Mgr. David Jakubec

Email: david.jakubec@uochb.cas.cz

Current position

^{2015-now} *PhD student*, Bioinformatics group (Dr. Vondrášek), Institute of Organic Chemistry and Biochemistry of the CAS, Prague, Czech Republic

Past experience

²⁰¹⁷ Visiting scientist, Sequence families team (Dr. Finn), European Bioinformatics Institute
 ^(3 months) (EMBL-EBI), Hinxton, Cambridgeshire, United Kingdom
 ²⁰¹³⁻²⁰¹⁵ Master's student, Bioinformatics group (Dr. Vondrášek), Institute of Organic Chemistry and Biochemistry of the CAS, Prague, Czech Republic

Skills & interests

Language skills: Slovak (native speaker); Czech (native speaker); English (fluent; FCE certificate, level C1); German (basic)

General computing ở programming skills: GNU/Linux OS ở Unix shell (proficient); Python (with NumPy, SciPy, Matplotlib scientific stack; proficient); web development (HTML/CSS/ JavaScript; intermediate); 还下X (intermediate); high-performance computing

Professional & scientific skills: molecular modeling (PyMOL, VMD); molecular dynamics simulations, free energy calculations (GROMACS); hidden Markov model applications (HM-MER); biological database mining (UniProt, Pfam, Protein Data Bank); microscale thermophoresis (intermediate); standard biochemical laboratory techniques (weighting, pipetting, solution preparation)

Education

- ^{2015-now} PHD program Modeling of Chemical Properties of Nano- and Biostructures (*ongoing*), Faculty of Science, Charles University, Prague, Czech Republic
- ^{2013–2015} MASTER's degree in Modeling of Chemical Properties of Nano- and Biostructures (*graduation with honors*), Faculty of Science, Charles University, Prague, Czech Republic
- ^{2010–2013} BACHELOR's degree in Molecular Biology and Biochemistry of Organisms (*graduation with honors*), Faculty of Science, Charles University, Prague, Czech Republic

Grants

^{2017–2020} Assessment of accuracy and efficiency of theoretical free energy calculation methods: application to protein–DNA interactions, Charles University Grant Agency project no. 1048317

Awards

- ²⁰¹⁵ Third place in Students' science conference, University of Chemistry and Technology, Prague
- ²⁰¹⁴ First place in Students' science conference, University of Chemistry and Technology, Prague

Conference & workshop participation

- 2019 *Workshop* Best practices in programming 2019, Basel, Switzerland
- 2018 *Poster* EMBL Conference: From Functional Genomics to Systems Biology, Heidelberg, Germany
- 2018 *Poster* German Conference on Bioinformatics, Vienna, Austria
- 2018 *Presentation* National bioinformatic conference ENBIK 2018, Bystřice nad Pernštejnem, Czech Republic
- 2018 Flash talk ELIXIR All Hands meeting, Berlin, Germany
- 2018 Poster Prague Protein Spring 2018, Prague, Czech Republic
- 2018 Presentation XV Discussions in Structural Molecular Biology, Nové Hrady, Czech Republic
- ²⁰¹⁷ Gene Regulation by the Numbers: Quantitative Approaches to Study Transcription, Mainz, Germany
- 2016 *Poster* National bioinformatic conference ENBIK 2016, Loučeň, Czech Republic
- 2016 *Poster* Prague Protein Spring 2016, Prague, Czech Republic
- 2015 *Presentation* Students' science conference, University of Chemistry and Technology, Prague, Czech Republic
- 2015 Presentation XIII Discussions in Structural Molecular Biology, Nové Hrady, Czech Republic
- 2014 *Presentation* Students' science conference, University of Chemistry and Technology, Prague, Czech Republic
- 2014 Poster Second Protein–Protein Interactions conference, Boston, USA
- 2014 Poster National bioinformatic conference ENBIK 2014, Kouty na Vysočině, Czech Republic
- ²⁰¹⁴ Prague Protein Spring 2014, Prague, Czech Republic

Publications

- Faltejsková,K., Jakubec,D. and Vondrášek,J. (2020) Hydrophobic Amino Acids as Universal Elements of Protein-Induced DNA Structure Deformation. *Int. J. Mol. Sci.*, **21**, 3986.
- Škerle, J., Humpolíčková, J., Johnson, N., Rampírová, P., Poláchová, E., Fliegl, M., Dohnálek, J.,
 Suchánková, A., Jakubec, D. and Strisovsky, K. (2020) Membrane Protein Dimerization in
 Cell-Derived Lipid Membranes Measured by FRET with MC Simulations. *Biophys. J.*, 118, 1861–1875.

2020	Jakubec,D. and Vondrášek,J. (2020) Efficient Estimation of Absolute Binding Free Energy for a Homeodomain–DNA Complex from Nonequilibrium Pulling Simulations. <i>J. Chem.</i>
	<i>Theory Comput.</i> , 16 , 2034–2041.
2019	Jakubec, D. and Vondrášek, J. (2019) Can All-Atom Molecular Dynamics Simulations Quan- titatively Describe Homeodomain–DNA Binding Equilibria? <i>J. Chem. Theory Comput.</i> , 15 , 2625–2648
	2035–2040. Jakubec D. Vandráček I. and Finn P. D. (2010) a DPatch: fast a D. structure visualization with
2019	racidue conservation Bioinformatics of and and
2018	Jakubec,D., Kratochvíl,M., Vymětal,J. and Vondrášek,J. (2018) Widespread evolutionary crosstalk among protein domains in the context of multi-domain proteins. <i>PLoS One</i> , 13 ,
	e0203085.
2017	TA A) web server Nucleic Acids Page 47 Wass-Waaz
2015	Stasyuk O A Jakubec D. Vondrášek I and Hohza P. (2017) Noncovalent Interactions in
2017	Specific Recognition Motifs of Protein–DNA Complexes. J. Chem. Theory Comput., 13,
	877-885.
2016	Jakubec, D., Laskowski, R.A. and Vondräsek, J. (2016) Sequence-Specific Recognition of DNA by Proteins: Binding Motifs Discovered Using a Novel Statistical/Computational Analysis.
	PLoS One, 11, eo158704.
2015	Hostas, J., Jakubec, D., Laskowski, R.A., Gnanasekaran, R., Rezac, J., Vondrasek, J. and Hobza, P. (2015) Representative Amino Acid Side-Chain Interactions in Protein-DNA Complexes: A Comparison of Highly Accurate Correlated Ab Initia Quantum Mechanical Calculations
	and Efficient Approaches for Applications to Large Systems. J. Chem. Theory Comput., 11,
2015	Jakubec, D., Hostaš, J., Laskowski, R.A., Hobza, P. and Vondrášek, J. (2015) Large-Scale Quan- titative Assessment of Binding Preferences in Protein-Nucleic Acid Complexes. <i>J. Chem.</i> <i>Theory Comput.</i> , 11 , 1939–1948.

Last updated: June 26, 2020