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Abstract
Sequence-specific interactions between proteins and nucleic acids play an
essential role in the cell biology. While several molecular mechanisms con-
tributing to the binding specificity have been identified empirically, no gen-
eral protein–DNA recognition code has been described to date. In this thesis,
I explore selected characteristics of protein–DNA interactions using computa-
tional methods. First, the pairwise interactions between the basic biomolec-
ular building blocks—amino acids and nucleotides—are investigated. It is
shown that several statistically enriched, biologically relevant interaction
motifs correspond to the most energetically favorable configurations of the
respective binding partners. In addition, a relationship between the physico-
chemical properties of the amino acid residues found at the protein–DNA in-
terface and the local geometric features of the DNA helix is presented. Next,
the applicability of molecular dynamics-based setups to the description of
binding equilibria in protein–DNA systems is investigated. Discrepancies are
observed between the description offered by the computer simulations and
experimental results, as well as between the results obtained using two molec-
ular mechanical force fields. Finally, the more general evolutionary aspects
of protein organization are explored, and a tool for the study of evolutionary
conservation is introduced.

v



vi



Abstrakt
Sekvenčně-specifické interakce mezi proteiny a nukleovými kyselinami mají
zásadní roli v biologii buňky. I když několik molekulárních mechanismů
podílejících se na vazebné specificitě bylo empiricky vypozorováno, žádný
obecný rozpoznávací kód pro protein–DNA interakce nebyl zatím popsán.
V této disertační práci prozkoumávám vybrané charakteristiky protein–DNA
interakcí pomocí výpočetních metod. Nejdřív jsou studovány párové inter-
akce mezi základními stavebními prvky biomolekul—aminokyselinami a nuk-
leotidy. Je ukázáno, že některé statisticky nabohacené, biologicky relevantní
interakční motivy odpovídají energeticky nejvýhodnějším geometrickým us-
pořádáním daných vazebných partnerů. Dále je demonstrován vztah mezi
fyzikálně-chemickými vlastnostmi aminokyselin nacházejících se na rozhraní
proteinu s DNA a lokálními topologickými charakteristikami DNA dvou-
šroubovice. V další části je prozkoumána využitelnost postupů založených
na molekulové dynamice při popisu vazebných rovnováh v systémech protein–
DNA. Jsou pozorovány rozdíly nejen mezi popisem získaným na základě počí-
tačových simulací a experimentálními výsledky, ale i mezi výsledky získanými
s využitím dvou různých molekulárně mechanických silových polí. V závěru
jsou prozkoumány obecnější evoluční charakteristiky struktury proteinů a je
představen nástroj pro studium evoluční konzervace.
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Introduction

Function and structure of biomacromolecules

Biological roles of proteins and nucleic acids
Proteins and nucleic acids constitute the fundamental molecules common to
all life forms on Earth. Proteins, or polypeptides, are polymers of amino
acid residues joined by peptide bonds. Individual amino acids have unique
physico-chemical properties (Figure A.1) which give proteins with differ-
ent amino acid compositions distinct characteristics. In organisms, proteins
primarily fulfill enzymatic, structural, and other complex (e.g., signaling)
roles. The nucleic acids—deoxyribonucleic acid (DNA) and ribonucleic acid
(RNA)—are polymers of (deoxy)ribonucleoside monophosphates [(d)NMPs;
Figure A.2] joined by phosphodiester bonds. The primary role of DNA is the
storage of “genetic information” in the form of its sequence of nucleotides. In
designated regions of the organisms’ genomes (protein-coding genes), these
sequences encode the primary structures of polypeptide chains (see below).
In comparison with DNA, the biological roles of RNA are much more diverse,
and include the transport of the information stored in the genome for trans-
lation into proteins, enzymatic activities, regulation of gene expression, and
other functions (e.g., serving as the primary carrier of genetic information in
RNA viruses).1

Structural organization of proteins and nucleic acids
In a cellular environment, these biomolecules can adopt complex three-dimen-
sional (3D) shapes which enable them to carry out their biological func-
tions. Examples of protein and nucleic acid 3D structures are shown in
Figures 1 and 2, respectively. A hierarchy of structural features exists for
both proteins and nucleic acids. The linear ordering of the monomers (amino
acid residues or nucleotides) constituting the macromolecule is referred to as
its primary structure, or simply sequence. In proteins, the various intra- and
intermolecular interactions (see below) can lead to the formation of a few
distinct local structural motifs (secondary structure). The major secondary
structural elements formed by polypeptide chains are the α-helix and the
β-strand. These and other local structural arrangements (e.g., turns, loops,
. . . ) combine to form the tertiary structure of a protein. In many cases, the
relative orientations and connectivity of the secondary structural elements in
a tertiary structure form a recognizable 3D pattern known as the protein fold.
As of April 2020, around 1, 400 distinct protein folds have been recognized
according to databases such as CATH4 and SCOP.5,6 A domain is a unit of
protein structure with a well-defined fold and sequential features which is
often able to carry out its biological function independently of its sequential
surroundings. Most eukaryotic proteins contain multiple domains.7,8 Finally,
the quaternary structure describes the arrangement of the polypeptide chain
subunits in multiprotein assemblies.9
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Figure 1: The solution structure of human thioredoxin [Protein Data Bank
(PDB) ID 3TRX] depicted in a cartoon representation. α-helices are shown in
cyan, β-strands are shown in red, and loops are shown in magenta. Visualized
using PyMOL-2.3.0.2

Figure 2: Examples of nucleic acid 3D structures. a) The X-ray crystallo-
graphic structure of a hammerhead RNA ribozyme–DNA inhibitor complex
at 2.6 Å resolution (PDB ID 1HMH). The RNA and DNA strands are shown
in red and cyan, respectively. b) A model of an ideal B-form DNA prepared
using 3DNA v2.3-2016apr02.3 “M” and “m” denote the major and minor
grooves, respectively. Visualized using PyMOL-2.3.0.2
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The major 3D structural motifs adopted by nucleic acids are helices and
loops. These structural elements are primarily characterized by the patterns
of hydrogen bonding and stacking interactions between the various chemical
moieties of the nucleotides involved. Such interactions can occur within in-
dividual nucleic acid strands or between the functional groups belonging to
multiple strands. In living cells, DNA can be found almost exclusively in the
form of a right-handed double helix. The structure of the double-stranded
DNA (dsDNA) features two prominent grooves (Figure 2b) which expose dif-
ferent functional groups of the nucleotides to the environment (see below). In
contrast with DNA, the 3D structures adopted by RNA in biological contexts
can be much more complex, reflecting the much greater functional diversity
of the latter.1,10

Experimental methods of biomolecular structure deter-
mination
X-ray crystallography

The 3D structures of biomolecules can be determined experimentally using
a range of methods. The most widely used approaches to obtaining atomic-
level views of proteins and nucleic acids are X-ray crystallography, nuclear
magnetic resonance (NMR) spectroscopy, and electron microscopy. Each of
these methods has its own set of pros and cons which make it advantageous
for the study of certain types of biomolecular systems and limit its applica-
bility for others. X-ray crystallography is based on the diffraction of X-ray
radiation by the electrons of molecules forming crystals. The 3D structures
of the molecules can then be determined in atomic-level resolution by the
mathematical manipulation of the recorded diffraction patterns. The main
problems of this method are the difficulty of obtaining biomolecular crystals
of sufficient size and quality and possible changes in the biomolecular struc-
tures resulting from the constraints of the crystal environment. In addition,
the structures of the flexible regions of the biomolecules can often not be
resolved using this method. Nevertheless, X-ray crystallography has been
considered the most accurate method for the determination of 3D structures
of proteins and nucleic acids and remains the most widely used (see below).9

Nuclear magnetic resonance spectroscopy

When atoms with nonzero nuclear spins are placed in strong external mag-
netic fields, their nuclear magnetic moments align either parallel or anti-
parallel to the field lines. The energy difference between these two states
is influenced by the local chemical environment of each atom and generally
falls into the radio wave range of electromagnetic radiation. In NMR spec-
troscopy, molecules containing nuclei with nonzero nuclear spins interact with
such electromagnetic radiation and their 3D structures can be deduced from
the differences between the measured and reference NMR spectra of the nuclei
involved (chemical shifts). The main advantages of this method in compari-
son with X-ray crystallography are the possibility to study the biomolecular
structures in solution (as opposed to the artificial crystal environment), as
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well as the ability to describe structural dynamics and flexible regions of the
biomolecules. The limitations of NMR spectroscopy include the necessity to
prepare high concentration solutions of the biomolecules and the complexity
of the NMR spectra, which makes the determination of the 3D structures
of large biomolecules impractical. In addition, while X-ray crystallography
yields actual electron density maps, only sets of structural constraints are
obtained from an NMR experiment. These constraints are used to construct
the 3D models of the studied molecules with the aid of computational tools,
which may be a source of other problems (see below).9

Electron microscopy

Transmission electron microscopy (TEM) is an emerging method of biomolec-
ular structure determination. In a TEM experiment, individual macro-
molecules can be directly visualized using a focused electron beam passing
through the sample. The 3D structures of the molecules can be constructed
by computationally processing a large number of images of the molecules
in various orientations. With the introduction of cryogenic cooling of the
sample, it has become possible to use electron beams powerful enough to
enable the determination of biomolecular structures in atomic-level resolu-
tion. The rapid freezing encloses the biomolecules in a layer of amorphous
ice which resembles their native biological environment much more closely
than the crystal structures required in X-ray crystallography. In addition,
it enables the study of structural dynamics and conformational transitions
in the investigated biomolecules, as multiple conformational states may be
captured. The main disadvantages of this method have traditionally been
the cost of the instrumentation and lower resolution of the 3D structures in
comparison with X-ray crystallography; however, recent advances in the field
have diminished the latter.9

Protein Data Bank

The Protein Data Bank (PDB) archive, managed by the Worldwide PDB
(wwPDB) organization, is a single repository of experimentally determined
3D structures of biomolecules.11 The PDB archive is typically accessed
through the websites of the wwPDB member organizations, such as the
Research Collaboratory for Structural Bioinformatics PDB (RCSB PDB;
https://www.rcsb.org/)12 or the PDB in Europe (https://www.ebi.ac.
uk/pdbe/).13 These websites provide access to the 3D structural data in
computer-readable formats, as well as additional services, such as analysis
and annotation of the structures.

As of April 2020, over 163,000 biomolecular 3D structures have been
deposited in the PDB archive (Table 1). The majority of these structures
(over 145,000) have been resolved using X-ray crystallography; the structures
determined using solution NMR spectroscopy and electron microscopy count
almost 13,000 and 4,800, respectively. Fewer than 500 structures have been
determined using other methods. Almost 160,000 structures contain at least
one polypeptide chain; almost 12,000 structures contain at least one nucleic
acid strand; over 8,400 structures contain both proteins and nucleic acids.
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Table 1: The numbers of biomolecular 3D structures containing various poly-
mer types resolved using the experimental methods discussed in the text.
Data obtained from the April 29, 2020, release of the RCSB PDB; the re-
lease contained a total of 163,414 structures. Table headers are adopted
from the RCSB PDB. “Entry Polymer Types” “Protein (only)” and “Nucleic
acid (only)” are associated with the structures containing exclusively the re-
spective biopolymer; “Protein/NA” refers to the structures containing both
polypeptide and nucleic acid chains. The 3D structures determined using
other experimental methods or those with other “Entry Polymer Types” are
not shown.

Experimental Method Entry Polymer Types Count

X-RAY DIFFRACTION
Protein (only) 136,217
Nucleic acid (only) 2,047
Protein/NA 6,592

SOLUTION NMR
Protein (only) 11,293
Nucleic acid (only) 1,289
Protein/NA 266

ELECTRON MICROSCOPY
Protein (only) 3,585
Nucleic acid (only) 36
Protein/NA 1,053

The disparity among these numbers stems from different levels of scientific
interest in the respective biopolymers, as well as from different states of
development of the individual experimental methods.9

Protein–nucleic acid interactions

Biological significance of protein–nucleic acid interac-
tions
Interactions between selected proteins and nucleic acids are essential for sev-
eral vital cellular processes. In some cases, proteins and nucleic acids form
stable nucleoprotein complexes in which the biopolymers cooperate to per-
form the intended function. For example, ribosomes, which facilitate the
synthesis of new polypeptide chains according to messenger RNA (mRNA)
templates, are complex biomacromolecular assemblies consisting of multiple
protein and ribosomal RNA (rRNA) molecules. Other examples of protein–
RNA complexes (ribonucleoproteins) are the spliceosomes, which excise in-
trons from precursor mRNA molecules in the nuclei of eukaryotic cells, and
the signal recognition particles, which bind to designated signal sequences
in newly synthesized proteins and direct them toward their target locations.
The most prominent examples of stable protein–DNA assemblies are the nu-
cleosomes, which package genomic DNA in the nuclei of eukaryotic cells.1

In other instances, proteins and nucleic acids interact only transiently
as a response to some stimulus or to achieve a specific interim goal. For
example, DNA repair enzymes recognize and repair DNA loci damaged by,
e.g., oxidative stress or ultraviolet radiation; genomic DNA interacts with
the replication machinery during DNA replication; and transcription factor
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Figure 3: Example of a TF and a model of its DNA binding site. a) The X-
ray crystallographic structure of the bZIP domains of human TFs c-Fos (red)
and c-Jun (blue) bound to a dsDNA containing an AP-1 site (PDB ID 1FOS).
Visualized using PyMOL-2.3.0.2 b) Sequence logo representing the sequence
composition of the DNA binding sites bound by the human c-Fos–c-Jun TF
(JASPAR database matrix profile MA0099.3). Letter heights at individual
positions in the logo are proportional to the frequencies of the respective
nucleotides at that position. Total heights of the letter stacks represent the
information content (IC) of the positions.

(TF; Figure 3a) proteins interact with regulatory regions in the organisms’
genomes and thus modulate gene expression.1,14

Specificity of protein–nucleic acid interactions
Biological significance of binding specificity

It is necessary for the survival of the cells that some of the described pro-
cesses—such as DNA repair and replication—proceed regardless of the se-
quence of the nucleic acid involved. On the other hand, interactions of TF
and other proteins with precise genomic regions are required for, e.g., the
regulation of expression of the respective genes.1,14 The preferential binding
of a protein to a well-defined set of nucleotide sequences is referred to as its
binding specificity. In the rest of this text, I will primarily discuss means via
which DNA-binding specificity of proteins can be studied and factors which
are assumed to contribute to it. Many of these methods and results are ap-
plicable to protein–RNA interactions as well; however, as these are not the
main focus of this work, their specifics are not elaborated on.

Experimental determination of DNA-binding specificity

A dsDNA molecule containing N base pairs (bps) offers 4N sequence options.
If the binding reaction between a DNA-binding protein (DBP) and a partic-
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ular DNA binding site can be written as protein + DNA −−⇀↽−− protein–DNA,
i.e., one protein molecule interacts with one DNA molecule to form a protein–
DNA complex, then the affinity of the protein for the binding site can be
characterized using the thermodynamic equilibrium constant K as

K = aprotein−DNA

aproteinaDNA
(1)

where aX is the activity of species X at equilibrium; equivalently, the affinity
can be expressed using the standard Gibbs free energy of reaction ∆rG

⊖ as

∆rG
⊖ = ∆rH

⊖ − T∆rS
⊖ = −RT logK (2)

where ∆rH
⊖ and ∆rS

⊖ are the standard enthalpy and entropy of reaction,
respectively, T is the thermodynamic temperature, R is the universal gas
constant, and K is the thermodynamic equilibrium constant. These quan-
tities can be accessed experimentally using, for example, the techniques of
isothermal titration calorimetry,15,16 fluorescence anisotropy titration,17,18 or
microscale thermophoresis.19,20 The binding specificity of a DBP can be ex-
pressed quantitatively in terms of equilibrium constants characterizing the
interactions between the protein and all of its possible DNA binding sites;21

however, determination of the required thermodynamic descriptors on such
a scale is usually infeasible using these experimental methods (see below).

The most frequent DNA binding site length among human TFs is N =
10 bps1;22 this results in 410 ≈ 106 sequence options. Unfortunately, the
biophysical methods mentioned above offer only very limited throughput,
making them impractical for the assessment of affinities of DBPs toward all
possible DNA binding sites on such scales. For this purpose, high-throughput
(HT) methods, such as protein-binding microarrays (PBMs),23,24 HT system-
atic evolution of ligands by exponential enrichment,22,24 and chromatin im-
munoprecipitation followed by sequencing (ChIP–seq),22,25 can be used. For
example, PBMs allow the in vitro detection of protein binding to dsDNA
probes covering all nucleotide sequences of length 10 bps (10-mers), while
ChIP–seq enables the identification of genomic regions bound by the DBP of
interest in vivo.

The HT methods do not typically yield the thermodynamic characteris-
tics of the investigated protein–DNA interactions; instead, they reveal the
sequence composition of the DNA binding sites bound by the particular DBP.
This information can be used to construct statistical models of the binding
sites of individual DBPs. These models, which can be represented graphi-
cally using, e.g., sequence logos (Figure 3b),26 are available for thousands of
TFs online in databases such as JASPAR27 and HOCOMOCO.28 Multiple
sequence alignments (MSAs) of the binding site sequences allow an alterna-
tive definition of binding specificity in terms of information content (IC) of
individual positions in the alignment.21,29–31

Molecular determinants of DNA-binding specificity

While the biophysical and sequencing methods described above yield in-
formation about the thermodynamics of protein–DNA interactions or show

1Most human TFs, however, specifically recognize binding sites longer than 10 bps.22
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the large-scale binding preferences of DBPs, they do not directly reveal the
mechanistic factors determining the binding specificity. However, knowledge
of such factors is highly important due to the central role TFs and other
sequence-specific DBPs play in cell physiology, and thus in health and dis-
ease. For example, uncovering the roles of individual amino acid residues and
nucleotides forming the protein–DNA interface in the molecular recognition is
essential for understanding the molecular mechanisms underlying the patho-
logical effects of selected harmful mutations.32–39 Similarly, understanding
the molecular basis of specific protein–DNA recognition is critical for the ra-
tional design and engineering of novel DBPs or peptides.40–47 Over the past
few decades, search for a general “protein–DNA recognition code” has been
undertaken,48–50 motivated perhaps by the simplicity of the “rules” describing
base pairing in a dsDNA molecule.51 Structural, biophysical, bioinformatical,
and computational analyses have been utilized to gain a detailed insight into
the recognition mechanisms of several DNA-binding domains (DBDs), such
as the ETS domain,52,53 forkhead domain,54,55 or homeodomain (HD),56–58

while the “programmable” DNA-binding specificities of zinc finger nucleases
and transcription activator-like effector nucleases made these chimeric en-
zymes key tools of genome editing.45,59

In spite of these achievements, no single code explaining the in vivo bind-
ing preferences of all DBPs in the cell has been described to date. While
the preferences of individual DBPs for their cognate DNA binding sites can
often be rationalized—with the help of biomolecular 3D structures—in terms
of interactions between selected amino acid residues and nucleotides, many
other factors affect protein–DNA binding in a cellular environment. These
include the local and global chromatin states,60 nucleosome positioning,61

DNA binding site accessibility, DNA modifications,62 interactions with other
proteins or cofactors, and others. The necessity to capture the complex in-
terplay between these effects raises the question whether a single universal
protein–DNA recognition code describing the in vivo binding preferences of
all DBPs can ever be found or what form would it take.14,50

Although the details of how DBPs select their DNA targets in a biological
environment are not fully understood, statistical analyses of the 3D structures
of protein–DNA complexes have been able to identify the basic mechanisms of
sequence-specific recognition at the molecular level.63–65 These mechanisms
are usually divided into the direct and indirect readout of the sequence-
specific features of a DNA molecule.14,49,50 The direct, or base, readout is
based on noncovalent interactions between the protein molecule and char-
acteristic chemical groups of individual bases in the dsDNA. While it was
originally proposed to only include the interactions between selected amino
acids and DNA bases—asparagine/glutamine–adenine and arginine–guanine
in the major groove of the DNA; asparagine/glutamine–guanine in the minor
groove of the DNA—which feature bidentate hydrogen bonds (HBs) involving
the side chain of the respective amino acid,66 the term can be defined more
broadly to encompass any hydrogen bonding, nonpolar, or water-mediated
interaction relying on a matching character of chemical groups at the inter-
face between the protein and DNA molecules.49,67–75

In contrast, indirect, or shape, readout is based on the specific recognition
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Figure 4: The X-ray crystallographic structure of the Antennapedia HD–
DNA complex at 2.4 Å resolution (PDB ID 9ANT). The HD is depicted in a
cartoon representation in blue; DNA is depicted in a surface representation
in red. Atoms of selected amino acid residues—Arg5 and Asn51—involved in
direct and indirect recognition of the DNA binding site are shown as spheres.
Visualized using PyMOL-2.3.0.2

of sequence-dependent topological features of the dsDNA molecule. These
may manifest at multiple levels. Local effects include widening or narrowing
of the major or minor grooves or local deformations of the DNA double
helix, such as kinks. Global geometric properties include long-range bending
of the DNA fiber or changes of its overall conformation, such as switching
to the A- or Z-form. Finally, indirect readout involves the recognition of
sequence-dependent dynamic characteristics of the DNA structure, such as
its deformability.49,76–81

Direct and indirect modes of recognition are not mutually exclusive. In
fact, TFs and other sequence-specific DBPs often utilize both mechanism
to achieve high fidelity in the selection of their respective DNA binding
sites. The level to which each mode is utilized and its role in the protein–
DNA recognition depend on the character of the TF family.49,81,82 A well-
studied example is the HD (Figure 4), a small DBD featuring the helix-
turn-helix (HTH) DNA-binding motif found in many eukaryotic proteins
involved in development. HD proteins recognize their family-specific DNA
binding sites through the interactions between selected amino acid residues
and nucleotides in the major groove of the DNA; however, the direct read-
out alone does not allow individual HD proteins to identify their respective
protein-specific binding sites. The latter is made possible through the recog-
nition of subtle sequence-dependent topological features of the adjacent mi-
nor groove.56–58,61,79,83–85 This example illustrates how the direct and indirect
readout mechanisms can complement each other in achieving different levels
of specificity in protein–DNA recognition.
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Computational approaches to the study of bio-
molecules

Quantum chemical methods

Modern computers and supercomputers make it possible to assess many prop-
erties of molecular systems which are difficult or impossible to observe di-
rectly using experimental methods. The computational techniques in use
today vary vastly with regard to the physical accuracy of the models and
approximations used, their computational demands, and the range of prop-
erties of the system which they enable one to explore. On one end of the
spectrum, quantum chemical methods attempt to characterize the molecular
system in terms of properties derived from its quantum mechanics (QM)-
based description. These “first principles”, or ab initio, approaches are used
to study the electronic structure of the systems and can be divided into the
wave function theory (WFT) and density functional theory (DFT) methods.
The WFT techniques are, in principle, able to provide the exact solutions to
the time-independent nonrelativistic Schrödinger equation for the electrons
in the system under a set of physically meaningful approximations. These
solutions take the form of the electronic wave functions and their correspond-
ing energies.86 In contrast, the DFT methods do not yield the wave functions
and operate only with the electron density.87–90

The main drawback of the ab initio methods are their immense compu-
tational requirements. These limit the applicability of the most accurate
reference methods, such as coupled clusters with iterative single and double
excitations and perturbative triple excitations [CCSD(T)] in the complete
basis set (CBS) limit, to systems consisting of tens of atoms. Less compu-
tationally demanding methods can suffer from an imbalanced description of
intermolecular forces; for example, the second-order Møller–Plesset pertur-
bation theory (MP2) overestimates the π–π stacking energies.91,92 On the
other hand, the basic WFT method (Hartree–Fock) completely ignores the
correlation of motion of electrons with opposite spins, leading to severe errors
in the description of, e.g., the London dispersion interaction, which plays a
critical role in the stabilization of biomolecular complexes.87–90,93,94 The DFT
methods are generally less computationally demanding than WFT methods
of similar accuracy; however, they are also plagued by an inadequate de-
scription of noncovalent interactions, in particular the London dispersion.
This has led to the development and adoption of empirical dispersion correc-
tions and specialized density functionals.95,96 In fact, the uncertainty about
the exact form of the “correct” density functional is one of the problems of
DFT.89,90

In spite of these limitations, QM methods have been extremely helpful in
unveiling the physical properties of the basic biomolecular building blocks.
The applications of ab initio calculations have included the exploration of the
geometries97 and molecular surface electrostatic potentials98,99 of DNA and
RNA bases, the energetics of hydrogen bonding91,100–102 and stacking101,103,104

interactions in nucleic acids, the energies of DNA sugar–phosphate backbone
rotamers,105 the energies of representative interactions between amino acid
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side chains in proteins,91,106,107 or the energetics of hydrogen bonding inter-
actions between selected amino acid side chains and DNA or RNA bases.108

These studies have been instrumental, e.g., for understanding the significance
of the various types of noncovalent interactions for the stability of biomolec-
ular complexes.88

Empirical methods
Empirical methods stand in contrast to the QM approaches with regard to
the truthfulness of the physical model used. Where the ab initio methods
derive the energy of the system from fundamental physical constants based
on the principles of QM, empirical approaches, such as molecular mechanics
(MM), make drastic simplifications regarding the nature of the particles in
the system and their interactions. In MM, the potential energy Epotential of
a particular configuration of the system is usually described as

Epotential = Ebonded + Enonbonded (3)

where
Ebonded = Ebonds + Eangles + Edihedrals (4)

and
Enonbonded = ECoulomb + Evan der Waals (5)

In all-atom MM, atoms are represented by single point particles with parame-
ters describing their intra- and intermolecular interactions. The terms Ebonds,
Eangles, and Edihedrals in Equation 4 penalize the deviations from equilibrium
bond lengths l0, angles θ0, and dihedral angles, respectively, for pairs, triples,
and quadruples of neighboring, covalently-bonded atoms. The term ECoulomb
in Equation 5 describes the Coulomb interactions between partial atomic
charges qi, qj; the term Evan der Waals models the exchange repulsion and Lon-
don dispersion interactions. The last two terms concern interactions between
all pairs of atoms i, j in the system, although the “nonbonded” interactions
between neighboring, covalently-bonded atoms are usually ignored or down-
scaled, and a special treatment of long-range interactions may be used.109,110

The terms Ebonds and Eangles are usually modeled as quadratic functions of
the displacements from the respective equilibrium values:

Ebonds =
∑︂

bonds
kl(l − l0)2 (6)

Eangles =
∑︂

angles
kθ(θ − θ0)2 (7)

where kl and kθ are the respective force constants; Edihedrals is a periodic
function of the respective dihedral angles ω:

Edihedrals =
∑︂

dihedrals

N∑︂
n=0

kn[1 + cos(nω − γ)] (8)

where kn is a force constant, n is the multiplicity, and γ is the phase factor;
ECoulomb is calculated from the Coulomb’s law:

ECoulomb =
∑︂

i

∑︂
j>i

qiqj

4πε0rij

(9)
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where ε0 is the vacuum permittivity and rij is the distance between the
atoms; and Evan der Waals is often represented by the Lennard-Jones potential:

Evan der Waals =
∑︂

i

∑︂
j>i

4εij

⎡⎣(︄σij

rij

)︄12

−
(︄
σij

rij

)︄6
⎤⎦ (10)

where εij and σij are parameters of the potential. The precise form of the
overall potential energy function, together with the set of the atomic inter-
action parameters, is called a force field (FF).111

Many MM FFs exist. These differ in the form of the potential energy
function, the atomic interaction parameters, the parametrization procedure,
or the set of molecules which they can describe. The parameters used in the
individual FFs are usually self-consistent but not transferable to other FFs.
As a result, FFs are usually specialized for the description of a particular
set of molecules. The most widely used FFs for the investigation of proteins
and nucleic acids belong to the AMBER and CHARMM families. These
derive their parameters from fitting to different sets of experimental (e.g.,
thermodynamic) or theoretical (QM) data. The most recent AMBER FF for
the simulations of proteins is ff14SB;112 this FF can be combined with the
parmbsc1113 or OL15114 FFs for the simulations of DNA. ff94,115 ff99,116 and
their various modifications are older AMBER FFs which remain commonly
used today, owing perhaps to their inclusion (and absence of the more recent
alternatives) in the popular simulation package GROMACS.117 The most
recent CHARMM FF for the simulations of proteins and nucleic acids is
CHARMM36;118,119 since its release, the protein part has been improved and
released as CHARMM36m.120

MM FFs can be used to perform “single-point” calculations of the po-
tential energies of individual configurations of the system, facilitating the
exploration of its potential energy surface. These energies can be directly
compared with ones obtained using QM methods for the same configurations,
yielding information about the accuracy of the empirical models and possibly
also guidelines for their improvement.105,106,121,122 However, the most impor-
tant application of MM FFs lies in molecular dynamics (MD). In MD, atoms
in a particular (starting) configuration of the system are assigned initial mo-
menta and the system is evolved through time by numerically integrating the
classical equations of motion. The primary output of an MD simulation is a
many-body trajectory representing the dynamics of the studied system. MD
simulations are often performed under virtualized constant temperature123

and pressure124,125 conditions; assuming the validity of the ergodic hypoth-
esis, which equates the time averages over a simulation with the averages
over the corresponding statistical ensemble, MD simulations enable the esti-
mation of thermodynamic properties of the system based on the principles
of statistical mechanics. Nonequilibrium processes can be studied by means
of MD simulations as well; for example, in steered MD simulations, exter-
nal forces are applied to selected parts of the system to drive it away from
equilibrium.111,126

MD simulations offer insight into molecular behavior with spatial and
temporal resolution unparalleled by any experimental technique. Simulations
of systems as large as viral capsids (containing millions of atoms) spanning
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hundreds of nanoseconds are now practically achievable,127 while simulations
of smaller systems, such as single biomolecules is a water environment, can
reach millisecond time scales. While QM calculations are usually performed
in vacuo or using implicit (continuum) solvation models,105,107,128 in modern
MD simulations, molecules of the solvent are usually treated explicitly, en-
abling the descriptions of, e.g., water bridges or structural water molecules
which can play an essential role in molecular recognition and structural dy-
namics of biopolymers.18,64,68,69,72,129 Nevertheless, certain problems with
MD simulations exist. For complex biomolecular systems, the time scales
examined in state-of-the-art all-atom MD simulations allow the exploration
of only a very small region of the phase space, making the trajectories highly
dependent on the initial conditions.111 Many biological processes, such as
protein folding, can naturally occur over time scales several orders of magni-
tude longer than those currently achievable in MD simulations, making them
difficult to study without the use of dedicated “enhanced sampling” tech-
niques. A second major source of problems are the inaccuracies of present
MM FFs. These include both errors which can be remedied by the reeval-
uation of certain atomic interaction parameters, as well as errors stemming
from the highly simplistic form of the potential energy function. Notably, the
use of fixed partial atomic charges and omission of polarization and charge
transfer effects can make it difficult to balance the various types of noncova-
lent interactions determining the structure and dynamics of biomolecules, as
well as prohibit the quantitative description of certain types of interactions,
such as those with multivalent inorganic ions, altogether.90,130,131

Scope and structure of this work
In this introductory chapter, I attempted to summarize the essential infor-
mation regarding the function of fundamental biomacromolecules—proteins
and nucleic acids. Their structural organization and methods of its exper-
imental determination were discussed. Special attention was given to the
titular topic of this work—protein–nucleic acid (DNA) interactions. The bi-
ological significance of specificity in protein–DNA interactions and methods
for its experimental characterization were presented. The known molecular
determinants of the binding specificity and challenges in deriving a general
protein–DNA recognition code were reviewed. Finally, an overview of the
methods of computational chemistry applicable to the study of biomolecules
was provided, and the respective strengths and weaknesses of the QM and
empirical methods were discussed.

Given the breadth of the subject area, many important topics—ones I
did not particularly study during the recent years—were omitted from this
short introduction. These include, for example, the computational prediction
of biomolecular 3D structures or the prediction of the genomic binding sites
of DBPs. Other topics, such as the HT sequencing methods, were briefly
explored despite the lack of direct relevance to my work owing to their im-
mense role in modern biological research. The applications of the presented
experimental and theoretical methods to the study of proteins and nucleic
acids have been so many that an exhaustive review is likely beyond any-
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one’s capacity; therefore, for the most part, only key works and up-to-date
reviews were referenced. Nevertheless, I wish and believe that this chapter
enables an interested reader to grasp the current state of our understanding
of specificity in protein–nucleic acid (DNA) interactions and the respective
capabilities and limitations of the tools used for its study.

In the following chapters, I present the results of my work exploring se-
lected properties of biomolecules. Chapters 1 and 2 are dedicated to protein–
DNA interactions. In Chapter 1, I explore the pairwise interactions between
the basic biomolecular building blocks—amino acids and nucleotides. The
primary goal here is bridging the gap between the energetics of the interaction
motifs determined using the methods of computational chemistry and geo-
metric preferences observed in large-scale bioinformatical analyses of the 3D
structures of protein–DNA complexes. The secondary objective is assessing
the level of agreement among the computational techniques used to calcu-
late the energies of the interactions. This chapter concludes with a study of
DNA shape and its correlation with the presence of amino acid residues with
certain physico-chemical properties at the protein–DNA interface.

In Chapter 2, I move beyond the pairwise interactions and investigate
whether all-atom, explicit solvent MD simulations can be used to quantita-
tively describe the binding equilibria in model protein–DNA complex sys-
tems. Equilibrium and nonequilibrium approaches are examined and com-
pared, and the effects of the MM FF and reference temperature are explored.
Analyses of the populations of the various intra- and intermolecular inter-
actions observed in the respective simulations are then performed in order
to understand the microscopic origins of the differences among the results
obtained under the various conditions.

As Chapters 1 and 2 already contain critical reflections on the respec-
tive results presented, I dedicate the Discussion to the overview of additional
works which are not restricted to the topic of protein–nucleic acid interac-
tions but attempt to deepen our general understanding of proteins never-
theless. While the works presented in Chapters 1 and 2 offer, for the most
part, physical analyses of protein–DNA complexes, the studies introduced in
the Discussion focus on the evolutionary aspects of protein sequences and
3D structures. In this chapter, an analysis of evolutionary coupling among
protein domains in multidomain proteins is discussed, and a tool for the visu-
alization of evolutionary conservation in protein 3D structures is presented.
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1. Preferences in pairwise
amino acid–nucleotide
interactions
This chapter summarizes the methods and results of the works Jakubec et al.
(2015)1, Hostaš et al. (2015), Jakubec et al. (2016), Stasyuk et al. (2017),
Galgonek et al. (2017), and Faltejsková et al. (2020) presented in the List of
publications (Page 69). As discussed in the Introduction, these works concern
the pairwise interactions between the basic biomolecular building blocks—
amino acids and nucleotides. The works Jakubec et al. (2015), Jakubec et
al. (2016), and Faltejsková et al. (2020) are discussed in greater detail given
my principal involvement in these; in contrast, only a synopsis is provided
for the works Stasyuk et al. (2017) and Galgonek et al. (2017) given my
limited input to these. Only a surface-level overview of the works mentioned
is provided here; a more in-depth discussion of the analyses performed is
available in the attached publications.

1.1 Jakubec et al. (2015)

1.1.1 Synopsis
In this work, MM methods were used to calculate the interaction energies
(IEs) of all interacting amino acid residue–DNA base pairs found in the 3D
structures of protein–DNA complexes. Geometric preferences of individual
amino acids for binding the DNA bases were examined by performing a clus-
tering analysis on the respective sets of 3D configurations of the dimers. A
synthesis of the energetic and geometric views of the interactions allowed us
to identify spatially well-defined binding motifs which simultaneously corre-
sponded to the IE minima of the respective amino acid residue–DNA base
pairs. For selected representative configurations of the binding partners, the
IEs were calculated using QM methods as well, and a satisfactory agreement
with the results of empirical calculations was observed.

1.1.2 Methods
The data set used in this work was based on the “Atlas of Protein Side-Chain
Interactions”71 and consisted of a total of 50,205 amino acid residue–dNMP
pairs extracted from a total of 1,569 3D structures of protein–DNA complexes
stored in the PDB archive.11 Only X-ray crystallographic structures solved
to a resolution of 2.5 Å or better and containing a dsDNA region of length
at least 4 bps were considered. An interaction was recognized as featuring
the DNA base when any atom of the amino acid side chain was within 4.5 Å
of any atom of the DNA base; a total of 30,357 dimers featuring interactions

1Throughout this thesis, I deliberately use a different (author–date) format to distin-
guish the works to which I have contributed from standard references to the bibliography.
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Figure 1.1: A distribution of asparagine side chains around an adenosine
nucleoside. From Jakubec et al. (2016).

with DNA bases were identified in the data set. For the purpose of clustering,
a common frame of reference centered at the DNA base was established for
all amino acid residue–dNMP dimers containing a particular combination
of the monomers; an ensemble of such dimers was referred to as the 3D
distribution of the amino acid residue around the DNA base. An example of
a distribution is shown in Figure 1.1.

A combination of energetic favorability and geometric constraints can
lead to the enrichment of certain amino acid residue–dNMP configurations
in the distributions. These clusters of amino acid residues in the distribu-
tions were identified as follows. The root-mean-square deviation (RMSD) of
the positions of three reference atoms was calculated for each pair of amino
acid residues in each distribution. The amino acid residue with the great-
est number of neighbors within an RMSD of 1.5 Å was considered the first
cluster representative (CR); the CR together with these neighbors were con-
sidered the first cluster. The amino acid residues comprising the cluster were
then removed from the search space and the procedure was repeated until a
total of 6 clusters were identified in each distribution or until an insignificant
cluster appeared. A total of 468 clusters comprising a total of 13,155 amino
acid residue–dNMP dimers were identified in the 80 distributions; a total of
272 clusters comprising a total of 6,991 dimers corresponded to amino acid
residues interacting directly with the DNA bases. An example of the clusters
identified in a 3D distribution is shown in Figure 1.2.

For each amino acid residue–dNMP dimer featuring a direct interaction
with the DNA base, a Cα representation of the amino acid was prepared by
substituting the backbone carbonyl and amide groups with hydrogen atoms.
Only the DNA base was retained from each nucleotide. The IE was cal-
culated for each amino acid residue–DNA base pair in each distribution as
the difference between the potential energy of the dimer and the sum of the
potential energies of the isolated monomers. Hydrogen atom positions were
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Figure 1.2: The clusters identified in the 3D distribution shown in Figure 1.1.
From Jakubec et al. (2016).

optimized prior to each potential energy calculation; the positions of nonhy-
drogen atoms were kept fixed. The MM energy calculations and geometry
optimizations were performed in vacuo using GROMACS 4.5.5.117 Three
MM FF combinations were used to perform the calculations and optimiza-
tions: ff03132 (protein) + ff94115 (DNA), ff99SB-ILDN133 (protein) + ff94
(DNA), and CHARMM22134 (protein) + CHARMM27135 (DNA).

For the set of 272 representatives of clusters featuring interactions with
the DNA bases, the IEs were calculated using the QM DFT-D396 method
as well. The B3LYP136,137 functional and the def2-TZVPP138,139 basis set
were used in these calculations; selected dimers were also investigated us-
ing the def2-QZVP basis set. In order to assess the accuracy of the DFT
calculations, the IE was calculated for a single glutamate–guanine dimer us-
ing the CCSD(T)/CBS method. The IEs were calculated in vacuo using
the supermolecular approach described above. A correction for the basis set
superposition error (BSSE)88 was not applied. The program package TUR-
BOMOLE 6.5140 was used to perform the QM calculations.

1.1.3 Results and discussion
For the purposes of the analysis, the 272 dimers featuring the CRs were split
into 4 groups according to the physico-chemical character of the amino acid
residue involved: nonpolar (G, A, V, I, L, P; 76 pairs), polar (T, S, N, Q,
C, M; 69 pairs), charged (K, R, D, E; 64 pairs), and aromatic (F, Y, W, H;
63 pairs). The respective R2 coefficients of determination between the IEs
calculated using the three MM FFs and B3LYP-D3/def2-TZVPP are shown
in Table 1.1. It can be seen that the Amber FFs yield mutually similar
results, while the performance of the CHARMM FFs differs when applied
to dimers featuring polar or aromatic amino acid residues. A global shift
toward more negative (i.e., more stabilizing) IEs was observed in the B3LYP-
D3/def2-TZVPP results for the set of dimers featuring charged amino acid
residues in comparison with the MM FFs; the opposite behavior was observed
for the pairs featuring the nonpolar amino acids. No global IE shifts were
observed for the two other sets of dimers. In spite of these discrepancies, it
was concluded—based on the presented coefficients of determination—that
at least a qualitative agreement between the IEs calculated using the MM
and QM methods had been achieved; this enabled us to postulate hypotheses
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Table 1.1: TheR2 coefficients of determination between the IEs calculated us-
ing the MM and QM (B3LYP-D3/def2-TZVPP) methods for the sets of rep-
resentative dimers featuring amino acid residues with the respective physico-
chemical properties. The correlation coefficients (R) were positive in each
case.

FF (protein + DNA) nonpolar polar charged aromatic

ff03 + ff94 0.69 0.84 0.94 0.84
ff99SB-ILDN + ff94 0.76 0.84 0.95 0.88
CHARMM22 + CHARMM27 0.78 0.73 0.93 0.61

concerning pairwise amino acid–nucleotide interactions based on the results
of empirical calculations.

We thus proceeded to study the MM IE profiles (i.e., histograms) of the
entire 3D distributions and, in particular, focus on the respective positions
of the IE profiles corresponding to the clusters and CRs therein. Notably,
we observed the following characteristics for specific clusters in selected dis-
tributions:

1. the cluster comprised of dimers with the most negative IEs (i.e., great-
est stabilization energies) found in the respective distribution,

2. a significant portion of the dimers found within that IE range were
members of the respective cluster, and

3. the peak corresponding to the cluster was visibly set off from the bulk
of the IE profile.

The occurrence of such a cluster in a distribution suggests that only a con-
formationally narrow set of dimer geometries can lead to the greatest sta-
bilization energies possible. These conditions were met by a single cluster
in the asparagine–adenine, glutamine–adenine, lysine–adenine, asparagine–
cytosine, and tyrosine–cytosine IE profiles and by two clusters in the gluta-
mine–guanine IE profile. An example of an IE profile with the stated charac-
teristics is shown in Figure 1.3. The 3D structures of the CRs corresponding
to these clusters are depicted in Jakubec et al. (2015). It can be seen that
all these binding motifs feature a hydrogen bonding interaction. In particu-
lar, it must be noted that the asparagine–adenine, glutamine–adenine, and
glutamine–guanine dimers feature bidentate HBs and thus correspond to
the binding modes which enable a unique one-to-one pairing between amino
acid residues and DNA bases. Interestingly, additional binding motifs dis-
playing the described characteristics were identified as well. The roles of
most of these are unknown; however, we found that one of the identified
glutamine–guanine motifs is uniquely associated with a class of DNA methyl-
transferases, in which it plays a functional role. This example illustrates that
the statistical–computational approach presented can be used to identify bi-
ologically relevant patterns in the structures of biomolecules.

This work is burdened by several simplifications, some of which are ad-
dressed in the following sections. Inclusion of the interactions between amino
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Figure 1.3: The ff03 IE profile corresponding to the glutamine–adenine dis-
tribution (dashed purple curve) together with the cluster IE profiles (solid
blue, orange, light blue, pink, and green lines) and CRs (dashed vertical
lines). From Jakubec et al. (2015).

acid residues and sugar-phosphate backbone of DNA is, without a doubt, es-
sential for a full description of protein–DNA binding.49 The relevance of
the gas phase IEs for the description of binding in biomolecular systems can
be questionable,87 regardless of the accuracy of the computational method
used. Both of these issues are addressed in Jakubec et al. (2016); in that
work, the interactions with the sugar-phosphate backbone of DNA as well
as the effects of implicit solvation on the IEs are studied. Topics which are
not further addressed include calculations of IEs for complexes of amino acid
residues with larger blocks of DNA, such as dinucleotide steps, or the ener-
getic roles of structural water molecules.68,69 Similarly, the omission of the
interactions with the protein backbone appears unfortunate in retrospect, as
the HBs featuring the peptide bond carbonyl and amide groups can easily
contribute to the recognition of DNA sequences.49

1.2 Hostaš et al. (2015)

1.2.1 Synopsis

In this work, the performance and accuracy of various QM methods was
evaluated by calculating the IEs for the set of amino acid residue–DNA base
dimers featuring the representatives of the clusters identified in the previous
section. The CCSD(T)/CBS IEs were calculated for all dimers and were
used as a benchmark to which the results obtained using the MP2.5/CBS,
MP2.5/MP2-F12, DFT-D3, PM6, and empirical methods were compared.
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Figure 1.4: The root-mean-square errors of the IEs calculated using
the respective computational methods in comparison with the reference
CCSD(T)/CBS calculations. The errors are expressed as a percentage of
the average IE observed for the groups of dimers featuring the respective
sets of amino acid residues. From Hostaš et al. (2015).

1.2.2 Methods
The 3D structures of the 272 representatives of clusters featuring interac-
tions with the DNA bases were adopted from Jakubec et al. (2015). As
in the previous work, only the Cα representations of amino acids were con-
sidered. For selected analysis purposes, the set of dimers featuring charged
amino acid residues was split into two groups corresponding to the positively
(K, R; 33 pairs) and negatively (D, E; 31 pairs) charged amino acids. All
IE calculations were performed in vacuo and were corrected for the BSSE.
The reference IEs were calculated for all dimers using the most accurate and
computationally demanding CCSD(T)/CBS method; these were compared
primarily to the IEs calculated using the QM MP2.5/CBS, MP2.5/MP2-F12,
B3LYP-D3/def2-TZVPP, and B3LYP-D3/def2-QZVP methods, the semiem-
pirical PM6-D3H4 method, and the empirical ff99SB-ILDN (protein) + ff94
(DNA) FF method.

1.2.3 Results and discussion
The magnitude of the disagreement between the IEs calculated using the
reference CCSD(T)/CBS method and the computationally less demanding
methods is shown in Figure 1.4. The results obtained using the MP2.5/CBS
and
MP2.5/MP2-F12 methods were found to be the most accurate and balanced
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across all binding motifs, making these tools suitable for the calculation of
IEs in extended protein–DNA systems. The B3LYP-D3 methods globally
overestimated the stabilization energies, in particular for the set of dimers
featuring positively charged amino acid residues. Significantly more accu-
rate IEs were observed for the sets of dimers featuring polar or negatively
charged amino acid residues when the larger def2-QZVP basis set was used,
while both B3LYP-D3/def2-TZVPP and B3LYP-D3/def2-QZVP methods
yielded satisfactory results for the dimers featuring nonpolar or aromatic
amino acids. The semiempirical PM6-D3H4 method exhibited less than half
the error of the MM FF calculations, making it a promising tool for the
study of extended protein–DNA systems with thousands of atoms. Finally,
the empirical FF performed reasonably well for the dimers featuring non-
polar or aromatic amino acid residues but significantly underestimated the
stabilization energies for the complexes of charged amino acids. The geome-
tries of the dimers affected the performance of the MM method greatly, with
configurations far from the equilibrium geometries leading to IE outliers.

1.3 Jakubec et al. (2016)

1.3.1 Synopsis
This work builds upon the methodology and results of Jakubec et al. (2015)
and Hostaš et al. (2015) in which we have shown that MM FFs can yield
qualitatively accurate gas phase IEs for amino acid residue–DNA base dimers.
In this work, the studied biomolecular complexes are extended to include
the moieties of the sugar-phosphate backbone of DNA, and the energetics
of the extended systems are examined using the empirical methods. The
effects of the dielectric properties of the environment on the IEs are studied
using implicit solvation models. Rigorous criteria of specificity combining
the geometric and energetic views of the interactions are defined and used
to identify the statistically enriched binding motifs which simultaneously
correspond to the most stabilizing arrangements of the respective binding
partners.

1.3.2 Methods
The data set of amino acid residue–dNMP pairs was constructed as in Jaku-
bec et al. (2015); the 3D distributions and clusters were defined identically.
A slightly newer version of the PDB archive was used in the construction of
the data set. The statistical bias which could have been introduced to the
data set by the abundance of certain families of DBPs in the PDB archive was
addressed to various levels by generating a total of 4 nonredundant data sets
of amino acid residue–dNMP pairs; the amino acid residues comprising the
respective data sets originated from corresponding ensembles of polypeptide
chains having less than X % mutual sequence identity (X = 30, 90, 95, or
100, respectively). The removal of identical polypeptide chains from the data
set (i.e., X = 100 above) discarded over a half of all dimers (21,709 dimers
remained from the original 47,480), while a relatively small difference was
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seen between the numbers of dimers included in the sets at the X = 30
(8,926 dimers) and X = 90 (12,505 dimers) levels. For each of these data
sets, a subset of dimers featuring a direct interaction between the amino
acid residue and the DNA base was identified; these sets comprised of 4,752,
6,546, and 10,572 amino acid residue–dNMP dimers at the X = 30, 90, and
100 levels, respectively.

The IE calculations were performed using the ff99SB-ILDN (protein) and
ff94 (DNA) FFs as in Jakubec et al. (2015). Only the Cα representations
of amino acids were considered. The generalized Born/surface area model141

was used to account for the effects of continuum solvation; the IE calcula-
tions were performed in environments with the values of the relative permit-
tivity εr = 1, 4, 16, and 80, respectively.

1.3.3 Results and discussion
To investigate the geometric and energetic specificity in the pairwise inter-
actions, the IE profile was generated for each distribution as described in
Jakubec et al. (2015). The cluster formed by the dimers which exhibited the
most negative (i.e., most stabilizing) average IE was then identified and the
histogram of the IEs of the cluster members was plotted against the IE pro-
file of the distribution. We rationalized that a binding motif must meet the
following criteria to be viewed as significant for the process of DNA sequence
recognition:

1. the configuration must be found within one of the geometric clusters;
this condition implies that the respective binding motif is present in
multiple protein–DNA complexes and as such is not limited to be func-
tional only in the unique local environment of a single DBP family,

2. the cluster to which the binding motif belongs must represent the most
energetically favorable arrangement of the respective binding partners,

3. few to no configurations which are not members of the cluster are to
be present within its respective IE range. This leads to a unique as-
sociation between the IE range and a specific binding geometry; this
criterion also implies that all dimers within that particular IE range are
geometrically well-defined, as the respective amino acid residues could
be recognized as forming a cluster,

4. the IEs corresponding to the cluster must be more negative (i.e., more
stabilizing) than the most negative IEs found in the dimers of said
amino acid residue with the other nucleotides. Such an analysis must
be performed separately for each edge of the nucleotide (Hoogsteen,
Watson–Crick, sugar-phosphate), as it may be possible for an amino
acid residue to distinguish between individual nucleotides in each of
these regions.

The clusters meeting all these criteria correspond to statistically enriched,
geometrically well-defined binding motifs which can distinguish between in-
dividual nucleotides on the basis of energetic favorability. The work Jakubec
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Figure 1.5: The specific recognition of adenine (dAMP) by asparagine (blue),
glutamine (orange), lysine (pink), or threonine (green) side chains. From
Jakubec et al. (2016).

et al. (2016) and its supporting materials list, discuss, and graphically depict
the binding motifs meeting these criteria to various levels; a summary of the
most significant observations is provided here.

The pairs asparagine–adenine, glutamine–adenine, and arginine–guanine,
traditionally associated with the direct readout of DNA sequences, were cor-
rectly identified in the “control” group of amino acid residue–DNA base
dimers as specific binding motifs according to the criteria described above,
supporting our hypothesis that the combined statistical–geometric–energetic
view of the interactions can be used to identify the specific binding mo-
tifs. These results remained valid regardless of the relative permittivity εr
of the implicit solvent used. A few other interactions that were described
in Jakubec et al. (2015) were identified in this set of dimers as well. The
asparagine–adenine, glutamine–adenine, and arginine–guanine interactions
feature a bidentate HB between the amino acid side chain and the Hoog-
steen edge of the DNA base. These interaction motifs appear significant
with regard to the criteria described above even when dNMPs are considered;
however, the prominent positions of the asparagine–dAMP and glutamine–
dAMP pairs diminish when a large relative permittivity (εr = 80) of the envi-
ronment is assumed. Interestingly, a hydrogen bonding interaction between
the side chain of lysine and the N3 atom of adenine emerges as significant
in the water-like environment when the sugar-phosphate moiety is included.
The specific recognition motifs featuring adenine or dAMP are depicted in
Figure 1.5.

In contrast, the interaction of arginine with dGMP maintains its dis-
tinctive characteristics even in the water-like environment. An interesting
interaction featuring a bidentate HB between the side chain of aspartate and
the Watson–Crick edge of guanine emerges as significant in the water-like en-
vironment when the sugar-phosphate moiety is included. A further analysis
revealed that this motif is utilized in the binding of aptameric, telomeric, or
otherwise strained DNA structures. As this interaction obviously interferes
with the Watson–Crick pairing between the DNA bases, it is most likely not
involved in routine sequence recognition; nevertheless, it can contribute to
the recognition of noncanonical forms of DNA. This example illustrates the
robustness of the introduced criteria of specificity: without any information
regarding the function or evolutionary relationships among the proteins in
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Figure 1.6: The specific recognition of guanine (dGMP) by arginine (blue)
and aspartate (orange) side chains. From Jakubec et al. (2016).

our data set, it was possible to identify a specific binding motif involved
in the recognition of a characteristic set of DNA structures. The specific
recognition motifs featuring guanine or dGMP are depicted in Figure 1.6.

The binding motifs featuring cytosine or thymine appeared less signif-
icant in comparison with the ones described above, given both the lower
populations of the respective clusters and the lack of biophysical features
(e.g., presence of HBs between the amino acid residue and the DNA base)
which could lead to these interactions being described as specific.

This work is burdened by similar issues as Jakubec et al. (2015). The size
of the data set is limited—in particular, when the redundancy is addressed—
prohibiting the discovery of binding motifs which are not abundant in the
current state of the PDB archive. The role of structural water molecules and
interactions with larger blocks of DNA remain neglected. The pairwise inter-
action analysis of the protein–DNA interface may ignore important features
of DNA sequence and structure recognition which are specific to individual
families of DBPs.49,81,82 The IEs calculated for individual configurations of
the binding partners may not be indicative of the respective biophysically rel-
evant free energies of binding.142 Finally, a more robust statistical analysis
could be devised for the identification of significant clusters.

1.4 Stasyuk et al. (2017)
In this work, the IEs were calculated using QM methods for a set of 12
amino acid residue–dNMP dimers (Figure 1.7) which displayed the char-
acteristics of specific binding motifs described in the previous work. The
CCSD(T)/CBS IEs were calculated as a reference to which the performance
of the MP2.5/CBS, MP2-F12/cc-pVDZ-F12, DFT-D3 (BLYP-D3/
def2-QZVP), and PM6-D3H4 methods was compared. In addition to the gas
phase calculations, the COSMO128,143 model of implicit solvation was used
together with the DFT-D3 and PM6-D3H4 methods to study the effects of
the environment. The geometries of the dimers were further optimized in
environments with various values of the relative permittivity εr to examine
how close the configurations present in the 3D structures of protein–DNA
complexes are to the respective energy minima. Finally, the decomposition of
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Figure 1.7: The binding motifs investigated in Stasyuk et al. (2017). From
Stasyuk et al. (2017).

the IEs into their various components was performed using the DFT-SAPT94

method.
A satisfactory agreement between the in vacuo IEs calculated using the

reference and the tested methods was observed, with MP2.5/CBS and MP2-
F12/cc-pVDZ-F12 exhibiting the smallest errors and PM6-D3H4 the great-
est. MP2.5/CBS was found to globally underestimate the stabilization en-
ergies in comparison with the reference values, while overestimation of the
energies was observed for the BLYP-D3/def2-QZVP method. All interactions
were found to be stabilizing in environments with the values of relative per-
mittivity εr = 1, 4, 16, and 78.5; interestingly, the most negative interaction
energy in the water-like environment was observed for the aspartate–dGMP
dimer featuring a bidentate HB between the amino acid side chain and the
Watson–Crick edge of guanine. The DFT-SAPT analysis revealed that in the
complexes of polar or positively charged amino acid residues, the electrostatic
component contributes the most to the IE; however, in the complex featuring
the negatively charged aspartate, this term is the least significant and the
induction component dominates. The dispersion component dominates the
IE in the complex featuring the nonpolar isoleucine side chain. Finally, the
optimization of the dimer geometries at the BLYP-D3/def2-TZVPP level in
environments with large values of relative permittivity εr yielded configura-
tions very similar to those found in the X-ray crystallographic structures.

1.5 Galgonek et al. (2017)
This work presents the “Amino Acids Interactions Web Server”
(https://bioinfo.uochb.cas.cz/INTAA/), an online service dedicated to
the exploration of pairwise IEs in the 3D structures of biomolecules. The
main purpose of this web server is the calculation of pairwise IEs among
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Figure 1.8: The user interface for the component of the “Amino Acids In-
teractions Web Server” dedicated to the exploration of IEs corresponding
to specific configurations of amino acid residue–DNA base (dNMP) dimers.
From Galgonek et al. (2017).

the respective biomolecular building blocks in the publicly available or user-
uploaded representations of biomolecular structures. Various MM FFs and
implicit solvent models can be used to perform the energy calculations. In
addition, this web server enables an interactive exploration of the geome-
tries and IEs of the amino acid residue–DNA base (dNMP) dimers studied
in Jakubec et al. (2016). An illustration of the user interface for this compo-
nent of the web server is shown in Figure 1.8. The user can select the amino
acid residue and nucleotide to visualize, choose whether only the dimers fea-
turing a direct interaction with the DNA base are to be considered, or select
whether the sugar-phosphate backbone of DNA is to be taken into account
in the IE calculations. Additional parameters include the relative permittiv-
ity εr of the environment to consider and the level of treatment of redundancy
in the data set. The IE profile corresponding to the selected distribution is
then visualized. The user can choose from individual clusters identified in
the 3D distribution and the respective cluster IE profile will be overlaid on
top of that of the distribution. The geometries of the cluster members will
be shown inside a web-based molecular viewer; the user can click individual
dimers to learn from which 3D structure of a protein–DNA complex they
originate. Finally, the representations of the 3D structures of the selected
CR, cluster members, or whole distribution can be downloaded.
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1.6 Faltejsková et al. (2020)

1.6.1 Synopsis
In this work, we employed a statistical analysis to study the relationship
between the physico-chemical character of the amino acid residues found at
the protein–DNA interface and the local geometry of the DNA. We devised
an algorithm which enabled us to associate each amino acid residue involved
in binding the minor groove of the DNA with the local dimensions of the
DNA double helix. A statistical analysis of thus determined characteristics
of the protein–DNA interface revealed that hydrophobic amino acid residues
are enriched in widened or otherwise distorted minor groove regions. We
showed that this phenomenon is not restricted to a few families of DBPs by
repeating the analysis with selected families known to distort the DNA helix
discarded. A positive correlation was observed between the GC content of the
DNA binding sites and the mean width of the corresponding minor groove
regions. Finally, preferences for distinct secondary structural elements were
detected for selected hydrophobic amino acid residues binding the distorted
minor grooves.

1.6.2 Methods
A total of 4,783 3D structures of protein–DNA complexes were downloaded
from the RCSB PDB.12 Regions corresponding to DNA helices were identified
in the 3D structures using the 3DNA3 software package. A nonredundant set
of protein chains corresponding to X-ray crystallographic structures solved
to a resolution of 3.5 Å or better was extracted from the set of 3D structures
containing a DNA helix using the PISCES144 web server. The maximal se-
quence identity between any pair of protein chains was 90 %. The resulting
nonredundant data set comprised a total of 976 polypeptide chains found in
a total of 857 3D structures of protein–DNA complexes.

For each of the DNA bases, a reference atom associated with the major or
minor grooves of the DNA was defined. The amino acid residues for which the
minor groove-associated atom was the nearer of the two and within a distance
of 6.0 Å of any atom of the amino acid were defined as minor groove-binding.
The “contacted” bp and the nearer of the two adjacent bps were then defined
as the dinucleotide step associated with that particular minor groove-binding
amino acid residue. Using this procedure, the data set DS1 comprising a
total of 1,293 amino acid residue–dinucleotide step pairs was constructed.

The minor groove width associated with each dinucleotide step was re-
trieved from the 3DNA analysis. Three width categories were defined ac-
cording to the local dimensions of the minor groove at the dinucleotide step:
narrow (width ≤ 11.0 Å), standard (width > 11.0 Å and < 17.0 Å), and wide
(width ≥ 17.0 Å). The protein families as defined by the Pfam145 database
were identified within the polypeptide chains. A second data set DS2 was
then constructed by eliminating from DS1 the pairs featuring amino acid
residues which were a part of the HMG_box (PF00505) or TBP (PF00352)
proteins families known from the literature to distort the DNA minor
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Figure 1.9: A flowchart summarizing the methods and analyses featured in
the work Faltejsková et al. (2020). From Faltejsková et al. (2020).

grooves.77,146,147 A total of 1,103 amino acid residue–dinucleotide step pairs
were included in the DS2 data set.

The Mann–Whitney U test148 was employed to examine whether the
mean of the distribution of minor groove widths associated with a partic-
ular amino acid residue was significantly greater than that of the respective
outgroup. For this test, the amino acids were separated into the hydrophobic
group (G, A, V, I, L, F, Y, W, M) and the rest. For each amino acid in the
hydrophobic group, the corresponding distribution of minor groove widths
was compared to the aggregate distribution of the nonhydrophobic ones. For
each of the nonhydrophobic amino acids, the widths associated with that
particular amino acid residue were removed from the aggregate distribution
and the comparison was done as before.

The GC content (% of G–C bps) was calculated for each 6-bp region
(hexamer) in the parts of the DNA helices which formed continuous protein–
DNA interfaces. The minor groove width corresponding to a hexamer was
taken to be the width at the central dinucleotide step. Finally, the secondary
structural elements featuring the respective amino acid residues were identi-
fied using the DSSP149 program. A flowchart summarizing the methodology
of this work is provided in Figure 1.9.
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Figure 1.10: The frequencies with which the respective amino acid residues
are found at the protein–minor groove interfaces for the respective minor
groove width categories (DS1 data set). From Faltejsková et al. (2020).

1.6.3 Results and discussion
Figure 1.10 shows the amino acid composition of the protein–minor groove
interfaces falling to the corresponding categories of minor groove width for
the DS1 data set; the results for the DS2 data set were very similar. It can be
seen that arginine is by far the most abundant amino acid residue interacting
with the narrow and standard minor grooves, in which it constitutes 56.8 %
and 27.6 % of all DNA-binding residues, respectively. The enrichment of
arginine residues in the narrow minor grooves was previously observed by
Rohs and colleagues,61,79 who rationalized it on the basis of the enhanced
negative electrostatic potential present. However, this dominance is lost in
the wide minor grooves, in which arginine constitutes only 8.8 % of the DNA-
binding residues; its frequency is thus similar to that of alanine (11.5 %)
and glycine (10.4 %). The frequencies of other hydrophobic amino acids,
such as phenylalanine and valine, are also considerably higher in this set in
comparison with the interactions with narrow or standard minor grooves.
In total, the fraction of hydrophobic amino acids in the wide minor grooves
(57.3 %) is comparable to the fraction of arginine residues in the narrow
minor grooves. In the DS2 data set, the hydrophobic amino acids constitute
55.7 % of all residues interacting with the wide minor grooves, showing that
the removal of the known minor groove-distorting protein families affects the
overall distribution of the amino acid frequencies only marginally.

Figure 1.11 shows the distributions of minor groove widths associated
with the dinucleotide steps bound by the respective amino acids for the DS1
data set. It can be seen that the largest mean minor groove widths are
associated with selected hydrophobic amino acids (M, L, V, F, I, A); on
the other hand, tyrosine is associated with the lowest mean width. These
results remain valid even after discarding the HMG_box and TBP protein
families, although notable differences appear. While I, A, V, F, and L remain
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Figure 1.11: Distributions of minor groove widths associated with the din-
ucleotide steps bound by the respective amino acids (DS1 data set). The
amino acids are sorted in descending order according to the median minor
groove width. The whiskers of the boxplots denote the 25th and 75th per-
centile of the distributions. From Faltejsková et al. (2020).

the amino acids binding the widest minor grooves, the median groove width
decreases by up to 3 Å for these residues in the DS2 data set; in the case
of methionine, a decrease of the median minor groove width by over 5 Å
is observed. Nevertheless, the results of the Mann–Whitney U test show
that, on the confidence level of 95 %, the median minor groove width is
significantly higher in the dinucleotide steps interacting with A, I, L, G, F,
V, and E compared to the outgroup. These results are valid for both the
DS1 and DS2 data sets. The fact that no DBPs are significantly enriched in
the DS2 data set suggests that the distortion of the DNA minor grooves by
hydrophobic amino acid residues is a universal phenomenon not specific to
any single DBP family.

Associations between the bound minor groove width categories and sec-
ondary structural elements were identified for selected amino acid residues.
G, I, and V residues were most commonly found in the β-strand structure
when binding wide minor grooves, while this conformation was rare when
binding the standard minor grooves. In other instances, such as F, A, and L,
the preferences were more obscure or dominated by single families of DBPs.

Figure 1.12 shows the characteristics of the distributions of minor groove
widths corresponding to the hexamers of DNA bps in contact with proteins as
a function of the GC content of the DNA sequences. It can be seen that the
means of the distributions increase with the increasing GC content of the se-
quences; on the contrary, the variance of the distributions decreases with the
increasing GC content. The AT-only sequences were observed to form both
extremely narrow and extremely wide minor grooves. The binding of the ex-
tremely wide, AT-only sequences often featured an intercalating hydrophobic
amino acid residue, although other modes of binding were observed as well.
More specific preferences for certain sequences of the dinucleotide step could
be detected for selected amino acids. For example, 60 % of leucine and 40 %
of isoleucine residues were in contact with dinucleotide steps consisting only
of AT and TA bps, of which about a half corresponded to the ApA/TpT
dinucleotide steps. On the other hand, a preference for GC-rich sequences
was observed for aspartate and glutamate.

32



Figure 1.12: Distributions of DNA minor groove widths corresponding to
the hexamers with different values of the GC content (DS1 data set). From
Faltejsková et al. (2020).

While the enrichment of hydrophobic amino acid residues in the wide mi-
nor grooves was statistically proven in this work, the physical causes behind
it remain unclear. Similarly, we were not able to conclude whether the hy-
drophobic amino acid residues specifically seek out the deformable regions of
DNA, or whether they recognize regions which are already distorted.49,76,79,80

An MD-based study exploring the energetics of DNA deformation in response
to the binding of hydrophobic residues could be useful for the exploration of
these topics.150 Further limitations of this work include the limited size
of the data set, which complicates the detection of preferences for binding
specific DNA sequences of greater length, an incomplete description of the
effects of multiple amino acid residues binding the DNA loci simultaneously,
or the omission of global alterations of the DNA shape, such as long-range
bends.49,79
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2. Calculations of absolute
binding free energies for
protein–DNA systems
This chapter summarizes the methods and results of the works Jakubec and
Vondrášek (2019) and Jakubec and Vondrášek (2020) presented in the List
of publications (Page 69). As discussed in the Introduction, these works
move beyond the pairwise interactions explored in Chapter 1 and concern
the applicability of MD simulation setups to the description of binding equi-
libria in protein–DNA systems. As in the other chapters, only a surface-level
overview of the works is provided here; a more in-depth discussion of the
analyses performed is available in the attached publications.

2.1 Jakubec and Vondrášek (2019)

2.1.1 Synopsis

The Gibbs free energy difference (FED) ∆G ≡ Gbound − Gunbound between
the bound and unbound states of a molecular complex, alternatively called
the absolute binding free energy (BFE), determines the equilibrium ratio of
activities of the species in the binding reaction. Numerous methods have
been developed to enable the calculation of FEDs by means of MD simu-
lations.111,151–162 These can be broadly divided into approaches based on
equilibrium and nonequilibrium simulations.162 Although these methods do,
in principle, yield identical results, practical limitations might favor single
methods for specific applications.153,154,162

Unfortunately, calculations of absolute BFEs rank among the most com-
putationally demanding applications of MD simulations.111,162 This is caused
by extensive sampling, and thus long simulation times, required to explore all
relevant regions of the phase space. For this reason, they are often limited to
small molecular models, and knowledge of their general accuracy for larger,
biologically important systems is lacking.

In this work, we systematically examined the applicability of an MD setup
to the calculations of standard BFEs of biologically relevant protein–DNA
complexes. The FEDs between the bound and unbound states of the respec-
tive systems were extracted from one-dimensional potentials of mean force
(PMFs)1. In order to efficiently sample all intermediate phase space regions,
the umbrella sampling (US) technique was employed.111,159,164,165 The biasing
potential was then removed from the PMF calculations using the weighted
histogram analysis method (WHAM).165,166

1The PMF acting between two particles is the free energy profile G (ξ) along some
geometric coordinate ξ;111,151,157 when the coordinate ξ is chosen so that the PMF spans
regions of the phase space corresponding to bound and unbound states, the absolute BFE
can be deduced from it.163
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Two protein–DNA systems derived from the Nkx2.5 HD–dsDNA com-
plex were studied in order to investigate the interactions of both disordered
and globular proteins. The systems were carefully chosen to possess sev-
eral desirable features which make them suitable for testing the validity of
real protein–DNA complex simulation setups. The FEDs and trajectories
obtained using two modern MM FFs were compared to each other and to
experimental data. The temperature-dependence of the calculated standard
BFEs was further investigated by performing all simulations over a range of
temperatures.

Most importantly, we showed that the values of standard BFEs obtained
from these MD simulations are overestimated compared to the experimental
results. In addition, significant differences were observed between the two
protein–DNA systems as well as between the two FFs, which were rational-
ized by the different propensities to form various inter- and intramolecular
interactions. Conclusions about the temperature-dependence of the stan-
dard BFEs could not be made with confidence, as the differences among the
respective values were on the order of statistical error.

2.1.2 Methods
A model of the Nkx2.5 HD–specific dsDNA complex for which experimen-
tally determined thermodynamic binding data are available167 was prepared
based on the X-ray crystallographic structure 3RKQ168 downloaded from the
RCSB PDB.12 The modeled system was equilibrated by performing an unre-
strained MD simulation using GROMACS 2016.3.117 A total of 5 system
configurations were selected from the equilibration trajectory to serve as
initial geometries for the pulling simulations used to generate the starting
configurations for the US simulations. Prior to the pulling simulations, the
protein molecules in the individual snapshots of the system were split into
two fragments: the globular, 64-residue HTH HD core (HDC) and the dis-
ordered, cationic, 15-residue N-terminal peptide (NTP) element; only the
central 14-bp region of the DNA duplex was retained. The complexes of
the DNA duplex with the respective protein fragments were further treated
separately (i.e., each system contained only the HDC or NTP fragment of
the original HD). The structures of the NTP and HDC systems in bound
and unbound states are shown in Figure 2.1. A total of 10 (2 systems × 5
starting configurations) pulling simulations were then performed; a total of
29 snapshots were selected from each pulling simulation trajectory to serve
as initial configurations in the US simulations.

Two MM FF combinations were used to perform the US simulations:
CHARMM36m118,120 (protein) + CHARMM36119 (DNA) and ff14SB112 (pro-
tein) + parmbsc1113 (DNA); these will be referred to as CHARMM and
Amber, respectively. The US simulations were performed at 4 reference
temperatures T = 283.15, 293.15, 303.15, and 313.15 K for each FF and
system; for each FF–temperature–system combination, five separate PMFs
were calculated, each using the respective configurations derived from one
of the five pulling simulations. The individual PMFs were calculated using
29 US simulations corresponding to the 29 configurations extracted from each
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Figure 2.1: Example structures of the NTP (A) and HDC (B) variants of
the protein–DNA complex at the beginning (red) and end (blue) of a pulling
simulation. From Jakubec and Vondrášek (2019).

pulling simulation trajectory; therefore, a total of 2 (FFs) × 4 (temperatures)
× 2 (complex variants) × 5 (pulling simulations/PMFs) × 29 (US simula-
tion windows) = 2, 320 US simulations were performed. The US simulations
were performed under NpT conditions; the length of each US simulation was
35.0 ns. All simulations were performed using GROMACS 2016.4 in explicit
solvent.

For each FF–temperature–system combination, the respective histograms
of the distance between the centers of mass of the protein and DNA duplex
along the z-direction dz were aggregated from the corresponding 5 (pulling
simulations) × 29 (US simulation windows) = 145 US simulations. The
PMFs were calculated from the umbrella histograms using the WHAM algo-
rithm implemented in GROMACS (gmx wham169). Data from the first 5.0 ns
of each US simulation were discarded as system equilibration. The PMFs
were set to zero at the distance dz of 5.0 nm. The statistical errors were
estimated using Bayesian bootstrapping of complete umbrella histograms.
A total of 100 bootstraps were used to obtain the respective average boot-
strapped PMFs (PMFbss) and error estimates. The maximal depth of the
PMF minimum ∆GPMF,max and the standard deviation of the ∆GPMF esti-
mate at the PMF minimum σ∆G were obtained from each PMFbs for use
in the calculation of standard BFEs ∆G◦ using an expression derived by
Doudou et al.163

37



Table 2.1: Values of thermodynamic parameters calculated using the
CHARMM FFs for the binding of the NTP fragment toward its cognate
dsDNA at the studied temperatures. ∆GV is a correction for the standard
state concentration; the other terms are explained in the text. Values of
∆GPMF,max, σ∆G, ∆GV , and ∆G◦ are in kJ mol−1.

T (K) ∆GPMF,max σ∆G ∆GV ∆G◦

283.15 −103.4 6.2 −3.1 −106.4
293.15 −109.4 6.5 −3.2 −112.6
303.15 −105.2 6.2 −3.3 −108.4
313.15 −107.3 6.8 −3.4 −110.7

Table 2.2: Values of thermodynamic parameters calculated using the
CHARMM FFs for the binding of the HDC fragment toward its cognate
dsDNA at the studied temperatures; otherwise as Table 2.1.

T (K) ∆GPMF,max σ∆G ∆GV ∆G◦

283.15 −67.6 5.9 −3.3 −70.9
293.15 −73.1 4.9 −3.4 −76.5
303.15 −69.6 4.7 −3.5 −73.2
313.15 −65.0 4.0 −3.7 −68.7

2.1.3 Results and discussion
The PMFbss calculated using the CHARMM FFs for the NTP and HDC
variants of the protein–DNA complex are shown in Figures A.3A and A.3B,
respectively. The corresponding BFEs are shown in Tables 2.1 and 2.2, re-
spectively. The PMFbss calculated using the Amber FFs are shown in
Figures A.3C and A.3D for the binding of the NTP and HDC variants of the
protein–DNA complex, respectively; the corresponding BFEs are presented
in Tables 2.3 and 2.4, respectively. All of the presented PMFbss show good
convergence in the unbound (plateau) region. The PMFbss calculated at var-
ious temperatures for the individual FF–complex variant combinations show
similar characteristics, with differences between the respective ∆GPMF,max
values within or on the order of statistical error σ∆G.

Fodor et al.167 have measured the apparent Gibbs free energy ∆G′ of the
Nkx2.5 HD binding its cognate dsDNA using isothermal titration calorime-
try and found it to decrease from −45.5 to −52.1 kJ mol−1 between 283
and 310 K. Little temperature-dependence is observed among the values of
∆G◦ estimated using the CHARMM FFs, while the values of ∆G◦ (and

Table 2.3: Values of thermodynamic parameters calculated using the Amber
FFs for the binding of the NTP fragment toward its cognate dsDNA at the
studied temperatures; otherwise as Table 2.1.

T (K) ∆GPMF,max σ∆G ∆GV ∆G◦

283.15 −89.0 5.7 −3.1 −92.1
293.15 −89.0 5.5 −3.2 −92.2
303.15 −95.2 5.7 −3.3 −98.5
313.15 −96.5 5.3 −3.4 −99.9
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Table 2.4: Values of thermodynamic parameters calculated using the Amber
FFs for the binding of the HDC fragment toward its cognate dsDNA at the
studied temperatures; otherwise as Table 2.1.

T (K) ∆GPMF,max σ∆G ∆GV ∆G◦

283.15 −82.2 5.3 −3.6 −85.9
293.15 −79.5 4.9 −3.8 −83.3
303.15 −82.1 6.0 −3.9 −86.0
313.15 −88.2 5.8 −4.0 −92.2

Table 2.5: The experimentally measured Gibbs free energies of association
∆Ga for selected HD proteins binding their target DNA sequences. Value for
Nkx2.5 (C56S) obtained from Fodor et al.;167 value for vnd/NK-2 obtained
from Gonzalez et al.;170 remaining data from Dragan et al.171 and Privalov
et al.172

HD ∆Ga (kJ mol−1)

Nkx2.5 (C56S) −49.3
vnd/NK-2 −46.0
engrailed −45.1
Antennapedia −54.3
MATα2 −49.8

∆GPMF,max) estimated using the Amber FFs seem to decrease with increas-
ing temperature in agreement with the experimental result. However, as the
differences between the individual values of ∆G◦ are on the order of σ∆G,
conclusions about the temperature-dependence of ∆G◦ cannot be made with
confidence.

Table 2.5 shows the experimentally determined values of the Gibbs free
energy of association ∆Ga for a selection of HD proteins binding their cog-
nate dsDNA targets at physiological conditions. The HD proteins used in
these studies included the disordered N-terminal arms. Dragan et al.171 have
also studied the binding of the Antennapedia and NK-2 HDs lacking the N-
terminal arms and found their DNA-binding affinities decreased. It can be
seen that the values of ∆G◦ predicted from our simulations for binding of
both the NTP and HDC variants of the Nkx2.5 HD are significantly overes-
timated (in magnitude) compared to the experimental results. The closest
calculated values of ∆G◦, obtained for the binding of the HDC fragment us-
ing the CHARMM FFs, exceed the experimental results for the Nkx2.5 HD
by ≈ 20.0 kJ mol−1 in magnitude. As the estimated DNA-binding affinity
of the disordered NTP was even greater than that of the globular HDC, it
can be assumed that simulations of the full HD would yield values of ∆G◦

even further apart from the experimental results. Unfortunately, it was not
possible to perform the pulling and US simulations with the full HD without
disrupting the HD tertiary structure.

The differences between the ∆G◦ values calculated for the NTP and HDC
systems using the CHARMM FFs (≈ 35.0 kJ mol−1) are much greater than
the corresponding differences between the Amber FFs values
(≈ 10.0 kJ mol−1). In addition, the binding of the NTP fragment is pre-
dicted to be more favorable using the CHARMM FFs in comparison with
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the Amber FFs, while the opposite is observed for the binding of the HDC.
We rationalized these differences by analyzing the inter- and intramolecular
interactions between and within the protein and DNA molecules over the
course of the US simulation trajectories. The populations of the various
interaction modes are listed in Jakubec and Vondrášek (2019); using this
information, we explained the differences between the standard BFEs ∆G◦

estimated for the binding of the protein fragments using the two FFs as fol-
lows. The Amber FFs predict more favorable binding of the HDC compared
to the CHARMM FFs on the account of higher populations of intermolecu-
lar (i.e., protein–DNA) contacts. The binding of the NTP is predicted to be
more favorable compared to the binding of the HDC because of significantly
higher populations of intermolecular contacts observed in the respective tra-
jectories. However, despite the higher populations of protein–DNA contacts
observed in the simulations performed using the Amber FFs, the predicted
affinity of the NTP toward the DNA is weaker compared to the CHARMM
FFs due to an increased stabilization of the unbound state by the elevated
formation of intramolecular contacts.

Limited sampling of the phase space could pose a possible limitation of
this study. While we performed a block analysis to confirm that the BFEs
are not significantly affected by the length of the US simulations, we could
not exclude the possibility that structural changes occurring on time scales
far beyond the reach of current computational capacities could lessen the
discrepancies between the computed BFEs and the experimental results. In
addition, the positional restraints applied to the DNA duplex in the simu-
lations could have an effect on the BFEs, as the structural flexibility of the
DNA molecule can play a major role in protein–DNA recognition.49,173 Un-
fortunately, applying such restraints was necessary to preserve the DNA as
an immobile reference. Further testing of the calculations of FEDs in com-
plex systems will be necessary before it can be concluded whether systematic
errors in the MM description of the systems exist, or whether sampling defi-
ciencies pose the greatest issue.

2.2 Jakubec and Vondrášek (2020)

2.2.1 Synopsis
The Jarzynski equality (JE; Equation 2.1)153,154 and the Crooks fluctuation
theorem (CFT)155,156 relate the FED ∆GAB ≡ GB − GA between two equi-
librium states A and B to the distributions of nonequilibrium work WAB

performed to drive the system between the two states:

∆GAB = − 1
β

log⟨exp(−βWAB)⟩ (2.1)

where β = 1
RT

, with R being the universal gas constant and T the thermo-
dynamic temperature, WAB is the work performed on the system to drive it
from state A to state B along a single path, and ⟨· · · ⟩ denotes an average.

In this work, we explored the accuracy and efficiency of setups based
on nonequilibrium pulling simulations applied to the estimation of binding
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affinities of DNA-binding proteins. The absolute BFEs were calculated over a
range of temperatures and compared to the results obtained previously using
an equilibrium method. Most importantly, we showed that realistic binding
affinities can be obtained with the presented nonequilibrium approach, which
also entails lower computational requirements. Errors of the BFE estimates
were investigated and shown to be comparable to those observed previously.

2.2.2 Methods
The same HDC and NTP systems for which the absolute BFEs ∆GPMF and
their associated standard deviations σ∆GPMF were calculated in Jakubec and
Vondrášek (2019) were studied in this work using the same combinations
of CHARMM and Amber FFs. First, the end (pure bound and unbound)
states were simulated for both the HDC and NTP systems using a series
of US simulations for a total of 1.0 µs of the respective sampling times.
These equilibration simulations were initiated from system configurations
selected from the previous work. A total of 105 configurations were then
extracted from the equilibration trajectories for both the HDC and NTP
systems to initiate the respective forward- and reverse-switching (unbinding
and binding, respectively) pulling simulations.

The pulling simulations were performed with both the CHARMM and
Amber FFs at the reference temperatures T = 283.15, 293.15, 303.15, and
313.15 K. The total pull distance was l = 4.2 nm in each pulling simulation.
The pull rate in the reference pulling simulations was 0.0005 nm ps−1 and
the length of the simulations was 8.4 ns. Three other pull rates were tested
in combination with the CHARMM FFs and a single reference temperature
of T = 293.15 K; the pull rates were 0.001, 0.00025, or 0.000125 nm ps−1

and the lengths of the simulations were 4.2, 16.8, or 33.6 ns, respectively.
The mechanical work performed during each pulling simulation was cal-

culated by integrating the pull force applied along the pulling path. Gaussian
probability distributions were fit to the ensembles of 105 values of work cal-
culated from the forward- and reverse-switching simulations for each system.
The means Wf ,Wr and standard deviations σf , σr of the distributions were
utilized to calculate the absolute BFEs ∆GCGI using the Crooks Gaussian
intersection (CGI) method.174 The errors σ∆GCGI associated with the indi-
vidual ∆GCGI estimates were calculated using a bootstrapping analysis. The
FED estimates ∆GJE were obtained by directly evaluating Equation 2.1.

2.2.3 Results and discussion
Values of absolute BFEs ∆GCGI and the corresponding standard deviations
σ∆GCGI estimated using the CGI method based on the nonequilibrium pulling
simulations performed using the CHARMM FFs are shown in Table 2.6.
These values correspond to the pulling simulations performed at the standard
pull rate and are compared to the results obtained in the previous work.
The analogous absolute BFEs calculated using the Amber FFs are shown
in Table 2.7. The means Wf ,Wr and the standard deviations σf , σr of the
work distributions obtained from the respective ensembles of forward- and
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Table 2.6: Values of absolute BFEs calculated using the CHARMM FFs.
Values of ∆GCGI, σ∆GCGI , ∆GPMF, and σ∆GPMF are in kJ mol−1. Values of
∆GPMF and σ∆GPMF are from Jakubec and Vondrášek (2019).

HDC NTP
T (K) ∆GCGI σ∆GCGI ∆GPMF σ∆GPMF ∆GCGI σ∆GCGI ∆GPMF σ∆GPMF

283.15 −56.5 9.3 −67.6 5.9 −83.8 11.4 −103.4 6.2
293.15 −37.0 7.5 −73.1 4.9 −72.7 10.0 −109.4 6.5
303.15 −50.5 7.6 −69.6 4.7 −105.1 10.3 −105.2 6.2
313.15 −42.4 6.4 −65.0 4.0 −88.8 9.3 −107.3 6.8

Table 2.7: Values of absolute BFEs calculated using the Amber FFs. Values
of ∆GCGI, σ∆GCGI , ∆GPMF, and σ∆GPMF are in kJ mol−1. Values of ∆GPMF
and σ∆GPMF are from Jakubec and Vondrášek (2019).

HDC NTP
T (K) ∆GCGI σ∆GCGI ∆GPMF σ∆GPMF ∆GCGI σ∆GCGI ∆GPMF σ∆GPMF

283.15 −42.0 8.0 −82.2 5.3 −73.3 10.1 −89.0 5.7
293.15 −54.6 9.0 −79.5 4.9 −51.4 8.5 −89.0 5.5
303.15 −64.1 9.6 −82.1 6.0 −71.0 9.4 −95.2 5.7
313.15 −54.9 7.7 −88.2 5.8 −88.5 8.6 −96.5 5.3

reverse-switching simulations are listed in Jakubec and Vondrášek (2020).
Finally, the absolute BFE estimates ∆GJE,f , ∆GJE,r obtained by evaluating
Equation 2.1 using the values of work calculated from the unbinding and
binding process simulations, respectively, are shown in Table 2.8.

All ∆GCGI values show that the bound state dominates under equilibrium
conditions. The interaction of the NTP fragment with the dsDNA binding
site appears to be more favorable than that of the HDC in all but one case.

Differences are observed between the values of ∆GCGI estimated for the
NTP system using the two studied FFs: the values obtained using the
CHARMM FFs are, on average, lower by 16.6 kJ mol−1 in comparison with
the Amber FFs results. This is similar to the earlier PMF calculations, in
which the CHARMM FFs consistently yielded values of ∆GPMF lower by
15–20 kJ mol−1 compared to the Amber FFs. The opposite trend is observed
among the values of ∆GCGI estimated for the HDC system: in this case,
the Amber FFs yield values that are, on average, lower by 7.3 kJ mol−1 in
comparison with the CHARMM FFs. Again, this is consistent with the differ-
ences between the FFs observed among the corresponding values of ∆GPMF,

Table 2.8: Values of absolute BFEs obtained from the JE. Values of ∆GJE,f

and ∆GJE,r are in kJ mol−1.

CHARMM Amber
HDC NTP HDC NTP

T (K) ∆GJE,f ∆GJE,r ∆GJE,f ∆GJE,r ∆GJE,f ∆GJE,r ∆GJE,f ∆GJE,r

283.15 −351.6 10.0 −401.4 2.8 −351.9 28.0 −403.8 −4.9
293.15 −302.8 28.8 −370.5 8.3 −348.2 20.2 −344.0 11.8
303.15 −268.3 8.1 −428.4 0.1 −270.4 6.5 −347.7 5.3
313.15 −240.9 11.9 −376.6 −8.1 −311.3 13.2 −239.2 −5.0
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although the magnitude of the differences was previously observed to be
greater (14.2 kJ mol−1).

In order to rationalize the differences observed between the FFs, we per-
formed an analysis of inter- and intramolecular interactions similar to the one
performed in the previous work. The qualitative differences between the two
FFs were very similar to those described previously. The populations of HBs
and other contacts between the protein and DNA molecules were lower in
the simulations performed using the CHARMM FFs, while a greater number
of protein–water HBs was observed in these. A significantly greater number
of protein side chain–side chain HBs was observed in the simulations per-
formed using the Amber FFs. These characteristics were shared by both the
HDC and NTP systems. In addition, a significantly greater number of HBs
between the protein main chain donor and acceptor groups was observed in
the simulations of the NTP system performed using the Amber FFs.

The values of ∆GCGI are in all cases greater (i.e., less negative) than
the corresponding values of ∆GPMF. As discussed in the previous work,
the values of ∆GPMF are overestimated (in magnitude) compared to the ex-
perimentally determined Gibbs free energies of association ∆Ga. The values
of ∆G estimated using the CGI method for the HDC system therefore appear
to reproduce the experimental results for the HD proteins more accurately
than the values extracted from the PMFs.

Similarly to the previous work, no clear dependence of the ∆GCGI values
on temperature is seen in either the HDC or NTP systems, with the differ-
ences between the individual observations comparable in magnitude to the
statistical errors σ∆GCGI of the estimates. It must be noted, however, that the
values of ∆GCGI calculated at the different reference temperatures usually
span a much broader range than the corresponding values of ∆GPMF.

The statistical errors σ∆GCGI of the ∆GCGI estimates are universally
greater, but comparable in scale to the corresponding errors σ∆GPMF . The
magnitude of the errors does not change monotonically with the reference
temperature or with the magnitude of the BFE estimates: in both Ta-
bles 2.6 and 2.7, the respective rankings of ∆GCGI and σ∆GCGI differ.

An analysis of the ensembles of pulling simulations utilizing different pull
rates revealed that changing the pull rate affects the ∆GCGI estimates to a
similar extent as changes to the reference temperature, and that the esti-
mates do not appear to converge toward a single value as the pull rate is
reduced. Importantly, however, the errors σ∆GCGI decrease as the pull rate
is reduced, suggesting that a higher accuracy can be systematically achieved
at the expense of further computational resources.

While seemingly more accurate BFE estimates were obtained using the
nonequilibrium approach compared to the previous work, it must be high-
lighted that the values of ∆GCGI presented in Tables 2.6 and 2.7 are several
standard deviations σf , σr apart from the means Wf , Wr of the respective
work distributions. For this reason, the convergence of the absolute BFE cal-
culations is difficult to estimate, as the Gaussian distribution fitting used in
the CGI method, as well as the exponential averaging present in the JE, may
be sensitive to extremal values of work. This might be the reason why no
clear trends are observed among the absolute BFE estimates ∆GCGI obtained
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at different reference temperatures or pull rates.
Similarly to the previous work, the BFE estimates for the NTP system

likely remain overestimated (in magnitude). This may be a sign of an insuf-
ficient sampling of the unbound state or point to deeper problems with the
description of disordered proteins in the FFs used.175 In addition, the pull
rates employed in this work might be too fast to allow a physically-relevant
description of the binding process.126,176 This may be evidenced by the large
energy dissipation. As a result, only the overlap of the far-tail regions of the
work distributions is observed, contributing to the problematic assessment
of convergence. As in other studies of FEDs, the selection of the collective
variable along which the free energy profile is calculated might be problem-
atic131,161 and, indeed, this topic is not explored in sufficient depth in this
work. Nevertheless, the qualitative agreement among the populations of the
various noncovalent interactions between this and the previous study leads us
to believe that a certain convergence sufficient to explore the intrinsic prop-
erties of the FFs has been reached. This is further evidenced by the relative
stability of the BFE estimates across the simulations utilizing different pull
rates.
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Discussion
This chapter summarizes the methods and results of the works Jakubec et
al. (2018) and Jakubec et al. (2019) presented in the List of publications
(Page 69). As discussed in the Introduction, these works are dedicated to
the exploration of the evolutionary aspects of protein organization. As these
works do not necessarily concern DBPs or protein–nucleic acid interactions,
only a synopsis is provided for each. Nevertheless, I include them in this
overview, as the evolutionary approaches to the study of biomolecules com-
plement the physical methods presented so far.

Jakubec et al. (2018)
The structural and functional independence of protein domains is reflected
by their apparent modularity in the context of multidomain proteins.7–9 In
this work, we examined the coupling of evolution of domain sequences cooc-
curring within multidomain proteins to see if it proceeds independently or
in a coordinated manner. An information-theoretic analysis of the coevo-
lutionary signals among protein domains in multidomain arrangements was
conducted. Based on the implications these signals carry, we questioned the
notion of evolutionary independence of domains and examined their adapt-
ability to their primary sequence context. For the first time, we examined
coevolution as a global property of a domain pair, and introduced an ap-
propriate continuous measure to quantify its extent. Using this measure, we
showed that coevolution among protein domains is a much more widespread
phenomenon than previously anticipated. This finding challenges the notion
of the complete modularity of protein domains and provides new perspective
on the evolution of protein sequence and function.

The multidomain proteins obtained from the UniProt reference proteo-
mes177 data set spanning the tree of life were examined in this work; a domain
architecture was defined for each as the vector of the Pfam145 sequence fam-
ilies identified within the protein sequence ordered according to their prox-
imity to the N-terminus. For each pair of domains in the multidomain ar-
chitectures, the average value of the interdomain mutual information (MI)178

between all pairs of positions corresponding to the domains was calculated
based on the MSAs of the respective domain sequences. This quantity was
normalized to the range ⟨0.0, 1.0⟩ using the average entropies of the posi-
tions corresponding to the domains forming the respective pair, resulting in
a global measure of evolutionary coupling between a pair of domains. The
multidomain MSAs were then split at the domain boundaries, individual do-
main sequences were shuffled, and randomly rejoined. This way, any native
evolutionary coupling among the protein domains was disrupted. The nor-
malized average value of the interdomain MI was then recalculated for the
perturbed MSAs in which fragments corresponding to individual domains
almost certainly originated from different proteins.

Most importantly, we showed that the differences between the values of
the interdomain MI before and after the domain sequence shuffling are in

45



each case positive, i.e., the values are always greater before the shuffling.
Information is thus lost when domain sequences are paired randomly. We
further showed that the normalized MI scores between randomly generated
“MSAs” possessing large values of entropy at individual positions and MSAs
of real protein domains differ significantly from those observed between pairs
of real domains, suggesting that the evolutionary couplings observed are un-
likely to be the result of random fluctuations. These results imply that, in the
context of multidomain proteins, a portion of the domain sequence variation
can always be attributed to the coordinated evolution among the different
domains. We hypothesize that the domains in multidomain proteins can to
some extent act as buffers or reservoirs of evolutionary capacity that can be
utilized to either mitigate the impact of the mutations required to preserve
the protein function or, alternatively, to optimize the respective functions
of the individual domains. The precise mechanism through which this func-
tional modulation is realized and its full impact on protein evolution remain
to be established.

Jakubec et al. (2019)
Amino acid residues manifesting high levels of evolutionary conservation are
often indicative of functionally significant regions within a protein struc-
ture.9 Residues critical for protein folding, hydrophobic core stabilization,
intermolecular recognition, or enzymatic activity often manifest lower sub-
stitution rates compared to the rest of the protein. Understanding how the
sequence conservation profile relates in the 3D space requires a projection
onto a protein structure, a potentially time-consuming process. In this work,
we present 3DPatch (https://www.skylign.org/3DPatch/), a web applica-
tion that streamlines this task by automatically generating MSAs and finding
structural homologs, presenting the user with a choice of structures matching
their query, annotated with the residue conservation scores. 3DPatch oper-
ates at interactive speeds and can be used without any prior knowledge of
the available homologous 3D structures and without having to construct an
MSA in advance.

The 3DPatch workflow is summarized in Figure 2.2. 3DPatch usually
accepts a single protein sequence as an input. A search for similar sequence
regions in a large sequence database is then performed using the HMMER
web server,179 yielding a MSA. A profile hidden Markov model (HMM)180

is built from this MSA. This profile HMM is used to search for homologous
sequences in the PDB archive,11 yielding a set of 3D structures of proteins
similar to the original sequence query. At the same time, the IC at individual
positions of the profile HMM is calculated using the tool Skylign.181 3DPatch
then automatically maps the IC to individual amino acid residues in the 3D
structures of proteins. The user can select any of these structures to be vi-
sualized with the residue-level IC-based mark-up using an in-built molecular
viewer.182 An illustration of such a visualization is shown in Figure 2.3.
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Figure 2.2: The distribution of operations between the client side and appli-
cation interfaces in 3DPatch. From Jakubec et al. (2019).

Figure 2.3: The X-ray crystallographic structure of human cathepsin L1
(PDB ID 3OF8) marked-up with the residue IC using 3DPatch. Darker col-
ors correspond to higher conservation levels. Catalytic and binding pocket
residues (center top) are clearly distinguished based on the IC. Two conserved
cysteine residues forming a disulfide bridge can be seen on the left. From
Jakubec et al. (2019).
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Conclusion
In this thesis, I attempted to capture the current state of our understanding
of the mechanisms of sequence-specific recognition of nucleic acids by pro-
teins and present the results of my research in related areas. The function
and structure of the essential biomacromolecules were discussed, with special
attention given to the biological significance and molecular mechanisms of
binding specificity in protein–DNA interactions. Methods of DNA-binding
specificity determination were presented and challenges in constructing a
“protein–DNA recognition code” were discussed. An overview of the meth-
ods of computational chemistry applicable to the study of biomolecules was
then given, with a focus on the respective strengths and weaknesses of the
individual methods.

In Chapter 1, I presented the results of my work exploring the pairwise in-
teractions between the basic biomolecular building blocks—amino acids and
nucleotides. Most importantly, it was demonstrated that selected interaction
motifs statistically enriched in the 3D structures of protein–DNA complexes
correspond to the most energetically favorable geometric arrangements of the
respective binding partners. A qualitative agreement was shown among the
IEs determined using the QM and empirical methods, making it possible to
draw this conclusion. Finally, a relationship was shown between the presence
of hydrophobic amino acid residues at the interface between the protein and
the minor groove of the DNA and the local geometric features of the DNA
helix, suggesting a universal mechanism of the DNA structure deformation.

In Chapter 2, I presented the results of my work exploring the appli-
cability of MD simulation setups to the description of binding equilibria in
protein–DNA systems. It was shown that the bound forms of the com-
plexes are overstabilized in the MD simulations compared to the experimen-
tal results. Importantly, significant differences were discovered between the
propensities of the modern MM FFs to form the various intra- and inter-
molecular interactions, leading to consistent, systematic differences between
the BFE estimates.

Finally, in the Discussion, I presented the results of my work exploring the
evolutionary aspects of protein organization. First, it was demonstrated that
the evolution of protein domains in multidomain proteins proceeds to some
extent in a coupled manner, challenging the traditional view of the domain
modularity. Second, the tool 3DPatch facilitating the interactive exploration
of evolutionary conservation in the 3D structures of proteins was presented.

I wish that the methods and results presented in this thesis may serve as a
demonstration of how the synthesis of statistical, computational, and evolu-
tionary approaches can be utilized to elucidate the mechanisms of biomolec-
ular function.
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A. Figures
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Figure A.1: The structures and properties of the proteinogenic
amino acids. Distributed under the terms of the Creative Commons
Attribution-ShareAlike 3.0 Unported license (https://creativecommons.
org/licenses/by-sa/3.0/legalcode). Original author: Dan Cojocari, De-
partment of Medical Biophysics, Faculty of Medicine, University of Toronto,
2010. Source: https://en.wikipedia.org/wiki/File:Molecular_
structures_of_the_21_proteinogenic_amino_acids.svg. Modified: re-
moved fine print.
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Figure A.2: The structures of the nucleotides forming DNA and RNA.
Source: https://en.wikipedia.org/wiki/File:Nucleotides_1.svg.
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Figure A.3: The PMFs (PMFbss) for the binding of the NTP (A, C) and
HDC (B, D) fragments of the protein to the DNA. A and B calculated
using the CHARMM FFs; C and D calculated using the Amber FFs. From
Jakubec and Vondrášek (2019).
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