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Summary 

Genome instability represents one of the leading forces driving the onset and 

development of cancer. It arises as a consequence of the combined effect of DNA damage 

and errors made by the DNA repair system. In many cancers, DNA damage tolerance and 

DNA repair pathways are disrupted or deregulated, thereby promoting cancer 

progression. DNA repair also appears to play a substantial role in cancer therapy response. 

This Dissertation Thesis was performed in response to several unclear and unresolved 

issues of the role of DNA damage and DNA repair in cancer pathogenesis. 

The aim of the Thesis was to search for potential novel biomarkers and confirmation of 

the validity of already existing biomarkers related to DNA damage and DNA repair, 

which may be associated with cancer susceptibility and patient's clinical outcome. We 

also explored the biological basis of different biomarkers and their associations. 

The major outcomes of this Thesis are: 1) The elevated chromosomal aberrations (CAs) 

in peripheral blood lymphocytes (PBLs) may serve as a biomarker of cancer susceptibility 

and partially affects patients' clinical outcome. While telomere shortening contributes to 

the formation of CAs in PBLs only in healthy individuals, less efficient DNA double-

strand break repair in PBLs is associated with telomere shortening only in cancer patients. 

2) Several genetic variants in DNA repair genes and their gene-gene interactions have 

been discovered that modulated the levels of CAs in PBLs. In genome-wide associations 

studies, several new genetic variants associated with CA frequency in PBLs were also 

indicated. 3) The associations of several genetic variants in DNA repair genes with cancer 

susceptibility and patient's clinical outcome have been identified. The importance of 

studying DNA repair at a functional level, directly in tumour and non-malignant tissue, 

has been pointed out to reveal its potential predictive and prognostic value. 

In conclusion, this Dissertation Thesis suggested and/or verified several potential 

candidate biomarkers associated with cancer susceptibility and patients' clinical outcome 

for further use in population monitoring and clinical use. However, additional studies on 

larger independent populations and performing functional tests are needed to replicate 

our findings and unravel the biological mechanisms behind.  
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Shrnutí 

Nestabilita genomu představuje jednu z předních sil, která řídí vznik a rozvoj 

nádorového onemocnění. Vzniká v důsledku kombinovaného účinku poškození DNA  

a chyb způsobených opravným systémem DNA. V mnoha nádorech jsou tolerance  

k poškození DNA a opravné dráhy DNA narušeny nebo deregulovány, což podporuje 

jejich progresi. Oprava DNA také hraje významnou roli v odpovědi na léčbu nádorových 

onemocnění. Tato disertační práce vznikla v reakci na několik nejasných a nevyřešených 

otázek úlohy poškození DNA a opravy DNA v patogenezi nádorových onemocnění. 

Cílem práce bylo hledání potenciálních nových biomarkerů a potvrzení platnosti již 

existujících biomarkerů souvisejících s poškozením DNA a opravou DNA, které mohou 

být spojeny s náchylností ke vzniku nádorových onemocnění a klinickým výsledkem 

pacienta. Také byl zkoumán biologický základ různých biomarkerů a jejich vzájemné 

vztahy. 

Hlavní výstupy této práce jsou: 1) Zvýšené hladiny chromozomálních aberací (CA)  

v lymfocytech periferní krve (PBL) mohou sloužit jako biomarker náchylnosti ke vzniku 

nádorových onemocnění a částečně ovlivňují klinický výsledek pacientů. Zatímco 

zkracování telomer přispívá k tvorbě CA v PBL pouze u zdravých jedinců, méně účinná 

oprava dvouřetězcových zlomů DNA v PBL je spojena se zkrácením telomer pouze  

u pacientů s nádorovým onemocněním. 2) Bylo objeveno několik genetických variant  

v genech zapojených do opravy DNA a jejich vzájemné interakce, které ovlivňovaly 

hladiny CA v PBL. Celogenomové asociační studie také naznačily několik nových variant 

spojených s frekvencí CA v PBL. 3) U několika genetických variant v genech pro opravu 

DNA byl identifikován jejich vztah s náchylností ke vzniku nádorových onemocnění  

a klinickým výsledkem pacienta. Zároveň byla zdůrazněna důležitost studia opravy DNA  

na funkční úrovni, a to přímo v nádorové a přilehlé nenádorové tkáni za účelem odhalení 

její potenciální prediktivní a prognostické hodnoty. 

Závěrem, tato disertační práce navrhla a/nebo ověřila několik potenciálních kandidátních 

biomarkerů spojených náchylností ke vzniku nádorových onemocnění a klinickým 

výsledkem pacientů pro jejich další použití při monitorování populace a v klinické praxi. 

Pro potvrzení našich výsledků a k odhalení biologických mechanismů je však zapotřebí 

provést další studie na větších nezávislých populacích a potvrdit funkčními testy.  
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1. Introduction 

This Dissertation Thesis consists of an overview of the research I have been involved in 

during the time of my PhD studies and which were published between 2015 and 2020. 

These include eight original research articles (Publications I–VII) and four review articles 

(Publications IX–XII) summarizing the problematics published in the original research 

articles. All publications, either related or unrelated to this Thesis are shown in detail in 

section "Publication activity". Publications I–XII in extenso are presented in Annexes of 

this Thesis. 

1.1 Cancer: An overview 

1.1.1 Causes of and risk factors for cancer and its development 

Cancer is a general term for a large group of diseases, whose causes, characteristics and 

occurrence can vary. It develops as a consequence of the complex interactions between 

various factors, and therefore, it is commonly called as a complex (previously 

multifactorial) disease. These factors include lifestyle factors (alcohol consumption, 

tobacco smoking, poor diet, lack of physical activity, or being overweight and obese), 

ageing, environmental and occupational exposure (chemicals and other substances), food 

contaminants, exposure to ultraviolet (UV) and ionizing radiation (IR), infectious agents 

(some viruses and bacteria), certain hormones, chronic inflammation, 

immunosuppression, genetic susceptibility, and family history of cancer [1, 2] (Figure 1). 

Malignant tumours are triggered and developed through the multistep process of 

carcinogenesis. The nature of this process is the genetic (e.g. point mutations and 

chromosomal rearrangements) and/or epigenetic (e.g. DNA methylation, microRNA) 

changes and their accumulation over time leading to malignant transformation of a normal 

cell into a tumour cell [3]. The primary cause of carcinogenesis is the change in crucial 

genes, also called as "driver" genes. These include proto-oncogenes, tumour suppressor 

genes, and DNA repair (mutator) genes [4]. 

Apart from this long-lasting dogma of gradual tumour evolution by the acquisition of 

genetic and/or epigenetic changes over time, a new concept of tumour formation called 

"chromothripsis" was formulated. This phenomenon challenged this dogma and was first 
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described by Stephens et al. in 2011 [5]. Chromothripsis is characterized by massive 

chromosomal rearrangements arising all at once in localised and confined genomic 

regions in one or a few chromosomes. If the occurrence of such an event is on the upper 

limit of what a cell can tolerate, the cell can withstand and survive such a destructive 

event [6]. Today, other unanticipated catastrophic events leading to the same or similar 

consequences, i.e. to sudden multiple changes in the genome, are known and the most 

recent reviews confer on details [7, 8]. 

In 2000 and a decade later, Hanahan and Weinberg published their reviews summarizing 

the hallmarks of cancer [9, 10]. These reviews have managed to persist at the core of 

literature about cancer biology, serving as blueprints for understanding the core traits of 

cancer. However, Lazebnik in his review article from 2010 argued that "cancer" is often 

used to refer to malignant tumours and a "hallmark" is a distinguishing feature [11]. He 

subsequently pointed out that the only true hallmark of cancer is the invasion and 

metastasis since other original hallmarks are characteristic for both benign and malignant 

growths. The revisiting the hallmarks of cancer published in 2017 concluded to organize 

the dense complexities of cancer biology into seven major hallmarks: i) selective growth 

and proliferative advantage, ii) altered stress response favouring overall survival 

(including DNA repair, apoptosis, autophagy, and senescence), iii) vascularization, iv) 

invasion and metastasis, v) metabolic rewiring, iv) abetting microenvironment, and vii) 

immune modulation [12] (Figure 1). Thus, it is obvious that the field of cancer biology is 

still evolving and despite the rapid progress in its understanding, there are still questions 

that should be answered in the future. 
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Figure 1. Causes of and risk factors for cancer and its development along with seven revisited hallmarks 

of cancer (modified according to [12]). 
Different factors (in blue) continuously interact with cells (in orange) leading to transformative alterations in genetics/epigenetics, 

alterations in chromosomal numbers and structure, and heterotypic interactions (in green) which, along the pathways towards 

malignancy, undergo cycles of evolution and clonal selection leading to the acquisition of cancer-competent traits, so-called the 

hallmarks of cancer (in red). 

 

1.1.2 Cancer incidence and mortality 

Affecting almost all types of tissues in the human body, cancer represents one of the most 

severe health burdens in the world. According to the World Health Organization 

estimates, cancer causes more than 8.9 million deaths every year. With the increase in 

incidence by 28 % between 2006 and 2016, there were 17.2 million new cancer cases 

worldwide in 2016 [13, 14]. The International Agency for Research on Cancer released 

the New Global Cancer Data about estimates of cancer incidence and mortality, which 

have predicted 18.1 million new cancer cases (17.0 million excluding non-melanoma skin 

cancer) and 9.6 million cancer deaths (9.5 million excluding non-melanoma skin cancer) 

in 2018. In both sexes combined, lung cancer is the most commonly diagnosed cancer 

(11.6 % of the total cases) and the leading cause of cancer-related deaths (18.4 % of the 

total cancer deaths), closely followed by breast, colorectal, prostate, and stomach cancer 

for incidence, and colorectal, stomach, liver, and breast cancer for mortality [15] (Figure 

2). 
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Figure 2. The most common cancer types worldwide in 2018 (modified according to [16]). 

Percentages mean the proportions of individual cancer type incidence/mortality of all new cancer cases/cancer deaths. 

 

The Czech Republic is ranking in the top 20 countries for the cumulative risk of incidence 

worldwide. On the contrary, due to the high quality of health care, the cumulative risk of 

cancer mortality decreases. As a consequence, the Czech Republic is 41st in terms of 

cancer mortality compared to other countries around the world [15] (Figure 3). According 

to the latest data published by the Institute of Health Information and Statistics of the 

Czech Republic on web portal www.svod.cz [17], both incidence and mortality of the 

three most common cancers worldwide decrease in the Czech Republic over time, except 

for the incidence of breast cancer (Figure 4:A1-3). When looking at the age structure of 

the patient populations, lung and breast cancers are most often diagnosed in individuals 

in the category of age between 65 and 69, while colorectal cancer incidence is highest in 

the age category between 70 and 74 (Figure 4:B1-3). Moreover, breast cancer is also 

commonly diagnosed in younger individuals aged 35 to 50 years. However, the tumour-

node-metastasis (TNM) stage at which the tumour is diagnosed is critical for increasing 

the success rate of the treatment of cancer patients. Lung cancer is mainly diagnosed at 

the TNM stage IV, while the vast majority of breast cancer patients are diagnosed at early 

TNM stages (I+II). More than half of colorectal cancer patients are diagnosed at late TNM 

stages (III+IV) [17]. 
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Figure 3. The estimated cumulative risk of incidence and mortality for all cancers, both sexes, and ages 0-

74 for different countries in 2018 (adopted from [18]). 

Cumulative incidence/mortality is defined as the probability or risk of individuals getting/dying from the disease over a specified age-

span. Cumulative risk is expressed as the number of cases/deaths per 1000 person-years that are expected to occur in a given population 

between the specified age limits (e.g. between birth and the age 74 years) if the cancer rates were as those observed in the specified 

time period in the absence of competing causes [19]. 

 

Incidence
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Cumulative risk

Cumulative risk
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Figure 4. The incidence and mortality rates over time and the age structure of the patient populations for 

the three most commonly diagnosed cancers – lung (A-B1), breast (A-B2), and colorectal (A-B3) for the 

Czech Republic (adopted from [17]). 
Figures A1-3 represent the course of incidence (blue line) and mortality (red line) over time. Figures B1-3 represent the age structure 

of the patient populations for incidence for individual cancer types. All data are for the Czech Republic. The ASR is a weighted mean 

of the age-specific rates where the weights are taken from the population distribution of a standard population; the ASR is expressed 

per 100,000. Comparison of rates referring to different time periods or different geographical areas is only possible after considering 

the differences in the age structure of the underlying populations. The age-standardisation allows the comparison of the rates that are 

arithmetically adjusted to have the same age structure of the standard population [19]. Abbreviations: ASR-W – age-standardised rate 

(conversion to world standard). 
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1.1.3 Cancer prevention strategies 

Apart from the primary prevention which purpose is to prevent a disease from ever 

occurring (via limitation of risk exposure or increasing the immunity of individuals at risk 

of the disease), the secondary (the screening programs) and tertiary (the therapy 

strategies) prevention are essential as well [20]. 

Secondary prevention (the screening programs): An essential criterion for the treatment 

efficacy of all cancer types is their early diagnosis, preferably still in the pre-cancerous 

stages. Therefore, there is an increasing tendency across developed countries to 

implement screening programs in standard healthcare [21]. Unfortunately, general lung 

cancer screening is currently not available in the Czech Republic. However, the Czech 

standard healthcare provides breast cancer screening for a non-risk female population 

aged over 45 at two-year intervals since 2002. There are also special dispensary programs 

for women at very high risk of breast cancer development [22]. In 2008 and 2009, the 

Ministry of Health of the Czech Republic launched a nationwide screening program 

aimed at the early detection of cervical and colorectal cancer, respectively. Cervical 

cancer screening is designed for all adult women in one-year intervals [23]. Colorectal 

cancer screening is available for all people aged between 50 and 54 once per year (the 

faecal occult blood test), and for all people aged over 55 every ten years (the colonoscopy) 

[24]. 

Tertiary prevention (the therapy strategies): Once a malignant disease is diagnosed, 

current practice to choose and implement the therapy for cancer patients is primarily 

based on the tumour location, TNM stage, and results from tumour histopathological 

examination (tumour type). Other factors, such as patient's age and general condition, 

associated diseases, etc. are also taken into consideration. The treatment regimens 

substantially differ for lung, breast, and colorectal cancer patients as well as for other 

cancer types. In all cancer types, surgical removal of the tumour represents the 

fundamental treatment method. Therefore, if possible, surgeons always try to remove all 

tumour tissue mass. Other main treatment strategies include chemotherapy, radiation 

therapy, targeted therapy, and hormone therapy [21]. The recent success of 

immunotherapy strategies such as immune checkpoint blockade in several malignancies 

has established the role of immunotherapy in the treatment of cancer as well [25]. In 
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leukaemia, lymphoma and myeloma, also stem cell or bone marrow transplants are 

applied as a cancer treatment [26] (Figure 5). 

 

 

Figure 5. Cancer treatment options (adopted from [27]). 
 

Although all the levels of cancer prevention are significantly developing, the tools for 

their implementation are often less specific and less sensitive, usually invasive, and 

inconvenient for patients. As a consequence, tumours are often diagnosed at advanced 

stages of the disease, and not all patients benefit from cancer treatment and often suffer 

from severe adverse effects caused by therapy. Searching for new tools in the form of 

molecular biomarkers that can be easily collected (for instance, from blood) thus 

represents the most attractive approach in the era of personalized medicine. To bring a 

more in-depth insight into this issue, the next two chapters will focus on biomarkers and 

their role in cancer research and clinical practice. 

1.2 Introduction to biomarkers 

1.2.1 Definition of biomarkers 

Biological markers (biomarkers), also called molecular markers and signature molecules 

[28], have been defined by Hulka et al. in 1990 as "cellular, biochemical or molecular 

alterations that are measurable in biological media, such as human tissues, cells, or 

fluids" [29]. Indeed, there are plenty of more accurate definitions of biomarkers in the 

literature which substantially overlap [30-32]. Nevertheless, the World Health 
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Organization has stated that a true definition of biomarkers includes "almost any 

measurement reflecting an interaction between a biological system and a potential 

hazard, which may be chemical, physical, or biological. The measured response may be 

functional and physiological, biochemical at the cellular level, or a molecular 

interaction" [33]. 

1.2.2 Study of biomarkers 

Biomarkers have been used by generations of epidemiologists, physicians, and scientists 

to study human diseases. Until the 1990s, available technologies only allowed analysing 

individual proteins or genes, alternatively their very finite groups. Traditionally, 

biomedical research has been hypothesis-driven; investigators put forth hypotheses and 

design experiments to test them. Advances in laboratory techniques have given rise to 

more technology-driven research. Rather than putting forth a hypothesis, investigators 

apply high-throughput methods to biological systems and look for exciting results that 

could lead to hypothesis generation for further testing. Both hypothesis-driven and 

technology-driven approaches are applicable to biomarker discovery [34]. Despite 

numerous published studies on biomarkers every year, the relatively low number of those 

is actually used in clinical practice. There are several causes; however, they mainly reside 

in the biomarker's own development process [35, 36]. Specifically, consideration of 

methodological issues regarding the design, conduct, analysis, and interpretation of the 

results is fundamental to address a research question appropriately [37]. The main reasons 

for biomarker failures are summarized in the review by Pavlou et al. [38]. 

Because of the critical role of biomarkers at all stages of the disease, their development 

involves multiple processes. From initial discovery, they must undergo rigorous 

evaluation, including analytical validation, clinical validation, and assessment of clinical 

utility prior to incorporation into routine clinical care [39-41]. Concerning the properties 

of all mentioned types of biomarkers, an ideal biomarker should meet the following 

criteria: it should be reliable, highly sensitive and specific, robust, accurate, reproducible, 

cheap, and the biological sample for its evaluation should be easy to collect. Moreover, 

its metabolism should be clearly understood, it should be chemically stable, and no 

circadian or day to day variation should not occur for its validation [38]. 
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Biomarkers can be measured in several human biological specimens, typically with the 

use of biochemical, molecular, and cytogenetic techniques. They can be detected in the 

circulation (whole blood, serum, or plasma) or excretions or secretions (urine, stool, 

saliva, ascites, cerebrospinal fluid, sputum, or nipple discharge), and thus easily assessed 

non-invasively and serially. Alternatively, they can be tissue-derived and require either 

biopsy or specialized imaging for evaluation [42, 43]. Genetic/Germline biomarkers can 

be inherited and detected as sequence variations in germline DNA isolated from whole 

blood, sputum, or buccal cells, or can be somatic, and identified as mutations in DNA 

derived from tumour tissue [39]. 

1.2.3 Types of biomarkers 

Depending on the property, biomarkers can be divided into two main groups: molecular 

and classical biomarkers. Molecular biomarkers are substances and biomolecules that 

form a genome, epigenome, transcriptome, proteome or metabolome (Figure 6). They can 

be further classified as nucleic acids (e.g. genes, genetic variations, mRNAs, microRNAs, 

or other non-coding RNAs), proteins (e.g. enzymes, receptors, and antibodies), hormones, 

peptides, metabolites, etc. A molecular biomarker can also represent a collection of 

alterations (altered structure or function), such as gene expression, and proteomic and 

metabolomic signatures. Classical biomarkers are the morphological and functional 

characteristics of the phenome (e.g. size, histology and grading of the tumour, presence 

of invasion, mitosis, metastasis, results of functional imaging examinations, age, sex, 

patient's comorbidity, etc.) [36, 44, 45]. From classical biomarkers, a typical example of 

a complex biomarker is the TNM classification [46]. 

In terms of origin, we can divide biomarkers according to the biological levels at which 

the measurements were performed: cell (''cellome''), tissue (''tissueome''), organism 

(''organome''), and population (''populome'') (Figure 6). In oncology, it is further 

distinguished whether the biomarker originates from the tumour (biomarkers associated 

with cancer/tumour, cancer/tumour biomarkers) or from its host (host-associated 

biomarkers) [34, 44, 47]. 

The most frequently used classification of biomarkers in clinical practice is based on their 

function. These types of biomarkers describe their association with the patient and his/her 

disease (in detail in chapter 1.3). 
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Figure 6. Biogenesis of biomarkers (modified according to [34, 47]). 

 

1.3 Molecular cancer epidemiology 

1.3.1 Implementation of molecular cancer epidemiology 

High-throughput technologies have significantly led to a rapidly increasing use of 

molecular biomarkers as such and in epidemiological studies, i.e. in a field known as 

"molecular epidemiology" [48-51]. In 1982, Perera and Weinstein proposed "molecular 

cancer epidemiology" as a new paradigm for cancer research [52]. Based on the concept 

that there is a continuum between exposure to an external agent(s), its/their metabolism 

within the human body, and the onset of time-delayed disease (such as cancer), molecular 

cancer epidemiology is heading toward uncovering the "black box" of traditional 

epidemiology by searching for molecular biomarkers. Biomarkers can be focused on 

different stages of the onset and/or the development of the disease. We can distinguish 

three main types of biomarkers that are able to address the internal process of interaction 

between the external agent and the human body. These include 1) Biomarkers of 

exposure/internal dose, 2) Biomarkers of early biological effect, and 3) Biomarkers of 

susceptibility [53, 54] (Figure 7). 
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Biomarkers of susceptibility are unique since they may include all the mentioned types of 

biomarkers. They cover inherited and acquired genetic susceptibility, epigenetic 

modifications as well as alterations in physiological structures and functions induced by 

age, pathological conditions, and lifestyle factors, and may lead to different phenotypic 

manifestation [55]. Mainly inherited genetic susceptibility may play a role in influencing 

the individual response to exogenous exposures in a complex gene-environment 

interaction [56]. Therefore, understanding of which genetic variants, genotoxic changes, 

epigenetic profiles, and host factors may affect the susceptibility to cancer onset, 

progression and/or response to therapy appear to be essential to get insights into the still 

not well-understood exposure-disease continuum. 

Biomarkers also have many valuable applications in disease detection and monitoring of 

the patient's health status. Therefore, the three types of biomarkers mentioned above could 

be supplemented with the fourth group, 4) Biomarkers of the disease (Cancer 

biomarkers). This group is usually used, among others, in oncology in terms of clinical 

utility; however, it is not commonly classified as one of the main groups of biomarkers. 

It can be further divided into five subgroups: 4A) Screening biomarkers, 4B) Diagnostic 

biomarkers, 4C) Prognostic biomarkers, 4D) Predictive biomarkers, and 4E) Biomarkers 

for monitoring [43] (described in detail in the following paragraphs). All the mentioned 

types of biomarkers with their specific examples are summarized in Figure 7. 
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Figure 7. An overview of different types of biomarkers used in molecular cancer epidemiology (updated 

according to [43, 53, 57]). 
Figure summarizes three main classes of biomarkers used in molecular cancer epidemiology, supplemented by the fourth group 

commonly used in oncology. The specific examples are described in boxes at the bottom. 
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1.3.2 Cancer biomarkers 

Cancer (tumour) biomarkers refer to substances that are defined as "molecules which 

indicate the presence of cancer or provides information about the likely future behaviour 

of cancer, i.e. likelihood of progression or response to therapy" [58]. A challenge of 

cancer biomarker study is to translate the molecular-biological information into advances 

in patient's care [59]. Biomarkers can be used for cancer patient assessment in various 

clinical settings, including estimating risk of developing cancer (Biomarkers of 

susceptibility, also called as Biomarkers of risk assessment), screening for primary occult 

cancers (Screening biomarkers, also called as Detection biomarkers), distinguishing 

benign from malignant tumours or one type of malignancy from another (Diagnostic 

biomarkers), determining the prognosis of patients (Prognostic biomarkers), prediction 

of response to treatment (Predictive biomarkers), and monitoring status of the disease, 

either to detect recurrence or progression of the disease (Biomarkers for monitoring) [39] 

(Figure 8). 

The use of biomarkers in oncology has been much more extensive than in other diseases 

for more than 30 years [60]. Over the past ten years, there have been almost 34,400 

publications indexed in PubMed with the joint headings of "cancer" and "biomarker" in 

Title/Abstract [61]. Before the genomic era, most biomarkers used in clinical practice 

represented protein-based biomarkers which are still widely used. Although these 

biomarkers are cheap and easy to measure, they do not evince sufficient specificity and 

sensitivity and should be supplemented or even replaced by nucleic acid-based 

biomarkers in the future. In the following paragraph, examples of individual cancer 

biomarkers (mainly for solid cancers) currently used in the clinical practice are described. 

 

 

Figure 8. An overview of different types of cancer biomarkers (modified according to [62]). 
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1.3.3 Cancer biomarkers currently available in clinic 

Biomarkers of susceptibility: Identification of individuals who are at an increased risk of 

developing cancer is the goal of the risk assessment. This is currently possible with 

genetic testing for known cancer-related syndromes. The identification of many of the 

genes predisposing to hereditary cancer syndromes has been established within the past 

15 years [63, 64]. Examples of predisposing genes for hereditary cancer syndromes 

include BRCA1/2 (hereditary breast and ovarian cancer), APC (familial adenomatous 

polyposis), MLH1, MSH2, MSH6, PMS1, and PMS2 (hereditary non-polyposis colorectal 

cancer), MUTYH (colorectal cancer associated with familial adenomatous polyposis), 

MEN1 (multiple endocrine neoplasia type 1), RET (multiple endocrine neoplasia type 2), 

RB (retinoblastoma), and CDK4 and CDKN2A (familiar melanoma) [65]. Consequently, 

genetic testing for cancer susceptibility can be carried out within high-risk families. 

Screening biomarkers: One of the greatest challenges in oncology nowadays is the 

detection of cancer at an early stage, which means at a potentially treatable stage. Indeed, 

the development of screening (or early detection) biomarkers is currently one of the 

highest priorities in cancer research. Unfortunately, these types of biomarkers possess 

insufficient sensitivity for small tumours or premalignant lesions and lack of specificity 

in general. These features limit the use of the most available biomarkers in population-

based screening for early malignancy [66, 67]. Despite these issues, several biomarkers 

have undergone evaluation for cancer screening, since they are usually cheap and easy to 

measure. Indeed, a few biomarkers are currently widely used in asymptomatic people for 

a screening of early cancer, i.e. prostate-specific antigen (PSA) for prostate cancer [68, 

69], the faecal occult blood test for colorectal cancer [70], and Human Papilloma Virus 

testing (Pap smear) for cervical cancer [71]. 

Diagnostic biomarkers: Diagnosis, contrary to screening, involves patients with specific 

symptoms, which may or may not be due to cancer. In general, serum protein biomarkers 

contribute little to the early diagnosis of cancer, mainly due to the lack of both sensitivity 

and specificity. However, serum biomarkers may aid in the differential diagnosis of 

benign and malignant diseases in a small number of cases. Specifically, serum cancer 

antigen (CA) 125 is as an adjunct in differentiating between benign and malignant pelvic 

masses (ovarian cancer) in postmenopausal women [72-74]. Serum human epididymis 

protein 4 has superior specificity to CA 125, especially in premenopausal women, and 
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may be used similarly as CA 125 as a diagnostic aid in women with pelvic masses [74]. 

Another biomarker that can aid cancer diagnosis, in this case, hepatocellular cancer 

detection, is alpha-fetoprotein (AFP) [75]. Besides, AFP is also used to screen patients at 

high-risk of hepatocellular cancer [76]. 

Prognostic biomarkers: Following diagnosis and surgical removal of the primary 

tumour, the essential questions to be addressed for patient management are i) how 

aggressive is the tumour, and ii) is necessary to administrate the adjuvant (i.e. post-

operative) systemic therapy. Thus, if a tumour is deemed to be indolent (i.e. growing 

slowly), the patient may be able to avoid receiving adjuvant treatment. On the other hand, 

if it is identified as being potentially aggressive and life-threatening, the patient would be 

recommended to have additional therapy, such as adjuvant chemo(radio)therapy. Until 

recently, histological and clinical criteria mainly aided in addressing the above questions. 

However, these criteria are still universally used since a limited number of biomarkers 

have become available to supplement the traditional criteria for determining patient's 

prognosis nowadays. These include, for instance, the tissue-based biomarkers, urokinase-

type plasminogen activator, and plasminogen activator inhibitor-1 as prognostic 

biomarkers for certain cancer types [77, 78], and Oncotype DX and MammaPrint gene 

expression panels for assessing breast cancer patient's prognosis [79, 80]. Other 

biomarkers widely used to aid the patient's prognosis include AFP, human chorionic 

gonadotropin (HCG), and testicular lactate dehydrogenase in patients with testicular 

cancer (non-seminomatous type) [81], and PSA in patients with prostate cancer [82]. 

Also, BRAF mutations are indicative of patients' poor outcome in metastatic colorectal 

cancer [83]. 

Predictive biomarkers: Therapy predictive biomarkers aim for prospective identification 

of patients who are likely to respond or be resistant to specific treatments. The necessity 

of predictive biomarkers is substantiated by the fact that patients with tumours of the same 

organ type respond very differently to a specific drug. Therefore, response rates for 

unselected patients with various advanced cancer types to currently available systemic 

therapies vary from < 10 % to > 90 % [79, 84]. Many of the newer biological or molecular 

therapies, in particular, have efficacy in only a minority of unselected patients (< 10 %). 

This finding, when combined with the high costs of some of these drugs, illustrates the 

importance of having accurate therapy predictive biomarkers. In recent years, several new 
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predictive biomarkers entered clinical use, and their measurement is mandatory prior to 

the administration of appropriate treatment (summarized in [65]). These include tissue 

biomarkers such as oestrogen/progesterone and HER2 receptors in breast cancer for 

predicting response to endocrine and anti-HER2, respectively; KRAS/NRAS genotyping 

for selecting colorectal cancer patients likely to be resistant to treatment with anti-EGFR 

antibodies; evaluating the microsatellite instability (MSI) status for predicting response 

to 5-fluorouracil (5-FU) in colorectal cancer; BRAF genotyping for predicting response 

to specific BRAF inhibitors in metastatic melanoma; EGFR genotyping and ALK 

rearrangements evaluation for predicting response to EGFR TKI and ALK-inhibitors, 

respectively, in patients with non-small cell lung cancer; and KIT and PDGFRA 

genotyping for prediction of response to c-KIT/PDGFRA inhibitors in gastrointestinal 

stromal tumours [44, 85]. Mutation testing of plasma circulating tumour DNA is likely to 

complement or possibly replace some of the existing biomarkers in the future [86]. 

However, there is still an urgent need to identify predictive biomarkers for specific 

cytotoxic drugs, anti-angiogenic therapies, and immunotherapies. Regarding 

immunotherapy, a recent publication highlighted that mismatch repair (MMR) deficiency 

(so-called MSI-high status) predicts response of solid tumours to immune checkpoint 

blockade with antibodies to programmed death receptor-1 [87]. As well as assessing 

treatment efficacy, predictive biomarkers may also potentially identify upfront an 

optimum drug dose and predict severe toxicities. Nevertheless, there are few validated 

biomarkers for these purposes at present. 

Biomarkers for monitoring: These types of biomarkers may be used to detect 

recurrent/metastatic disease at a potentially curable stage with the assumption that early 

detection of disease recurrence/progression followed by the treatment initiation will result 

in a better patient's outcome than starting treatment when a recurrence is clinically 

evident. Biomarkers identifying early cancer recurrences that are used in clinical routine 

include HCG in trophoblastic malignancy, PSA in prostate cancer, carcinoembryonic 

antigen (CEA) in colorectal cancer, AFP and HCG in patients with germ cell tumours of 

the testis (non-seminomatous type), CA 15-3 in breast cancer, and CA 125 in ovarian 

cancer [88-98]. However, apart from CEA in colorectal cancer, there is little evidence 

that the early detection of recurrent disease and the initiation of new treatment enhances 

patient outcomes [88, 89]. The other purpose of the use of these types of biomarkers is 

the monitoring of patients with advanced cancer receiving systemic therapy. Although 
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imaging methods represent the gold standard for monitoring therapy response in 

oncology, the use of blood-based biomarkers is less expensive, more convenient for 

patients, and applicable in shorter intervals. Biomarkers widely used to monitor the 

therapy comprise the BRC-ABL translocation in chronic myeloid leukaemia, AFP and 

HCG in testicular germ cell cancers, CA 125 in ovarian cancer, PSA in prostate cancer, 

CEA in colorectal cancer, and CA 15-3 in breast cancer [88-98]. 

The concept of this Dissertation Thesis is based on investigating potential cancer 

biomarkers that are related to DNA damage and DNA repair. Therefore, the following 

chapters will be devoted to this subject to provide an overview of the importance of DNA 

damage and DNA repair in the context of cancer susceptibility, cancer development, and 

patient's therapy response and clinical outcome. 

1.4 Genome-maintenance network in preventing malignant 

transformation 

Genome instability is one of the leading forces driving the onset and progression of 

cancer. It is fuelled by DNA damage and errors made by the DNA damage response 

(DDR) system [99, 100]. Since the genome integrity is permanently challenged by DNA 

damaging agents (DDA), eukaryotic cells have evolved the mechanisms on how to deal 

with damaged DNA and limit genome instability. DNA lesions are detected, their 

presence is marked by a specific signal, and consequently, their repair is promoted by a 

variety of complex cellular pathways, which are collectively referred to as the DDR [101, 

102]. The complex DDR system is encoded by almost 200 human genes [103, 104]. Cells 

defective in DDR generally display heightened vulnerability towards DDA, and 

subsequent accumulation of mutations in the genome thus eventually contribute to cancer 

development. On the other hand, unrepaired and excessively accumulated DNA damage 

can be toxic, promoting pathways of cell elimination such as apoptotic and necrotic death 

that are also thought to function as tumour suppressor pathways [105]. 

1.4.1 Sources and types of DNA damage 

Nuclear DNA is continuously exposed to a myriad of DDA that have either endogenous 

or exogenous origin. Regarding endogenous DDA, the majority of the endogenously 
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induced DNA damage arises from the chemically active DNA engaging in oxidative and 

hydrolytic reactions with reactive oxygen species and water, respectively, that are 

naturally present within cells. [106-108]. In addition, non-enzymatic methylation also 

generates nucleobase lesions. DNA strand breaks (SBs) arising from physiological 

processes are caused by abortive topoisomerases activity, and DNA mismatches are 

occasionally introduced during DNA replication [102]. Other endogenous DDA are 

produced by gut microbiota metabolism [109], and some radicals (reactive oxygen and 

nitrogen compounds) are also produced by activated immune cells such as monocytes and 

macrophages as well [110]. 

Exogenous DDA comprise physical, chemical and specific biological agents from the 

environment. Examples include radiation (UV and IR), chemical mutagens (aromatic 

hydrocarbons, halogenated hydrocarbons, aromatic amines, and alkylating agents), high 

temperature, heavy metals (Ni, Cd and As), viruses and certain DDA produced by 

microorganisms, fungi, and plants (e.g., aflatoxin, mitomycin C) [111, 112]. The 

individual DDA causing the specific DNA lesions are summarized in Figure 9A. 

DDA cause damage in DNA nitrogenous bases or its sugar-phosphate backbone. 

Furthermore, some DDA may cause the formation of covalent bonds between DNA 

molecule and proteins (DNA-protein cross-links), thus affecting DNA-histone and DNA-
transcription factor interactions [112]. However, the vast majority of DDA affects the 

primary structure of the DNA double helix, which means that nitrogenous bases 

themselves are chemically modified. It is estimated that out of the 3 × 109 bases in the 

human genome, 25,000 of bases are altered in some way per cell per day [113]. Such 

modifications can, in turn, disrupt the regular helical structure of DNA by the introduction 

of non-native chemical bonds or bulky adducts that do not fit in the standard double helix. 

As a consequence, these lesions cause DNA single-strand breaks (SSBs). Moreover, when 

two SSBs arise in close proximity, or when the DNA-replication apparatus encounters a 

SSB or certain other lesions, DNA double-strand breaks (DSBs) are formed. While DSBs 

do not occur as frequently as the other lesions listed above, they are difficult to repair and 

extremely toxic [114]. If they remain unrepaired, mutations and chromosomal 

rearrangements which are causal events in oncogenic transformation and tumour 

progression occur [111]. The specific consequences of DNA damage are summarized in 

Figure 9B. 
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Figure 9. A summary of various DNA damaging agents and types of DNA damage induced (A) along with 

the consequences arising from DNA damage (B) (modified according to [115, 116]). 
Figure 9A summarizes sources and types of DNA damage. Environmental and endogenous sources of DNA damage are shown in 

green boxes, examples of therapeutic DNA damaging agents are shown in yellow boxes, and the types of lesions induced by particular 

agents are shown in grey boxes. Figure 9B summarizes the consequences arising from DNA damage. Abbreviations: 1-mA – 1-

methyladenine, 3-mC – 3-methylcytosine, O6-mG – O6-methylguanine, SAM – S-adenosyl methionine, TMZ – temozolomide, TOPO 

– topoisomerase, UV – ultraviolet. 

  

Single-
strand break

Damaged 
base

Double-strand 
break

Intra- and inter-strand 
cross-link

Base 
mismatch

Bulky adducts
Pyrimidine dimers

O6-mG, 1-mA, 
3-mC

CH3

• SAM
• Nitrosated

amines and 
bile acids

• Dietary 
nitrosamines

• Replication 
errors

• SAM
• Spontaneous 

base 
modifications

• Oxygen radicals
• SAM
• Spontaneous reactions –

base deamination or loss
• Natural ionizing radiation
• High temperature
• Trapped TOPOI

• UV light
• Polycyclic aromatic 

hydrocarbons
• Aflatoxin

• UV light
• Natural ionizing radiation
• Stalled replication fork
• Trapped TOPOII
• Acrolein
• Crotonaldehyde

Environmental 
or endogenous 

DDA

Therapeutic
DDA

• TMZ
• Alkylating 

agents
• Nitrosoureas

• TMZ
• Nucleoside 

analogues

• TMZ
• Ionizing radiation
• Radio-mimetics
• TOPOI poisons
• Antimetabolites

• Cisplatin
• Carboplatin
• Nitrosoureas

• Ionizing 
radiation

• Radio-mimetics
• TOPOI poisons
• Antimetabolites

• Cisplatin
• Carboplatin
• Nitrosoureas
• Mitomycin C

Type of DNA 
lesion

A

Amount and type of DNA 
damage can be handled DNA damage is excessive and/or irreparable

Activation of the survival 
response network

Stress 
responses

Cell-cycle 
checkpoints

DNA 
repair

Low 
fidelity 
repair

Mutations
Chromosomal 

aberrations

Inhibition of replication, transcription, 
chromosome segregation

Activation of 
the apoptotic 

pathways

Cell survival
Malignant 

transformation
Ageing

Inborn disease

Cell death (Transient) cell-
cycle arrest

B



 

 25 

1.4.2 DNA damage repair systems 

DNA repair represents a complex biological system that comprises several distinct 

pathways repairing different types of DNA damage. Besides, the evidence for extensive 

interactions among proteins involved in distinct DNA repair pathways continues to 

emerge. No single pathway efficiently repairs all types of DNA lesions, and some lesions 

serve as substrates for more than one pathway [117]. Interestingly, if canonical DNA 

repair pathways are deficient, alternative repair mechanisms may be employed to 

compensate for that lack of function [118, 119]. Particular DNA repair pathways include: 

i) repair of base DNA damage by direct reversal DNA repair and base excision repair 

(BER); ii) repair of multiple and bulky base damage by nucleotide excision repair (NER), 

MMR, inter-strand cross-link repair (i.e. Fanconi anaemia (FA) pathway), and translesion 

synthesis; and iii) repair of DNA breaks by SSB repair pathway and DSB repair pathway 

(comprising homologous recombination – HR* and non-homologous end joining – 

NHEJ) [106]. SSB repair and BER are often assumed to be synonymous because they 

involve the same components and are similar after the initial recognition step [115]. 

Individual DNA repair pathways, their function and key enzymes involved are 

summarized in Table 1. 
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Table 1. The summary of DNA repair pathways responsible for repairing the individual DNA lesions along 

with a short description of their function and key genes involved (modified according to [118, 120]). 

 

 

Abbreviations: BER – base excision repair, DSBs – double-strand breaks, FA – Fanconi anaemia, HR* – homologous recombination, 

ICL – inter-strand cross-links, MMR – mismatch repair, NER – nucleotide excision repair, NHEJ – non-homologous end-joining, 

SSBs – single-strand breaks, TLS – translesion synthesis. 

Repair pathway Type of DNA damage Function Number 
of genes 
involved

Key genes

Direct reversal repair Base modifications, 
including O6-
methylguanine, 1-
methyladenine, 3-
methylcytosine, and N-
methylated adenosine and 
cytosine 

Direct repair of modified bases by enzymatic 
processes: demethylation.

3 MGMT, ALKBH1

Base excision repair 
(BER) (incl. Short 
patch repair, Long 
patch repair, and SSB 
repair)

Damaged and modified 
bases, SSBs

Monofunctional and bifunctional DNA 
glycosylases and endonucleases excise  
damaged base to generate a basic site. Abasic 
sugars following spontaneous deamination, 
oxidation or alkylation to form SSBs, followed 
by nicking, resynthesis, and SSB repair.

42 OGG1, NEIL1, NEIL2, 
NEIL3, APEX1, PARP1, 
PARP2, XRCC1, POLB, 
LIG1, LIG3, FEN1, PNKP, 
MUTYH

Nucleotide excision 
repair (NER) (incl. 
Transcription-coupled 
NER and Global NER)

Bulky DNA adducts, 
helix‐distorting adducts 
(inter- and intra-strand 
cross-links)

Damage recognition and unwinding of local 
DNA, nuclease excision, resynthesis, and SSB 
repair.

66 RAD23B, DDB1, RPA1, 
RPA2, ERCC1, ERCC2 
(XPD), ERCC3, ERCC5, 
ERCC6, ERCC8, GTF2H1, 
GTF2H2, GTF2H4, 
GTF2H5, GTF2F2, CDK7, 
MMS19, MNAT1, XPA, XPC, 
CCNH, PCNA, RFC1

Mismatch repair 
(MMR)

Base mismatches (single 
nucleotide mutations and 
small insertions/deletions) 
mainly caused by 
replication errors

Recognition and removal of mismatched base 
followed by resynthesis of correct base and 
SSB repair.

27 MLH1, MLH3, MSH2, 
MSH6, PMS2

Inter-strand cross-link 
(ICL) repair, i.e. 
Fanconi anaemia (FA) 
pathway

Inter-strand cross-links Cross-links are excised and then repaired by 
HR (or other mechanisms).

22 BRCA2, FANCA, FANCB, 
FANCC, FANCD2, FANCE, 
FANCG, FANCF, FANCI, 
FANCL, BRIP1, FANCM, 
FAAP20, FAAP100

Translesion synthesis 
(TLS) (DNA damage 
bypass rather than 
repair)

DNA adducts Error-prone polymerases synthesize DNA past 
regions of damage, especially bulky DNA 
adducts (If damaged DNA bases or adducts 
are not repaired before replication has initiated, 
they may stall replication forks, contributing to 
genetic instability. Specialized TLS DNA 
polymerases are recruited to synthesize the 
DNA at these sites.)

19 POLH

Homologous 
recombination (HR*)

DSBs Unwinding and resection at DSB to generate 
single-strand end, strand invasion, homologous 
recombination with sister chromatid, 
resynthesis, and resolution. Results in exact 
repair using sequences from sister chromatid.

52 BRCA1, BRCA2, RAD51, 
RAD52 TP53BP1, RBBP8 
(CTIP), EXO1, RPA1, RPA2, 
BLM, PALB2,  MRN 
complex: MRE11, RAD50, 
NBN (NBS1)

Non-homologous end 
joining (NHEJ)

DSBs Processing and re-ligation of DSB ends. Error 
prone due to processing steps and because the 
homologous template is not used for repair.

27 PRKDC (DNA-PKcs), 
XRCC5 (Ku80), XRCC6 
(Ku70), LIG4, XRCC4, 
POLQ, NHEJ1, DCLRE1C 
(Artemis), PARP1, PARP2, 
XRCC1
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1.5 DNA damage and DNA repair in relation to cancer 

Genome instability represents one of the most pervasive characteristics of tumour cells. 

It arises as a consequence of the combined effect of DNA damage, tumour-specific DNA 

repair defects, and a failure to stall or stop the cell cycle before the damaged DNA is 

passed on to daughter cells [10]. Not surprisingly, in many cancers, DNA repair, DNA 

damage tolerance and DDR pathways are disrupted or deregulated, which increases 

mutagenesis and genome instability, thereby promoting cancer progression [121-123]. On 

the other hand, DNA repair appears to play a substantial role in cancer therapy response. 

Therefore, a better understanding of the cellular response to DNA damage will not only 

refill our knowledge of cancer onset and development but also help to refine the cancer 

classification as well as treatment [124]. Based on these findings, a recent study by Chae 

et al. has compiled and analysed a comprehensive list of DNA repair genes utilising the 

large databases Catalogue Of Somatic Mutations In Cancer [125] and The Cancer 

Genome Atlas [126, 127]. The study provided a list of candidate DDR genes that may 

serve as potential biomarkers for genome instability, novel therapeutic targets, or 

predictors of therapy efficacy [103]. 

An integral part of this Dissertation Thesis is a chapter which reflects long-lasting 

(approximately 25 years) experience of our Department with the study of DNA damage 

and repair in relation to cancer as well as the most recent findings, accomplished during 

my PhD studies. In recent years, we have published four review articles on this topic 

(Publications IX–XII), which represent a part of this Thesis, and their content is 

summarized in this chapter. 

1.5.1 DNA damage repair and cancer susceptibility and development 

Each individual has a different risk of developing cancer that is mainly determined by 

genetic background and exposure to carcinogens. Genetic predisposition affects not only 

hereditary forms of cancer but also applies to sporadic tumours, which represent 

approximately 90-95 % of all cancers [128, 129]. Inter-individual differences in DNA 

repair systems may play a role in modulating the individual risk of developing cancer. 

Among the genes playing a role in cancer susceptibility, DNA repair genes are prominent 

candidates as cancer is associated with inherited deficiencies of DNA repair [124]. 
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Alterations in genes involved in DNA repair pathways are associated with the 

development of several malignancies, summarized in [103]. Inactivating mutations and 

hypermethylation in MMR genes (i.e. MSH2, MSH6, MLH1, PMS1, and PMS2) lead to 

the development of hereditary non-polyposis colorectal cancer and MSI, conferring a 

70% lifetime risk of colorectal cancer and an increased risk of developing other cancers, 

such as endometrial, ovary, stomach, small intestine, hepatobiliary tract, upper urinary 

tract, brain, and skin [130]. Germline mutations in BRCA1 and BRCA2, involved in HR* 

and FA repair pathways, increase the risk of developing, among others, breast cancer by 

40-80 % and ovarian cancer by 11-40 % [131]. Moreover, defects in ATM, another gene 

involved in HR* pathway, are associated with ataxia-telangiectasia and up to a 25% 

lifetime malignancy risk, particularly lymphomas and leukaemia as well as other cancers 

[132]. Regarding NER defects, these are responsible for xeroderma pigmentosum, which 

is linked to a 70% risk of skin cancer by eight years of age [133]. 

Nevertheless, it remains ambiguous whether all alterations in DNA repair genes are truly 

causal events in driving tumorigenesis, as mutations in ''mountain'' genes, or are a by-

product of the malignancy and represent more infrequently mutated ''hills'' [134]. In 

support of the former is the "mutator phenotype" and the concept that early mutations in 

critical genes, such as those involved in DNA repair, resulting in genome instability and 

subsequent hypermutability, accounting for the high mutation rate seen in tumours [135]. 

This theory of causality was further supported by studies documenting that MMR 

mutations and MSI are commonly seen in early adenomas and early stages of colorectal 

cancer [136, 137]. 

1.5.2 DNA damage repair and patients' treatment and monitoring 

Cancer treatment strategies, from which the most widely used are chemotherapy and 

radiation therapy, are designed to have cytotoxic effects on rapidly dividing cells (such 

as cancer cells) via induction of DNA damage. In response to induced DNA lesions, the 

DDR machinery allows cells to activate cell cycle checkpoints and proapoptotic signals 

to preserve genome integrity. Depending on the cell or tissue type, persistent genotoxic 

insults could trigger either cellular death by mitotic catastrophe or autophagy or induce a 

replicative stress-induced state of cellular senescence [102]. Although DDR 

dysregulation is causative and permissive of malignant transformation of normal cells and 

cancer progression, it can provide a weakness that can be exploited therapeutically in both 
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conventional cytotoxic therapy and targeted therapy using DDR inhibitors [115, 121, 124, 

138]. Tumour cell sensitivity to chemo- and radiotherapy can highly depend on the 

cellular capacity to repair DNA damage within and between tumour types. Therefore, 

annotation of functional defects in DDR may allow for the development of novel 

prognostic biomarkers as well as could be used to predict therapeutic response, including 

predicting responses following inhibition of DNA repair. 

Several studies found the association of upregulation of DNA repair genes with resistance 

to chemo- and radiotherapy in multiple tumour types [121] and with the tumour's ability 

to metastasize [139, 140]. Thus, while the loss of DNA repair function is significant in 

cancer initiation, the gain of function of similar genes and re-activation of lost DNA repair 

pathways is involved in cancer progression [141, 142]. Targetable DNA repair inhibition 

has been shown to enhance tumour responses to therapy. For instance, PARP1 inhibitors 

are used to treat patients with advanced breast and ovarian cancer harbouring 

BRCA1/BRCA2 deleterious mutations, as loss of BRCA sensitizes these tumours to 

further inhibition of DNA repair resulting in a synthetic lethality [143, 144]. PAPR1 

inhibitors also evince potential in many other cancer types with DNA repair deficiencies 

[145], and inhibition of other DNA repair genes is being evaluated to induce synthetic 

lethality, including PRKDC inhibition in MYC-overexpressing tumours [146]. 

Therapeutic targets encompassing DDR pathways are reviewed in [147]. Besides, the 

emerging field of personalized immunotherapies directed specifically against mutated 

cancer "neo-antigens" may ultimately prove to be strongly linked to impairment in DNA 

repair [148]. 

1.6 Candidate cancer biomarkers associated with DNA damage 

and DNA repair 

This chapter briefly describes those biomarkers studied in this Dissertation Thesis, which 

can serve as potential biomarkers of susceptibility and/or patients' clinical outcome. 

1.6.1 Single nucleotide polymorphisms (SNPs) 

While mutations in DDR genes are associated with high degrees of individual cancer risk, 

these rare events explain only a small fraction of all cancers [149]. Given the importance 
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of DNA damage to cancer development, it is plausible that common variants of DNA 

repair genes would contribute to cancer risk. Such a risk could be measured in large, 

genome-wide association studies (GWAS), or the studies of candidate genes. GWAS 

represent a hypothesis-free (or technology-driven) approach that was applied in 

Publication V and VI. The latter, a hypothesis-based (or hypothesis-driven), approach 

was used in Publication IV and VII. No conclusion has been reached about which of these 

two approaches is more effective/convenient in studying SNPs [150]. 

SNP, a substitution of a single nucleotide occurring in > 1 % within a population, 

represents the most frequently studied type of DNA variation potentially being associated 

with the altered susceptibility to cancer. SNPs are reproducible and possible to measure 

at any point in time (may be used in both prospective and retrospective studies). 

Moreover, the identification of SNPs is becoming increasingly routine, including limited 

genotyping of tumour DNA and screening of somatic (non-tumour) DNA for mutations 

that predispose to cancer or alter treatment response [59]. 

GWAS are feeding into the clinical use of DNA variants and have identified hundreds of 

SNPs and susceptibility loci associated with risk for various cancers [151-161]. 

Nevertheless, only few GWAS have identified cancer susceptibility loci near DNA repair 

genes at stringent levels of significance that have also been shown to function through 

altered DNA repair [156, 159, 161, 162]. These data suggest that common variants in 

DNA repair genes may not make significant contributions to cancer susceptibility and 

that cancer susceptibility may be mostly conferred by high-risk, rare variants within this 

class of genes. However, it is possible that underpowered GWAS could miss common 

variants with weak effect sizes and also, one of the limitations of GWAS is that only 

common SNPs are captured, which by themselves may only contribute a small amount of 

risk to developing cancer. Recently, a pooled analysis of thousands of SNPs in DNA 

repair genes for most common cancers has been performed by analysing data from 32 

GWAS in order to reveal increase the power to detect common variants associated with 

cancer susceptibility [163]. GWAS are also identifying predictors of sensitivity to 

radiation therapy [164] and the pharmacodynamics of anticancer drugs [165]. 

Nevertheless, SNP-based research to identify oncogenic DNA abnormalities remain a 

significant challenge, due to the difficulty of separating these cancer-causing 

abnormalities from genetic and epigenetic "noise" [166]. 
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1.6.2 Chromosomal aberrations (CAs) 

Accumulation of chromosomal abnormalities contributes to genome instability, 

specifically to chromosomal instability. Acquired chromosomal abnormalities can be 

structural or numerical. In the studies involved in this Thesis (Publication I, II, IV, V, and 

VI), we focused on structural chromosomal abnormalities, i.e. CAs in peripheral blood 

lymphocytes (PBLs). Structural CAs arise as consequences of direct mutagenic effect 

and/or due to DNA repair dysfunction [167]. Unrepaired or insufficiently repaired DSBs, 

as well as telomerase dysfunction, are substantial players in the formation of structural 

CAs [168, 169]. Morphologically distinct types of chromosome-type aberrations (CSAs) 

and chromatid-type aberrations (CTAs) emerge depending on the types of clastogens to 

which individuals are exposed and at which stage of the cell cycle SBs appear as primary 

lesions that consequently result in CAs. Usually, G0 or G1 phase-dependent clastogens 

such as IR or bleomycin create DSBs that are either incompletely repaired by NHEJ or 

remain unrepaired and eventually give rise to CSAs, including dicentric and ring 

chromosomes. CTAs include chromatid breaks and exchanges that affect only one 

chromatid of a chromosome. They are induced by chemical or environmental clastogens 

during the S or G2 phase and arise from SBs. These breaks are later converted into DSBs 

possibly through failed or incomplete HR*, giving rise to chromatid breaks [170, 171] 

(Figure 10). 

CAs can be further divided into non-specific and specific. The non-specific CAs that we 

focused on in our studies represent non-recurrent, non-clonal karyotypic alterations. They 

are derived from a single abnormal cell that can remain in the cell for its lifespan and thus 

can be detected by the standard cytogenetic analysis [172, 173]. The specific CAs are 

often recurrent and are analysed by molecular cytogenetic methods, such as sequencing 

and fluorescent in situ hybridization. Many human cancers and neoplastic cells exhibit 

specific CAs, especially translocations and related gene fusions [174]. In the recent past, 

a majority of studies has been focussed on clonal specific CAs as they relate to a specific 

disease or condition and non-specific CAs have been largely ignored since they were 

considered as insignificant genetic "noise" [175]. The evidence linking non-specific CAs 

with cancer is not as overwhelming as it is for specific CAs. However, an examination of 

non-specific CAs in PBLs has been conventionally used in individuals exposed to 

mutagens and potential carcinogens for decades as a surveillance mechanism for 
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genotoxic effect [176-178]. Elevated non-specific CAs in PBLs have been detected 

during the course of cancer evolution, making them an early biomarker of cancer 

susceptibility based on the hypothesis that genetic damage in PBLs reflects similar 

damage in other body cells undergoing carcinogenesis [179, 180]. Therefore, it is 

important to investigate the basis of the origin and the accumulation of CAs both in 

healthy individuals and cancer patients. 

1.6.3 Telomere length (TL) 

Telomeres are unique nucleoprotein structures composed of TTAGGG tandem repeats 

that cap ends of linear eukaryotic chromosomes. In the normal human population, the 

length of telomeres is heterogeneous, ranging between 5 and 15 kb. Also, TL is influenced 

by the genetic background and environmental factors [181]. The telomere complex 

regulates a ''cellular mitotic clock'' and protects chromosomes against exonucleolytic 

degradation, DNA damage and chromosomal instability [182-184]. Telomeres 

progressively shorten through the cellular lifespan. At each cell division, human 

telomeres lose 50-200 bp [185]. The telomeric loss at between 9 and 147 bp per year, 

depending on the organ/tissue has been determined [186]. Telomere shortening can cause 

the proliferation arrest and apoptosis of the cell through the loss of protection at 

chromosome ends. Critically shortened telomeres may be poorly end-capped and 

recognized as DSB by repair machinery [187]. These processes may underlie end-to-end 

chromosome fusions, the initiation of breakage-fusion-breakage cycles, and lead to 

telomere crisis with consequent genome instability that can induce the development of 

numerical and structural chromosomal abnormalities [188-191]. On the other hand, the 

reactivation of telomerase stabilizes telomeres and immortalizes premalignant cells, thus 

enabling cancer progression [192]. Altogether, TL plays a critical role both in genome 

integrity maintenance  [193, 194] and cancer initiation/progression [195, 196] (Figure 

10). There is growing evidence of shorter telomeres caused by low telomerase activity in 

somatic cells being associated with the increased frequency of CAs in PBLs, in particular 

with CSAs [197, 198]. Therefore, we focused on measurement of TL in PBLs in 

Publication II and III to examine whether the telomere shortening contributes to the 

formation of CAs and whether TL may be used as biomarkers on cancer susceptibility 

and/or predictive/prognostic biomarkers. 
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Figure 10. Sources of chromosomal instability (modified according to [199, 200]). 
Single-stranded DNA damage, if unrepaired, gives rise to DSBs and CTAs. Shortened telomeres may be poorly end-capped and 

recognized as DSBs by repair machinery, resulting in the development of numerical and structural CAs. 

Abbreviations: CAs – chromosomal aberrations; CTAs – chromatid-type aberrations; DSB – double-strand break; SSB – single-strand 

break. 

 

1.6.4 Phenotyping DNA repair as DNA repair capacity (DRC) 

As evident from current knowledge on DNA repair, it represents a multiprotein and 

multistep process which works in a synchronized and coordinated way, together with 

simultaneous participation of DNA damage signalling and cell cycle control. Therefore, 

a real multivariate approach needs to be undertaken to understand this complex system. 

Although the genetic variants of DNA repair genes may provide useful information on 

their association with cancer susceptibility and patient's clinical outcome, their functional 

consequences are usually predicted in silico. Thus, DNA analysis does not provide full 

information on the overall DRC. Similarly, individual gene and protein expression levels 
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did not prove to be sufficiently informative about the overall DRC; several studies have 

reported an inconsistency between transcript level and respective protein quantity [201], 

or actual protein/pathway activity [202, 203]. 

Moreover, genetic predisposition does not exclusively modulate DNA repair activity of 

individuals [204], it is also influenced by environmental and lifestyle factors via various 

mechanisms, such as modulation of the activity of DNA repair enzymes, the pool of DNA 

precursors, and regulation of expression of DNA repair genes [205]. Summarizing all 

mentioned above, a better characterization of DNA repair at the functional level as DRC 

(used in Publication III and VIII), the true phenotypic endpoint that comprises the 

variability of both hereditary and environmental components, gives the information of 

actual DNA repair activity of the cell/tissue/organism [117, 206]. 

 

To conclude the Introduction, the constant increase of cancer incidence and the enormous 

costs of (new) treatments make searching for novel cancer biomarkers a crucial goal in 

order to maintain sustainable public health systems across the world. Carcinogenesis is a 

multistep process, which allows time for active intervention that requires well-defined 

risk classification. Consequently, personalized strategies and specific treatments can be 

applied to cohorts with a documented increased cancer risk. Also, understanding of 

different patients' responses to particular anti-cancer treatment remains insufficient. Since 

each patient is genetically unique, there is a growing need for novel predictive and 

prognostic biomarkers in order to aid oncologists in the selection of optimal type, 

combination and dose of drugs for each patient to improve their outcome and minimizing 

treatment-related toxicity. Further development of these strategies in an efficient and 

timely manner requires investment in the discovery and validation of surrogate cancer 

biomarkers to detect and monitor the efficacy of interventions in clinical trials and 

beyond.  
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2. Hypotheses & Aims 

The overall aim of this Dissertation Thesis reflects the current interest in identifying the 

nature and biological regulation of DNA damage and DNA repair and the impact of their 

accumulation and deregulation, respectively, on the cancer development, patients' therapy 

response and clinical outcome. In our studies, we focused on searching for potential novel 

biomarkers related to DNA damage and DNA repair, and on confirmation of the validity 

of already existing biomarkers. We also explored the biological basis of different 

biomarkers and their associations. 

 

The work was divided into three main parts in which the working hypotheses and 

experimental work were driven by these major assumptions: 

1) Genome instability as one of the leading forces driving cancer onset and progression 

is caused by the accumulation of DNA damage and deregulation of DNA repair. 

Therefore, increased levels of chromosomal damage, telomere shortening and inter-

individual variations in DSB repair capacity may play a significant role in the 

individual cancer susceptibility and patients' clinical outcome after diagnosis. 

2) Due to extensive interactions between individual DNA repair pathways, inter-

individual differences in DRC may be caused by genetic variants in different DNA 

repair genes and other related genes and their gene-gene interactions. These genetic 

variants may thus contribute to different levels of chromosomal damage in both in 

disease-free population and occupationally exposed population, as well as in cancer 

patients.  

3) In many cancers, DNA repair pathways are disrupted or deregulated, thereby 

promoting cancer progression. We thus assumed that inter-individual differences in 

DRC might be associated not only with cancer susceptibility, but they may also affect 

patients' therapy response and clinical outcome after diagnosis. 
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Explicitly, we stated the following aims: 

1) To examine whether CAs, TL and DSB repair capacity in PBLs are associated with 

cancer susceptibility and patients' clinical outcome, and also, whether the telomere 

shortening contributes to the formation of CAs and whether inter-individual variation 

in DSB capacity may influence the levels of DNA damage and TL. 

2) To explore the genetic basis of inter-individual variations in CA frequency in PBLs 

and whether it depends on the level and type of exposure by finding novel SNPs 

predisposing to the formation of CAs and potentially to cancer; and to examine 

whether SNPs in DNA repair genes and other genes and their interactions are 

associated with the levels of CAs. 

3) To search for differences in DNA repair in cancer patients which may aid in 

stratifying patients according to predicted therapy response and patients' survival. It 

will lead to an individual approach to patients and may be an attractive target for 

therapeutic intervention strategies. 
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3. Material and Methods 

3.1 Study populations 

All studies included in this Thesis were performed on human biological samples, largely 

on peripheral blood cells and a few of them also on tissue samples. The design of all 

studies was approved by appropriate Ethic committees of participating 

institutions/hospitals. All studies had adhered to the ethical guidelines as set out in the 

Helsinki Declaration – all participants were sufficiently informed about all aspects of the 

study, agreed with the study purpose and procedures to be undertaken (including the 

storage of biological samples and personal data) and provided informed consent. 

Publication I: The study population consisted of three groups of the incident (i.e. newly 

diagnosed) and histologically confirmed individuals with breast (N=158), colorectal 

(N=101), and lung (N=87) cancer, and a group of healthy control individuals without any 

personal cancer history (N=335) from the Czech Republic and Slovakia. All individuals 

were sampled for peripheral blood. Baseline characteristics such as demographics, family 

history of cancer, smoking habit, occupational history, body mass index, and the presence 

of other diseases and drugs received were collected prior to blood collection using a 

structured questionnaire. Moreover, patient disease characteristics, including tumour 

location, TNM stage, histopathological grade, histological classification, and the presence 

of hormonal receptors in breast tumours, were collected after surgical resection. 

Publication II: The study was conducted on almost the same groups of patients and 

healthy control individuals, as in Publication I. The total numbers of cancer patients in 

individual groups only slightly differed: breast cancer patients (N=151), colorectal cancer 

patients (N=96), lung cancer patients (N=90). The number of individuals in the control 

group remained unchanged (N=335). In this study, we also collected the follow-up data. 

Publication III: The study population comprised newly diagnosed and histologically 

confirmed individuals with breast (N=47) and colorectal (N=44) cancer patients and two 

healthy control groups (N=46 and N=44) from the Czech Republic. The individuals were 

sampled for peripheral blood and the same baseline and patient's disease characteristics, 

as in Publication I, were collected. 
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Publication IV: The studied group involved in this study consisted of healthy individuals 

(N=2196) from the Czech Republic and Slovakia. The population comprised individuals 

with defined occupational exposures as well as an unexposed reference group. The 

individuals were sampled for peripheral blood and completed a questionnaire regarding 

the job category, mode and duration of exposure, various exogenous factors (such as 

smoking and dietary habits, alcohol consumption, drug usage, and exposure to X-ray 

radiation) prior to blood collection. 

Publication V: The study population consisted of healthy individuals (N=1473) from the 

Czech Republic and Slovakia, which were divided into two groups based on the 

measurable exposure to genotoxins due to their occupation and smoking habits. The 

exposed and unexposed reference group consisted of 607 individuals and 866 individuals, 

respectively. The individuals were sampled for peripheral blood and completed the same 

questionnaire as in Publication IV. 

Publication VI: The sample set (discovery set) comprised healthy individuals (N=639) 

from the Czech Republic and Slovakia. The subjects consisted of individuals with defined 

occupational exposures as well as an unexposed reference group. The individuals were 

sampled for peripheral blood and completed the same questionnaire as in Publication IV. 

The replication was conducted on two different sample sets. The first replication set 

(replication 1) consisted of 482 individuals (newly diagnosed primary cancer patients – 

described in Publication I, and self-reported smokers). The second set (replication 2) was 

composed of 1288 individuals (occupationally exposed individuals and self-reported 

smokers). All individuals were sampled for peripheral blood. 

Publication VII: This study was carried out on a discovery cohort from the Czech 

Republic comprising newly diagnosed and histologically confirmed individuals with 

sporadic colorectal cancer (N=1832) and healthy control individuals (N=1172), and 

replication cohort from Austria comprising newly diagnosed and histologically confirmed 

individuals with sporadic colorectal cancer (N=950) and healthy control individuals 

(N=820). Patients were sampled for non-malignant colon/rectal tissue or peripheral blood 

and healthy controls for peripheral blood. The same baseline and patient disease 

characteristics, as in Publication I, were collected from both cohort participants, along 

with the type of cancer therapy regimen received and the follow-up data. 
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Publication VIII: The set of patients in this study comprised newly diagnosed and 

histologically confirmed individuals with the sporadic form of colon cancer (N=123) 

from the Czech Republic. For each patient, we have collected paired samples of tumour 

tissue and non-malignant adjacent mucosa (5-10 cm distant from the tumour). The same 

baseline and patient's disease characteristics, as in Publication I, were collected along 

with the type of cancer therapy regimen received and the follow-up data. 

3.2 SNPs analysis 

3.2.1 Selection of candidate SNPs 

The candidate SNPs were selected using different in silico bioinformatic tools to examine 

their functional consequences (Publication IV – SIFT and PolyPhen; Publication V and 

VI – Locus zoom, UCSC genome browser, Haploreg, Regulome DB; Publication VII – 

F-SNP, GERP, SiPhy, ELASPIC and DUET) and according to relevant published 

literature. The SNPs were filtered for their minor allele frequency (MAF > 5-10 % 

depending on the particular Publication) in Caucasian populations to reach an appropriate 

representation of all genotypes in sets of patients and healthy individuals (using 

UK10K—1000 Genomes Project). Besides, functional consequences of highly associated 

SNPs were predicted including their location with respect to the genes in the region, the 

presence of regulatory elements, linkage disequilibrium and expression effects from 

expression quantitative trait loci studies. Individual genes and SNPs, together with their 

selection, are described in detail in the corresponding Publications. 

3.2.2 Genotyping 

Genomic DNA from blood samples was isolated using standard procedures. If the blood 

sample was not available, non-malignant colon/rectal tissue was used to obtain DNA by 

the DNeasy Blood and Tissue Kit (Qiagen). SNPs were determined by Restriction 

Fragment Length Polymorphism technique, TaqMan Allelic Discrimination Assay 

(Applied Biosystems), KASP™ Genotyping Assay (LGC genomics), Axiom Genome-

Wide CEU 1 Array (Affymetrix), and Illumina HumanOmniExpress Exome 8v1.3 chip 

array (Illumina). More details about genotyping procedures can be found in Publications 

IV–VII. 
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3.3 DNA damage assays 

3.3.1 Evaluation of CAs 

Cytogenetic analysis was performed on cultured PBLs as described in [177, 207-209]. 

Briefly, whole-blood samples were cultured in EKAMTB-100 complete medium with 

phytohemagglutinin (EuroClone S.p.A.), (Publication I, II, and IV), or in RPMI medium 

(Roswell Park Memorial Institute) along with L-glutamine and NaHCO3 (Gibco) 

supplemented with 20% foetal calf serum (Gibco), antibiotics (penicillin and 

streptomycin, Gibco), and phytohemagglutinin (Murex), (Publication V and VI), for 50 

hours at 37°C. After 48 hours of cultivation, cell division was stopped by colchicine 

(Sigma-Aldrich) in the first metaphase of mitosis. After a cytogenetic procedure, 

microscopic slides were stained by conventional Giemsa-Romanowski solution (Sigma-

Aldrich). Microscopical analysis of 100 metaphases with 46 ± 1 chromosomes has been 

blindly performed by two independent scorers. The percentages of aberrant cells (ACs), 

total CAs (CAtot), CTAs (i.e. chromatid breaks and exchanges), and CSAs (i.e. 

chromosome breaks, terminal and interstitial deletions, dicentric and ring chromosomes 

with their difragments, abnormal chromosomes) were detected. Concerning CAs scoring, 

standardization procedure has been applied in former Czechoslovakia (and later in both 

separate countries) [210]. The arbitrary cut-off point between individuals with high and 

low CA frequency, chosen on the basis of long-term experience with this kind of 

biological monitoring in the Czech and Slovak Republics [211], was 2 % for CAtot and 

1 % for CSAs and CTAs. 

3.3.2 Measurement of TL 

TL was measured in Publications II and III as relative telomere length (RTL). Briefly, 

genomic DNA from blood samples was isolated using standard procedures. RTL 

measurement was conducted using the monochrome multiplex PCR assay previously 

described by Cawthon [212] with slight modifications [213, 214]. All details about 

standard and calibration curves, DNA concentrations, negative and quality controls, 

master mix, conditions for telomere sequence, and albumin gene amplification are 

described in Publications III. All reactions were performed in triplicates in an optical 384-

well reaction plate. Real-time PCR experiments were carried out on Viia 7 Real-time PCR 
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System (Applied Biosystems) with the use of two simultaneous programs to acquire the 

respective cycle threshold values for telomere sequences and the albumin gene. RTL was 

expressed as the ratio (T/S ratio) between telomere (T) and albumin (S; single-copy gene). 

3.3.3 γ-H2AX concentration measurement 

This assay documents differences of γ-H2AX levels in human PBLs and was used in 

Publication III. γ-H2AX is a form of histone 2AX that is produced after phosphorylation 

in response to DSBs and apoptosis [215]. Briefly, whole-blood samples were cultured in 

EKAMTB-100 complete medium with phytohemagglutinin (EuroClone S.p.A.) for 72 

hours at 37°C. Five hours before harvesting (late S and G2 phase of the cell cycle), 

bleomycin (Sigma-Aldrich) was added in one of the two cultures; the other culture served 

as a reference. The immobilized γ-H2AX antibody in the wells of a 96-well plate captures 

γ-H2AX from sample lysate. Incubation with an H2AX detecting antibody (Trevigen), 

followed by addition of a Goat anti-mouse horseradish peroxidase conjugate and a 

chemiluminescent horseradish peroxidase substrate yields relative light units that directly 

correlates with the amount of γ-H2AX in the sample. 

3.4 DNA repair assays 

3.4.1 Mutagen sensitivity assay 

Mutagen sensitivity assay (MSA) was performed according to the previously described 

protocol with minor modifications [216] and was used in Publication III. Briefly, two 

whole-blood samples from each subject were cultured for 72 hours in EKAMTB-100 

complete medium with phytohemagglutinin (EuroClone S.p.A.). Five hours before 

harvesting (late S and G2 phase of the cell cycle), bleomycin (Sigma-Aldrich) was added 

in one of the two cultures; the other culture served as a reference. For three hours, cells 

were allowed to repair DSBs caused by bleomycin treatment. Two hours prior to harvest, 

Colcemid (Calbiochem) was added to arrest cells in metaphase. After a cytogenetic 

procedure, microscopic slides were stained by conventional Giemsa-Romanowski 

solution (Sigma-Aldrich). Microscopical analysis of CTAs of 100 metaphases with 46 ± 

1 chromosomes has been blindly performed by two independent scorers. CTAs were 

cytogenetically assessed in samples of all groups after the bleomycin treatment, while not 
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affected samples served for detection of baseline CAs level. Mutagen sensitivity was 

expressed as the average number of CTAs per cell. Cells with ≥ 12 CTAs were assessed 

as those with a high level of chromosome damage, i.e. low DSB repair capacity. 

3.4.2 Comet-based in vitro DNA repair assay 

The comet-based in vitro DNA repair assay is a modified version of the comet assay (also 

known as single-cell gel electrophoresis assay) to assess DRC at the functional level. In 

Publication VIII, specifically BER capacity was measured. Briefly, protein extracts from 

samples were incubated with agarose-embedded substrate nucleoids ("naked" supercoiled 

DNA), containing specifically induced DNA lesions known to be recognised and repaired 

by the BER pathway [217]. During the incubation, BER enzymes contained in the 

samples' extract induced DNA SBs at the sites of specific DNA lesions in the substrate 

nucleoids. The accumulated DNA SBs (repair incisions) were measured after alkaline 

treatment by electrophoresis, similarly as in the case of the standard comet assay [218]. 

DNA loops containing DNA SBs were drawn towards the anode forming a comet-like 

image, subsequently visualised by a fluorescence microscope and analysed using 

semiautomated scoring software. The frequency of DNA SBs (represented by the 

proportion of total DNA in the comet tail) reflected the DRC of the extract. Background, 

treatment and specificity controls were used for all samples to calculate final BER 

capacity. 

3.4.3 Assessment of MSI 

MSI-high status correlates with the loss of expression of the main proteins involved in 

MMR (MLH1 and MSH2) and can, therefore, be used as a marker of a defect in the MMR 

pathway. This approach was used in Publication VIII. DNA for MSI status determination 

was extracted from tumour tissue and non-malignant adjacent mucosa using the DNeasy 

Tissue Kit (Qiagen). MSI status was ascertained using molecular testing of 5 

mononucleotide-repeat markers (BAT 25, BAT 26, NR 21, NR 24, NR 27) run as a 

pentaplex using fluorescently labelled primers [219] and standard PCR chemistry. 

Fragment analysis was performed on ABI 3130 (Applied Biosystems). The final 

comparison between tumour and non-tumour DNA short tandem repeat profiles was 

performed with GeneMapper v4.1 software (Applied Biosystems). A tumour specimen 

was classified as MSI-high when two or more loci were unstable. 
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3.5 Statistical analysis 

Individual studies used different statistical approaches according to the purpose of the 

study and were predominantly performed by an experienced biostatistician. Detailed 

pieces of information are reported in the enclosed Publications I–VIII. Statistical 

significance was set at α = 5 % threshold (P-value = 0.05). In GWAS, regions that were 

highly associated with CA frequency as determined by generally accepted suggestive 

significance threshold of P = 1 × 10−5 and the genome-wide significance threshold of P = 

P = 5 × 10-8 were further analysed with in silico online bioinformatics tools. Multiple 

testing corrections were performed using the Bonferroni test or the Benjamini-Hochberg 

false discovery rate. SNPs frequencies in healthy control individuals were tested for 

Hardy-Weinberg equilibrium. Descriptive statistical analyses were carried out for the 

measured parameters on the whole data set as well as on individual groups. 

In case-control studies, the differences in investigated biomarkers between individual 

groups were tested by nonparametric tests (Mann-Whitney U-test, Kruskal-Wallis test, 

Median Two-Sample). The effect of each studied biomarkers on the cancer risk or the 

effect of SNPs on CA frequencies was determined by (multivariate) logistic and linear 

regressions and was calculated by estimating the odds ratios (ORs) with the 95% 

confidence intervals (CIs). Besides, adjusted ORs (aORs) for potential covariates (age, 

sex, smoking status, and occupational exposure) were used. Meta-analyses for GWAS 

and replication sets was performed, and meta P-values, ORs, effect sizes and 

heterogeneity index were recorded. 

The relationships between individual biomarkers were tested using Chi-square test or 

Spearman's correlation, expressed by Spearman's rho (rs) and graphically plotted by linear 

regression. Clinical outcomes were evaluated by calculating patients' 5-year overall 

survival (OS) and recurrence-free survival (RFS) or event-free survival (EFS). The 

standard Kaplan-Meier definition of events/censored data was used for OS and RFS/EFS 

analysis, depending on the particular study. The relative risk of death or recurrence was 

estimated as a hazard ratio (HR) with 95% CIs, with the use of the Cox regression. 

Moreover, multivariate analyses referred to as a classification & regression tree (CART) 

[220] using Cox regression model to identify the most prognostically significant 

interactions between investigated factors and patients' 5-year OS and RFS/EFS.  
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4. Results and Discussion 

The individual parts of this section describe the results we have obtained based on the 

three main aims we have stated. The major findings from each publication (Publications 

I–VIII) included in this Thesis are discussed. 

4.1 CAs, TL and DSB repair capacity and their association with 

cancer susceptibility and patients' clinical outcome 

In this part, we aimed to examine whether CAs, TL and DSB repair capacity in PBLs are 

associated with cancer susceptibility and patients' clinical outcome. Also, we studied 

whether the telomere shortening contributes to the formation of CAs and whether inter-

individual variation in DSB capacity may influence the levels of DNA damage and TL. 

The results are fully documented in attached Publications I–III. 

4.1.1 CAs in PBLs as a biomarker of cancer susceptibility 

First, we aimed to prove the hypothesis that CAs in PBLs may serve as a biomarker of 

cancer susceptibility. The results were published in the cross-sectional study entitled 

"Structural chromosomal aberrations as potential risk markers in incident cancer 

patients." by Vodenkova S et al. (2015) (Publication I, page 92). In this study, we 

evaluated the levels of CAs in PBLs in newly diagnosed colorectal, lung and breast cancer 

patients, and corresponding healthy control individuals. Besides, the attempt to relate CA 

frequencies to the clinicopathological characteristics was addressed for the first time. This 

study represented a free continuation of the study published by our Department in 2010 

[209]. 

One of the major findings of the study identifies significant differences in distributions of 

all types of chromosomal damage in lung and breast cancer patients compared to 

corresponding control groups. In colorectal cancer patients, only CTAs were significantly 

elevated in comparison with controls. Frequencies of chromosomal damage in individual 

groups of cancer patients and healthy controls are summarised in Table 2. 
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Table 2. Frequencies of chromosomal damage in cancer patients and control healthy individuals. 

 

The frequencies of chromosomal damage were tested with the non-parametric Mann-Whitney U-test. The significance level is 0.05. 

Significant values are in bold. aOn the borderline of significance. Abbreviations: ACs – aberrant cells, CAs – total chromosomal 

aberrations, CTA – chromatid-type aberrations, CRC – colorectal cancer, CSA – chromosome-type aberrations, SD – standard 

deviation. 

 

The results of our cytogenetic analysis were further supported by the use of binary logistic 

regression models, documenting the significant association of elevated CA frequencies 

with the susceptibility of particular cancer types. aORs with 95% CIs are summarized in 

Table 3. Elevated ACs, CAs, CTAs and CSAs significantly increased the risk of lung and 

breast cancer (except for CSAs in lung cancer). The only association of increased risk of 

colorectal cancer was found in case of elevated levels of CTAs in our set of patients. Our 

results confirmed the findings from large epidemiological prospective studies 

(summarized by Bonassi et al. [179, 221, 222] and Norppa et al. [223]). While the cohort 

study from Central Europe suggested that CSAs (rather than CTAs) are predictors of 

cancer risk [224], a pooled analysis of thousands of control individuals revealed an 

equally strong cancer predictivity of both CTAs and CSAs [225]. 
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Table 3. Binary logistic regression models to discern the modulation of incident cancers by chromosomal 

damage end points and major confounders, such as age and smoking. 

 

The significance level is 0.05. Significant values are in bold. Abbreviations: ACs – aberrant cells, aOR – odds ratio adjusted for main 

confounders, CAs – total chromosomal aberrations, CI – confidence interval, CTA – chromatid-type aberrations, CRC – colorectal 

cancer, CSA – chromosome-type aberrations, SD – standard deviation. 

 

Furthermore, we have found significant differences in the distribution of terminal 

deletions between breast cancer patients and female controls (0.39 ± 0.64 vs 0.18 ± 0.41, 

P ≤ 0.05), and the binary logistic regression revealed the association between frequency 

of terminal deletions and the risk of breast cancer (aOR = 1.73, 95% CI = 1.04-2.89, P = 

0.03). Whether this observation is attributable to the importance of DSB repair in the 

etiopathogenesis of breast cancer or is rather representing random finding remains to be 

investigated [171]. 

Since some authors assume that chromosomal damage in PBLs in cancer patients may 

reflect progression (stage) of the tumour rather than being a biomarker of cancer 

susceptibility [226], we, therefore, compared the differences in CA frequencies for 

particular TNM stages and histopathological grades but did not record any association. 

CAs were neither associated with additional clinicopathological characteristics. In 

conclusion, this study supported the concept of using CAs in PBLs as a biomarker of early 

carcinogenic effect and clearly suggested the role of CAs as biomarkers of breast and 

lung cancer susceptibility, whereas their prognostic value warrants further investigation. 

4.1.2 The impact of telomere shortening on the levels of CAs and their 

association with patients' clinical outcome 

The study "Chromosomal damage and telomere length in peripheral blood lymphocytes 

of cancer patients." by Vodenkova S et al. (2020) (Publication II, page 100) represents 
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a free continuation of Publication I. Several years elapsed since its publishing, enabling 

us to focus on the patients' follow-up in the present study. Moreover, we supplemented 

the study by measurement of TL. The primary purpose of this study was to investigate 

the relationship between frequencies of particular types of CAs and TL in PBLs of 

incident cancer patients and corresponding control individuals. Obtained results were 

analysed together with collected baseline, clinicopathological, and follow-up data. 

From descriptive statistics, by comparison of TL between cases and controls, breast 

cancer patients showed significantly longer TL compared to control women (1.54 ± 2.0 

vs 1.88 ± 9.0, P < 0.0001). Moreover, a group of breast cancer patients had the longest 

TL out of all investigated groups (colorectal and lung cancer patients and all control 

individuals). This observation may be explained by the fact that females have longer 

telomeres than males [227]. Several hypotheses have been postulated to clarify this 

association, one of which suggested that this is caused by the presence of oestrogen [228, 

229]. An oestrogen-responsive element is present in a catalytic subunit of the enzyme 

telomerase [230]. Oestrogen may, therefore, stimulate telomerase to add telomere repeats 

to the chromosome ends. It is also known that overexpression of oestrogen is one of the 

typical features of breast tumours and predispose the risk of breast cancer. Indeed, those 

individuals with longer telomeres were at increased risk of breast cancer by 65 % (aOR 

(adjusted for age and sex) = 6.49, 95% CI = 3.00-14.04, P < 0.0001). However, the 

previously published studies, both prospective and retrospective, showed that the 

association of TL in PBLs with breast cancer risk is still conflicting [231-238]. 

Regarding the relationship between CAs and TL, Li et al. [197] and Xu et al. [239] 

provided the evidence that CAs may rather arise as a consequence of telomere shortening 

than as a result of the direct DNA damage. Therefore, we have further correlated TL with 

the frequencies of all types of CAs, and both TL and CAs with age. We have found a 

negative correlation between ACs, CAtot, CSAs and TL in the whole group of controls 

(Figure 11) as well as the negative correlation between TL and age (rs = -0.62, P < 

0.0001). Our data were in accordance with previously published data by Hemminki et al. 

[198]. Nevertheless, except for the correlation between TL and age in control individuals, 

all the remaining statistically significant results should not be over-interpreted as the 

Spearman's rho were small. It means that even if the relationships may be statistically 

significant, they may not be biologically as important. Cancer patients did not exhibit any 
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relationship between either TL and CA frequencies or TL and age, except for lung cancer 

patients (data not shown). It may be probably due to the fact that in complex diseases 

such as cancer, more interactive pathways contribute to the formation of DNA damage 

and chromosomal instability. 

 

 

Figure 11. Spearman's correlation between ACs, CAtot, CTAs, CSAs and TL in control individuals. 
The figure represents the relationships between ACs/CAtot/CTAs/CSAs and TL, which were investigated using Spearman's 

correlation, expressed by Spearman's rho (rs) and graphically plotted by linear regression. CA frequencies are presented on the x-axis, 

and the value of TL expressed as RTL on the y-axis. Abbreviations: ACs – aberrant cells, CAtot – total chromosomal aberrations, 

CSAs – chromosome-type aberrations, CTAs – chromatid-type aberrations, RTL – relative telomere length, TL – telomere length. 

 

Until now, the prognostic value of CAs and TL in PBLs in cancer patients remains unclear 

since conflicting results are reported [240-244]. The hypothesis that different CA 

frequencies and TL variations are determinants of prognosis is plausible to explain the 

heterogeneity in clinical outcomes of cancer patients. In our sets of patients, we did not 

observe any association between any type of CAs and OS or RFS using univariate 

survival analysis. However, outputs obtained from the OS CART analysis showed 

involvement of CTAs in the determination of patients' survival/mortality (Figure 12). 

Regarding TL, we did not find any association of telomere shortening with OS and RFS 

in our groups of cancer patients, either using a univariate or multivariate survival model. 
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In summary, we provided pilot data on CAs and TL in PBLs in the context of cancer 

susceptibility, patients' prognosis, and long-term survival. We observed that individuals 

with longer TL in PBLs were at increased risk of breast cancer. Accumulation of CTAs 

in PBLs was associated with decreased OS in breast and colorectal cancer patients after 

their stratification according to disease characteristics. In contrast to control individuals, 

cancer patients did not exhibit any relationship between either TL and CA frequencies or 

TL and age. We propose that there is a need to conduct more studies to elucidate the 

association between CAs and TL in PBLs of cancer patients. 

 

 

Figure 12. Overall survival l classification & regression trees for breast (A), colorectal (B), and lung cancer 

(C) patients. 
Classification & regression trees represent the results of multivariate survival analysis (using the Cox regression hazard model). 

Numbers under each node show the total number of cases in a particular subcategory/number of events and percentages of patients 

with 5-year OS. Abbreviations: CART – classification & regression tree, CTAs – chromatid-type aberrations, OS – overall survival, 

TNM – tumour-node-metastasis. 

4.1.3 Variations in DSB repair capacity and their impact on cancer 

susceptibility, chromosomal damage and TL 

Finally, the study "Bleomycin-induced chromosomal damage and shortening of telomeres 

in peripheral blood lymphocytes of incident cancer patients." by Kroupa M et al. (2018) 

(Publication III, page 129) was aimed to employ the mutagen sensitivity for assessment 

of the potential interactions between induced DSBs in PBLs and individual's 

predisposition to breast and colorectal cancer. Inter-individual variations in DSB repair 

capacity were evaluated in vitro utilizing the G2 chromosomal MSA to quantify 

bleomycin-induced CTAs [216]. Besides, we also measured TL and compared mutagen 

sensitivity to γ-H2AX phosphorylation which represents a hallmark of DSB [215]. To our 
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knowledge, this was the first study describing DSB repair capacity in breast and colorectal 

cancer patients in correlation with a shortening of telomeres. 

The mutagen sensitivity has been employed as one of the well-established markers for 

cancer susceptibility [245]. It is expressed as a mean number of CTAs per cell at 

metaphase PBLs and measured by following bleomycin exposure in the G2 phase of the 

cell cycle. Several studies have considered that this functional test may reflect the inter-

individual differences in DRC [216, 245-252]. The reported increased amount of CTAs 

correlates with suboptimal ability to repair DSBs, suggesting that the outcome from MSA 

may reflect DSB repair capacity [253]. 

Results of this study suggested that altered DSB repair in PBLs occurs particularly in 

colorectal patients (158 ± 0.6 vs 130 ± 0.4, P = 0.03). However, the bleomycin sensitivity 

profile of breast patients was similar to that of the control population (data not shown). 

These results were in agreement with Hsu et al. [216] who confirmed that bleomycin 

response profile in PBLs differs in the colorectal, lung, and head/neck cancer patients (but 

not in breast cancer patients) compared to healthy controls. On the other hand, some 

studies have shown strong bleomycin sensitivity not only for familial breast cancer but 

also for sporadic patients [249, 254, 255]. A possible explanation for these discordant 

results could be different aetiology of familial breast cancer as compared to the sporadic 

form and the heterogeneity of breast tumours. Mutated BRCA1 and BRCA2 genes in 

familial breast cancer, which are involved in DSB repair machinery [256], could cause 

higher DNA damage in bleomycin exposed PBLs. Natarajan et al. postulated that 

mutagen sensitivity phenotype is a risk factor for breast cancer [254]. 

Mutagen sensitivity profiles were compared with the measurement of γ-H2AX as a 

hypothesized alternative approach for MSA that is time-consuming. We postulated that 

quantification of chromosomal damage after bleomycin treatment in PBLs might be 

comparable with the concentration of γ-H2AX. Unfortunately, our results did not show 

any correlation between these two approaches. In contrast, the concentration of γ-H2AH 

was higher in colorectal cancer patients who exhibited higher level of CTAs, suggesting 

a lower DSB repair capacity. We thus assumed that γ-H2AX is the first acute response of 

the cell to cope with DSB; however, CTAs are the final results of unrepaired DSBs with 

the absence of γ-H2AX. Therefore, the γ-H2AX measurement could not be used instead 

of MSA. 
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We further focused on the measurement of TL and the results were used for the study of 

associations between TL and mutagen sensitivity outcomes. We confirmed the 

observation from Publication II that women show longer TL than men (P = 0.0008), and 

therefore, results were adjusted both for age and sex. It has been documented that 

telomere shortening has also been linked to reduced DSB repair capacity [257]. Our 

results showed significant correlation between telomere shortening and mutagen 

sensitivity profile in a pooled group of cancer patients (rs = -0.36, P = 0.02); however, the 

same trend was not detected in a control group. 

In summary, results of this study suggested that altered DSB repair in PBLs is mainly 

associated with colorectal cancer susceptibility. Our results showed a significant 

correlation between telomere shortening and mutagen sensitivity profile in a pooled group 

of cancer patients; however, the same trend was not detected in a control group. Above 

observations added further information to the chain of evidence on the interplay between 

telomere complex and DSB. 

4.2 Genetic basis of inter-individual variations in CA frequency 

In this part, we aimed to explore the genetic basis of inter-individual variations in CA 

frequency in PBLs and whether it depends on the level and type of exposure by finding 

novel SNPs predisposing to the formation of CAs and potentially to cancer. We also 

examine whether SNPs in DNA repair genes and other genes and their interactions are 

associated with the levels of CAs. The results are fully documented in attached 

Publications IV–VI. 

4.2.1 Interactions of SNPs in DNA repair genes and their association with 

CAs 

The study "Interactions of DNA repair gene variants modulate chromosomal aberrations 

in healthy subjects." by Vodicka P et al. (2015) (Publication IV, page 139) was aimed at 

investigating functional variants in DNA repair genes in relation to CAtot, CTAs, and 

CSAs in healthy individuals. DNA repair represents a key player in the formation of 

structural CAs [169] and individual DRC in response to DNA damage, effectively 

preventing an accumulation of CAs, is often modulated by the gene variants in different 

DNA repair pathways [258-260]. Therefore, we examined the hypothesis that SNPs in 
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the BER (XRCC1, hOGG1 and APE1), NER (XPA, XPC, XPD and XPG) and DSB repair 

(XRCC2, XRCC3, NBN and RAD54L) genes and their gene-gene interactions may 

modulate frequencies of structural CAs in a large set of healthy subjects. 

In the whole set of 2196 individuals, the mean ± SD frequencies of CAtot, CTAs and 

CSAs were 1.54 ± 1.54 %, 0.74 ± 0.98 % and 0.80 ± 1.16 %, respectively, with median 

and range being 1 (0-11), 0 (0-6) and 0 (0-10). CAs as well as the constituent CTAs and 

CSAs were significantly increased in occupationally exposed subjects (OR = 2.36, 95% 

CI = 1.97-2.83, P < 0.01; OR = 1.73, 95% CI = 1.45-2.06, P < 0.01; and OR = 1.64, 95% 

CI = 1.38-1.96, P < 0.01, respectively). These observations were in accordance with 

previously published reports for different compounds [177, 207, 261-265]. 

By assessing functional SNPs in individual DNA repair genes, we observed a strong 

association between variant GG genotype in XPD rs13181 and decreased CTA frequency 

(OR = 0.64, 95% CI = 0.48-0.85, P = 0.004; n = 1777 subjects). Our study on such a large 

cohort confirmed our earlier observations on 225 healthy subjects [266] and later study 

on 140 subjects with higher age [267]. XPD represents an important helicase involved in 

NER, which communicates with other DNA repair gene products in dealing with 

exogenous DNA damage [268], but the functional role of XPD rs13181 remains unclear. 

Further, a novel observation was found, a significant association of CT genotype in 

RAD54L rs1048771 with increased CSAs was also observed (OR = 1.96, 95% CI = 1.01-

4.02, P = 0.03; determined in 282 subjects with available genotype). RAD54L exhibits a 

DNA-dependent ATPase and supercoiling activities and plays a role in the HR* pathway 

[269, 270]. However, this association was less robust due to the number of subjects with 

available genotype. Individually, a small risk is irrelevant, but the combination of several 

low-risk alleles can add up to substantial risks, even in the absence of multiplicative 

statistical interactions [271]. 

By addressing pair-wise gene-gene interactions, we have discovered 14 interactions 

significantly modulating CAs, 9 CTAs and 12 CSAs frequencies. Highly significant 

interactions always included pairs from two different pathways. Regarding CAs, 

significant gene-gene interactions were mainly observed for genes involved in BER 

(APE1, hOGG1), NER (XPC, XPD) and DSB repair (XRCC3) together with other DNA 

repair gene variants (NBS1, XRCC2 and XPG). Interestingly, NBS1 rs1805794 appeared 

most often in these interactions; although interactions with BER gene variants resulted in 
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the higher CA frequency, the opposite effect was recorded for the interactions with NER 

gene variants. NBS1 plays an important role in the maintenance of genome integrity by 

being involved in the cellular DDR. The opposite effect on CA frequencies in the 

interplay of NBS1 variants with either BER or NER SNPs is certainly interesting and may 

reflect the specificity of these two excision repair pathways towards different types of 

DNA damage. 

For CTAs, the combinations of homozygous variant genotypes of XPD rs13181 with 

XPG rs17655 (OR = 0.54, 95% CI = 0.34-0.84, P = 0.006) or XRCC1 rs25487 (OR = 

0.68, 95% CI = 0.48-0.96, P = 0.03) genes showed decreased frequencies of CTAs. So 

did the combination of variant alleles in hOGG1 and XRCC3 (OR = 0.52, 95% CI = 0.27-

0.98, P = 0.04). On the contrary, a combination of variant alleles in DSB repair genes 

(XRCC3 rs861539 and XRCC2 rs3218536) resulted in the significant increase of CTAs 

(OR = 2.56, 95% CI = 1.02-6.40, P = 0.05). These results point again to an effect of the 

G allele of XPD Lys751Gln on CTA frequency modulation as stated above. 

For CSAs, again variant alleles in XRCC1 rs25487 and hOGG1 rs1052133 (both BER 

genes) in combination with homozygous variant genotype in XPG rs17655 resulted in 

significantly decreased frequencies of CSAs (OR = 0.22, 95% CI = 0.08-0.66, P = 0.007, 

and OR = 0.72, 95% CI = 0.54-0.97, P = 0.03, respectively). Interestingly, variant G allele 

in hOGG1 rs1052133 in combination with variant alleles in genes involved in NER or 

DSB repair resulted in decreased frequencies of CAs, CTAs and CSAs, despite the fact 

that variant G allele is associated with the lower capacity to repair oxidative DNA damage 

[272]. This phenomenon may be connected with the fact that 8-hydroxy-deoxyguanine 

adducts may block replication fork, thus preventing the accumulation of CAs. 

In summary, CAs arise as a consequence of the interaction between occupational 

exposure to various genotoxicants and individual genotype configuration. In this study, 

we tested the impact of functional SNPs in DNA repair genes on the frequency of CAs. 

Although individual variants in genes encoding DNA repair proteins modulated CAs only 

modestly, several gene-gene interactions evinced either enhanced or decreased CA 

frequencies. As suggested by Melis et al. [273] and now confirmed by us, the complex 

mechanism of CAs accumulation requires complex interplay between different DNA 

repair pathways. However, the mechanism may not be tracked without the knowledge of 

the experimentally proven functional impact of DNA repair gene variants. 
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4.2.2 Finding novel SNPs predisposing to the formation of CAs and 

potentially to cancer 

Based on the results from Publication IV and other previous candidate gene studies which 

have mainly focused on genes important for the maintenance of genome integrity, such 

as DNA repair, mitotic checkpoint and metabolic pathways, as reviewed in Publication 

IX, in the following two publications (Publication V and Publication VI), we designed 

two GWAS. The main goal was to discover previously unknown, potentially functional 

loci predisposing to CAs. These studies were the first GWAS of this nature. 

In the study entitled "Distinct pathways associated with chromosomal aberration 

frequency in a cohort exposed to genotoxic compounds compared to general population." 

by Niazi Y et al. (2019) (Publication V, page 148), we conducted two GWAS on healthy 

individuals in the presence (exposed group) and absence (reference group) of apparent 

genotoxic exposure with the primary aim to explore the genetic basis of the variation in 

CA frequency between individuals and whether it depends on the level and type of 

exposure. 

In the exposed group, the proportion of individuals with high CAtot was 56 %, while it 

was only 29 % in the reference group, and the distribution of CA frequency differed 

significantly between the two groups (P = 4.46 × 10-19). GWAS were performed on both 

groups and several associations at the suggestive level of significance (P ≤ 1 × 10-5) with 

in silico predicted functionality were found for all three CA phenotypes (CSA, CTA and 

CAtot) in both logistic and linear models. Since the samples sets and CA frequency 

differed, and because the CAs are measured as a number of aberrations per 100 cells, we 

used both of these models to evaluate the associations between the SNPs and CA 

frequencies. 

In the reference group, 18 different loci showed an association at the suggestive level of 

significance. In silico analysis predicted functional consequences for five of the loci (see 

Table 2 in Publication V). In the CAtot analysis, logistic regression model implicated the 

locus p15.2 on chromosome 11 with rs10585869 as the top hit. In the linear model, two 

loci 7q11.21 and 8q22.3 showed significant associations and in silico predicted functional 

consequences with top SNPs rs9647884 and rs2293982, respectively. Additional two loci 

5q35.2 and 12q22 were associated with CTAs and CSAs, respectively, in the linear 

model. GWAS on the exposed group revealed 11 associations at the suggestive level of 
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significance. After the in silico analysis, four loci were selected from the CTA and CSA 

linear and logistic models (see Table 3 in Publication V). Both the top SNPs in the CTA 

linear model analysis (rs56217929 at 2q33.3) and CTA logistic model analysis 

(rs10040952 at 5p15.31) almost reached the genome-wide significance. We further 

performed a meta-analysis in an attempt to identify loci predisposing to CAs independent 

of exposure. Three loci had P-values ≤ 1.0 × 10-5, none to moderate heterogeneity between 

the two groups and in silico predictions suggesting functionality. These were rs11792561 

at 9q22.2 in the CAtot linear model analysis, rs2933639 at 5q23.1 in the CTA logistic 

regression model analysis and rs8054859 at 16q12.2 in the CSA logistic regression 

analysis (see Table 4 in Publication V). 

In this study, we identified novel loci that were located in or near genes related to DNA 

repair/DDR and chromatin modulation and chromosome segregation. Interestingly, apart 

from COPRS [274] and FTO genes [275], which were observed in the analysis on exposed 

group and meta-analysis, respectively, all other loci were identified from the reference 

group's analysis. These included PSMA1, UBR5, PMS2P4, STAG3L4, and BOD1 genes 

[276-280]. Besides, several top hits from both groups were located in the genes related to 

tumour progression or suppression. All these SNPs are located within regulatory elements 

with the potential to affect the expression of the respective genes – for detail, see 

Publication V. It is also interesting to note that various SNPs in ITGB3 have also been 

found to be associated with autism aetiology, a disease associated with chromosomal 

abnormalities [281]. Other two loci found associated with autism were identified in the 

CTA analysis of the exposed group. These were 5p15 (rs10040952) [282] and 2q33.3 

(rs56217929) [283] near the KLF7 gene. In the reference group, CAs may have arisen as 

a result of internal factors, reduced DNA repair or epigenetic deregulation. We can 

speculate that the higher burden of CAs induced by exposure to different genotoxic agents 

is not only influenced by individual variability in the genes dealing with different types 

of DNA damage but also in other genes related to tumorigenesis (including genes 

involved in metabolism and transport). Thus, distinct causes of CA increase between 

exposed and reference groups could explain the differences between the GWAS findings. 

The following study entitled "Genetic variation associated with chromosomal aberration 

frequency: A genome-wide association study." by Niazi Y et al. (2019) (Publication VI, 

page 157)was also based on the GWAS approach in investigating SNPs related to CA 
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frequencies. To have a broad insight into the genetic susceptibility associated with CA 

frequency, the sample sets included in this study composed not only of non-exposed and 

differentially exposed individuals but also of newly diagnosed, untreated cancer patients, 

who may represent a population with increased susceptibility to CAs. We first conducted 

the GWAS on discovery sample set followed by replication on two independent sample 

sets (replication 1 and 2). 

Occupational exposure significantly influenced CA frequency in the GWAS discovery 

sample set (P = 1.21 × 10-9). In replication 1, the most significant variable affecting CA 

frequency was cancer status (P = 7.56 × 10-6), while in replication 2, the effect of 

occupational exposure was moderate (P = 0.009). Both logistic and linear regression 

models for the same reasons as in Publication V were applied for the analysis of all three 

CA phenotypes (CSA, CTA and CAtot). No SNP associations at the level of P ≤ 1×10-5 

were found in CSAs. However, it is known that CSAs are affected to a lesser extent by 

chemical mutagens, to which our populations were mainly exposed, as compared to CTAs 

[284]. Altogether 11 loci, six from the CAtot and five from the CTA analysis, were chosen 

for replication and the most significant SNPs with P ≤ 1x10-5 from these loci were selected 

on the basis of in silico analyses (see Table 3 in Publication VI). 

Regarding CAtot, the logistic regression model showed more significant associations than 

the linear model; however, almost all the loci showed similar trends in the linear model 

as well. For all SNPs, except for rs16931167, replication 1 showed ORs on the same 

direction as in the GWAS and the strongest associations in the meta-analysis were for 

rs1383997 at 8q13.3 (OR = 0.6, 95% CI = 0.49-0.73, P = 3.44 × 10-7) and rs2824215 at 

21q21.1 (OR = 1.57, 95% CI = 1.29-1.91, P = 8.7 × 10-6). Replication 2 did not give much 

support for the GWAS associations, and the strongest association in the meta-analysis of 

all populations with P = 4.01 × 10-5 was for rs12002628 at 9q21.13. Rs1383997 and 

rs12002628 are located in the gene related to transient receptor potential (TRP) cation 

channels TRPA1 and TRPM3, respectively. TRP channels regulate the Ca2+ ions 

homeostasis in response to environmental and chemical factors. Any deregulation in Ca2+ 

distribution patterns can promote the signs of cancer development such as proliferation, 

enhanced survival and invasion [285]. The other SNP from the CAtot analysis, rs2824215 

is located in a long intergenic noncoding RNA, and deletion in this locus has been linked 

to autistic features with complex chromosomal rearrangements [286]. Interestingly, two 
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other SNPs, which we selected for replication, rs17215792 (2q33.3) and rs2837619 

(21q22.2) are located in the genes associated with autism and Down syndrome, KLF7 

[283, 287] and DSCAM, respectively [288, 289]. 

For the CTA analysis, on the other hand, higher associations were found in the linear 

model as compared to the logistic model. Five SNPs showed an association at the 

suggestive level of significance. Here also, the GWAS and replication 1 showed more 

similar associations than the GWAS and replication 2. In the meta-analysis of the GWAS 

and replication 1, one association, rs983889 at 5p15.1 remained statistically significant at 

the suggestive level (P = 1.06 × 10-5), and no significant associations were observed in 

the meta-analysis of all three populations. Although the SNPs from the GWAS were 

selected based on the linear model, we also calculated the ORs and 95% CIs in the logistic 

model. For the most significant SNP, rs983889, the OR was 0.65 (95% CI = 0.52-0.80) 

in the meta-analysis of the GWAS and replication 1. Rs983889 is an intronic SNP in the 

FBXL7 gene. FBXL7 belongs to F-box proteins, which are involved in phosphorylation-

dependent ubiquitination of proteins and which display proapoptotic activity [290]. 

Incidentally, one of the targets of FBXL7 is the AURKA gene, a known oncogene, 

involved in the regulation of mitosis [291]. During the late G2 phase, AURKA is recruited 

to centrosomes [292] and later on promotes centrosome maturation and bipolar spindle 

formation [293]. Since CTAs also arise during S/G2 phase [171], an indirect involvement 

of AURKA can be anticipated to affect the frequency of CTAs. 

In summary, our GWAS identified new SNPs associated with CA frequency, from which 

three were replicated at the suggestive level of significance in Publication VI. In 

Publication V, these variants were found in genes involved in DDR/repair, segregation of 

chromosomes and chromatin modification. Others were related to apoptosis, cell 

proliferation, angiogenesis and tumorigenesis. Three different variants are directly or 

indirectly related to autism/autistic traits, a condition linked to chromosomal 

abnormalities. In Publication VI, in silico predictions of functional consequences of the 

identified SNPs and their loci revealed that they were directly or indirectly related to 

different cancers. They included genes encoding TRP cation channel proteins, genes 

involved in autism and Down syndrome, and FBXL7, which interacts with AURKA, an 

important regulator of mitosis. Our results suggest a complex interaction of various 

genetic factors responsible for the inter-individual differences in CA frequency in the 
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presence and absence of evident exposure to genotoxins, many of which are still 

unexplored. Due to the sample size, the results of these GWAS are not definitive in terms 

of pointing out the exact rationale behind CAs development, they certainly point towards 

the probable loci that could be involved in the elevated frequency of CAs in the presence 

of environmental stress. Although further functional studies will be warranted to unravel 

the mechanism behind these interactions, the results of these studies help narrow down 

the essential genes and pathways behind them. Identification of new genetic variants for 

the frequency of CAs offers prediction tools for cancer risk in future. 

4.3 DNA repair and its association with cancer susceptibility, 

patients' therapy response and clinical outcome 

The primary aim of last two studies (Publication VII and Publication VIII) included in 

this Thesis was to find differences in DNA repair in colorectal cancer patients which may 

aid in stratifying patients according to predicted therapy response and patients' survival. 

It will lead to an individual approach to patients and may be an attractive target for 

therapeutic intervention strategies. While Publication VII was based on investigating 

genetic variants in DNA repair genes, Publication VIII investigated BER at the functional 

level as BER-DRC along with MSI. 

4.3.1 SNPs in DNA repair genes and their association with cancer 

susceptibility and patients' clinical outcome 

The next hypothesis-based study entitled "Functional polymorphisms in DNA repair 

genes are associated with sporadic colorectal cancer susceptibility and clinical 

outcome." by Jiraskova K et al. (2018) (Publication VII, page 170) was aimed at 

evaluating the relevance of 16 functional SNPs in 12 DNA repair genes (EME1, FAAP24, 

FANCI, MUS81, NEIL3, POLE, POLN, POLQ, RAD51D, REV1, REV3L and RPA1) on 

the risk of colorectal cancer development (in a case-control study) and modulation of 

patients' clinical outcome after cancer diagnosis (in a follow-up study). Selected SNPs 

were tested independently on two sample sets, the discovery and replication sets. 

Regarding the case-control study, the carriers of the variant AA genotype in REV3L 

rs3204953 were observed as associated with an increased risk of colorectal cancer (P = 
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0.006) in the discovery set. SNPs in this gene in association with cancer susceptibility 

were also observed in published literature. The same SNP was recognized to be associated 

with a higher risk of breast cancer in Swedish cohort [294], and different SNPs in REV3L 

gene have been found to be associated with breast, stomach, and colorectal cancer [294-

296]. Apart from the deleterious nature of the protein function, the amino acid change in 

REV3L was in silico predicted to decrease the protein stability [297]. In cancer cell lines, 

the importance of accurate regulation of REV3L expression was demonstrated; while its 

inhibition induced a growth arrest, the overexpression led to increased spontaneous 

mutation rates [298]. A decreased expression levels have also been reported in tumour 

tissue compared to the non-malignant adjacent mucosa in colon cancer [299, 300]. 

Unfortunately, these promising results obtained from the discovery sample set were not 

confirmed in the replication sample set. Nevertheless, since REV3L emerged several 

times as being a significant modulator of patients' OS and EFS in the replication set, we 

suppose that REV3L gene may have an impact on colorectal cancer susceptibility as well 

as on patients' survival and therapy response and further investigations are warranted. 

In the follow-up study, several SNPs revealed to be associated with either patients' 5-year 

OS or EFS by investigating the interactive effects of genotypes and clinicopathological 

parameters using CART analysis. Only a few of these SNPs were shown as significant 

splits more than once in the final structure of the tree, suggesting their potentially greater 

relevance on patients' survival. SNPs in POLQ gene appeared as an optimal split factor 

in OS CART for the discovery set four times (rs1381057, rs3218649 twice, and 

rs3218651), and in the replication set four times as well (rs1381057 twice and rs3218651 

twice (Figure 13). At least nine out of 23 known POLQ SNPs in the human are predicted 

to alter protein function [301], and several SNPs have also been associated with the risk 

of different cancers [294, 302-304]. In addition to the deleterious nature of the protein 

function, the amino acid change in POLQ was in silico predicted to decrease the final 

protein stability. In has been demonstrated that upregulation of POLQ was present in 

different tumour tissues, and this overexpression was in association with the patients' 

prognosis [305-308]. Based on the data from published studies, we suppose the 

significance of adequate POLQ functioning and regulation for tumour suppression. 

Regarding the 5-year EFS CART analysis, NEIL3 rs7689099 revealed twice as the 

optimal split factor in the discovery cohort (Figure 14). Different SNPs in NEIL3 gene 
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were associated with the risk of several cancers [309-311]. Specifically, rs7689099 was 

associated with a decreased risk of differentiated thyroid carcinoma and prostate cancer 

[310, 311]. Similarly, as in previously mentioned REV3L and POLQ, upregulated 

expression levels of NEIL3 were found in tumours of 20 cancer sites, including colorectal 

cancer [312, 313]. The overexpression was further observed in association with the 

progression to distant metastasis in melanoma [314]. The association of the SNP in the 

NEIL3 gene with patients' survival was not detected in the replication sample set. 

However, considering the available data, we propose that the variation of the NEIL3 gene 

also has the relevance for colorectal cancer susceptibility as well as patients' survival and 

therapy response. 

In summary, this study evaluated the association of SNPs in DNA repair genes selected 

by likely functional relevance with colorectal cancer. The data suggested that even amino 

acid substitution causing subtle alterations in the specific proteins that function in DNA 

repair pathways may lead to inaccurate DNA repair, and thus play a role in colorectal 

cancer pathogenesis. 

 

(A) 
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(B) 

 
Figure 13. Overall survival classification & regression trees of colorectal cancer patients from the 

discovery sample set (A) and replication sample set (B). 
Classification & regression tree represents the results of multivariate survival analysis (using Cox regression hazard model). Numbers 

under each node show the total number of cases in a particular subcategory/number of events and percentages of patients with 5-years 

OS. Corresponding Kaplan-Meier curves represent the differences in OS for each node. Abbreviations: 5-FU – 5-fluorouracil, TNM 

– tumour-node-metastasis. 
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(B) 

 
 
Figure 14. Event-free survival classification & regression trees of colorectal cancer patients from the 

discovery sample set (A) and replication sample set (B). 

Classification & regression tree represents the results of multivariate survival analysis (using Cox regression hazard model). Numbers 

under each node show the total number of cases in a particular subcategory/number of events and percentages of patients with 5-years 

OS. Corresponding Kaplan-Meier curves represent the differences in OS for each node. Abbreviations: 5-FU – 5-fluorouracil, TNM 

– tumour-node-metastasis. 

4.3.2 DNA repair capacity and its association with patients' therapy 

response and clinical outcome 

The study entitled "Base excision repair capacity as a determinant of prognosis and 

therapy response in colon cancer patients." by Vodenkova S et al. (2018) (Publication 

VIII, page 193) was aimed at investigating BER-DRC and MSI in relation to 5-FU 

response of colon cancer patients as potential predictive and/or prognostic biomarker. 

Since BER recognizes and removes mis-incorporated uracil and 5-FU from DNA and 

MMR removes mismatched nucleotides and drives 5-FU-induced cytotoxicity [26,27], 

we thus hypothesized that the deregulation of and individual variation in BER and MMR 

might be significant factors in poor 5-FU response and decreased patients' survival. With 

this in mind, we designed this follow-up study of which the main aim was to investigate 

BER-DRC, further supplemented by MSI status determination in paired samples of 

tumour tissue and non-malignant adjacent mucosa of colon cancer patients. 

This study failed to identify any significant differences overall in the level of BER-DRC 

between these two types of tissue (mean ± SD: 9.91 ± 10.32 vs 10.82 ± 12.01, P = 0.89). 



 

 63 

However, we observed a significant correlation between BER-DRC in the paired samples 

(rs = 0.68, P < 0.0001). The obtained results were in agreement with previously published 

studies [202, 315]. They may suggest that tumour cells do not become deficient in BER 

during the process of carcinogenesis but rather follow patterns characteristic for each 

individual and are comparable with non-malignant cells of the same origin. Besides, 

stromal cells play an important role in colon cancer development, progression and 

resistance to (mainly targeted) therapy [316]. 

Components of the BER pathway have increasingly been identified as predictive markers 

of cancer risk, prognosis, chemoresistance, and as potential therapeutic targets in a variety 

of cancers [317]. Published evidence also suggested an association between inaccurate 

BER and increased tumour invasiveness in colorectal cancer [318]. In this context, we 

observed the link between increasing BER-DRC tumour/mucosa ratio and advanced 

TNM stage of the disease (Figure 15). Analysis of a panel of BER pathway proteins 

showed their high expressions in gastric cancer patients in association with advanced 

stage and decreased patients' survival [319]. Recently, it has been pointed out that the 

prognostic significance of upregulated BER proteins supports the use of their 

measurement in refining the current TNM staging in colorectal cancer [320]. 

 

 

Figure 15. Differences in BER-DRC ratio between TNM stage II, III and IV of colon cancer. 

BER ratio means a relative value of BER-DRC, calculated as the relative ratio of BER-DRC in tumour tissue over BER-DRC in non- 

malignant adjacent mucosa (i.e. BER-DRC in tumour tissue / BER-DRC in non-malignant adjacent mucosa). Differences in BER-

DRC ratio between different TNM stages were calculated using Wilcoxon Two Sample Test. Abbreviations: BER – base excision 

repair, DRC – DNA repair capacity, TNM – tumour-node-metastasis. 
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Further, in univariate survival analysis, we observed that patients with a higher BER-

DRC than cut-off in non-malignant adjacent mucosa exhibited significantly better 5-year 

OS and RFS (OS: HR = 0.36, 95%CI = 0.18-0.75, P = 0.007; RFS: HR = 0.52, 95%CI = 

0.28-0.97, P=0.04). However, the level of BER-DRC in the tumour was not associated 

with clinical outcomes in our cohort. A possible explanation of this phenomenon might 

lie in a non-selective effect of 5-FU, resulting in adverse toxic side effects. Since colon 

epithelium is one of the most constantly regenerated tissues in the body and displays a 

large number of proliferating cells, it may have increased vulnerability to 5-FU-mediated 

DNA damage accumulation as well. As a consequence, higher BER-DRC in non-

malignant mucosa may deal more successfully with uracil and 5-FU mis-incorporation to 

maintain genome stability and patients with this molecular characteristic may show better 

OS and RFS. 

The prognostic utility of BER-DRC in non-malignant adjacent mucosa was further 

supported by CART survival analysis. The CART analysis explored the interactive effects 

of BER-DRC in paired tissues and MSI, together with clinicopathological data in 

association with 5-year OS and RFS. Patients in TNM stage II + III with good therapy 

response and higher BER-DRC than cut-off in non-malignant adjacent mucosa had 5-

year OS increased by approximately 30 %. Moreover, the survival of these patients was 

even better in the presence of lower BER-DRC than cut-off in tumour tissue (Figure 16). 

These results supported our hypothesis that functional DDR is crucial for the maintenance 

of genome stability in non-malignant cells, whereas the suppression of DNA repair in 

malignant cells may increase the effectiveness of chemotherapy. 

The presence of MSI-high status is a predictive marker for the detection of colorectal 

cancer patients in TNM stage II and III who might not benefit from adjuvant 5-FU 

chemotherapy and thus could reduce the risk of over-treatment [321]. MSI-high tumours 

accounted for 15 % of the whole set of samples, and they were mostly localized in the 

proximal colon (P < 0.0001), which was in accordance with world statistics [322]. 

Interestingly, we did not find any association of MSI-high tumours either with patients' 

and tumour characteristics or with therapy response and survival. 

In summary, BER-DRC represents an integrated marker for evaluation of multistep DNA 

repair processes. As a functional measure of enzyme activity, it complements 

transcriptional and translational measurements of BER genes/proteins. The results of this 
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study suggested that the level of BER-DRC is associated with colon cancer patients' 

survival. Therefore, BER-DRC represents a potential prognostic biomarker, applicable 

for prediction of therapy response and useful for an individual approach to patients. 

 

Figure 16. Overall survival classification & regression tree. 
Classification & regression tree represents the results of multivariate survival analysis (using Cox regression hazard model). Numbers 

under each node show the total number of cases in a particular subcategory/number of events and percentages of patients with 5-years 

OS. Corresponding Kaplan-Meier curves represent the differences in OS for each node. Abbreviations: BER – base excision repair, 

DRC – DNA repair capacity, TNM – tumour-node-metastasis.  
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5. Conclusions 

This Dissertation Thesis was performed in response to several unclear and unresolved 

issues of the role of DNA damage and repair in cancer pathogenesis. In this section, 

individual aims of the Thesis are provided by the primary outcomes of the own 

experimental work in light of existing literature and knowledge. 

1) In Publication I, we supported the concept of using CAs in PBLs as a biomarker of 

early carcinogenic effect and clearly suggested the role of elevated CAs (including 

CAtot, CTAs, and CSAs) as a biomarker of cancer susceptibility, mainly breast and 

lung cancer. Colorectal cancer risk was only determined by the subset of CAtot, i.e. 

levels of CTAs. Further, in Publication II, we observed that individuals with longer 

TL in PBLs were at increased risk of breast cancer. Regarding patients' clinical 

outcomes, accumulation of CTAs in PBLs appeared to be associated with decreased 

OS in breast and colorectal cancer patients after their stratification according to 

disease characteristics. While we found the association of elevated CAs with 

telomere shortening in control healthy individuals, cancer patients exhibited no 

relationship between either TL and CA frequencies or TL and age. Results of 

Publication III suggested that altered DSB repair in PBLs is mainly associated with 

colorectal cancer susceptibility. Our results also showed a significant correlation 

between telomere shortening and mutagen sensitivity profile in a pooled group of 

cancer patients; however, the same trend was not detected in a control group. These 

observations added further information to the chain of evidence on the interplay 

between the telomere complex and DSB. 

2) By investigating functional SNPs in DNA repair genes in relation to CAtot, CTAs, 

and CSAs in healthy individuals (Publication IV), we observed an association of 

variant GG genotype in XPD rs13181 with decreased CTA frequency and CT 

genotype in RAD54L rs1048771 with increased CSAs. By addressing pair-wise gene-

gene interactions, we have discovered 14 interactions significantly modulating CAs, 

9 CTAs and 12 CSAs frequencies and NBS1 rs1805794 appeared most often in these 

interactions. However, these gene-gene combinations evinced either enhanced or 

decreased frequencies of CAs, CTAs and CSAs. The GWAS-based Publications V 

and VI indicated several new SNPs associated with CA frequency, from which three 
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were replicated at the suggestive level of significance. These variants were found in 

genes involved in DDR/repair, segregation of chromosomes and chromatin 

modification. Others were related to apoptosis, cell proliferation, angiogenesis and 

tumorigenesis. In silico predictions of functional consequences of the identified 

SNPs and their loci revealed that they were directly or indirectly related to different 

cancers, autism/autistic traits, Down syndrome, and a condition linked to 

chromosomal abnormalities. These results suggest a complex interaction of various 

genetic factors responsible for the inter-individual differences in CA frequency in the 

presence and absence of evident exposure to genotoxins, many of which are still 

unexplored.  

3) Based on the results from Publication VII, we have identified the association of 

several functional SNPs in DNA repair genes with colorectal cancer susceptibility 

and patients' clinical outcome. REV3L rs3204953 was observed to be associated with 

increased susceptibility to colorectal cancer. Further, several other SNPs were shown 

to be associated with patients' OS and EFS using the multivariate survival analysis. 

Our data suggested that even amino acid substitution causing subtle alterations in the 

specific proteins that function in DNA repair pathways may lead to inaccurate DNA 

repair, and thus play a role in colorectal cancer pathogenesis. In Publication VIII, 

we pointed to the importance of studying DNA repair at a functional level, directly 

in tumour and non-malignant tissue to reveal its potential predictive and/or 

prognostic value. The results of this study suggested that the level of BER-DRC is 

associated with long-term survival of colon cancer patients. In accordance with 

published literature, we observed the link between increasing BER-DRC 

tumour/mucosa ratio and advanced TNM stage of the disease. Therefore, BER-DRC 

may represent a potential prognostic biomarker, applicable for prediction of therapy 

response and useful for an individual approach to patients. 

 

This Dissertation Thesis suggested and/or verified several potential candidate biomarkers 

for predicting cancer susceptibility and patients' clinical outcome for further use in 

population monitoring and clinical practice. The majority of them represented already 

discovered biomarkers which were evaluated by well-defined, long-term used and 

validated methods. However, additional studies on larger independent cohorts are needed 
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to replicate our findings. Regarding the future perspectives, taking into consideration the 

fact that cancer represents a complex heterogeneous disease that is caused by the 

combination of several factors, multivariate approaches involving multiple biomarkers 

might contribute to the identification of reliable links between specific genetic/molecular 

features and increased cancer susceptibility, patients' therapy response and prognosis. 
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