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Abstract: This thesis summarises the author’s results in representation theory
of rings and schemes, obtained with several collaborators. First, we show that
for a quasicompact semiseparated scheme X, the derived category of very flat
quasicoherent sheaves is equivalent to the derived category of flat quasicoherent
sheaves, and if X is affine, this is further equivalent to the homotopy category
of projectives. Next, we prove that if R is a commutative Noetherian ring, then
every countably generated flat module is quite flat, i.e., a direct summand of
a transfinite extension of localizations of R in countable multiplicative subsets.
Further, we investigate the relations between the geometric and categorical purity
in categories of sheaves; we give a characterization of indecomposable geometric
pure-injectives in both the quasicoherent and non-quasicoherent case. In partic-
ular, we describe the Ziegler spectrum and its geometric part for the category
of quasicoherent sheaves on the projective line over a field. The final result is
the equivalence of the following statements for a quasicompact quasiseparated
scheme X: (1) the category QCoh(X) of all quasicoherent sheaves on X has a
flat generator; (2) for every injective object & of QCoh(X), the internal Hom
functor into & is exact; (3) for some injective cogenerator & of QCoh(X), the
internal Hom functor into & is exact; (4) the scheme X is semiseparated.
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1. Introduction to the thesis

It is a known fact that coherent sheaves on a scheme X carry a lot of informa-
tion about X. The advantage of coherent sheaves over taking vector bundles
(i.e. locally projective sheaves) only is that the category of coherent sheaves is
abelian—an additive category with well-behaved kernels and cokernels of mor-
phisms.

Similarly to the case of modules over a ring, when one drops finiteness con-
ditions on modules, we can also relax our conditions on representations on X,
obtaining quasicoherent sheaves. Let Ox denote the structure sheaf of the scheme
X. Then a sheaf 111 of Ox-modules is called quasicoherent if for every pair of
open affine subsets U,V C X, U C V, the natural map

resnl
M(V) ®ox vy Ox(U) ey SO,

MU) ®ox ) Ox(U),

obtained by tensoring the restriction map M(V) — M(U) with Ox(U), is an
isomorphism of Ox(U)-modules. In this thesis we adopt the convention that
instead of “quasicoherent sheaf of ©x-modules” we simply write “quasicoherent
sheaf on X”.

The category QCoh(X) of all quasicoherent sheaves on X is also well behaved:
It is a Grothendieck category [2], which is further locally finitely presented when
X is “nice enough”, i.e. quasicompact and quasiseparated. Let us recall here
that a scheme is called quasicompact if the underlying, not necessarily Hausdorff
topological space satisfies that each cover by open sets has a finite subcover.
A quasiseparated scheme is one with the property that the intersection of two
quasicompact open subsets is quasicompact.

If X is affine, i.e. isomorphic to the spectrum of a commutative ring R, then
QCoh(X) is equivalent to the category R-Mod of all R-modules, which further
supports the claim that QCoh(X) is the correct category assigned to X. How-
ever, in general, QCoh(X) lacks some properties of R-Mod: Most importantly,
the category may not have enough projective objects, or even not any non-zero
projective objects at all. This is closely related to the fact that (infinite) direct
products are not necessarily exact in QCoh(X) [13].

The lack of projectives in QCoh(X) has led to search for replacements; for
instance, the thesis [I5] used flat sheaves to construct a triangulated category
generalising the homotopy category of projective modules over a commutative
ring. Here we need to clarify which notion of flatness we have in mind: A qua-
sicoherent sheaf 711 on X is called flat if for every open affine set U C X, the
module of sections 1(U) is a flat Ox(U)-module. Note that by standard facts
from commutative algebra, this sort of flatness can be tested stalkwise, and as
such it it also a Zariski-local property: A quasicoherent sheaf 171 on X is flat if
and only if for some (equivalently, for any) open affine cover (U;);c; of X, the
modules 171(U;) are flat over their respective rings.

However, even in the affine case, the structure of flat modules can be com-
plicated. Unless the ring is noetherian of finite Krull dimension, the projective
dimension of flat modules can be arbitrarily large. Hence it is of interest whether
one can work with a suitable smaller class instead.



A promising candidate for this refinement is the class of very flat modules,
first introduced by Positselski in [I7]. To introduce it properly, let us first recall
several notions from homological algebra.

1.1 Cotorsion pairs and approximations

Let @ be a category and A C @ a class (or subcategory) of objects. We say that
amap f: A — M in @ is an A-precover of M provided that A € A and for
every A’ € A, the map

Homg(A', A) HomghD), Home(A', M)

is surjective. A class A C @ is called precovering if every M € @ has an A-
precover. Dualizing the definition, we obtain the notion of an A -preenvelope: A
map f: M — A such that A € A and for every A’ € A, the map

Homg (f,A/)
—

Homg (A, A') Homg (M, A")
is surjective. A preenveloping class is defined in the obvious way.

An A-precover f: A — M is called an A-cover if any g: A — A satisfying
fg = f is an automorphism of A. This leads to a notion of a covering class and
the dual notions of an A -envelope and an enveloping class.

Let now @ be an abelian category and A C ¢. Define

def

tA=E (Mg | Extg(M,A) =0 for all A € A},
AL E M € G| Exth(A, M) =0 for all A € A}.

It is not hard to see that an epimorphism f: A — M with A € A and Ker f € A+
is an A-precover; such a precover is called special. Dually, a monomorphism into
an object of A with cokernel in +A is a special A -preenvelope.

Note that some authors call precovers and preenvelopes right and left approz-
imations, respectively. The stronger versions without the prefix pre- are then
called minimal.

The natural setting for constructing approximations is provided by cotorsion
pairs. Let ¢ be an abelian category. A pair (A, B) of subclasses A,B C ¢
is called a cotorsion pair (or a cotorsion theory) provided that A = @ and
B = A*+. Having a class of objects & C @, one can obtain a cotorsion pair
(+($+), $1) which is said to be generated by S.

Assume further that @ is a Grothendieck category. The situation most suit-
able to work with is when & is only a setE] of objects (as opposed to a proper
class), for in such a case, the right class is always special preenveloping (see [I]
for the module case). If, further, the left class contains a generatoxﬂ of @ (which

LA class containing only a set of isomorphism types of objects would work, too.

2Recall that a generator is an object G such that every object of the category is the epi-
morphic image of the direct sum of copies of G. This differs from the definition in the context
of general category theory, but it is not hard to prove the equivalence of the two notions in the
case of Grothendieck categories.



is always the case for the category of modules over a ring), then it is special
precovering. Such cotorsion pairs are called complete.

A subclass need not be a left class of a cotorsion pair in order to be precovering,
any deconstructible class will work as well. Let &€ be a class of objects; then an
object M € @ is &-filtered if there is an ordinal o and a well-ordered chain
(M, | @ < o) of submodules of M such that My =0, M, = M, M, = Uﬁ<a Mp
for each «v limit ordinal < o, and M,1/M,, is isomorphic to an element of & for
each a < 0. The chain (M, | @ < o) is called an 8-filtration of M. In addition,
we say that M is a transfinite extension of elements of & The class of all &-
filtered objects is denoted by Filt(&). Classes of the form Filt(&) for & a set of
objects are called deconstructible and by [27], such classes are always precovering.

If ¢ is the category of modules over a ring and (A, B) is a cotorsion pair
(not necessarily generated by a set), then by Salce Lemma [9, Lemma 5.20], A
is special precovering if and only if B is special preenveloping. Further, if § C ¢
is a set, then the class +(8$1) is always deconstructible.

In the more general situation, the situation is more opaque. Recall that a
scheme is semiseparated if the intersection of any two open affine subsets is again
open affine. If X is a quasicompact quasiseparated scheme, which is not semisep-
arated (and, consequently, not affine), then the class of very flat quasicoherent
sheaves is a left class of a cotorsion pair, but by the results of Chapter [5 it does
not contain a generator of the category QCoh(X). However, this class is decon-
structible by the results of [4] and is therefore precovering; note, however, that
the precovers cannot be special in general, since they are not epimorphisms. On
the other hand, if X is semiseparated, then QCoh(X) has very flat generators
[17, Lemma 4.1.1], so the corresponding cotorsion pair is complete.

1.2 Abelian model category structures

As described in [I1], cotorsion pairs are also an important ingredient for abelian
model category structures. Such a model structure on a abelian category @ is
completely determined by a triple (called a Hovey triple) of classes (C, W, F), the
objects of which are called cofibrant, trivial (also sometimes called acyclic), and
fibrant, respectively.rf] To obtain a model structure in the original sense of Quillen
[24], one defines (trivial) cofibrations as monomorphisms with (trivial) cofibrant
cokernel, (trivial) fibrations as epimorphisms with (trivial) fibrant kernel, and
weak equivalences as maps, which can be factored as pi, where p is a trivial
fibration and ¢ a trivial cofibration.

To go the other way, cofibrant objects are precisely those objects C' such that
the map 0 — C is a cofibration, fibrant objects F' are such that F' — 0 is a
fibration, and trivial objects W satisfy that 0 — W (equivalently, W — 0) is a
weak equivalence.

What conditions do the classes in a Hovey triple have to obey? By [11],
Theorem 2.2] (C, W, F) corresponds to an abelian model category if and only if

3To be precise, [11] actually defines abelian model structures in a wider sense; one can also
limit which exact sequences are “taken into account”, i.e. pick a proper class of exact sequences
and do all the computations with respect to this class. Although this approach allows more
model structures to fit into the “abelian” framework, as [I1, Examples 3.6 & 3.7] show, we will
not need it here and so we stick to the simpler definition presented above.



(1) W is a thick subcategory and (2) the pairs (C,F N W) and (CNW,F) are
hereditary complete cotorsion pairs in §; recall that a cotorsion pair (A, B) is
hereditary if Extg(A, B) =0 forall Ae A, Be B and i > 1.

The paper [1I] lists many useful examples of model categories which are,
in fact, abelian model categories. In particular, when R is a ring, its derived
category (i.e. the derived category of R-Mod) arises as the homotopy category of
several abelian model category structures on Ch(R), the category of unbounded
complexes of R-modules with chain maps.

However, what we will need here is an extension of this notion due to Gille-
spie [6]: The exact model structure, which just carries Hovey’s construction from
abelian categories to exact categoriesﬂ (in the sense of Quillen [23]); note that the
definition of cotorsion pair makes sense in exact categories, too. This extension is
fruitful in the sense that it allows to realise derived categories of exact categories
as homotopy categories of exact model categories. In particular, Gillespie in [7]
shows the way to construct recollements like the one of Murfet [I5] using exact
model structures.

Exact model structures serve us as a tool for proving the Quillen equivalence
of Theorem [A]l below.

1.3 Very flat modules and quasicoherent
sheaves

Let R be a commutative ring and let s € R. Then by R[s™!] we denote the
localization of R in the multiplicative subset {1,s,s% ...}. Let (VF,CA) be
the cotorsion pair generated by the set of R-modules {R[s™!] | s € R} (in the
sense defined above); then, following [17], the modules in YF are called very
flat and the ones in CA are contraadjusted. Because R[s™'] is a flat R-module
of projective dimension < 1 for each s € R, all very flat modules are flat of
projective dimension < 1. In particular, the cotorsion pair is hereditary.

Note the geometric origin of the definition: R[s™!] is precisely the ring of
sections on the principal open affine set D(s) (“where s does not vanish”). Hence,
speaking very informally, to construct ¥F one “starts with the basic ingredients
of algebraic geometry and builds a homologically well-behaved class upon them”.
Then [I7, Lemma 1.2.4] tells us that the resulting class encompasses the desired
algebro-geometric examples: The ring of sections on any open affine subset of an
affine scheme is a very flat module over the ring of global sections.

In fact, a host of modules naturally arising in algebraic geometry turns out
to be very flat: In the author’s joint paper with Positselski [19] (the results of
which are not contained in this thesis), it is shown that any finitely presented
commutative R-algebra, which is flat as an R-module, or more generally, any
finitely presented module over such an algebra, is a very flat R-module.

While very flatness cannot be tested stalkwise, it is a Zariski-local property,
hence one can define very flat quasicoherent sheaves by requiring them to be very
flat on each open affine set, and the result is a well-behaved class. In fact, it

4In fact, the exact categories that Gillespie works with need to be weakly idempotent com-
plete, meaning that every split monomorphism has a cokernel and every split epimorphism has
a kernel.



is again a deconstructible, left class of a hereditary cotorsion pair generated by
a set of sheaves. As outlined above, the completeness of this cotorsion pair is
equivalent to the scheme being semiseparated (under the assumption that it is
quasicompact and quasiseparated).

We refer the reader to the introduction of the paper [19] for a nice overview of
properties that very flat modules and quasicoherent sheaves enjoy. The property
we discuss in this thesis is the following:

Theorem A. Let X be a quasicompact and semiseparated scheme. Then the
derived category of the exact category of very flat quasicoherent sheaves is trian-
gle equivalent to the derived category of the exact category of flat quasicoherent
sheaves.

This is a result of the joint paper with Estrada [5], which is the basis of
the Chapter [2l More precisely, we realize these derived categories as homotopy
categories of certain abelian model categories and obtain Quillen equivalences
between them, using the methods of Gillespie [0] [7, 8]. Note that the derived
category of flats is just another name for Murfet’s mock homotopy category of
projectives introduced in [15].

Actually, [5] lists conditions which are sufficient for a subclass of flat quasi-
coherent sheaves to have its derived category (Quillen) equivalent to the derived
category of flats. Further, under the assumption that the corresponding cotor-
sion pair is complete, one can also use the class of (infinite-dimensional) vector
bundles; a particularly interesting fact here is that the proof actually shows the
Quillen equivalence with the derived category of very flats and we do not know
a way to avoid this detour.

1.4 Quite flat modules

Another refinement of the class of flat modules is considered in Chapter [3| al-
though this time only in the affine setting. Let R be a commutative ring. The
class of quite flat modules is obtained in a way similar to the very flat modules;
namely, one starts with the set

{ST'R| S C R is a countable multiplicative subset}

and considers the cotorsion pair which it generates. Then the modules in the
left class are called quite flat and the right class consists of almost cotorsion
modules. This definition comes from the joint paper with Positselski [18], which
is not contained in this thesis, but some of its results are used in Chapter 3] This
chapter is a part of yet another joint paper with Hrbek and Positselski [12].

One of the results of [18] is the following: If R is noetherian and its spectrum
is (at most) countable, then every flat R-module is quite flat. Chapter [3|reproves
this fact using another, new result:

Theorem B. Let R be a commutative noetherian ring and F' a countably gen-
erated flat module. Then F' s quite flat.

The previous result is then recovered by directly proving that for a commuta-
tive noetherian ring with countable spectrum, every flat module is a transfinite
extension of countably generated flat modules. In fact, more is true:



Theorem C. Let R be a noetherian commutative ring with spectrum of cardi-
nality less than k, where k is an uncountable reqular cardinal. Then every flat
module is a transfinite extension of < k-generated flat modules.

1.5 Purity in categories of sheaves

Chapter [4] takes another approach to the category of quasicoherent sheaves. The
starting point is the notion of purity, which has established as a prominent subject
related to categories of modules. Recall that a short exact sequence of left R-
modules 0 - A - B — C' — 0 is called pure-ezact if for every finitely presented
left R-module M, the sequence

0 — Hompg(M, A) — Homg(M, B) — Homg(M,C) — 0
is exact; equivalently, if for everyﬂ right R-module N, the sequence

is exact. There are numerous other equivalent definitions—see e.g. [9 Lemma
2.19] or [20, 2.1.1], emphasising the “model-theoretic” origins of purity.

Using functor category methods, purity has expanded from categories of mod-
ules to locally finitely presented categories with products and more generally,
definable categories [20), Part III]. Objects of such categories can be viewed as
many-sorted (abelian) algebraic structures; informally, this approach allows one
to talk about “elements” even when there is no underlying set present (which is
the case e.g. for sheaves). Another point of view is that the objects are modules
over a “ring with many objects”, i.e. functors from a certain small preadditive cat-
egory to the category of abelian groups; this has led to a smooth transfer of many
notions originating in model theory of modules to the more general framework
[21].

Pure-injective objects are defined as those objects N such that the contravari-
ant Hom functor into N is exact on pure-exact sequences. Pure-injectives are
model-theoretically important, too; in fact, they coincide with the algebraically
compact modules [20], 4.3.2] (possibly over a ring with many objects). The iso-
morphism classes of indecomposable pure-injectives form a set, which can be
equipped with a topology, forming a topological space called the Ziegler spec-
trum. Its closed subsets correspond to definable subcategories, i.e. subcategories
closed under direct products, direct limits, and pure subobjects; see [20] 3.1] for
further equivalent definitions of the topology. Ziegler spectrum has found ap-
plications even outside the model-theoretic branch of representation theory, e.g.
[14].

Chapter {4, based on joint paper with Prest [22], deals with purity and the
related notions in the category of all sheaves of © x-modules ©x-Mod and the cat-
egory of quasicoherent ones QCoh(X). If X is a quasicompact and quasiseparated
scheme, then both these categories are locally finitely presented Grothendieck cat-
egories. Therefore one can introduce the notion of categorical purity in these cat-
egories: In accordance with the approach outlined above, a short exact sequence

5Finitely presented modules are sufficient here, too.
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is categorically pure-exact (or c-pure-ezact) if it stays exact after applying the
Hom functor from a finitely presented object.

On the other hand, the category ©x-Mod is equipped with the tensor product
bifunctor, which QCoh(X) inherits. Being inspired by the equivalent definition
for the module categories, we may call a short exact sequence geometrically pure-
exact (or g-pure-ezact), if it stays exact after applying the tensor product functor
with any (quasicoherent) sheaf; under our assumptions on X, this is a weaker
definition than the categorical one.

Both these notions of purity (although under different names) and some of
their basic properties appeared in [3]; this paper (and the apparent lack of any
examples in it) had been the primary motivation for our further research of the
topic. The main goal is to provide a better understanding of pure-injective objects
with respect to both the purities in question.

The investigation of purity in Oy-Mod is mostly the auxiliary part of the
chapter, serving for further investigation of the quasicoherent case. However, a
nice structural result concerning g-pure-injectives is obtained:

Theorem D. Let 11 be an indecomposable g-pure-injective sheaf in ©x-Mod.
Then there is x € X and an indecomposable pure-injective Ox ,-module N such
that 1 = 1, (N), i.e. 1 is the skyscraper sheaf with pure-injective module of
sections. Conversely, for every x € X and a pure-injective Ox ,-module N, the
sheaf 1, «(N) is g-pure-injective.

Moving on to quasicoherent sheaves, we start with observing that the geomet-
ric and categorical purity coincide if and only if the scheme is affine. Further, we
describe the geometric part of the Ziegler spectrum similarly as in ©x-Mod:

Theorem E. Let X be a quasicompact quasiseparated scheme and 11 an indecom-
posable g-pure-injective quasicoherent sheaf on X. Then there is an open affine
subset U C X and an indecomposable pure-injective Ox (U)-module N such that
N =2y, (N), i.e. N is the direct image of (the quasicoherent sheaf associated to)
N with respect to the embedding U — X. Conversely, for every U C X open

affine and a pure-injective Ox (U)-module N, the sheaf 1y .(N) is g-pure-injective.

This shows that the geometric part is in fact “glued together” from the Ziegler
spectra of the affine pieces in the same way as X is glued from open affine subsets.
In particular, the geometric part, being the union of finitely many closed quasi-
compact sets (under our standing assumption X quasicompact quasiseparated),
is itself quasicompact and closed in the whole (categorical) Ziegler spectrum.
Consequently, there is a definable subcategory @x C QCoh(X) corresponding to
the geometric part.

Lastly, we describe the categorical Ziegler spectrum of the category of qua-
sicoherent sheaves over a projective line over a field—both the points and the
topology. In addition to the indecomposable g-pure-injectives, which can be de-
scribed by the methods described above and which are therefore analogous to
pure-injectives over a Dedekind domain, one gets vector bundles ©(n) as addi-
tional, isolated points. Because of them the Ziegler spectrum turns out not to
be quasicompact, in contrast to the affine case. Finally, in this case we are also
able to obtain an alternative description of the subcategory @ x: A quasicoherent



sheaf belongs to @y if and only if for each n € Z,
EXt%QCoh(]P’i)(@(n% m) =o,
if and only if for each n € Z,

HomQCOh(P}C)(ma @(n)) = 0.

1.6 Exactness of the internal Hom and the
existence of flat generators

In addition to the tensor product, the category of quasicoherent sheaves on a
scheme X is further equipped with the internal Hom functor #om“°, which is
right adjoint to the tensor product; these functors are part of the symmetric
closed monoidal structure on QCoh(X).

Recall that when working with purity in the module categories, the following
duality turns out to be of importance. For the sake of simplicity, let us work
over a commutative ring R, let E be the injective cogenerator of R-Mod and put
(—=)* = Hompg(—, E); then a short exact sequence of R-modules 0 - A — B —
C — 0 is pure-exact if and only if the dual sequence 0 — C* — B* — A* — 0
splits [20, Proposition 4.3.30]. Furthermore, the canonical map M — M** is
always a pure embedding into a pure-injective module [20, Corollary 4.3.31].

It is therefore tempting to pick an injective cogenerator & of QCoh(X') and use
the (contravariant) functor #om“(—, &) in a similar fashion to produce similar
assertions for geometric purity in QCoh(X). That is indeed possible and the
authors of [3] take this approach, although with an intermediate step in ©x-Mod.
However, there is one property of the duality functor that has been overlooked
so far: The exactness. Of course, when one considers the ordinary, categorical
(contravariant) Hom, it is the very definition of injectivity that the corresponding
functor is exact. However, there is no apparent reason for the internal Hom to
have this property.

The final Chapter , which is the joint paper with Stovicek [25], addresses
this question in the usual setting of quasicoherent sheaves over a quasicompact
quasiseparated scheme. It turns out that this is closely related to the question
whether the category QCoh(X) has flat generators and to the properties of the
scheme X, namely:

Theorem F. Let X be a quasicompact and quasiseparated scheme. Then the
following assertions are equivalent:

(1) the category QCoh(X) of all quasicoherent sheaves on X has a flat gener-
ator;

(2) for every injective object & of QCoh(X), the contravariant internal Hom
functor #om(—, &) is exact;

(3) there exists an injective cogenerator & of QCoh(X) such that the con-
travariant internal hom functor #om(—, 8) is exact;

(4) the scheme X is semiseparated.



This result shows that the assumption on X to be semiseparated in Chapter
(and a number of other papers, e.g. [4], [15], [16]) indeed cannot be omitted, for
otherwise the class of flat quasicoherent sheaves is not generating and, of course,
the same holds for its subclasses—in particular the class of very flats, but also
the class of vector bundles, a result of [28], which we recover using considerably
less involved methods. Finally, the result can be viewed a reformulation of a
purely scheme-theoretic property of semiseparatedness into the properties of the
category QCoh(X).

Let us comment here informally on what goes wrong in the non-semiseparated
case. The fundamental issue is the non-exactness of the direct image functor
t«: QCoh(U) — QCoh(X), where (y: U — X is the embedding and U is an
open affine subset of X whose intersection with some other open affine subset
is not affine. However, this functor, being right adjoint to an exact functor (the
restriction), preserves injectives, so one can pick the injective & to be of the form

w(E) for E an injective Ox (U)-module. We then show that
Hom™(—, 1. (E)) = 1y, (#om(~, E)),

which “turns” the non-exactness of the direct image to the non-exactness of the
internal Hom. Of course, in the actual proof one has to be more careful, since
not only do we take the direct image, but also dualize.

1.7 Future research directions

Finally, let us comment on the possible extensions of the results mentioned above.

Perhaps the most attractive goal is to find alternative, hopefully homological
description(s) of the definable subcategory @x C QCoh(X) defined in Section[L.5]
Existence of such a description sounds plausible thanks to our known description
of Dx in the case of projective line over a field . Speaking vaguely, @y consists
of “sheaves which think that X is affine”, so it might well be the case that it
coincides with the class Ext-orthogonal to vector bundles (as is the case for the
projective line over a field, discussed in Section above). However, it is not
even clear from the original definition that @ x should be closed under extensions.
Furthermore, all examples of elements of @Dy currently known to us are direct
images of quasicoherent sheaves on open affines, and direct sums or products of
those.

Let us point out that it is a rather hard question when does X have enough
vector bundles (see [10]). The study of @y and more generally geometric purity
offers a new way of attacking this problem with a brand new weaponry (set- and
model-theoretical tools, homological algebra).

1.8 Relation of the thesis to author’s papers

Most of the thesis is based on joint preprints of the author with several collabo-
rators. These preprints have already been accepted for publication and published
electronically, so they have a DOI, but they have not yet been assigned a partic-
ular issue of the journal in case. In particular, their final form may differ from
the one presented here.
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Chapter |2|is based on the paper [5] (also arXiv:1708.05913) electronically pub-
lished in the Journal of the Australian Mathematical Society. Chapter [3is roughly
the first half of the paper [12] (arXiv:1907.00356), the other half of which does not
feature many contributions by the author; this paper is to appear in the Journal of
Commutative Algebra. Chapter 4] is based on [22] (arXiv:1809.08981), published
in Mathematische Zeitschrift. Finally, Chapter [5|is based on the manuscript [25]
(arXiv:1902.05740), whose revised version is now under review in the Bulletin of
the London Mathematical Society.
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2. Quillen equivalent models for
the derived category of flats and
the resolution property

This chapter is based on the preprint (doi:10.1017/S1446788720000075, to appear
in the Journal of the Australian Mathematical Society. It is also available at
arXiv:1708.05913.

2.1 Introduction

Throughout the paper R will denote a commutative ring. In [21] Neeman gives
a new description of the homotopy category K(Proj(R)) as a Verdier quotient
of K(Flat(R)). The main advantage of the new description is that it does not
involve projective objects, so it can be generalized to non-affine schemes (see
[20, Remark 3.4]). So, in his thesis [I7], Murfet mocks the homotopy category
of projectives on a non-affine scheme, by considering the category D(Flat(X) )]
defined as the Verdier quotient

K(Flat(X
D(Flat(Y)) = X))
Flat (X)
— K
where Flat (X) denotes the class of acyclic complexes in K(Flat(X)) with flat cy-

cles. In the language of model categories, Gillespie showed in [11] that D(Flat(X))
can be realized as the homotopy category of a Quillen model structure on the cate-
gory Ch(QCoh(X)) of unbounded chain complexes of quasi-coherent sheaves on a
quasi compact and semi-separated scheme, and that, in fact, in case X = Spec(R)
is affine, both homotopy categories D(Flat(X)) and K(Proj(R)) are triangle
equivalent, coming from a Quillen equivalence between the corresponding mod-
els.

However, from the homological point of view, flat modules are much more
complicated than projective modules. For instance, for a general commutative
ring, the exact category of flat modules has infinite homological dimension. In
order to partially remedy these complications, recently Positselski in [22] has
introduced a refinement of the class of flat quasi-coherent sheaves, the so-called
very flat quasi-coherent sheaves (see Section for the definition and main prop-
erties) and showed that this class shares many nice properties with the class of
flat sheaves, but it has potentially several advantages with respect to it, for in-
stance, it can be applied to matrix factorizations (see the introduction of the
recent preprint [24] for a nice and detailed treatment of the goodness of the very
flat sheaves).

Moreover, in the affine case X = Spec(R), the exact category of very flat
modules has finite homological dimension (every very flat module has projective

!The original terminology in [17] for D(Flat(X)) was K,,,(Proj(X)). This is referred in [19]
as the pure derived category of flat sheaves on X and denoted by D(Flat(X)).
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dimension < 1). Therefore, in this case one easily obtains a triangulated equiva-
lence between D(YF(R)) and K(Proj(R)) (here YF(R) denotes the class of very
flat R-modules). In particular it is much less involved than the aforementioned
triangulated equivalence between D(Flat(R)) and K(Proj(R)) [21, Theorem 1.2].

So, if we denote by YV F(X) the class of very flat quasi-coherent sheaves, one
can also consider “mocking” the homotopy category of projectives over a non-
affine scheme by defining the Verdier quotient

DVF(x)) = IFX)
o7 (X)

It is then natural to wonder whether or not the (indirect) triangulated equivalence
between D(Flat(R)) and D(VYF(R)) still holds over a non-affine scheme. This
was already proved to be the case for a semi-separated Noetherian scheme of finite
Krull dimension in [22, Corollary 5.4.3]. As a first consequence of the results in
this paper, we extend in Corollary this result for arbitrary (quasi-compact
and semi-separated) schemes.

Corollary. For any quasi-compact and semi-separated scheme X, the categories
D(Flat(X)) and D(VF (X)) are triangle equivalent.

Recall from Gross [13] that a scheme X satisfies the resolution property pro-
vided that X has enough infinite-dimensional vector bundles (in the sense of
Drinfeld [4]; these are called locally free sheaves in [13]), that is, for every quasi-
coherent sheaf 771 there exists an epimorphism €, V; — 11 for some family
{Vi | i € I} of infinite-dimensional vector bundles]| In this case the class of
infinite-dimensional vector bundles constitutes the natural extension of the class
of projective modules for non-affine schemes and one can define the derived cat-
egory of infinite-dimensional vector bundles again as the Verdier quotient

K(Vect(X))

D(Vect(X)) := ——
Vect (X)
This definition trivially agrees with K(Proj(R)) in case X = Spec(R) is affine.
By using the class of very flat sheaves we obtain in Corollary the following
meaningful consequence, which does not seem clearly to admit a direct proof (i.e.
a proof without using very flat sheaves).

Corollary. Let X be a quasi-compact and semi-separated scheme satisfying the
resolution property (for instance if X is divisorial [18, Proposition 6(a)]). Mur-
fet’s and Neeman’s derived category of flats, D(Flat(X)), is triangle equivalent
to D(Vect(X)), the derived category of infinite-dimensional vector bundles.

Indeed the methods developed in this paper go beyond the class of very flat
quasi-coherent sheaves. More precisely, we investigate which are the conditions
that a subclass A of flat quasi-coherent sheaves has to fulfil in order to get a
triangle equivalent category to D(Flat(X)). In fact, we show that the triangulated

2The “original” statement of the resolution property, which can be found e.g. in Totaro [28§],
is that “every coherent sheaf is a quotient of a vector bundle”. However, this property was
considered in the setting of Noetherian schemes, where it agrees with the one we use.
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equivalence comes from a Quillen equivalence between the corresponding models.
We point out that there are well-known examples of non Quillen equivalent models
with equivalent homotopy categories. The precise statement of our main result
is in Theorem (see the setup in Section [2.6] for unexplained terminology).

Theorem. Let X be a quasi-compact and semi-separated scheme and let P be
a property of modules and A its associated class of modules. Assume that A C
Flat, and that the following conditions hold:

(1) The class A is Zariski-local.

(2) For each R = Ox(U), U € U, the pair (Ar,Br) is a hereditary cotorsion
pair generated by a set.

(8) For each R = Ox(U), U € A, every flat Ar-periodic module is trivial.
(4) 3«(Aqew.)) € Aqe(x), for each oo € {0,...,m}.

Then the class Ay defines an abelian model category structure in Ch(QCoh(X))
whose homotopy category D(A.) is triangle equivalent to D(Flat(X)), induced
by a Quillen equivalence between the corresponding model categories.

It is interesting to observe that conditions (1), (2) and (3) in the previous
theorem only involve properties of modules. Thus we find useful and of indepen-
dent interest to explicitly state in Theorem [2.5.1] the affine version of the previous
theorem (and give an easy proof). Section is meant to make abundantly clear
the variety of examples of classes of modules that fit into those conditions. Of
particular interest is the class A (k) of restricted flat Mittag-Leffler modules con-
sidered in Theorem which has been widely studied in the literature in the
recent years (see, for instance, [0l [7, 12] 15, 26]). So regarding this class, we
obtain the following meaningful consequences:

Corollary. Let k be an infinite cardinal and A (k) be the class of k-restricted
flat Mittag-Leffler modules (notice that A (k) = Proj(R) in case k = Ng).

(1) Every pure acyclic complex with components in A (k) has cycles in A(k).
(2) The categories D(A(k)) and K(Proj(R)) are triangle equivalent.

The proof of (1) can be found in Theorem whereas the proof of (2) is a
particular instance of Theorem with A = A(k). In the special case k = N,
the statement (1) recovers a well-known result due to Benson and Goodearl [2]
Theorem 1.1].

2.2 Preliminaries

2.2.1. Zariski-local classes of modules. Let & be a property of modules and let
A be the corresponding class of modules satisfying &, i.e. for any ring R, the class
Ap consists of M € R-Mod such that M satisfies #r. We define the class A (x)
in QCoh(X) (or just A, if the scheme is understood) as the class of all quasi-
coherent sheaves 771 such that, for each open affine U C X, the module of sections
M(U) € Aoy w)- We will be only interested in those properties of modules %
such that the property of being in Aq(x) can be tested on an open affine covering
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of X. In this case we will say that the class A of modules (associated to ) is
Zariski-local.

The following is a specialization of the ascent-descent conditions [7, Definition
3.4] that suffices to prove Zariski-locality (see Vakil [29, Lemma 5.3.2] and also
[16], §27.4)):

Lemma 2.2.2. The class of modules A associated to the property of modules P
1s Zariski-local if and only if satisfies the following:

(1) If an R-module M € Ag, then My € Ag, for all f € R.
(2) If (fi,---, fu) = R, and My, = Ry, @g M € Ag,, for alli € {1,...,n},
then M € Ag.

It is easy to see that the class Flat of flat modules is Zariski-local. A module M
is Mittag-Leffler provided that the canonical map M ®g[[,c; M; = [[,c; M®rM;
is monic for each family of left R-modules (M;|i € I). The classes FlatML (of
flat Mittag-Leffler modules) and Proj (of projective modules) are also Zariski-
local by 3.1.4(3) and 2.5.2 in [25, Seconde partie, 2.5.2]. The class rFlatML of
restricted flat Mittag-Leffler modules (in the sense of [7, Example 2.1(3)]) is also
Zariski-local by [7, Theorem 4.2].

2.2.3. Precovers, envelopes and complete cotorsion pairs. Throughout this sec-
tion the symbol ¢ will denote an abelian category. Let C be a class of ob-
jects in @. A morphism C' — M in ¢ is called a C-precover if C is in C and
Homg(C’,C') = Homg(C', M) — 0 is exact for every C' € C. If every object in
@ has a C-precover, then the class C is called precovering. The dual notions are
preenvelope and preenveloping class.

A pair (A, B) of classes of objects in § is a cotorsion pair if A+ = B and
A = 1B, where, given a class C of objects in A, the right orthogonal G+ is
defined to be the class of all Y € @ such that Exté(C’, Y) =0forall C € C.
The left orthogonal +C is defined similarly. A cotorsion pair (A, B) is called
hereditary if Extig(A, B)=0forall A e A, B€ ®B,and i > 1. A cotorsion
pair (A, B) is complete if it has enough projectives and enough injectives, i.e. for
each D € @ there exist short exact sequences 0 - B — A — D — 0 (enough
projectives) and 0 — D — B’ — A" — 0 (enough injectives) with A, A’ € A and
B, B' € B. It is then easy to observe that A — D is an A-precover of D (such
precovers are called special). Analogously, D — B’ is a special B-preenvelope of
D. A cotorsion pair (A, B) is generated by a set provided that there exists a set
8§ C A such that S+ = B. In case @ is, in addition Grothendieck, it is known
that a cotorsion pair generated by a set & which contains a generating set of ¢
is automatically complete.

2.2.4. Exact model categories and Hovey triples. In [14] Hovey relates complete
cotorsion pairs with abelian (or exact) model category structures.

An abelian model structure on @, that is, a model structure on ¢ which is
compatible with the abelian structure in the sense of [14, Definition 2.1], corre-
sponds by [14, Theorem 2.2] to a triple (C, %, F) of classes of objects in A for
which # is thick| and (C N W, F) and (C, W N F) are complete cotorsion pairs

3Recall that a class # in an abelian (or, more generally, in an exact) category G is thick if
it is closed under direct summands and satisfies that whenever two out of three of the terms in
a short exact sequence are in ¥/, then so is the third.
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in G. In the model structure on ¢ determined by such a triple, C is precisely
the class of cofibrant objects, & is precisely the class of fibrant objects, and ¥/ is
precisely the class of trivial objects (that is, objects weakly equivalent to zero).
Such triple is often referred as a Hovey triple.

Gillespie extends in [9, Theorem 3.3] Hovey’s correspondance, mentioned
above, from the realm of abelian categories to the realm of weakly idempotent
complete exact categories [9, Definition 2.2]. More precisely, if ¢ is a weakly
idempotent complete exact categories (not necessarily abelian), then an ezact
model structure on § (i.e. a model structure on ¢ which is compatible with the
exact structure in the sense of [9, Definition 3.1]) corresponds to a Hovey triple

(C, W, F)in Q.

2.2.5. Deconstructible classes. A well ordered direct system (M, | o < X) of
objects in @ is called continuous if My = 0 and, for each limit ordinal g < A, we
have Mg = liﬂa< 5 M,. If all the morphisms in the system are monomorphisms,

then the system is called a continuous directed union.

Let & be a class of objects in G. An object M in @ is called S-filtered if
there is a continuous directed union (M, | @ < A) of subobjects of M such that
M = M) and for every a < \ the quotient M, /M, is isomorphic to an object
in . We denote by Filt(§) the class of all S-filtered objects in §. A class C is
called deconstructible provided that there exists a set & such that C = Filt(S)
(see |27, Definition 1.4]). It is then known by [27, Theorem pg.195] that any
deconstructible class is precovering.

2.2.6. Chain complexes of modules. We denote by Ch(Q) the category of un-
bounded chain complexes of objects in ¢, i.e. complexes G4 of the form

d§+1 ds
o= G — Gy S Gy =
We will denote by Z,G, the n-cycle of G, ie. Z,G = Ker(d%). Given a chain
complex G the n-th suspension of G, ¥"G, is the complex defined as (X"G); =
Gr_n and d;"¢ = (=1)"d}_,. And for a given object A € ¢, the n-disc complex
D™(A) is the complex with the object A in the components n and n — 1, d,, the
identity map, and 0 elsewhere.

We denote by K(§) the homotopy category of ¢, i.e. K(@) has the same
objects as Ch(@) and the morphisms are the homotopy classes of morphisms of
chain complexes.

In case ¢ = R-Mod, we will denote Ch(Q¢) (resp. K(G)) simply by Ch(R)
(resp. K(R)). Given a class C in @, we shall consider the following classes of
chain complexes:

e Ch(C) (resp. K(Q)) is the full subcategory of Ch(Q) (resp. of K(C)) of all
complexes Cy € Ch(Q) such that C,, € C.

o Ch,.(C) (resp. Ka.(C)) is the class of all acyclic complexes in Ch(C) (resp.
in K(Q)).

e C (resp. éK) is the class class of all complexes Cy € Ch,.(C) (resp. C, €
K..(C)) with the cycles Z,,C, in C for all n € Z. A complex in C is called
a C-compler.

17



e If (A,B) is a cotorsion pair in ¢, then dg(A) is the class of all complexes
A, € Ch(A) such that every morphism f: A, — B,, with B, a B-complex,
is null-homotopic. Since Exté(An, B,) = 0 for every n € Z, a standard
formula allows to infer that dg(A) = +®. Analogously, dg(®) is the class
of all complexes B, € Ch(®B) such that every morphism f: A, — B,, with
A, an A-complex, is null-homotopic. Hence dg(B) = AL

2.3 Very flat modules and sheaves

One of the main application of the results in this paper concerns the classes of
very flat modules and very flat quasi-coherent sheaves, as defined by Positselski in
[22]. In the present section we summarize all relevant definitions and properties
regarding this class and that will be relevant in the sequel.

2.3.1. Very flat and contraadjusted modules. Let us consider the set

S={R[r ' |reR}

and let (VF(R),CA(R)) be the complete cotorsion pair generated by &. The
modules in the class YF(R) are called very flat and the modules in the class
CA(R) are called contraadjusted. 1t is then clear that every projective module is
very flat, and that every very flat module is, in particular, flat. In fact it is easy
to observe that every very flat module has finite projective dimension < 1. Thus,
the complete cotorsion pair (YF,CA) is automatically hereditary and CA is
closed under quotients. We finally notice that L is very flat in any short exact
sequence 0 — L — V — M — 0 in which V' is very flat and pdz(M) < 1 (where
pdg(M) is the projective dimension of M).

Proposition 2.3.2 (Positselski). The class of very flat modules is Zariski-local.

Proof. Condition (1) of Lemma holds by [22, Lemma 1.2.2(b)].
Condition (2) of Lemma follows from [22, Lemma 1.2.6(a)]. O

2.3.3. Very flat and contraadjusted quasi-coherent sheaves. Let X be any sche-
me. A quasi-coherent sheaf 171 is very flat if there exists an open affine covering i
of X such that M(U) is a very flat Ox (U)-module for each U € 4l. By the previous
proposition, the definition of very flat quasi-coherent sheaf is independent of the
choice of the open affine covering. A quasi-coherent sheaf 1 is contraadjusted
if Ext™(11,11) = 0 for each very flat quasi-coherent sheaf 771 and every integer
n > 1.

Since the class of very flat modules is resolving (i.e. closed under kernels of
epimorphisms) we infer that the class of very flat quasi-coherent sheaves is also
resolving.

2.3.4. Very flat generators in QCoh(X). Let X be a quasi-compact and semi-
separated scheme, with 4 = {Uy,...,U;} a semi-separated finite open affine
covering of X. Let U = U;,N---N U;, be any intersection of open sets in the cover
$land let j: U — X be the inclusion of U in X. The inverse image functor j* is
just the restriction, so it is exact and preserves quasi-coherence. The direct image
functor j, is exact and preserves quasi-coherence because j: U — X is an affine
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morphism, due to the semi-separated assumption. Thus we have an adjunction
(5%, j«) with 7.: QCoh(U) — QCoh(X) and j*: QCoh(X) — QCoh(U).

The proof of the next proposition is implicit in [I, Proposition 1.1] (see also
Murfet [I7, Proposition 3.29] for a very detailed treatment) by noticing that the
direct image functor j, preserves not just flatness but in fact very flatness (by [22]
Corollary 1.2.5(b)]). The reader can find a short and direct proof in [22, Lemma
4.1.1].

Proposition 2.3.5. Let X be a quasi-compact and semi-separated scheme. Every
quasi-coherent sheaf is a quotient of a very flat quasi-coherent sheaf. Therefore
QCoh(X) possesses a family of very flat generators.

2.3.6. The very flat cotorsion pair in QCoh(X). For any scheme X, the class
VF(X) of very flat quasi-coherent sheaves is deconstructible (by [6, Corollary
3.14]). Therefore the class of very flat quasi-coherent sheaves is a precovering
class (see [2.2.5)). If, in addition, the scheme X is quasi-compact and semi-
separated we infer from [6, Corollary 3.15] and [22, Corollary 4.1.2] that the pair
(VF(X),CA(X)) is a complete hereditary cotorsion pair in QCoh(X) (where
CA(X) denotes the class of all contraadjusted quasi-coherent sheaves on X).

By [22] Lemma 1.2.2(d)] the class of very flat modules (and hence the class of
very flat quasi-coherent sheaves) is closed under tensor products. Thus, in case X
is quasi-compact and semi-separated, [6] Theorem 4.5] yields a cofibrantly gen-
erated and monoidal model category structure in Ch(QCoh(X)) where the weak
equivalences are the homology isomorphisms. The cofibrations (resp. trivial cofi-
brations) are monomorphisms whose cokernels are dg-very flat complexes (resp.
very flat complexes). The fibrations (resp. trivial fibrations) are epimorphisms
whose kernels are dg-contraadjusted complexes (resp. contraadjusted complexes).
Therefore the corresponding triple is

(dg(VF (X)), Chac(QCoh(X)), dg(CA(X))).

2.4 The property of modules involved.
Examples

As we will see in the next sections, we are mainly concerned in deconstructible
classes of modules that are closed under certain periodic modules. We start by
recalling the notion of C-periodic module with respect to a class C of modules.

Definition 2.4.1. Let C be a class of modules. A module M is called C-periodic
if there exists a short exact sequence 0 - M — C — M — 0, with C € C.

The following proposition relating flat A-periodic modules and acyclic com-
plexes with components in A is standard, but relevant for our purposes. The
reader can find a proof in [, Proposition 1 and Proposition 2].

Proposition 2.4.2. Let A be a class of modules closed under direct sums and
direct summands. The following are equivalent:

(1) Every cycle of an acyclic complex with flat cycles and with components in
A belongs to A.
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(2) Every flat A-periodic module belongs to A.

We are interested in deconstructible classes of modules A satisfying condition
(2) in the previous proposition. Of course the first trivial example is the class
Flat(R) of flat modules itself. Since the class of all flat Mittag-Leffler modules
is closed under pure submodules, this class also trivially yields an example of a
class A satisfying that every flat A-periodic module is in A. However this class
has an important drawback: It is only deconstructible in the trivial case of a
perfect ring (see Herbera and Trlifaj [15, Corollary 7.3]). This setback can be
remedied by considering the restricted flat Mittag-Lefler modules, in the sense
of [7, Example 2.1(3)], as we show in Theorem below.

Now we will provide with other interesting non-trivial examples of such classes
A satisfying condition (2) above, and that will be relevant in the applications of
our main results in the next sections.

The first example is the class A = Proj(R) of projective R-modules and goes
back to Benson and Goodearl [2, Theorem 1.1].

Proposition 2.4.3. Let Proj(R) be the class of all projective R-modules. Every
flat Proj(R)-periodic module is projective. As a consequence every pure acyclic
complex of projectives is contractible (i.e. has projective cycles).

The second application is the class A = VF(R) of very flat modules (this is
due to Stovicek, personal communication).

Proposition 2.4.4. Every flat VF(R)-periodic module is very flat. As a conse-
quence every pure acyclic complex of very flat modules has very flat cycles.

Proof. Let 0 - F — G — F — 0 be an exact sequence with F' flat and G very
flat. Let 0 — F; — P — F' — 0 be an exact sequence with P projective; then F}
is flat. An application of the horseshoe lemma gives the following commutative
diagram

0 0 0.

where () is projective, since pdz(G) < 1. Thus, by Proposition , F is projec-
tive and therefore pd,(F) < 1. Let C € CA(R). Then applying Hompg(—, C) to
the short exact sequence yields 0 = Ext,(G, C) — Exth(F,C) — Ext(F,C) =
0, hence F' € YF(R). Finally, the consequence follows from Proposition [2.4.2{(1)
(with A = VF(R)). O

The last example is the announced deconstructible class of restricted flat
Mittag-Leffler modules as defined in [7, Example 2.1(3)].
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Theorem 2.4.5. let k be an infinite cardinal and A (k) be the class of k-restricted
flat Mittag-Leffler modules. Every flat A (k)-periodic module is in A(k). As a
consequence every pure acyclic complex with components in A(k) has cycles in

A(K).

Proof. The proof mostly follows the pattern outlined in [2]; the main difference is
that instead of direct sum decompositions, we work with filtrations and the Hill
Lemma [12, Theorem 7.10]. Given a short exact sequence

0F5GLFroo0 (2.1)

with F' flat and G € A(k), we fix a Hill family # for G. The goal is to pick
a filtration (G, | @ < o) from & such that for each o < o, f(G,) = F NG,
f(G,) €, F, and G,11/G, is < k-presented flat Mittag-Leffler; here A C, B
means that A is a pure submodule of B.

Once this is achieved, we obtain a filtration of the whole short exact sequence

(2.1)) by short exact sequences of the form
0= For1/Fy — Goi1/Go = Foy1/Fy — 0

(putting F,, = f(G,) = FNG,). Since the property of being flat Mittag-Leffler
passes to pure submodules [12 Corollary 3.20], this would make F,,;/F, an
< k-presented flat Mittag-Leffler module and hence imply F' € A(k). (Note that
by [6, Lemma 2.7 (1)], each < k-generated flat Mittag-Leffler module is (even
strongly) < k-presented.)

Put Gy = 0. For limit ordinals «, it suffices to take unions of already con-
structed submodules G, 5 < «; note that by property (H2) in the Hill Lemma,
G, € 3¢ then. Having constructed modules up to G, (and assuming G, # G),
we construct G, as follows: We pass to the quotient short exact sequence

0= F/Fy — G/Go L FIF, =0,

which, by assumption, satisfies that F//F,, is flat and G/G, € A (k). Note that
F/F,, being (identified with) a pure submodule of G/G,, is flat Mittag-Leffler.
The Hill family #€ gives rise to family #’ for G/G,,, which consists of factors of
modules from # (containing G,,) by G,.

Let us first show that any < k-generated submodule Y of G/G,, can be en-
larged to < k-generated G € #' with the property that f(G) C, F/F, and
GNF/F,is < k-generated. To this end, we construct inductively a chain of sub-
modules G,, € #' with union G (utilizing property (H2)). Let Gy be an arbitrary
< k-generated module Gy € #' containing Y (obtained via (H4)). Assuming we
have constructed G,,, we get G, 41 by taking these steps:

(1) Enlarge f(G,) to a < s-generated pure submodule X, of F/F,; this is
possible by [6, Lemma 2.7 (2)] once we notice that F/F,, being a pure
submodule of G/G,, is flat Mittag-LefHer.

(2) Take < k-generated G,,,; € #' such that X C f(G"); this is again possible
by property (H4) of the Hill Lemma.
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We have [(G) = U,cn f(G) = U, en Xn C« F/F,. This also shows that f(G) is
flat Mittag-Lefler, hence < k-presented. The short exact sequence

0—=GN(F/F,) =G — f(G)—=0

now shows that G N (F/F,) is indeed < k-generated.

Now iterate the claim as follows: Start with arbitrary < x-generated non-zero
Yy € G/G, and obtain Gy from the claim. Enlarge it to G, € #' satisfying
Go N (F/F,) C f(G,) (which we may do using (H4), since Go N (F/F,) is < k-
generated). Taking Y; = G + f(G1) and applying the claim, we get G5 etc. This
way we obtain a chain

GoN (F/F,) C f(Gh) CGyN(F/F,) C f(Gs) C ...,

so for G = |,y Gn € ' we have G N (F/F,) = f(G). Also the purity of f(G)
in F'/F, and being < k-generated is ensured. B
The desired module G, is now the one satisfying G,.1/G, = G. ]

Note that in the case kK = Rg, A (k) is just the class of projective modules by
[25, Seconde partie, Section 2.2], so this also covers the case of [2].

2.5 Quillen equivalent models for K(Proj(R))

It is known (see Bravo, Gillespie and Hovey [3, Corollary 6.4]) that the homotopy
category of projectives K(Proj(R)) can be realized as the homotopy category of
the model M,,,; = (Ch(Proj(R)), Ch(Proj(R))*, Ch(R)) in Ch(R). Denote by
Cot(R) the class of (Enochs) cotorsion modules, i.e. Cot(R) = Flat(R)*. Now, by
[11, Remark 4.2], the class Ch(Flat(R)) induces model category in Ch(R) given
by the triple

(Ch(Flat(R)), Ch(Proj(R))*, dg(Cot(R))).

This model is Quillen equivalent to 71,,.;. Therefore, its homotopy category, the
derived category of flats D(Flat(R)), is triangulated equivalent to K(Proj(R)).
The next theorem gives sufficient conditions on a class of modules A to get
D(A) and D(Flat(R)) to be triangulated equivalent. For concrete examples of
such classes the reader should have in mind the classes of modules considered in

Section [2.4]
Theorem 2.5.1. Let A C Flat(R) be a class of modules such that:

(1) The pair (A, B) is a hereditary cotorsion pair generated by a set.
(2) Every flat A-periodic module is trivial.

Then there is an abelian model category structure
M = (Ch(A), Ch(Proj(R))*, dg B)

in Ch(R). If we denote by D(A) the homotopy category of M, then D(Flat(R)),
D(A) and K(Proj(R)) are triangulated equivalent, induced by a Quillen equiva-
lence between the corresponding model categories.
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Proof. Let Nl = (Ch(A),W,dg CE) be the model associated to the complete
hereditary cotorsion pairs (Ch(A), Ch(A)*1) and (.;?T, dg B) in Ch(R). To get the
claim it suffices to show that ¥ = Ch(Proj(R))*. To this aim we will use [11}
Lemma 4.3(1)], i.e. we need to prove:

(i) A = Ch(A) N Ch(Proj(R))*.
(ii) Ch(A)* C Ch(Proj(R))*.

Condition (ii) is clear because Proj(R) C A. Now, by Neeman [2I, Theorem
8.6], Ch(A) Q\C/h(Proj(R))L = Flat(R) N Ch(A). But, by the assumption (2), it
follows that Flat(R) N Ch(A) = A. O

Remark 2.5.2. Starting with a class A in the assumptions of Theorem [2.5.1]
we may construct, for each integer n > 0, the class A=" of modules M possessing
an exact sequence

0—-A,— A, 1—...5Ag—>M—=0

with A; € A, 1 =1,...,n. The derived categories D(A=") and D(A) are trian-
gulated equivalent (see Positselski [22], Proposition A.5.6]). In particular we can
infer from this a triangulated equivalence between K(Proj(R)) and D(YF(R)).
By using a standard argument of totalization one can also check that D(A=")
and D(A) can be realized as the homotopy categories of two models M1, and M1,
and that these models are Quillen equivalent without using Neeman [21, The-
orem 8.6]. From this point of view it seems that the triangulated equivalence
between K(Proj(R)) and D(YF(R)) is much less involved than the one between
K(Proj(R)) and D(Flat(R)).

2.6 Quillen equivalent models for D(Flat(X))

Setup: Throughout this section X will denote a quasi-compact and semi-sepa-
rated scheme. If Y = {Uy,...,U,} is an affine open cover of X and a =
{90, ..., ik} is a finite sequence of indices in the set {0, ..., m} (with iy < --- < i),
we write U, = U;, N--- N U;, for the corresponding affine intersection.

In [I7] Murfet shows that the derived category of flat quasi-coherent sheaves
on X, D(Flat(X)), constitutes a good replacement of the homotopy category of
projectives for non-affine schemes, because in case X = Spec(R) is affine, the
categories D(Flat(X)) and K(Proj(R)) are triangulated equivalent. There is a
model for D(Flat(X)) in Ch(QCoh(X)) given by the triple

Migae = (Ch(Flat(X)), W, dg(Cot(X))).

(see [II, Corollary 4.1]). We devote this section to provide a general method
to produce model categories M in Ch(QCoh(X)) which are Quillen equivalent
to Myga. In particular this implies that the homotopy category Ho(7M) and
D(Flat(X)) are triangulated equivalent.

Theorem 2.6.1. Let X be a scheme and let P be a property of modules and A
its associated class of modules. Assume that A C Flat, and that the following
conditions hold:

23



(1) The class A is Zariski-local.

(2) For each R = Ox(U), U € U, the pair (Ar, Br) is a hereditary cotorsion
pair generated by a set.

(8) For each R = Ox(U), U € U, every flat Ar-periodic module is trivial.
(4) j*(ﬂqc(Ua)> - ﬂqc(X); for each o C {07 s 7m}'

Then there is an abelian model category structure M z,. in Ch(QCoh(X)) given
by the triple (Ch(Aq), W, dg(B)). If we denote by D(A.) the homotopy category
of My, then the categories D(Flat(X)) and D(Ay.) are triangulated equivalent,
induced by a Quillen equivalence between the corresponding model categories. In
case X = Spec(R) is affine, D(AR) is triangulated equivalent to K(Proj(R)).

Before proving the theorem, let us focus on one particular instance of it: If
we take A = VF (the class of very flat modules) the theorem gives us that
D(Flat(X)) and D(VF (X)) are triangulated equivalent. This generalizes to
arbitrary schemes [22 Corollary 5.4.3], where such a triangulated equivalence is
obtained for a semi-separated Noetherian scheme of finite Krull dimension.

Corollary 2.6.2. For any scheme X, the categories D(Flat(X)) and D(VF (X))
are triangulated equivalent.

Let us prove Theorem [2.6.1 We firstly require the following useful lemma.

Lemma 2.6.3. Suppose A is as in Theorem (possibly without satisfying
condition (3)). Then for any M, € Ch(Flat(X)) there exists a short exact se-

quence
00— Ky > Fe— 1, — 0,

where Fy € Ch(Ag(x)) and K, € PTJt(X).

Proof. We essentially follow the proof of [23, Lemma 4.1.1]; the main difference
is that instead of sheaves, we are dealing with complexes of sheaves. Starting
with the empty set, we gradually construct such a short exact sequence with the
desired properties manifesting on larger and larger unions of sets from i, reaching
X in a finite number of steps.

Assume that for an open subscheme T of X we have constructed a short
exact sequence 0 — L, — G4 — 111, — 0 such that the restriction h*(G,) belongs
to Ch(Aqe(r)) (h: T — X being the inclusion map) and L, € 1*:1\5;0(X). Let
U € U (with the inclusion map j: U < X); our goal is to construct a short
exact sequence 0 — L. — G, — 111, — 0 with the same property with respect to
the set U UT. Let us note that the adjoint pairs of functors on sheaves (j*, j.),
(h*, h,) yield corresponding adjoint pairs of functors on complexes of sheaves.

Pick a short exact sequence

0— Ky = Zo— 7 (Cs) = 0 (E)

of complexes of sheaves over the affine subscheme U, where Z, € Ch(Aqcw)) =
Ch(Ao, @) and Ky € Ch(Ao,w))*, i-e. a special precover in the category of
complexes of Oy (U)-modules. In this (affine) setting we know from [21] that K, €
Ff‘l\E;t(U), since K, € Ch(Flat(U)) NCh(Ao,w))" € Ch(Flat(U)) N Ch(Proj(U))*.
Using the direct image functor, we get 0 — j.(K,) — ju(ZLe) — 727 (Ge) — 0
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on X. Since U € U is affine, j, is an exact functor taking flats to flats and
also preserving A by condition (4), so j.(K.) € Flat(X), whence j.(Z,) stays in
Ch(Ay). Now considering the pull-back with respect to the adjunction morphism
Ge — J+7*(C,), one gets a new short exact sequence ending in @,; let ¢, be its
middle term:

|

0 ——Ju(Ke) = Ju(Ze) —5uJ"(Ge) —=0

Let us now check that ¢, is in Ch(Aqwur)); by Zariski-locality of A, this is
sufficient to check on U and T separately, i.e. j*(G,) € Ch(Agw)) and h*(g,)
Ch(Agery). The former is easy, since j*(G,) = Z,, which is in Ch(Aywy) by
the construction.

To verify the latter, let k: UNT — T and [: UNT — U be the embeddings;
note that U N7 is open affine by semi-separatedness. Since h*(G,) € Ch(Age(r)),
we have [*5*(G.) = k*h*(G.) € Ch(Aqewnr)) (A being Zariski-local class). Fur-
thermore, I*(G,) € Ch(Agewnr)). By applying the exact functor I* to the se-
quence (E), we now get that [*(K,) € Ch(Aywnr)) by the resolving property of
A. Finally, h*j.(K.) = k1" (K.) € Ch(Aqe(r)) using the property (4). Therefore
h*(G,) as an extension of h*j,(K,) by h*(C.) belongs to Ch(Aq(r)), too.

Finally, the kernel L] of the composition of morphisms ¢ —> Ge — M, is
an extension of L, and j,(%,), hence a complex from Flat(X). This proves the
existence of the short exact sequence from the statement. O

Proof of Theorem [2.6.1] First of all we notice that the class A contains a family
of generators for QCoh(X); this is just a variation of the idea used in the proof of
[22, Lemma 4.1.1], where we replace the class of very flat quasicoherent sheaves
by A4 (and do not care about the kernel of the morphisms), which is possible
thanks to property (4).

Then, by [6l Corollary 3.15] we get in QCoh(X) the complete hereditary
cotorsion pair (A, B) generated by a set. Thus by [I1, Theorem 4.10] we get the
abelian model structure 77 = (Ch(Aq), Wi,dg(B)) in Ch(QCoh(X)) given
by the two complete hereditary cotorsion pairs:

(Ch(Age), Ch(Ag)") and  (Age, dg(B)).

Since A, C Flat(X), we get the corresponding induced cotorsion pairs in the
category Ch(Flat(X)) (with the induced exact structure from Flat(X)):

(Ch(Aye), Ch(Age)™ N Ch(Flat(X))) and (A, dg(B) N Ch(Flat(X))).

To see that e.g. the former one is indeed a cotorsion pair, we have to check that
Ch(Ay) = H(Ch(Ay)*t N Ch(Flat(X))) N Ch(Flat(X)). The inclusion “C” is
clear. To see the other one, pick Xy € +(Ch(Ay)* NCh(Flat(X)))NCh(Flat(X))
and consider a short exact sequence 0 = B, — A, = Lo — 0 with A, € Ch(A)
and B, € Ch(A)*t. As Ay C Flat(X) and Ch(Flat(X)) is a resolving class,
we infer that B, € Ch(Flat(X)). Thus the sequence splits and X, is a direct
summand of A,, hence an element of Ch(A,). The proof for the latter cotorsion
pair goes in a similar way.
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Now we will apply [11, Lemma 4.3] to these two complete cotorsion pairs in

the category Ch(Flat(X)) and to the thick class ¥ = Flat(X) in Ch(Flat(X)).
So we need to check that the following conditions hold:

(i) Aqe = Ch(Aqe) NFlat(X).
(i) Ch(Ag)* N Ch(Flat(X)) C Flat(X).

Since every flat Agz-periodic module is trivial and the classes A and Flat are
Zariski-local, we immediately infer that every flat A..-periodic quasi-coherent
sheaf is trivial. Thus, from Proposition we get condition (i). So let us see
condition (ii). Let £, € Ch(Ay)* N Ch(Flat(X)). Since the pair

(Ch(Flat(X)), Ch(Flat(X))*4)
in Ch(QCoh(X)) has enough injectives, there exists an exact sequence,
00— Ly = Py — Ny — 0,

with @, € Ch(Flat(X))* and M, € Ch(Flat(X)). Now, since L, € Ch(Flat(X)),
we get that

®, € Ch(Flat(X)) N Ch(Flat(X))* = Flat Cot(X),

where Flat Cot(X) is the class of all contractible complexes with components
in Flat(X) N Flat(X)*; this equality of classes is an easy consequence of [8],
Proposition 3.2]. By Lemma [2.6.3] there exists an exact sequence

00— Ky = Fe— 1y — 0,

where 5, € Ch(A.) and K, € I*:I\E;C(X). Now, we take the pull-back of #, — 111,
and F, — M1, so we get a commutative diagram:

0 0
Ke=—=K,
0 Lo Q. Fe 0
|
0 L, P, m, 0
0 0

In the middle column, the complexes K, and &, belong to B:l;c(X ). Therefore, the
complex 9Q, also belongs to Flat(X). Since #, € Ch(A,.) and L, € Ch(A)",

the exact sequence in the middle row splits. So, L, € ]i:faTt(X ) as desired.
Therefore by |11, Lemma 4.3] we have an exact model structure in the category
Ch(Flat(X)) given by the triple

MG = (Ch(Ay), Flat(X), dg(®) N Ch(Flat(X))).
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Since it has the same class of trivial objects, this model is Quillen equivalent to
the flat model in Ch(Flat(X)),

Mt — (Ch(Flat(X)), Flat(X), dg(Cot(X)) N Ch(Flat(X))).
This is, in turn, the restricted model of the model
M., = (Ch(Flat(X), ), dg(Cot(X)))

in Ch(QCoh(X)) with respect to the exact category Ch(Flat(X)) of cofibrant

objects. Thus, My, and mg:tﬂ“ are canonically Quillen equivalent. To finish the

proof, let us show that the model 7’I’lChf‘at is Quillen equivalent to

mﬂqc - (Ch(ﬂqc X)) W17dg($))
But this model is canonically Quillen equivalent to its restriction to the cofibrant
objects, i.e.

Chz,,

mﬂqc = (Ch(ﬂqc>7 'j%zlcu dg(@> N Ch('ﬂqc))

Finally the Quillen equivalent cofibrant restricted model of
MG — (Ch(Aye), Flat(X), dg(B) N Ch(Flat (X))
is given by the triple

(Ch(Aq.), Flat(X) N Ch(Aq.), dg(B) N Ch(Aq.))),

which by condition (i) above is precisely the previous model m O summary,
we have the following chain of Quillen equivalences between the several models,

Ch,.
mﬂat ~ mg;tﬂat ~ mChﬂat ~ mﬂqﬁq ~ 7’]’1‘/%1C
The first and the last models give our desired Quillen equivalence. O

Recall from [4] that 77 € QCoh(X) is an infinite-dimensional vector bun-
dle if, for each U € U, the Ox(U)-module M (U) is projective. We will de-
note by Vect(X) the class of all infinite-dimensional vector bundles on X. In
case Vect(X) contains a generating set of QCoh(X), we know from [6], Corollary
3.15 and 3.16] that the pair (Vect(X),B) (where B := Vect(X)*) is a complete
cotorsion pair generated by a set. It is hereditary, because the class Vect(X)
is resolving. Thus by [II, Theorem 4.10] we get the abelian model structure
Mot = (Ch(Vect(X)), Wr,dg(B)) in Ch(QCoh(X)) given by the two complete
hereditary cotorsion pairs:

(Ch(Vect(X)), Ch(Vect(X))") and (Vect(X),dg(®B)).

We will denote by D(Vect(X)) its homotopy category.

We are now in position to prove Corollary 2 in the Introduction. Let us remind
the reader of our standing assumption that all schemes are quasi-compact and
semi-separated.

27



Corollary 2.6.4. Let X be a scheme with enough infinite-dimensional vector
bundles. Then the categories D(Flat(X)) and D( Vect(X)) are triangle equiva-
lent, the equivalence being induced by a Quillen equivalence between the corre-
sponding model categories.

Proof. The proof will follow by showing that D(Vect(X)) and D(VF(X)) are
Quillen equivalent, and then by applying Corollary [2.6.2] To this end, we will
prove that the model structures M. and Mlys have the same trivial objects.
To achieve this, by [10, Theorem 1.2], it suffices to show that the trivial fibrant
and cofibrant objects of one structure are trivial also in the other structure. This
assertion is clearly satisfied by the trivial cofibrants of M., and trivial fibrants
of My, as

Vect(X) C VF(X) and Ch(VF(X))* C Ch(Vect(X))*.

Now let ¥, € VF (X); since there are enough infinite-dimensional vector bun-
dles, the cotorsion pair (%gt(X ),dg(B)) has enough projectives, hence there is
a short exact sequence

0—=Q¢ =Py —Ve—0

with &, € %gt(X ). Restricting this to an open affine subset of X, we obtain
a short exact sequence with a complex of projective modules in the middle and
ending in a complex of very flat modules, and the objects of cycles also belonging
to the respective classes. Since the projective dimension of very flat modules does
not exceed 1, it follows that Q, has also projective cycles after this restriction,
hence Q, € Vect(X). We conclude that ¥, being a factor of two trivial objects,
is itself trivial in 7.

Finally, pick 11, € Ch(Vect(X))*. Using the completeness of the cotorsion
pair (Ch(VF (X)), Ch(VF(X))1), we obtain a short exact sequence

0—-Ke— 4V, —> M, —0

with ¥, € Ch(VF (X)) and K, € Ch(VF (X)), As K, is trivial in M, it suf-
fices to show that ), is trivial, too. Furthermore, Ch(VF(X))* C Ch(Vect(X))*
implies that in fact, ¢, € Ch(Vect(X))*. So as above, construct a short exact
sequence

0— Q¢ > Py —V, =0,

this time with #, € Ch(Vect(X)) and Q, € Ch(Vect(X))t. The same lo-
cal argument as above shows that Q, € Ch(Vect(X)), and we also have P, €
Ch(Vect(X))* (being an extension of two objects from the class). Hence ¥, is
a factor of two complexes from the class Ch(Vect(X)) N Ch(Vect(X))+, which

—_—

is a subclass of \7e\gt(X ) and consequently F (X)), therefore consisting of trivial
objects of M. O

Finally, the last consequence is also an application of Theorem for the
class of very flat quasi-coherent sheaves. It follows from Gillespie [I1, Theorem
4.10]

Corollary 2.6.5. There is a recollement

D,.(VF (X)] ——— D(VF (X)) —»——D(X)
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Remark 2.6.6. Murfet and Salarian deal in [19] with a suitable generalization of
total acyclicity for schemes. Namely, they define the category D ¢ac(Flat(X ))Er] of
F-totally acyclic complexzes in D(Flat(X)) and prove that, in case X = Spec(R)
is affine and R is Noetherian of finite Krull dimension, Dg_¢,.(Flat(X)) is triangle
equivalent to Ki..(Proj(R)) (the homotopy category of totally acyclic complexes
of projective modules) showing that Dp_..(Flat(X)) also constitutes a good re-
placement of Ki..(Proj(R)) in a non-affine context. An analogous version of
Theorem [2.6.1allows to restrict the equivalence between D(Flat(X)) and D(Ag)
to their corresponding categories of F-totally acyclic complexes Dy_tac(Aqc) and
Dy _tac(Flat(X)). In particular, the full subcategory D iac(VF (X)) of F-totally
acyclic complexes of very flat quasi-coherent sheaves in D(F (X)) is triangle
equivalent with Murfet’s and Salarian’s derived category of F-totally acyclic com-
plexes of flats.
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3. Countably generated flat
modules are quite flat

This chapter is based on the preprint available at Project Euclid, to appear in
the Journal of Commutative Algebra. It is also available at arXiv:1907.00356.

3.1 Introduction

Over any ring, the Govorov-Lazard Theorem provides a description of flat mod-
ules as direct limits of finitely generated free modules. However, this description,
while sometimes useful, does not give much insight into the properties of flat mod-
ules; for example, for the ring of integers, the theorem says that every torsion-free
abelian group is the direct limit of finitely generated free abelian groups, which
is clear from the fact that finitely generated subgroups of torsion-free groups are
free. However, a more informative description of torsion-free groups is available,
going back to Trlifaj [§] with a generalization due to Bazzoni-Salce [2] (see the
beginning of the introduction to [7]). So one wishes, and sometimes can have, a
more precise description of flat modules.

The descriptions of classes of modules (in particular, flat modules) that we
have in mind are formulated in terms of transfinite extensions. Recall that if C is
a class of R-modules, then an R-module M is a transfinite extension of modules
from C if there is a well-ordered chain of submodules of M, (M, | « < o), such
that My = 0, M, = M, M, = Uz, Mp for every limit ordinal o < o, and the
quotient module M, 1/M, is isomorphic to an element of C for every for every
a < 0. We also say that M is C-filtered in that case.

In particular, the class of quite flat modules over a commutative ring R was
defined in the paper [7] as follows. We say that an R-module C'is almost cotorsion
if Extyp(S™'R,C) = 0 for all (at most) countable multiplicative subsets S C R.
An R-module F is said to be quite flat if Exty(F,C) = 0 for all almost cotorsion
R-modules C. By [0, Corollary 6.14], this means that quite flat modules are
precisely the direct summands of transfinite extensions of modules of the form
STIR, where S is a countable multiplicative subset of R.

It was shown in [7] that all flat modules over a commutative Noetherian ring
with a countable spectrum are quite flat. In this paper we prove the following
generalization of this result: For any commutative Noetherian ring, any count-
ably generated flat module is quite flat. Then we offer an alternative proof of the
mentioned theorem from [7], by explaining how to deduce the description of arbi-
trary flat modules over a commutative Noetherian ring with countable spectrum
from the description of countably generated flat modules.

To be more specific, the theorem that all countably generated flat modules
over a commutative Noetherian ring are quite flat is proved in Section [3.2 In
Section we work more generally with a commutative Noetherian ring R whose
spectrum has cardinality smaller than «, where k is a regular uncountable cardi-
nal. In this setting, we prove that every flat R-module is a transfinite extension
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of < k-generated flat R-modules/[]

We are grateful to Jan Trlifaj for the suggestion to include Remark We
also want to thank the anonymous referee for careful reading of the manuscript
and several helpful suggestions on the improvement of the exposition.

3.2 Noetherian rings

In this section we prove the main result promised in the title of the paper: All
countably generated flat modules over a Noetherian commutative ring are quite
flat. There are two main ingredients: Firstly, there is the “Main Lemma” from
[7], which makes it possible to check whether a module is quite flat by reducing
the question to rings of smaller Krull dimension. We recall the statement for the
convenience of the reader.

Lemma 3.2.1 ([7, Main Lemma 1.18]). Let R be a Noetherian commutative ring
and S C R be a countable multiplicative subset. Then a flat R-module F' is quite
flat if and only if the R/sR-module F/sF is quite flat for all s € S and the
ST'R-module ST'F is quite flat.

The second ingredient is a lemma ensuring that there is always a suitable
countable multiplicative subset to be used in Lemma Before formulating the
lemma, we prove a proposition, which holds even for non-Noetherian commutative
rings.

Proposition 3.2.2. Let R be a commutative ring and F' a countably presented
flat R-module. LetT C R be a multiplicative subset such that T—F is a projective
T~ 'R-module. Then there is a countable multiplicative subset S C T such that
STF is a projective S~ R-module.

Proof. 1t is a standard fact that countably presented flat modules have projective
dimension at most one. Furthermore, by [0, Corollary 2.23|, F' is the cokernel
of a monomorphism between countable-rank free R-modules; let f: RN — RM
be this monomorphism. The monomorphism 7-!f: T-'RM™ — T-1RM gplits
by assumption; let g: T-'R™ — T-1R™ be a map of T~' R-modules such that
(T_lf)g = idT_1R(N).

The maps T~ !f and g, being maps between free modules, can be represented
by column-finite matrices of countable size of elements of T-'R (provided we
view the elements of free modules as column vectors); denote by A and B the
corresponding matrices, respectively, and let E be the identity matrix of countable
size. Then AB — F = 0, a matrix equation which translates into countably many
equations in T-'R. Every such equation becomes a valid equation in R after
multiplying by an appropriate element of T'; pick such an element for each of the
equations and let V' C T be the set of all these elements. Further, let D C T be
the set of all denominators appearing in the entries of the matrix B.

Both V and D are countable sets, therefore the multiplicative subset S C R
generated by V U D is countable, too. As D C S, the entries of B are naturally
elements of S™'R and since V' C S, the matrix equation AB — E = 0 holds in

!The original introduction of the paper continues here with a decription of results over
non-noetherian rings.
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S~'R, too. Hence B defines a splitting of the monomorphism S~!f: S~'RM —
S~'RM)_ the cokernel of which is S~'F, which is therefore a projective S—'R-
module. It remains to observe that V U D C T implies S C T O]

Lemma 3.2.3. Let R be a Noetherian commutative ring and F a countably
generated flat module. Then there is a countable multiplicative subset S C R such
that SN q = 0 for every minimal prime ideal q of R and S™'F is a projective
ST R-module.

Proof. Let qy,...,qx be the minimal prime ideals of R and put 7' = R\ (q; U
-+ Uqg). Then T is a multiplicative subset intersecting all but the minimal
primes of R, hence 'R is an Artinian ring. It follows that 7' F is a projective
T~ R-module.

Since R is Noetherian, every countably generated module is countably pre-
sented, so, by Proposition [3.2.2] there is a countable multiplicative subset S C T
such that S~!F is a projective S~!R-module. Finally, the inclusion S C T implies
SN q =0 for every minimal prime q by the choice of T. O

We are now ready to prove the main result.

Theorem 3.2.4. Let R be a Noetherian commutative ring and F' a countably
generated flat module. Then F' is quite flat.

Proof. The strategy, “Noetherian induction”, is borrowed from the proof of [7,
Theorem 1.17]. Assume that F{y = F' is a countably generated flat module which
is not quite flat. By Lemma [3.2.3] there is a countable multiplicative subset S
not intersecting the minimal primes of Ry = R and such that S, ' F} is a projective
Sy ' Rg-module. Therefore, by Lemma since [y is not quite flat, there is
So € Sp such that Fy/soFp, which is a countably generated flat Ry/sqRo-module,
is not a quite flat Ry/soRo-module.

The ring Ry = Ro/soRp is a Noetherian commutative ring and by Lemma
3.2.3, we again obtain a multiplicative subset S; C R; with analogous properties
with respect to the ring R; and the R;-module F; = Fy/soFp. Similarly, Lemma
produces an element s; € Sy such that Fi/s;F] is not a quite flat Ry /sy Ry-
module. Repeating this procedure, we obtain an infinite sequence sy € Ry, 1 €
R etc.

Denote by s, € R any preimage of s,, € R, for every n € Ny and let I,, be the
ideal generated by 5S¢, ...,S,. Since each s, is picked from .S,,, which avoids the
minimal primes of R,, the chain of ideals Iy, I1,... is strictly increasing, which
contradicts Noetherianity of R. We conclude that F' is a quite flat R-module. [

Corollary 3.2.5. Let R be a Noetherian commutative ring. Then an R-module
F is a countably generated flat module if and only if ' is a direct summand of
a transfinite extension, indexed by a countable ordinal, of R-modules of the form
STIR, where S ranges over countable multiplicative subsets of R.

Proof. The “if” part is clear. As for the “only if” part, by Theorem Fis
quite flat, so as pointed out in [7, §1.6], it is a direct summand of a transfinite
extension F of R-modules of the form S~!R, where S are countable multiplicative
subsets. Now by the Hill Lemma [6] Theorem 7.10] (taking x = Ny, M = E|
N =0, and X a countable generating set of F' in (H4)), F' is in fact contained
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in a countably generated module £’ C FE, again filtered by modules of the form
ST'R. An inspection of the last paragraph of the proof of [6, Theorem 7.10] then
shows that the ordinal type of the filtration of £’ is countable. ]

3.3 Noetherian rings with bounded cardinality
of spectrum

Let R be a Noetherian commutative ring with countable spectrum; then, by [7,
Theorem 1.17], all flat R-modules are quite flat. In particular, all flat R-modules
are transfinite extensions of countably generated flat modules. This result can be
proved directly, which we are going to do now.

The following lemma is standard and holds also in the non-commutative case
once the obvious alterations are made. We spell it out so we can refer to it easily.

Lemma 3.3.1. Let R be a commutative ring and M, F' R-modules such that
M C F and I an ideal of R. The following are equivalent:

(1) the map M ®gr (R/I) — F ®@gr (R/I) is injective,
(2) the map M/IM — F/IF is injective,
(3) IFNM C IM (in which case necessarily [FNM = IM ).

Proof. (1) < (2): By tensoring the short exact sequence 0 - 1 — R — R/I — 0
by an R-module A and noting that the image of AQrl — ARrR = A is precisely
ITA, we get that A ®p (R/I) is naturally isomorphic to A/IA for any A and I.
(2) < (3): The kernel of the composition M — F — F/IF is precisely
IFNM,so M/IM — F/IF is injective if and only if /F N M C IM, and since
ITF N M D IM holds always, this is also equivalent to ITFFN M = I M. ]

The following is again a known result: The general (not necessarily commu-
tative) case is e.g. [I, Lemma 19.18], and the Noetherian case was established in
[3, Lemma 4.2 and the following paragraph], although the proof is quite different.

Lemma 3.3.2. Let R be a commutative ring, F' a flat R-module and M a sub-
module of F'. Then M is a pure submodule of F' if and only if for each finitely
generated ideal I of R, the natural map

M ®g (R/I) - F®g (R/I)

is injective. If R is a Noetherian commutative ring, then it suffices to take for I
the prime ideals of R.

Proof. If the inclusion of M into F'is pure, then it stays injective after tensoring
with any R-module, in particular with R/I.

On the other hand, since F is flat, M is a pure submodule if and only if
the factormodule C' = F//M is flat, i.e., Torf(C, A) = 0 for every R-module A.
However, the vanishing of Tor is preserved by transfinite extensions, and since
every R-module is a transfinite extension of cyclic modules, it suffices to verify
that Tor?(C, R/I) = 0 for every ideal of R. Moreover, since every ideal is the
directed union of its finitely generated subideals, every cyclic module is the direct
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limit of modules of the form R/I for I finitely generated, and since Tor commutes
with direct limits, we see that it is enough to test that Tor[(C, R/I) = 0 for every
finitely generated ideal of R. Since F is flat, Tor®(F, R/I) = 0, so Torf(C, R/I)
is precisely the kernel of the map M ®g (R/I) — F ®g (R/I), hence it is zero if
and only if this map is injective.

If R is a Noetherian ring, then every module is a transfinite extension of
modules of the form R/p, where p is a prime ideal of R. Therefore it suffices
to check only that Tor?(C, R/p) = 0 and the argument concludes in the same
way. O]

If F'is not flat, Lemma [3.3.2] (even its weaker form) is no longer valid even in
the Noetherian case, which we are most interested in:

Example 3.3.3. Let k be a field, k[x, y] the ring of polynomials in two variables
and R = k[z,y]/(z% xy,y*). We will denote the cosets of z and y in R again
by x and y for simplicity. Let F' be a k-vector space with five-element basis
{a,b,s,t, e}, on which we define the actions of x and y as follows: zs = ys = 0,
xt=yt=0,za=s,ya=t ab=1t, yb =0, re = s, ye = 0; it is easy to see that
this makes F' an R-module. Furthermore, the k-subspace generated by {a,b, s, t}
is an R-submodule of F', which we denote by M. We claim that IM = IF N M
for every ideal I of R, but M is not pure in F.

Firstly, observe that F'/M is the simple R-module on which x and y act by
zero. Since

z(aa + pb+ce) = (a+¢€)s + ft,
y(aa+ Bb+ce) = at

for a, 5, € k, the only k-linear combination of a, b, e annihilated by both z
and y is the trivial one. Therefore k-linear combinations of s and ¢ are the only
elements of F' killed by both z and y. We conclude that there is no section
of the R-module projection F' — F/M, hence M is not a direct summand and
consequently, not a pure submodule of F'.

Secondly, note that whenever I is an ideal of R such that I ¢ (y), then
s € IM: Either I contains an element ¢ with a non-zero absolute term, in which
case is = s, or I C (z,y). In the latter case, there are u,v € k, u # 0 such that
ux + vy € I; then one can find a, f € k such that (ux + vy)(aa + pb) = s by
solving a system of two linear equations with regular matrix.

A typical element q of IF is of the form

q= il(ml + 516) + -+ Zn(mn + 8n6),

where 71,...,%, € I, my,...,m,, € M and ¢4,...,e, € k. The element r =
(1161 + + -+ + inepn)e is a linear combination of s and e; for ¢ to be in IF N M,
r must be a multiple of s, therefore r € IM by the discussion above. Since
itmq + -+ 1,m, € IM, we conclude that ¢ € IM as desired.

Finally, if an ideal [ satisfies I C (y), then /M = I F' and we are done.

Let x be a cardinal. We say that a commutative ring R is < k-Noetherian
if every ideal of I is < k-generated. Note that by [0, Lemma 6.31], submodules
of < k-generated modules over a < k-Noetherian ring are < k-generated; in
particular, every < k-generated module is < k-presented.
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Lemma 3.3.4. Let k be an uncountable reqular cardinal, R a < k-Noetherian
commutative ring, I an ideal of R, F an R-module and X a subset of F' of
cardinality < k. Then there is a < k-generated submodule M C F' such that
XCMand IM=IFNM.

Proof. Let Xy = X. Denote by M, the submodule of F' generated by Xj; this
is a < k-generated module. Since R is < k-Noetherian, the submodule I F' N M,
of My is < k-generated, too; let Yy be a set of cardinality < k generating this
module. Every y € Y can be written as

Yy=p1y1+ -+ Paln,

where p; € I and y; € F for i = 1,...,n. Gathering these y;’s for all y € Y,, we
obtain a subset Zy C F of cardinality < k. By the construction, the submodule
M, C F generated by XU Zy has the property IF' N My C I M.

Now repeat this procedure, starting with the set X; = Xy U Z; of cardinality
< K, obtaining a subset Z; C F' of cardinality < . Continuing in this fashion,
i.e., repeating the procedure with X;,; = X; U Z;, we obtain an Ny-indexed chain
Xo C X; C X5 C ... of subsets of F' of cardinality < x; let X be its union. Note
that the cardinality of X is less than k, since x is uncountable and regular. We
claim that the submodule M C F' generated by X has the desired property: This

is because M = J,, oy, M, and
IFAM=|JUFnM,)C ) IMyy =1M.
neNy n€Np

]

Lemma 3.3.5. Let R be a Noetherian commutative ring with spectrum of car-
dinality less than k, where Kk is an uncountable reqular cardinal. Let F' be a flat
R-module and X a subset of F' of cardinality < k. Then there is a pure submodule
M C F such that X C M and M is < k-generated.

Proof. We prove the lemma by “iterating Lemma sufficiently many times”
for each prime ideal of R. More precisely, let Ay be the cardinality of the spectrum
of R. Put A = A\ if )\ is infinite, and let A be the countable cardinality if g is
finite. Let 101 A — X be a surjective function such that for each ordinal o < A,
the preimage ¢~ !(«) is unbounded in A. Also let {p,, | @« < A} be a numbering of
the spectrum of R in which every prime ideal of R appears at least once. Finally,
put My = 0.

Now starting with Xy, = X, apply Lemma with I = pyo) to get < k-
generated submodule M; C F' such that Xo C M; and py) My = pyo)F' N M.
More generally, for every o < A, if M, is constructed, let M, be the result of
applying Lemma with the prime ideal py ) and with a generating set of M,
of cardinality < k. For every limit ordinal o < A, let M, = s Mp; since k is
regular, this keeps M, < k-generated for each o < \.

Put M = U5</\ Mpg. Since A < Kk, M is < k-generated. Moreover, by the
choice of 9, for every v < A, M is the union of those M, for which ¥ (a) = 7.
Therefore, for every v < A,

va NM= U (va N Ma—i—l) = U pra-i-l = p“/M‘
a<A a<
P(a)=y P(a)=y
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We conclude that pM = pF N M holds for every prime p as desired, which by
Lemmas [3.3.1] and [3.3.2) means that M is a pure submodule of F'. O

Note that in the case K = Ny, the lemma can be proved using already known
results: Knowing that all flat modules are quite flat in this case [7, Theorem 1.17],
it follows easily from the Hill Lemma [6, Theorem 7.10].

Remark 3.3.6. Let us comment here on the overall situation concerning “pu-
rifications”: It is a standard fact that for a ring R of cardinality not exceeding
an infinite cardinal A\, every R-module F' and subset X C F' of cardinality at
most A, there is a pure submodule M C F' of cardinality at most A\ containing
X; see e.g. [0l Lemma 2.25(a)]. Lemma shows that when R is commutative
Noetherian and F' is flat, then instead of the cardinality of the ring, one can take
a potentially sharper bound, the cardinality of the spectrum (which, for Noethe-
rian rings, cannot exceed the cardinality of the ring). This is thanks to Lemma
3.3.2]

Example [3.3.3| shows that when enlarging arbitrary submodules of non-flat
modules to pure submodules, one has to add more than just “divisors”, in partic-
ular, one cannot rely on Lemma [3.3.2] However, we do not know whether Lemma
holds for non-flat modules over commutative Noetherian rings or not.

Remark 3.3.7. In the special case when F' is a flat and Mittag-Leffler module
(see e.g. [4] or [6] for the definition), a stronger result than Lemma is known
[4, Lemma 2.7(2)]: For any ring R, a flat Mittag-Leffler module F', an uncountable
cardinal k, and a subset X in F' of cardinality < k, there exists a pure submodule
M C F such that X C M and M is < k-generated. Since free modules are
flat Mittag-Leffler and a pure submodule of a flat Mittag-Leffler module is flat
Mittag-LefHler [0, Corollary 3.20], this also covers the case of pure submodules of
free modules settled by Osofsky [5, Theorem 1.8.10].

Generally speaking, however, the bound of Lemma is sharp. Indeed, let
k be a field of infinite cardinality x and R = k[x] the ring of polynomials in one
variable x with coefficients in k. Then the spectrum of R has cardinality x, and
the field of rational functions Q = k(z) is a k-generated flat R-module which has
no nonzero proper pure submodules. Taking X C () to be the one-element set
X = {1}, there does not exist a < k-generated submodule M in @) containing X.

We are now ready to prove the improved deconstructibility of flat modules.

Theorem 3.3.8. Let R be a Noetherian commutative ring with spectrum of car-
dinality less than k, where k is an uncountable reqular cardinal. Then every flat
module is a transfinite extension of < k-generated flat modules.

Proof. This is quite standard: Let F' be a flat module; we are going to build
a filtration of F' by pure submodules such that the consecutive factors are < k-
generated. Let Fy = 0. For every ordinal «, pick = € F'\ F,, (if it exists, otherwise
the construction is finished) and let M be the < k-generated pure submodule of
the flat module F/F, containing x + F,; this exists thanks to Lemma .
Further let F,,; be the preimage of M in the map F — F/F,; then F,; is
a pure submodule of F' containing = and F,1/F, = M is < k-generated. For
every limit ordinal a, put F, = s<a F- This way we exhaust the module F' as
desired. ]
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Finally, as a special case, we obtain a new proof of [7, Theorem 1.17]:

Corollary 3.3.9. Let R be a Noetherian commutative ring with countable spec-
trum. Then every flat module is quite flat.

Proof. By Theorem with kK = Ny, every flat module is a transfinite extension
of countably generated flat modules. By Theorem [3.2.4] countably generated flat
modules are quite flat, hence all flat modules are quite flat. ]
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4. Purity in categories of sheaves

This chapter is based on the preprint doi:10.1007/s00209-020-02517-5, to appear
in Mathematische Zeitschrift. It is also available at larXiv:1809.08981.

4.1 Introduction

Purity and related concepts (such as pure-injectivity, definable categories, the
Ziegler spectrum) play a key role in the model theory of modules and have found
many uses in the representation theory of finite-dimensional algebras and other
parts of module theory.

This theory of purity, which in more particular form goes back to Priifer [19]
and Cohn [3], is based on that of a pure-exact sequence—that is, a direct limit of
split-exact sequences. It extends to many additive categories, including categories
of sheaves and categories of quasicoherent sheaves. Perhaps surprisingly, this
categorical purity differs, outside the affine case, from the geometric purity which
is implicit in the usual definitions of tensor product and flatness for sheaves. The
general relationship between these has been explored in [5]; here we look more
closely; we develop further results and use these to compute some examples which
illustrate this relationship. In particular we give a completely explicit description
of each of the geometric and categorical Ziegler spectrum for the category of
quasicoherent sheaves over the projective line over a field.

Note that, for each (suitable) scheme X, there will be four Ziegler spectra:
one for each of categorical and geometric purity, and for each category ©x-Mod
and QCoh(X). We reserve the term Ziegler spectrum for the categorical one,
while the geometric one is called geometric part in the paper (as it is always a
subset).

The paper is organised as follows: We start in Section by briefly exploring
the relations of the purities in ©Ox-Mod and QCoh(X); note that while the pure-
exact sequences (both categorical and geometric) turn out to be the same in these
categories, the corresponding pure-injective objects are quite different.

Section looks deeper into the purity-related notions in Ox-Mod. We inves-
tigate which of them are preserved or reflected by the three functors associated
to an open subset: the restriction, the extension by zero, and the direct image.
The main result of the section is the description of the geometric pure-injectives
in Ox-Mod: They are precisely the skyscraper sheaves with an indecomposable
pure-injective module of sections by Corollary [4.3.18 After this, Section
presents an example of the Ziegler spectrum of the category ©x-Mod over a local
affine 1-dimensional scheme X.

In Section [4.5] we turn our attention to quasicoherent sheaves, restricting to
the case of quasicompact quasiseparated schemes. We start by showing that such
schemes are affine if and only if the two purities coincide in the category QCoh(X).
We continue by describing the geometric part of the Ziegler spectrum of QCoh(X),
showing that this is always “glued from affine pieces” and forms a quasicompact
closed subset of the spectrum. To this closed set we assign a definable subcategory
Dx C QCoh(X), whose objects enjoy the property—among others—that every
geometrically pure-exact sequence starting in them is categorically pure.
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Finally, Section is devoted to the computation of the Ziegler spectrum of
the category of quasicoherent sheaves over a projective line. We describe both the
points and the topology, noting that unlike the affine case, the Ziegler spectrum
turns out not to be quasicompact. We also show that in this case, the subcategory
@D x allows a more explicit description.

Setup. Throughout, X denotes a scheme, ©Ox-Mod the category of all Ox-
modules and QCoh(X) the category of all quasicoherent modules (sheaves) on X.
Whenever U C X is an open set, Oy is a shorthand for the restriction Ox|y.

For the majority of our results, we will assume that the scheme in question
has some topological property:

Definition 4.1.1. A scheme is called quasiseparated if the intersection of any
two quasicompact open sets is quasicompact. A scheme is concentrated if it is
quasicompact and quasiseparated.

We continue by defining all the purity-related notions used in the paper.

Definition 4.1.2. A short exact sequence in 0 - A — B — C — 0 in Ox-Mod
is geometrically pure (or g-pure for short) if it stays exact after applying the sheaf
tensor product functor — ® Y for all Y € Ox-Mod; equivalently, [5, Proposition
3.2}, if the sequence of Oy ,-modules 0 — A, — B, — C, — 0 is pure-exact for
each x € X. We define g-pure monomorphisms and g-pure epimorphisms in the
obvious way. An Ox-module 11 is g-pure-injective if the functor Home, noa(—, 1)
is exact on g-pure exact sequences of ©x-modules.

Definition 4.1.3. Recall that QCoh(X) is a full subcategory of ©Ox-Mod. Fol-
lowing [5], we say that a short exact sequence of quasicoherent sheaves is g-pure
if it is g-pure in the larger category Ox-Mod. By [5l, Propositions 3.3 & 3.4, this
notion of g-purity for quasicoherent sheaves is equivalent to purity after restrict-
ing either to all open affine subsets, or to a chosen open affine cover of X. We
say that a quasicoherent sheaf 11 is g-pure-injective in QCoh(X) if the functor
Homgqeon(x)(—, 1) is exact on g-pure exact sequences of quasicoherent sheaves.

Remark 4.1.4. The notion of g-purity in QCoh(X) could also be established
via the property that tensoring with any quasicoherent sheaf preserves exactness.
By [5, Remark 3.5], this would give the same for quasiseparated schemes.

Definition 4.1.5. If X is a quasiseparated scheme, it(s underlying topological
space) has a basis of quasicompact open sets closed under intersections. There-
fore, by [18], 3.5], the category ©x-Mod is locally finitely presented and as such has
a notion of purity: This is defined by exactness of the functors Home, mod(F, —),
where F runs over all finitely presented objects (i.e. Homo, mod(F, —) commutes
with direct limits). We will call this notion categorical purity or c-purity for
short, defining c-pure-injectivity etc. in a similar fashion as in Definition [£.1.2]

Definition 4.1.6. If X is a concentrated scheme, then the category QCoh(X) is
locally finitely presented by [7, Proposition 7]. Again, all the c-pure notions are
defined for QCoh(X) in a natural way.

We will use [I4] as a convenient reference for many of the results that we use
concerning purity and definability.
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Remark 4.1.7. If X is a concentrated scheme, then by [5, Proposition 3.9], c-
pure-exact sequences in QQCoh(X) are g-pure-exact, and it is easy to see that the
proof carries mutatis mutandis to the category Ox-Mod for X quasiseparated.
Therefore, in these cases, g-pure-injectivity is a stronger notion than c-pure-
injectivity.

Let us point out that for having a well-behaved (categorical) purity, one does
not need a locally finitely presented category; a definable category (in the sense
of [14, Part III]) would be enough. However, we are not aware of any scheme
X for which QCoh(X) or ©Ox-Mod would be definable, but not locally finitely
presented. Furthermore, the question of when exactly are these categories locally
finitely presented does not seem to be fully answered. It is also an open question
whether every definable Grothendieck category is locally finitely presented (there
is a gap in the argument for this at [16, 3.6]).

In any case, the situation in this paper is as follows: Section [4.3] dealing with
the category ©x-Mod, does not need any special assumptions on the scheme X for
most of its propositions, therefore it starts with the (slightly obscure) assumption
on mere definability of Ox-Mod. On the other hand, Section really needs X
to be concentrated almost all the time, a fact that is stressed in all the assertions.

If X is an affine scheme, then the category QCoh(X) is equivalent to the
category of modules over the ring of global sections of X, and both g-purity and
c-purity translate to the usual purity in module categories. A converse to this for
X concentrated is Proposition However, as the Section [4.4] shows, even for
very simple affine schemes, the purities do not coincide in the category ©Ox-Mod.

4.2 Relation between purity in Ox-Mod and
QCoh(X)

Recall that the (fully faithful) forgetful functor QCoh(X) — Ox-Mod has a right
adjoint C: Ox-Mod — QCoh(X), usually called the coherator. If we need to
specify the scheme X, we use notation like Cx.

Since g-purity in QCoh(X) is just “restricted” g-purity from ©Oy-Mod, each
quasicoherent sheaf which is g-pure-injective as an ©x-module is also g-pure-
injective as a quasicoherent sheaf. The example at the end of Section [4.4] shows
that even in a quite simple situation, the converse is not true: A g-pure-injective
quasicoherent sheaf need not be g-pure-injective in ©x-Mod.

The following was observed in [5]:

Lemma 4.2.1 ([5, Lemma 4.7]). Let 11 be a g-pure-injective Ox-module. Then
its coherator C(N) is a g-pure-injective quasicoherent sheaf.

It is not clear whether the coherator preserves g-pure-exact sequences or at
least g-pure monomorphisms. A partial result in this direction is Lemma [4.5.4]

The relation between c-purity in ©Ox-Mod and QCoh(X) is in general not
so clear as for g-purity. Note that while QCoh(X) is closed under direct limits
in Ox-Mod (indeed, arbitrary colimits), it is usually not closed under direct
products and hence it is not a definable subcategory. However, in the case of X
concentrated, much more can be said. We start with an important observation.
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Definition 4.2.2 ([14, Part III]). A functor between definable categories is called
definable if it commutes with products and direct limits.

Lemma 4.2.3. Let X be a concentrated scheme. Then the coherator functor is
definable.

Proof. As a right adjoint, C always commutes with limits and in particular prod-
ucts. By [21, Lemma B.15], it also commutes with direct limits for X concen-
trated. n

Recall that by [14, Corollary 18.2.5], definable functors preserve pure-exact-
ness and pure-injectivity. Hence we obtain the following properties for concen-
trated schemes:

Lemma 4.2.4. Let X be a concentrated scheme.

(1) The coherator functor preserves c-pure-exact sequences and c-pure-injec-
tivity.

(2) A short exact sequence of quasicoherent sheaves is c-pure-exact in QCoh(X)
if and only if it is also c-pure-exact in the larger category ©x-Mod.

(8) A quasicoherent sheaf c-pure-injective in Ox-Mod is c-pure-injective in
QCoh(X).

(4) A quasicoherent sheaf finitely presented in QCoh(X) is finitely presented in
@X—MOd.

Proof. (1) follows from definability of coherator.

(2) Since QCoh(X) is locally finitely presented, every c-pure-exact sequence is
the direct limit of split short exact sequences. However, direct limits in QCoh(X)
are the same as in Ox-Mod, so we get the “only if” part. To see the “if” part,
note that the coherator acts as the identity when restricted to QCoh(X), so the
statement follows from (1).

(3) This is a consequence of (2), or we can again argue that the coherator is
the identity on QCoh(X) and use (1).

(4) Let F be a finitely presented object of QCoh(X), I be a directed set and
(M;);er a directed system in ©Ox-Mod. Then

Homo-mod (7, lim, M;) = Homqcon(x) (7, G(@iel m;))
= Homqeon(x) (7, lim, _, €(171;))
= ligy,_, Homaqcon(x) (7, C(1M;))
= @ie[ Homo, moa(F, M;),
where the natural isomorphisms are due to (in this order) C being a right ad-

joint, C commuting with direct limits for concentrated schemes, & being finitely
presented in QCoh(X), and finally the adjointness again. O

Note, however, that the examples at the end of Section show that the
pure-injectives in QCoh(X) have little in common with the pure-injectives of

Ox-Mod.
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4.3 Purity in Ox-Mod

Setup. If, in this section, any assertion involves c-purity or definability, then it
is assumed that the scheme X is such that Ox-Mod is a definable category (e.g.
X is quasiseparated); similarly for ©Oy-Mod if U is involved, too.

We start with a more general lemma, which is of its own interest. Recall
that a full subcategory A of a category B is called reflective provided that the
inclusion functor A <— @ has a left adjoint (usually called the reflector).

Lemma 4.3.1. Let B be an additive category with arbitrary direct sums and
products and A a reflective subcategory. Then an object of A is pure-injective if
and only if it is pure-injective as an object of B.

Proof. Recall the Jensen-Lenzing criterion for pure-injectivity (see [14, 4.3.6]):
An object M is pure-injective if and only if for any set I, the summation map
M) — M factors through the natural map M) — M. Also recall that while
limits of diagrams in A coincide with those in B, colimits in A are computed
via applying the reflector to the colimit in ®.

Let M be an object of A, I any set and denote by M) the coproduct in A
and M2 the coproduct in B. By the adjunction, maps from M) to objects of A
naturally correspond to maps from M)# to objects of A, hence the summation
map M) — M factors through M) — M7 if and only if MDe — M factors
through M@= — M. the naturality of adjunction ensures that the factorising
map fits into the commutative diagram regardless of which direct sum we pick. [J

Corollary 4.3.2. A sheaf of Ox-modules is c-pure-injective regardless if it is
viewed as a sheaf or a presheaf.

Proof. The category of sheaves is always a reflective subcategory of presheaves,
sheafification being the reflector. ]

Corollary 4.3.3. Let 11 be a c-pure-injective O x-module and U C X open. Then
N(U) is a pure-injective Ox (U)-module.

Proof. Let I be any set. By the previous corollary, 71 is also a (c-)pure-injective
object in the category of presheaves, so the summation map from the presheaf
coproduct NP — N factors through 1P < 7. However, for presheaves
we have N(U) = N(U)! and (unlike for sheaves) n1OP(U) = N(U)D, so we
have the desired factorisation for 77(U) as well. O

In the case of concentrated open sets we can say even more:

Lemma 4.3.4. Let U C X be a concentrated open set. Then the functor of
sections over U, M — NM(U), is definable.

Proof. The functor of sections commutes with products for any open set. Fur-
thermore, if the open set is concentrated, then this functor also commutes with
direct limits by [22], 009E]. O
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Since g-purity is checked stalk-wise, it is useful to overview the related prop-
erties of skyscrapers; recall that if € X and M is an Ox ,-module, then the
skyscraper (sheaf) v, (M) is an Ox-module given by

L (M)(U) 0  otherwise

{M if x e U,

for U C X open. This gives a functor Ox ,-Mod — Ox-Mod, which is a fully
faithful right adjoint to taking stalks at x.

Lemma 4.3.5. For every x € X the functor i, . is definable.

Proof. Commuting with products is clear. If (M;);c; is a directed system of Ox ,-
modules, then Lgc,*(ligie ; M;) coincides with the “section-wise direct limit”, i.e.
direct limit in the presheaf category. Since this direct limit is again a skyscraper,
hence a sheaf, it is the direct limit also in the sheaf category. ]

From Lemma we know that skyscrapers built from pure-injective mod-
ules are c-pure-injective. It is easy to see that they are even g-pure-injective:

Lemma 4.3.6. Let v € X and N be a pure-injective O ,-module. Then i, .(N)
1s a g-pure-injective ©Ox-module.

Proof. Let A — B be a g-pure monomorphism in ©@x-Mod. Using the adjunc-
tion, checking that

Homo, Mod (B, Lo (N)) = Homo, Mod (A, Lo« (N))
is surjective is equivalent to checking that
Homoy , Mod(Bz, N) — Homoy , Mod(Az, V)

is surjective. But this is true since A, < B, is a pure mono in Ox ,-Mod. O

The preceding observation allows us to establish a property of g-purity similar
to that of c-purity:

Corollary 4.3.7. A short exact sequence in ©x-Mod is g-pure-exact if and only
if it remains exact after applying the functor Homo, nmoa(—, 1) for every g-pure-
injective Ox-module 1.

Proof. The “only if” part is clear. The “if” follows from the fact that purity in
Ox,-Mod (where € X)) can be checked using the functors Homo, ,-mod(—, V),
where N is pure-injective, the adjunction between stalk and skyscraper, and
Lemma

Alternatively, one can also modify the standard proof of this fact to the present
setting, since by [5, Proposition 4.4 & Corollary 4.6] or Lemma , every sheaf
can be g-purely embedded into a g-pure-injective one. ]

We recall the very general argument for the fact referred to in the above proof,
since we use it elsewhere. If f: A — B is an embedding and the notion of purity
is such that there is a pure embedding h: A — N for some pure-injective N, and

45



if this factors through ¢g: B — N, then, using ¢gf pure implies f pure, we deduce
purity of f.

We proceed with investigating what purity-related notions are preserved under
various functors between sheaf categories. Let U C X be open; then there are
the following three functors:

(1) tyy: Oy-Mod — Ox-Mod, the extension by zero,
(2) (—)|v: ©Ox-Mod — Op-Mod, the restriction,
(3) ty.: Op-Mod — Ox-Mod, the direct image (also called the pushforward).

These three form an adjoint triple

ey 3 ()o T w

with the outer two functors fully faithful—composing any of them with the re-
striction gives the identity. Consequently, all the three functors preserve stalks
at any point of U. Finally, ¢y, is always exact; see e.g. [9] §§I1.4, I1.6] for details.

Lemma 4.3.8. Let U C X be an open set. Then the restriction functor (—)|v is
definable and preserves g-pure-exactness and g-pure-injectivity.

Proof. Definability follows from the fact that this functor has both a right and
a left adjoint. Since restriction preserves stalks, it preserves g-pure-exactness.
Finally, let 1 € Ox-Mod be g-pure-injective and A — B a g-pure monomor-
phism of Op-modules. Then the monomorphism ¢y (A) < ) (B) is g-pure,
because on U the stalks remain the same, whereas outside U they are zero (see,
e.g., [9, p. 106]). Straightforward use of the adjunction then implies that 77|y is
g-pure-injective in Oy-Mod. ]

Note that extension by zero does not commute with products in general, as
the following example shows, therefore there is no hope for definability. It also
preserves neither c- nor g-pure-injectivity:

Example 4.3.9. Let p € Z be a prime number, X = Spec(Z) and
U = Spec(Z[p~']) C X.

For a prime number ¢ # p, let N = 1y .(Z[p~']/(q)), i-e. the skyscraper coming
from the g-element group, regarded as an ©Opy-module. By Lemma this is
a g-pure-injective Oy-module, and so is 11 =[], 9. Let NN = 1y;,(N); we are
going to show that the global sections of 771 are not a pure-injective Z-module,
thus (Corollary 111 is not even c-pure-injective.

Since extension by zero preserves all sections within U, 11(U) is the product
of all g-element groups for ¢ a prime distinct from p. By [9, Definition 6.1}, 771(X)
consists of those elements of 1711(U), whose support in U is closed in X. Now every
element of M1(U) is either torsion, in which case its support is a finite union of
closed points, therefore closed in X, or torsion-free, which has a non-zero stalk
at the generic point and hence on each point of U, but U is not closed in X.
We infer that 771(X) is the torsion part of 177(U), in other words the direct sum
inside the direct product. However, this is not pure-injective, as it is torsion and
reduced, but not bounded.
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Finally, the global sections of the sheaf ¢;;,(11?) form the g-element group,
hence we see that the global sections of the product # =[], 1, (11?) are differ-
ent from 171(X) (namely, #(X) is the product of g-element groups over all primes
q # p), hence ¢y does not commute with products.

Here is what we can actually prove:

Lemma 4.3.10. Let U C X be an open set. Then the functor vy, preserves and
reflects c- and g-pure-exact sequences, and reflects c- and g-pure-injectivity.

Proof. A monomorphism A < B in Ox-Mod is c-pure (g-pure) if and only if
the contravariant functor Homo, moa(—, 71) turns it into a surjection for every
c-pure-injective (g-pure-injective) ©x-module 1 (for g-purity, this is Corollary
[4.3.7)); similarly for monomorphisms in Oy-Mod.

Due to the adjunction, the surjectivity of

Homo mod (tv1(B), 1) — Homo mod (L (A), 1)
is equivalent to the surjectivity of
Homo,,-Mod (@, n ‘U) — Hom@U-Mod<ﬂa n ’U)

and by Lemma [4.3.8] 1|y is c-pure-injective (g-pure-injective) if 1 is, so the
preservation of pure-exactness follows.

If a short exact sequence in Oy-Mod becomes c-pure-exact (g-pure-exact) after
applying ¢y, then the original sequence has to be c-pure-exact (g-pure-exact),
t00, since it can be recovered by applying the restriction functor, which preserves
both types of pure-exactness by Lemma [4.3.8. The same argument shows that
vy, reflects pure-injectivities as well. O

Finally, we investigate the properties of direct image.

Lemma 4.3.11. Let U C X be an open set. Then the functor iy, preserves and
reflects c- and g-pure-injectivity.

Proof. That vy . reflects c-pure-injectivity (g-pure-injectivity) is clear because its
composition with restriction to U produces the identity functor. If A — B is
c-pure (g-pure) in Ox-Mod, then so is A |y — B|y, hence

Homo,,-Mod (Bly,N) — Homo,,-Mod (A, M)

is surjective for 1 € Oy-Mod c-pure-injective (g-pure-injective). The adjunction
implies the surjectivity of

Hom(QX-Mod(@a LU,*(”)) — Hom@X-Mod(ﬂ7 LU,*(n))

and we conclude that ¢y.(1) is c-pure-injective (g-pure-injective).

Alternatively, for the c-pure-injectivity, we may argue as follows: Note that
the full faithfulness of ¢, allows us to view Op-Mod as a reflective subcategory
of Ox-Mod, restriction functor being the reflector. The statement about c-pure-
injectivity thus follows from Lemma [4.3.1] O

For special open sets U we obtain a definable functor:
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Lemma 4.3.12. Let U C X be an open set such that vy: U — X is a concen-
trated morphism (i.e. for every V. C X affine open, the intersection U NV is
concentrated). Then the functor iy, is definable. If X is concentrated, then the
essential tmage of vy . s a definable subcategory of Ox-Mod.

Proof. Commuting with products follows from the fact that ¢y, is right adjoint.
Commuting with direct limits is a special case of |21, Lemma B.6].

If X is concentrated, then U is concentrated as well by [12] Lemma 16], and
the intersection of any concentrated open V' C X with U is concentrated, too.
Therefore, by Lemma for each concentrated V' C X, we have the definable
functors of sections over V' and U N V. Since direct limits and direct products
are exact in categories of modules, we have another two definable functors, Ky
and Cly, assigning to 171 the kernel and the cokernel of the restriction 7(V) —
MU NV), respectively.

As concentrated open sets form a basis of X, we see that 711 € Ox-Mod is
in the essential image of (. if and only if Ky (M) = Cy(N) = 0 for every
V C X open concentrated. Therefore the essential image in question, being the
intersection of kernels of definable functors, is a definable subcategory. ]

Remark 4.3.13. Let us point out that [21) Lemma B.6] has a much wider scope:
Indeed, for any concentrated map of schemes f, the direct image functor f, is
definable.

Let us now focus on the weaker notion of geometric purity. We start with ob-
serving that there is a plenty of naturally arising g-pure monomorphisms around.

Lemma 4.3.14. Let U C V be open subsets of X and denote by vy, 1y their
inclusions into X. Then for any 111 € Ox-Mod the natural map

w(My) = vy (Mly)
1S a g-pure monomorphism.

Proof. Passing to stalks at x € X, we see that the map is either the identity (if
x € U) or a map from the zero module (otherwise), hence a pure monomorphism
of Ox z-modules. Hence the map is even stalkwise split. [

Recall that a sheaf is called flasque if all its restriction maps are surjec-
tive. Recall also that for ©x-modules A, B, the sheaf hom, which we denote
by #omx (A, B), is the Ox-module defined via

%Omx(ﬂ, @)(U) = HOHI@U_MOd(ﬂ‘U, @|U)
for every open U C X, with the obvious restriction maps.

Corollary 4.3.15. If 11 € Ox-Mod is g-pure-injective and A € Ox-Mod ar-
bitrary, then the sheaf hom Ox-module #omyx (A, 1) is flasque. In particular,
N = FHomx(Ox,N) is flasque.

Proof. Apply the functor Home, moda(—, 1) to the g-pure monomorphism
w(Aly) = wy(Aly)

(Lemma [4.3.14)) and use the adjunction
Homo,-Mod (tv) (A vr), 1T) = Homoy,-mod (A v, 1)
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Lemma 4.3.16. Let U C X be open. Then the natural map
w(My) = w(My)

s a g-pure monomorphism for every 1l € ©x-Mod.

Proof. Exactly the same as for Lemma [4.3.14—passing to stalks at = € X, we
see that the map is either the identity (if z € U) or a map from the zero module
(otherwise), hence a pure monomorphism of Oy ,-modules. O

Corollary 4.3.17. Let 1l be g-pure-injective O x-module. Every restriction map
in N is a split epimorphism. For every U C X open, ty.(N|y) is a direct sum-
mand of 1.

Proof. Let 1 € O©x-Mod be g-pure-injective and U, V' be open subsets of X.
Using Lemma [4.3.16 we obtain a surjection

Homo y-mod (tv,+(1 1), M) = Homo mod (tw1(1]1r), 1) = Homey,-moa (1|, 1|1r).

Hence there is a map f: ty.(1|y) — 1 which, after restricting to the subsheaf
w1 (M), corresponds to the identity map in the adjunction, thus being the iden-
tity when restricted to subsets of U. Note that

wA«My)(V)=nUNV),

put W = U N V. Since the action of f on sections on V and W commutes
with restriction maps (i.e. f is a sheaf homomorphism), we obtain a commutative
square

fV
W) = w.My)(V) » (V)

v« My .
I'eS”J‘ 7( ‘ ) = ldn(v[/)
f - idn(W)

W) = w.Mfy)(W) ————— (W)

We see that resll, o fV is an epi-mono factorization of the identity map on 17(W),
from which both assertions in the statement follow—res!!,, is a split epimorphism
and f is a split embedding of ¢y, (11|y) into N. O

Corollary 4.3.18. Let 11 be an indecomposable g-pure-injective ©x-module.
Then there is v € X and an indecomposable pure-injective Ox ,-module N such
that 1 = 1, .(N).

Proof. Let us first show that restriction maps in 71 are either isomorphisms or
maps to the zero module (but not maps from a zero module to a non-zero one).
Assume this is not the case, so let U be an open subset of X such that ker res’t,,
is a proper non-zero direct summand of 77(X). In that case, by Corollary [4.3.17]
(M) is a non-trivial proper direct summand of 71, a contradiction.
Secondly, let S be the support of 71, i.e. the set of those points x € X such
that 71, is non-zero; because of the above-described nature of restriction maps in
11, S coincides with the set of those x € X whose every open neighbourhood has

non-zero sections. This is a closed subset of X, because if z € X \ S, then there

49



is an open set U C X containing  with 1(U) = 0, hence 1, =0 for all y € U
and U C X\ S.

Next we show that S is irreducible. Let U,V C X be open sets satisfying
UNnvnsS =0 (< NUNV)=0), we want to show that UNS =0 (< N(U) = 0)
or VNS =10 (e NV)=0). Since N is a sheaf the assumption implies that
the map N(U U V) — N(U) x N(V) is an isomorphism but then, by the first
paragraph, only one of 1(U), 11(V) can be non-zero, as desired.

We conclude that for any open set U C X, 1(U) is non-zero if and only if
U intersects the irreducible closed set .5, i.e. contains its generic point z. Given
the description of restriction maps above, we infer that 11 is indeed a skyscraper
based on x. The associated Ox ,-module has to be pure-injective by Corollary
[4.3.3| and clearly has to be indecomposable, too. O

Lemma 4.3.19. For any 11l € Ox-Mod the natural map

m = I tas(Ms)

zeX
1S g-pure-monomorphism.

Proof. Pick v € X. Then 1M1, = (LUz(m\Uj))x, hence the projection on the z-th
coordinate of the product is a splitting and the map is stalkwise split. O

The following has been already observed in [5], where character modules were
used to give a proof. We give a different, slightly more constructive proof.

Lemma 4.3.20. Every 11l € Ox-Mod embeds g-purely into a g-pure-injective
Ox-module. This module can be chosen to be a product of indecomposable g-
pure-injectives.

Proof. For each x € X, pick a pure embedding 711, < N,, where N, is a pure-
injective Ox ,-module; NV, can be chosen to be a product of indecomposables by
[14, Corollary 5.3.53]. This gives rise to a map M — ¢, .(N,), the skyscraper
being g-pure-injective by Lemma Taking the diagonal of these maps we
obtain a map
M = ] tan(MN2).
zeX
To show that this is a g-pure monomorphism, pick y € X and passing to stalks
at y we have

My — Ny @ (] e (N0)

Y

rzeX

T#Y
which is a pure monomorphism after projecting on the left-hand direct summand,
hence a pure monomorphism. ]

Lemma 4.3.21. Let (U;);e; be an open cover of X and 11 € Ox-Mod. Then
the natural map

nm — HLUi,*(m

i€l

Ui)

18 a g-pure-monomorphism.
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Proof. Pick x € X and assume that € U;, where j € I. Then
m, = (LUjv*(m‘Uj»x’

therefore as in the previous lemma the projection on the j-th coordinate of the
product is a splitting and the map is stalkwise split. ]

4.4 Example: Spectrum of L)

In this section we investigate the properties of sheaves over the affine scheme
Spec(Zy)), where p € Z is any prime number and Z,) denotes the localisation of
the ring of integers Z at the prime ideal (p). Below, X denotes Spec(Z,)).

Since X is affine, the category QCoh(X) is equivalent to the category of
modules over the discrete valuation ring Z,). Purity in such a category is well
understood, hence we will not focus on it here at all.

As a topological space, X has two points, (p) and 0. Its non-empty open sets
are Y = {0} and X, with Ox(Y) = Q and Ox(X) = Z). It is straightforward
that any presheaf of Ox-modules is automatically a sheaf} therefore, the objects
1M of Ox-Mod are described by the following data: a Z,)-module 1M (X), a Q-
module (vector space) 171(Y), and a Z,)-module homomorphism 171(X) — N(Y').
This category is also easily seen to be equivalent to the category of right modules

over the ring
_(Zw Q
R = ( 0 Q)

This equivalence translates all c-pure notions in ©x-Mod to ordinary purity
in Mod-R. As for g-purity, note that in this simple setting, passing to stalks at
a point corresponds to passing to the smallest open subset containing the point.
Therefore, a short exact sequence of ©x-modules is g-pure-exact if and only if it
is pure exact after passing to global sections (g-purity on Y holds always).

The (right) Ziegler spectrum of R was described in [20, §4.1]. Let us give
here an overview of the points (where CB denotes Cantor-Bendixson rank in the
Ziegler spectrum):

N(X) | N(Y) | CBrank | injective | g-pure-inj. | quasicoh.
Ly 0 1 v v v
Q 0 2 v v
Q Q 1 v v v
Zw/(P*) | O 0 v v
T 0 1 %
Ly | Q) 0 v
0 Q 1

'Let us point out here that even though “there is no non-trivial covering of any open set”,
the sheaf axiom in general has the extra consequence that sections over the empty set are the
final object of the category. Therefore, e.g. sheaves of abelian groups over this two-point space
form a proper subcategory of presheaves, which need not assign the zero group to the empty
set (!). However, since we always assume Ox to be a sheaf of rings, its ring of sections over
the empty set is the zero ring, over which any module is trivial.
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The map 11(X) — 1(Y) is always the obvious one (identity in the first non-trivial
case, inclusion in the second). In all the positive cases, g-pure-injectivity follows
directly from Lemma [4.3.6] On the other hand, the remaining two ©x-modules
are not flasque and therefore cannot be g-pure-injective (Corollary [4.3.15)).
Note, however, that the penultimate module is g-pure-injective in the category

QCoh(X), since it corresponds to the pure-injective Z)-module Z,).

4.5 Purity in QCoh(X)

While the previous section showed that even for very simple schemes X, the two
purities differ in the category ©x-Mod, it is not so difficult to answer when they
coincide in QCoh(X), at least for concentrated schemes (cf. the introduction to
[6], where the proof of this assertion is outlined for projective schemes):

Proposition 4.5.1. Let X be a concentrated scheme. Then X 1is affine if and
only if c-purity and g-purity in QCoh(X) coincide.

Proof. The “only if” part is clear. On the other hand, observe that the structure
sheaf O is locally flat (i.e. flat on every open affine subset of X), hence every
short exact sequence of quasicoherent sheaves ending in it is g-pure. If, moreover,
the sequence is c-pure, then it splits, since Oy is finitely presented for X concen-
trated. This means that if the two purities coincide, the first cohomology functor
HY(X, ) = Ext(lgCOh( x)(Ox, —) vanishes on all quasicoherent sheaves. By Serre’s
criterion [22, 01XF], this implies that X is affine. O

The following example shows that some sort of finiteness condition on the
scheme is indeed necessary to obtain the result.

Example 4.5.2. Let k be a field and X = (Spec k)™ the scheme coproduct of
countably many copies of Spec k. As a topological space, X is a countable discrete
space. Every sheaf of ©yx-modules is quasicoherent and the category QCoh(X)
is actually equivalent to the category of countable collections of k-vector spaces
with no relations at all. Such a category is semisimple, hence all short exact
sequences are both c-pure- and g-pure-exact.

We proceed with deeper investigation of geometric purity in QCoh(X). The
following analogue of Lemma [4.3.7| and the similar criterion for c-purity will be
useful; note that there is no restriction imposed on the scheme.

Lemma 4.5.3. A short exact sequence 0 — A — B — C — 0 in QCoh(X) is
g-pure-ezact if and only if for every g-pure-injective 1 € QCoh(X), the sequence

0— HOHlQCOh(X)(G, 7”1) — HomQCOh(X)(@7 7”[) — Hochoh(x)(ﬂ, n) — 0
15 exact.

Proof. The “only if” part is clear. To verify the “if” part, recall that by Corollary
the sequence is g-pure exact (in Ox-Mod, which is equivalent), if it stays
exact after applying Homo, moa(—, 1) for every 11 g-pure-injective in Ox-Mod.
The result now follows by using the coherator adjunction and the fact that co-
herator preserves g-pure-injectives. O]
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Lemma 4.5.4. Let 11l € QCoh(X) be g-purely embedded into 11 € Ox-Mod.
Then this embedding factors through a g-pure monomorphism 1M — C(N).

Proof. Since C is a right adjoint, we have a map f: 111 — C(1), through which
the original embedding factorises. Passing to stalks at x € X, we have a factori-
sation of pure embeddings of Oy ,-modules and an appeal to [14, Lemma 2.1.12]
shows that f, is a pure monomorphism, hence f is a g-pure monomorphism. [J

Lemma 4.5.5. Let X be a quasicompact scheme, 11 € QCoh(X) indecomposable
g-pure-injective and Uy, ..., U, a finite open affine cover of X. Then there is
ie{l,...,n} such that N is a direct summand of C(iy, .(N|y,)).

Proof. By Lemma [4.3.21] there is a g-pure monomorphism
n— @ LU, * (n

1<i<n

Ui)7

which, by Lemma yields another g-pure monomorphism of quasicoherent

sheaves
n— P e(w.Mly)).
1<i<n
Since 1 is g-pure-injective, this map splits; moreover, 11 has local endomorphism
ring, therefore 71 is a direct summand of one of the summands. ]

However, we are not able to say much more for the general quasicompact case.
Let us therefore restrict our attention further to concentrated schemes. At this
point, it is convenient to clarify the role of the direct image functor.

Remark 4.5.6. Recall that for X concentrated, the functor ¢, preserves qua-
sicoherence for every U C X open affine (even open concentrated is enough, [22),
01LC]). Lemma teaches us that under the same assumptions on X and U,
Ly« is a definable functor from ©Op-Mod to Ox-Mod. Since direct limits in the
category of quasicoherent sheaves are the same as those in the larger category
of all sheaves of modules, there is no need to care about direct limits. However,
direct products do not agree, so some caution has to be exercised here.

Fortunately, if we view ¢y, solely as a functor from QCoh(U) to QCoh(X),
then this functor does commute with direct products, simply for the reason that
it is the right adjoint to the restriction functor from QCoh(X) to QCoh(U) (cf.
the discussion in [21], B.13]). Therefore, the restricted direct image functor, which
we further denote by .7, : QCoh(U) — QCoh(X), is definable.

For each U C X open affine, the fully faithful functor 7, identifies QCoh(U)
with a definable subcategory of QCoh(X); the closure under c-pure subsheaves
follows from Lemma and the fact that by Lemma (2), c-purity in
QCoh(X) is the same as in Ox-Mod.

Corollary 4.5.7. Let X be a concentrated scheme, 11 € QCoh(X) indecompos-
able g-pure-injective and Uy, ..., U, a finite open affine cover of X. Then there
isi € {l,...,n} such that N = (N|v,).

Proof. Building on Lemma [4.5.5] we have an ¢ such that the adjunction unit
n: 1N — wy, «(N|y;) is a split monomorphism. By the discussion above, the es-
sential image of L?j‘;* is a definable subcategory, hence it contains 71. However, n
restricted to U is the identity map, therefore n is actually an isomorphism. [
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Theorem 4.5.8. Let X be concentrated scheme. Then the indecomposable g-
pure-injective quasicoherent sheaves form a closed quasicompact subset of the
Ziegler spectrum Zg(QCoh(X)).

Proof. Let Uy,...,U, be a finite open affine cover of X. By Corollary [4.5.7]
every indecomposable g-pure-injective quasicoherent sheaf is of the form . , (117)
for some ¢ € {1,...,n} and M € QCoh(U;). We infer that the geometric part
of Zg(QCoh(X)) is the union of finitely many closed sets corresponding to the
(477, .-images of) definable categories QCoh(U;), hence a closed set. Furthermore,
since the U; are affine, we have equivalences QCoh(U;) = Ox (U;)-Mod leading
to homeomorphisms Zg(QCoh(U;)) = Zg(Ox(U;)). Therefore, by [14, Corollary
5.1.23], the sets in the union are all quasicompact and their (finite) union as
well. O

Definition 4.5.9. Let X be a concentrated scheme. We denote by @Dx the defin-
able subcategory of QCoh(X') corresponding to the closed subset of Zg(QCoh(X))
from Theorem [4.5.8

Remark 4.5.10. Note that by the proof of Theorem [4.5.8] for every open affine
U C X and every 111 € QCoh(U), the direct image 7, (111) belongs to Dx.

Proposition 4.5.11. Let X be a concentrated scheme.

(1) A c-pure-injective quasicoherent sheaf is g-pure-injective if and only if it
belongs to Dx.

(2) Any g-pure monomorphism (g-pure-exact sequence) starting in an object of
D 1is c-pure.

Proof. Tt is a standard fact (see [14, Corollary 5.3.52]) about definable subcat-
egories that their objects are precisely pure subobjects of products of indecom-
posable pure-injectives. Therefore, if 71 € @x is c-pure-injective, then it is a
direct summand of a product of indecomposable c-pure-injective objects in Dy,
all of which are g-pure-injective, a property passing both to products and direct
summands, hence 11 is g-pure-injective.

On the other hand, if 71 is g-pure-injective and Uy, ..., U, a finite open affine
cover of X, then the g-pure monomorphism

n— GB up (1

1<i<n

Ui)

splits. Since v (1|y,) € Dx for each 1 <i < n, we infer that 11 € Dx.

For the second claim, let f: 11 — A be a g-pure monomorphism with
M € Dx. Assume first A is g-pure-injective; then A € Dx by the first part.
Recall that in any definable category, purity of a monomorphism can be tested by
applying the contravariant Hom functor with every pure-injective object. Since
the pure-injectives of @Dy are precisely g-pure-injectives, f “passes” this test and
is therefore c-pure. If A € QCoh(X) is arbitrary, pick a g-pure embedding
g: A < N with 1 g-pure-injective; such an embedding exists by [B, Corollary
4.8] (or combining Lemmas|4.3.20/and 4.5.4)). Then ¢f is a g-pure monomorphism
and by the argument above, it is c-pure. We infer that f is c-pure as well. O
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Corollary 4.5.12. A concentrated scheme X 1is affine if and only if the subcat-
egory Dx 1is the whole category QCoh(X).

Proof. If X is affine, then the two purities coincide, therefore c-pure-injectives are
g-pure-injectives. On the other hand, if every c-pure-injective is g-pure-injective
then, since c-pure-injectives determine which short exact sequences are c-pure-
exact, we see that all g-pure-exact sequences are c-pure-exact hence, by Proposi-
tion [4.5.1], X is affine. O

Corollary 4.5.13. Let X be a concentrated scheme. Then every indecomposable
g-pure-injective 1 € QCoh(X) is the coherator of some indecomposable g-pure-
ingective 1M1l € Ox-Mod.

Proof. By Corollary [4.5.7] there is an open affine U C X such that 7 is the
direct image of an indecomposable g-pure-injective object of QCoh(U), which
further corresponds to an indecomposable pure-injective Ox (U)-module N. By
[13, Theorem 2.Z8|, N is in fact a module over the localisation in some maximal
ideal of Ox(U); let this maximal ideal correspond to a point € U. Then clearly
N|y = Cy(tex(N)|y) and by Lemmas and [£.3.8] M = 1, .(N) and M|y are
g-pure-injective (and clearly indecomposable).

By [21], B.13], coherator commutes with direct images of concentrated maps,
hence we have

N =5 (Co(My)) = Cx(w.(M|y)) = Cx (M),
where the last equality follows from the fact that 771 is a skyscraper. ]

Note, however, that the preimage 171 from the preceding Corollary is far from
being unique; Section gives a couple of examples of indecomposable c-pure-
injective ©x-modules with the same module of global sections (and therefore the
same coherator).

Proposition 4.5.14. Let X be a concentrated scheme. The following are equiv-
alent for NN € QCoh(X):

(1) me Dy.
(2) M is a c-pure subsheaf of a g-pure-injective quasicoherent sheaf.

(3) For every finite open affine cover Uy, ..., U, of X, the monomorphism

m-— € s .mly,)

1<i<n
1S c-pure.
(4) There ezists a finite open affine cover Uy, ..., U, of X such that the mono-
morphism
m — @ 1gr
1<i<n
1S c-pure.
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Proof. (1) = (2): The definable subcategory @Dy is closed under taking (c-)pure-
injective envelopes of its objects; since the pure-injectives in @Dx are g-pure-
injective by Proposition (1), this produces a c-pure embedding into a g-
pure-injective quasicoherent sheaf.

(2) = (1): Dx contains all g-pure-injectives and is closed under taking c-pure
subsheaves.

(1) = (3): The monomorphism in question is always g-pure; by assumption,
its domain belongs to @y, therefore it is c-pure by Proposition (2).

(3) = (4) is clear.

(4) = (1): The codomain of the monomorphism belongs to @y (Remark
4.5.10)), which is closed under taking c-pure subsheaves. [

The following lemma, ensuring that the sheaf cohomology vanishes on @Dy,
will prove useful in Section

Lemma 4.5.15. Let X be a concentrated scheme. Then H'(X, 1) = 0 for every
me Dy.

Proof. Observe that the subcategory of QCoh(X), where the first cohomology
vanishes, is definable: The closure under direct limits follows from [2I, Lemma
B.6]. The closure under direct products follows from [4, Corollary A.2] and the
fact that H' (X, —) = Ext(lgCOh(X)(@X, —). Finally, let 0 - A - B — C — 0 be a
c-pure-exact sequence in QCoh(X), where H'(X,®B) = 0. Using c-pure-exactness
and Lemma [4.5.16] this sequence stays exact after applying the global sections
functor, therefore the map H' (X, A) — H'(X, B) is injective. Since its codomain
vanishes, the same holds for its domain.

Thanks to this observation, it suffices to prove the assertion only for the pure-
injectives of Dy, i.e. g-pure-injectives. To show that

HY(X,N) = Ext(gcgh(@x,n) =0

for every g-pure-injective, consider a short exact sequence starting in 71 and end-
ing in Oy; as Oy is flat on each open affine set, the sequence is g-pure-exact, and
because 11 is g-pure-injective, the sequence splits as desired. O

Let us end this section by observing that the pure-injective objects of the
category QCoh(X) are a bit “mysterious” from the sheaf point of view. The best
we can say is that by the following lemma, their module of global sections is
pure-injective over the ring Ox(X), but that can be far from true on the rest of
the open sets.

Lemma 4.5.16. Let X be a concentrated scheme. Then the functor of global
sections, viewed as a functor from QCoh(X) to Ox(X)-modules, is definable.

Proof. The functor in question is naturally isomorphic to the representable func-
tor Homqcon(x)(@Ox, —), which clearly commutes with products. Commuting with
direct limits is [22, 009E]. O

Note that this lemma is very similar to Lemma [4.3.4; however, in the qua-
sicoherent case, the functor of taking sections on an open set usually does not
commute with direct products.
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Example 4.5.17. Proposition below shows that the structure sheaf of the
projective line is c-pure-injective in QCoh(P}). However, on any open affine set
(or stalk at any closed point), this sheaf is not pure injective. Since this violates
Corollary [4.3.3], it is not c-pure-injective in ©x-Mod.

A slightly more sophisticated example exhibits a similar behaviour even for
g-pure-injectives in QCoh(X):

Example 4.5.18. Let k be a field, R = k[z,y] the ring of power series in two
commuting variables and X = Spec R. Since R is a commutative noetherian
complete local domain, it is a pure-injective module over itself by [10, Theorem
11.3]. Therefore the structure sheaf Oy is a g-pure-injective quasicoherent sheaf.
However, for every proper distinguished open affine subset U C X, Ox(U) is the
localisation of R in a single element, which is a commutative noetherian domain,
but not even local, hence not pure-injective by [10, Theorem 11.3] again.

4.6 Example: Projective line

This section is devoted to investigating purity in one of the simplest non-affine
schemes, the projective line P}, where k is any field. Our primary aim is to
describe Zg(QCoh(PP})), but this scheme also provides several important exam-
ples. Since Pj is a noetherian, hence a concentrated, scheme all the results of the
previous section apply.

First of all, recall that the finitely presented objects of QCoh(IP}) are precisely
the coherent sheaves [11, Remark 10 & Proposition 75|, and each coherent sheaf
decomposes uniquely (in the sense of the Krull-Schmidt Theorem) into a direct
sum of indecomposable ones. These indecomposables are of two kinds |2, Section
5]:

e line bundles, i.e., the structure sheaf and its twists, which we denote ©O(n)

(n € Z),

e torsion sheaves, i.e., skyscrapers ¢, .(F), where x € P is a closed point and
F'is a cyclic torsion module over the DVR @H}:’lc -

In the following, we simply use © for ©(0), which is also the same thing as the
structure sheaf @pi .

Example 4.6.1. For every a,b,c,d € Z such that a < b < d, a < ¢ < d and
a+ d = b+ c, there is a short exact sequence

0— O(a) > O0b)®O(c) > Od) =0

in QCoh(PP}), which is non-split, since Homqeonen) (O(d), O(b) © O(c)) = 0. This
sequence is not c-pure-exact, since it ends in a finitely presented object but does
not split. On the other hand, passing to any stalk or any open affine set, we
obtain a split short exact sequence of free modules, therefore the sequence of
sheaves is g-pure-exact.

For the projective line, we are able to give a better characterization of g-pure-
exactness:
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Proposition 4.6.2. Let 0 - A — B — C — 0 be a short exact sequence in
QCoh(P;). Then the following statements are equivalent:

(1) The sequence is g-pure-ezact.

(2) For each (indecomposable) torsion coherent sheaf T, the sequence
0T RA—->TRB—->TC—0

15 exact.

(8) For each (indecomposable) torsion coherent sheaf T, the sequence
0— HomQCoh(]P)}c)(y‘u ﬂ) - HomQCoh(Pi)(y‘u @> - HomQCoh(Pi)(yu G) —0
18 exact.

Proof. Tt is clear from the description of coherent sheaves over P, that we may
restrict to the indecomposable coherent sheaves in (2) and (3).

(1) = (2) is clear from the definition of g-pure-exactness. For (2) = (1) it
suffices to recall that the tensor product preserves direct limits, every quasico-
herent sheaf is the direct limit of coherent ones, and tensoring by a line bundle
is always exact.

To prove (1) < (3), first recall that for quasicoherent sheaves, g-pure-exactness
is equivalent to pure exactness on each open affine. Observe that the support of
an indecomposable torsion coherent sheaf 7 is a single closed point of P}; let U
be any open affine set containing this point. In such a case, not only is J the
direct image of its restriction to U, but it is also the extension by zero of this
restriction. The adjunction now implies that the exactness of the sequence in (3)
is equivalent to the exactness of

0— Hochoh(U) (57|U, ﬂ|U) — HOII]QCOh(U)(fT|U, @|U) —
— HomQCOh(U)(YIU, G|U) — 0.

Since U is affine and the ring of sections over U is a PID, this new sequence is
exact for every indecomposable torsion coherent 7 if and only if the sequence of
O(U)-modules

0= AU)—-BU)—CWU)—0

is pure-exact—recall that over a PID, purity can be checked just by using finitely
generated (= presented) indecomposable torsion modules, which follows from the
description of finitely generated modules. Since J runs over all torsion indecom-
posable coherent sheaves, U runs over all open affine subsets of P}, and every
torsion O(U)-module extends to a torsion coherent sheaf, we are done. ]

Let us proceed with describing the indecomposable g-pure-injectives. This is
easy thanks to Corollary taking into account that P is covered by affine
lines. The Ziegler spectrum of a PID (more generally, a Dedekind domain) is
described e.g. in [14] 5.2.1]. Therefore, for each closed point = € P;, there are the
following sheaves:

e all the indecomposable torsion coherent sheaves based at z (an N-indexed
family),
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e the “Priifer” sheaf: ¢, .(P), where P is the injective envelope of the unique
simple Ox ,-module,

e the “adic” sheaf: for every U C X open, the module of sections is either
the completion Oy, (if z € U), or the fraction field of this completion (if
x ¢ U); in other words, this is the coherator of ¢, ,(Ox ;).

Finally, there is the (g-pure-)injective constant sheaf, assigning to each open set
the residue field of the generic point of P}. We will refer to this sheaf as the
generic point of Zg(QCoh(P})).

This observation can be informally summarised by saying that the geometric
part of Zg(QCoh(P})) is the “projectivization” of the Ziegler spectrum of an affine
line.

However, by Proposition [4.5.1 there have to be c-pure-injectives which are
not g-pure-injective. An example of this phenomenon is the structure sheaf ©:

Proposition 4.6.3. The structure sheaf is X-c-pure-injective, i.e. any direct sum
of its copies is c-pure-injective. The same holds for all line bundles.

We give two proofs, one rather direct, illustrating the technique of computing
the coherator over concentrated schemes, the other requiring more framework
from model theory. Since twisting is an autoequivalence of QCoh(P};), we may
restrict to © in both proofs.

Elementary proof. We prove that for any set I, the inclusion O — ©F splits.
Let U, V be open affine subsets of P}, such that O(U) = k[x], O(V) = k[z~!], and
O(U NV) = klx,z7Y]. For the direct sum, the computation is easy: O (U) =
klz]D, OD(V) = k[z7YD, and OD(UNV) = k[z, 7],

To compute the direct product in QCoh(P}.), we have to compute the coherator
of the product in the category of all sheaves. The way to do that is described in
[21, B.14]:

O'(U) = ker(O(U) @ (O(V) @y k[z]) = O(UNV)'),
rklzT )@ O(V) = oUNV)),
kkxT) @ (O(V) @ klz]) = O(UN V).

23
S S
® &

olUNV) =

Therefore ©!(U) is the submodule of O(U)! = k[x]! consisting of sequences of
polynomials with bounded degree, similarly for ©O(V); ©O1(U N V) consists of
sequences of polynomials in z and 2~ with degree bounded both from above and
below.

Observe that ©O(U) can be identified with k’[x], polynomials over the ring
k! of arbitrary sequences, whereas ©)(U) corresponds to k)[z]; analogous as-
sertions hold for V and U N'V. The inclusion of k-vector spaces k') < k! splits,
and this splitting naturally lifts to each of O(U), O(V), O(U N V), commuting
with the restriction maps, hence defining a splitting of the inclusion ©O/) — ©!
as desired. O

Model-theoretic proof. The category QCoh(PP}) being locally finitely presented,
is equivalent to the category of flat contravariant functors on its subcategory, C =
coh(PP}), of finitely presented objects, via the embedding taking a quasicoherent
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sheaf 771 to the representable functor (—, 11) restricted to C. That is a definable
subcategory of the category Mod- C of all contravariant functors from QCoh(P})
to k (see, e.g., [I5 §18]). We regard such functors as multisorted modules (as
in [17]), with the set of elements of 711 € QCoh(PP}) in sort (F,—), for F € C,
being (F,111). The model theory of modules then applies. In particular 777 is
Y-pure-injective exactly if each sort (F,111) has the descending chain condition
on pp-definable subgroups (cf. [14, Theorem 4.4.5]). Since, for each ¥ € C,
Hochoh(P}c)(S‘” ,©) is finite-dimensional over k, this descending chain condition
is satisfied (every pp-definable subgroup is a k-subspace). ]

In fact, the list is now complete. To prove this, we use Ziegler spectra of de-
rived categories, but first we need the following observations for the Ext functors
and cohomology:

Lemma 4.6.4. For every n € Z, the class of objects 111 € QCoh(PP}) such that
EXt}QCoh(}P’}C)(@(n)v m)=o

is a definable subcategory of QCoh(P}), containing all g-pure-injectives.

Proof. Taking into account that twisting is an autoequivalence of QCoh(P}), we
have natural equivalence

EXtclggcoh(P,g)(@(”)a m) = EXt(IQCoh(]P’i)(@7 M ® O(—n)) = H' (P}, M @ O(—n))

and the proof of definability of the vanishing class continues as in the proof of
Lemma [4.5.75]

The statement about g-pure-injectives suffices to be checked only for the inde-
composable ones. Since these are invariant under twists, this follows from Lemma

4.5.15] O

We are now prepared to prove that we have successfully identified all inde-
composable c-pure-injectives.

Theorem 4.6.5. Every indecomposable c-pure-injective object of QCoh(P}) is
either g-pure-injective or a line bundle.

Proof. Let R = kA; be the path algebra of the Kronecker quiver. Let D(R)
denote the (unbounded) derived category of the category of right R-modules and
D(P}) the (also unbounded) derived category of QCoh(PP;). By the results of [1],
the functor

F = RHomQCoh(]P,lc)<@ D (9(1>7 _): D(Plz:) — D(R)

is a triangulated equivalence. Since R is hereditary, by [14, Theorem 17.3.22],
its Ziegler spectrum is just the union of all shifts of the Ziegler spectrum of R,
embedded into D(R) as complexes with cohomology concentrated in degree 0.

Let Z be the (representative) set containing all twists of the structure sheaf
and all indecomposable g-pure-injectives of QCoh(P;). The Ziegler spectrum of
D(P}) contains all shifts of Z; therefore, since F is an equivalence, to show that
Z is indeed the Ziegler spectrum of QCoh(P}) it suffices to show that the shifts
of F(Z) cover Zg(D(R)).
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The Ziegler spectrum of R is described in [14], 8.1], so the checking is only a
matter of computation. From Lemma we get that

Extoonge (© ® O(1), 1) =0

for every indecomposable g-pure-injective 71, therefore F' simply sends the torsion,
“Priifer”, “adic” and generic sheaves to the corresponding points of Zg(R) put
into the same cohomological degree in D(R).

Using Serre duality [8, Theorem 7.1], one obtains the same Ext-vanishing for
O(n) for all n > 0, and it is easy to observe that these line bundles are sent to
preprojective R-modules via F'. On the other hand, we have

HomQCOh(P;)(@ ©O(1),0(n)) =0

for n < 0, and using Serre duality again we get that these line bundles are mapped
to preinjective R-modules, just shifted to the neighbouring cohomological degree

in D(R).
We conclude that each point of Zg(D(R)) is a shift of an object from F(Z)
as desired. ]

Having now the complete description of the points of Zg(QCoh(P})), let us
investigate the topology. The geometric part (which forms a closed subset by
Theorem is easy to handle and basically follows the description of the
Ziegler spectrum of a Dedekind domain (cf. [14, Theorem 5.2.3]). The following
observation describes how the line bundles sit in the Ziegler topology:

Proposition 4.6.6. Every line bundle is a closed and isolated point of the Ziegler
spectrum Zg(QCoh(P})). Any set of line bundles O(n), where n is bounded from
above, is closed. Any set of line bundles ©O(n), where n is not bounded from
above, additionally contains all the “adic” sheaves and the generic point in its
closure.

Proof. This could be deduced from the description of the topology of the Ziegler
spectrum over the Kronecker algebra R but we can argue directly as follows. For
each n € Z, O(n) is the only indecomposable c-pure-injective for which both
functors

Homqoener)(O(n +1),—) and  Extqeene:)(©O(n — 1), —)

vanish; the vanishing class of the former is clearly definable, whereas for the latter
we use Lemma [4.6.4] Therefore the single-point set containing ©(n) is closed.

On the other hand, ©O(n) is the only indecomposable c-pure-injective for which
neither of the functors

Homqoene:)(O(n), —) and  Extqeene:) (O(n +2), —)

vanishes; the former vanishes on all ©(m) for m < n, whereas the latter vanishes
on g-pure-injectives and all ©O(m) with m > n.

We see that line bundles form a discrete subspace of Zg(QCoh(PP})), therefore
taking the closure of any set of line bundles can possibly add only points from
the geometric part.
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If a set S of line bundles O(n) has n strictly bounded above by some m, then
this set is contained in the definable vanishing class of Homqgonee:)(©(m), —),
which contains no g-pure-injectives. Hence S is closed.

If, on the other hand, a set S of line bundles contains O(n) with arbitrarily
large n € Z, additional points appear in the closure. Denote by X the smallest
definable subcategory of QCoh(X) containing S. Firstly, let U be the complement
of a single closed point z € P;. For every pair m < n such that O(m), O(n) € S,
pick a monomorphism O(m) — ©O(n) which is an isomorphism on U. This
way we obtain a chain of monomorphisms, the direct limit of which is the sheaf
M = 47 (Oly). Therefore M € XC.

Since O(U) is a PID, the pure-injective hull N of O(U) in the category of
O(U)-modules is the direct product of completions of the local rings O, for each
closed y € U; applying the (definable by direct image functor L?]C’* to the
corresponding map in QCoh(U) produces a c-pure-injective hull 711 — 1 in
QCoh(P}), therefore 1 € X. However, 1 is just the product of “adic” sheaves,
which therefore belong to O, too. Since the choice of the point z was arbitrary,
we obtain all “adic” sheaves in the closure of S. Furthermore, any such point has
the generic point in its closure.

Finally, observe that X consists only of torsion-free sheaves, i.e. the sheaves for
which the definable functors Homqcon 1 (7, =), T torsion coherent, vanish. All
the remaining indecomposable pure-injectives are not torsion-free and therefore
cannot be in the closure of S. ]

Corollary 4.6.7. The Ziegler spectrum of QCoh(P}) is not quasicompact.

Proof. By Proposition [4.6.6] the sets of line bundles S,, = {O(m) | m < n} are
closed in Zg(QCoh(P};)). The intersection of any finite collection of such sets
is non-empty, but the intersection over all n € Z is empty, which shows that
Zg(QCoh(P})) is not quasicompact. O

Remark 4.6.8. Corollary can be easily generalised: For example, let R be
an Nyp-graded ring finitely generated as an Ry-algebra and X = Proj R. Consider
for each n € Z the set

Sn = {M € Zg(QCoh(X)) | Homqconx)(Ox(n), N) = 0}.

Since Ox(n) is finitely presented, each S, is Ziegler-closed. If they are also
non-empty, then they necessarily form a collection with the finite intersection
property, but empty intersection, since the line bundles form a generating set of
the category. For example, if R = Alzo,..., 2] for A a commutative ring and
t > 1, then Homqcon(x)(Ox(n), Ox(n—1)) =0, so S, # () because the non-trivial
definable subcategory, where Homqeon(x)(©Ox (n), —) vanishes, has to intersect the
Ziegler spectrum non-trivially. This shows that for X = P, Zg(QCoh(X)) is not
quasicompact.

Turning back to the projective line, we are also able to give an alternative
description of the subcategory CZ)P}C, which we denote here just @ for short; this
description was suggested to us by Jan Stovicek:

Proposition 4.6.9. An object 11 of QCoh(P}) belongs to D if and only if for

each n € 7,
EXt%QCoh(]P’i)(@(n% m) =o,
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if and only if for each n € Z,
HomQCoh(P}c)(ma O(n)) =0.

Proof. Let & be the subcategory of QCoh(P;) consisting of those 771 such that
Extécoh(%)(@(n), M) =0 for all n € Z. By Lemma [4.6.4, & is the intersection of
definable subcategories, therefore it is itself definable.

The proof that @ = & is now just a matter of checking that @ and & contain
the same indecomposable c-pure-injectives. By Lemma |4.6.4} all indecomposable
g-pure-injectives belong to &, while Example [4.6.1] shows that no line bundle
belongs to &, which is precisely the case for @ as well.

To check the second claim, pick 71 ¢ @ and let i: 111 < 11 be a c-pure
embedding into the direct product of indecomposable c-pure-injectives. Taking
into account the description of these indecomposables (Theorem , some of
the terms in the product have to be line bundles, for otherwise we would have 171 €
@, and for the same reason the composition of ¢ with the projection on at least one
of the line bundles has to be non-zero, showing that Homqcone:) (177, O(n)) # 0
for some n € Z.

On the other hand, let 771 € @. The description of @ as the intersection
of Ext-vanishing classes shows that @ is closed under arbitrary factors as Ext?
vanishes on QCoh(P}). The image of any non-zero map 111 — ©O(n) would be
a line bundle, too, but no line bundle belongs to @, therefore we conclude that
Homgeoner) (111, O(n)) = 0 for each n € Z in this case. O

Therefore, for the projective line, we get some extra properties of @:

Corollary 4.6.10. The subcategory @D is a torsion class and a right class of a
cotorsion pair. In particular, @ is closed under arbitrary colimits, factors, and
extensions.
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5. On flat generators and Matlis
duality for quasicoherent sheaves

This chapter is based on the manuscript available at arXiv:1902.05740, whose
revised version is now under review in the Bulletin of the London Mathematical
Society.

5.1 Introduction

Let X be a scheme. It is well-known that unless the scheme is affine, the cate-
gory QCoh(X) of all quasicoherent sheaves on X does not usually have enough
projective objects. In fact, a quasiprojective scheme over a field is affine if and
only if QCoh(X) has enough projective objects, [12, Theorem 1.1], and a direct
proof that QCoh(X') has no non-zero projective objects if X is the projective line
over a field can be found in [5, Corollary 2.3].

Such an issue is often fixed using some flat objects; recall that a quasicoherent
sheaf 111 is called flat if for any open affine set U C X, the Ox(U)-module M (U)
is flat. Murfet in his thesis showed that for X quasicompact and semiseparated,
every quasicoherent sheaf is a quotient of a flat one [14, Corollary 3.21] (recall
that a scheme is called semiseparated if the intersection of any two open affine
sets is affine; this differs from the original definition [20, B.7], but turns out
to be equivalent, cf. [I, Remark after 2.5]). A short proof of the same fact,
attributed to Neeman, can be found in [8, Appendix A], which was (under the
same assumptions) later improved by Positselski [16, Lemma 4.1.1] by showing
that so-called very flat quasicoherent sheaves are sufficient for this job.

Note that by [22, 077K] (cf. also the introduction to [4]), QCoh(X) is a
Grothendieck category for any scheme X and as such, it has a generator. There-
fore the assertion that “QCoh(X) has enough flat sheaves” can be equivalently
rephrased that “QCoh(X) has a flat generator”; we will use these two statements
interchangeably.

It was hoped for a long time that the existence of a flat generator can be
extended at least to the case of quasicompact quasiseparated schemes (i.e. those
for which the intersection of any two open affine sets is quasicompact), which
encompass a considerably wider class of “natural” examples arising in algebraic
geometry, while being an assumption rather pleasant to work with. However, our
results show that for quasicompact quasiseparated schemes, semiseparatedness is
in fact necessary for the existence of enough flat quasicoherent sheaves.

In this context, we note that it has been already known that semiseparatedness
is necessary for the existence of a generating set consisting of vector bundles. This
is a consequence of much more involved structure theorems for stacks, see [21,
Proposition 1.3] and [9, Theorem 1.1(iii)]. Here we present a stronger version of
that consequence with a much simpler proof.

A question closely related to the existence of a flat generator turns out to
be the exactness of the Matlis duality functor. If R is a commutative ring and
E an injective cogenerator of the category R-Mod, the Matlis duality functor
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Hompg(—, £): R-Mod® — R-Mod has been considered on numerous occasions in
the literature and one of its fundamental properties is that it is exact.

If X is a possibly non-affine scheme, we can consider an analogous duality of
the category QCoh(X) of quasi-coherent sheaves. Namely, QCoh(X) has an in-
ternal hom functor #om“ which is right adjoint to the usual tensoring of sheaves
of Ox-modules, and we can consider the functor #om(—,&): QCoh(X)? —
QCoh(X) for an injective cogenerator & € QCoh(X); note that the existence
of such a cogenerator follows by [13, Theorem 9.6.3] from the previously men-
tioned fact that QCoh(X) is a Grothendieck category. For a simple formal reason
which we discuss below, #om(—, §) is exact provided that QCoh(X) has a flat
generator, so in particular if X is quasicompact and semiseparated. Perhaps
somewhat surprisingly, we prove that for quasicompact quasiseparated schemes,
semiseparatedness is again a mecessary condition for the exactness.

To summarize, our main result reads as follows:

Main Theorem (see Theorems and [5.3.10| and Corollary |5.3.13). Let X

be a quasicompact and quasiseparated scheme. Then the following assertions are
equivalent:

(1) the category QCoh(X) of all quasicoherent sheaves on X has a flat gener-
ator;

(2) for every injective object & of QCoh(X), the contravariant internal hom
functor Fom°(—, &) is exact;

(8) there ezists an injective cogenerator & of QCoh(X) such that the con-
travariant internal hom functor Fom(—, &) is exact;

(4) the scheme X is semiseparated.

The paper is organized as follows. In Section we give a direct proof
that for a non-semiseparated scheme X, the category QCoh(X) does not have a
flat generator. The proof is rather constructive, producing a quasicoherent sheaf
which is not a quotient of a flat one. Section[5.3|then provides the characterization
of semiseparated schemes using the exactness of the internal hom #om°(—, §)
for every injective quasicoherent sheaf &. This in fact gives another, less explicit
proof of the results of Section [5.2]

Notation. If R is a commutative ring and M an R-module, then by M we denote
the quasicoherent sheaf on Spec R with M as the module of global sections. If
the formula describing the module is too long and the tilde would not be wide
enough, we use the notation like M ™.

If U is an open subset of a scheme X, which is usually clear from the context,
then ¢y: U — X denotes the inclusion and ¢y, the direct image functor. Since
we are dealing only with quasicompact open sets, ¢y is a quasicompact and qua-
siseparated map, hence ¢y, sends quasicoherent sheaves to quasicoherent sheaves
by [22, 01LC].

5.2 Non-existence of flat generators

In this section we show that if a quasicompact quasiseparated scheme X is not
semiseparated, then QCoh(X) cannot have a flat generator by exhibiting a qua-
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sicoherent sheaf on X, which is not a quotient of a flat quasicoherent sheaf. We
begin with an easy observation.

Let 171 be a quasicoherent sheaf on an affine scheme X. If U is an open affine
subset of X then it is a part of the very definition of a quasicoherent sheaf on
X that the map M(X) ®o,(x) Ox(U) — M(U) is an isomorphism of Ox (U)-
modules. If U is not affine, this may not be the case. However, more can be said
for flat sheaves:

Lemma 5.2.1. Let U be a quasicompact open subset of an affine scheme X and
F a flat quasicoherent sheaf on X. Then the map

resix ® Ox(U): F(X) ®oy(x) Ox(U) — F(U),
f®s — respr (f) - s

18 an isomorphism.

Proof. We may assume that X = Spec R. The assertion is clearly true for the
structure sheaf and all its finite direct sums (i.e. all finite rank free R-modules).
Since U is a quasicompact open subset of an affine scheme, it is also quasiseparated
and the functor of sections over U commutes with direct limits [22, 009F]. By
the Govorov-Lazard Theorem [22, 058G], any flat R-module is the direct limit of
finite rank free modules, and since tensor product commutes with colimits, the
desired property holds for all flat modules. O

Theorem 5.2.2. Let X be a quasicompact quasiseparated scheme. Then X is
semiseparated if and only if each quasicoherent sheaf on X s a quotient of a flat
quasicoherent sheaf (equivalently: QCoh(X) has a flat generator).

Proof. If X is semiseparated, then the assertion holds by the results mentioned
in the introduction.

If X is not semiseparated, let U, V be two open affine subsets of X such
that the intersection W = U NV is not affine. Since X is quasiseparated, W is
quasicompact; therefore, there are sections fi,..., f, € Ox(U) such that W =
Up U---U Uy, where Uy denotes the distinguished open subset of the affine
subscheme U where f does not vanish. Denote by I the ideal of Ox (U) generated
by fi,..., f, and 4 = LU,*(E ) the direct image of I with respect to the inclusion
Ly .

Since J(Uy,) = Ox(Uy,) for each i = 1,...,n, the sheaf axiom implies that
J(W) = Ox(W). On the other hand, by [10, Chapter II, Exercise 2.17(b)], the
restrictions of fi,..., f, to W do not generate the unit ideal of the ring Ox (W).

Assume that there is a flat quasicoherent sheaf # and an epimorphism f: F —
J. We have a commutative diagram

resg resg
FV) % F(W) L F(U)
lf(V) lf(W) lf(U)
g(V) =22 g(W) 2 g(U)

with the outer vertical arrows being epimorphisms due to U, V being affine and
the middle arrow due to commutativity of the left-hand square.
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The right-hand square induces the following commutative diagram, where the
horizontal maps are given by the same formula as in Lemma [5.2.1

resy,; ®O0x (W)

FW) <« F(U) ® Ox (W)

lf(W) lf(U)@@X(W)
reSg ~
W) WGy @ O (W)

9

Since F is flat, by Lemma the top arrow is an isomorphism. Consequently,
the bottom arrow is an epimorphism. However, this cannot be so: As 9(U) = I,
the map in question factors as

I ®oywyOx (W) — IOx (W) — (W),

and as observed above, the image is a proper submodule of (W) = Ox (). This
is a contradiction and, hence, the quasicoherent sheaf J cannot be a quotient of
a flat quasicoherent sheaf. O

Example 5.2.3. Let k be any field. A handy (and possibly the easiest) example
of a non-semiseparated scheme X is the plane with double origin, obtained by
gluing two copies of Speck[z,y| along the punctured plane, i.e. the non-affine
open subset containing everything except the maximal ideal (z,y). It may be
illuminating to trace the proof of Theorem in this particular case.

Let R = k[z,y| for brevity. Then U, V are the two copies of Spec R and
W is the punctured plane. Then I = (z,y), as W can be covered by the two
distinguished open subsets U,, U,. The resulting sheaf J then satisfies ¢(U) = I,
4(V) = 9(W) = R. Since, by Lemma [5.2.1] for any flat sheaf on X, both
restrictions from U and V' to W are the identity morphisms, it is easy to see that
the image of any map from a flat sheaf is contained in I on all three open sets.

5.3 Exactness of the internal Hom

For any scheme X, the category QCoh(X) has a closed symmetric monoidal
structure given by the usual sheaf tensor product ® together with its right adjoint,
which we denote by #om°. This bifunctor is just the usual sheaf hom composed
with the coherator functor [14, Proposition 6.15]. In this section we investigate
the exactness of the contravariant functor #om°(—, &), where & is an injective
object of QCoh(X).

If (@,®) is a general abelian category with a symmetric monoidal structure,
we call an object F' € @ flat if the functor FF ® —: G — @ is exact. This is well-
known to be consistent with the previous definition of flatness for ¢ = QCoh(X).

Since we do not assume that ¢ has infinite coproducts, we follow [13, Defini-
tion 5.2.1] and call an object G € § a generator if Homg(G, —): @ — Ab is a
conservative functor, i.e. reflects isomorphisms. By [13, Proposition 2.2.3], we can
equivalently require Homg (G, —) to be faithful, and if ¢ happens to have all co-
products, [I3, Proposition 5.2.4] matches this definition with the more usual one.
If G is a generator, Homg (G, —) reflects both epimorphisms and monomorphisms
by [13, Proposition 1.2.12]; in fact, by [I5], Section 3.1, Exercise 4|, Homg (G, —)
also reflects exactness.

Now we can make a general observation:
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Lemma 5.3.1. Let G be an abelian category with a closed symmetric monoidal

structure, with the internal hom denoted |—,—]. Assume that G has a flat gen-
erator G and let E be an injective object of G. Then the functor

[ El: G* =@
18 ezact.

Proof. The internal hom [—, E]: @°° — @ is a right adjoint for any £ € @.
Indeed, the natural isomorphisms

Homgor ([B, E], A) = Homg (A4, [B, E]) 2 Homg(A ® B, E) = Homg(B, [A, E))

show that [—, E]: @ — @ is the corresponding left adjoint. In particular,
[—, E]: §@°° — @ is always left-exact.

Having a monomorphism A — B in ¢, to test that [B,E] — [A, E] is
an epimorphism, we can check it against the epimorphism-reflecting functor
HOHIQ(G, —),

Hom¢ (G, [B, E]) — Homg (G, [A, E]),

which, using the adjunction, is surjective if and only if

is, where ® denotes the tensor product in §. Since G is flat, G® A - G® B is a
monomorphism, and injectivity of E implies that the map in question is indeed
surjective. O

Example 5.3.2. Let G be the category of chain complexes of vector spaces over a
field. This is a Grothendieck category where the injective objects are precisely the
contractible complexes. However, the internal hom is exact for any arguments,
hence there is in general no converse to Lemma in the sense that if [—, £
is exact, then F is injective.

Corollary 5.3.3. Let X be a quasicompact and semiseparated scheme. Then for
every injective & € QCoh(X), the functor

Fom®(—,8): QCoh(X)®? — QCoh(X)
15 exact.

Proof. As pointed out in the introduction, the category QCoh(X) has a flat gener-
ator whenever X is quasicompact semiseparated, hence Lemma [5.3.1| applies. [

For the sake of completeness, we also record the following result.

Proposition 5.3.4. Let X be a scheme and & € QCoh(X) an injective quasico-
herent sheaf such that & s also an injective object of the category ©Ox-Mod of all
sheaves of Ox-modules. Then the functor #omi(—,8) is exact on short exact
sequences of quasicoherent sheaves of finite presentation.
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Proof. By [22 05NI], the category ©x-Mod has a flat generator; one possible
choice is the direct sum of the extensions by zero of the restrictions Ox |y, where
U C X runs over all open subsets. Therefore, by the assumption on & and
Lemma the usual sheaf hom #Fom(—,§) is exact on Ox-Mod. Finally, by
[22] 01LA], #om(A, &) is quasicoherent for every A of finite presentation, hence
it coincides with #om( A, &) and we are done. O

Note that the assumption of & being injective in Ox-Mod is satisfied e.g.
whenever X is locally Noetherian, [I1, §II.7]. This shows that to produce a
counterexample to Corollary with X locally Noetherian non-semiseparated,
one has to work with sheaves not of finite presentation.

Furthermore, in the locally Noetherian case, the proof shows that the sheaf
hom into an injective sheaf is exact, so it is the coherator that is “responsible”
for the failure of exactness in general.

Next, following [3, Appendix B], let us briefly recall some relevant facts about
the map of schemes ¢,,: Spec Ox, — X, where p is a point of X. This map arises
as the composition of the natural maps

Spec Ox, — Spec Ox(U) = U — X,

where U C X is some open affine neighbourhood of p. By [22, 0816], ¢, is a
quasicompact quasiseparated map, hence the direct image functor ¢, . preserves
quasicoherence by [22, 01LC]. (Note that the assumption on X being locally
Noetherian in [3] is superfluous.) To ease the notation, let us further compose
this functor with the standard equivalence of categories

Ox p,-Mod = QCoh(Spec Ox ),

obtaining the functor
Ipx: Ox,-Mod — QCoh(X).

This functor can also be viewed as the right adjoint to the functor of taking stalks
at p, (—)p: QCoh(X) — Ox,-Mod.

In the sequel, we will need the following “enriched version” of this adjunction:

Lemma 5.3.5. Let X be a quasicompact and quasiseparated scheme and p € X
a point. Then, for every 11 € QCoh(X) and N € Ox ,-Mod we have the natural
isomorphism

Fom (1,7, .(N)) 27, . (Hom@Xm_Mod(mp, N))

Proof. Since taking the stalks at p commutes with the tensor product, the fol-
lowing two functors QCoh(X) — Ox ,-Mod are naturally isomorphic:

mp ®@x,p (_)p = (m ® _)p'

Both functors are compositions of left adjoints—taking the stalks and the ten-
sor product. Hence composing the corresponding right adjoints produces the
isomorphism from the statement. [
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Let us recall further relevant definitions, which we are going to use: A subcat-
egory of a Grothendieck category is called a Giraud subcategory if the inclusion
functor has a kernel-preserving left adjoint (if the inclusion functor has a left
adjoint, the subcategory has kernels). A Giraud subcategory is always an abelian
category per se and the left adjoint to the inclusion is exact, but the inclusion
functor itself is only left exact in general (see [19, §X.1] for details).

Further, a subcategory of a locally finitely presented category with products
is definable provided it is closed under direct products, direct limits, and pure
subobjects; this follows the definition in [I7, Section 16.1]. Let us make clear
that the purity we have in mind here is the “categorical purity” or “c-purity” in
the language of [18].

Lemma 5.3.6. Let R be a commutative ring, X = Spec R and U a quasicompact
open subset of X. Then the R-modules of the form M(U), where M € R-Mod,
form a Giraud, definable subcategory of R-Mod, which we denote Gy. The inclu-
sion functor i: Gy — R-Mod is ezxact if and only of U s affine.

Proof. We have the following solid diagram of categories and functors:

o
QCoh(U) & 1 QCoh(X)

——
I N I
"
Gu &1 7 R-Mod

The left-hand vertical equivalence follows from [22, 0EHM], utilizing the assump-
tions on U, and the right-hand one is the standard one; in both cases the pas-
sage from sheaves to modules is just taking the global sections, so the diagram
is clearly commutative. The (fully faithful) direct image functor ¢y, identifies
QCoh(U) with a full subcategory of QCoh(X) with the restriction to U being the
exact left adjoint. We define 1 to be the composition of the sheaf restriction with
the two vertical equivalences, hence 7 is the exact left adjoint to the inclusion <.
This shows that G is a Giraud subcategory of R-Mod.

Similarly, to show that Gy is definable, we need to show that the essential
image of the functor ¢, is a definable subcategory of QCoh(X'). Basically, one has
to observe that [I8, Remark 4.6] generalizes to (possibly non-affine) quasicompact
open subsets of X: As a right adjoint, ¢y, commutes with direct products, and by
[20, Lemma B.6], it commutes with direct limits. The closedness of the essential
image under pure subobjects follows from [I8, Lemma 2.12] and the fact that by
[18, Lemma 1.4(2)], categorical pure-exactness in QCoh(X) is inherited from the
larger category of all sheaves of ©y-modules.

For the final claim, note that if U is affine, then since X is semiseparated, the
functor ¢y, is exact, which via the vertical equivalences implies the exactness of
i. On the other hand, if U is not affine, then by Serre’s criterion [22, 01XF], the
sections over U, i.e. the composition of the left-hand equivalence with ¢, is not an
exact functor QCoh(U) — R-Mod, therefore 7 is not exact. O

The following two lemmas shows that if a quasicompact quasiseparated scheme
X is not semiseparated, this can be detected even at the level of stalks of closed
points.
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Lemma 5.3.7. Let X = Spec R be an affine scheme and U C X a quasicompact
open subset. Then the following are equivalent:

(1) U is affine,

(2) 1,;"(U) C Spec R,, is affine for every point p € X,

(3) szl(U) C Spec R, is affine for every closed point p € X,

(4) 1,'(U) C Spec Ry, is affine for every closed point p € X \ U.

Proof. (1) = (2) follows from [22, 01JQ]. (2) = (3) = (4) is clear.

(4) = (1): Assume that U is not affine. As in the proof of Theorem [5.2.2]
let us express U as the union X U---U X/, of distinguished open affine subsets
of X and put I = (f1,..., fn) the corresponding ideal of R. Then [10, Chapter
II, Exercise 2.17(b)] implies that /Ox(U) € Ox(U). In particular, there is a
maximal ideal p of R such that [,0x(U), C Ox(U),. This p cannot belong to U,
for otherwise p € Xy, or equivalently f; ¢ p for some i € {1,...,n}, so I, would
be the unit ideal of R,.

Let Y = SpecR,, W = szl(U) C Y, and denote by fi,..., f/ the images of
f1,..., fn under the canonical map R — R,. Then, on one hand, Yy = ¢! (X))
for every i € {1,...,n},s0 W =Yy U---UY}. On the other hand, Oy (Y}) =
Ox(Xy,)p for every i € {1,...,n}, hence Oy (W) = Ox(U), by the sheaf axiom.
Since I, = (f1,..., f}), we infer that W is not affine, once more by [10, Chapter
II, Exercise 2.17(b)]. O

Lemma 5.3.8. Let X be a quasicompact quasiseparated scheme, which is not
semiseparated. Then there is an affine open subset V- C X and a closed point
p € X such that 1,;* (V) is not affine.

Proof. Let U,V be open affine subsets of X such that U NV is not affine. By
Lemma 5.3.7, there is a point p € U\ V' such that ¢, (V') is not affine. Now pick

a closed point p’ € @ Such a point exists by [22, 005E] and clearly it is also
a closed point in X. Moreover, any open subset of X containing p’ also contains
p, and hence ¢, = ¢,y 0 j,, where j,: Spec Ox, — Spec Ox ,; denotes the obvious
inclusion. Since j, (¢! (V) = 1, *(V) is not affine, L;,I(V) C Spec Oy, is not
affine by Lemma (with X = Spec Ox ). O

As a last step of preparation before proving the main theorem, we recall a
standard construction of simple quasicoherent sheaves on X.

Lemma 5.3.9. Let X be a quasicompact quasiseparated scheme and p € X a
closed point. Then the sheaf 7, .(Ox,/p) is a simple object of QCoh(X) (where
we identify p with the sole mazimal ideal of the ring Ox ).

Proof. Note that the simple Oy ,-module Ox ,/p is supported only in the max-
imal ideal p. As p is closed in X, by the definition of the direct image functor,
1p+(Ox/p) is actually a skyscraper sheaf with Ox ,,/p as the module of sections
on every neighbourhood of p. In other words, for every point ¢ € X, the module
of stalks at ¢ of 7,,.(Ox,/p) is either zero (if ¢ # p), or the simple module Ox /p
(if ¢ = p). This readily implies that the only non-zero subsheaf of 7, .(Ox ,/p) is
the sheaf itself. ]
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Theorem 5.3.10. Let X be a quasicompact quasiseparated scheme. Then the
following are equivalent:

(1) for each & € QCoh(X) injective, the contravariant functor #om(—, §) is
exact;

(2) for each simple quasicoherent sheaf S and its injective envelope & in the
category QCoh(X), the contravariant functor #om*(—, &) is exact;

(8) X is semiseparated.

Proof. (1) = (2) is obvious and (3) = (1) follows from Corollary [5.3.3]

To prove (2) = (3), assume that X is not semiseparated; then, by Lemma
there are a closed point p € X and an open affine set V' C X such that
W = 1;5(V)) C Spec Oy, is not affine. By Serre’s criterion [22, 01XF], there is
A' € QCoh(W) satistying H' (W, A’) # 0. Since QCoh(W) is a Grothendieck
category, there is an embedding A’ — B’ with B’ € QCoh(WW) injective; in
particular, H' (W, B’) = 0. Let ¢’ € QCoh(W) be the cokernel of this embedding;
hence we have a short exact sequence 0 — A" — B’ — €’ — 0 in QCoh (W) with
non-exact sequence of sections over W.

Let ¢y be the composition of the inclusions W — Spec Ox , and Spec Ox ,, —
X. By [22] 0816], this is a quasicompact quasiseparated morphism, hence the
corresponding direct image functor ty.: QCoh(W) — QCoh(X) preserves qua-
sicoherence [22, 01LC]. This is the right adjoint to the composition of taking the
stalks at p and restricting to W; let us denote this composition, with slight abuse
of notation, by (—)|w: QCoh(X) — QCoh(W), and call it the restriction to W.
Being a composition of exact functors, it is an exact functor.

Abusing the notation and the terminology even further, for each quasicoherent
sheaf 1711 on X, let us denote M|y (W) by M(W) and call this Of (W )-module
sections on W.

Put A = . (A"), B = tw+(B'). The direct image functor is left exact; let
C be the cokernel of A — B. Since the restriction to W is an exact functor and
Alw = A, Blw = B, it follows that C|y = C’. However, C # vy.(C’), for the
sequence 0 - A — B — 1y.(C’) — 0 is not exact, as passing to stalks at p
shows. Anyway, we have obtained a short exact sequence 0 - A — B — C — 0
in QCoh(X) such that the sequence of sections on W, 0 — A(W) — B(W) —
C(W) — 0, is not exact.

Let E be the injective envelope of the sole simple Oy ,-module Oy ,/p (where
we identify p with the unique maximal ideal of the ring ©Ox,). By [2, Corollary
18.19], this is an injective cogenerator of Ox ,-Mod, easily seen to be indecom-
posable. Further, put & =17, ,(E). Since 7, , is a right adjoint to an exact functor,
it preserves injectives, hence & is an injective object of QCoh(X).

Note that by Lemma , 8 =17,.(Ox,/p) is a simple quasicoherent sheaf.
(This is actually the only place where we use that p is closed in X.) Moreover,
the functor i, , is fully faithful, therefore € is indecomposable, hence the injective
envelope of & must be the whole of &.

For 1l € QCoh(X), denote by 1M the sheaf #om®(111,&). We are going to
show that the sequence

0= AT =B 0T =0 (++)
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cannot be exact by showing that the sections over the open affine set V' are not
exact.

Denote further M* = Homo, ,(M, E) for M € Ox,-Mod. By Lemma [5.3.5]
we have

m+ = Fom™(M, 8) = i, (Homo, , (M, E)) = i,,,.(N),

p

therefore
(m+)p =N

p

and
mt+ = 5‘60ch(er, 8) = Tpx (Hom@X,p((er)p, E)) =1, (17")

p
for every MM € QCoh(X). We further get
(m-i--‘r)p — m;*’

and so
m++(V) = m++(W).

Let Qw denote the subcategory of Ox ,-Mod from Lemma (with R = Oy,
and U = W). Further put A = A,, B = B,, and C' = C,. By the construction,
A=AW), B=®B(W),so A, B € Q. On the other hand C' C C(W), hence
C ¢ Gw. Indeed, C is the cokernel of A — B in Ox ,-Mod and C(W) is the
cokernel of A — B in Gy, so C € Gy would imply C' = C(W).

Since by Lemma Gw is a definable subcategory of Ox ,-Mod, [17, Corol-
lary 3.4.21] implies that A*, B** € Qw, but C** ¢ @y by [17, Corollary 1.3.16]
and the fact that C' ¢ Q. In other words,

AV = AH(W) = (A, = A",
BHV) = BH(W) = (B), = B,

but, as C*T(W) € Gw,
O V) = O W) 2 (), = O

However, as (—)* is an exact contravariant functor on Ox ,-Mod, the sequence
0 — A" — B* — ("™ — 0 is exact. This shows that the sequence (++) is not
exact after passing to sections over V' as desired. [

Remark 5.3.11. Note that we have re-proved Theorem [5.2.2} If X is quasicom-
pact and quasiseparated, but not semiseparated, then by Theorem [5.3.10] there
is an injective & € QCoh(X) such that #om(—, &) is not exact; by Lemma
this means that the category QCoh(X) cannot have a flat generator.

Example 5.3.12. As in Example [5.2.3] it may be instructive to consider the
plane with double origin. We again put R = k[z,y], the open subsets U, V will
be the two copies of Spec R, W will be the punctured plane and p the origin
belonging to U. In this situation, p and V fit into the roles assigned in the
statement of Lemma |5.3.8, and W = ¢, *(V) is an actual open subset of X.

The following example was suggested to us by Leonid Positselski. The sheafi-
fication 0 — Oy — Oy — Nl — 0 of the short exact sequence 0 — k[z,y] >
k[z,y] — k[z] — 0 of R-modules has non-exact sections on W. Indeed, a direct
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computation using the sheaf axiom reveals that the sections on W form only the
left exact sequence
0 — klz,y] 2 k[z,y] — k[z*"]. (%)

If we take the sheafification of the same exact sequence of R-modules in
QCoh(V) and glue it together with the sequence in QCoh(U), we obtain a short
exact sequence 0 - A — B — C — 0 of quasicoherent sheaves on X = U UV
whose sections on W look like ().

Let £ € R-Mod be the injective envelope of the simple R-module R/(x,y).
The arguments in the proof of Theorem show that the stalks at p of the
double dual (++), where (=)t = #om®(—, &) for & = 1y,.(E), are of the form

0 — k[z,y] 2 k[z,y] — k[z] — 0.

Here we also use [, Theorem 3.4.1(8)] to compute double duals of modules of
stalks at p with respect to Homoe,  (—, £). Consequently, following the arguments
in the proof of Theorem further, the sections of (++) on the open sets W
and V coincide and the sheaf axiom implies that they look like

0 — k[z,y] 2 k[z,y] — k().

This is again a left, but not right exact sequence and so is (++) since V' is affine.

Although, for the sake of simplicity, this example does not fully follow the
proof of Theorem (the sheaf By is not injective in QCoh(W)), it is still
sufficient to explicitly illustrate the non-exactness of #om(—, &) on QCoh(X).

Corollary 5.3.13. Let X be a quasicompact quasiseparated scheme and & €
QCoh(X) be an injective cogenerator. Then #Fom°(—, &) is exact if and only if
X 1s semiseparated.

Proof. Suppose that X is non-semiseparated. Theorem (2) asserts that
there is a simple quasicoherent sheaf & and its injective envelope &' such that
Fom°(—, &) is not exact. Clearly & embeds into & and this embedding extends
to a (necessarily split) embedding & < &. It follows that #om(—, &) is not
exact. UJ

Remark 5.3.14. Let R be a commutative ring and E an injective cogenerator
of the category R-Mod. The contravariant functor Homg(—, F) has found many
applications in the model theory of modules and its generalizations (cf. [17, 1.3.3];
this also works in greater generality over non-commutative rings). This has led to
a natural generalization to symmetric closed monoidal Grothendieck categories;
in particular, in [6], the functor #om°(—, &), where & is an injective cogenerator
of QCoh(X), has been used to investigate the properties of “geometric” purity.E]

Corollary shows that this “duality” is, perhaps surprisingly, not exact
for non-semiseparated schemes. However, it turns out that this is not really an

1To be precise, [6] first considers the ordinary sheaf hom functor #om(—, &’), where &' is an
injective cogenerator of the category ©x-Mod of all sheaves of O x-modules, and then composes
this with the coherator to obtain a functor to QCoh(X). Using the fact that the tensor product
of quasicoherent sheaves is just the ordinary sheaf tensor product, the “composition-of-adjoints
argument” as in the proof of Lemma [5.3.5| shows that we can replace the second argument with
the coherator of &', which turns out to be an injective cogenerator of QCoh(X).
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obstacle to using this functor for investigating purity in the same way as in the
classical situation, cf. [6 Proposition 4.5]. Furthermore, this functor at least
reflects exactness, as the next proposition shows.

Proposition 5.3.15. Let § be an injective cogenerator of QCoh(X). Then the
functor #om°(—, &) reflects exactness.

Proof. Assume that
0 — #om™(C, E) — FHom™ (B, &) — Hom¥(A,E) — 0

is exact. By [6, Proposition 4.4 & Lemma 4.7], all the terms are geometrically
pure-injective (or g-pure-injective, or just pure-injective in the language of [6]). In
particular, by [I8, Proposition 4.14 & Lemma 4.15], #om®(C, &) has vanishing
sheaf cohomology, therefore taking global sections produces a short exact sequence

0— HOH]QCOh(X)(G, 8) — HOHlQCOh(X)<@, 8) — HomQCOh(X) (ﬂ, 8) — 0.

As & is a cogenerator (cf. the discussion before Lemma [5.3.1)), this implies that
0=+ A —B—C —0is exact. O
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