩ in Eq. (1.28),

⟨ρ(r)⟩ = −ie
∫︂ dE

2π ⟨r|γ0
(γ · Π +mloop)

(γ · Π +mloop)(γ · Π −mloop) |r⟩ =

= e
∫︂

C

dE
2πi⟨r|Tr(E + Zα

r
− γ0γ · p̂ + γ0mloop) 1

H
|r⟩, (1.36)

In the last equation we have introduced the so called second order Dirac Hamil-
tonian [5], which, in our case has the form

Ĥ = E2 −m2
loop + 2EZα

r̂
−
(︄
p̂2

r + l(l + 1)
r̂2

)︄
, (1.37)

where p̂r is a radial momentum operator and l is an effective orbital number
defined as

l =

⎧⎪⎪⎨⎪⎪⎩
√︃(︂

j + 1
2

)︂2
− (Zα)2 − 1 ,√︃(︂

j + 1
2

)︂2
− (Zα)2 .

(1.38)

We choose value of l from the two cases in Eq. (1.38) depending on the eigenvalue
of other operator, for more see Sec. 2.3 of [35]. We rewrite the expression (1.36) in
this way because Ĥ is structurally identical to Schrödinger Hamiltonian and has
higher symmetry than the first order Hamiltonian, the denominator in expression
(1.28). This allows us to use a spectral decomposition in eigenfunctions of Ĥ.
Spinor-angular part of these eigenfuctions consists of well-known spherical spinors
and the radial part of eigenfunctions of this operator belonging to the continuous
part of the spectrum are [17]

Rl(p, r) =
√︄

2
π

pe
πEZα

2p |Γ(l + 1 − iEZα/p)|
Γ(2l + 2) ×

× (2pr)le−iprF

(︄
iEZα

p
+ l + 1, 2l + 2, 2ipr

)︄
, (1.39)

where F (α, γ, z) is the confluent hypergeometric function [17]. The eigenfunc-
tions belonging to the discrete part of the spectrum are inessential for our purpose.

In the next step we utilize the spectral decomposition of the second order Dirac
Hamiltonian Ĥ (1.37) and we integrate over spinor-angular degrees of freedom.
Althoug technical and lengthy, it is rather a straightforward procedure described
in Sec. 2.4 of [35]. We get the function q(β) in the form

q(β) = 8α
∞∑︂

k=1
k
∫︂

C

dE
2πi

∫︂ ∞

0

dp
E2 − p2 −m2

loop
×

×
{︄
E

(︄
− ∂

∂β

)︄
+ Zα

(︄
1 + β

2Γ
∂

∂β

)︄}︄
Il(p, β) , (1.40)
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where k = j + 1/2 and

Il(p, β) = 2π
∫︂ ∞

0
dr re−βr|Rl(p, r)|2 . (1.41)

The complicated part is finding the integral (1.41) in a form that can be inte-
grated over E in the next step. To evaluate the integral, we use two formulae for
hypergeometric functions. The first formula reads [17]:
∫︂ ∞

0
dr exp{−λr}rγ−1F (α, γ, kr)F (α′, γ, k′r) = Γ(γ)λα+α′−γ×

× (λ− k)−α(λ− k′)−α′
F (α, α′, γ, z), z = kk′

(λ− k)(λ− k′) . (1.42)

The second formula reads [10]:

F (α, α′, γ, z) = Γ(γ)
Γ(α′)Γ(γ − α′)

∫︂ 1

0
dt t

α′−1(1 − t)γ−α′−1

(1 − tz)α
,

Re(γ) > Re(α′) > 0, arg(1 − z) < π. (1.43)

Using these two formulae and further manipulation, we find the integral Il(p, β)
and after integration over E also a convenient expression for q (β). For details
see Sec. 2.5 of [35].

1.3.4 Summation over partial waves, expansion in Zα and
renormalization

Further, we have the sum over partial waves. It can be done either numerically or
analytically with an approximation. The former approach is used for example in
[28] and is useful for cases with high Z. We use expansion of the effective orbital
number l (1.38) and the hyperbolic functions in Zα. This allows us to carry
out the summation over k from 0 to ∞ in Eq. (1.40) analytically. The detailed
description of the manipulations and simplifications can be found in Secs. 2.6-8
of [35].

The integrals in (1.40) are divergent in p and we renormalize them in the
Pauli-Villars manner by subtracting from the non-renormalized expression the
contribution of another pair of heavy fermions with mass8 M . The procedure is
not trivial and we explain it in detail in Sec. 3 of [35].

We then express the result in terms of a dimensionless parameter b that is
related to the parameter β as follows

b = β

2mloop
= mr

mloop
Zα . (1.44)

Up to order α (Zα)3 it holds for the renormalized Laplace transform of the charge
density q(b)

q(b) ≃ −4α(Zα) d
dbQ(b), Q(b) = Q1(b) + (Zα)2Q3(b), (1.45)

8 It is given in units of m2
loop.
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where

Q1(b) =
∫︂ ∞

0
dp
{︄[︄√︂

1 + (bp)2 − 1 − (bp)2

2

]︄ [︄
1 − p arctan

(︄
1
p

)︄
− 1

3p2

]︄
−

−1
2

⎡⎣ 1√︂
1 + (bp)2

− 1 + (bp)2

2

⎤⎦ ln(1 + p2) − 2 ln(p)
p2

⎫⎬⎭ (1.46)

and

Q3(b) =
∫︂ ∞

0
dp

⎧⎨⎩−1
2

[︄√︂
1 + (bp)2 − 1 − (bp)2

2

]︄ 1 − p arctan
(︂

1
p

)︂
p2 × (1.47)

×
∫︂ 1

0

dt
t(1 − t)

s(1 + s) ln(s)
1 − s

+
[︄

[1 + (bp)2]3/2

b2 − 1
b2 − 3

2p
2 − 3

8b
2p4
]︄

×

×

⎡⎢⎣−

[︂
2 arctan

(︂
1
p

)︂]︂3
− 2 arctan

(︂
1
p

)︂ [︂
π2 − 6 dilog

(︂
1

p2+1

)︂]︂
12p −

1
3 + 2 ln(p)

p4

⎤⎥⎦+

+
⎡⎣√︂1 + (bp)2 − 1 − (bp)2

2 − arctanh
⎛⎝ 1√︂

1 + (bp)2

⎞⎠− ln
(︄
pb

2

)︄
+ (pb)2

4

⎤⎦×

×

⎡⎢⎣
[︂
2 arctan

(︂
1
p

)︂]︂2
2 −

π2 − 6 dilog
(︂

1
p2+1

)︂
6 − 1 − 2 ln(p)

p2

⎤⎥⎦+

+
⎡⎣ 1√︂

1 + (bp)2
− 1 + (bp)2

2

⎤⎦×

×

⎡⎣−
∫︁ 1

0
dt

t(1−t)(1 − s) [ln(1 − s) ln(s) + dilog(1 − s)]
4p2 + ζ(3)

p2

⎤⎦+

+
⎡⎣arctanh

⎛⎝ 1√︂
1 + (bp)2

⎞⎠+ ln
(︄
pb

2

)︄
− (pb)2

4

⎤⎦×

×

⎡⎢⎣
[︂
2 arctan

(︂
1
p

)︂]︂2
ln(1 + p2) −

∫︁ 1
0

dt
t(1−t)s ln2

(︂
1−t

t[1−tz(p)]

)︂
4p2 + ζ(3)

p2

⎤⎥⎦
⎫⎪⎬⎪⎭ .

Usually, the Q1(b) is called Uehling term [29] and Q3(b) is called Wichmann-
Kroll term [30].

The energy shift (1.35) can be also expressed in terms of dimensionless variable
b and renormalized functions q(b) or Q(b) connected by relation (1.45) as

∆E = mloop

(︄
mr

mloop

)︄2 (Zα)3

4π

(︄
− d

db

)︄[︄
b−2

∫︂ b

0
db′q(b′)

]︄⃓⃓⃓⃓
⃓
b= mr

mloop
Zα

=

= mloop

(︄
mr

mloop

)︄2
α(Zα)4

π

d
db
[︂
b−2Q(b)

]︂⃓⃓⃓⃓⃓
b= mr

mloop
Zα

. (1.48)
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1.3.5 Results

At this point we give the numerical results obtained from formulae (1.46) and
(1.47) for electronic VP, therefore we take mloop = me. In the case of ordinary
hydrogen for which b << 1 we can further expand the expressions in b

Q1(b) = Q13b
3 +Q14

b4

2 + . . . , Q3(b) = Q33b
3 +Q34

b4

2 + . . . . (1.49)

For the coefficients in (1.49) taken from expansions of (1.46) and (1.47) we get

Q13 = − 4
15 , (1.50)

Q14 = 5π
48 , (1.51)

Q33 = 19
45 − π2

27 , (1.52)

Q34 =
(︄

1
16 − 31π2

2880

)︄
π . (1.53)

These results are in an agreement with those found in [30]. We have obtained
the last result only numerically; we have reproduced it to nine digits.

The case of muon hydrogen is more complicated because b ≃ 1.36; there-
fore, the expansion (1.49) is inapplicable. We have to evaluate the terms (1.46)
and (1.47) without any further approximation, hence we integrate over p and t
numerically. We omit the integration of Q1(b) which is well known and we con-
cetrate on Q3(b). For the energy shift of the ground state (1.48) caused by the
Wichmann-Kroll term (1.47) we have

(∆E)WK (1s) = me

(︃
mr

me

)︃3 α(Zα)6

π

d
db
[︂
b−2Q3(b)

]︂⃓⃓⃓⃓⃓
b= mr

me
Zα

, mr = mµ

1 + mµ

mp

.

(1.54)
We are mostly interested in the contribution of the Wichmann-Kroll term to
the Lamb shift, hence we need the formula for the energy shifts of 2p and 2s
states. For non-S-states it is thus sufficient to consider the angular average of the
probability density of the reference state, because the induced charge density is
spherically symmetric. For the probability density of the excited states we have

|ψ2s(r)|2 = N2
0

8 e−βr

(︄
1 − βr + β2r2

4

)︄

and ∫︂ d Ω
4π |ψ2p(r)|2 = N2

0
96 e−βrβ2r2

where β, N0 and b are given by

β = mrZα , N2
0 = (mrZα)3

π
, b = mr

2me

Zα .
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The energy shift for these states is obtained by the method of differentiation of
an integral with respect to a parameter9.

(∆E)WK (2s) = me

(︃
mr

me

)︃3 α(Zα)6

π

1
8×

×
(︄

1 + b
d
db + b2

4
d2

db2

)︄
d
db
[︂
b−2Q3(b)

]︂⃓⃓⃓⃓⃓
b= mr

2me
Zα

(1.55)

and

(∆E)WK (2p) = me

(︃
mr

me

)︃3 α(Zα)6

π

1
96b

2 d2

db2
d
db
[︂
b−2Q3(b)

]︂⃓⃓⃓⃓⃓
b= mr

2me
Zα

. (1.56)

We can now plug in the numerical values of the used constants [18]

α = 1
137.035999074 , (1.57)

me

mµ

= 4.83633166 10−3, (1.58)
me

mp

= 5.4461702178 10−4, (1.59)

me = 0.510998928 106 eV, (1.60)

and then we perform the numerical calculations. Unfortunately, the integration
is not stable for p → 0 and p → ∞. We thus split the integration over p from 0 to
infinity into three regions. Region I is for p ∈ (0, 0.2), region II for p ∈ (0.2, 30)
and region III for p ∈ (30,∞). We first expand (1.47) into the series in p and then
integrate in the region I term by term over t and p until the result is stable10. In
region II we perform the complete two-dimensional numerical integration. This
is the dominant part of the effect. In region III we use the asymptotic expansion
of Q3(b) valid for large p and again integrate term by term.

For the contribution of the Wichmann-Kroll term to the Lamb shift in muonic
hydrogen we obtain

(∆E)WK (2p) − (∆E)WK (2s) ≃ −0.10158 10−5eV (1.61)

which differs by 1% from the result −0.103 10−5eV given in [15].

1.3.6 Discussion
The difference between our result and that given in [15] is not surprising. The
calculation here is for what is to be the exact form of WK pontential, while
the result obtained in [7, 15] is obtained using an approximate form of the WK
potential. The approximate formula fits the exact potential with an accuracy of
about 1% [9].

On the other hand, we have used in our treatment a nonrelativistic wave
function of the reference state. The error of this approximation is negligible at
the present level of accuracy because the difference between the nonrelativistic
and relativistic treatment of the reference wave function is of the order α(Zα)8,
probably multiplied by ln(Zα).

9 We use the following feature of the Laplace transform: L [rf(r)] (p) = − d
dp L [f(r)] (p).

10 It does not change on relevant digits when adding more terms
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1.4 Self-energy Vacuum polarization correction
The dominant effect to the Lamb shift is due to the electronic one-loop VP. Thus,
it is reasonable to assume that the combined self-energy vacuum polarization
corrections are significant. The Feynman diagrams of these corrections are shown
in Fig. 1.6.

Figure 1.6: Electronic self-energy vacuum polarization effect

Here we calculate this effect in the lowest order, i.e. we combine leading orders
of SE and VP, specifically the leading order of relativistic multipole expansion
(RME) [32, 33] with the Uehling potential.

1.4.1 Energy shift
The leading order of RME yields the self-energy effect of the bound particle with
mass m in the form [32]

∆ESE = m
α

πN3 (Zα)4
(︃
mr

m

)︃3
F (Zα) , F = Flow + Fhigh, (1.62)

where N is the principal quantum number of the reference state ψat. The conse-
quence of the use of RME is that the dimensionless function F is divided into two
parts. The low-energy term, called here the extended Bethe logarithm (EBL),
has the form

Flow = ⟨ψat|pif (h− eN) pi|ψat⟩ ,

f(x) = N3x
∫︂ 1

0
dy
∫︂ 1

0
dw 1 − 2w(1 − w)

y + w2(Zα)2 mr

m
x
, (1.63)

where pi is the momentum, h = p2/2+v(r) is the nonrelativistic Hamiltonian ope-
rator, v(r) is the potential11 and eN = −1/(2N2) is the nonrelativistic energy of
the reference state. All these quantities are given in atomic units. The expansion
of the function f(x) yields

f(x) = N3x
(︃13

8 − 2
3 ln[2(Zα)2mr

m
x] + . . .

)︃
. (1.64)

If we insert this expansion back into (1.63), the first term of the form

N3

2 ⟨ψ|pi(h− eN) ln(h− eN)pi|ψ⟩ (1.65)

11 In the case of Coulomb potential, v(r) = −1/r.
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is usually called Bethe logarithm [4]. The high-energy part of the effect is

Fhigh = N3⟨ψat|
{︄

− 1
12∇2v(r) + 1

2
Ŝ · L̂
r

[︄
d
dr , v(r)

]︄
+ m

2M
Ŝ · L̂
r3

}︄
|ψat⟩ , (1.66)

where Ŝ is the spin operator and L̂ is the orbital momentum operator. Here we
include the coupling between the spin of the electron and the nucleus orbit due to
the anomalous magnetic moment of the electron, i.e. a part of the radiative-recoil
contribution. The detailed description of the effect can be found in [20], Sec. III.

1.4.2 Calculation
We are interested in the combined SE and electron VP effect, specifically the part
of the effect where the Uehling potential modifies the electron propagator and the
wave function of the reference state, cf. Fig. 1.6. We now modify the Coulomb
potential and add the Uehling potential VU , which is given by (1.31), where we
take the vacuum charge density in the first order (1.46). After transformation to
the coordinate space [29] and transition to atomic units we get

−1
r

→ −1
r

+ vU , vU =
∫︂ 1

0
dxU(x)e

−µ(x)r

r
, (1.67)

where U(x) = x(1− 2
3 x)(1−2x)
1−x

and µ(x) = me

mr(Zα)
1√

x(1−x)
. We treat vU as the

perturbation to the Coulomb potential and we calculate the function F in Eq.
(1.62) to the first order. To do that we employ the method of pseudostates,
the expansion of the exact wave functions into entirely discrete basis sets. The
description of this method is given in [20], Sec. IV. The first perturbation to the
low-energy part is given by the sum

F 1
low = (F 1

low)wf + (F 1
low)ver + (F 1

low)en , (1.68)

where

(F 1
low)wf = −2

L+M∑︂
m=L+1̸=N

l+Q∑︂
q=l+1

∫︂ 1

0
dxU(x)⟨ψ0

N,L|e
−µ(x)r

r
|ψ0

m,L⟩×

× ⟨ψ0
m,L|pi|ψ0

q,l⟩⟨ψ0
q,l|pi|ψ0

N,L⟩
f(e0

q − e0
N)

e0
m − e0

N

(1.69)

comes from the correction to the wave function of the reference state,

(F 1
low)ver =

l+Q∑︂
q=l+1

⎧⎨⎩
l+Q∑︂

m=l+1̸=n

⟨ψ0
N,L|pi|ψ0

m,l⟩
∫︂ 1

0
dxU(x)⟨ψ0

m,l|
e−µ(x)r

r
|ψ0

q,l⟩×

× ⟨ψ0
q,l|pi|ψ0

N,L⟩
f(e0

m − e0
N) − f(e0

q − e0
N)

e0
m − e0

q

+

+⟨ψ0
N,L|pi|ψ0

q,l⟩
∫︂ 1

0
dxU(x)⟨ψ0

q,l|
e−µ(x)r

r
|ψ0

q,l⟩⟨ψ0
q,l|pi|ψ0

N,L⟩
df(e0

q − e0
N)

de0
q

}︄
(1.70)
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is the vertex correction and

(F 1
low)en =

l+Q∑︂
q=l+1

⟨ψ0
N,L|pi|ψ0

q,l⟩⟨ψ0
q,l|pi|ψ0

N,L⟩×

×
∫︂ 1

0
dxU(x)⟨ψ0

N,L|e
−µ(x)r

r
|ψ0

N,L⟩
df(e0

q − e0
N)

de0
q

(1.71)

comes from the correction to the energy of the reference state. Function |ψ0
N,L⟩ is

the reference function, |ψ0
m,l⟩ and |ψ0

q,l⟩ are called Sturmian functions which form
a complete basis set.

Further, we consider high energy part (1.66) of the effect. The first order
perturbation due to the Uehling potential is a sum of two contributions

F 1
high = (F 1

high)wf + (F 1
high)pot, (1.72)

where the former is due to the correction to the wave function

(F 1
high)wf = −2

L+M∑︂
m=L+1̸=N

⟨ψ0
N,L|

[︃
−π

3 δ
3(r) + mµ +M

2M
S · L
r3

]︃
|ψ0

m,L⟩×

×
∫︂ 1

0
dxU(x)⟨ψ0

m,L|e
−µ(x)r

r
|ψ0

N,L⟩ 1
e0

m − e0
N

, (1.73)

and the latter is caused by the modification of the Coulomb potential by the
Uehling potential

(F 1
high)pot =

∫︂ 1

0
dxU(x)⟨ψ0

N,L|e−µ(x)r×

×
[︄
π

3 δ
3(r) − µ(x)2

12r − 1
2

S · L
r3 (1 + µ(x)r)

]︄
|ψ0

N,L⟩. (1.74)

The detailed derivations of the the matrix-elements formulae of the type

⟨ψ0
m,l|g|ψ0

q,l⟩ , g ∈
{︄
pi, δ

3(r), 1
r
,

e−µr

r
,

1
r3

}︄
, (1.75)

are either trivial or given in Sec. IV.E and Apendices B, C, D of [20]. Summations
over q and/or m in Eqs. (1.68), (1.70), (1.71) and (1.73) are in principle infinite.
We calculate it for different values of the upper limit and extrapolate the result.
All integrations over r can be done analytically, over parameter x we have to
integrate numerically.

1.4.3 Results and discussion
The results for both low- and high-energy parts from equations (1.68) and (1.72)
for states 1s − 4s and 2p − 4p are given in Tab. 1.2. The evaluation is more
difficult for S-states. We thus obtain for the contribution of the SEVP effect
considered here to the Lamb shift in muonic hydrogen an energy shift

∆E(2p 1
2
) − ∆E(2s) ≃ −2.706 × 10−6 eV,

which differs by 8% from the result −2.5 × 10−6 eV given in [13]. Some difference
can be expected because our method is more accurate, i.e. it includes a larger
portion of the SEVP effect in comparison with the calculation involving ordinary
Bethe logarithm (1.65).
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State F 1
low F 1

high F 1

1s 20.330 -0.871 19.459
2s 18.900 -0.772 18.129
3s 18.33 -0.745 17.585
4s 18.02 -0.731 17.289

2p 1
2

2p 3
2

-0.274 -0.039
0.028

-0.313
-0.246

3p 1
2

3p 3
2

-0.286 -0.043
0.031

-0.329
-0.255

4p 1
2

4p 3
2

-0.288 -0.044
0.032

-0.332
-0.256

Table 1.2: Magnitudes of F 1
low and F 1

high for the muonic hydrogen where the
Coulomb potential is perturbed by the Uehling potential. Further, F 1 = F 1

low +
F 1

high.
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2. Multi-Dimensional Tunneling

2.1 Motivation
Tunneling is a name used for a quantum phenomenon where a particle gets across
a barrier that could not overcome classically. The tunneling is well understood in
cases of one-dimensional or separable multi-dimensional potentials, for exhaustive
review see [57]. On the other hand, tunneling in non-separable multi-dimensional
potentials still poses a challenge [36, 39].

Tunneling has been studied in a wide variety of fields, among others the
theory of chemical reactions [36], false vacuum states in quantum field theory [38],
nuclear fusion or fission [44], scanning tunneling spectroscopy [43] and others, for
more references see for example this review [47].

Nowadays, it is possible to describe sufficiently small molecules using time-
independent quantum-chemical methods and get theoretical results that are in
good agreement with molecular spectroscopy measurements. This is not the case
for molecules like malonaldehyde with resonance structures displayed in Fig. 2.1.

H

O
H

H

O

H H

O

H

O
H

H

Figure 2.1: Two contributing structures of malonaldehyde

The proton (bound to one of the oxygens) tunnels through a potential bar-
rier and gives rise to a doublet which can be detected by means of microwave
spectroscopy [40].

In the following sections we first give an overview of the attempts to describe
tunneling, then we present our method and discuss the results.

2.2 Brief review of methods describing the tun-
neling

The approaches used to calculate energy splittings due to tunneling can be sorted
into two cathegories. One can either try to directly solve a Schrödinger equation
or use an approximative scheme.

The former approach is more accurate, but it is only applicable to small
systems because these methods are computationally demanding. One of such
methods is multiconfigurational time-dependent Hartree-Fock calculations [42],
where large enough basis has to be used. Other methods employ formalism
of path integrals [45, 51]. Although still formally exact, it is burdened by the
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statistical error which needs to be reduced by sampling over many configurations,
thus again, using much computer time.

The latter approach make an approximation to Schrödinger equation and solve
the problem without sampling or expansion in finite basis. Since the standard
Rayleigh-Schrödinger perturbation (RSP) method does not usually work1, the
semi-classical (also called WKB) approach [36, 46] is used. Its usual disadvantage
is that it requires prior knowledge of the tunneling path [36]2. Closely related to
WKB is an instanton3 approach [46, 47, 49], although derived as an approximation
from path integral formalism4.

The WKB expansion and instanton method require specific trajectories, i.e.
tunneling path and instanton, resp. The method suggested by Milnikov et al. in
[46], described in detail in [47], is applicable to real polyatomic systems in the full
dimensionality. Other practical method [49] was inspired by this. The method
of Milnikov et al. also includes variational procedure for finding the instanton
and a scheme to incorporate ab initio data. The method might seem to be the
solution of the problem, but there are several resons why it should not suffice.
First of all, it is exact only up to the zeroth order in ℏ. Even more, we show that
for some potentials, including the case of malonaldehyde, this approximation
is not valid. It can be seen even from the results in [47], where authors get
the energy splitting in malonaldehyde between 4.5 to 77 cm−1 when different ab
initio methods/basis are taken. Other works usually estimate the splitting within
a factor of 2 compared to the experimental result 21.6 cm−1 [40]. Further, it is a
numerical method; thus, it does not provide global insight.

Other methods are based on reduced dimensionality [52], i.e. constructing an
effective one-dimensional potential and use an existing one-dimensional method
that generally works well. Here we show that in this approach many important
features of the problem are lost.

2.3 Our study

In this section we give a description of a method and results given in the article [56]
which is based on a method introduced in [54]. After more thorough introduction
to the problem, we discuss here variational calculations and application of RSP
method.These are well known and omitted in the article [56], but the reader can
benefit from a summarization and explanation of those methods in our specific
case. We then introduce our method with emphasis on the key ideas. We skip
here some technical details like the description of the numerical analysis of the
series or some transformations between functions we get in the intermediate steps.
A comprehensive description is given in the article [56].

1 This will be discussed more in Sec. 2.3.6
2 In this work we use a different WKB expansion [54] that does not require knowledge of

the tunneling path.
3 The dominant imaginary-time tunneling path.
4 The connection is described eg. in [46].
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2.3.1 Definition of the problem
We are interested in the calculation of a ground-state tunneling splitting in a two-
dimensional double-well potential with the reflection symmetry. Potentials of this
class are important for understanding of spectroscopy of non-rigid molecules such
as malonaldehyde in Fig. 2.1.

We take the potential in the form

V (x, y) = (x2 −R2)2

8R2 + x2 −R2

R2 γy + ω2

2 y2 . (2.1)

This type of potential has been previously used in works [36, 37], although in a
different form.

The potential V (x, y) is characterized by three parameters (R,ω, γ) which
successively describe:

1. R – the height and thickness of the barrier between the wells, the reciprocal
value is equivalent to the Planck constant 1/R ∼ ℏ,

2. ω – the steepness of the potential in y relatively to x,

3. γ – the coupling between oscilations in x and y direction.

We assume γ < γs = ωR/2, which means there are two wells located at (x, y) =
(±R, 0) and a saddle-point at (x, y) = (0, γ/ω2). If γ > γs, the potential would
have two saddle-points at (x, y) = (±R, 0) and a well at (x, y) = (0, γ/ω2) and
it would no longer be a model system for tunneling. The potential is symmetric
with respect to the reflection around y-axis, V (x, y) = V (−x, y). The countour
plot of the potential for physically relevant parameters can be seen in Fig. 2.2.

Figure 2.2: Contour plot of the potential V (x, y) for (R = 4.34, ω = 1/4, γ =
0.47). The dots represent the minima of the potential.
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Two wells of the potential appear to support doubly-degenerate bound states,
but the degeneracy is lifted due to the tunneling. The splitting of the energy
levels is illustrated in Fig. 2.3.

Figure 2.3: Plot of the y = 0 cut of the potential V (x, y) for R = 4.34.

The function ΨS of the state with lower energy ES is symmetric with respect
to the reflection around y-axis and the wave fuction ΨA of the state with higher
energy EA is antisymmetric. The energy splitting is then defined as

∆E = EA − ES. (2.2)

In the following, we consider the Hamiltonian of the problem in dimensionless
units

Ĥ = −1
2
∂2

∂x2 − 1
2
∂2

∂y2 + V (x, y). (2.3)

2.3.2 Parameters for malonaldehyde
We want to test our method for a set of parameters that are relevant for malon-
aldehyde. We take the parameters given by the fit of ab initio data from [37].
In that work, the electronic wave function was determined by Hartree-Fock self-
consistent field calculations using the split valence basis set 3-21G. Geometry
optimization and location of stationary points was found with the Schlegel gra-
dient optimization algorithm.

Although ab initio data from newer and more accurate methods were pub-
lished [51], we restrict ourselves to a simplified model. It suffices to yield the
information about what subset of the parameters (R,ω, γ) is relevant in realistic
calculation.

In [37] the potential is given in a form

VB (x, y) = −aBx
2 + bBx

4 + (2πνB)2
[︄
y − cBx

2

(2πνB)2

]︄2

, (2.4)
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where Cartesian coordinates x and y are mass-weighted, i.e. in units of √muÅ.
The parameters of (2.4) have values

aB = 42.0 kcal mol−1Å−2m−1
u , (2.5)

bB = 88.5 kcal mol−1Å−4m−2
u , (2.6)

cB = 0.93 mdyn Å−2m−3/2
u , (2.7)

νB = 675 cm−1 . (2.8)

It is necessery to mention that parameter cB (2.7) is given in wrong units in
the article [37]. We need to find a transformation (aB, bB, cB, νB) → (R,ω, γ).
The transformation is not entirely trivial; therefore, we describe it here in de-
tail. Firstly, we write the Schrödinger equation in both units and expand the
parentheses. We get
[︄
−1

2
∂2

∂x2 − 1
2
∂2

∂y2 + x4

8R2 − x2

4 + R2

8 + x2

R2γy − γy + ω2

2 y2
]︄

Ψ = EΨ , (2.9)

and[︄
−ℏ2

2
∂2

∂x2 − ℏ2

2
∂2

∂y2 − aBx
2 + bBx

4 + (2πνB)2y2 − cBx
2y + c2

Bx
4

(2πνB)2

]︄
Ψ =

= EBΨ . (2.10)

In order to find the relations between the parameters we need to modify both
equations in an apropriate way. In the first equation we make a substitution
y → y + γ/ω2 and move constant terms to the right. In the second equation
we first make a substitutions y → ξy, x → ξx, where ξ is the transformation
parameter. Then we simplify the equation and rewrite parameters (aB, bB, cB, νB)
to the same units so we convert them all to SI units

a′
B = aB

J
kcal mol−1

m2kg
Å2mu

, (2.11)

b′
B = bB

J
kcal mol−1

m2kg
Å2mu

, (2.12)

c′
B = cB

N
mdyn

m3kg
Å3mu

, (2.13)

ν ′
B = νBc

m2kg
Å2mu

, (2.14)

where c on the right-hand side (RHS) of the last equation is the speed of light.
We thus have the equations in the form
[︄

− 1
2
∂2

∂x2 − 1
2
∂2

∂y2 + 1
8R2x

4 +
(︄

−1
4 + γ2

R2ω2

)︄
x2+

+ γ

R2x
2y + ω2

2 y2
]︄
Ψ =

[︄
E − R2

8 + γ2

2ω2

]︄
Ψ , (2.15)
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and[︄
− 1

2
∂2

∂x2 − 1
2
∂2

∂y2 + 1
ℏ2

(︄
b′

B + 1
2

c′2
B

(2πν ′
B)2

)︄
ξ6x4 − a′

B

ℏ2 ξ
4x2−

− c′
B

ℏ2 ξ
5x2y + (2πν ′

B)2

ℏ2 ξ4y2
]︄
Ψ = ξ2

ℏ2EBΨ . (2.16)

Comparing coefficients between terms of the potential we get four equations for
four variables. We solve those equations and taking real positive solutions we
get (R = 4.34, ω = 0.252, γ = 0.465, ξ = 0.112). For simplicity, we will use (R =
4.34, ω = 1/4, γ = 0.47).

The same procedure can be performed for parameters of the hydroxalate anion
from [37] and for them we get (R = 4.78, γ = 0.64, ω = 0.32).

2.3.3 Variational calculation
Let us find the energies of the symmetric (S) and antisymmetric (A) states by
means of the Ritz variational method [31],

Evar
S
A

=
⟨ΦS

A
|Ĥ|ΦS

A
⟩

⟨ΦS
A

|ΦS
A

⟩
. (2.17)

The test functions ΦS
A

are taken as linear combinations

ΦS
A

=
K∑︂

i=0

L∑︂
j=0

cijϕ
ij
S
A

. (2.18)

of the symmetry adapted basis

ϕij
S
A

= ψi(y;ω) ×

⎧⎨⎩[ψj(x−R; 1) ± ψj(x+R; 1)] if j is even
[ψj(x−R; 1) ∓ ψj(x+R; 1)] if j is odd

. (2.19)

The functions ψn(x; Ω) are wave functions of the harmonic oscilator with fre-
quency Ω,

ψn(x; Ω) = 4

√︄
Ω
π

1√
n! 2n

Hn(
√

Ωx)e−Ωx2
, (2.20)

where Hn(x) is Hermite polynomial defined as

Hn(x) = (−1)nex2 dn

dxn
e−x2

. (2.21)

More information about Hermite polynomials can be found in [41], Apendix H.
Since we use a linear parametrization of the basis (2.18), the problem is reduced
to the generalized eigenvalue problem [31],

Hc = Sc, (2.22)

where H resp. S are Hamiltonian and overlap matrices, respectively, and c are
linear parameters defined in (2.18).
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At this point, we only need to calculate the matrix elements in the basis ϕij
S
A

(2.19). To do it, we use several relations
1
2

(︄
− d2

dx2 + Ω2x2
)︄
ψn(x; Ω) = Ω

(︃
n+ 1

2

)︃
ψn(x; Ω) , (2.23)

xψn(x; Ω) = 1√
2Ω

(︂√
n+ 1ψn+1(x; Ω) +

√
nψn−1(x; Ω)

)︂
,

(2.24)∫︂ ∞

−∞
dxψn(x; Ω)ψm(x; Ω) = δnm . (2.25)

The derivation of these relations is trivial and a part of many basic textbooks [41,
31]. The features of Hermite polynomials also provide us with tools to calculate a
nontrivial “overlap” integral Onm between functions ψn(x−R; 1) and ψm(x+R; 1)

Onm =
∫︂ ∞

−∞
dxψn(x−R; 1)ψm(x+R; 1) =

= 1√
π

e−R2

√
n!m! 2n+m

∫︂ ∞

−∞
dx e−x2

Hn(x−R)Hm(x+R) (2.26)

We use a procedure described in [41] Apendix H. It uses the so called generating
function

S(x, ξ) = ex2−(ξ−x)2
, (2.27)

which is substituted for the Hermite polynomial Hn(x) → S(x, ξ) and then the
integral of the gaussian type is calculated. The original integral is retrieved by
making use of the relation

Hn(x) = dnS(x, ξ)
dξn

⃓⃓⃓⃓
⃓
ξ=0

. (2.28)

Following the outlined procedure we calculate the integral

I(ξ, ρ;R) =
∫︂ ∞

−∞
dx e−x2

S(x−R, ξ)S(x+R, ρ) =

=
∫︂ ∞

−∞
dx e−(x−ξ−ρ)2+2ξρ+2R(ρ−ξ) =

√
πe2ξρ+2R(ρ−ξ) (2.29)

and we use it to find the formula for Onm from (2.26)

Onm = 1√
π

e−R2

√
n!m! 2n+m

∂n+m

∂ξn∂ρm
I(ξ, ρ;R)

⃓⃓⃓⃓
⃓
ξ=0,ρ=0

=

=
√

2n+m

√
n!m!

e−R2
Min(n,m)∑︂

k=0

(︄
n

k

)︄(︄
m

k

)︄
(−1)n−kk!

2k
Rn+m−2k. (2.30)

Using the just derived formula and (2.25) we get the overlap matrix elements
Sij,kl

S between the basis functions in the form

Sij,kl
S =

∫︂ ∞

−∞
dx

∫︂ ∞

−∞
dy ϕij

S ϕ
kl
S = δik ·

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2δjl + 2Ojl if j and l are both even
−2Ojl if j is even and l is odd
2Ojl if j is odd and l is even
2δjl − 2Ojl if j and l are both odd

(2.31)
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The overlap matrix elements for the antisymmetric basis Sij,kl
A are computed in

the same manner as Sij,kl
S . The formula for Sij,kl

A is alike the (2.31) where only
the cases for even indices j and l are changed for odd and vice versa.

Next we express matrix elements of Hamiltonian (2.3). It is done in the similar
way, only before the use of (2.25) and (2.30) we apply the relations (2.23) and
(2.24). We get

H ij,kl
S =

∫︂ ∞

−∞
dx

∫︂ ∞

−∞
dy ϕij

S Ĥϕ
kl
S =

[︃
ω
(︃
i+ 1

2

)︃
+
(︃
j + 1

2

)︃]︃
Sij,kl

S +

+
(︂
V j,l

4S + V j,l
3S

)︂
δik + γ√

ω

(︂
V j,l

2S + V j,l
1S

)︂ (︂√
i+ 1δi+1,k +

√
iδi−1,k

)︂
, (2.32)

The first term comes from (2.23) and matrix elements V j,l
nS where n is between

1 and 4, and it is proportional to the power of the expression (x±R)n. For
example, it holds

V j,l
4S = 1

8R2

∫︂ ∞

−∞
dx [ψj (x−R; 1) ± ψj (x−R; 1)] ×

×
[︂
(x−R)4ψl (x−R; 1) ± (x+R)4ψl (x+R; 1)

]︂
, (2.33)

where plus sign is taken if j, resp. l, is even, minus sign if j, resp. l, is odd. The
expression is then calculated by using recurrence relation (2.24) four times5 and
after expansion of the brackets, all integrals are equal either to Kronecker deltas,
cf. Eq. (2.25), or Ojl defined in (2.26). We do not give the full final expression
here because it is widespread and nontransparent. Moreover, it can be obtained
by a straightforward application of the just described steps. Matrix elements V j,l

nS

for n between 1 and 3 are calculated in the same way.
The Hamiltonian matrix elements for the antisymmetric basis H ij,kl

A are again
the same as in (2.32) but with interchanged signs in basis (2.18) for odd and even
j and l.

We take both maximum numbers of basis functions K and L from equation
(2.18) between 20 and 25, using the lowest eigenvalues we check the convergence
and extrapolate them using Thielé-Padé method. For ES and EA we take the
extrapolated values. Illustrating example is shown in Table 2.1.

max n, m ES EA ∆E
20 0.527351236196450 0.533404148909829 0.00605291271338
21 0.527351230797662 0.533404148895860 0.00605291809820
22 0.527351229317104 0.533404148892978 0.00605291957587
23 0.527351228927321 0.533404148892405 0.00605291996508
24 0.527351228828652 0.533404148892295 0.00605292006364
25 0.527351228804598 0.533404148892276 0.00605292008768
ext 0.527351227872220 0.533404148890693 0.00605292101847

Table 2.1: Results for (R = 4.34, ω = 0.25, γ = 0.47) rounded to 16 digits. In
the last row are extrapolated results.

5For V j,l
nS it is used n-times.
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2.3.4 Lifshitz-Herring formula
Another way to calculate the energy difference is by using the Lifshitz-Herring
formula. For derivation in one-dimensional case see for example [17], chapter 7,
&50, problem 3. Derivation of the formula for a general curved space is given
in [46], Apendix C. Let us give here a derivation relevant to our case, i.e. in
two-dimensional Euclidean space. We consider Schrödinger equation for anti-
symmetric (A) and symmetric (S) states in natural units[︄

−∇2

2 + V

]︄
ΨS

A
(x, y) = ES

A
ΨS

A
(x, y) (2.34)

Next we multiply the Schrödinger equation for state A by function ΨS and we
subtract the Schrödinger equation for state S multiplied by function ΨA. We
simplify it and get

∆EΨAΨS = −ΨS
∇2

2 ΨA + ΨA
∇2

2 ΨS = −∇
2 (ΨS∇ΨA − ΨA∇ΨS) , (2.35)

where ∆E is the sought energy splitting defined in (2.2). We now use several
properties of our problem.

Firstly, we utilize the symmetry and we write the functions ΨS and ΨA using
the symmetrical and asymmetrical combination of function Ψ that is the solution
of the Schrödinger equation (2.34) restricted on a subspace x ≥ 0. The functions
ΨS and ΨA can be then defined via this function

ΨS
A

(x, y) = 1√
2

[Ψ(x, y) ± Ψ(−x, y)] . (2.36)

Secondly, from the reflection symmetry around y it is also evident that:

ΨA(0, y) = 0 , (2.37)
∂

∂x
Ψ(−x, y)

⃓⃓⃓⃓
⃓
x=0

= − ∂

∂x
Ψ(x, y)

⃓⃓⃓⃓
⃓
x=0

. (2.38)

Armed with the just introduced relations, we integrate the LHS of the equation
(2.35) over x from 0 to ∞ and y over −∞ to ∞ and we get

∆E
∫︂ ∞

0
dx
∫︂ ∞

−∞
dyΨAΨS = ∆E

2

∫︂ ∞

0
dx
∫︂ ∞

−∞
dyΨ2(x, y) . (2.39)

In the last simplification we have used the definitions of Ψ(x, y) and ΨS
A

(x, y)
(2.36). Then, we integrate in the same manner the RHS of the equation (2.35)
using the Gauss’s theorem6 and we get

−
∫︂ ∞

0
dx
∫︂ ∞

−∞
dy ∇

2 (ΨS∇ΨA − ΨA∇ΨS) =

= 1
2

∫︂ ∞

−∞
dyΨS(0, y) ∂ΨA(x, y)

∂x

⃓⃓⃓⃓
⃓
x=0

=

= 1
2

∫︂ ∞

−∞
dy

√
2Ψ(0, y)

√
2∂Ψ(x, y)

∂x

⃓⃓⃓⃓
⃓
x=0

(2.40)

6 ∫︁
V

dV ∇ · F =
∫︁

S
dS · F, where S = ∂V
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In the first equality we have used the feature (2.37) and the fact that the integrand
is on the boundary nonzero7 only for x = 0. In the second equality we have used
the definition (2.36) and the feature (2.38).

Finally, we compare LHS (2.39) and RHS (2.40) and after trivial simplification
we get the Lifshitz-Herring formula in the form

∆E = J

N
,

J = 2
∫︂ ∞

−∞
dyΨ(0, y) ∂Ψ(x, y)

∂x

⃓⃓⃓⃓
⃓
x=0

, N =
∫︂ ∞

0
dx
∫︂ ∞

−∞
dyΨ2(x, y) . (2.41)

We calculate the “probability current” J by means of the WKB method and
the norm N by means of the RSP method.

Since we use different approaches to calculate the wave function Ψ in the
nominator and denominator of (2.41), we have to assure that both wave func-
tions have the same normalization. To guarantee it we use a method introduced
in [53] which avoids the tedious procedure of explicit asymptotic matching. The
method is based on the fact, cf. [53], that the asymptotic matching is automati-
cally fulfilled if we normalize both wave functions in such a way that asymptotic
expansion of their logarithm in the overlap region, i.e. a region where both aprox-
imations hold, does not contain constant additive terms.

2.3.5 Calculation of N - RSP method
Firstly, we employ RSP method with expansion parameter r = 1/R and we
calculate norm

N = N (0) + rN ′(1) + r2N ′(2) + . . . , (2.42)

and energy
E = E(0) + rE ′(1) + r2E ′(2) + . . . . (2.43)

We move the coordinate system to the right well x = R + q (we could perform
the same calculation by choosing the left well x = −R+ q). In variables q and y
the Hamiltonian (2.3) has the form

Ĥ = −1
2
∂2

∂x2 − 1
2
∂2

∂y2 + q2

2 + ω2y
2

2⏞ ⏟⏟ ⏞
=H0

+r
(︄
q3

2 + 2γqy
)︄

⏞ ⏟⏟ ⏞
=V1

+r2
(︄
q4

8 + γq2y

)︄
⏞ ⏟⏟ ⏞

=V2

. (2.44)

For r → 0 (R → ∞), both V1 and V2 vanish and H0 is Hamiltonian of two
independent harmonic oscilators for which there is an exact solution

E ′(0)
nm = m+ 1

2 + ω
(︃
n+ 1

2

)︃
,

⟨q, y|Ψ(0)
nm⟩ = Ψ(0)

nm(q, y) = ψm(q; 1)ψn(y;ω) , (2.45)

where functions of the harmonic oscilator ψn(x; Ω) were defined in (2.20). Re-
sults for the ground-state are given by the following well-known RSP recurrence

7We assume Ψ → 0 for x → ∞ and y → ±∞. This is obvious because for large x and y
potential goes to infinity.
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relations

E ′(0) = E
′(0)
00 = 1 + ω

2 , (2.46)

|Ψ(0)⟩ = C(0)|Ψ(0)
00 ⟩, (2.47)

E ′(k) = 1
(C(0))2

[︂
⟨Ψ(0)

00 |V1|Ψ(k−1)⟩ + ⟨Ψ(0)
00 |V2|Ψ(k−2)⟩− (2.48)

−
k−1∑︂
l=1

E ′(l) ⟨Ψ(0)
00 |Ψ(k−l)⟩

]︂
,

|Ψ(k)⟩ =
k∑︂

n=0

4k∑︂
m=0

|Ψ(0)
nm⟩⟨Ψ(0)

nm|Ψ(k)⟩ + C(k)|Ψ(0)
00 ⟩, (2.49)

⟨Ψ(0)
nm|Ψ(k)⟩ = 1

E
′(0)
nm − E

′(0)
00

[︂
−⟨Ψ(0)

nm|V1|Ψ(k−1)⟩ − ⟨Ψ(0)
nm|V2|Ψ(k−2)⟩+ (2.50)

+
k−1∑︂
l=1

E ′(l) ⟨Ψ(0)
nm|Ψ(k−l)⟩

]︂
.

The constants C(k) are not given by the RSP method. We determine their values
from the condition for the asymptotic matching that the logarithm of the wave
function does not contain additive terms. This requirement is easily fulfilled if we
take Ψ(0)(q, y) = exp{− q2

2 − ωy2

2 }, i.e. C(0) = 4
√︂
π2/ω. In higher orders we take

such C(k) that Ψ(k)(0, 0) = 0.
The norm is thus given by the formula

N ′(k) =
k∑︂

l=0
⟨Ψ(l)|Ψ(k−l)⟩ =

k∑︂
l=0

Min(l,k−l)∑︂
n=0

4·Min(l,k−l)∑︂
m=0

⟨Ψ(l)|Ψ(0)
nm⟩⟨Ψ(0)

nm|Ψ(k−l)⟩ (2.51)

Using this scheme we can calculate norm and energy up to an arbitrary order
because all the sums involved are finite. Therefore, N ′(k) and E ′(k) are polynomials
in γ2 of degree k/2.

Due to the symmetry of the Hamiltonian, for every odd order 2k + 1 it holds
that energy and norm are zero8, E ′(2k+1) = 0 and N ′(2k+1) = 0. We thus rewrite
(2.42) and (2.43) to a form that is compatible with the following Sections

N =
∞∑︂

j=0
r2jN (j) , N (j) = N ′(2j) =

j∑︂
k=0

N
(j)
k γ2k , (2.52)

and
E =

∞∑︂
j=0

r2jE(j) , E(j) = E ′(2j) . (2.53)

2.3.6 Calculation of J - WKB method
Let us turn to the problem of determination of the “probability current” J . The
RSP method applies in the vicinity of the minimum of the potential. The magni-
tude of the wave function is the highest there, therefore it gives a good estimate of

8This does not hold for corrections to the wave function, i.e. Ψ(1) ̸= 0. However, the
functions Ψ(2k+1) are needed only in an intermediate steps, for the calculation of energy splitting
we only need the norm.
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the norm. On the other hand, in the tunneling region where q2/2 ≈ rq3/2+r2q4/8,
i.e. the perturbations rV1 + r2V2 are of the same magnitude as H0, the RSP
method is not valid.

In order to describe the tunneling we turn to the WKB approximation. To
make q2/2, rV1 and r2V2 of the same order in r we make a substitution q = 2u/r.
The Schrödinger equation then has the form[︄

r2

4
∂2

∂u2 + ∂2

∂y2

]︄
Ψ = 2

[︄
2
r2 [u(u+ 1)]2 + 4γu(u+ 1)y + ω2

2 y2 − E

]︄
Ψ. (2.54)

We search for a Ψ in the WKB form

ΨWKB(u, y) = eS(u,y), (2.55)

where the action S is expanded in r2 and y

S(u, y) =
∞∑︂

j=−1

2j+2∑︂
i=0

fi,j(u)r(2j)y
i

i! . (2.56)

The structure of the differential equation (2.54) causes that the expansion in y
is finite in every order of r2. Inserting (2.55), (2.56) and (2.53) into (2.54) and
comparing the same powers of y and r2 we get, instead of partial differential
equation (2.54), a series of ordinary differential equations. For r−2 order we have
an equation that allows us to calculate f0,−1(u):[︂

f ′
0,−1(u)

]︂2
= [u(u+ 1)]2 , (2.57)

For r0 we have equations that, if calculated gradually, provide us with the func-
tions f2,0(u), f1,0(u), f0,0(u)

f ′
0,−1(u)f ′

2,0(u) + f 2
2,0(u) = ω2, (2.58)

2f ′
0,−1(u)f ′

1,0(u) + 2f2,0(u)f1,0(u) = 8γu(u+ 1), (2.59)
2f ′

0,−1(u)f ′
0,0(u) + f ′′

0,−1(u) + f 2
1,0(u) + f2,0(u) = −2E(0), (2.60)

and in higher orders we have

2f ′
0,−1(u)f ′

4,1(u) + 6
[︂
f ′

2,0(u)
]︂2

+ 8f2,0(u)f4,1(u) = 0 , (2.61)
2f ′

0,−1(u)f ′
3,1(u) + 6f ′

1,0(u)f ′
2,0(u)+

+2f1,0(u)f4,1(u) + 6f2,0(u)f3,1(u) = 0 , (2.62)

2f ′
0,−1(u)f ′

2,1(u) + 2f ′
0,0(u)f ′

2,0(u) + f ′′
2,0(u) +

[︂
f ′

1,0(u)
]︂2

+
+2f1,0(u)f3,1(u) + f4,1 + 4f2,0(u)f2,1(u) = 0 , (2.63)

2f ′
0,−1(u)f ′

1,1(u) + 2f ′
0,0(u)f ′

1,0(u) + f ′′
1,0(u)+

+2f1,0(u)f2,1(u) + f3,1 + 2f2,0(u)f1,1(u) = 0 , (2.64)

2f ′
0,−1(u)f ′

0,1(u) +
[︂
f ′

0,0(u)
]︂2

+ f ′′
0,0(u) + 2f1,0(u)f1,1(u) + f2,1 = −2E(1). (2.65)

The equation for any fi,j(u) contain only functions fk,l(u) where l < j or if l = j
then k > i, in other words only functions calculated in previous steps. For exam-
ple, from Eq. (2.62) we calculate function f3,1(u) but we need to solve Eq. (2.61)
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before because we need function f4,1(u) together with functions calculated in
lower orders of r2.

The solutions of (2.57) and (2.58) are

f0,−1(u) = ±
(︄
u2

2 + u3

3

)︄
+ C1 , (2.66)

f2,0(u) = ±ω . (2.67)

We find the correct branches from the requirement that in the limit r → 0,
the WKB wave function (2.55) in the lowest order matches the zeroth order
perturbative solution

ψWKB ≈ e± 1
r2

(︂
u2
2 + u3

3

)︂
+ C1

r2 ± ω y2
2 = e±

(︂
q2
2 +r q3

3

)︂
+ C1

r2 ± ω y2
2 , (2.68)

ψ
(0)
RSP = e− q2

2 − ω y2
2 . (2.69)

From comparison of Eqs. (2.68) and (2.69) it is evident that C1 = 0 and we take
the minus signs in (2.66) and (2.67).

The equations (2.57) and (2.58) are the only two which are not linear and
the correct branches have to be chosen from the comparison with the RSP wave
function.

As mentioned before, we want to know the effect of quantum corrections, i.e.
go beyond the zeroth order in r2 and calculate functions fi,j with j ≥ 1. We
thus refine our method so the calculation is done with a simple procedure that
can be easily implemented with the use of a symbolic programing language like
Mathematica, Maple, etc.

Firstly, we introduce auxiliary functions φ, Φ and χ which are defined by the
following equations

f2,0 = f ′
0,−1(lnφ)′, (2.70)

f1,0 = −f ′
0,−1φΦ′, (2.71)

1 = −2f ′
0,−1φ

2χ′. (2.72)

Secondly, we define new functions ξi,j and ηi,j. The definitions and transforma-
tions ξi,j → fi,j, fi,j → ηi,j are given in [56], Eq. (A2). Thirdly, we expand
functions fi,j in powers of γ

f2i,j(u) =
j+1−i∑︂
k=0

f2i,j,k(u)γ2k , f2i+1,j(u) =
j+1−i∑︂
k=0

f2i+1,j,k(u)γ2k+1 . (2.73)

Fourthly, we rearrange the functions fi,j(u) into functions Si,j(u) for which it
holds

S (u, y + ∆) =
∞∑︂

j=−1

2j+2∑︂
i=0

Si,j(u)yir2j ,

S2i,j(u) =
j+1−i∑︂
k=0

S2i,j,k(u)γ2k , S2i+1,j(u) =
j+1−i∑︂
k=0

S2i+1,j,k(u)γ2k+1 , (2.74)
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where ∆ is given by the requirement

∂S(u, y + ∆)
∂y

⃓⃓⃓⃓
⃓
y=0

= 0 . (2.75)

It gives us S1,j(u) = 0, S0,−1(u) = 4f0,−1(u), S0,0(u) = f0,0(u) − f2
1,0(u)

2f2,0(u) , S2,0(u) =
f2,0(u)

2 and so on.
We insert the just derived relations and simplifications into the formula (2.41)

for J ,

J = r
∫︂ ∞

−∞
dy e{2S(u=− 1

2 ,y)} ∂S(u, y)
∂u

⃓⃓⃓⃓
⃓
u=− 1

2

=

= r
∫︂ ∞

−∞
dy e

{︂
2
∑︁

i,j
fi,j

yi

i! r2j

}︂ ⎛⎝∑︂
i,j

f ′
i,j

yi

i! r
2j

⎞⎠ =

= r
∫︂ ∞

−∞
dy e

{︂
2
∑︁

i,j
Si,jyir2j

}︂ ⎛⎝∑︂
i,j

S ′
i,jy

ir2j

⎞⎠ . (2.76)

In the last equality we have made a substitution y → y + ∆. We have also used
a notation

fi,j = fi,j

(︂
u = −1

2

)︂
and f ′

i,j = f ′
i,j

(︂
u = −1

2

)︂
, (2.77)

Si,j = Si,j

(︂
u = −1

2

)︂
and S ′

i,j = S ′
i,j

(︂
u = −1

2

)︂
. (2.78)

In the end we put everything together. We insert N from (2.52) supplemented
with (2.51) and J from (2.76) with rearanged functions (2.74) into the formula
for energy splitting (2.41). We then get

∆E = Re2S0,−1R2+2S̄0,0

N (0) S ′
0,−1

∫︂ ∞

−∞
dy e2S2,0y2×

×
[︃
1 + 2

R2

(︂
S0,1 + S2,1y

2 + S4,1y
4
)︂

+ . . .
]︃

×

×

[︃
1 + 1

S′
0,−1R2

(︂
S ′

0,0 + y2S ′
2,0

)︂
+ . . .

]︃
1 + N(1)

N(0)R2 + . . .
, (2.79)

where just the integration over y has to be performed and we have again used
the parameter R = 1/r. We expand (2.79) in R−2 and then the integration over
y is easily done since in every order of R−2 we have only gaussian integrals.

The final expression then has the form

∆E = R√
π

e− 2R2
3 +g0

(︃
1 + g1

R2 + g2

R4 + . . .
)︃
, (2.80)

where coefficients gj depend on γ and ω. Unfortunately, it is complicated to keep
both parameters general throughout the whole calculation so we show the results
in the article [56] for ω = 1/4.
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2.3.7 Description of the method

Let us give here the concise recapitulation of the energy splitting calculation.
The method is based on an introduction of functions fi,j(u) in (2.56). Firstly, we
calculate the energy E (2.53) and norm N (2.52) by means of RSP method. Sec-
ondly, we calculate “probability current” J . We transform the partial differential
equation (2.54) to the series of coupled ordinary differential equations of the first
order (2.57)–(2.65) for fi,j(u). After that we employ transformations ξi,j → fi,j,
fi,j → ηi,j to reduce the problem of solving inhomogeneous differential equations
to the direct integration. In the actual calculation we start with functions f0,−1,
f2,0, f1,0 and f0,0 which are calculated from equations (2.57) – (2.60). Then we
repeat the following steps for ascending j:

1. For all i from 2j + 2 down to 0:

(a) We find ξ′
i,j(u) from equation as a function of u through the relations

ξ′
i,j = ξ′

i,j (ηi,j) and ηi,j = ηi,j (fk,l), where fk,l(u) were determined in
the previous steps.

(b) We integrate ξ′
i,j(u) with the condition ξi,j(0) = 0 if i > 0.

(c) Through the relation fi,j = fi,j (ξi,j) we find fi,j(u).

2. For f0,j(u) we require that for u → 0, f0,j(u) → 0. This ensures the correct
asymptotic matching.

3. We find ∆ (2.75) and rearrange the functions fi,j into Si,j and f ′
i,j into S ′

i,j

(2.74).

4. We integrate over y and with the RSP calculated norm N we determine the
value of gj.

Finally, we put everything together and we determine the energy splitting ∆E
from the equation (2.80).

2.3.8 Strong coupling

The series (2.80) is impractical if we want to describe the tunneling in malon-
aldehyde with parameters (R = 4.34, ω = 1/4, γ = 0.47). To overcome this
inconvenience we consider a “strong coupling expansion”, i.e. instead of γ we use
γ̄ = γ/R and we keep this ratio fixed. Fortunately, we do not have to start from
the beginning, we just need to reorder the terms in the series (2.74) as follows

∞∑︂
j=−1

j+1−i∑︂
k=0

Si,j,k(u) γ
2k

R2j
=

∞∑︂
j=−1

j+1−i∑︂
k=0

Si,j,k(u) γ̄2k

R2(j−k) =

=
∞∑︂

j=−1

∞∑︂
k=0

Si,j+k,k(u) γ̄
2k

R2j
=

∞∑︂
j=−1

∞∑︂
k=0

S̄i,j,k(u) γ̄
2k

R2j
. (2.81)

41



We thus rewrite the equation for the action (2.74) as

S (u, y + ∆) =
∞∑︂

j=−1

2j+2∑︂
i=0

S̄i,j(u)yir2j ,

S̄2i,j(u) =
∞∑︂

k=0
S2i,j+k,k(u)γ̄2k , S̄2i+1,j(u) =

∞∑︂
k=0

S2i+1,j+k,k(u)γ̄2k+1 . (2.82)

In a similar way we reorder the norm

N =
∞∑︂

j=0
N̄

(j)
r2j , N̄

(j) =
∞∑︂

k=0
N

(j+k)
k γ̄2k. (2.83)

Using the reordered series (2.82) and (2.83) and parameter R we get for the energy
splitting

∆E = R
e2R2S̄0,−1+2S̄0,0

N̄0
S̄

′
0,−1

∫︂ ∞

−∞
dye2S̄2,0y2×

(︃
1 + 2

R2

(︂
S̄0,1 + S̄2,1y

2 + S̄4,1y
4
)︂

+ . . .
)︃ 1 + S̄

′
0,0+y2S̄

′
2,0

S̄
′
0,−1R2 + . . .

1 + N̄
(1)

N̄
(0)

R2
+ . . .

, (2.84)

where again S̄i,j = S̄i,j(u = −1/2). The complication is that S̄i,j and N̄
(j) are

infinite series in γ̄2, unlike Si,j and N (j) which are finite series in γ2.
We have analysed these infinite series using the method suggested in [55]. The

analysis is comprehensively described in [56] and here we present only the results.

2.4 Results and discussion
Detailed presentation and discussion of the achieved results can be found in [56].
Let us give here a shorter summary of the most important results and qualitatively
discuss the key points.

2.4.1 Weak coupling
The WKB method works better for higher values of ω and R (smaller r). This
is to be expected since for the potentials with higher R the expansion (2.56)
converges faster and for higher ω the potential is more harmonic and the leading
order approximation is more valid.

The case with parameter γ is more complicated. The method works the best
for γ ≈ γ1 where γ1 is a special value of γ for which the coefficient g1 from (2.80)
is zero. For γ < γ1 the smaller the γ is, the performance of the method is worse.
This is certainly unexpected. The method works better for a special curvature
(γ = γ1) than for a corresponding one-dimensional tunneling γ = 0.

For γ > γ1 the behavior is even more complicated. With higher γ the method
not only works worse, but lower order corrections can even worsen the leading
order estimate. From this feature it is evident that for malonaldehyde, we would
need to calculate much more than 10 orders to get quantitative results and that
is impractical.
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γ̄ 0 1 var. var. [cm−1]
0.1 0.001595 (19.8) 0.001367(2.3) 0.00133183 3.57
0.107 0.005709 (26.3) 0.00475 (4.9) 0.00451869 12.1
0.11 0.01235 (33.3) 0.0101 (9.2) 0.00926990 24.8
0.1 0.00002587 (10.6) 0.00002358 (0.6) 0.0000233927 0.778
0.13 0.0004067 (17.9) 0.0003527(1.6) 0.000344889 1.43
0.134 0.0007611 (20.5) 0.000650 (2.1) 0.000631647 1.76

Table 2.2: The ground state tunneling splitting for the proton tunneling in mal-
onaldehyde (ω = 0.25, R = 4.34) and hydroxalate anion (ω = 0.32, R = 4.78) in
the upper and lower parts of the Table, respectively. The numbers 0 and 1 stand
for evaluating the splitting with accuracy up to R0 and to R−2, respectively. The
number in the paranthesis is the relative percentage error with respect to the
variational result.

This behavior of the series (2.80) is not encountered in the one-dimensional
case [57]. We conclude that it is a consequence of a competition between the
positive corrections due to the curvature of the classical trajectory, on one hand,
and negative corrections due to the quantum nature of motion, on the other one.

2.4.2 Strong coupling

From the numerical analysis of the infinite series S̄i,j (2.82) and N̄
(j) (2.83) we

have found a formula that is valid for γ̄ approaching γ̄s from below and sufficiently
large R

∆E = K(R, γ̄s)
(︂
1 − (γ̄/γ̄s)2

)︂1/4
×

× exp{2R2a−1
(︂
1 − (γ̄/γ̄s)2

)︂1/2
+ 2a0

(︂
1 − (γ̄/γ̄s)2

)︂−1/2
} , (2.85)

where K =
√︂
ω/(2π)RS̄ ′

0,−1(γ̄s) exp{2R2S̄0,−1(γ̄s)}/
√︂

−S̄2,0(γ̄s). Coefficients a−1
and a0 are taken from the numerical analysis of the series. For ω = 1/4 they have
values a−1 ≃ −0.76(2) and a0 ≃ 1.47(3). Be aware that the formula (2.85) can
be used only in the semiclassical region. For γ̄ aproaching γ̄s this means we have
to go to very large R.

The equation (2.85) shows strong sensitivity of the energy splitting on the
parameter γ̄ near the point γ̄s. The expression 1/

√︂
1 − (γ̄/γ̄s)2 is extremely

sensitive to slight variation of γ̄ near γ̄s, even further it gets exponentiated.
In Tab. 2.2 the results given by Eq. (2.84) for the ground-state tunneling

splitting for the values of the parameters modeling the proton transfer in malon-
aldehyde and hydroxalate anion are displayed and compared with variational
calculation. The series for the functions S̄i,j and their derivatives were accele-
rated, see Tab. V of [56].

The sensitivity shown in the equation (2.85) is backed up by the results given
in Table 2.2. They show that parameters describing malonaldehyde are in a
region where rounding errors dramatically change the energy splitting. This might
explain the large span of the results for malonaldehyde given in the literature
[36, 46, 47, 49]. Also the results in Table 2.2 demonstrate that ignoring the
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quantum corrections might not be valid. For the potentials, where the γ̄ is close
to the γ̄s, the importance of quantum corrections is not negligible.

The comparison of the results in Tab. 2.2 for malonaldehyde and hydroxalate
anion also show that our method works better for the latter one. The ratio
γ̄/γ̄s that measures how close we are to the critical point is γ̄/γ̄s ≈ 0.86 for
malonaldehyde and γ̄/γ̄s ≈ 0.84 for hydroxalate anion. We can thus conclude
that the importance of quantum corrections grows with the growing ratio γ̄/γ̄s,
i.e. with the proximity of the critical point γ̄s.

The strong dependence of the energy splitting on the input parameters sug-
gests manifestation of quantum chaos [50, 48]. The strong sensitivity originates
from the “virtual” bound state at the point x = 0, y = γ/ω2.

Furthermore, these results clearly show that if multi-dimensional tunneling is
reduced to one dimension9, some essential aspects of the problem are ignored.

9This approach is used for example in [51].
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Conclusion
The main results reported in this work are:

• We studied the vacuum polarization effect and derived an expression for
the Laplace transform of the vacuum charge density that can be used to
calculate the energy shift. We expanded it and obtained the formulae for
the Uehling and Wichmann-Kroll potentials. We calculated the energy
shift caused by the Wichmann-Kroll potential to the Lamb shift in muonic
hydrogen. The results are the most precise and in good agreement compared
with those given in literature.

• We also studied the two-photon correction where the self-energy effect was
perturbed by the Uehling potential. We derived an expression for the calcu-
lation of the extended Bethe logarithm and we calculated the energy shift
of the Lamb shift in muonic hydrogen caused by it. Our result is more
accurate and slightly different from those given before, but the change does
not explain the “proton radius puzzle”.

• Further, we suggested a new WKB method for calculating energy splitting
due to tunneling in a non-separable multi-dimensional potential. Addition-
ally, this method provided us with quantum corrections to the semi-classical
results. We also observed quantum chaos as a strong sensitivity of the en-
ergy splitting to the slight variations of the input parameters. We concluded
that although the WKB methods of Milnikov et al. [46, 47] or Richardson
et al. [49] give qualitatively good results, it is necessary to supplement them
with very accurate parameters of the potential energy surface. Moreover,
we showed that the quantum corrections are needed for the results to be
reliable.

Possible continuation of our work is following:

• It is possible to go further and calculate relativistic corrections to the
Wichmann-Kroll potential or take the following term of the expansion of
q(b) (1.40) that is of the order α(Zα)8. The same procedure can be applied
but at the current level of experiment it is not necessary.

• We can calculate the combined self-energy vacuum polarization effect to
higher orders of the expansion. This would give only small corrections that
are not needed now.

• We can study the effects of vacuum polarization insertion into the photon
line and of double self-energy.

• We can try to generalize our method of calculating the energy splitting
caused by tunneling and examine either excited states or three- and more-
dimensional potentials.

• We can also try to find an independent derivation of the formula (2.85).
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