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Tomorrow when my country sings
With love flowing from me,
I erase the blackness with my face
And become a nation for every
nation
So no darkness remains in our land
And no evil remains
Thus, say, I am free
And say, you are free.

— Adunis Esber, Selected Poems
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Title: Cross-lingual Information Retrieval in the Medical Domain
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Abstract: In recent years, there has been an exponential growth of the digital
content available on the Internet, which has correlated with the increasing number
of non-English Internet users due to the spread of the Internet across the globe.
This raises the importance of unlocking resources for those who want to look up
information not limited to the languages they understand. For example, those who
want to use the Internet to find medical content related to their health conditions
(self-diagnosis) but they do not have access to resources in their language. Cross-
Lingual Information Retrieval (CLIR) breaks the language barriers by allowing
search for documents written in a language different from the query language.

This thesis tackles the task of CLIR in the medical domain and investigates
the two main approaches: query translation (QT) where queries are machine
translated to the language of documents and document translation (DT) where
documents are translated to the language of queries. We proceed with our research
by employing Statistical Machine Translation (SMT) systems that are tuned for
the QT approach and the DT approach in the medical domain for seven European
languages (Czech, German, French, Spanish, Hungarian, Polish and Swedish) and
empirically show that DT does not outperform QT (the contrary to what had
been assumed since the late 1990’s). We develop a machine-learning-based system
to rerank the translation hypotheses provided by an SMT system towards better
CLIR performance. The system is first designed for Czech, French and German
CLIR systems and then is adapted to Spanish, Hungarian, Swedish and Polish.
Our findings suggest that the best translation produced by SMT is not necessarily
the best translation to construct a query in CLIR. Our reranker system produces
translations that are optimized towards CLIR, and significantly outperforms the
baseline QT system without reranking. To remedy the vagueness of translated
queries in CLIR, we present a novel approach that reformulates base queries by
adding useful terms to them. The terms are scored for usefulness using a linear
regression model. Our approach improves both the performance of CLIR systems
in all languages and of the monolingual IR (English reference queries). To compare
the performance of SMT versus NMT (predicting a translation using deep neural
networks) in the context of CLIR, we train a task-oriented NMT model to translate
medical queries. The presented NMT-based QT model significantly outperforms
the SMT-based QT one in all languages. During the progress of our research, we
developed an extended dataset for CLIR in the medical domain, which is based on
existing datasets from the IR tasks of the CLEF eHealth Labs Series 2013–2015,
and we make the dataset publicly available via the Lindat/CLARIN repository.

Keywords: Cross-lingual Information Retrieval, Machine Translation, Consumer
Health Search
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1. Introduction
The digital medical content available online has snowballed in recent years. This
growth has the potential to improve experience with web medical Information
Retrieval (IR) systems, which are more and more used for health consultations.

Fox [2011] reported that about 80% of Internet searchers in the U.S. looked for
health information online, and this number was expected to grow. The significant
increase of non-English digital content on the Internet had been followed by an
increase in looking for this information by internet searchers. Grefenstette and
Nioche [2000] presented an estimation of language size in 1996, late 1999 and early
2000 for documents captured from the Internet. Their study showed that the
English content had grown by 800%, German by 1500%, and Spanish by 1800%
in the same period.

Naturally, some information that a searcher is looking for might be available
only in a language that they do not understand, which makes such information
not accessible to those searchers.

Cross-Lingual Information Retrieval (CLIR) comes to tackle this issue and to
help internet searchers break language barriers and access valuable information
that is not available in their language.

Medical IR is a task that helps find medical content. According to Hersh
[2008], demand for such a system has increased significantly for mainly two reasons.
Firstly, searchers for health-related topics, either consumers (laypeople with no
experience in the medical domain) or clinicians and medical experts, are relying
more on the Internet to find medical advice. Secondly, medical institutions adopt
electronic medical records in their systems, which makes more medical data
available in a digital and a searchable form.

1.1 Goals

The goals of this thesis can be summarized as follows:

• Studying the challenges of CLIR in the medical domain.

• Developing task-oriented machine translation systems (statistical and neural)
to be employed in the CLIR task.

• Comparing the main CLIR approaches, namely: query translation and
document translation.

• Improving medical information representation in search queries.

This work is conducted in the context of the Khresmoi project, and as a
contribution to the CLEF eHealth IR shared tasks, as we will show later.

5



1.2 Contributions
Taking into consideration the goals of this research, and the findings and observa-
tions that we encountered during our journey, we can summarize our contributions
to the task of CLIR as follows:

• Defining the task of CLIR, its challenges and approaches, and the related
work that has been conducted.

• Designing a CLIR baseline system that is based on the Query Translation
(QT) approach employing Statistical Machine Translation (SMT).

• Developing a method for reranking of the translation hypotheses that are
produced by SMT towards better CLIR performance.

• Presenting a novel approach towards building a task-oriented neural machine
translation system for query translation in CLIR.

• Studying the effect of morphological processing on monolingual and cross-
lingual IR in the medical domain.

• Conducting document translation (DT) experiments using SMT and NMT
models and showing empirically that QT outperforms DT (contrary to what
has been assumed for more than 20 years) in the context of CLIR in the
medical domain.

• Improving the representation of the information need in search queries
through a query expansion method based on a machine learning model.

• Contributing to the research community by releasing a test collection where
queries are available in eight languages, and a thorough relevance assessment.

• Publishing those findings as nine long papers and two short ones in relevant
conferences.

Finally, I want to emphasize that I use we in this work to refer to me and you
(the reader), and it does not imply any collaborative work.

1.3 Organization of the Thesis
The organization of this thesis is as follows. Chapter 2 introduces the task
of information retrieval in the medical domain, describes retrieval models, and
popular evaluation methods of IR systems. We move on in Chapter 3 to give an
overview of the CLIR task and the related work, tasks, and evaluation campaigns
of CLIR, and the released CLIR test collection.

In Chapter 4, we present the test collections that we employed in this work
and our contribution to extending these collections and unifying them into a richer
one.

Chapter 5 presents an overview of the task of Machine Translation (MT)
and how it is employed in CLIR. We study both SMT and Neural Machine
Translation (NMT), then we present the MT data that we use in this research for
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MT training, the evaluation of MT, we present our training approach and model
architecture of MT models (SMT and NMT) for the purpose of the translation
part in the CLIR task, and then we present the evaluation of our MT models.

Chapter 6 is dedicated to our CLIR methods, including methods that are
based on query-translation using SMT, NMT and public MT. Then we present our
translation hypotheses reranking model towards CLIR. The chapter also includes
a comparative study of document translation and query translation using SMT
and NMT, and then we present our term selection approach for query expansion
based on a machine-learning model. The last chapter presents our conclusions
and future work.
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2. Information Retrieval
The IR task has been discussed since the 1950s. It has always been to understand
and improve the way humans seek information.

There are multiple definitions of the IR task; however, according to Manning
et al. [2008], it is agreed in academia that the following one defines the task:

“Information retrieval (IR) is finding material (usually documents) of
an unstructured nature (usually text) that satisfies an information
need from within large collections (usually stored on computers).“

Cleverdon [1960] proposed that an IR system should consider the following
perspectives:

• How much the system can distinguish relevant documents.

• The system should be able to distinguish irrelevant documents.

• How much time it takes the system to retrieve the results after being asked
a question.

• How the system is going to present the results.

• How much the system is easy to be used by searchers in order to get the
results they want.

Information need is a very important concept in the field of IR. According to
Wissbrock [2004], information need is defined as the missing information that a
searcher is trying to find, and from a searcher’s point of view, this information
need can be reached by writing one or more terms. These terms are known as
query. When a document contains that missing information, we call this document
a relevant document, and when it does not, then it is called irrelevant.

The fact that the text is stored in unstructured documents1 makes the IR
task a challenging one, especially when comparing it with information extracted
from structured data stored in relational database systems. Because in relational
database systems, data is well defined and inserted into tables that have known
structures (called schemas), and relations between tables explain how data is
connected to each other. Structured Query Language (SQL) helps to retrieve data
from a database considering a given criterion through a DataBase Management
System (DBMS). Usually, the relevance of the retrieved data is very high, and
the criterion of describing this data is clear (not ambiguous). For example,
when asking a DBMS to show the author and the publisher of a specific book
assuming these fields are stored in a table, the system will effectively retrieve
such information, because these fields are defined in the table’s schema in a way
that enables accessing a specific field (author and publisher) for a specific row

1Documents in IR most often do not comply with a predefined schema definition, such as
data type and date format. On the contrary, they are usually written in a free text format or
unstructured text.
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(a book in this example) in that table. However, in IR, the situation is totally
different. The goal is to retrieve information from unstructured text. Looking
up information in unstructured text is more difficult because it requires more
advanced text analyzing and parsing techniques, and the same information that
the searcher is looking for might be written using different words, where most IR
systems follow approaches that are based on term-matching methods.

2.1 Research Terminology
There are multiple terms that are widely used in IR referring to specific concepts,
and have different use or meaning in other fields of Natural Language Processing
(NLP) researches. To avoid any confusion, we dedicate this section to explain the
meaning of the terms used in our work:

• Information need is information that a searcher tries to find using a retrieval
system.

• Query can be either a sequence of terms that is fed by a searcher into an
IR system to find a specific information, or written in a more complicated
way such as structured queries wherein different terms in a query can have
different weights [Strohman et al., 2005].

• Term is a token that is processed by an IR system. A term can be a word
in its original form, lemmatized version, or its stemmed version.

• Topic describes what information is needed behind a given query, assuming
that a query cannot fully describe this information.

• Relevance determines how much a retrieved document satisfies an informa-
tion need for a searcher. In searcher-centric relevance, documents should
be relevant to the query topic, not to the query itself, because sometimes
searchers fail to write a clear or complete query about their information
need. In this research, we will focus on searcher-centric relevance not system-
centric relevance, which is the case when the goal is to satisfy the searcher’s
query, not their information need [Smith and Salvendy, 2007].

• Relevance Assessment is a manual process wherein human assessors check
retrieved documents by an IR system for a given query and the information
need behind that query and assign the relevance degree to those documents.

2.2 Consumer Health Search
Health search is the process when searchers use the Internet to look up information
that is related to health conditions, symptoms, treatments, or diseases. The term
consumer had appeared in the literature since the beginning of 2000, referring
to the health searchers who do not have a strong background in medicine; hence,
they share mutual behavior: the lack of medical terminology when posing a search
query. When searchers have a medical background, such users are referred to as
clinicians [Zeng et al., 2002].
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Patrick et al. [1995] defined Consumer Health Search (CHS) as the process
when consumers find information online that helps them to understand health
topics (either related to their health conditions or to one of their family members),
and make actions or take decisions based on what they find.

In July 2017, dotHealth2 reported their findings in a national survey of 1,509
internet searchers in Canada. They found that 57% of the studied population
would search online first when they encountered health-related questions, while
32% would visit a doctor before searching online. Fox [2011] spotted an increase
of the percentages of Internet users who used the Internet at least once to look up
health-related information in the United States, where the percentages increased
from 25% in 2000, to 80% in 2010.

Zeng et al. [2002] studied the characteristics of consumer health search. They
found a significant mismatch between the terminology that consumers used to
write their queries and the correct terminology in the documents that were relevant
to their needs.

Keselman et al. [2008] showed that the lack of medical domain knowledge
led consumers to read and to rely on information that was taken from irrelevant
resources, which could have significant impacts on their health.

However, when consumer health search was applied to a credible and variable
medical content, it helped consumers to improve their clinical interventions and
eventually boosted the clinical health search outcome [Gibbons et al., 2009].

Self-diagnosis using health search has been a controversial topic. Giustini
[1999] suggested that a governmental organization such as the federal agency of
the United States Department of Health and Human Services should regulate
and monitor the digital medical content that is available to the public, because
some medical resource providers can be considered practicing medicine without
being monitored. However, the main advantage of CSH is that searchers can
improve their knowledge in the medical domain, and at the same time, gain
experience in recognizing irrelevant and untrustworthy resources by exploring
multiple documents with different relevance degree.

The quality of the medical content (medical accuracy) is not the only important
factor in CHS. Readability measurement, on the other hand, determines how
easily a reader is able to read, to understand, and to make the right conclusion
after reading a medical text. Kindig et al. [2004] estimated that there are about 90
million adults in the United States who had difficulty reading and understanding
health-related text. This issue could cause a barrier to obtain online patient care
for those people. However, in this work, we do not focus on the readability of
medical content when searching for health-related topics; we keep our focus on
the relevance of the retrieved medical information.

2https://www.dothealth.ca/
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2.3 Retrieval Models
We present in the following sections an overview of multiple IR models. An IR
model is a matching function that takes as input a set of documents (D) and a
user’s query (q), and retrieves a list of documents (D′), where D′ ∈ D. These
retrieved documents are often scored by their matching degree to q.

2.3.1 Vector Space Model
In the vector space model, both queries and documents are represented as vectors,
such as V⃗ (di) = (wi,1, wi,2, .., wi.,m), where wi,j is the weight of the term j in the
document i. TF-IDF is the most common model that is based on vector space
model [Salton et al., 1975], in which the weight of a term t in a document d is
computed as:

wij (t, d) = tft,d × IDFt (2.1)

where tft,d is the term frequency of a term t in a document d, and IDFt is the
Inverse Document Frequency (IDF) of a term t in the entire collection. The value
of IDF is calculated as shown in Equation 2.2, where N is the number of the total
documents in the collection, and dft is the document frequency, i.e. the number of
documents in the collection that contain the term t. IDF can be considered as a
measurement of the informativeness of a term t in the collection, where rare terms
tend to have high IDF values, and frequent terms have low values, for example
stop-words which are words that appear frequently in many documents in the
collection but they are not very informative from the perspective of an IR system.

IDFt = log
N

dft

(2.2)

After representing each document d in the collection as a vector V (d)⃗ of the weights
of its terms, and a query q as a vector V (q)⃗ , the similarity score is quantified
using the cosine similarity as given in Equation 2.3, where the numerator is the
dot product between V (d)⃗ and V (q)⃗ , and the denominator is the product of their
Euclidean lengths [Manning et al., 2008].

RSV (q, d) = cosine(V (q)⃗ , V (d)⃗ ) = V (q)⃗ · V (d)⃓⃓⃓⃗
V (q)⃗

⃓⃓⃓ ⃓⃓⃓
V (d)⃗

⃓⃓⃓ (2.3)

Retrieval Status Value (RSV) in IR is a score that is given by retrieval model to
define the relevance degree of a given document to an input query [Imafouo and
Tannier, 2005].

2.3.2 Probabilistic Retrieval Model
Probabilistic retrieval models rank the documents by their likelihood ratios, which
is based on the probabilistic retrieval framework [Robertson and Sparck Jones,
1988]. Rq,d = 1 if a document d is relevant to a query q, and Rq,d = 0, if d
is irrelevant to q. Probabilistic models estimate the probability of document
relevance to a query q. This estimation is written as P (R = 1|d, q).
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Okapi BM25 (Best Matching) is a well-known IR model that is based on the
probabilistic framework. Documents in this model are ranked for a given query,
as shown in Equation 2.4. k1 and k3 normalize term frequency and document
length, respectively. For this reason, these parameters need to be tuned based on
the studied document collection. While tfd is the normalised term frequency in
document d, as shown in Equation 2.5, where dl and avgdl are document length
and the average of document length in the collection respectively, and b is a free
parameter.

RSV (q, d) =
∑︂

t∈
d
⋂︁

q

(k1 + 1)tfd

K + tfd

∗ (k3 + 1) ∗ tfq

k3 + tfq

∗ IDF (t) (2.4)

tfd = tf

(1 + b) + b ∗ dl
avgdl

(2.5)

2.3.3 Dirichlet Prior Weighting Model
The main assumption of language modeling based IR models is that when searchers
pose a query to find relevant documents to their information need, they use terms
that are more likely to appear in those documents. This means that a document d
is a good candidate to be relevant to a query q when d is more likely to generate
query q (when a searcher wants to find a document d, they will write a query
q that represents d from their point of view). To model this, each document d
in the collection D has an estimated language model θd, and each term t in a
document d is assigned a probability as in:

P (t|θd) = tft,d

dl
(2.6)

Different smoothing methods are applied to term probabilities. Smoothing with
the Dirichlet prior is shown to be an effective method in IR models [Zhai and
Lafferty, 2004]. The scoring function in the Dirichlet model is given by Equation
2.7.

RSV (q, d) = log (p(q|d)) =
∑︂

i:c(ti∈q;d)>0
log

ps(ti|d)
αdp(ti|C) + nlogαd +

n∑︂
i=1

logp(ti|C)

(2.7)
where ps(ti|d) is the probability that a document d implies a term ti, ti exists in
the collection C, and αd is a document-dependent constant, n is the length of the
query q, and p(ti|C) is the probability of a query term ti in the entire collection
C, which is fixed for all documents; thus, the last component in Equation 2.7 is
ignored in the ranking function.

pµ(t|d) = c(t, d) + µp(t|C)
dl + µ

(2.8)

Dirichlet smoothing is applied to the term probability ti by the maximum
likelihood estimation with the term probability in the entire collection C. It uses
a different amount of smoothing based on the length of the document. For longer
documents, the smoothing will be less.
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<query >
<id >103001 </id >
<title > headaches relieved by blood donation </ title >

</query >

<query >
<id >103002 </id >
<title >high iron headache </ title >

</query >

<query >
<id >103003 </id >
<title >blood donation headache reduction </ title >

</query >

<query >
<id >103004 </id >
<title > headaches caused by too much blood or "high blood

pressure "</title >
</query >

<query >
<id >103005 </id >
<title > headache that only goes away with blood loss </ title >

</query >

Figure 2.1: Samples of query variations of the same topic. These topics were
released during the CLEF eHealth 2016 IR task [Kelly et al., 2016]

2.4 System Evaluation
The purpose of system evaluation, in general, is to tell how well a system performs,
and which system is better than others. The determination of a better system
performance lies in the context of that system application.

When searchers want to find information in a set of documents, they represent
this information as a query q. Multiple searchers tend to formulate their informa-
tion need in different queries. These queries that refer to the same information
need are called query variations. Table 2.1 shows samples of multiple query
variations for the same information need. These variations were created within
the CLEF eHealth IR track 2016 [Kelly et al., 2016].

In searcher-centered IR,3 the primary purpose of the evaluation is to measure
how well results from an IR system satisfy searcher expectation [O’Brien et al.,
2016].

A document d is relevant (rel) to a query q only if it satisfies the searcher who
posted the query. If d does not contain answers to what the searcher is looking
for then d is irrelevant (irrel).

3This is the case in our work where searchers are patients (patient-centered IR).
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Evaluation of unranked retrieval:

Unranked retrieval is the case when an IR system returns a set of documents for
a given query without a score of relevance, which means all of these documents
are treated equally.

The most common two metrics to evaluate performance of an unranked retrieval
system are precision and recall.

Precision: Precision is the ratio of the number of relevant retrieved documents
to the total number of retrieved documents as in:

Precision = P = #(relevant retrieved documents)
#(total retrieved documents) (2.9)

Recall: Recall is the ratio of the number of retrieved relevant documents to the
total number of relevant documents in the collection:

Recall = R = #(relevant retrieved documents)
#(total relevant documents) (2.10)

The desired value of precision and recall can be controlled by the context of the
application of the IR system. For example, while web searchers are usually not
interested in all relevant documents, they focus on a few results; thus, it will be
more effective for them to use a high precision IR system. On the other hand, in
a different search application, searchers might be interested in looking at more
results. For that reason, they can tolerate a low precision system and prefer a
high recall one. Figure 2.2 shows an example of the relation between precision
and recall, which is called precision-recall curve.

F-measure: F-measure balances precision and recall by using the harmonic mean
between the two metrics.

F-measure = F = 2PR

P + R
(2.11)

F-measure is calculated, as shown in Equation 2.11, where P is precision, and R
is recall. This version of F-measure is also called F1, where each P and R are
given an equal weight.

Evaluation of ranked retrieval:

IR systems usually return a list of documents ranked descendingly from the most
relevant document. Practically, searchers will not read all the retrieved documents;
they usually examine the highly ranked documents only and do not look further
in the retrieved list.
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Figure 2.2: Precision-recall curve

Precision at K-documents: P@K is the proportion of the top-K retrieved docu-
ments that are relevant to the posed query as shown in Equation 2.12.

P@K = 1
K

K∑︂
i=1

1(rel(di)) (2.12)

Where 1(rel(di) is an indication function that returns 1 if the document d at
position i is relevant to the query, or 0 otherwise. To compute the overall P@K
for a set of queries, the average P@K for all queries is taken.

Usually, Precision-at-10 is considered to be a reasonable setup for P@K in
the context of web search, because popular web search systems nowadays show
by default the top 10 ranked pages (documents) in their first page [Turpin and
Scholer, 2006]. The main disadvantage of using P@K is that it does not consider
the positions of the relevant documents (within the top K results) with respect
to the irrelevant ones.

Mean Average Precision: The precision, as we showed earlier in this section,
is used to evaluate an unranked list of retrieved documents. This ignores the
position of relevant documents, whether they appear at the top of the list or at
its bottom. However, in ranked retrieval, relevant documents are desired to be
at the top of the list, so we need an evaluation metric that considers the order
of these documents. Average Precision (AveP) computes the average precision of
a ranked list at every position of a relevant document. For a set of queries (Q),
Mean Average Precision (MAP) is the average of AveP for each query j as shown

16



in Equation 2.13, where mj is the number of relevant documents for query j, and
Rjk is a list of the first k ranked documents for query j.

MAP (Q) = 1
|Q|

|Q|∑︂
j=1

1
mj

mj∑︂
k=1

Precision(Rjk) (2.13)

Binary preference-based measure: bpref considers how often relevant documents
are ranked above the irrelevant ones. This feature makes bpref more stable (in
terms of system comparison) when the judgment information in the test collection
is incomplete.4 Thus, it is recommended to be used in such a case [Craswell, 2009].

bpref = 1
|Q|

|Q|∑︂
j=1

1
mj

∑︂
dj

(1 − |irrel ranked higher than rel|
min(mj, nj)

) (2.14)

bpref is calculated for a set of queries (Q) as shown in Equation 2.14, where
mj is total the number of relevant documents for query j as defined in the
assessment information, dj is a relevant document, nj is the total number of
irrelevant documents, and |irrel ranked higher than rel| refers to the number of
times an irrelevant document (irrel) is ranked higher than a relevant one (rel).
The fraction is normalized by min(mj, nj) [Sakai, 2007].

4Usually, it is costly to manually annotate every document in the retrieval result (thousands
of documents are often retrieved for each query) if it is relevant or not. For that reason, a subset
of the highly ranked documents retrieved by one or more IR models is automatically selected for
annotation. This often causes unjudged documents to appear in the retrieval results, especially
when a new IR model is applied.
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3. Related Work
In this Chapter, we will present related work to the CLIR task. This also includes
campaigns, tracks, and CLIR data collections that have been released by the
research community.

3.1 Cross-lingual Information Retrieval
CLIR enables users to search for information by allowing queries in a language that
is different from the collection language. This helps break the language barrier
between searchers and a vast amount of data that is represented in a different
language. The task has gotten the attention of the IR research community since
the late 1990s, and the growth of the Internet was a compelling evidence of the
need of CLIR systems because digital content across the globe had begun to
increase significantly.

A CLIR system usually includes two steps; the first step is the translation step,
which includes translating either the queries into the language of the document
collection or translating the document collection into the query language. After
the translation is done, the task is then reduced into a monolingual IR task.
Different approaches and studies investigated two main questions in the CLIR
task:

• What is better to translate, queries, or document collection? Or translating
both into a common representation?

• How can translation be done? Is the translation task in CLIR similar to the
normal machine translation task that aims at generating human-readable
translations?

In this section, we will present related work that has been done to answer
these questions.

3.1.1 Document Translation Approach
The two main approaches in CLIR are Document Translation (DT) and QT. In
CLIR, documents and queries are written in two different languages. To conduct a
term-matching based retrieval, it is required to have both documents and queries
represented in one language; therefore, either queries should be translated into
the collection language (QT), or the document collection should be translated
into the query language (DT).

The question of whether to translate document collection into the query
language or queries into the document language has been the main focus of the
CLIR community for a while.

Oard [1998] investigated the performance of DT, QT, and a hybrid system
of both. In their study, they used the Logos translation system1 to translate
between German and English. As for the document collection and the test queries,

1http://logos-os.dfki.de/
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they used the TREC-6 CLIR SDA/NZZ test set, which contained about 251, 840
German documents and 22 English queries.

They compared two systems: the first system translated English queries into
German (the collection language), and the second system translated the documents
from German into English (the query language). Their study showed that DT
outperformed QT. They explained that because documents are usually longer than
queries, which leads to more contextual and linguistic information that helps
reduce translation ambiguity (when one term in a source language has more
than one translation candidate in a target language). Their attempts to reduce
translation ambiguity showed better machine translation performance, which
improved the retrieval performance eventually.

McCarley [1999] presented a hybrid system of DT and QT. To achieve this,
they built two translation systems (English to French and French to English) that
were similar in performance as much as possible by training them using the same
training data. Their experiments showed that a hybrid system that averaged the
retrieved document scores from DT and QT systems outperformed both of them.

Fujii and Ishikawa [2000] employed a two-step method, in which QT was
used to retrieve a limited number of documents, and then these documents were
translated into the query language and reranked by their final scores.

Yarmohammadi et al. [2019] followed the document translation approach. They
translated the documents into English, and then performed the retrieval in a
monolingual setup. To achieve that, they trained both NMT and SMT systems
for the translation step and investigated the CLIR performance for both systems.
For MT training, they used the MT data that was provided in the OpenCLIR
(Open Cross Language Information Retrieval) evaluation within the MATERIAL
(Machine Translation for English Retrieval of Information in Any Language)
project.2 The OpenCLIR dataset contained documents in Somali, Swahili and
Tagalog, and English queries. They showed that DT using SMT outperformed
DT using NMT. Authors stated in their work that DT outperforms QT, because
documents have more context; thus DT can produce more accurate translations,
adopting the findings of Croft et al. [1991].

3.1.2 Dictionary-based Query Translation
In this approach, bilingual or multilingual dictionaries are used to translate
each word in a given query written in the source language into a word in the
target language. Pirkola et al. [2001] spotted the main disadvantages of the
dictionary-based CLIR systems which are:

• Untranslatable words due to Out-Of-Vocabulary (OOV) problem (words did
not appear in the training data, so could not be translated).

• Processing inflected words.

• Identification of phrases and collocations to be translated correctly.

• Lexical ambiguity in source and target languages.
2https://www.nist.gov/itl/iad/mig/openclir-evaluation
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Pirkola [1998] showed that query translation using Machine-Readable Dictionary
(MRD) could be effective when the used MRD was a domain-specific one (medical
MRD in their case); this helped to reduce OOV.

As a method of query expansion (query expansion is the process of adding new
informative terms to queries, details are presented in Section 3.2), the authors
combined multiple translation candidates for each query term. This approach
considered alternative translations as synonyms for query terms.

Ballesteros and Croft [1997] claimed that word-by-word translation failed to
correctly translate phrases in queries. To solve this issue, they used a database of
phrase and word translations provided in the form of Spanish-English MRD. In
some cases, phrasal translation significantly outperformed word-by-word transla-
tion; however, in some cases, phrase translation degraded the retrieval performance
compared to word-by-word translation. This happened when phrases were incor-
rectly translated. To filter bad phrasal translations, they employed local context
analysis by excluding translated phrases that did not frequently appear in the
top-ranked documents.

Gao et al. [2001] used an approach that enhanced query translation by identifying
phrases using a statistical model, then translating the phrases using a set of phrase
translation patterns and probabilities of the translated phrases using a target
language model, then continue translating the untranslated text word-by-word.
Such an approach led to some improvements in CLIR performance.

Ballesteros and Croft [1998] tackled the issue of translation ambiguity and short
queries by expanding query terms before and after translation. This was done
by applying local feedback from the collection. The local feedback assumes that
top retrieved documents are relevant to the base query, and terms from these
documents can be relevant to the information need. Authors showed that this
kind of expansion helped improve the translation of base queries, and eventually
improved the retrieval performance. The motivation of this approach was that
a base query usually is written in a short and incomplete form, which leads
to ambiguity in translation. The translation was done by using MRD between
English and French.

3.1.3 Corpus-based Query Translation
This approach employs a dictionary that is extracted from an aligned corpus (on
document level) to translate queries into the document language.

To produce a corpus of aligned documents, a set of comparable documents
in two languages is created first. One way to create this set is by crawling news
websites in a given period of time and obtain news articles in these two languages,
or by using Wikipedia articles and use the interlanguage links between each article
in the source language and its translation in the target language (if a translated
article exists) [Tholpadi et al., 2017].

After preparing a set of documents in two languages that are aligned at a
document level, a basic dictionary of vocabularies is needed to perform translations
(word-by-word) of the sentences on the target side of the corpora. Then each
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sentence in the source language is used as a query to find the most similar sentence
in the target side and consider it the translation for that query. If the two
languages use the same alphabet, named entities (such as city names and dates)
can also be used in the translation scoring function. The sentence with the highest
similarity score on the target side of the corpus is then considered as a translation
of the input sentence [Michelbacher et al., 2010].

One way to improve this method is to iteratively update the initial dictionary.
This can be done by capturing lexical similarities and co-occurrences between
words in two aligned sentences. This can help to predict the translations of more
vocabularies [Rogati and Yang, 2002].

The dictionary-based approach can be supported by information that is extracted
from the collection, Bosca et al. [2014] used multilingual semantic and domain-
based information from the collection during indexing in order to map query
fragments into concepts.

Talvensaari [2008] showed in their work that the main three factors which
could affect the performance of corpus-based CLIR systems are:

• Topical nearness between the corpus and the translated queries.

• Quality of the alignment of two documents written in different languages.

• Size of the corpus, where the more aligned documents we have, the more
reliable translation knowledge is.

The author also showed that topical nearness is the most important factor among
them.

Preparing comparable corpora requires documents to be available in all sup-
ported languages. We keep this approach out of our research scope, since we
are aiming at developing CLIR systems for multiple languages, and we do not
have access to sufficient resources to build comparable corpora for all of them. In
addition to that, QT that is based on MT systems showed to be more effective,
as we present in the following section.

3.1.4 Query Translation using MT system
Usually in CLIR, an MT system is considered to be a black box and separated

system from the CLIR. It takes a sentence that is written in a source language
(query) as input, then it returns the best translation in a target language (the lan-
guage of the document collection) for that sentence. Finally, this best translation
is used for retrieval as a query.

Hull and Grefenstette [1996] studied the main challenges of building a CLIR
system. They found that the main sources of noise and errors in CLIR systems are
the translation ambiguity and the missing terminology in the target language when
translating queries into collection language. They also compared monolingual
queries that were provided in English and the automatically translated ones, and
they found that there was big difference in quality between them. This confirms
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the claims that further investigation should be put to improve the translation
quality and disambiguating query terms.

Users usually use only 2 terms on average to formulate query and 48.4% of
users formulate only one query for each search session [Spink et al., 2001]. This
leads to two problems: 1) Translating short sentences (queries) is difficult for
SMT systems because queries are usually not grammatically correct. 2) Queries
expressed with 2 terms might not be sufficient to describe user’s information needs
even if the translation part goes well.

Improving the quality of MT systems for better CLIR performance might sound
feasible. However, the correlation between MT system quality and the performance
of CLIR system has been studied before. Pecina et al. [2014] investigated the
effect of adapting MT system to improve CLIR system. The system was tested
on the CLEF eHealth 2013 dataset [Goeuriot et al., 2013] and it supported Czech-
English, German-English and French-English pairs. The MT systems improved
by an average of 55% in terms of the BiLingual Evaluation Understudy (BLEU)
metric (BLEU is an automatic MT evaluation metric, presented in Section 5.4.1)
and significantly outperformed the well known public MT systems like Google
Translate3 and Bing Translator,4 but for the CLIR systems only French-English
outperformed the baseline system. This means that improving the translation
quality does not guarantee to improve the performance of CLIR system.

Fujii et al. [2009] investigated the correlation between translation quality and
retrieval quality in the cross-lingual question answering task (where the goal
was to find answers to questions, not full text or documents as in IR), which
is comparable to the CLIR task. They created search topics from the patent
applications that were rejected. For relevance information, the citations which
were used for rejection reason, were considered to be relevant documents (patents).
Then these search topics were translated by humans into English. Each participant
was required to translate the topics into English using their own MT system.
BLEU was used to evaluate the translations, and MAP was used to evaluate
the retrieval. The system that got the highest human evaluation in terms of
translation quality, got the lowest MAP value in terms of retrieval quality. This
means that the best translation quality (in MT perspective) does not necessarily
lead to the best retrieval quality.

A general MT system showed to perform well in CLIR, even when these MT
systems were not adapted to translate queries in the domain of the collection. The
overview of CLEF 2009 [Ferro and Peters, 2010] showed that using Google Translate
to translate queries improved the CLIR results from 55% of the monolingual
baseline in 2008 to more than 90% in 2009 for French and German languages. This
can be explained because some improvements might be brought to the Google
MT system during this year. However, using a generic MT system for CLIR has
several drawbacks:

3http://translate.google.com
4https://www.bing.com/translator/
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1. MT systems assume that the input sentence is syntactically correct, and the
word order of it is linguistically meaningful, thus, this information is used
for translation.

2. Some MT systems can produce multiple alternative translations (ranked by
their translation score). However, when using generic MT systems, these
alternative translations are ignored and one translation (the best one) is
considered.

3. MT systems are usually trained to produce translations that are good to be
read by humans. However, this is not important for CLIR performance.

MT should be adapted and integrated as an internal component of an IR system.
This will help to keep the main objective goal to produce translations that perform
better in retrieval, regardless if they have correct language structure or not (respect
word order and follow a grammatically correct word morphological variation), like
weighted alternative translations or translations that are represented in different
morphological forms (forms, stems, lemmas).

In order to improve the translation of queries towards better CLIR performance,
different approaches tried to expand or lexically process the query after translating
it into target language.

Choi and Choi [2014] participated in the multilingual CLEF eHealth 2014 Task
3 [Goeuriot et al., 2014]. Firstly, they translated the queries (from Czech, French
and German) into English using public MT system (Google Translate) following
the QT approach. Then, they annotated each translated query with medical
concepts using MetaMap [Aronson, 2001]. MetaMap is a tool that recognises
medical entities in a given text, and annotates them with concepts that are taken
from Unified Medical Language System (UMLS) entries. MetaMap returns a list
of concepts ranked by their matching scores with the original text, thus, they
selected top 5 concepts and added these concepts to the translated query.

Query terms which did not appear in the query’s discharge summary were
removed from the original query, assuming that these terms were not medical
(not informative). Discharge summary is an official document that is usually
released by a hospital for a given patient containing their diagnosis and treatment
procedure during their stay at a hospital.

Discharge summaries were used in the query creation process of the CLEF
IR task as a source of an information need. Lastly, they used structured query
language (as it is implemented in Indri search engine [Strohman et al., 2005]) to
weight the original query and the expanded one with 0.9 and 0.1 respectively. The
authors reported that the medical concept annotation approach outperformed
their baseline system (a system that uses the translated queries without any
processing) by 18% for Czech, 4% for German and 4% for French.

A similar approach was followed by Liu and Nie [2015] in the monolingual task
of CLEF eHealth 2015 [Goeuriot et al., 2015], who expanded the queries not only
through the UMLS concepts but also by terms extracted from Wikipedia articles.
The main motivation by using Wikipedia was that the layperson poses the medical
query usually using ordinary terms (without using medical terms). This makes
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it difficult for MetaMap to find relevant concepts, MetaMap, according to the
authors, covers 213, 844 out of 3 million concepts, so using Wikipedia might help to
increase the coverage of the medical concepts. The authors claim that Wikipedia
text is similar to the way that users pose queries (more generic), while the titles
of Wikipedia articles contain medical terms. They used only the abstracts of the
articles since they contain less noise. However, only using Wikipedia to expand
the queries did not help. Only a system that combined the Wikipedia approach
with MetaMap improved the baseline system (original queries).

Translation Hypotheses Reranking

Translation hypotheses are usually ranked with respect to the translation quality,
the main idea behind translation hypotheses reranking is to rerank these hypotheses
towards better CLIR performance.

Nikoulina et al. [2012] defined the following two main challenges when adaptation
an MT system for CLIR:

1. The adapted MT system should be able to produce translations that are
good enough to hold correct information that is represented in the input
query.

2. It is not enough to have good translations that hold the presented information
from the source sentence, but also these translations should perform well in
retrieval.

The previous two aspects (translation quality and retrieval quality) do not
correlate with each other: sometimes syntactically wrong translations can lead to
better retrieval performance than the correct ones.

Nikoulina et al. [2012] presented two approaches to tackle these two aspects:
query-genre tuning and reranking approach.

Query-genre tuning focuses on the first challenge (translation quality). The
authors tackled this challenge by tuning an SMT system to translate short queries
taken from the Conference and Labs of the Evaluation Forum (CLEF) data set
(news domain). This is done during the tuning step using Minimum Error Rate
Training (MERT) algorithm [Och, 2003], and optimizing the SMT component
weights towards higher BLEU scores (translation quality of queries). The mo-
tivation behind this approach is that SMT features have different impact on
retrieval quality. Thus, the weights of these features should be tuned on query-like
sentences rather than normal sentences. More details about the SMT parameters
and tuning process are presented in Section 5.1.

Reranking approach tackles the second challenge by exploiting multiple trans-
lation hypotheses after being produced by SMT. This is done by selecting the
best translation in terms of the retrieval aspect. To selection process is done by
using Margin Infused Relaxed Algorithm (MIRA) [Crammer and Singer, 2003]
that is trained directly towards retrieval quality, namely, the MAP metric. To
conduct this, they first take the list of candidate translations for each training

25



query, and generate a vector of features for that query, also they conduct retrieval
for each translation hypothesis and obtain MAP score using the provided relevance
assessment for the training queries. The loss function for their machine-learning
model is the difference between MAP of each translation hypotheses, and the
hypothesis that gives the highest MAP score (oracle translation). As features,
they used internal features from the SMT decoder and syntax-based features
extracted from the source queries and the translation hypothesis. They reported
an improvement between 1% and 2.5% absolute on the CLEF AdHocTEL 2009
task (French to German) [Macdonald et al., 2006].

Ture and Boschee [2014] employed a similar approach. They used a set of
binary classifiers to produce query-specific weights of various different features
to select optimal translations from the translation hypotheses. They used three
types of features: surface features such as number of token in the translation
hypothesis, how many stop words appeared in the translation, and the category
of the query using a pre-trained models (question query, cause-effect query etc.),
parse-based- features such as number of named entities in the query, and part-
of-speech tagging features (for example if the translation contains VVB in its
parsing tree), translation-based features that are taken from the verbose output
of the decoder and its alignment information, and index-based features that are
taken from the collection. They reported significant improvements on several
English-Arabic and English-Chinese tasks.

Sokolov et al. [2014] adapted an SMT system in CLIR in a different way. They
added a new component inside the decoder of the SMT to directly consider the
retrieval performance (using MAP metric) when generating translation hypotheses.
This is done by combining IR-based weights and MT-based weights within the
decoder itself, which makes the decoder prefer translation hypotheses that give
better IR performance rather better MT performance. They reported stable
improvements on the BoostCLIR task of Japanese-English patent CLIR [Sokolov
et al., 2013].

Khwileh et al. [2017] proposed an approach to select the best translation from
an n-best-list that is produced by an SMT system. To achieve this, they weighted
each translation hypothesis as shown in Equation 3.1; where k is the number of
terms in the query translation hypothesis Q, cft is the number of times t appears
in the collection, and dft is the number of documents that contain the term t. They
called this weighting method Average Term Fluency (AvgFL). AvgFL predicts
whether the translation hypothesis contains the same terms as in the documents
that are relevant to the original query.

AvgFL(Q) = 1
k

k∑︂
t∈Q

(log(cft + 1))/(log(dft + 1) + 1)) (3.1)

Their experiments on an Arabic collection and English queries (in the news domain)
showed that AvgFL outperformed their baseline, which used only 1-best-list for
each query as given by their English into Arabic SMT system.
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In this section, we presented two approaches of reranking of MT hypotheses
towards better CLIR performance. Both approaches were shown to outperform
the use of the best translation from MT systems which are not tuned towards
the CLIR task. In hypotheses reranking, we do not need to have access to
the machine translation training data nor be involved in training the internal
components of the MT system. We can employ any available MT system, which
produces translation hypotheses, as a black box and develop the reranker after
the translation process. It is also possible to integrate more features and make use
of external resources in this approach. On the other hand, tuning MT systems to
produce already optimised translations for CLIR requires access to training data
with an IR metric instead of an MT metric, which might be an intensive task in
terms of computational complexity.

3.1.5 Neural Approaches for Query Translation
Employing neural networks in CLIR has shown to be effective when used in
different components of the CLIR task, either the translation part, or the retrieval
ranking function. In this section, we will present the related work of employing
word embedding and NMT models in the CLIR task.

Query Translation Using Word Embeddings

The main goal of using word embedding in NLP is to capture the context of words
in documents and to find semantic and syntactic similarity between text. This
is done by introducing a distributed representation of words as dense vectors.
However, the word-embedding approach is not the first attempt to do so in NLP.

The idea goes back to Latent Semantic Analysis (LSA), which is considered
to be the first approach that represents words as vectors in a semantic space
[Deerwester et al., 1990]. The main hypothesis that LSA depends on is that
similar words appear in the same parts of text (paragraph).

To create this vector representation, LSA uses Singular Value Decomposition
(SVD) [Golub and Reinsch, 1970]. SVD is based on converting a matrix (normally
two dimensions) into a product of three different matrices. For example, in the
case of information retrieval, we can build a matrix that contains documents as
columns and terms as rows, and each cell in the matrix tells if the term exists in
that document or not. The decomposition of this matrix using SVD will give us a
matrix containing concepts, a matrix representing the strength of these concepts
and a matrix representing terms as concepts (moving into semantic space). The
first challenge that will come to mind is that loading the entire collection into the
memory might be impossible for a big corpus.

This issue was solved by the work of Řehůřek and Sojka [2010]. They presented
a novel framework (gensim) that topically models the documents using a wide set
of algorithms including LSA.

Mikolov et al. [2013a] presented two word embedding models: the Continuous
Bag-of-Words (CBOW) model and the continuous skip-gram model. CBOW
predicts words given a context. The range of the context is called windows size
(c). The skip-gram model predicts a context (of size c) for a given word. After
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representing words as vectors, the model is evaluated using algebraic operations
to answer both semantic and syntactic questions. Skip-gram outperformed the
CBOW model on the semantic questions set but CBOW outperformed it on the
syntactic set. These two algorithms and vector representation of the top N most
frequent words from a huge training corpus are presented as a neural-network
based open source tool called word2vec [Mikolov et al., 2013a].

Roy et al. [2016] presented a method that represents both documents and
queries as a set of word vectors. After that, the similarities between a given query
and documents can be calculated using any well-know similarity function such as
cosine similarity. The vector-based similarity is then combined with text-based
similarity to rank the documents for a given query. For their experiments, they
used TREC6, TREC7, TREC8 and TREC Robust datasets (these datasets are
described in details in Section 3.4.1), and Lucene5 for indexing and retrieving from
the collection. To create an index for the collection, they used the doc2vec tool.6
Each document was represented as set of vectors and had one or more clusters of
words K (topics). Then the Language Model (LM) retrieval model was combined
linearly with word2vec-based query likelihood. The final score of combination
was given to each document for a given query. Their experiments showed that
the hybrid model outperformed the text-based LM model on the Robust and
the TREC-8 collection when using K=100 clusters. However, the experiments
also showed that when using one cluster K = 1 (single-point representation) for
representing the documents, results were similar to the text-based model. This
occurred because using one cluster to represent a topic for each document was
very little.

Kuzi et al. [2016] used word embeddings to expand the query with terms from
the collection. First, they trained word2vec on the entire collection (WSJ, AP,
Robust, WT10G and GOV2) which contains about 28 million documents. A
candidate term was scored using its semantic similarity with a given query by
calculating cosine similarity between that term and the query centroid. Results
showed that the expanded query outperformed the original query in terms of MAP
and P@5.

However, word2vec does not have to be trained on the same collection that is
used for retrieval as was shown by the work of Zamani and Croft [2016], in which
they trained the model on a collection that is different from the IR collection.
Then they used the model to expand the queries with candidate terms that are
chosen by the model. Their method showed to be effective for query expansion.

Kim et al. [2016] used word embeddings to calculate similarity between docu-
ments and a given query. First, they used inverse document frequency to weight
query terms. Then, query terms were mapped to the most similar terms in a docu-
ment based on word embeddings. Finally, for document scoring, they used cosine
similarity between query terms and document terms. They trained a word2vec

5https://lucene.apache.org
6https://github.com/gdebasis/txtvecir
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model on 25 million articles from PubMed using their titles and abstracts and
made the model available online.7

Litschko et al. [2018] employed an unsupervised shared cross-lingual word-
embedding model for the translation part of CLIR, which was trained using
monolingual data only. They used the embeddings to translate query terms (term
by term) into the collection language. However, they recommended this method
only when there is insufficient parallel data to train an MT system.

Query Translation Using NMT

NMT has shown a significant improvement in the machine translation task and
researchers in the CLIR task have started recently investigating NMT employment
in the translation part of the process.

Sarwar et al. [2019] proposed a model that is inspired by Relevance-based word
embeddings to train an NMT model for query translation. The model is based on
the Transformer architecture to translate Finnish and Italian queries into English
(collection language). They employed the document collection in training the
model by retrieving the top ranked document for each sentence in the target side
of the parallel corpus (Europarl V7). Then they shuffled the retrieved document
(after appending the sentence to it) and used it to train a word embedding model
that was eventually used to train the NMT model. Creating a word embeddings
from a document in the collection and a sentence from the parallel corpus helped
the translation model to access the vocabularies in the document collection; hence,
when translating a query into the target language, the model would be more likely
to select a translation term that appears in both sources (document collection
and parallel corpus). This approach, which they called Relevance-based auxiliary,
was shown to outperform a strong baseline that employs an NMT model trained
on the same parallel corpus by 16% of MAP of the baseline result.

Rücklé et al. [2019] presented a method for the Cross-lingual question-answering
task, wherein the setup was to retrieve answers to German questions from an
English collection in the technical domain (AskUbuntu and StackOverflow). They
trained an NMT model using the WMT’14 English-German parallel data. The
trained model did not perform well, since the WMT training corpora was created
from an out-of-domain resource. To overcome this problem, they used the model
to translate in-domain monolingual data from English into German. Then, they
used the translations to create synthetic data, which eventually enriched the
parallel data that is needed for the NMT model. This approach in NMT is called
back-translation.

3.2 Query Expansion in IR
Web search user queries tend to be short. The average web search query length,

as reported by Gabrilovich et al. [2009], is about 2.5 terms. The information
7https://www.ncbi.nlm.nih.gov/CBBresearch/Wilbur/IRET/DATASET/
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represented in these terms might be too brief and/or vague. This is considered
to be a challenge for IR systems that follow the term-matching approach since
they fail to find relevant documents that do not contain the terms specified in the
query.

Query Expansion (QE) is the process of reformulating searcher’s query by
adding useful terms that can improve the information represented in the base
query. The goal of QE is to reduce the term mismatch problem between a query
and its potential relevant documents, which leads eventually to improvement in
the retrieval performance [Efthimiadis, 1996].

QE can be done automatically, or by interaction with users (e.g., selecting
one or more terms to be added to the query), which is known as interactive
query expansion [Harman, 1988]. In this study, we will focus on automatic query
expansion. Blind Relevance Feedback (BRF) is one of the most popular techniques
for QE, also known as pseudo-relevance feedback [Rocchio, 1971]. First, an initial
retrieval is conducted using the base query, and top n ranked documents are
selected as a source for term candidates. Then each term in these documents is
scored using some approaches like a combination of its Term Frequency (TF) in
these documents and its IDF in the collection. Finally, the highest scored m terms
are added to the base query, and a final retrieval is done. However, there is a risk
when following this approach because one or more of these n documents might be
irrelevant; thus, adding terms from these documents might drift the information
away from the intended one. QE can have a significant improvement on one of the
main evaluation metrics (such as MAP, P@10 or recall) and degrades the others;
thus, the use of QE should consider the context of the IR application when using
query expansion [Harman, 1992].

Pal et al. [2014] employed WordNet [Miller, 1995] to weigh candidate terms
and measure their usefulness for expansion. They leveraged the similarity score
of the top retrieved documents using the BRF assumption and excluded terms
from WordNet, which do not appear in these documents. They calculated various
similarity scores between the query term and the candidate term based on term
distribution in the document collection. Then they linearly combined these
scores to select the weights of the expansion terms. This approach brought an
improvement over the use of base queries on multiple TREC collections.

Ermakova and Mothe [2016] used local context analysis by choosing terms that
surround query terms from documents retrieved from the initial retrieval. They
assumed that document terms that appear close to query terms are more likely
to be good candidates for expansion. They tested their method on the TREC
Ad-Hoc track datasets from three years (1997–1999) and the WT10G dataset
[Chiang et al., 2005].

Cao et al. [2008] showed that when QE is only based on term distribution, it
can not distinguish good terms, which will improve the IR performance and bad
terms, which will harm it. They presented a classification model that is integrated
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into a BRF method. It uses features from the collection to predict the usefulness
of the expansion terms and select only the good ones.

3.2.1 Expansion Using Word Embeddings
In the word embeddings model (word2vec [Mikolov et al., 2013b] and GloVe
[Pennington et al., 2014]), the main objective is to capture the semantic and
syntactic similarities between words. However, the goal in the word embeddings
model for IR application is different, wherein the goal is to predict words in
documents that are relevant to the query (information need eventually).

Recent researches have demonstrated the use of word embeddings based query
expansion. The main idea is to expand the query with terms that are semantically
related and appear in a position close to the query terms [Zamani and Croft,
2016, Nogueira and Cho, 2017a, Zamani and Croft, 2017]. Multiple researchers
confirmed that embeddings models that are trained on medical data like PubMed
articles are not significantly better than those that are trained on general domain
data, such as news [Zuccon et al., 2015].

Zamani and Croft [2017] introduced Relevance-based Word Embedding (RWE),
which is similar to BRF. But the main difference between BRF and RWE is that
BRF is an online approach that requires to conduct retrieval for each query in
the test set, while RWE is an offline model which does not require retrieval for
each query. They evaluated their RWE for query expansion using the TREC
collection. Their experiments showed that using the terms that are suggested
by RWE improved the base query (as a whole). While using a typical word
embeddings model suggested terms that are related to one or more query terms,
not the whole query.

Kuzi et al. [2016] employed word embeddings in QE by training Word2Vec on
the document collection, and then they select candidate terms from the collection
that are related to the query terms by computing cosine similarity between
query centroid −→q Cent and each term in the collection. Query centroid is a vector
calculated as is shown in Equation 3.2, by summing the vectors of all query terms.
This helps represent multiple vectors (query term vectors) in one vector that is
semantically similar to the query.

−→q Cent =
∑︂
qi∈q

−→qi (3.2)

Then they selected v terms from the collection that have the highest score and use
these terms for expansion, where v is a free parameter. They also experimented
with different scoring methods like Fusion-based methods that normalize the
cosine similarity between each query term vector and each term vector in the
collection. Their experiments showed that employing word embeddings in QE can
significantly improve the initial retrieval that is done without expansion.
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Nogueira and Cho [2017b] employed word embeddings as a source of candidate
terms by selecting top-N terms based on cosine similarity between their vectors
and query term vectors. These terms form a candidate pool for expansion. They
used pre-trained word embeddings released by Mikolov et al. [2013a]. Their
supervised method used a binary classifier (based on CNN) to predict if a term
from the candidate pool could improve the performance of the retrieval when
added to the base query or not. Their supervised method outperformed the model
that used only base queries when test on the TREC CAR dataset.

3.2.2 Kullback-Leibler Divergence
Kullback-Leiber Divergence (KLD) for query expansion is one of the most well-
known query expansion approaches in IR. In KLD, the top n ranked documents
(pseudo-relevant documents) are retrieved using a base query, then each term in
these documents is scored by Equation 3.3, where Pr(t) is the probability of term
t in the pseudo-relevant documents, and Pc(t) is the probability of term t in the
document collection c. Finally the top m scored terms are added to the base
query and a final retrieval is done using the new expanded query.

Score(t) = Pr(t) · log

(︄
Pr(t)
Pc(t)

)︄
(3.3)

3.3 Query Expansion in CLIR
In the QT approach, popular MT techniques struggle to translate short queries
because of the lack of linguistic information that is required to solve the ambiguity,
which eventually causes information loss in the translated queries [Pirkola et al.,
2001]. Query expansion in CLIR helps solve translation ambiguity by adding
relevant terms to the translated queries. In order to improve the translated queries,
different approaches tried to expand or lexically process the query after translating
it into the target language. Query expansion in the medical domain is a more
difficult task than the general domain CLIR. Approaches that work on the general
domain might not work well when applied in the medical domain.

Nikoulina et al. [2012] reported that simply merging the top 5 scored transla-
tion hypotheses (as a special QE approach) to create queries in the CLIR task
outperformed the baseline system in the general domain data. However, the same
approach did not work when we tested on the medical domain [Saleh and Pecina,
2016a].

KLD for query expansion (explained in Section 3.2.2) failed to outperform the
baseline system (using initial queries) during the CLEF 2011 medical retrieval
task [Kalpathy-Cramer et al., 2011].

Choi and Choi [2014] used Google Translate to translate the queries into English
(from Czech, French, and German) during their participation in the CLEF eHealth
2014 CLIR task Goeuriot et al. [2014]. Then, they annotated each query with
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medical concepts using MetaMap [Aronson, 2001], and the top scored concepts
were added to the original query. Finally, they weighted the original query and
the expanded query with 0.9 and 0.1, respectively. The query expansion approach
outperformed their baseline system relatively by 18% for Czech, 4% for German,
and 4% for French.

Liu and Nie [2015] participated in the monolingual task of CLEF eHealth 2015
[Goeuriot et al., 2015], and presented a system which expanded queries with
UMLS [Humphreys et al., 1998] concepts and terms extracted from Wikipedia
articles. The main motivation by using Wikipedia was that a layperson usually
poses a medical query using ordinary terms (not medical terms). This makes it
difficult for MetaMap to find relevant concepts, also MetaMap, according to the
authors, covers 213, 844 out of 3 million concepts, so using Wikipedia might help to
increase the coverage of the medical concepts. The authors claimed that Wikipedia
abstracts are similar to the way that users pose queries (more generic), while the
titles of Wikipedia articles contain medical terms. However, only using Wikipedia
to expand the queries did not help. Only a system that combined Wikipedia
with MetaMap Aronson [2001] improved the baseline system. Employing Medical
Subject Heading (MeSH)8 for QE was investigated thoroughly.

Wright et al. [2017] presented a simple method that expands queries with five
synonyms from MeSH. Nunzio and Moldovan [2018] expanded a query with one
MeSH term that is related to the base query. In case there was more than one
MeSH candidate term, they created multiple expanded queries. Then for each
expanded query, they conducted retrieval and merged the retrieved documents by
different approaches like averaging document scores or summing them.

Cao et al. [2007] considered query translation to be the first step in formulating
the final query by expanding query translation with related terms. The authors
integrated multiple relations between terms (monolingual using co-occurrences
and cross-lingual using their dictionary translations) into a Markov Chain (Fok)
model. Where the nodes represent terms, and edges between nodes represent the
probability of relation between them. These relations can be term co-occurrences,
translations from the dictionary, or contain relation (like computer science contains
computer). Then formulating the final query is done by the Random Walk approach
on the Fok model. The term cross-lingual similarities are adjusted during the
Random Walk process, which helps produce stronger related terms to the base
query. Because probabilities are adjusted according to the distribution of the
original English query, their experiments on three CLIR collections significantly
outperformed CLIR systems without expansion in which queries were translated
using a dictionary-based method.

Chandra and Dwivedi [2017] used Google Translate to translate queries from
Hindi into English in the FIRE 2008 dataset. Expansion terms were selected
according to their Term Selection Value (TSV), as shown in Equation 3.4. Where
R is the number of documents that are used to create a candidate pool from the

8https://www.nlm.nih.gov/mesh
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top-ranked ones, and rt is the number of documents that contain term t. Best
results were achieved when R was set to top-3 ranked documents. They also
reported that candidate terms that have the highest frequency in the retrieved
documents are less important for expansion as those with lower frequency.

TSVt =
(︄

ft

N

)︄rt
(︄

R

rt

)︄
(3.4)
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3.4 Test Collections and CLIR Tracks

Cyril Cleverdon (a British librarian) is considered the first one who started working
on developing systematic evaluation methods and test collection for IR.

Cleverdon was responsible for the famous IR project called the Cranfield project
in 1960s [Richmond, 1963]. The goal of the project was to evaluate performance
of various indexing systems for academic papers.

During the development of the project, Cleverdon realised that multiple
assessors could not agree on some documents if they were relevant or not to
the information need, because the information need was not clear enough. This
caused the evaluation process to stop. This was the main obstacle of evaluating
IR systems. Cleverdon suggested that before the evaluation process starts, the
goal of the entire process should be clear. This includes the descriptors of the
information need (query), agreeing on which documents are relevant to these
queries, and define 5 levels of relevance: a document completely answers a given
question, a document contains a high degree of relevance, a document contains
information that can be useful as a background, a document contains very little
amount of relevant information that can be considered as historical interest, or a
document does not contain any interest to the original asked question. This is
known as the Granfield paradigm [Cleverdon, 1960].

Later in 1990, National Institute of Standards and Technology (NIST)9 built
a new text collection to be used by DARPA (the Defense Advanced Research
Projects Agency of the United States department of defense) for a project called
TIPSTER IR [Tassey et al., 2010]. Later, the style of that test collection became
known as the Text REtriveal Conference (TREC) style. It mainly contains the
following:

• A document collection in which every document has a special identifier
(document ID).

• A set of queries, where every query represents a topic or an information
need and has a query ID.

• Relevance assessment (typically known as qrels set) that includes the rel-
evance information for each assessed document-query pairs. A relevance
degree can be either binary (relevant, irrelevant), multi-graded with 3 grades
(relevant, partially relevant, and irrelevant), or 4 grades where the fourth
one is called highly relevant.

We will discuss more in depth relevance assessment when building an IR test
collection. Because relevance assessment is considered to be the most challenging
part, since it includes an intensive human effort that is needed to annotate retrieved
documents.

9https://www.nist.gov

35

https://www.nist.gov


The definition of relevant has two perspectives: system view and user view.
Sun and Kantor [2006] considered relevance from end the user’s perspective to be
the gold standard in IR evaluation, however, evaluation should not rely entirely
on users, since they sometimes cannot make a good judgement if the document
content meets their need or not [Belkin, 1980].

Assessment can be done following one of two approaches: dual assessment
in which two assessors judge the same document-query pair independently, and
review approach wherein one assessor does an initial judgement and the results are
later reviewed and corrected by a second assessor [White et al., 2005]. Different
assessors tend to assess the same document-query pair differently. To evaluate the
reliability of the assessment process, agreement rate is calculated using different
approaches such as kappa statistics. If the kappa value is above 0.6 then the
agreement is “acceptable“, 0.8 means the agreement is “perfect“ [Cohen, 1960].

The question of how many document-query pairs should be assessed in a test
collection in order to be reliable has been always difficult to answer. Losada
et al. [2019] studied different approaches to reduce the manual effort for relevance
judgment, without reducing the quality of the test collection. The importance
of this work is that basically if we do not define a systematic method to stop
assessment, it means that we have to assess all document-query pairs in the
collection, which can require a massive amount of resources (time and money).
The authors presented the following stopping methods for relevance assessment
(after creating a pool of retrieved documents for each query using some retrieval
model):

• We keep assessing document-query pairs until we reach the nth documents
for each query. This method considers a fixed number of assessed documents
for all queries.

• The second method considers a variable number of documents to be assessed
as follows:

– Assess x% of the pool for each query.
– Assess the pool for each query until we finish judging n relevant docu-

ments or n irrelevant documents.
– Assess the pool until encountering n irrelevant documents consecutively.

They showed that sorting the documents in the pool using the relevance
predictive method helps reduce the assessment effort. The relevance predictive
method estimates the similarity between relevant documents and unjudged ones,
where relevant documents are obtained using a small set of training queries.

We present in this section an overview of multiple CLIR tracks and campaigns.
Table 3.1 shows a summary of the datasets that were released during these
tracks, including statistics about each one’s document collection, queries and the
supported languages.
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3.4.1 TREC

TREC is an annual event organized by NIST.10 In 1997, TREC-6 was the first
TREC event accommodating a CLIR track [Voorhees and Harman, 2000a]. The
document collection included three sets of English, French and German documents
taken from news agencies. 25 test topics in the same languages were created based
on the interest of the participating assessors who performed binary relevance
assessment for these queries. The TREC-7 CLIR track used the same document
collection as in TREC-6 plus a set of documents and topics (28) in Italian [Voorhees
and Harman, 1998]. The TREC-8 CLIR track used the same document collection
as in TREC-7 with new set of 28 queries in the same four languages [Voorhees and
Harman, 2000b]. TREC-9 ran a CLIR track with document collection aggregated
from Chinese news agencies and 25 queries in English and Chinese [Gey and Chen,
2000]. In the TREC-10 CLIR track, an Arabic newswire document collection
was used with a set of 25 topics created by assessors in Arabic and English and
afterwards translated into French [Gey and Oard, 2001]. In TREC-11 [Oard and
Gey, 2002], the same Arabic document collection as in TREC-10 was used with
25 newly created English topics then translated into Arabic. Assessors fluent in
Arabic and English created corresponding Arabic topics and English versions of
them. That was the last CLIR track organised by TREC.

3.4.2 NTCIR

NII (National Institute of Informatics in Japan) Testbeds and Community for
Information access Research (NTCIR) is a project of NII.11

The first NTCIR workshop (NTCIR-1) was held on 1999 and aimed to improve
linguistic research of Asian languages [Kando, 2001]. NTCIR-1 released a test
collection which included scientific documents in Japanese and English, plus
83 Japanese topics with graded relevance assessment: (very relevant, relevant,
partially relevant, irrelevant). NTCIR-2 worked with a collection of academic
conference papers in Japanese and English and 49 topics in both languages.
NTCIR-3 used a document collection of news in Chinese, Japanese and English
with 50 topics in Chinese and 30 topics in Japanese and their translations into
Chinese, Korean, Japanese and English. The same dataset was used in NTCIR-4
CLIR. The NTCIR-5 CLIR test collection included documents from news agencies
in Chinese, Japanese, Korean and English and 50 search topics in all these
languages with graded relevance assessment. NTCIR-6 exploited a document
collection of newspaper articles. It reused the collection from NTCIR-5, 4 and 3
CLIR tasks and included 50 topics in Chinese, Japanese, Korean and English and
additional documents from newspaper articles in Chinese, Japanese and Korean
with graded relevance assessment too. NTCIR-7 ACLIA included CLIR as a
subtask which included news articles in Chinese, Japanese and Korean, with
100 topics in Japanese and 100 topics in Chinese and 300 English topics and
3-level relevance assessment. NTCIR-8 ACLIA also launched CLIR subtask with
documents in Chinese and Japanese with 300 topics in English.

10http://trec.nist.gov
11http://ntcir.nii.ac.jp
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3.4.3 FIRE
Forum for Information Retrieval Evaluation (FIRE) [Majumder et al., 2013] has
been running since 2008 and aims to support research in multilingual information
access for Asian languages. In FIRE 2008, a document collection of news articles
in English, Hindi and Marathi was used with 50 queries in the same languages.
In FIRE 2010, the 2008 document collection was enriched with new documents in
Bengali. A set of 50 topics is manually translated into English, Gujarati, Marathi,
Tamil and Telugu. FIRE 2011 used the same collection as in 2010, the queries
were refined and interactive search was used to improve the relevance assessment.

3.4.4 CLEF
CLEF is one of the most famous initiatives that tackles the multilingualism of
information system through multiple tasks.12

CLEF Ad-hoc aimed at developing retrieval system in monolingual and multilin-
gual settings, and focus on a news document collection. This task was organized
annually between 2000 and 2009. The document collections in 2000–2007 were col-
lected from news agencies in several European languages and topics were generated
in multiple languages to allow CLIR evaluation. In 2008 and 2009, the document
collection was created in cooperation with the European Library [Di Nunzio et al.,
2008].

The CLEF CL-SR (Cross-Language Speech Retrieval) task was organized annu-
ally in 2003–2007 and focused on searching in spoken English news archives using
queries in five languages (Czech, English, French, German and Spanish)[Pecina
et al., 2008].

3.4.5 CLEF eHealth IR Evaluation Labs
The CLEF ShARe/eHealth IR evaluation series has been organized since 2013
aiming at improving access to medical and health-related documents by laypeople
and medical experts in monolingual and cross-lingual settings.13

We present a summary of each lab, while more details about the test collections
in these labs will be presented in Section 4, since those test collections are the
base of the data we use in our experiments.14

ShARe/CLEF eHealth 2013

The main purpose of this lab was to improve medical information access for
patients and laypeople rather than medical experts. This was the main difference
between this task and previous tasks [Goeuriot et al., 2013].

12http://www.clef-initiative.eu/
13https://sites.google.com/site/clefehealth/
14http://catalog.elra.info/en-us/repository/browse/ELRA-E0042/
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Dataset Domain #Docs Doc lang. #Queries Query lang.
TREC-6 News 350K DE, EN, FR 25 DE, EN, FR

TREC-7 & TREC-8 News 698,773 DE, EN,
FR, IT 28 DE, EN,

FR, IT
TREC-9 News 126,937 ZH 25 ZH, EN

TREC-10 & TREC-11 News 383,872 AR 25 AR, EN

CLEF eHealth 2014 Medical 1,09M EN 50 CS, DE,
EN, FR

CLEF eHealth 2015 Medical 1,08M EN 66

AR, CS,
DE, EN,
FA, FR,

PT

CLEF eHealth
2016&2017 Medical 52M EN 300

CS, DE,
ES, FR,
HU, PL,

SV

CLEF eHealth 2018 Medical 5.5M EN 50 CS, DE,
EN, FR

Table 3.1: Statistics of the presented CLIR datasets.

The lab included three tasks, Task 3 is an IR task. The organisers released
document collection, queries, and relevance information, and participants were
asked to submit their results (a list of ranked documents for each query in the
test set) using their own approaches and resources.

For querying, the English queries were generated by clinical documentation
reporters and nurses based on real discharge summaries to mimic the realistic
patients’ queries. Five queries were used for development purposes and 50 queries
for testing. The document collection contained about one million English pages
crawled from medical websites. No CLIR task was organized that year.

ShARe/CLEF eHealth 2014

In ShARe/CLEF eHealth 2014 Task 3 [Goeuriot et al., 2014], the queries were
generated in the same fashion as in the previous year. In addition to the mono-
lingual task, a CLIR task was introduced. Five development and 50 test queries
were generated in English and then manually translated into Czech, German and
French to simulate cross-lingual setting. The document collection was the same
as in 2013.

CLEF eHealth 2015

In CLEF eHealth 2015 Task 2 [Palotti et al., 2015], the query creation aimed to
implement self-diagnosing case. Non-expert student volunteers were shown images
of symptoms of specific conditions and asked to create three different queries (in
English) for each symptom. 66 queries were then randomly selected and used for
testing (plus 5 queries for development). The queries were manually translated
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into Arabic, Czech, French, German, Farsi and Portuguese. The 2015 collection
was a subset of the 2014 collection (a few websites were removed).

CLEF eHealth 2016

In CLEF eHealth 2016 Task 3 [Kelly et al., 2016], a new document collection
was introduced (ClueWeb12 B1315). The collection contained web documents
from both medical and non-medical domains in an attempt to give more realistic
representation when users look-up information from the web (generic collection).
As queries, first a set of posts where extracted from the AskDocs forum16 which
contains medical questions that were asked by users to get answers from online
experts regarding their health conditions. Only posts which contained clear and
comprehensible questions where chosen to create a pool of queries. Then for each
query in that pool, six query variations were created by three medical experts and
three people without medical knowledge resulting into the final set of 300 queries
representing 50 topics. This approach aimed to design an information retrieval
system that is robust to different representations of the same information need.

The queries were translated (by medical experts) into Czech, French, German,
Hungarian, Polish, Spanish and Swedish to allow CLIR experiments.

CLEF eHealth 2017

CLEF eHealth 2017 IR Task used the same collection and queries as in 2016.
However, an additional assessment was performed [Palotti et al., 2017].

CLEF eHealth 2018

CLEF eHealth 2018 Consumer Health Search Task released a document collection
created using CommonCrawl platform [Jimmy et al., 2018] containing 5, 560, 074
documents that were crawled from 1, 653 websites. 50 queries were provided
in English in the monolingual task (IR Task 1 Ad-hoc search). In IR Task 4
(Multilingual Ad-hoc Search) the same English queries were provided in French,
German and Czech.

3.5 Conclusion
We presented in this chapter an overview of the CLIR task and its related work.
This included the main approaches (QT and DT) to conduct CLIR, and how
multiple MT approaches (dictionary-based, SMT, NMT and word embedding)
can be employed in the translation part of CLIR. Lastly, we summarized various
tracks and campaigns that were organized in the CLIR context. We focused on
the evaluation lab series of CLEF eHealth since we adopted the test collections
that were released during this series, and we extended them as we show in the
following chapter.

15http://lemurproject.org/clueweb12/specs.php
16https://www.reddit.com/r/AskDocs/
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4. Test Collection
The test collection, which we use in our work, is based on three test collections
that were released during the CLEF eHealth patient-centered IR tasks 2013–
2015 [Goeuriot et al., 2015, 2014, Suominen et al., 2013]. We extend the test
collection mainly by translating the queries into more languages, and enriching
the relevance assessment. The extended test collection is published online on the
LINDAT/CLARIN repository.1 We described the extended test collection in a
short paper that was published in the 41th European Conference in Information
Retrieval (ECIR) 2019 [Saleh and Pecina, 2019a].

In the following sections, we present more details about the collection and our
contribution to its parts.

4.1 Document Collection
As the document collection, we use the one that was released during the 2015
eHealth Task 2: User-Centred Health Information Retrieval [Goeuriot et al., 2015].
The collection was created within the Khresmoi project [Aswani et al., 2012].
It includes 1, 096, 879 English documents that were crawled from medical web
sites. These web sites were verified by the Health On the Net (HON) foundation.2
In addition to those websites, the collection also includes famous websites that
include medical-related topics such us Trip Answers,3 Diagnosia4 and Drugbank.5

It is important to mention that the document collection in the 2015’s task is
almost identical to the collections that were used in the two previous years of
the CLEF eHealth lab. However, some documents were removed from the 2015’s
collection due to copyright issues.

Document Processing

The documents in the CLEF eHealth IR Task2 dataset were provided by the
organizers in the HTML format. Each document contains HTML markup, and
possibly CSS and javascript code. These scripts are not informative, and they do
not contain the actual text; thus, we decide to exclude them from the index by
cleaning the document collection from such scripts.

In order to decide about the cleaning approach, we investigate three main
methods. In the first method, we apply a simple script that uses the Perl module
HTML-Strip.6 It removes all the HTML code, CSS and other scripts in HTML
pages, and keeps only raw text. We make an exception for meta keywords and
description tags. Important information about content of HTML page is sometimes

1http://hdl.handle.net/11234/1-2925
2https://www.hon.ch/en/
3http://tripanswers.org
4http://diagnosia.com
5http://drugbank.ca
6http://search.cpan.org/dist/HTML-Strip/Strip.pm
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method size (MB) % length (mil. tokens) % avg length (tokens)
none 41,628 100.00 – – –
HTML-Strip 6,821 16.38 1,006 100.00 911
Boilerpipe 3,248 7.80 423 42.11 383
JusText 2,853 6.85 452 44.93 409

Table 4.1: Collection size (in MB and millions of tokens) and average document
length (in tokens) after applying the different cleaning methods

encoded as attributes of an HTML tag such as meta tag or keywords tag, so
stripping off these tags will cause loss of these attribute values. For that reason,
we keep the content of these attributes. After cleaning the collection using this
script, its size reduced from 41,628 MB to 6,821 MB, which means around 16% of
the original size.

The second cleaning method is Boilerpipe [Kohlschütter et al., 2010]. It reduces
the total number of tokens in the collection by 58% (the average document length
is 383 tokens). Boilerpipe attempts to remove the noisy text (like menus, bars,
header and footer) around the main text (body) of a web page. It employs text
features for classifying each text element in a web page if it is noise or not.

Lastly, we experiment JusText for document cleaning [Pomikalek, 2001]. JusText
removes the boilerplate and duplicate content and keep the main text in web pages.
It reduces the collection by 55% (the average document length is 409 tokens).

Table 4.1 shows statistics about the document collection after being cleaned
with these three methods.

To compare the effects of the cleaning methods on the IR performance, we
create three IR indexes from the documents that are cleaned using each method
separately. Then we run a monolingual IR system using the English training
queries, and evaluate each system results (queries are described in Section 4.2).
We find that the IR system that uses HTML-Strip tool for document cleaning
significantly outperforms other results. Even this cleaning method reduces the
collection size by about 84% of its original size, documents still contain a significant
part of the informative text, which seems to be enough to distinguish the relevant
documents from the irrelevant ones, at least compared to the more advanced
cleaning methods. This can be explained because the two other advanced methods
are too aggressive and remove informative content from the documents. In all our
following experiments, the document collection is cleaned by HTML-Strip.

We reported our document cleaning approaches during our participation in the
ShARe/CLEF eHealth 2014 shared IR task [Saleh and Pecina, 2014].
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4.2 Queries
The queries in this work are adopted from the test sets that were released during
the CLEF eHealth IR tasks 2013–2015.

Queries from 2013 and 2014 In the CLEF eHealth IR task 2013 [Goeuriot
et al., 2013] and CLEF eHealth IR task 2014 [Goeuriot et al., 2014], the queries
were generated by medical experts from discharge summaries of patients. The
motivation of choosing medical experts (nurses and clinical practitioners) for query
generation was that those experts were in touch with patients on daily basis; thus,
they could understand their information needs. The queries were generated as
follows: medical experts were given discharge summaries and they were asked to
select randomly a disorder from them, then to write a short query describing it.
They assumed that patients would use the same query when they want to find
more information about the same disorder. Involving medical experts to generate
queries from discharge summaries affected the nature of the queries in a way that
they contain medical terms, and they tend to be short. The queries in 2013 were
available only in English, and the queries in 2014 were officially translated by
medical bilingual experts from English into Czech, French and German.

Queries from 2015 In the CLEF eHealth Evaluation Lab 2015, the IR task
was called Retrieving Information About Medical Symptoms [Palotti et al., 2015].
The goal of the task was to design IR systems that could help laypeople (users
without medical experience) find information related to their health conditions
and understand what caused their symptoms (self-diagnosis). Thus, the creation
of the queries in this task attempted to simulate the real case as much as possible.
Participants in the query creation step were university students without medical
experience, as an attempt to simulate the case of an average search engine user.
They were shown images and videos that contained symptoms of medical issues.
Then, they were asked to generate queries for each case, as they thought those
queries would represent their information need, and eventually would lead them
to relevant documents. The queries in 2015 were created in English and officially
translated by medical experts into Czech, French, German and Spanish.

New Data split We showed in the previous two paragraphs the main difference
between the queries in the 2013, 2014 and 2015 IR labs of CLEF eHealth. Our
motivation for introducing new split is to design a CLIR system that is stable
for such a diversity of user queries, rather than designing a system that is biased
to one type of them (short queries with medical terms, or long queries without
medical terminology).

To remedy this, we get the test queries from each IR task in 2013 (50 queries),
2014 (50 queries), and 2015 (66 queries). We mix them to get more representative
and balanced query set, and then split these queries into two sets: 100 queries
for training (33 queries from 2013 test set, 32 from 2014 and 35 from 2015) and
66 queries for testing (17 queries from 2013 test set, 18 queries from 2014 and
31 from 2015). The two sets are stratified in terms of distribution of the year of
their origin, number of relevant/irrelevant documents that exist in the relevance
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assessments, and the query length (number of tokens). The query ID tags in
our new split preserve the original IDs which allows mapping the queries to their
original year.

Table 4.2 shows samples from all years. It is clear from the samples how
queries in 2015 are relatively longer than others, and written in a simpler language
without the use of advanced medical expressions.

query id query title
2013.02 Facial cuts and scar tissue
2013.41 right macular hemorrhage
2013.30 metabolic acidosis
2014.04 Anoxic brain injury
2014.21 renal failure
2014.17 chronic duodenal ulcer
2015.08 cloudy cornea and vision problem
2015.59 heavy and squeaky breath
2015.48 cannot stop moving my eyes medical condition

Table 4.2: Samples of the English test queries from the CLEF eHealth IR tasks
2013–2015

4.3 Manual Translations of Queries
The motivation of the manual translation of the queries is to support new languages
for CLIR experiments. Our goal is to make all queries available in the supported
languages in this research: Czech, French, German, Hungarian, Polish, Spanish
and Swedish. Howevere, as we showed in the previous section, queries from the
CLEF eHealth IR labs were not available in all languages. To achieve our goal,
we asked medical experts who were fluent in English and one of target languages
to translate the English queries into the target language. This manual translation
followed the same instructions that were provided during the CLEF eHealth tracks
to the official translators [Goeuriot et al., 2014, Urešová et al., 2014].

First, the translators tried to translate the queries into the target language and
keep the syntax as much as possible, however, in case that was not possible (since
the input queries were not grammatically correct in some cases), they conducted
term-by-term translation. Then, linguist experts were asked to look at the queries
to check their fluency and adequacy. The last step was to ask the medical experts
again to check and find if there was any harm to the medical terminology during
the linguistic check.

At the end of the manual translation process, 166 queries were available in a
total of 8 languages (the original English plus human translations into Czech,
French, German, Hungarian, Polish, Spanish, and Swedish). English queries allow
monolingual IR since the collection is available in English. And non-English
queries open the doors for CLIR experiments in those 7 languages.

Our contribution of manual translation includes translation of the 2013 queries
into 7 languages, since in the 2013 CLEF eHealth IR task only English queries
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were available, translation of the 2014 queries into Spanish, Hungarian, Polish
and Swedish, and translation of 2015 queries into these languages too.

4.4 Machine Translation of Queries
In addition to the human translation of the queries from English into the target
languages, we include in the data package queries that are machine-translated
back into English. This allows researchers to conduct CLIR experiments without
having an access to an MT system. The MT system, that is used to translate the
queries into English, is a phrase-based SMT system that is adapted to translate
queries from the medical domain. The system is fully described later in Section 5.1
(QT-SMT-form). For each input query, the system generates a list of 1000 ranked
translation hypotheses (n-best-list) including internal system information and
scores for each one of them (the verbose output of the MT system). We provide in
our extended dataset both 1-best-list (best translation) and 1000-best-list English
translations for queries in all the languages.

4.5 Relevance Assessment
We present in this section our contribution to the assessment of the extended test
collection. Our assessment procedure contains the following steps:

1. Document pooling, in which a set of highly ranked documents for each query
is created to be assessed.

2. Relevance judgement where judges (humans with experience in the domain)
determine if each document is relevant or not to a given query.

3. Dual assessment to check the reliability of the assessed documents.

4.5.1 Document Pooling
Relevance assessment is an expensive task; thus, it is often impossible to assess
all document-query pairs in a test collection. Document pooling is the process
of determining which documents need to be assessed taking into consideration
minimizing the time that is needed by the assessors as much as possible, on the
other hand, to consider obtaining a full coverage of the system results.

Full assessment depends on the metric that is used for evaluation. For example,
if the goal is to calculate MAP , then we need to assess the entire retrieved
documents for each query. We consider in our research P@10 as the main IR
metric (more information about IR evaluation is presented in Section 2.4). To
guarantee fully evaluated results, we need to ensure that the top 10 ranked
documents are assessed for each query, then we can confirm that P@10 scores are
reliable. Because when a document is not assessed, it is considered as irrelevant
(the behaviour of the standard TREC evaluation tool), which is a risky assumption
because if an unjudged document is relevant but treated as irrelevant, then the
evaluation of the system will be less than the reality. Which makes system
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comparison and drawing an accurate conclusion about which system is better not
accurate.

To build a document pool for additional assessment, we run the following
experiments:

• Monolingual system (Section 6.1).

• Baseline query translation system using QT-SMT-form system (Section
6.2.1).

• Query translation system using public MT systems (Section 6.2.4).

• Translation hypotheses reranker (Section 6.2.2).

• Query expansion based on term selection (Section 6.4).

• Document translation system (Section 3.1.1).

• Query translation using QT-NMT-form system (Section 6.2.3).

For each CLIR system in each language, we collect all the unjudged documents
from the above experiments (only from the top 10 ranked ones), then we remove
duplicated document-query pairs among all systems. At this point, we have a
document pool of a set of 14, 368 document-query pairs that need to be manually
assessed by human experts.

4.5.2 Relevance Judgement
After we prepared the document pool, we setup the Relevation system online,
which is an open-source tool for conducting relevance assessment for IR evaluation
[Koopman and Zuccon, 2014]. Then we asked medical experts who were fluent in
English to conduct the assessment, each assessor had to assess a set of queries,
which were taken randomly.

Figure 4.1 shows the web interface of Relevation for a sample document-query
pair. At the top of the page, the assessor can see the title of the query, and its
narrative title which describes to the assessor what exactly a relevant document
should include. Using only query title is not enough for assessing the relevance of
the document, since the query title represents how a user thinks their information
need should be formulated, which can be vague and ambiguous. The assessor can
make their judgment on a document after they read it.

The assessor judgement can be one of the following choices:
• Not Relevant when the document is not related at all to the information

need.

• Somewhat relevant the document partially answers the information need.
This means that some information is missing and searcher needs to read
more documents to completely get their question answered.

• Highly relevant the document completely satisfies the information need,
and no need to read any other documents.
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During the assessment, the assessors gave us feedback that on average, it takes
around 20 seconds to judge a document if it is irrelevant, and up to 2 minutes if a
document is relevant. In other words, it is faster to judge an irrelevant document
than a relevant one.

Figure 4.1: The web interface of Relevation as it is used by the assessors to
conduct relevance assessment

4.5.3 Dual Assessment
Different assessors can argue on the relevance of a document-query pair; this is
a normal phenomenon in manual assessment not only in information retrieval
but also in different fields such as machine translation. The degree of agreement
among multiple assessors is referred to as agreement rate.

Cohen [1960] introduced the kappa statistics, which is a measurement of agree-
ment on judgments that were conducted by two judges. The kappa statistics was
used in social sciences for the categorical outputs from the judgment (or ratings)
decisions, and it was adopted later to calculate the agreement rate in relevance
assessment in IR [Manning et al., 2008].

We use kappa statistics as shown in Equation 4.1, where P (A) is the probability
that two assessors agreed on the relevance degree for a given document-query pair,
P (E) is the probability that they agreed by chance. P (E) can be considered as
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the probability of making a two-class decision, then it can be set always to 0.5, or
it can be considered as the probability of a marginal decision which is defined as
shown in Equation 4.2. When two assessors agree on all document-query pairs,
kappa is 1, and 0 if their agreement rate is equal to agreeing by chance.

Kappa = P (A) − P (E)
1 − P (E) (4.1)

P (E) = P (irrelevant)2 + P (relevant)2 (4.2)

In order to accept the relevance assessment and use it in system evaluation, the
agreement rate between multiple assessors (kappa) is recommended to be higher
than 60%, as shown by Manning et al. [2008].

We conducted relevance assessment three times as we proceeded with our
experiments. After each phase, we randomly picked up 20% of the assessed
document-query pairs, which were assessed by assessor A, and asked assessor B
to assess them again, without telling B what was A’s assessment to avoid any
bias in B’s decision. We similarly picked up 20% from B’s pairs, and asked A
to assess them. At the end, the agreement rate between the two assessors was
80.2%, which is considered to be high enough to accept the assessment as reliable
for evaluation.

Table 4.3 shows statistics of the official assessment versus our extension in terms
of the number of assessed documents. The extended dataset contains a total of
38, 109 document-query pairs, 14, 368 pairs of them are assessed by us.

CLEF 2013 CLEF 2014 CLEF 2015 Our extension total
relevant 1,174 3,209 2,515 2,517 9,415
irrelevant 3,676 3,591 9,576 11,851 28,694
total 4,850 6,800 12,091 14,368 38,109

Table 4.3: Relevance assessment statistics

4.5.4 Conclusion
We employed the official datasets that were released during the CLEF eHealth
Evaluation Lab IR tasks 2013–2015 to present a unified and enlarged dataset
for CLIR experiments. Our contribution to the new extended dataset includes
the manual translations of the queries into seven languages: Czech, German,
French, Hungarian, Polish, Spanish and Swedish. In addition to the manual
translations, we provided machine translation of these queries including 1000-best
list for researchers who do not have access to medical MT systems from the seven
studied languages into English.

The official assessments suffer from low coverage, which makes it difficult to
fully and reliably evaluate IR systems. To remedy this limitation of the existing
assessment, we ran assessment three times (January 2016, July 2017 and December
2017) as we proceeded in our research. At the end, we enlarged the relevance
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assessment by more than double times of the original ones. The document pool in
these assessment operations was created based on diverse CLIR methods, which
makes the assessment more likely to cover more methods and approaches by those
who want to use it. We published this work [Saleh and Pecina, 2019a], and made
the extended dataset available via the LINDAT/CLARIN repository.7

7http://hdl.handle.net/11234/1-2925
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5. Machine Translation for CLIR
In this chapter, we present background and theories of the recent approaches
in implementing MT system, namely statistical machine translation and neural
machine translation approaches. These two approaches are used later in this work
to handle the translation part within the CLIR task. We also present methods
for data selection and domain adaptation. These two concepts are critical when
working in a domain-specific task (the medical domain in our research).

5.1 Statistical Machine Translation
SMT systems had been the state-of-the-art approach for MT for a long time,
before NMT systems emerged and significantly outperformed SMT systems [Bojar
et al., 2016].

In phrase-based SMT, sentences are first segmented into phrases which are
translated as atomic units, contrary to the word-based models where each word
is translated separately. Translating phrases allows the use of context within
those phrases. This helps to solve translation ambiguity, since context includes
information that is employed in the decoding (finding the best translation) process,
which gives SMT the advantage of better translation. If enough training data is
available, sometimes SMT considers one long sentence (practically up to 10 words)
as one phrase, which produces more adequate and comprehended translations.

The translation model is learnt from a parallel training corpus. It is based on
the noisy channel approach [Shannon, 1948] as shown in Equation 5.1. Where f
is a foreign sentence in a source language, e is its translation in a target language,
p(f |e) is a translation model that is trained on a parallel corpus and it is based
on the noisy channel model (Bayes rule is used here), and p(e) is an LM trained
on a monolingual corpus [Koehn et al., 2003].

ê = arg max
e

p(e|f) = arg max
e

p(f |e)p(e) (5.1)

SMT employs monolingual data in the target language to train p(e) (LM) that
is involved in the decoding process. LM helps to overcome the ambiguity when
a word has multiple translations by capturing contextual information that is
represented in the surrounding words. This helps produce translations that are
more grammatically correct and more adequate in the target language.

Equation 5.1 can be expressed as a log-linear model, which can combine more
features (hm). These features come from different separate models, and each
feature has a weight (λm) that is assigned during the SMT tuning process [Koehn
et al., 2007].

p(e|f) = 1
Z

exp(
∑︂
m

λmhm(e, f)) (5.2)
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The most important features are:

• Translation log probability calculated by the translation model for each
phrase (or word) w in a sentence t, known as pw(t|s).

• Log probability p(w) of the candidate translation w given by the language
model of the target language.

• Word penalty which penalizes the number of words in the target transla-
tion, and phrase penalty that penalizes the number of phrases used in the
translation. These two features help control the length of the translations
by penalising the long ones.

• Log probability of the lexical re-ordering model, which is learnt from the
parallel data, and it determines the likelihood of a phrase to follow the
previous one, or to be disconnected from it [Koehn et al., 2005].

Figure 5.1 shows samples of 5-best-list translations of the Czech query příznaky a
aortální insuficience, as given by a Czech-to-English QT-SMT-form system (see
Section 5.1 for more details). The translation hypotheses are ranked according to
their final scores as given by the decoding function (Equation 5.2).

This verbose output is taken from the Moses decoder [Koehn et al., 2007]. The
output contains valuable information that we employ in our work as we will show
later, such as scores given for each translation by multiple internal components
of the SMT system. These components are the translation model, the language
model, the distortion (re-ordering cost) model and word penalty. The last score
in each sentence is the log probability score of the entire translation hypothesis
which is a linear combination of these model scores.

The figure also shows the alignment information of the input sentence and
the output translation (numbers between the two pipes after each segment in
the sentence). This defines the phrases in the output and their alignment to the
phrases in the input. One limitation of the diversity of these translations in CLIR
is that sometimes multiple translations differ only in word order, punctuation
marks and stop-words (such as of, and and in Figure 5.1), which are ignored when
conducting a bag-of-words based retrieval with a stop-words removal.

We can observe here the difference between the translation task in CLIR and
the normal translation task, when such information (stop-word and word order)
is important and sometimes change the entire meaning of the sentence in the
normal translation task, but it is totally ignored in CLIR systems that follow
bag-of-words approach (treating documents and queries as a sequence of words
ignoring their order).
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0 ||| symptoms |0 -0| of |1 -1| aortic |2 -2| insufficiency |3 -3|
||| LM0= -25.1603 Distortion0 = 0 WordPenalty0 = -4
PhraseDictionaryCompact0 = -7.57569 -5.72601 -6.74157 -8.71513
3.99959 ||| -2.10535

0 ||| symptoms |0 -0| and |1 -1| aortic |2 -2| insufficiency |3 -3|
||| LM0= -32.8526 Distortion0 = 0 WordPenalty0 = -4

PhraseDictionaryCompact0 = -3.72686 -1.24893 -2.05201 -3.79505
3.99959 ||| -2.15809

0 ||| aortic |2 -2| insufficiency |3 -3| and |1 -1| symptoms |0 -0|
||| LM0= -28.982 Distortion0 = -7 WordPenalty0 = -4

PhraseDictionaryCompact0 = -3.72686 -1.24893 -2.05201 -3.79505
3.99959 ||| -2.29053

0 ||| signs |0 -0| and |1 -1| aortic |2 -2| insufficiency |3 -3|
||| LM0= -34.3881 Distortion0 = 0 WordPenalty0 = -4
PhraseDictionaryCompact0 = -4.50501 -2.3473 -3.22388 -4.60657
3.99959 ||| -2.37274

0 ||| signs |0 -0| of |1 -1| aortic |2 -2| insufficiency |3 -3| |||
LM0= -28.0266 Distortion0 = 0 WordPenalty0 = -4

PhraseDictionaryCompact0 = -8.35384 -6.82438 -7.91344 -9.52665
3.99959 ||| -2.41201

Figure 5.1: Samples of 5 translation hypotheses from Czech-English QT-SMT-form
system
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5.2 Machine Translation Data
In this section, we describe the data that is used to train our MT systems to
translate medical queries from seven languages (Czech, French, German, Spanish,
Hungarian, Polish and Swedish) into English and to translate documents from
English into these seven languages.

5.2.1 Parallel Data
The parallel data is used to train both the SMT (Section 5.1) and NMT (Section
5.3) systems. It is taken from various resources for all seven languages. These
resources are split into in-domain data and general-domain data.

In-domain data

The in-domain data in this work is taken from medical resources, such as:

• The EMEA corpus (The European Medicines Agency), which contains
parallel data constructed from biomedical documents in the pdf format
obtained from the European Medicines Agency and prepared by Tiedemann
[2009]. The EMEA corpus is available in 22 European languages.

• The UMLS metathesaurus, which contains 12, 966, 290 distinct medical
concepts that are translated into multiple languages such as English, Czech,
French, German, Hungarian, Spanish, Swedish and Polish [Humphreys et al.,
1998].

• MuchMore corpus, which includes around 1 million tokens in each language
extracted from the abstracts of 6000 papers published in 41 scientific journals
[Buitelaar et al., 2003].

• The MAREC patent collection that includes around 19 million patent
documents provided in 19 languages including English, French and German
[Wäschle and Riezler, 2012].

• The Corpus of Parallel Patent Applications (COPPA), it contains sentences
extracted from the titles and the abstracts of the patent applications that
were submitted to the Patent Cooperation Treaty1 during 1990 and 2010.
This parallel corpus is available for the English-French pair only [Pouliquen
and Mazenc, 2011].

• Titles from Wikipedia articles in the medical categories, translations of these
titles are obtained using the inter-lingual links of Wikipedia articles.

General-domain data

The general domain data is more easy to obtain than the in-domain data. In
this work, we employ an extensive amount of parallel data that is taken from

1https://www.wipo.int/pct/en/
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multiple bilingual resources, such as CommonCrawl [Smith et al., 2013], JRC-
Acquis [Steinberger et al., 2006], News commentary of the Syndicate project
[Callison-Burch et al., 2012], OJEU corpus [Forcada et al., 2011], the European
Parliament interpretation corpus [Koehn, 2005], and DBpedia-based dictionary
entries.2

5.2.2 Monolingual Data
The monolingual data is used to build a language model of a target language during
development of an SMT system. The language model helps select a candidate
translation that is as coherent and fluent as possible in the target language (for our
CLIR experiment, this is important for document translation, but less important
for query translation). We also use the monolingual data in development of NMT
models through the back-translation approach as we will show later in Section
5.3.4.

The source of the monolingual data came from the English part of the MultiUN
corpus [Eisele and Chen, 2010], which includes around 14K sentences, 22,197 sen-
tences from the Gigaword news headlines [Parker et al., 2011] and 44,285 sentences
extracted from news articles that were distributed during WMT (Workshop on
statistical Machine Translation) 2009–2012. The monolingual English data also
includes medical text taken from the document collection that is used in CLEF
eHealth 2013 IR task [Goeuriot et al., 2013]. The data is described in details by
Pecina et al. [2014].

5.2.3 Development and Test Sets
Our goal is to develop and tune two types of MT systems in the medical domain,
one for query translation (short and incomplete sentences) and one for document
translation (long and complete sentences). For that purpose, we adopt two sets
for tuning and for the final evaluation:

The Query Test Set

We use dataset of medical-domain queries coming from two sources: the first
source is the HON website,3 where 749 English queries were randomly chosen
from queries which were asked publicly. The second source is queries asked by
medical experts in Trip database,4 which includes 759 English queries. This set
was prepared and published by Urešová et al. [2014].

We use from these two sources 508 queries for tuning and 1,000 queries for the
final MT evaluation. Samples of this set are shown in Table 5.1.

The Summary Test Set

This set includes summaries of 1500 English sentences selected randomly from
English medical documents that were crawled from medical websites. Then

2https://wiki.dbpedia.org
3http://www.hon.ch
4http://www.tripdatabase.com/
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Language Query
English (Ref.) gastric bypass
Czech žaludeční bypass
German Magenbypass
French bypass gastrique
Hungarian gyomor bypass
Polish Ominięcie żołądkowo - jelitowe
Spanish derivación gástrica
Swedish gastric bypass

Table 5.1: Samples of queries in English and their manual translations in the
seven languages taken from the Khresmoi Query Translation Test Data

professional native speakers translated these 1500 document summary sentences
from English into the target languages. This set was developed within the Khresmoi
project,5, and supported three language pairs: English-Czech, English-French and
English-German. These translations were extended within the KConnect project
to include translations into Hungarian, Spanish, Swedish, and Polish. Table 5.2
shows samples of these sentences, which are complete and long in general; thus,
we use summaries to tune and evaluate MT systems that are used for document
translation experiments (Section 6.3), since the objective goal is to translate long
sentences (documents) rather than short queries. The development set contains
500 sentence summaries used for tuning.

For the final MT evaluation, we use 1000 sentence summaries from the Khresmoi
test set. We also use the Himl test set for evaluation,6 which contains two subsets:
the NHS set containing 1044 summaries that are taken from the NHS 24 website,7
and the Cochrane set with 467 summaries from the Cochrane website.8 Both sets
are available in English and the seven languages. Samples of these two sets are
shown in Table 5.3 and 5.4 respectively.

Table 5.5 shows statistics of both development and test sets including the
number of sentences in each set and their source.

5.2.4 Data Selection
Naturally, data in machine learning often contains noise, and machine translation
is no exception. Such noise can be low quality translations and sentences mixed
with words in multiple languages. In addition to that in our case, the available data
came from different domains not only from the medical domain, thus, translations
of some sentences in the medical domain might be different in in other domains.
For example, the word development in the medical domain means the growth
or the spread of a disease or a tumor. However, we can not tell what this word
means in a general domain without a context.

5http://khresmoi.eu/
6http://www.himl.eu/test-sets
7https://www.nhs24.scot
8http://www.cochrane.org
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Language Summary

English (Ref.) wound healing and treatments for people with
diabetic foot ulcers

Czech hojení ran a léčba u lidí s diabetickou nohou

German wundheilung und behandlungen von menschen
mit diabetischen fußgeschwüren

French la cicatrisation des plaies et le traitement pour
les personnes souffrant d’ulcères du pied diabétique

Hungarian sebgyógyítás és kezelések diabéteszes lábszár
fekélytől szenvedő betegek számára

Polish gojenie ran i leczenie u ludzi ze stopą cukrzycową

Spanish la curación de las heridas y los tratamientos
para las personas con úlceras de pie diabético

Swedish sårläkning och behandling för personer med diabetiska
fotsår

Table 5.2: Samples of sentence summaries in English and their manual translations
in the seven languages taken from the Khresmoi summary tuning set

Language Summary
English (Ref.) tests and treatments
Czech vyšetření a zákroky
German Tests und Behandlungen
French les tests et les traitements
Hungarian vizsgálatok és kezelések
Polish badania i leczenie
Spanish pruebas y tratamientos
Swedish tester och behandlingar

Table 5.3: Samples of sentence summaries in English and their manual translations
in the seven languages taken from the NHS set
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Language Summary

English (Ref.) antithrombin also reduces inflammation in the
human body

Czech antitrombin také snižuje zánět v lidském těle

German antithrombin reduziert ebenso entzündungen
im menschlichen körper

French l’antithrombine réduit également l’inflammation
dans le corps humain

Hungarian az antitrombin emellett csökkenti a gyulladást
a szervezetben

Polish antytrombina zmniejsza również stany zapalne
w organizmie człowieka

Spanish la antitrombina también reduce la inflamación
en el cuerpo humano

Swedish antitrombin reducerar också inflammation i
människokroppen

Table 5.4: Samples of sentence summaries in English and their manual translations
in the seven languages taken from the Cochrane set
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set Khresmoi Cochrane NHS
dev 500 - -
test 1000 467 1044

Table 5.5: Statistics of development and test sets for MT evaluation (number of
sentences)

Data selection is considered to be a method for MT domain adaptation. The
goal of data selection is to maintain a high quality of parallel data for MT training.
Data in this context is high quality when a sentence in the target language
represents a good translation for its target sentence in both semantic and syntactic
perspectives. Data selection showed to improve the performance of the translation
significantly [Koehn and Schroeder, 2007]. The common practice for data selection
is to filter out out-domain data (data that does not belong to the domain in which
the model will be used) and keep in-domain data (data that belongs to a specific
domain) for training or tuning of the MT model.

We follow the work of Moore and Lewis [2010] to apply data selection method
on the entire available data, wherein we train two language models, one trained
using in-domain data, and the second one is trained on general-domain data. In
order to choose the data that is used to train the in-domain language model, we
select only sentences that have at least two entries in dictionaries that are created
from medical multi-lingual resources such as UMLS. Then each sentence (from all
available data in in-domain and general-domain) is scored by the difference of
its cross-perplexity from both language models. Sentences which have low final
scores are chosen for training the monolingual language model for SMT as we will
show later in this section.

For parallel data, each side of a parallel sentence (source and target) is scored
separately, and then the final score of that sentence is the average score of those
two scores. Filtered sentences in parallel data are limited to the best 10 million
sentences in each language pair in order to reduce the size of the model. This
data is used to train both SMT and NMT models.

5.2.5 Data Preprocessing
We clean and process MT data as follows:

Cleaning: we clean all the data by removing non-UTF8 characters from the text,
we also remove sentences that are longer than 80 words because these sentences
make the training very slow.

NMT models showed to be more sensitive to noisy data than SMT models
[Popel and Bojar, 2018b]. We present a simple yet effective way to clean the noise
in the presented parallel data when the sentences either contain untranslated
words or are swapped, for example, English-German pairs in the parallel data
were in German-English order, though the translations were correct.

To filter out these sentences, we loop over each sentence in each language pair,
if a sentence in the source side contains at least one stop-words in the target
language, we remove that sentence from both sides. We use stop-words lists

59



provided by Ranks NL.9 Some stop-words lists in two languages share similar
words (with different meaning in each language); such as the preposition word to
in English and the demonstrative pronoun to in Czech. We discard the words that
exist in the intersection set of the two stop-word lists to avoid removing correctly
aligned and clean sentences. We apply this cleaning method to the parallel data in
all languages but only for the purpose of developing NMT models. This cleaning
method removes around 5% to 10% from the data, depending on the language.

Lemmatization: In order to train an SMT system that produces lemmas (as we
present in Section 5.5.1), we lemmatize the training data (only the target side of
the corpus) using UDPipe, which is a pipeline that supports various morphological
analysing tasks (such as tokenization, tagging and lemmatization) of a raw text.
It also provides trained models for most of the universal dependency treebanks
[Straka and Straková, 2017], including all the languages in our work.

It is known when doing lemmatization that the number of words in the input
sentence might be different from the lemmatized one. This happens because
some words in the input are multi-word. For example, the word im in German is
originally two words (in dem). This might cause inconsistency in the alignment
table because we apply alignment on forms and then replace the forms with the
lemmatized version of the data (more details in Section 5.5.1). To avoid such
a case, we first apply the lemmatization on the parallel data, then take from
the output of the lemmatizer both forms and lemmas, and then we replace the
output forms with the original ones, and keep lemmas to be replaced later after
the alignment. For example, if the input sentence (forms) is “w1, w2, w3, w4“; the
lemmatizer produces, in column format, both forms and lemmas, and it is likely
to have a new token in both forms, such as: “wf

1 , wf
2 , wf

3 , wf
4 , wf

5 “, and lemmas
as in: “wlem

1 , wlem
2 , wlem

3 , wlem
4 , wlem

5 “. The forms from the lemmatizer’s output are
used instead of the original forms. This is done only on the parallel data (the
target side), since the alignment is only done between the source and the target
side of the parallel sentences.

Tokenization is the process of splitting sentences into individual words including
punctuation marks which are usually written without space after the previous
words. All the data is tokenized using the Moses tokenizer.10

9https://www.ranks.nl/stopwords
10http://statmt.org/moses/
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5.3 Neural Machine Translation
In this chapter, we first present related work on NMT, and we describe the
architecture of the state-of-the-art methods. Then, we present our training method
to train the Transformer NMT model to translate queries and documents for CLIR.
We follow the iterative back-translation approach in NMT. For model selection,
we present a novel method that predicts which model among the intermediate
training models is ideal for the QT approach.

5.3.1 Introduction
NMT has recently achieved superior results in the task of MT, and led to a
significant improvement over SMT systems. The success of word embedding and
deep learning methods were the main reasons that boosted NMT models, also
the raise of enhancement of parallel computing, which was achieved by the recent
development of Graphics Processing Units (GPU), helped make developing NMT
models much easier than ever. Beside the outstanding MT performance, NMT is
considered to be simpler than SMT in terms of the internal system components.
In SMT, we need to build multiple components that are integrated together in the
entire MT system; such as language model and translation model (as we showed
in Section 5.1 ). However, it is not the case in NMT, where only one model is
needed to implement an MT system.

5.3.2 Sequence-2-Sequence Model
The sequence-2-Sequence model consists of two Recurrent Neural Network (RNN)
networks, the goal is to predict the conditional probability of the output sequence
y = (y1, ..., yT ′) in the target language, given the input sequence x = (x1, ..., xT )
in the source language, and taking into consideration that the output length
T ′ might be different from the input length T . The encoder (Long Short-Term
Memory (LSTM) network) reads the input sequence in a reverse order (the last
word in a sentence is the first input token to the encoder) and then computes a
fixed annotation vector v for that sequence.

p(yt, .., yT ′|x1, .., xT ) =
T ′∏︂

t=1
p(yt|v, y1, .., yt−1) (5.3)

The decoder performs language modeling using LSTM formulation as shown in
Equation 5.3, and given the annotation vector v from the encoder LSTM.

Attention Mechanism

The main challenge in sequence-to-sequence approach is using an annotation
vector w with a fixed length. This vector might fail to hold all the contextual
information that is needed to translate long sentences. To remedy this issue, the
attention extension of the encoder-decoder model was introduced by Bahdanau
et al. [2015]. The attention technique enables the decoder to take advantage of the
complete tokens in the input and extracts the needed information for decoding.
In the attention sequence-to-sequence model, the annotation vector v is replaced
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by a context vector ci. This context vector is the sum of the annotations hj for
the hidden vector si−1, and the weight of the annotation hj is computed using
an alignment model aij which is the probability that the token yi is aligned to
the input word xj. The alignment model is built using a single-layer feedforward
neural network.

Each token in the output sequence yi is predicted based on a recurrent hidden
state si, the previously predicted word yi−1, and a context vector ci . Mapping
the input sequence into an annotation vector makes the model able to produce
number of tokens that is not necessarily the same as the number of input tokens.
The reverse order of the input tokens helps the LTSM to perform well when
dealing with long sentences. The reason for that is to make the optimisation of the
stochastic gradient descent simpler, which is different from the gradient descent
algorithm (an optimization algorithm usually used to find a local minimum of a
given function) by choosing randomly a data point (called a batch in this context)
from the training data.

Figure 5.2: The encoder maps the input sequence of tokens (A,B,C ) to an
annotation vector W , and the decoder starts producing the output sequence of
tokens (X,Y,Z ) after reading end-of-sentence (<EOS>) token, and stops prediction
after producing <EOS> token. Input is in a reverse order [Sutskever et al., 2014].

The Transformer Model Transformer is based on the encoding-decoding model,
and it achieves state-of-the-art performance in the machine translation task
Vaswani et al. [2017], which replaces the RNN layers with self-attention layers.

The input is firstly embedded into multi-dimensional space vector and then
a positional encoding is applied to those embeddings. The positional encoding
generates a new presentation for a given word embeddings considering that word’s
position in the original sentence.

Both encoder and decoder have two mutli-head attention layers as shown in
Figure 5.3. The multi-head self-attention computes multiple attention blocks from
the source input and linearly combines them onto a space with initial dimensions.
The special feature of multi-head attention is that it combines information from
different seen states into one vector. Attention (as in Equation 5.6) is a function
(referred as MultiHead) that maps three vectors: queries (Q), key (K) and value
(V) pairs, and outputs the weighted sum of these values using softmax function.

MultiHead(Q, K, V ) = Concat(head1, head2, .., headh)W o, (5.4)
where headi = Attention(QW Q

i , KW K
i , V W V

i ), (5.5)

and Attention(Q, K, V ) = softmax(QKK

√
dk

)V (5.6)
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Figure 5.3: The multi-head attention in the Transformer model [Vaswani et al.,
2017]

5.3.3 Byte-Pair Encoding
Machine translation is an open-vocabulary problem, which means that an MT
system has to translate any word during test, even if this word did not appear in
the training data.

The main challenge in NMT model is that it deals with a fixed vocabulary size of
both source and target language. This is usually around tens of thousands of words
depending on the training hyper-parameter. The most frequent N words (usually
between 20 000-80 000 words) in the source and the target language are used
to create the vocabulary for each side. Because using a large vocabulary is very
challenging in terms of time and space complexity. When an out-of-vocabulary
word appears in the data, it is either left untranslated in the output, or replaced
with a special token (usually <UNK> token).

The reason behind using fixed vocabulary size by encoding an input sentence
into a vector of a fixed length is because softmax function is computationally
expensive. Thus, NMT model deals with the most frequent vocabularies in each
side of a language pair [Luong et al., 2015]. The approach of using fixed vocabulary
showed to be effective when there are a few unknown words in the target sentences,
but the performance degrades significantly in case too many unknown words are
observed [Bahdanau et al., 2015].

Jean et al. [2015] tackled this issue by using an extensive vocabulary of the
target language and apply sampling of the vocabulary based on the importance
of the vocabulary to solve the issue of the time complexity. They reported an
improvement in English-French and English-German models compared to those
which used small vocabulary or replaced the unknown words with the most likely
translation that are selected by a pre-trained alignment model (back-off models)
[Luong et al., 2015].
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Sennrich et al. [2016b] employed the Byte-Pair Encoding (BPE) compression
algorithm [Gage, 1994] by encoding all the words in the training corpus using a
small set of vocabularies. During training, their bottom-up character merging
algorithm computes frequencies of all symbols (or characters) in the corpus and
then applies n merges (a hyperparameter of the experiment) of these symbols
iteratively by choosing the most frequent pair of symbols, and applies merge of
these symbols by using a special character that indicates the merge positions, and
finally adds the merged symbols into the vocabulary set. Then to apply BPE,
first, they get all bigrams, and then apply the merge on a symbol of pair that
appeared first in the merges. This helps NMT models deal with unseen words
as subwords units, and showed to be more effective than back-off models. The
authors also showed that NMT models usually perform poorly with rare words,
but BPE segmentation helps to translate such words effectively.

5.3.4 Back Translation
The NMT approach is known to be more greedy for training data than the SMT
approach. Koehn and Knowles [2017] reported that for a low amount of data, SMT
significantly outperforms NMT. However, when they gradually added more data
to both models, NMT performance kept improving steadily until it outperformed
SMT models, as shown in Figure 5.4 for the English-Spanish pair.

The NMT greediness of training data has been a main motivation for researchers
to look for a way to enrich the training data and make use of what has been
available. The use of monolingual data has shown to be very effective in the
SMT approaches by giving the model the ability to prefer translations that are
more fluent and coherent [Koehn, 2009], and NMT is no exception, multiple works
succeeded in employing it in NMT approaches.

He et al. [2016] improved the performance of NMT model (English-Chinese)
by around 2.33 of BLEU score when they log-linearly integrated SMT features
(translation model and language model) within the NMT model.

Gulcehre et al. [2017] proposed two ways to make use of monolingual data in
NMT models. The first one is a neural language model that is combined in the
hidden state of the NMT model (deep fusion), and the second one is a language
model that scores candidate translations of the NMT decoder (shallow fusion).
They showed that deep fusion model significantly improved the translation perfor-
mance on low-resource language (Turkish-English) and high-resource languages
(German-English and Czech-English).

Sennrich et al. [2016a] investigated the use of monolingual data in the target
language to improve the translation quality of NMT. They translated monolingual
data in the target language into the source language, and added the translations
as parallel data into the training data. They called this data that is generated
using back translation as synthetic data. They also showed that this approach
can be used for domain adaptation when there is no authentic domain-specific
parallel data available for training.
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Figure 5.4: The affect of training corpus size on BLEU (English-Spanish pair)
[Koehn and Knowles, 2017]

Przystupa and Abdul-Mageed [2019] studied the effect of the amount of mono-
lingual data that can be used in back translation. They confirmed that back
translation can be useful to improve NMT models for low-resourced languages,
furthermore, they showed that the optimal amount of synthetic data depends
on the amount of the original authentic bilingual data. However, when having a
good amount of authentic bilingual data in hand, around 20 − 30% should help to
boost the performance of the original model.

Hoang et al. [2018] showed that the quality of back-translated data could
significantly improve the translation system. They improved the back-translation
process by a presented method called iterative back translation. This is done by
implementing another NMT system in the opposite direction of the main system
(target to source language). At this point they have two NMT systems, each one
of them is used to generate synthetic data that is used to continue training of
the system in the other direction. Each time a back-translation is done, both
systems improve; thus the quality of the synthetic data that is generated from
these two systems will improve too. Repeating this process multiple times leads
to a remarkable improvement of the final model.

65



5.4 MT Evaluation
The purpose of MT evaluation is to measure the effectiveness of the system, and
to optimise its performance. It can be either human evaluation or automatic
evaluation. Human evaluation needs native speakers in the source and the target
languages, and experts in the domain if the task is domain-specific such as the
medical domain. Those native speakers are asked to look at the output of an
MT system and give a graded score determining its correctness. Mainly, they are
required to judge the output in terms of fluency and adequacy. Fluency means
how much the output sentence in the target language is fluent ignoring its content
or the information it represents. While adequacy ignores the output fluency, and
tells if the information that is represented in the input source sentence is present
in the target translation sentence and coherent [Snover et al., 2009].

The process of MT development involves an intensive number of sub-experiments,
such as data selection and tuning various hyper-parameters for the chosen model.
A combination of such different parameters might lead to hundreds or maybe
thousands of translation outputs from each model. These translations need to
be evaluated in terms of their quality; thus, we can choose the MT model that
produces the best translation quality. Manual evaluation for these models can be
an expensive process in terms of time and money.

This raises the importance of developing an automatic evaluation method that
can measure the performance of a system in near real-time. In order to conduct
an automatic evaluation in MT, we need a set of sentences (usually written by
domain experts and reviewed by linguists) in the source language that is large and
diverse enough in terms of sentence lengths and their vocabularies. Then, human
translation experts translate these sentences into the target language to create
reference translations (ground truth). Finally, a set of translation hypotheses
(candidates) are generated by an MT system which needs to be evaluated, These
candidates are used as input together with the reference translation for an auto-
matic evaluation metric. The automatic metric is expected to generate a number
that represents the quality of translation of the evaluated MT system. We will
consider in this work two metrics, BLEU and Position-independent word Error
Rate (PER).

5.4.1 BLEU
BLEU is one of the most popular automatic evaluation metrics in MT; its values lie
between zero and one; a higher BLEU score indicates a better MT performance. It
is based on measuring similarity of n-gram counts between a translation hypothesis
and its reference translation (usually up to N = 4) [Papineni et al., 2002].

For a translation hypothesis c and a reference translation r, the clipped count
of n-gram g is calculated as shown in Equation 5.7, where count(g, s) refers to the
number of n-gram g appears in a sentence s, and precision pn is then calculated as
in Equation 5.8. BLEU is calculated as shown in Equation 5.9, given the Brevity
Penalty (BP) as in Equation 5.10, and n-gram weight wn, usually n-gram counts
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have uniform weights wn = 1. BP is used to penalise the short sentences, where
lc and lr are the length of translation hypothesis and reference respectively.

countclip(g, c, r) = min (count(g, c), maxi∈I(count(g, ri))) (5.7)

pn =
∑︁

g∈n-grams(c) countclip(g, c, r)∑︁
g∈n-grams(c) count(g, c) (5.8)

BLEU = BP.exp

(︄
N∑︂

n=1
wnlogpn

)︄
(5.9)

BP =

⎧⎨⎩1 if lc > lr

e(1−lr/lc) if lc ≤ lr
(5.10)

MT systems are usually employed in CLIR either to translate the queries into
the collection language, or to translate the collection into the query language.
During the process of developing such an MT system, tuning its parameters using
one of these automatic metrics is needed. Tuning towards BLEU is not preferred
in developing MT systems for query translation approaches, because most IR
systems use term-matching models based on bag-of-words approach, which ignores
word order, and queries tend to be short and written in free word order form.

However, it is not the case when following the document translation approach,
because documents usually consist of complete sentences, thus, BLEU is preferred
in this case. An interested reader is referred to the work of Pecina et al. [2014].

5.4.2 PER
PER on the other hand, does not penalise word order between a hypothesis and
its reference translation as BLEU does, instead, it measures the difference of the
word counts that appear in both. PER captures all words that appear in the
translation hypothesis but do not exist in the reference. These words are known
as PER errors; thus, a higher PER value indicates more errors and lower MT
performance.

PER is calculated as shown in Equation 5.11, where dP ER(refk, hypk) (for each
token k in the reference translation ref ) is given in Equation 5.12, the reference
translation is refk and translation hypothesis is hypk, n(e, hypk) and n(e, refk)
are the counts of a word e in hypk and refk respectively, as shown in Equation
5.12

PER = 1
N∗

ref

N∗
ref∑︂

k=1
min dP ER(refk, hypk) (5.11)

dP ER(refk, hypk) = 1
2

(︄
|Nrefk

− Nhypk
| +

∑︂
e

|n(e, refk) − n(e, hypk)|
)︄

(5.12)

In addition to the fact that queries are short and usually do not formulate
syntactically correct sentences, most IR models (including Dirichlet-smoothing
IR model that is used in our work) treat queries and documents as bag-of-words;
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hence word order is not important, which makes PER ideal for tuning MT models.
For these reasons, we focus on PER for MT tuning.

5.4.3 Training with MERT
MERT is the most popular tuning algorithm for SMT model parameters. The main
objective of MERT is to optimise the parameters (feature weights) λi, towards a
better translation performance by minimising an error rate [Och, 2003].

The optimisation step in MERT is done by generating a list of alternative
translations (n-best-list) in the target language for each sentence in the target
language. Each translation of this list has a set of feature values (such as language
model score, translation model score). MERT grid-searches feature weights until it
finds a combination of these weights that gives the best evaluation metric. BLEU
or PER can be as the objective function of MERT.
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5.5 MT Training
In the following sections we present our training methods of mainly two MT
systems: SMT and NMT. We employ these systems for the query translation
approaches and the document translation approaches in CLIR. Thus, we consider
CLIR performance (P@10 metric) as the final objective function of our MT training
methods.

5.5.1 SMT Training
In this section, we present the process of developing SMT models for our CLIR
experiments. It is important to mention that the methods, which are applied
in this section, are adopted from the work of Dušek et al. [2014]. Our main
contribution in this work is: 1) Replicating their work and evaluating the results
on the CLIR task and 2) Developing an SMT system that produces lemmatized
sentences as we will show later.

We build two systems, the first MT systems are tuned to translate queries
rather than long sentences. These systems are used in our CLIR methods that
follow the query translation approach.

The second systems are tuned to translate normal sentences, which makes the
systems ideal for the CLIR document translation based approaches. The main
difference between the two systems lays in the parameter tuning part and the
development data set, as we will show later in this section.

All the SMT experiments are done using eman [Bojar and Tamchyna, 2013],
which is an open source tool for experiment planning and automation. Eman
can be used to design any kind of experiments that include different dependent
and independent steps. However, it is optimised for SMT experimenting, and
integrates tools like Moses [Koehn et al., 2007] and GIZA++ [Och and Ney, 2003],
in addition to a set of tools for MT evaluation and text preprocessing.

SMT for Query Translation (QT-SMT-form)

The goal of this approach is to design an SMT system that translates medical
queries into the language of the document collection (English in our work). We
refer to this MT system in the following text as QT-SMT-form. The system is
based on Moses [Koehn et al., 2007], an open source tool that supports training
and evaluation of SMT systems. For word alignment, we use fast_align [Dyer
et al., 2013] on the lowercased and tokenized data.

For training language models, we use SRILM (Stanford Research Institute
Language Modeling toolkit) [Stolcke, 2002] with order of 5 (5-gram). The language
models are trained using the monolingual data that we presented in Section 5.2 for
each of the target languages. And finally MERT is employed to tune the model
parameters using the development data set towards PER.
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SMT for Document Translation

For the DT experiments, we train two SMT systems:

DT-SMT-form
This system is a replication of the SMT systems that translate standard sentences
by Dušek et al. [2014]. This system is identical to the previous SMT system that
we presented for query translation, with only one difference that it is tuned with
MERT using complete sentences (summaries) towards BLEU (rather than using
queries towards PER). The rest of the training steps are the same.

DT-SMT-lemma
The document collection in this work is in English, which is not morphologically
rich as some target languages of the queries (e.g. Czech, German and Swedish).
According to Schultz et al. [2002], morphological variations of terms in infor-
mation retrieval cause degradation of recall performance, because IR systems
that are based on term-matching fail to match terms in search query with their
morphological variations in document collection.

To avoid the influence of the morphological variations of the document collection
when translating it from English into a morphologically rich language, we attempt
to reduce the morphological variations in the output translations by introducing
DT-SMT-lemma as our own modification of DT-SMT-form, which translates
English sentences into lemmatized sentences in the target language using UDPipe
[Straka and Straková, 2017]. The only difference between these two systems is that
in DT-SMT-lemma, we lemmatize the monolingual data and the target language
part of the parallel data.

We use fast_align [Dyer et al., 2013] to compute word alignment on the
lowercased word forms between English and each target language. Then we
replace the word forms in the target language with word lemmas. Moses (with its
default settings) is used to train a phrase-table using the tokenized and lowercased
English word forms and the tokenized and lemmatized data in the target language.
The evaluation of the presented SMT systems is shown in Section 5.6.
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5.5.2 NMT Training
In this section, we describe our training approach for the NMT models that we use
for CLIR experiments (both the query translation and the document translation
approach). The main purpose is to compare the performance of CLIR systems
when using SMT versus NMT. The training objective of our NMT systems is to
maximise the performance of the retrieval rather than the quality of translations
as it is done in a typical MT task.

Our NMT experiments are conducted using the Marian library, an open source
tool that is written in C++ and supports multi GPU training and translation.
Marian also includes implementation of the state-of-the-art NMT models such as
deep RNN and Transformer model [Junczys-Dowmunt et al., 2018].

As for the training, dev and test data, we use the same data as in SMT training
to make the comparison as fair as possible. However in NMT, all data sets
(monolingual and parallel) are encoded by BPE using subword units segmentation
script by Sennrich et al. [2016b]. The model parameters (for example: learning
rate, beam-size, dropout etc.) are the same for all language pairs, and identical
the parameters that were reported by Vaswani et al. [2017].11

We follow the iterative back-translation approach as suggested by Hoang et al.
[2018] and presented in Section 5.3.4. In addition to the fact that back transaltion
training boosts the performance of the NMT approach, it is shown that it helps
for domain adaption of NMT when the monolingual data is taken from a specific
domain. Which is ideal for our case, since we translate medical text (medical
domain).

Source of the monolingual data
The monolingual data is in English for the pairs that have English as a target
language, and in one of the seven languages (e.g. Czech) for the another translation
direction (e.g. English -> Czech). It is recommended to be taken from medical-
domain data to adapt the model more for medical text translation (Section 5.2.4);
thus we select data from the following two resources:

• For English monolingual data, we use the retrieval collection, which is entirely
medical-domain data. The collection is described in details in Section 4.1.
We use the seven initial models (English to target) to translate it into each
language (Czech, French, German, Hungarian, Polish, Spanish and Swedish).

• For non-English monolingual data, we use the target side of the parallel
corpus. The parallel corpus is taken from the medical domain as we presented
in Section 5.2.

In both cases and in each back-translation iteration, we randomly select 2 million
sentences from the monolingual data, ignoring sentences that are longer than 80
words.

11https://github.com/marian-nmt/marian-examples/tree/master/transformer
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Figure 5.5 shows the architecture of the proposed iterative back-translation
NMT model. It includes the following three steps:

• Initial models: For each language pair, we first train the initial models
in both directions, English to target, and source to English. We use the
authentic parallel data that we presented in Section 5.2 for training the
initial models. During the training of the transformer models, multiple
epochs (iterations through the entire training data) are needed. It is known
that too many training epochs can cause over-fitting of the model, and too
few iterations might cause under-fitting [Popel and Bojar, 2018a]. To avoid
this, early stopping of the training is employed to terminate the process when
the intermediate model satisfies a stopping criterion (training objective).
We stop training when there are 3 consecutive checkpoints without any
improvement in the translation performance of the tuning data . The
checkpoint in Marian is when Marian saves the trained model at that point
(as an intermediate model), translates the tuning data using that model
and evaluates its performance. This information is stored in a log text file,
which can be used to monitor the training process.

• Translating monolingual data: When the training in the previous step
finishes, we take the last saved model and use it to translate the monolingual
data in the target language into the source language. Then, we add the
translated data into the authentic one and shuffle all the data. In every
back translation step, we add the translated data into the authentic one
rather than accumulating the translated data in each translation process.
This guarantees a fixed ration of authentic data (80%) in the synthetic one.

• Updating initial models: At this step, we continue training using the last
saved models and using the new synthetic data.

We applied back translation three times during the developing of our NMT model.
The improvement in the third one was not substantial, however, we applied a
fourth back translation on the Czech-English pair and the performance was not
different from the third one; so we decided to stop at this point.

NMT Model Selection

We setup Marian to save the intermediate models (checkpoints) after each 5000
iterations, where each iteration is a batch-sized instances from the training data.
This is done instead of saving each epoch to avoid loosing effective intermediate
models in between. The model is evaluated at each checkpoint using two MT
metrics: BLEU and PER on the MT development set.

We employ MT metrics to select the best model for CLIR rather than employing
IR metrics for this purpose. Figure 5.6 shows the evaluation of the intermediate
models using MT metrics and how they correlate with P@10 (IR metric). P@10
is calculated by query translation of the Czech training queries into English using
the corresponding NMT model, and then conducting retrieval using the baseline
system as we describe in Section 6.2.1.
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Figure 5.5: Iterative back-translation architecture

The best BLEU score (iteration 400000) does not correspond to best value for
P@10, nor the best score for PER (500000). This is understandable, because these
metrics evaluate the quality of the translation.

In order to select the best checkpoint that guarantees the advantages of both
metrics (BLEU which penalizes word order, and PER which does not), we ensemble
the two models together (best BLEU and best PER) during decoding by setting
up the weights for both models equally to 1.0. Marian decoder supports model
ensembling since they share the same vocabularies. For the document translation
experiments, we select the NMT models with the best BLEU scores. We plot only
Czech-English system for the sake of simplicity.

5.6 MT Results Evaluation

We present our evaluation of the MT systems that we presented previously in this
chapter. The purpose of our MT development is to use translation of either search
queries or document collection in CLIR. For that reason, the performance of CLIR
system (after employing MT) is considered the objective of our MT development.

73



Figure 5.6: Performance comparison of intermediate NMT models at each check-
point (each checkpoint is 5000 iterations) in terms of BLEU, 1-PER and P@10 (in
percentages), for Czech→English MT model and the corresponding Czech (QT)
CLIR system

5.6.1 MT for Document Translation
For MT systems that are used in document translation experiments, we report
the following models:

• DT-SMT-form: This system is a replication of the SMT systems that
translate standard sentences by Dušek et al. [2014].

• DT-SMT-post-lem In this system, we perform post-translation lemmatiza-
tion of the output from DT-SMT-form using UDPipe.12 The purpose of
this system is to study the effect of the lemmatizated sentences on the MT
evaluation metrics. Reference sets are also lemmatized.

• DT-SMT-pre-lem The only difference between this systems and DT-SMT-
form is that here we lemmatize the monolingual data and the target side
of the parallel data. Then, we translate the test sets, in this case the
produced translations are already lemmatized, then we evaluate them with
the lemmatized reference translations.

• DT-NMT-form This system translates the test sets using the NMT model
that we described in 5.5.2.

Table 5.6 shows the results of our evaluation of MT for sentence translation
systems using the three test sets (Khresmoi summary, Cochrane and NHS).

12http://ufal.mff.cuni.cz/udpipe
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The scores cannot be directly compared across languages and for the form and
lemma systems (since the test sets differ) but they indicate how the translated
sentences differ from the reference translations which in term-matching IR is
important. Also, the results of the two systems producing lemmas instead of the
forms are indicative only. They cannot be directly compared to those producing
forms. In all language pairs (except English-Hungarian), DT-SMT-post-lem
(lemmatizing the output of the SMT systems) achieves the best results in terms
of BLEU scores for the Khresmoi summary test set.

Pair System/Set Khresmoi Cochrane NHS
BLEU PER BLEU PER BLEU PER

EN-CS

DT-SMT-form 19.06 51.16 17.63 49.66 12.35 41.81
DT-SMT-post-lem 30.97 65.64 28.43 64.51 20.41 54.48
DT-SMT-pre-lem 28.72 64.26 25.04 60.91 18.99 53.56
DT-NMT-form 25.92 56.57 24.56 54.62 14.64 44.04

EN-FR

DT-SMT-form 37.85 68.30 31.18 62.39 27.94 57.31
DT-SMT-post-lem 43.50 74.78 41.62 71.50 36.60 65.60
DT-SMT-pre-lem 41.26 72.62 31.52 63.54 26.67 58.20
DT-NMT-form 38.84 66.52 29.36 59.90 18.46 48.04

EN-DE

DT-SMT-form 18.79 53.42 22.19 55.89 16.78 49.78
DT-SMT-post-lem 23.68 60.46 27.78 62.76 19.76 55.05
DT-SMT-pre-lem 13.08 48.01 15.00 50.61 11.66 47.40
DT-NMT-form 19.83 51.45 20.69 50.96 9.77 36.43

EN-ES

DT-SMT-form 25.77 63.29 33.79 67.10 24.83 59.67
DT-SMT-post-lem 35.46 72.31 44.41 75.85 36.19 69.60
DT-SMT-pre-lem 28.41 65.73 36.06 70.05 26.96 62.10
DT-NMT-form 23.20 55.25 26.24 56.16 16.54 43.08

EN-HU

DT-SMT-form 10.51 41.68 8.62 36.15 6.85 27.85
DT-SMT-post-lem 13.24 48.60 11.53 44.03 10.04 35.17
DT-SMT-pre-lem 14.35 51.96 12.10 46.32 11.00 39.96
DT-NMT-form 8.23 39.58 7.83 39.01 6.00 35.29

EN-PL

DT-SMT-form 11.56 41.34 15.84 44.66 11.53 36.70
DT-SMT-post-lem 16.19 50.59 21.84 53.60 16.36 44.12
DT-SMT-pre-lem 12.52 46.90 18.06 52.04 14.38 44.78
DT-NMT-form 10.23 35.91 13.65 41.58 9.86 35.50

EN-SV

DT-SMT-form 33.69 64.69 34.16 64.38 30.58 62.48
DT-SMT-post-lem 40.93 69.93 41.92 70.51 37.93 68.24
DT-SMT-pre-lem 39.16 70.07 39.39 70.61 36.41 68.48
DT-NMT-form 35.18 64.49 38.84 67.63 34.52 62.51

Table 5.6: Results of DT MT system evaluation in percentages, DT-SMT-form,
lemmatization of translated forms (DT-SMT-post-lem), translations of DT-SMT-
pre-lem, and DT using NMT system. These MT systems are used for the document
translation CLIR experiments

5.6.2 MT for Query Translation
For the query-translation experiments, we present two systems:

• QT-SMT-form This system is described in Section 5.5.1 which follows the
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work of Dušek et al. [2014]. The model is optimised to translate medical
search queries by tuning its parameters using the Khresmoi query test set,
and employing MERT to tune its parameters towards PER rather than the
common approach in MT which is tuning towards BLEU metric.

• QT-NMT-form This system follows our proposed approach in Section 5.5.2,
wherein the NMT model is an ensembled model of two models: the model
that achieves the best BLEU and the model that achieves the best PER
using the development data set.

The results of our evaluation of MT for query translation are presented in
Table 5.7 and Table 5.8 using Khresmoi query test set. We can observe that SMT
systems significantly outperform the NMT systems in terms of BELU score in all
language pairs. However, NMT models produce the best PER scores in all pairs
(except for the Swedish-English pair), although our NMT models are ensembled
based on two models (best PER and best BLEU), it seems that the model with
best PER has stronger weights in the output layer.

Metric/System CS-EN FR-EN DE-EN
NMT SMT NMT SMT NMT SMT

BLEU 22.58 36.49 30.63 38.70 28.73 37.09
PER 48.96 70.25 65.41 75.91 58.10 65.26

Table 5.7: Evaluation of translation quality of QT-SMT-form and QT-NMT-form
systems against the Khresmoi query test set using BLEU and PER metrics in
percentages for the pairs : CS-EN, FR-EN and DE-EN. These MT systems are
used for query-translation CLIR experiments

Metric/System HU-EN ES-EN SV-EN PL-EN
NMT SMT NMT SMT NMT SMT NMT SMT

BLEU 36.77 39.79 17.83 31.22 40.94 39.28 18.72 26.06
PER 63.28 67.39 45.52 73.73 63.06 62.70 47.99 58.64

Table 5.8: Evaluation of translation quality of QT-SMT-form and QT-NMT-form
systems against the Khresmoi query test set using BLEU and PER metrics in
percentages for the pairs: HU-EN, ES-EN, SV-EN and PL-EN. These MT systems
are used for query-translation CLIR experiments
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6. Experiments
In this chapter, we report our approaches to implement CLIR systems in the
medical domain. It is organized as follows: First, we present our monolingual
system. This system is considered as a reference system to other CLIR methods.
Then, we move to present our CLIR methods, which mainly follow two paradigms:
QT and DT. We study each method separately, and then we compare the two
methods and report the state-of-the-art approach among all the presented systems.
Finally in this chapter, we present our term-selection method for query expansion
in CLIR and monolingual IR.

6.1 Monolingual Settings
In all CLIR methods, we reduce the task to a monolingual setting. The architecture
of the monolingual system is shown in Figure 6.1. At the beginning, the English
documents are indexed using Terrier [Ounis et al., 2005]. We use the embedded
English tokenizer in Terrier and its default English stopword list to remove
stopwords from both queries and documents. Finally, for each query, we retrieve
the top 1000 ranked documents as scored by the retrieval model. The following
sections present our methods for IR model selection process.

Figure 6.1: Monolingual system architecture

6.1.1 IR Model Selection
To select the best monolingual IR model for our test collection, we use the original
English training queries (100 queries) to tune each model parameter and evaluate
its performance using the P@10 metric, since P@10 is the main IR evaluation
metric in our research. We evaluate three models: Okapi BM25, TF-IDF, and
Dirichlet LM.
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Figure 6.2: Tuning the b parameter (term frequency normalisation) using the
training English queries

Okapi BM25 model was presented in Section 2.3.2. The model has a free
parameter (b). We tune this parameter, and we set it to 0.25. Tuning k1 and
k3 do not bring any significant difference over the best system that is achieved
by tuning b previously, we keep the default values (k1 = 1.5 and k3 = 1000) as
they are set in Terrier. Figure 6.2 shows how the value of b parameter affects the
retrieval performance.

The second model is TF-IDF that is based on the vector space model, as
explained in Section 2.3.1. The third model is Dirichlet LM, which was presented
earlier in Section 2.3.3. The model has one smoothing parameter called µ, we
keep this parameter set to 3000, which is its default value in Terrier, since tuning
it did not bring any improvement as shown in Figure 6.3. The results of the three
models on the training queries are presented in Table 6.1. Dirichlet LM achieves
50.70% of P@10, which is significantly better than the other two models. The
significance testing is conducted using the Wilcoxon signed rank test, with α set
to 0.05. We choose the Dirichlet LM model as the retrieval model in this research,
and we consider these monolingual settings the reference system for our CLIR
experiments.

Retrieval model P@10 MAP BPREF
DirichletLM 50.70 26.14 37.76
BM25 47.50 22.44 36.11
TF-IDF 44.30 22.88 36.58

Table 6.1: Results (in percentage) of our evaluation of multiple monolingual
systems against the English training queries
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Figure 6.3: Tuning µ parameter in Dirichlet model using the training English
queries

6.2 Query Translation

In this section, we present our methods of designing CLIR systems that follow the
QT approach in which queries are translated into the language of the document
collection.

6.2.1 Baseline (QT-SMT-form)

Our baseline system follows QT as shown in Figure 6.4. First, queries in a source
language are translated into English (the document language) using the QT-SMT-
form system that is described in Section 5.1. The queries are constructed from
the 1-best translation, as it is scored by the SMT decoder.

Then, these translated queries are used for retrieval from the indexed English
collection. In all CLIR experiments in this work, after constructing the queries in
the language of the collection, Dirichlet model is used for retrieval as described in
Section 6.1, with the same retrieval parameters.

Results of the CLIR baseline systems on the training and the test sets are
shown in Table 6.2 . We also report the results of the monolingual system that
uses English queries for comparison and we consider it as a reference system.
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Figure 6.4: Baseline (QT-SMT-form) architecture

Lang/Set training set test set
P@10 BPREF MAP P@10 BPREF MAP

Mono 50.70 37.76 26.14 53.03 39.94 28.31
Czech 49.10 35.97 23.76 47.27 36.79 23.30
French 48.00 35.78 23.34 48.03 35.65 24.45

German 44.90 32.60 20.04 44.24 35.38 22.51
Hungarian 45.80 34.95 21.88 45.91 37.08 23.60

Spanish 48.00 35.97 23.05 46.97 37.24 24.11
Swedish 44.60 33.22 20.54 40.00 33.24 20.94
Polish 45.40 35.24 21.72 42.12 33.77 21.00

Table 6.2: Results of CLIR baseline systems (QT-SMT-form) and the monolingual
system on the training and test sets in percentages

Table 6.3 shows performance comparison between the baseline system and the
monolingual system in terms of P@10 and the translated queries.

The baseline system outperforms the reference system in some cases when the
translation contains a different synonym of the same concept as in the French
query 2015.34. The term caries appears in the query translation instead of the
term cavity. The same case in the Czech query 2015.40, the terms infant in
the baseline query versus the term stain, and the term stain versus blotch in
the reference query. This makes the query outperform the reference one by 40%
absolute. By conducting further analysis, we find that infant has TF in the
document collection equal to 173505, while TF of baby is 2 only.

The monolingual English corpus that is used to train LM for SMT systems
contains the English CLEF eHealth document collection that we use in our CLIR
experiment. This makes the SMT system give a higher weight for translations
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that contain terms or expressions that have high TF in the document collection,
and eventually reduces the mismatch problem between translated queries and
relevant documents.

However, the main problem of the baseline system is OOV, wherein the
translation system is unable to translate query terms in the source language to
the target language because such terms did not appear in the training data of the
SMT system, as shown in the Czech query 2013.3 where asystolická is an unknown
word and left untranslated, and the OOV makulablutung in the German query
2013.41. There are 11 terms in the translated Czech test queries left untranslated,
12 in the French queries, and 16 in the German queries. We also find in the
translated Spanish queries a total of 10 OOVs. There are also 20 OOVs in the
Hungarian queries, while in the Swedish and Polish, the case is worse, where there
are 40 OOVs in Swedish and 54 OOVs in Polish queries, which explains the low
performance of these CLIR systems.

Per query analysis of the test set is presented in Figure 6.5 and Figure 6.6.
The bars represent the difference between P@10 of each query in the baseline
CLIR system and the monolingual system for each language. A positive value
means that the corresponding query improved in the baseline compared to the
monolingual system. A negative value indicates a degradation.

Query: 2015.40 (Czech)
ref: baby red blotch on face (00.00)
base: infant red stain on face (40.00)

Query: 2015.42 (Czech)
ref: eye iris large (50.00)
base: big eye iris (40.00)

Query: 2013.3 (Czech)
ref: asystolic arrest (70.00)
base: asystolická arrest (50.00)

Query: 2013.41 (German)
ref: right macular hemorrhage (50.00)
base: makulablutung right (00.00)

Query: 2013.45 (German)
ref: symptoms and disease of aortic in-
sufficiency (90.00)
base: symptoms and aortic insufficiency
(100.00)

Query: 2015.34 (French)
ref: cavity problem (60.00)
base: problem with caries (90.00)

Table 6.3: Examples of translations of queries including reference (English queries)
(ref ) and baseline (QT-SMT-form) referred to as base. The scores in parentheses
refer to query P@10 scores in percentages
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6.2.2 Translation Hypotheses Reranking

Previously, we used the MT system as a black box in our query-translation exper-
iments, in which we always took the best translation for the query construction.
However, MT systems usually generate a list of alternative translations. This list
is rich of multiple synonyms and candidate translations at phrase and word level
of an input sentence. We use the term rerank to refer to the process of reranking
the SMT translation hypotheses with respect to CLIR performance.

Method

There are two approaches to rank translation hypotheses towards better CLIR
performance, either to directly tune the decoder to do that by replacing the
translation metric during tuning with P@10 (IR metric) or reranking the produced
translations externally. We choose the latter because it will be easier to use the
reranker with other SMT systems that produce n-best-list translations. The first
approach is also more computationally expensive to include P@10 as an objective
function in MERT. Because it requires conducting retrieval from the collection
for every translation hypothesis during the optimization process.

Our method is limited to translations that are produced by SMT . Because in
NMT, we do not have access to internal MT scores as the case in SMT. Internal
scores in SMT system play important role in our method.

Training

When translating a query qi to a target language, we get a ranked list of translation
hypothesis qi,j. This list is ranked descendingly according to the scores produced
by the SMT decoder.

We represent each translation hypothesis by a vector of features (predictors).
For training queries, each hypothesis is assigned a score (response) equal to
1 − (Oj − Pi,j), where Pi,j is P@10 score of top 10 documents retrieved by the
translation hypothesis qi,j and Oj is the maximum (oracle) P@10 of all the
translation hypotheses of the query qi. The reason behind subtracting the oracle
P@10 (Oj) from the hypothesis P@10 (Pi,j) is that some queries do not have
relevant documents by any of their translation hypotheses, even these hypotheses
might be good translations. If we do not do that, we will be assuming that all
of these hypotheses are bad examples, which will not be helpful for the system
to distinguish between good and bad training samples. The response values are
in the range of ⟨0, 1⟩, where 1 indicates a good query translation and 0 a bad
translation.

The reranker is trained by fitting a generalized linear regression model (GLM)
with logit as the link function (ensuring the response to be in the ⟨0, 1⟩ interval)
[McCullagh and Nelder, 1989]; thus, the problem of reranking is converted into a
regression problem.
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We consider the number of translation hypotheses to be ranked as an experiment
hyperparameter, thus it needs to be tuned. A small list does not give a linguistically
rich list for ranking, and having a big list makes it difficult for the model in test
time to distinguish between the good and the bad candidates. We follow grid
search optimisation to decide how many hypotheses to use and decide to use 15
hypotheses based on the model performance.

Training samples are generated by 15-best-list of translation hypotheses from
100 queries in 3 languages (Czech, German, and French). This leads to 4500
training instances.

To normalize the data, we apply standardization on each feature of the training
set. Then get the coefficient values (feature’s mean and variance) and use them
to normalize the test data as well. This normalization approach will transform
the data to have zero mean and unit variance.

We apply the Leave-One-Out Cross-Validation (LOOCV) approach on the
100 queries, then testing on 1 query. The model predicts the P@10 value for
each hypothesis. Then the query is generated from the hypothesis that has the
minimum response value (the highest P@10).

We employed the GLM implementation in R,1 which optimizes the model
parameters by the iteratively reweighted least squares algorithm.

Feature Set Description

We present a set of features that are extracted from multiple resources including
the SMT system, the document collection and external resources like Wikipedia
and PubMed articles. Our feature set includes the following:

SMT Scores The main set of features are the eight scores from the SMT models
plus the final translation score. They include scores of the following models:

• Phrase translation model that ensures that the individual phrases
correspond to each other.

• Target language model, which estimates the fluency of the output
sentence.

• Reordering model capturing different phrase orders in the two languages.
• Word penalty penalizing translations that are too long or too short.

For more details about these scores and final translation scores, see Section
5.1.

RANK Two features extracted from the original ranking – the rank itself and a
binary feature indicating the top-ranked hypothesis.

1https://www.r-project.org/
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Retrieval Status Value (RSV) RSV is the value of the retrieval scoring function,
given a query and a document, this value is an estimation of the relevance
degree of that document by Dirichlet model. This feature is the score of
the top-ranked document for each hypothesis after conducting the retrieval.
This feature is motivated by the work of Nottelmann and Fuhr [2003], where
they investigated the correlation between the RSV and the probability of
relevance.

WIKI This feature is motivated by Liu and Nie [2015] and Herbert et al. [2011],
who found that Wikipedia abstracts in the medical domain usually contain
a description of diseases and health-related topics using simple language
(less medical terms), while the titles are usually expressed using medical
terms. This helps us in this work to match between queries that are written
in a simple language by laypeople and the related medical concepts.
Our approach is as follows: First, we index all Wikipedia articles using their
titles and abstracts. Second, for each query, we translate it into English
taking its 1-best-list and conduct retrieval using Dirichlet model. Then we
create a pool from the top 10 ranked articles. Third, from this pool, we
calculate the sum and the average of term frequency for each term in a given
hypothesis.

BRF Motivated by the blind-relevance feedback approach for query expansion
[Yu et al., 2003], a single best translation provided by QT-SMT-form for
each query is used to retrieve the highest ten ranked documents, and each
hypothesis is scored by the sum and average of term frequencies extracted
from the retrieved documents.

IDF To distinguish translations containing informative terms, we score each
hypothesis by the sum and average of inverse document frequency of its
terms. IDF is calculated from the document collection.

TP Synonyms and acronyms appear in the alternative translations of the same
term in the source sentence because the SMT decoder generates lattice paths
to produce the final translation, and different paths (hypotheses) might
contain the same terms. When multiple hypotheses share the same term, it
gives that term a higher probability to be more relevant. To investigate this
effect, we create a Translation Pool (TP) by concatenating all hypotheses
for a given query. Then each translation hypothesis is scored by the sum
and average of term frequencies extracted from the merged n-best-list.

UMLS Two features based on the UMLS Metathesaurus [Schuyler et al., 1993]:
First feature is the number of UMLS concepts identified in each hypothesis
by MetaMap [Aronson and Lang, 2010] (with word sense disambiguation
and part-of-speech tagging on). This is done by annotating all translation
hypotheses with medical concepts using MetaMap. The second feature
is the number of unigrams and bigrams that match entries in the UMLS
Metathesaurus. This helps to give extra weight to the hypotheses that
contain medical terms. Researchers have investigated the use of UMLS
concepts in the CLEF eHealth IR tasks [Goeuriot et al., 2015], [Goeuriot
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et al., 2014]. Also, the work reported by Choi and Choi [2014] inspired us
to use this feature.

Testing: For testing, translation hypotheses of the test queries are scored by
this model, and the lowest-scored hypothesis (the greatest P@10) is selected to
be used for retrieval. After we generate queries, we conduct retrieval using the
Dirichlet model (Section 2.3.3).

Query (j)

MT System

<R1j,f1,f2,...,fn,(1-(Oj-P1j)>
< R2j,f1,f2,...,fn,(1-(Oj-P2j)>

..

..
< Rnj,f1,f2,...,fn,(1-(Oj-Pnj)>

N-best-list

Reranker
(Generalised Linear Regression)

New 1-best-list
Ranked Documents

IR System

Figure 6.7: The architecture of the reranker model: first the SMT system produces
English translation hypotheses for a given query in the source language, then
each hypothesis will be converted into training sample by assigning a response
and a set of feature values, then the GLM will be trained to distinguish good
translations from bad ones and produces a new 1-best-list that is used to create a
query for retrieval

Experiments and results

For each query (both in the training and test sets), we consider up to 15 best
translation hypotheses (excluding duplicities). Queries with oracle P@10=0 were
excluded from training. The training data then included 1,249 items for Czech,
1,181 for German, and 1,246 for French. We merged these data into one single
training data set and trained a single language-independent model, which proved
to be a better solution than to train a specific model for each language. The
training set included a total of 3,676 items of query translation hypotheses of the
100 original queries (each translated from Czech, German and French).

The test data is normalized using the coefficients that are obtained when we
normalize the training data.
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Figure 6.8: Histograms of ranks of translation hypotheses with the highest P@10
for each training query: the first such ranks only (left), all such ranks (right)

Oracle Experiment

To confirm the hypothesis that reranking of SMT n-best-lists can improve CLIR
quality, we performed the following experiments: For each query in the training
data, we selected the translation hypothesis with the highest P@10 and averaged
those values to get the maximum (oracle) score of P@10 achievable if the reranking
method always selects the best translation. On the training data, the oracle
score would be 55.10 for Czech, 58.90 for French, and 52.70 for German. This
result is very encouraging and confirms that there is enough potential space for
improvement. The baseline scores could be improved by 11.67 on average.

A deeper analysis of this observation is illustrated in Figure 6.8. The two plots
visualize the distribution of the rank of best translations (highest P@10) in the
20-best-lists for all training queries (per language). The first plot shows histograms
of the top ranks with the best translations. Here, for about 45% of the queries,
the best translations are ranked first. For the remaining 55% queries, the first
best translations are ranked lower. Those are the cases, which can be improved
by better ranking. The second plot displays the histogram for all hypotheses with
the highest P@10 (not just the top ones). For each query, there are multiple
translations that can be selected to achieve optimal performance.

N-best list merging

Nikoulina et al. [2012] presented a method combining n-best-list translations by
trivial concatenation of 5 top translations as produced by SMT. This approach
completely failed on our data (all languages) and did not improve the baseline for
any value of n from 0 to 20 (on the training data and the test data). Results of
the 5-best-list concatenation on the test data are shown in Table 6.6 (row 5-best).

Reranking

We test our reranking method with several combinations of features. The complete
results are displayed in the middle section of Table 6.6. The figures in bold denote
the best scores for each language and evaluation metric. All of those are statistically
significantly better than the respective baselines (QT-SMT-form). The significance
test is performed using the Wilcoxon signed-rank test with α=0.05.

The system based only on the SMT features does not bring any substantial
improvement over the baseline (denoted as SMT in the table) for any of the
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Czech French German
system P@10 MAP P@10 MAP P@10 MAP
Mono 53.03 28.31 53.03 28.31 53.03 28.31
QT-SMT-form 47.27 23.30 48.03 24.45 44.24 22.51
5-best 38.94 22.30 41.06 23.05 30.45 17.28
SMT 44.70 24.77 48.79 25.81 42.73 22.65
+RANK 48.64 25.73 48.48 26.07 44.55 24.09
++IDF 48.03 25.22 48.64 26.10 44.39 24.11
++BRF 47.27 24.99 49.70 26.64 43.64 23.76
++TP 45.76 23.74 48.48 26.26 44.39 24.07
++WIKI 48.64 25.73 49.24 26.36 43.64 23.76
++UMLS 48.64 25.73 49.09 26.09 44.55 24.09
++RSV 48.64 25.66 48.94 25.95 43.03 23.55
ALL 50.15 25.73 51.06 27.86 45.30 23.71

Table 6.4: Complete results of the final evaluation on the test set queries (in
percentage)

languages. P@10 is improved by less than 1 point for French only, which is not
a statistically significant improvement. However, it is degraded significantly for
both Czech and German.

The traditional way of SMT tuning towards translation quality does not seem
sufficient if no additional features are available. However, adding the explicit
features derived from the SMT rankings helps a lot (row +RANK ), especially for
Czech and German, where the increase of the P@10 and MAP scores is statistically
significant.

The effect of the other features is studied independently by adding those features
to the model with the SMT+RANK features. However, in terms of P@10, none of
them brings any notable improvement. Although the BRF, WIKI, and UMLS
features improve the results for French, they are not statistically significant even
in comparison with the QT-SMT-form.

The baseline (QT-SMT-form), however, is outperformed significantly by a
system combining all the features (row ALL). P@10 is increased by 2 points on
average for all languages. In comparison with the monolingual results, the ALL
system performs at 94.56% for Czech, 96.28% for French, and 85.42% for German.

We observe in the alternative translations of the German language less diversity
in the available synonyms compared to other languages, some queries have trans-
lation hypotheses that are just different in word order compared with 1-best-list
translation.

In Figure 6.9, we present a detailed comparison of the QT-SMT-form results
and the results of the best system (ALL). For each query in the test set, the plot
displays the difference of P@10 obtained by the best system and the QT-SMT-form
system. Positive values denote improvement, which is observed for a total of 10
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queries in Czech, 15 queries in German, and 8 queries in French. Negative values
denote degradation, which is observed in 2 cases for Czech, 4 cases for German,
and 3 cases for French. A good example of a query with improved translation is
2015.11 (reference translation: white patchiness in mouth). The Czech QT-SMT-
form translation white coating mouth is improved to white coating in oral cavity
(P@10 is increased from 10.00 to 80.00) and the French QT-SMT-form white spots
in the mouth is improved to white patches in the mouth (P@10 is increased from
10.00 to 70.00). More examples are given in Table 6.5.

Query: 2013.02 (German)
ref: facial cuts and scar tissue (30.00)
ora: cut face scar tissue (80.00)
base: cut face scar tissue (80.00)
best: face cuts and scar tissue (80.00)

Query: 2013.42 (French)
ref: copd (70.00)
ora: disease copd (90.00)
base: copd (70.00)
best: disease copd (90.00)

Query: 2014.5 (German)
ref: bleeding after hip operation (60.00)
ora: bleeding after hip surgery (80.00)
base: bleeding after hip surgery (80.00)
best: hemorrhage after hip operation
(50.00)

Query: 2015.53 (Czech)
ref: swollen legs (10.00)
ora: leg swelling (80.00)
base: swollen lower limb (40.00)
best: swollen lower limb (40.00)

Table 6.5: Examples of translations of training queries including reference (ref ),
oracle (ora), QT-SMT-form (base) and best (best) translations (system using all
features). The scores in parentheses refer to the query P@10 scores in percentages
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Spanish Hungarian Polish Swedish
system P@10 MAP P@10 MAP P@10 MAP P@10 MAP
Mono 50.03 28.31 50.03 28.31 50.03 28.31 50.03 28.31
QT-SMT-form 46.97 24.11 45.91 23.60 42.12 21.00 40.00 20.94
SMT 43.79 23.83 40.00 22.54 35.61 19.76 38.33 19.85
SMT+Rank 43.64 24.28 38.94 21.91 38.18 20.21 36.21 20.02
ALL 50.15 25.11 48.48 25.28 43.18 21.76 41.36 21.29

Table 6.6: Final evaluation results of the monolingual system (mono), the baseline
system (QT-SMT-form), and the translation hypotheses reranker (with multiple
combinations of features) on the test set for Spanish, Hungarian, Polish and
Swedish in percentages

Adaptation to New Languages

The presented reranking model is designed for three CLIR systems: Czech, French
and German, because at some point in our research timeline, we did not have
queries available in other languages. However after the queries became available,
we want to study if the model can be adapted to the new 4 languages and if
we can make use of the training data that we obtain from the 3 languages for
the adaptation process. We want to investigate in this section if the features in
our presented supervised machine learning model are language independent or
language specific. If the features are language independent, it means that the
training dataset can be easily used to train new model for new languages. This can
help when introducing a new language with limited training data by employing
training data from other languages.

We first translate the queries in the extended languages (Spanish, Hungarian,
Polish and Swedish) using the QT-SMT-form into English, and for each query,
we get 15-best-list translation hypotheses, then we generate the feature values as
described in Section 6.2.2. We merge the training data from the Czech, German
and French languages with the training data from these languages, which leads to
a larger training data.

Table 6.6 shows the results for the reranking models for the new languages
against the test set.

For the Spanish and Hungarian languages, the system combining all features
(ALL) significantly outperforms the baseline system (QT-SMT-form). A small
and not statistically significant improvement is observed for Swedish and Polish
by the system based on all the features.

We observe in the test results by our best system (ALL) 11 queries improved in
Spanish, 8 in Hungarian, 5 in Polish and 7 in Swedish. Also there are degradations
of 5 queries in Spanish, 3 in Hungarian, 5 in Polish and 3 in Swedish.

The impact of untranslated terms appears mostly in the Polish language. For
example, query 2015.37: łuszcząca skin has P@10 = 00.00, (reference translation:
scaly skin). It contains the untranslated term łuszcząca, which means scaly in
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English. The monolingual query has P@10 = 99.00, the difference in performance
is caused by the untranslated (out-of-vocabulary, OOV) words only.

The same case can be observed in query 2015.35 (reference query: lot of
irritation with contact lenses). The performance of this query is P@10 = 00.00.
The translated query is significant irritation szkłami kontaktowymi. It contains
two untranslated terms: szkłami (lenses) and kontaktowymi (contact). These two
untranslated words destroy the query.

Query 2015.29 in Spanish has P@10 = 30.00 in the baseline, its translation is
red patch on the skin and dry pus. The (ALL) system improves it to P@10 = 90.00
and selects the translation red patch on the skin and dry pus blister. Another
example of improvement is observed in query 2013.32, the baseline translation is
dyspnoea with P@10 = 60.00, the selected translation is shortness of breath with
P@10 = 90.00. The reference translation is SOB with P@10 = 50.00, and this is
one case in which the best system outperforms not only the baseline system but
also the monolingual one.

6.2.3 Query Translation using NMT System (QT-NMT-form)
In this section, we present our experiments conducting the query-translation CLIR
approach using the NMT models that we presented in Section 5.5.2.

The goal of these experiments is to compare the CLIR performance when trans-
lating the queries using NMT systems versus the performance when translating
them using SMT systems.

We translate the queries from all languages into English using QT-NMT-form;
then, we conduct retrieval using our monolingual settings.

Results of the CLIR systems using NMT are shown in Table 6.7 (QT-NMT-
form). The bold and italic numbers indicate the best system in each language
and numbers in bold only indicate a system that is not statistically different than
the best system.

QT-NMT-form system significantly outperforms the CLIR system that employs
the SMT models (QT-SMT-form) in all languages. Moreover, the Czech QT-NMT-
form outperforms the monolingual IR system. This can be explained because the
NMT models in our work are adapted to translate medical content by employing
the collection itself in the back-translation process. This gives the model access
to the collection vocabularies that are frequent in the retrieval collection, and in
the relevant documents eventually.

Table 6.8 shows a comparison between the performance of queries that were
translated using SMT (QT-SMT-form) and NMT (QT-NMT-form), together with
the public MT based CLIR systems and the monolingual IR system.

We observe that when translating the queries using the QT-NMT-form, there
were no OOVs in the translations comparing to the OOVs that appeared in the
SMT translations. In NMT, dealing with OOVs is different than SMT, BPE
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Lang MT System/Year P@10 MAP BPREF
Mono - 53.03 28.31 39.94

Czech

Baseline (QT-SMT-form) 47.27 23.30 36.79
QT-NMT-form 57.27 26.02 40.74

Google 2016 52.88 26.69 40.56
Google 2017 55.76 26.06 40.00
Bing 2016 48.94 24.78 38.05
Bing 2017 48.03 21.92 35.47

French

Baseline (QT-SMT-form) 48.03 24.45 35.65
QT-NMT-form 51.52 24.11 36.70

Google 2016 51.21 25.46 37.11
Google 2017 48.94 24.89 37.47
Bing 2016 50.00 25.31 37.09
Bing 2017 50.15 25.15 38.56

German

Baseline (QT-SMT-form) 44.24 22.51 35.38
QT-NMT-form 50.30 22.53 36.62

Google 2016 51.67 26.02 39.07
Google 2017 47.42 24.86 37.67
Bing 2016 48.18 23.77 36.51
Bing 2017 45.61 21.37 35.45

Spanish

Baseline (QT-SMT-form) 46.97 24.11 37.24
QT-NMT-form 49.09 22.69 36.87

Google 2017 53.33 26.61 39.18
Bing 2017 53.18 26.96 40.34

Hungarian

Baseline (QT-SMT-form) 45.91 23.60 37.08
QT-NMT-form 50.76 24.08 37.84

Google 2017 47.27 24.33 38.14
Bing 2017 41.67 20.58 33.73

Polish
Baseline (QT-SMT-form) 42.12 21.00 33.77

QT-NMT-form 47.27 22.38 35.55
Google 2017 50.00 24.40 37.62
Bing 2017 48.03 24.26 38.40

Swedish
Baseline (QT-SMT-form) 40.00 20.94 33.24

QT-NMT-form 50.15 23.89 37.83
Google 2017 42.58 20.54 32.99
Bing 2017 46.67 23.60 35.97

Table 6.7: Results of CLIR systems based on query translation using the presented
QT-SMT-form, NMT and public MT systems against the test set
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tackles this issue by using a fixed dictionary for the most frequent sub-words in
the training data and deals with translation as an open-vocabulary approach (as
we presented in Section 5.3.3). This helps to significantly reduce the effect of
OOVs in the translated queries and boosts the CLIR performance eventually.

Query: 2013.38 (Czech)
ref: mi and hereditary (0)
SMT: im and hereditary (0)
NMT: hereditary myocardial infarction
(10)
Query: 2015.17 (Czech)
ref: scaly rash (10)
SMT: scaly rash (10)
NMT: rash squamous (80)
Query: 2015.61 (French)
ref: fingernail bruises (40)
SMT: bruising under the nail (10)
NMT: nail hematoma (60)

Query: 2014.19 (Swedish)
ref: l common carotid aneurysm (60)
SMT: l aneurysm in halspulsåder (0)
NMT: carotid artery aneurysm (100)
Query: 2015.34 (Hungarian)
ref: cavity problem (60)
SMT: caries problem (90)
NMT: tooth decay disorder (100)
Query: 2015.61 (Spanish)
ref: fingernail bruises (40)
SMT: bruising in toe nail (20)
NMT: nail hematoma (60)

Table 6.8: Comparison of query translation by two CLIR systems and the monolin-
gual IR system. Query translation is done using SMT (QT-SMT-form) and NMT
(QT-NMT-form) models presented in this work. Numbers in parentheses represent
P@10 performance (in percentage) of retrieval when using the translation as a
query
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6.2.4 Query Translation using Public MT Systems
In this experiment, we use two public MT systems for query translation, namely
Bing Translator, and Google Translate.

We translated the queries into English two times; the first time was in 2016
when these two MT systems were using phrase-based SMT, and in 2018 after
both deployed NMT systems in their public translation services. This allows us
to compare the effect of moving from phrase-based SMT into neural MT on the
medical CLIR performance.

At the time (2016) when we translated the Czech, French and German queries
using the public MT systems into English, we did not have the queries translated
manually from English into Spanish, Hungarian, Polish and Swedish; thus; we
do not report the performance of CLIR systems for these languages, however, in
2017, we could do that because we performed full manual translations expanding
our CLIR systems into seven languages.

Interestingly, we can observe in Tables 6.9 and 6.7 that the performance of
the CLIR systems (QT using Google Translate) degrades from 2016 to 2017
significantly in both training and test sets for German and French.

The values marked in bold and italic refer to the best system in each language
that significantly outperforms all CLIR systems for that language, and bold only
value refers to the system that is not statistically different than the best performing
one.

Notably, the Czech CLIR system using Google Translate in 2017 significantly
outperforms the same system in 2016. According to Wu et al. [2016], the NMT
approach that Google adopted reduced the translation errors by 60% on average
compared to the previously used SMT approach. This shows that improving the
translation quality does not necessarily improve the CLIR performance.

The same case appears for Bing Translator. The worst-case appears in the
German CLIR system, which degrades from 48.18% in 2016 to 45.61% in 2017.

For further analysis of the results, we apply per query comparison between the
translations of the same system in 2016 and 2017. In 2016, the systems tended
to have more untranslated terms (OOV) in the output. For example, the Czech
query 2015.63 (krustovitá ložiska na kůži) was translated by Google Translate
into krustovitá bearing skin resulting in 00.00% of P@10, while in 2017, it was
translated into crusty bearings on the skin increasing P@10 to 30.00%.

We can explain the outperformance of SMT over NMT because NMT showed
to perform poorly in a domain-specific task (medical query translation in our
case) comparing to SMT [Dowling et al., 2018]. This happens because, in SMT,
monolingual text from domain-specific data is usually used to train the language
model component, which helps eventually to make the translations more fluent in
the target language.
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There are some proposed solutions to overcome this weakness of NMT, such
as leveraging monolingual data through iterative back-translation or fusing an
RNN-based language model that is trained on domain-specific monolingual data
together with the NMT model [Gulcehre et al., 2015]. However, we are not sure
exactly if these commercial MT systems (Google Translate and Bing Translator)
are using any techniques for domain adaptation.

Lang MT System/Year P@10 MAP BPREF
Mono - 50.70 26.14 37.76

Czech

Baseline (QT-SMT-form) 49.10 23.76 35.97
Google 2016 52.90 25.15 37.45
Bing 2016 46.80 23.35 36.88

Google 2017 51.00 23.75 36.46
Bing 2017 47.50 23.39 36.55

French

Baseline (QT-SMT-form) 48.00 23.34 35.78
Google 2016 52.50 25.56 38.53
Google 2017 50.20 24.97 36.79
Bing 2016 51.60 25.89 39.02
Bing 2017 48.30 24.10 36.19

German

Baseline (QT-SMT-form) 44.90 20.04 32.60
Google 2016 49.10 23.04 35.40
Google 2017 47.70 22.53 35.39
Bing 2016 49.10 23.51 36.23
Bing 2017 47.10 21.14 34.48

Spanish
Baseline (QT-SMT-form) 48.00 23.05 35.97

Google 2017 49.20 23.68 36.76
Bing 2017 49.30 23.73 37.08

Hungarian
Baseline (QT-SMT-form) 45.80 21.88 34.95

Google 2017 46.10 22.04 35.78
Bing 2017 45.10 21.35 34.64

Polish
Baseline (QT-SMT-form) 45.40 21.72 35.24

Google 2017 44.90 20.31 33.50
Bing 2017 50.40 24.21 36.96

Swedish
Baseline (QT-SMT-form) 44.60 20.54 33.22

Google 2017 48.00 22.50 35.93
Bing 2017 49.90 23.62 36.47

Table 6.9: Results of CLIR systems that are based on query translation using
QT-SMT-form, Google Translate and Bing Translator in 2016 and 2017 on the
training set

6.2.5 Conclusions
In this section, we presented our approaches to CLIR using two MT systems (SMT
and NMT). We followed the query translation approach to translate the queries
into the document language (English) using QT-SMT-form and QT-NMT-form.

The QT-NMT-form CLIR system significantly outperformed the QT-SMT-
form. The way we employed back translation in training and selection the final
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model helped to boost the CLIR results.
We found empirically that MT systems did not often produce the best trans-

lation from IR perspective. Motivated by this finding, we presented a machine
learning model to rerank translation hypotheses towards better IR performance.
Our presented feature set aimed at detecting the translation hypotheses that were
more useful for retrieval, and reranked those translations accordingly.

Our reranking of translation hypotheses work was published as a long paper in
the CLEF 2016 main conference [Saleh and Pecina, 2016a], and we published the
approach of adapting the reranker to new languages as a short paper in MedIR
SIGIR 2016 (the Medical IR workshop organized during the Special Interest
Group on Information Retrieval conference 2016) [Saleh and Pecina, 2016b]. We
followed the reranker approach during our participation in the 2016 and 2017
CLEF eHealth CLIR tasks [Saleh and Pecina, 2016c, 2017]
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6.3 Document Translation
The document translation approach to CLIR is the process of translating the
document collection into the query language as a reduction of the CLIR task
into a monolingual IR task. The general architecture of a DT system is shown in
Figure 6.10, where MT can be SMT or NMT.

We presented in Section 4.1 the studies that have been conducted in comparing
DT and QT approaches. However, we realized that there is no recent research
comparing the two methods. Moreover, some recent work [Khiroun et al., 2018]
assumed that DT is better than QT relying on old studies from 1998 [Oard, 1998].

The main argument for this hypothesis is that text in the DT approach is
translated in a larger context (sentences, documents) than short isolated queries in
the QT approach, and the larger context should help in translation disambiguation
and better lexical selection during translation, which should subsequently lead to
better retrieval results.

This hypothesis needs to be revised, taking into consideration the significant
improvement of machine translation quality in recent years, despite the strong
practical disadvantages of DT over QT: DT is computationally expensive and
hard to scale (all documents need to be translated into each supported language
and indexed) while QT is performed in query time and only a short text (query)
is translated into the document language only when needed, and the index does
not change.

MT

IR

Documents

Query

Ranked Documents

Translated Documents

Figure 6.10: In the document translation approach, documents are translated into
the query language and then indexed. The IR system takes as an input query in
the source language and returns a ranked list of documents. Retrieved documents
can be either translated or kept in their original language, so the user has the
choice to use their own MT system
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6.3.1 Approaches
Our DT approaches focus mainly on two aspects. The first aspect is to investigate
the CLIR performance when using SMT versus NMT for the translation process.
The second aspect is to study the effect of morphological processing on retrieval
quality. To achieve this, we propose the following systems.

• DT-SMT-form In this experiment, we employ the SMT system for sentence
translation, which is presented in Section 5.1, to translate the documents
from English into the seven languages.

• DT-NMT-form This system employs NMT that we deployed for this purpose
(Section 5.5.2).

• DT-SMT-pre-lem In this system, the documents are translated into the
target language in the lemmatised form, because the SMT-pre-lem was
trained to do so as we presented in Section 5.5.1.

• DT-SMT-post-lem First, we translate the documents into the target lan-
guages using SMT-form, then we lemmatise them.

• DT-SMT-post-stem Translated documents (using SMT-form) are stemmed
using Snowball stemmer.

6.3.2 Results
Table 6.10 shows results of our experiments categorised into monolingual systems,
CLIR query-translation approach and document-translation approach using both
SMT and NMT system.

We can explain the outperformance of QT over DT because of the domain of
our dataset. This means that queries include symptoms and health conditions
where linguistics and contextual information do not play a significant role in
solving ambiguity in the translation process.

For example, the Czech query clef2015.test.33, which is “bílá infekce hltanu“, is
translated into English as “white infection of pharynx“. The reference translation
for that query is “white infection in pharynx“. We can see that the CS→EN SMT
system fails in translating prepositions (“of “ instead of “in“), which are considered
stopwords in our setting; hence, this does not affect the CLIR performance.

A total of 5 queries are improved in the Czech SMT-pre-lem CLIR system
over the SMT-form system, because lemmatization helped to reduce the search
space by mapping all the morphological variants into one word. For example, the
English query clef2013.test.18 : “aspiration pneumonia and pharyngeal dysphagia“
is “aspirační pneumonie a dysfágie hltanu“ in Czech. The world “hltanu“, which
means “pharyngeal“ is lemmatised in the training data of the SMT system and
the Czech query into “hltan“, which means “pharynx“. When translating the
English documents into Czech, “pharynx“ and “pharyngeal“ are translated back
into “hltan“. This helped to retrieve more relevant documents, increasing P@10
to 0.9 in DT-SMT-pre-lem from 0.7 in the monolingual systems (mono, mono-
lem and mono-stem), 0.6 in QT-SMT-form and 0 in DT-SMT-form. Although
DT-SMT-post-lem outperforms DT-SMT-pre-lem in most languages in terms of
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SMT evaluation as we showed in Section 5.6, DT-SMT-pre-lem improved the
CLIR performance as shown in DT-SMT-pre-lem) over DT-SMT-post-lem in four
languages, and degraded the results in Hungarian, Swedish, and Polish.

DT-SMT-pre-lem in Spanish is the only DT system that outperforms the QT
system. While for DT-NMT-form, we can observe a significant drop in performance
in all languages comparing to SMT, except for Czech and French. This can be
explained because it is known that NMT performs poorly when translating long
sentences (which is the case in the document translation) comparing to SMT
[Koehn and Knowles, 2017]. The source of the monolingual text in back translation
in QT-NMT-form is the document collection (Section 5.5.2). To investigate the
effect of monolingual text source on CLIR, we train another CS-EN NMT system
by choosing a different source, which is the English side of the parallel text, and
the rest remains exactly the same. Then, we used the trained NMT system to
translate Czech queries into English, and then performing CLIR. Interestingly,
P@10 for this system is 54.2% versus 57.2% when using the document collection
(significantly higher). This shows that employing the document collection in back-
translation helps to produce translations that are more adapted to the collection
domain.

6.3.3 Conclusions
Our results showed that a well-tuned QT system outperforms DT, which is a
positive result with an important impact on practical applications. So far, the
QT approach has been preferred mainly for efficiency reasons (less space and
computation needed). Our experiments suggest that this approach is even more
effective (better retrieval results).

We also investigated the effect of using NMT, which is now considered state
of the art in various domains. This completely new paradigm in MT tends to
improve the fluency of the generated output.

In our experiments, NMT improved retrieval results in both QT and DT, but
the QT approach is still superior, so the results are consistent with the findings
from the SMT experiments. However, we want to emphasize that the way we
trained our MT systems is very domain-specific (medical domain), and we made
use of a vast amount of medical data (monolingual and parallel). This makes our
comparative study very domain-oriented.

When dealing with general domain test collection, some search terms might have
a different meaning in different domains. For example, the word "development"
probably in most cases means in medicine the growth or spread of a disease (or a
tumor), while in a general domain we can not say without a context, and in that
case, the need for linguistics information in the queries will be more important
to solve translation ambiguity. This should be considered when comparing QT
and DT approaches; thus, the reader should be careful when drawing the same
conclusion of this work when working on a different domain.
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Finally, we published our finding of comparing DT and QT using SMT and
NMT as a long paper in the main conference of ACL 2020 (Association of
Computational Linguistics) 2020 [Saleh and Pecina, 2020].

6.4 Term Selection for Query Expansion
In this section, we present our approach for query expansion using a QE term
selection method in CLIR.

The proposed method is based on a simple linear regression model that predicts
the retrieval performance for each candidate expansion term when combined with
a query translated by an SMT. The model features are obtained from the SMT
system, external document sources (Wikipedia, PubMed), and information from
the document collection. The model is used to score each term from a candidate
pool, and those scored above a (pre-trained) threshold are automatically added to
the translated query. As a result, the queries are expanded with strong candidates
only. If no strong candidates are available, the queries remain unchanged. This
prevents performance drop caused by adding irrelevant terms to the query.

The term selection method is performed in four steps. First, a set of candidate
terms (candidate pool) are collected from various sources. Second, each term
from the candidate pool is assigned a vector of features describing its potential
to identify relevant documents. Third, the features are combined in a regression
model to score each candidate term. Finally, terms with scores exceeding a given
threshold are selected to expand the query. Figure 6.11 shows the architecture of
our presented model in detail, and the following sections explain the term selection
process.

6.4.1 Candidate Pool
In order to expand a query with one or more terms, it is needed to have a reliable
source of candidate terms to choose from. Alternative translations sometimes
showed to be very limited in terms of the variations of synonyms or related terms,
wherein that case each different translation contains either the same terms in
a different order or punctuations and stopwords. This makes the alternative
translations the same as the best translation in terms of the usefulness in the
context of information retrieval. To remedy the limitation of available related
candidate terms, we introduce three sources of candidate terms: terms form the
translation hypotheses, terms from the related articles from PubMed and terms
from the related abstracts from Wikipedia, as illustrated in Figure 6.12.

The pool is created from three different resources as follows:

Machine translation (MT)

When translating a query in a source language into a target language, an SMT
system produces a set of translation hypotheses (n-best-list), as shown in Table
6.12. Usually, only the best translation (1-best-list) is used for retrieval as we
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source query id: 2014.1.cs query id: 2015.11.cs
src: ischemická choroba srdeční bílé povlaky v dutině ústní
ref: coronary artery disease white patchiness in mouth

translation hypotheses
1 red ischaemic heart disease white coating mouth
2 ischemic heart disease white coating oral
3 heart disease white coating the mouth
4 blue coronary heart disease oral white coating
5 ischaemic disease white coating in oral cavity
6 ischemic blue cardiac disease white coating in mouth
7 coronary disease white sheets oral
8 ischaemic cardiac disease white coatings oral
9 ischemic disease white coating in oral
10 coronary artery disease the white coating mouth
11 ischemic cardiac white coating of mouth
12 cardiac disease white sheets mouth
13 blue stroke heart white coatings mouth
14 heart disease mouth white coating
15 ischaemic cardiac oral white sheets

Table 6.11: Examples of two queries showing the source query in the source
language, the reference query in the target language, and the translation hypotheses
of the source query in English, underlined terms are candidates for query expansion
obtained by QT-SMT-form

showed in our baseline setting (QT-SMT-form), which is ocular tremor in this
example.

However, other hypotheses might contain multiple terms that are related to the
information need that is represented in the query, but they do not appear in the
best translation, for example: eyes, shaking and trembling. To exploit these terms
in the presented method, we use translation hypotheses to create a bag-of-words
and added to the candidate pool. We remove from this pool duplicated terms
and stopwords. For each source query, we collect all the terms from the 100
highest-scored translation hypotheses as produced by the SMT system.

English Wikipedia (Wiki)

The tendency of the queries in the consumer health search, which are posted by
laypeople, is the lack of medical terminologies (as shown in Section 2.2). Liu
and Nie [2015] showed that using Wikipedia articles to enrich such queries with
medical terms helps to improve the medical information need that is represented
in their initial query. Because disease names usually appear in the title, and their
symptoms are described in the abstract.

We make use of this finding as follows: First, we index Wikipedia collection
using titles and abstracts. Then, we use our baseline settings (generating queries
using 1-best-list translation with the Dirichlet retrieval model) to retrieve the
top 10 ranked retrieved articles. Then we add to the candidate pool the titles of
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Figure 6.11: The architecture overview of our term selection method

Wikipedia articles only. This helps enrich the pool with more medical terms.

For example, when translating the Czech query clef2015.test.39 in the training
set, which is kožní ekzém s puchýřky a hnisem, the best translation from the Czech
to English QT-SMT-form system is skin eczema with pustules and pus. We use
this English translation to retrieve the top-ranked articles from Wikipedia. The
article abstract is presented in Figure 6.13. It is shown that the title of this article
(dermatitis) is a medical term, while the abstract contains an explanation of this
disease in a simpler language. This helps map the medical terms that are found
in Wikipedia titles to each query.

Figure 6.13: A snippet from the abstract of the Wikipedia article titled “Dermati-
tis“, source https://en.wikipedia.org/wiki/Dermatitis
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Figure 6.12: Generating candidate pool of English terms for an input Czech query

QT-SMT-form rank English hypothesis
1 ocular tremor
2 eyes tremor
3 eyes trembling
4 eyes shivering
5 eyes shaking
6 eyes jitter
7 eyes shakiness
8 ocular trembling
9 ocular tremor
10 ophthalmic tremor
11 ocular shivering
12 eyes dithering
13 eyes tremble
14 eyes tingling
15 as ocular tremor

Table 6.12: English translation hypotheses of a German query (Augenzittern) as
ranked by QT-SMT-form

PubMed

PubMed is a public digital archive for biomedical and life science journal literature
in the United States. It contains more than 30 million English articles; thus, it
is considered a very important linguistic resource for NLP applications in the
medical domain.2

We enrich the candidate pool with terms from the PubMed articles [Peng et al.,
2016] following the settings as the Wikipedia articles. PubMed articles (both
abstracts and titles) are indexed, then the top 10 ranked articles are retrieved
using the 1-best translation as a base query and added to the candidate pool.

2https://www.ncbi.nlm.nih.gov/pubmed/
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6.4.2 Feature Set
Our goal is to define a set of features that enable our supervised model to detect
the usefulness of each term in the candidate pool for retrieval. We introduce the
following features:

IDF
The IDF score of each candidate term calculated in the document collection. This
feature helps statistically measure the importance of a term in the collection and
distinguishes informative terms from non-informative ones (such as stopwords).

Translation pool frequency
The frequency of the term in the 100 highest-scored translation hypotheses as
produced by the SMT system. When a term appears in multiple hypotheses, this
means that the probability of being a relevant translation to one of the terms
in the original query is high. This feature is excluded from our monolingual QE
model.

Wikipedia frequency
The frequency of the term in the top 10 Wikipedia abstracts retrieved from the
Wikipedia index using the 1-best translation as a base query.

Retrieval Status Value (RSV)
RSV feature is the difference of the RSV value (the score of the Dirichlet retrieval
model) of the highest-ranked document retrieved using the base query, and the
RSV value of the highest-ranked document retrieved using the base query expanded
by the candidate term. This feature tells us the contribution of the candidate
term to the RSV score.

Query similarity
This feature represents the average similarity between a candidate term tm and
a query term obtained using a pre-trained model of word2vec embeddings on 25
million articles from PubMed.3 First, we get a word embedding for each term in
the original query, and we sum those embeddings to get a vector that represents
the entire query. Then we take the embeddings for tm and calculate the cosine
similarity between the query vector and the tm vector. It is important to point
out here that choosing terms that are similar to each term of the query caused
significant drift in the information need. For example, mother was suggested as a
similar term to baby, and white as a similar term to black.

Co-occurrence frequency
The co-occurrences of a candidate term tm and the query terms ti ∈ Q indicates
how likely tm is related to the original query Q, we sum up the co-occurrence
frequency for each term in query Q and the candidate term tm in all documents

3https://www.ncbi.nlm.nih.gov/CBBresearch/Wilbur/IRET/DATASET/
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dj in the collection C, as shown below:

co(tm, Q) =
∑︂

dj∈C,ti∈Q

tf(dj, ti)TF (dj, tm)

Term frequency
First, we perform retrieval from the collection using a query that is constructed
from the 1-best translation. The translation is done using the QT-SMT-form
system (SMT for query translation), then we calculate the term frequency of a
candidate term tm in the top 10 ranked documents from the retrieval result.

UMLS frequency
This feature represents how many times a term appeared in the UMLS lexicon
Humphreys et al. [1998], as an attempt to give more weight to the medical terms.

6.4.3 Regression Model
The term selection model is based on linear regression. Training instances are
candidate terms for the training queries after translating those queries from all
seven languages into English. Each term t from a candidate pool of a given query
is assigned a value computed as the difference of P@10 obtained by the baseline
query (1-best-list translation) and P@10 obtained by the expanded baseline query
with the term t. Expansion terms increasing P@10 for the given query are assigned
positive values, terms decreasing P@10 are assigned negative values, and terms
without any effect on the retrieval performance for that query are assigned zero.
The purpose is to expand the queries with terms that can improve the performance,
rather than terms that might degrade it.

The feature values are normalized using standard scaling by removing the mean
and scaling them to have unit variance. This is done independently on each feature
on the training set. Then we use the scaler coefficient to standardize the test set.
Scaling is important since the range of the feature values varies widely.

We consider P@ difference as the objective function, and we use the proposed
feature set to train the model. Linear Regression (LR) models the relationship
between the dependent variable (P@10 in our case) and the regressors x (term
feature values).

We use ordinary least squares linear regression as it is implemented in the scikit
package [Pedregosa et al., 2011]. There might be one or more good candidate
terms for expansion. To select these terms, we set a threshold value for the
predicted score. The threshold value is tuned on the training set for all languages,
as shown in Figure 6.15. All terms which have a score equal or higher than the
threshold are added to the base query. This allows us to avoid expanding queries
with irrelevant terms.
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Figure 6.14: Tuning KLD parameters, number of documents (N ) and number of
expansion terms (M) on the monolingual queries

6.4.4 Results
Results of all experiments for the seven languages are presented in percentages
in Table 6.13 (in terms of P@10) and Table 6.14 (in terms of BPREF). For each
language, the underlined score denotes the best result, and the scores in bold refer
to results that are not significantly different (given the Wilcoxon signed-rank test)
from the best (underlined) score. TS refers to the proposed QE technique based
on term selection, and the text in the brackets denote the candidate term sources:
machine translation (MT) hypotheses, Wikipedia titles (Wiki), and PubMed
articles (PubMed).

The monolingual experiment (exploiting the reference English queries) sets a
theoretical upper-boundary for the results of the CLIR experiments. It is 53.03
in terms of P@10 and 39.94 in terms of BPREF. These values hold for all the
languages since the reference translations of the source queries are the same.

P@10 scores of the CLIR baseline systems (exploiting 1-best translation) range
between 40.00 and 48.03 depending on the query language. The KLD-based
expansion in CLIR brings the scores even lower (36.36–45.76), which is in line
with the monolingual expansion experiments. Though, for some queries (10 on
average), P@10 improved and results degraded for more queries (20 on average).

The proposed term selection experiments show consistent improvement over
the baseline (QT-SMT-form). The best system uses terms from MT and Wiki
for expansion. Samples of queries that are improved by this system are shown in
Table 6.16.

TS(MT ∪ Wiki) improved 21 queries in Czech, 18 in French, 14 for German
and 11 in Spanish, 10 queries in Hungarian, 2 queries in Polish, and 3 queries in
Swedish. While it degraded 11 queries in Czech, 12 in French, 11 in German, 4 in
Spanish, 5 queries in Hungarian, 2 queries in Polish, and 2 queries in Swedish,
the performance of the rest of the queries did not change. The average result in
Czech is very close to the monolingual performance. Table 6.17 shows examples
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Figure 6.15: Tuning threshold for term candidate selection based on their predicted
scores

of queries that degraded in the TS(MT ∪ Wiki) system.

For further analysis of the expansion quality, we report in Table 6.15 the
percentage of relevant expansion terms calculated by two methods: In the first
method, we provided a medical doctor with query titles, their narratives (to
understand the topic for each query), and the expansion terms as suggested by the
TS(MT ∪ Wiki) system. We asked them to identify the expanded terms, whether
they are relevant to the topic or not.

The second method is an automatic evaluation that is done by checking if the
expansion terms exist in the reference queries. For example, in the Czech system,
78.51% of the expansion terms did not appear in the reference query; however, we
could not tell if they are relevant or not. In contrast, when checked by a medical
doctor, it appeared that only 12.4% of them are irrelevant to the topic.

6.4.5 Term Selection for Monolingual IR

The presented method is designed to predict the usefulness of terms from a
candidate pool when added base query. To adapt this method for monolingual
IR, we change a few things in the model as follows:

• The initial retrieval for Wikipedia frequency, RSV and term frequency is
done using the base query, which is the English query (reference) in this
case, not the 1-best translation.

• The candidate pool contains only terms from PubMed. And this is done by
using the English query to retrieve the top 10 abstracts from the PubMed
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system/query language CS FR DE ES HU PL SV
Monolingual 53.03 53.03 53.03 53.03 53.03 53.03 53.03
+KLD 48.18 48.18 48.18 48.18 48.18 48.18 48.18
+TS(PubMed) 55.76 55.76 55.76 55.76 55.76 55.76 55.76
QT-SMT-form 47.27 48.03 44.24 46.97 45.91 42.12 40.00
+KLD 39.85 45.76 38.33 42.12 42.12 39.24 36.36
+TS(MT) 47.42 48.03 43.03 46.82 46.21 42.42 41.52
+TS(Wiki) 44.85 44.70 43.03 43.18 47.12 41.06 39.70
+TS(PubMed) 50.15 47.12 43.33 45.30 43.48 37.58 36.52
+TS(MT ∪ Wiki) 52.58 49.55 47.12 48.33 47.88 42.42 41.52
+TS(MT ∪ PubMed) 50.30 48.79 45.45 48.03 42.73 38.48 34.85
+TS(MT ∪ Wiki ∪ PubMed) 52.12 48.94 45.45 47.42 47.58 43.18 41.21

Table 6.13: Experiment results in terms of P@10 in percentages against the test
set. Bold and italic numbers indicate the best systems that are statistically
different from the baseline system, bold numbers only indicate systems that are
not statistically different from the best systems

index. This can be done using any external resource relevant to the document
collection.

• Query similarity is calculated using English queries and candidate terms.

Then, we generate the feature values as presented above for the English queries.
We use this data for testing, and we train the term selection model using the CLIR
data (after excluding the translation pool frequency). Results for applying the
term selection method on the monolingual data is presented in the TS(PubMed)
system.

Monolingual+KLD refers to the result of the KLD-based query expansion
applied to the reference translations of the queries. In terms of P@10, the result
went down substantially. This can be explained because either the indexed
documents are not good enough as a source of candidate expansion terms, or
because there is no criterion to prevent expanding some queries with low scored
term candidates.

In terms of P@10, we observe in the expanded queries 13 improvements, and 4
queries degraded. The rest of the queries did not change due to the low scores of
candidate terms as predicted by the model. In terms of BPREF, both KLD and
TS bring a small improvement, which is not statistically significant.

Because we use PubMed as a source of expansion terms, we can notice the
presence of medical terms in the expanded queries. This helps enrich queries with
more medical information. For example, the base query clef2015.test.18 (poor
gait and balance with shaking) is expanded by the term parkinson. The model
suggests in this case that the symptoms that appear in the base query refer to
the Parkinson disease.
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system/query language CS FR DE ES HU PL SV
Monolingual 39.94 39.94 39.94 39.94 39.94 39.94 39.94
+KLD 41.22 41.22 41.22 41.22 41.22 41.22 41.22
+TS(PubMed) 41.41 41.41 41.41 41.41 41.41 41.41 41.41
QT-SMT-form 36.79 35.65 35.38 37.24 37.08 33.77 20.94
+KLD 36.21 38.34 34.84 39.64 36.59 34.33 32.11
+TS(MT) 36.80 35.49 35.64 37.05 37.03 33.92 33.38
+TS(Wiki) 36.82 36.10 36.09 36.17 38.77 33.82 34.23
+TS(PubMed) 39.16 38.14 39.15 39.47 36.87 33.51 33.78
+TS(MT ∪ Wiki) 40.49 38.82 40.86 37.93 36.95 33.92 33.38
+TS(MT ∪ PubMed) 38.90 37.63 36.09 38.87 36.57 34.16 33.67
+TS(MT ∪ Wiki ∪ PubMed) 40.21 37.15 36.02 37.93 37.70 33.86 32.98

Table 6.14: Experiment results in terms of BPREF (percentages). Bold and italic
numbers indicate the best systems that are statistically different from the baseline
system, bold numbers only indicate systems that are not statistically different
from the best systems

measure / query language CS FR DE ES HU PL SV
Precision w.r.t. manual judgments 87.60 89.33 90.84 87.50 96.43 90.91 87.50
Precision w.r.t. reference translations 21.49 14.04 13.74 25.00 21.43 36.36 12.50

Table 6.15: Precision of selected terms manually checked by a medical expert
(first raw) and with respect to the terms that appeared in the reference English
queries (second raw)

Query: 2015.18 (Czech)
ref: poor gait and balance with shaking
(50.00)
base: bad posture and balance with
tremor (60.00)
QE: poor balanced shaking (70.00)
Query: 2014.21 (French)
ref: white patchiness in mouth (10.00)
base: renal impairment (00.00)
QE: kidney disease function dysfunc-
tion failure insufficiency deficiency poor
(30.00)

Query: 2013.11 (German)
ref: chest pain and liver transplantation
(50.00)
base: breast pain and liver transplanta-
tion (10.00)
QE: chest hepatic graft thoracic (40.00)
Query: 2014.11 (Spanish)
ref: Diabetes type 1 and heart problems
(40.00)
base: type 1 diabetes and heart prob-
lems (40.00)
QE: cardiac disease (60.00)

Table 6.16: Examples of queries from different systems including Mono (ref ),
baseline using QT-SMT-form (base), and expansion terms to the baseline query
(QE). The scores in parentheses refer to the query P@10 scores in percentages
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Query: 2013.41 (Czech)
ref: right macular hemorrhage (60.00)
base: amacular bleeding right (70.00)
QE: hemorrhage haemorrhage side blood
(30.00)

Query: 2013.41 (French)
ref: right macular hemorrhage (60.00)
base: macular hemorrhage right eye
(80.00)
QE: eyes haemorrhage hemorrhagic
bleeding (50.00)

Query: 2015.65 (German)
ref: weird brown patches on skin (10.00)
base: strange brown spots on the skin
(40.00)
QE: spot patches cutaneous patch
(10.00)

Query: 2014.31 (Spanish)
ref: Acute renal failure (80.00)
base: acute renal failure (80.00)
QE: kidney disease (60.00)

Table 6.17: Examples of queries degraded in the QE approach (QE) with respect
to Mono (ref ), Baseline using QT-SMT-form (base). The scores in parentheses
refer to the query P@10 scores in percentages

6.4.6 Conclusions
We presented in this section our automatic QE method in CLIR. The goal of QE
is to improve information need represented in user queries.

Our source of expansion (candidate pool) includes alternative translations from
SMT, English Wikipedia abstracts, and the titles of PubMed articles. Our QE
can be used in different domains than the medical domain by choosing a relevant
candidate pool. For example, translation hypotheses can be replaced with similar
synonyms, for example, using word2vec in the monolingual task. This makes our
model not exclusive to the context of CLIR.

In order to find how a term is informative for expansion, we presented a rich
set of features to define the contribution of each term to the CLIR performance.
Then we trained a regression model that predicts the change of performance of
the base query when expanded with one or more candidate terms.

We found that not every query in the test set should be expanded, especially
when such a query does not have good candidate terms in the candidate pool.
To achieve this, we tuned a threshold value for the term contribution score to
the P@10 score, where every query is expanded with all terms that have a score
greater than the threshold value. This helped us to avoid the degradation of the
performance of some queries in the test set.

The evaluation of our QE method showed a significant improvement in the
CLIR performance for all languages compared to the baseline system. When we
applied the method on the monolingual system and using only PubMed as a source
of candidates, QE significantly outperformed the monolingual baseline system,
which confirms that our method can be applied on both CLIR and monolingual
IR.
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We published our term selection method in the European Conference on In-
formation Retrieval (ECIR) 2019 as a long paper [Saleh and Pecina, 2019b] and
applied our method during our participation in the 2018 CLEF eHealth CLIR
task [Saleh and Pecina, 2018].
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Conclusions
In this thesis, we studied the task of Cross-lingual Information Retrieval (CLIR)
in the medical domain. The task is patient-centered, the case when a searcher
does not have medical experience and prefers to use the Internet for self-diagnosis
of their medical conditions, rather than consulting a medical expert because of
their various reasons.

We used the existing test collections from the CLIR eHealth IR tasks 2013–2015
which allowed CLIR experiments in seven languages (Czech, German, French,
Spanish, Hungarian, Polish and Swedish). However, the judgment rate of our
system results was low and the manual translations of queries were incomplete;
thus we conducted manual translation of the English queries to cover all the studied
languages and performed an intensive relevance assessment to fully evaluate our
developed systems. The extended test collection is available from the LINDAT
repository and licensed under the Creative Commons - Attribution-NonCommercial
4.0 to allow further research of the task.

We presented a strong monolingual IR system using the English queries and
considered this system as reference (topline) to our CLIR systems. The same
monolingual retrieval settings were used in the CLIR task after reducing it into a
monolingual IR task.

We replicated two Statistical Machine Translation (SMT) systems that were
developed within the Khresmoi project. The first system was tuned to translate
short queries and the second one to translate full sentences as can appear in docu-
ments. We thoroughly studied the main approaches to CLIR: query translation
(QT) in which queries were translated to the document language, and document
translation (DT) wherein documents were translated to the query language.

In QT, we employed SMT to design a baseline system that takes the best
translation as produced by SMT to construct queries. Due to a loss of information
during the translation process, the baseline achieved around 84% of the P@10 of
the monolingual system on average

Our experiments showed that constructing queries as the best SMT translations
failed in 50% cases to produce the best retrieval performance. In the other 50%
of the queries, the translation that gave the best retrieval performance was in
the top 15-best translations. This was a motivation for us to develop a machine-
learning based model that reranked these translations towards a better retrieval
performance. The model, which selected one of the 15 best translations produced
by SMT system, outperformed the baseline systems that used the default 1-best
translation in all languages. This can be explained because exploiting features
from the collection and external resources gave the model access to information
helped distinguish translations that better represented relevant documents in the
collection.
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As an alternative to the reranking method, we studied query expansion (QE)
to reformulate base queries and eventually to improve the represented information
need. We developed a post-translation QE based on supervised learning to expand
the query with terms from a rich candidate pool formed from internal resources
(translation pool and document collection) and external resources (Wikipedia titles
and PubMed abstracts). We presented a rich set of features for each candidate term
that reflects the usefulness of that term to the base query. The model predicted
the contribution score for each candidate term to the retrieval performance of the
base query. We set up a threshold for this score to avoid harming base queries by
expanding them with irrelevant terms. Our query expansion method significantly
improved the performance when using base queries in both CLIR and monolingual
IR.

Neural Machine Translation (NMT) as a new paradigm in MT substantially
improved translation quality in the last few years. In our work, we employed
NMT-base CLIR systems too. We achieved this with two steps: in the first step,
we employed back translation to create synthetic parallel data. The source of
the monolingual data in the back translation involved the document collection
which gave the NMT systems access to the collection vocabularies. In the second
step, we presented a novel approach to define the model selection criterion. Our
method ensembled two NMT models: the model that achieved the best BLEU
and the model that achieved the best PER. We observed that none of them alone
could achieve comparable results compared to the ensembled ones when tested
on the training queries. NMT significantly outperformed our SMT systems in
the QT approach in all languages. Multiple researchers had been assuming that
DT is better than QT since the late 1990’s, despite the fact that MT improved
significantly in the recent few years. Our comparative study of the two approaches
was conducted using two MT paradigms: SMT and NMT. None of the reported
DT approaches could outperform the QT approach which was unexpected and
contradicted what was reported earlier. Our experiments showed that our own
implementation of an SMT system that produced lemma (instead of word forms)
helped reduce the mismatching problem in the DT experiments but could not
bring further improvements over the QT system. Although NMT outperformed
SMT in the QT experiments, it did not outperform SMT in the DT experiments.
This is probably because of the bad performance of NMT when translating long
sentences as reported earlier by multiple researchers in the machine translation
task.

We plan to continue our research in the CLIR task in the medical domain.
We will investigate our reranking and term selection approaches in NMT. We
will also study the use of the shared cross-lingual embedding to replace the MT
systems and design one model that can translate queries for all languages into the
collection language. Furthermore, we will research indexing the documents using
the distributed vector representation, wherein retrieval can be conducted using
similarity score between document embedding and query embedding. This might
help solve the mismatching problem in the term-based matching approach.
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