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Abstract 
 

Glioblastomas (GBMs) are one of the most common malignant tumors in the 

central nervous system. The tumor microenvironment of GBMs contains malignant and 

non-malignant stromal cells, whose interactions contribute to several GBMs 

characteristics, including aberrant angiogenesis, high proliferation rate, and systemic and 

local immunosuppression.  

Fibroblast activation protein α (FAP) is a membrane serine protease that is 

sparsely expressed in healthy tissues but is upregulated in solid tumors, including GBMs. 

FAP can be expressed by both malignant and non- malignant stromal cells in the tumor 

microenvironment, and its expression in stromal cells has frequently been linked to 

impaired anti-tumor immune response. The role of FAP and FAP expressing stromal cells 

in the infiltration of immune subpopulations into the GBM microenvironment is still 

unclear. This diploma thesis aimed to develop a flow cytometry protocol for the analysis 

of immune cell subpopulations present within the tumor microenvironment in wild-type 

and FAP knockout mouse syngeneic glioblastoma model.  

Four methods combining mechanical and enzymatic dissociation were evaluated 

for their ability to preserve cell viability and expression of studied surface molecules 

using mouse non-tumorous and GBM tissue. The most suitable method for mouse GBM 

tissue dissociation utilized a dissociator and enzymatical digestion with the Tumor 

Dissociation kit. This method provided high viable cell yield with minimum modification 

of surface markers. Panels for flow cytometry measurement of immune subpopulations 

(myeloid cells, conventional T cells, regulatory T cells, and natural killer cells) were 

designed. A pilot flow cytometry analysis revealed high infiltration of leukocytes, 

dominantly myeloid cells, into the GBM microenvironment with statistically non-

significant differences in the composition of intratumoral immune cells between wild-

type and FAP knockout mice. 

The optimized method will be applied to mouse models of astrocytic tumors for 

further phenotypic characterization of immune subpopulations present in the tumor 

microenvironment.  

Keywords: Glioblastoma, Fibroblast activation protein, immunosuppression, the tumor 

microenvironment, dissociation of tissue, flow cytometry, a mouse model 



Abstrakt 

Glioblastomy (GBM) jsou jedním z nejčastějších maligních nádorů v centrální 

nervové soustavě. Mikroprostředí GBM obsahuje maligní a nemaligní stromální buňky, 

jejichž vzájemné interakce přispívají k řadě charakteristik GBM, včetně aberantní 

angiogeneze, vysoké rychlosti proliferace a systémové a lokální imunosuprese. 

Fibroblastový aktivační protein α (FAP) je membránová serinová proteáza, která 

je minimálně exprimována ve zdravých tkáních, ale je upregulována u solidních nádorů, 

včetně GBM. FAP může být v nádorovém mikroprostředí exprimován maligními i 

stromálními buňkami, přičemž jeho exprese ve stromálních buňkách je často spojena s 

narušenou protinádorovou imunitní odpovědí. Význam FAP a FAP exprimujících 

stromálních buněk v infiltraci imunitních subpopulací do mikroprostředí GBM není 

jasný. Tato diplomová práce se zaměřila na vývoj postupu využívajíciho průtokovou 

cytometrii k identifikaci subpopulací imunitních buněk přítomných v nádorovem 

mikroprostředí v modelu syngenního glioblastomu u myší divokého kmene a myší 

s genovou inaktivací FAP. 

Byly vyhodnoceny čtyři metody kombinující mechanickou a enzymatickou 

disociaci z hlediska jejich schopnosti zachovat životaschopnost buněk a expresi 

studovaných povrchových molekul s použitím nenádorové tkáně a tkáně myšího GBM. 

Jako nejvhodnější metodu pro disociaci tkáně myšího GBM jsme vyhodnotili metodu 

používajíci disociátor a enzymatické štěpení pomocí Tumor Tissue Disociation kit. Tato 

metoda poskytla vysoký výtěžek životaschopných buněk s minimální změnou 

povrchových markerů imunitních buněk. Byly navrženy panely pro cytometrické 

stanovení imunitních subpopulací (myeloidní buňky, konvenční T buňky, regulační T 

buňky, přirozené zabíječské buňky). Pilotní cytometrická analýza nádorů odhalila 

vysokou infiltraci leukocytů, převážně myeloidních buněk, v nádorovém mikroprostředí 

GBM se statisticky nevýznamnými rozdíly v zastoupení intratumorálních imunitních 

buněk u myší divokého kmene i u myší s genovou inaktivací FAP.  

Zavedená metoda bude použita pro další fenotypovou charakterizaci imunitních 

subpopulací přítomných v nádorovém mikroprostředí v myších modelech astrocytárních 

nádorů. 

Klíčová slova: Glioblastom, Fibroblastový aktivační protein, imunosuprese, nádorové 

mikroprostředí, disociace tkáně, průtoková cytometrie, myší model  
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1. Glioblastomas  

 

Glioblastomas (GBMs) belong to the most common malignant tumors in the 

central nervous system (CNS), classified as grade IV, according to The World Health 

Organization 1. Furthermore, GBMs are one of the deadliest cancers with high tumor 

recurrence and strong resistance to therapeutics. The current therapy includes surgical 

resection following radio/chemotherapy, but the prognosis remains poor 1. The median 

survival of GBM patients is only 14 months after diagnosis (Fig. 1) 2. The global 

incidence of GBMs is less than 3 per 100,000 people, with men more commonly affected 

than women 3–5. The etiology of GBMs remains unknown. Genetic predisposition has 

only been observed in 10 % of patients. Still, the development of GBMs is probably a 

result of multiple mutations in genes associated with deoxyribonucleic acid (DNA) 

damage repair 6,7.  

 

 

Figure 1: Kaplan–Meier survival curve of overall survival of glioblastoma patients  

The curve represents the overall survival of patients after GBM diagnosis. The median survival 

of GBM patients is 14 months. Data were obtained from The Cancer Genome Atlas 2. 

 

One of the possible origins of GBMs is astrocyte-like neural stem cells in 

subventricular zones 8. Cancer stem cells (CSCs) are responsible for the initiation, 

maintenance, progression, and recurrence of the tumor 9. The typical feature of CSCs is 
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genetic and phenotypical tumor heterogeneity. CSCs show variable expression of surface 

markers across GBM tumors 10. 

GBMs are classified according to the mutations in isocitrate dehydrogenase (IDH) 

into GBM with wild-type IDH and GBM with mutated forms of IDH 1,11. GBM, with 

wild-type IDH, developed de novo from the progenitor cells, is defined as primary GBM 

that accounts for approximately 90 % of all cases. GBM, with a mutated form of IDH, 

developed from pre-existing lower grade astrocytoma tumor, is defined as secondary 

GBM. GBM with a mutated form of IDH is a less aggressive form of cancer with a better 

prognosis 12.  

Originally, GBMs were divided into neural, proneural, classical, and 

mesenchymal subtypes according to gene expression profile and characteristic genetic 

aberrations 13. Transcriptomic analysis of GBM single cells revealed that neural subtype 

is non-tumor cell-related, and characteristic genetic features were enriched in proneural, 

classical, and mesenchymal subtype of GBM 14. However, most GBM tumors may show 

gene expression profile characteristics of more than only one molecular subtype. 

Relapsed tumors have similar mutation patterns as paired primary tumors 15.  

The response to treatment is affected by the particular subtype of GBMs 13. The 

classical subtype is more sensitive to radio/chemotherapy; therefore, relapsed GBMs of 

the classical subtype are less frequent 13. Proneural and mesenchymal subtypes are more 

frequently recurrent 16. GBMs with mutated forms of IDH are almost invariably enriched 

in the proneural subtype 13.  

GBM microenvironment consists of malignant and non-malignant stromal cells 

that interact through cell-cell contacts, soluble factors, and extracellular vesicles 17,18. 

Complex interactions among stromal and tumor cells lead to immunosuppression in the 

tumor microenvironment. 

1.1. Modulation of anti-tumor immunity in 

glioblastomas 
 

For a long time, the brain was considered as an immune privileged organ lacking 

the cells of the lymphatic system. However, it was refuted by the visualization of a dural 

lymphatic vascular system in the mouse and human brain 19–22. A dural lymphatic vascular 
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system drains immune cells and macromolecules from cerebrospinal fluid to the deep 

cervical lymph nodes to initiate an effective immune response 19,20,23. 

The brain is protected from the infiltration of possible harmful neurotoxic 

molecules and pathogens by the blood-brain barrier (BBB). The BBB is a selective and 

semipermeable cellular border formed by brain endothelial cells, pericytes, and 

astrocytes. Hypoxic GBM microenvironment induces the impaired function of 

endothelial cells and pericytes, followed by disorganized blood vessels at the tumor site 

24,25. Abnormal formation of blood vessels is associated with disruption of BBB integrity 

26. The disruption of BBB and secretion of chemotactic molecules into the tumor 

microenvironment induce attraction of peripheral immune cell subpopulations such as 

bone marrow-derived monocytes/macrophages, regulatory T cells (Treg), conventional T 

cells and natural killer cells (NK) which interact with resident immune, stromal and tumor 

cells at the tumor site.  

 An anti-tumor immune response, including both adaptive and innate immune 

mechanisms, is responsible for the elimination of tumor cells. NK cells infiltrating into 

the tumor site recognize the abnormal expression of major histocompatibility complex 

(MHC) molecules, typical for various types of cancer, and mediate cytotoxic immune 

response by secretion of vesicles with perforin and granzyme 27. A critical aspect of 

efficient anti-tumor immunity is the processing and presentation of tumor antigens by 

antigen-presenting cells (APCs). Microglia, the primary APCs in the brain, triggers T cell 

maturation into Th1 effector cells with a pro-inflammatory phenotype. CD8+ T effector 

lymphocytes target malignant cells and provide a cytotoxic immune response. After the 

interaction of APCs and CD4+ T effector lymphocytes, APCs become activated and more 

potent to phagocyte tumor cells. CD4+ T effector lymphocytes interact with B 

lymphocytes that undergo somatic hypermutation. B lymphocytes produce specific 

antibodies binding tumor antigens, which improve the anti-tumor response 28. However, 

tumor cells can develop various mechanisms to evade the anti-tumor immunity that lead 

to systemic and local immunosuppression. 

GBM patients suffer from severe systemic immunosuppression. They have a 

lower total number of CD4+ T cells in peripheral blood, compared to healthy donors, due 

to reduced T cell proliferation and sequestration of naïve T cells in bone marrow 29,30. 

Moreover, the majority of CD4+ T cells are Treg that produce anti-inflammatory 
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cytokines 29. GBM patients have significantly reduced IL-2 and increased IL-10 in 

peripheral blood, which maintains Th2 anti-inflammatory, immune response 31. 

Peripheral blood lymphocytes of GBM patients show a severe T cell exhaustion signature 

characterized by the upregulation of multiple immune checkpoint molecules 32. Increased 

peripheral blood myeloid-derived suppressor cells (MDSCs) are linked to a worse 

survival outcome. GBM patients have a higher number of MDSCs in peripheral blood 

compared to other brain tumors 33. GBM patients have several systemic 

immunosuppressive properties, but mechanisms of systemic immunosuppression have 

not been well elucidated.  

In the tumor microenvironment, the immune cell subpopulations are either unable 

to detect and eliminate tumor cells or undergo apoptosis. Secretion of anti-inflammatory 

cytokines in the tumor microenvironment shifts phenotype of microglia towards 

tolerogenic M2 cells. Tumor cells are not effectively eliminated due to defective 

microglia phagocytosis. Microglia are unable to become functional APC cells; therefore, 

M2 microglia do not express co-stimulatory molecules essential for T cell activation. 

Furthermore, GBM cells express MHCI molecules normally and do not potentiate the 

activation and cytotoxic immune response of NK cells 34. These cell interactions in the 

GBM microenvironment lead to the impaired local anti-tumor immune response.  

 

1.1.1. Role of cell subpopulations in the glioblastoma 

immunosuppressive microenvironment 
 

Tumor cells 

Tumor cells produce transforming growth factor-beta (TGF-beta) and vascular 

endothelial growth factor (VEGF), which have various protumorigenic roles such as 

stimulation of tumor cell proliferation, induction of extracellular matrix (ECM) protein 

expression, or suppression of immune response 35,36. Systemic depletion of TGF-beta 

reversed the immunosuppression in the tumor microenvironment to pro-inflammatory 

response and prolonged survival of tumor-bearing mice 37. The production of VEGF by 

tumor cells enlarged tumor volume and reduced the infiltration of myeloid cells as a result 

of downregulated promigratory receptors and enhanced rate of cell apoptosis 38. 
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Additionally, the blockade of VEGF promoted the infiltration of antigen-presenting 

dendritic cells 39.  

CSCs have lower expression of toll-like receptor-4 than surrounding cells; 

therefore, they are less sensitive to an innate anti-tumor response 40. CSC-derived 

extracellular vesicles express programmed death-ligand 1 (PD-L1) 41. PD-L1 is an 

immune checkpoint molecule binding to the PD-1 receptor expressed on activated T cells. 

PD-1/PD-L1 interaction in the tumor microenvironment suppresses the anti-tumor 

response of T cells 42. 

PD-L1 can be taken up by myeloid cells as well, followed by their shift of 

phenotypic and functional properties towards the immunosuppressive M2 cells 41. The 

blockade of PD-L1 molecule restored the activation of T cells 43. GBM cell lines were 

seen to express Fas ligand 44,45. Fas ligand binds to the Fas receptor expressed on activated 

T lymphocytes and promotes their apoptosis. However, Fas ligand expression has not 

been detected in GBM tissue yet. 

 

Astrocytes 

Astrocytes support endothelial cells that form the BBB, provide nutrition to 

neurons, and have a role in the repair and scarring process of the brain and spinal cord. In 

the tumor microenvironment, they become reactive astrocytes. Tumor-associated 

astrocytes express PD-L1 and promote suppression of T cell anti-tumor response. The 

astrocyte-microglia interaction induces secretion of TGF-beta and IL-10, followed by a 

shift in microglia and myeloid cell phenotype towards immunosuppressive M2 cells 46,47.  

 

Myeloid cells 

The GBM microenvironment consists of heterogeneous myeloid cell populations 

such as brain resident microglia and macrophages, together known as glioblastoma 

associated myeloid cells (GAMs), and MDSCs 48. Resident microglia showed 

heterogeneity in phenotype dependent on the brain region 49. Chemokine C-C motif 

ligand 2 (CCL2) is a critical chemoattractant and recruiting factor for Treg, and MDSCs 

produced mainly by GAMs 50. Accumulation of GAMs in the tumor site was promoted 

by tumor secreted stroma-derived factor 1, macrophage colony-stimulating factor, 
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granulocyte-macrophage colony-stimulating factor, and epidermal growth factor 51,52. 

GAMs undergo phenotypic polarization from pro-inflammatory M1 to anti-inflammatory 

M2 myeloid cells after exposure to glioblastoma derived factors, like IL-10, TGF-beta 

and highly express signal transducer and activator of transcription 3 (STAT3) 53. GAMs 

promote invasive properties of tumor cells, support neovascularization, and contribute to 

immunosuppression in the tumor microenvironment. GAMs produced VEGF and stress-

inducible protein 1, to enhance the recruitment of endothelial progenitor cells and 

invasion of GBM cells 54,55. 

GBM induced expansion of MDSCs in the bone marrow and their attraction 

towards the tumor lesion 56. The frequency of infiltrated myeloid cells is increased with 

tumor progression 57. MDSCs are the primary source of Arginase-1 (Arg-1) in the tumor 

microenvironment responsible for the depletion of the amino acid L-arginine, which 

results in the suppression of T cells. The level of Arg-1 is elevated with tumor progression 

57,58. 

 

Tumor-infiltrating lymphocytes (TILs) 

Tumor-infiltrating lymphocytes (TILs) consist of lymphocytic cells that invade 

the tumor tissue, predominantly CD4+ and CD8+ T cells, Treg, and NK cells. 

The number of CD8+ TILs was inversely, and CD4+ TILs positively correlated 

with tumor grade, which indicates the unfavorable prognosis of GBM patients 59. T cells 

showed predominantly effector memory phenotype rather than naïve phenotype, 

reflecting prior antigenic exposure. CD8+ TILs in GBM tumors expressed multiple 

immune checkpoint molecules that demonstrate their exhaustion state. Dysfunctional 

state of CD8+ TILs showed expression of PD-1 accompanied by TIM-3 and LAG-3 

expression 32. 

Treg constitutively expresses Glucocorticoid-induced TNFR-related protein 

(GITR), which is a co-stimulatory molecule. Anti-GITR antibodies significantly 

improved mice survival, elevated the pro-inflammatory activity of T cells, and induce the 

anti-tumor phenotype of macrophages 60. Hypoxia-inducible factor 1α is an essential 

regulator of cellular metabolism in Treg. Hypoxia-inducible factor 1α switched glucose-

based metabolism to fatty acids depended on mitochondrial metabolism. Treg with 

switched metabolism reduced the proliferation of CD8+ T cells 61. The direct 
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immunosuppressive mechanisms of Treg are mediated through the expression of 

cytotoxic T lymphocyte-associated protein-4 (CTLA-4) and PD-L1. The CTLA-4 

interacts with costimulation molecules on myeloid cells and prevents the activation of T 

effector cells 62. Indeed, CTLA-4 and PD-L1 blockade prolonged survival of mice bearing 

tumor 63,64. The depletion of Treg in GBM inhibited the tumor growth 65. 

 

Pericytes 

Pericytes are contractile perivascular cells wrapping around the endothelial cells 

that line the capillaries and venules. Pericytes help to maintain BBB and brain 

homeostasis. Brain pericytes are part of the innate immune system and can behave as 

macrophage-like cells that possess phagocytic activity 66,67. GBM cells induce 

immunomodulatory changes in pericytes in a cell interaction-dependent manner. Upon 

GBM interaction, pericytes showed lower phagocytic activity and decreased expression 

of the co-stimulatory molecules CD80 and CD86 and MHCII 67,68. GBM associated 

pericytes secrete anti-inflammatory cytokines IL-10, TGF-beta, and are upregulated with 

PD-L1; therefore, they have impaired ability to activate T cells, unlike normal pericytes. 

Furthermore, pericytes negatively correlated with the presence of CD8+ T cells 69. 

 

Mesenchymal stem cells 

Mesenchymal stem cells possess immunosuppressive properties and have been 

described in the GBM microenvironment. They express PD-L1 and secrete TGF-beta, 

CCL-2, IL-6, and VEGF to modulate the immune response. Moreover, this population of 

stromal cells induced the anti-inflammatory phenotype of myeloid cells 70. 

 

2. Fibroblast activation protein 
 

Proteases, in the context of the tumor microenvironment, have become a hotspot 

of recent studies 71. In a variety of tumors, proteases are overexpressed and associated 

with protumorigenic actions like invasiveness of cancer cells, mesenchymal-epithelial 

transition, aberrant angiogenesis, and immunosuppression.  
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2.1. Structure 
 

FAP is a type II cell-surface-bound transmembrane glycoprotein. In the genome, 

FAP is localized on chromosome 2. This gene encodes a 760 amino acid of 

transmembrane protein with six intracellular amino acids at the N-terminus, a 20 amino 

acid transmembrane region, and a 734 amino acid extracellular portion 72. The protein has 

an enzymatically activated form after the dimerization of two monomers 73,74.  

 

2.2. Enzymatic activity and substrates 
 

FAP (also known as a serine prolyl endopeptidase and gelatinase) is a member of 

the peptidase S9b family. FAP possesses exopeptidase and endopeptidase activity. 

Enzymatic (aminopeptidase) activity is occurred by cleaving a specific N-terminal Xaa-

(Pro/Ala) sequences (Fig. 2) 75. Physiological substrates of FAP enzymatic activity are 

neuropeptide Y, B-type natriuretic peptide, peptide YY, incretins, substance P, glucagon-

like peptide-1, glucose-dependent insulinotropic peptide and fibroblast growth factor 21 

76,77.  
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Figure 2: Enzymatic activity of FAP.  

Schematic representation of FAP’s (A) exopeptidase activity in the cleaving of N terminal peptide 

after proline residue and (B) endopeptidase activity restricted to the post-proline bond after 

glycine-proline sequence 75. 

 

2.3. Expression and function 
 

FAP is sparsely expressed in healthy tissues. However, human FAP expression 

was detected in pancreatic alpha cells, bone marrow, and uterine stroma 78–80. 

Nevertheless, FAP expression is increased with malignant and non-malignant diseases 

during tissue remodeling.  

The depletion of FAP+ stromal cells in the C57BL/6J mouse model caused altered 

erythropoiesis and lymphopoiesis. Thus, it indicates the role of FAP in hematopoiesis in 

the bone marrow. Another study suggested that FAP deficiency did not cause any 

abnormalities in the number of immune cell populations in the thymus, lymph nodes, and 

spleen 81. The loss of FAP+ stromal cells was associated with reduced muscle loss and a 

cause of cachexia 82.  
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2.4. Fibroblast activation protein and immunosuppression 

in the tumor microenvironment 
 

In the tumor microenvironment, FAP is expressed by malignant and non-

malignant stromal cells, predominantly by cancer-associated fibroblasts (CAFs) 83,84.  

In a transgenic mouse model with established immunogenic Lewis lung 

carcinoma, FAP expression was detected on both CD45- and CD45+ cells. Depletion of 

tumor and stromal cells expressing FAP led to tumor shrinkage. However, the inhibition 

of FAP did not change the proportion of CD4+, CD8+, and forkhead box P3 (FoxP3+) T 

cells. Furthermore, there was no change in the production of immunosuppressive 

cytokines IL-4, IL-10, IL-13, and TGF-beta. It was suggested that FAP+ stromal cells 

either suppress the production of tumor necrosis factor α (TNFα) and interferon γ (IFN-

γ) or attenuate cellular responses to these cytokines to protect the immunogenic tumor 

from cytokine-induced hypoxic necrosis 85. 

Ablation of FAP expressing cells with both hematopoietic (CD45+) or 

mesenchymal (CD45-) origin led to a slower growth of tumor (established with Lewis 

lung carcinoma cells) compared to the control group which indicated that both cell 

populations are required for tumor progression. CD45+FAP+ cells were identified by flow 

cytometry as F4/80+ macrophages with an M2 phenotype and represented approximately 

10 % of all myeloid cells. F4/80+FAP+ macrophages were the primary source of heme-

oxygenase-1 and promoted immunosuppression in the tumor microenvironment 86.  

In ovarian carcinomas, FAP expression was positively correlated with the 

expression of FoxP3 and CD163, which indicated the role of FAP in the generation of 

cells with immunosuppressive properties at the tumor site. Furthermore, cells expressing 

FAP promoted the proliferation of tumor cells 87. 

Mouse subcutaneously implanted with gastric cells and FAP+CAFs had a reduced 

number of infiltrating T cells. Simultaneous blocking of FAP and PD-1 resulted in tumor 

growth arrest and prolonged mouse survival. Furthermore, inhibition of FAP and PD-1 

increased the infiltration of CD8+ T cells and reduced the number of Treg 88.  

In a mouse intrahepatic cholangiocarcinoma model, the presence of CAFs 

expressing FAP caused decreased infiltration of IFNγ+CD8+ T cell but not CD4+ T cells. 
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FAP+CAFs were upregulated with STAT3 expression and were the primary source of 

CCL2 secretion, an important chemokine for MDSCs. Moreover, FAP+CAFs induced 

expression of Arg-1 and nitric oxide synthase in MDSCs that became more effective in 

the inhibition of T cell proliferation 58. Indeed, the depletion of FAP+ stromal cells caused 

a reduced number of immunosuppressive myeloid cells and the expression of Arg-1 and 

nitric oxide synthase but did not affect the number of Treg. The depletion of FAP induced 

the anti-tumor immunity of CD8+ T cells that started to produce IFNγ and TNFα. 

Simultaneously, PD-1 expression on CD8+ T cells was significantly reduced. Besides, the 

production of Th2 related cytokines like TGF-beta and IL-10 was significantly decreased 

in the tumor microenvironment depleted with FAP 89.  

Mesenchymal stem cells started to express FAP after exposure to esophageal 

squamous cell carcinoma and were defined as CAF-like cells. FAP expression by CAF-

like cells induced a shift in macrophages towards the M2 phenotype. FAP+CAF-like cells 

secreted CCL2, IL-6, and CXCL-8 to promote the migration of tumor cells and M2 

macrophages 90. FAP+CAFs in oral squamous cell carcinoma promoted the generation of 

macrophages with M2 phenotype and induced their immunosuppressive properties by 

higher expression of Arg-1, IL-10, and TGF-beta 91.  

Heterogenous FAP+ mesenchymal cell populations with functional differences 

were identified in the tumor tissue of breast cancer. FAP+ mesenchymal cells, which were 

also positive for podoplanin, had stronger immunosuppressive properties. 

FAP+podoplanin+ mesenchymal cells were responsible for the suppression of T cell 

proliferation by the production of nitric oxide in mouse breast cancer, similar to fibroblast 

reticular cells expressing FAP 92,93.  

Interestingly, CAFs with upregulated FAP were more potent to have 

immunosuppressive properties and more aggressive protumorigenic behavior 58,94,95. The 

presence of the cell population with the same origin but different functional properties 

determined by FAP expression indicates that immunosuppressive features of the tumor 

microenvironment might be conditioned by FAP expression and not by the particular cell 

subpopulation.  

However, FAP in the tumor microenvironment of various solid tumors is 

expressed predominantly by CAFs, yet they were not detected in GBMs. On the other 
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hand, some of the stromal cell subsets in the GBM microenvironment share similar 

phenotypic and functional properties similar to CAF expressing FAP 84,96.  

 

2.5. Fibroblast activation protein and glioblastomas 
 

FAP is upregulated in GBMs compared to non-tumorous brain tissue. In GBMs, 

FAP is expressed by both tumor and mesenchymal stromal cells.  84,97.  

The expression of FAP is associated with the mesenchymal subtype of GBM (data 

obtained from The Cancer Genome Atlas) 84. Transcriptomic and multi-omic analysis of 

GBMs showed that mesenchymal subtype is associated with genes related to cell invasion 

and immune response. Furthermore, the mesenchymal subtype has a worse outcome 

compared to other molecular subtypes of GBMs 98. The mesenchymal subtype is 

associated with increased genetic signature of tumor-associated M2 macrophages and 

reduced infiltration of activated NK cells compared to proneural and classical subtype 16. 

Moreover, the mesenchymal subtype is associated with a worse prognosis 98–100. 

 

3. Mouse model of glioblastomas 
 

In vivo tumor model is commonly used for the study of the tumor 

microenvironment. There are several types of mouse models used in GBM studies, such 

as an immunocompromised model with xenografted human tumor cells, transgenic and 

spontaneous model, or immunocompetent syngeneic model 101. Unlike human xenograft 

models, the syngeneic models do not require a deficient immune system. An 

immunocompetent syngeneic model offers an insight into tumor development as well as 

the host’s immune response.  

Mouse glioblastoma GL261 cells were induced by intracranial injection of 3-

methyl-cholantrene into C57BL/6J mice 102. The orthotopic transplantation of GL261 

cells into C57BL/6J mouse offers efficient gliomagenesis, predictable, and reproducible 

growth rates and accurate knowledge of tumor location 103.  
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Brain tumors established from GL261 cells mimic many features of human 

GBMs. GL261 glioblastoma showed a non-metastatic growth pattern, similarly to its 

human counterpart. GL261 tumors exhibit poor cellular differentiation with atypical 

nuclei and multinucleated cells with a high proliferation rate 104. The proliferation of 

intracranially implanted GL261 cells promoted the degradation of blood vessels and led 

to hypoxia with associated aberrant angiogenesis by secreted factors like VEGF-A and 

hypoxia-inducible factor 1 α, similarly to human GBMs 105.  

Furthermore, GL261 tumors have a more detectable level of major MHCII than a 

healthy mouse brain, but there was no detection of MHCI similarly to human GBMs 34,104. 

The applicability of the GL261 model in the research of the GBM 

immunosuppressive microenvironment is proven by its frequent use in preclinical studies 

of immunotherapeutic approaches for GBM treatment 106–109. 

 

3.1. Mouse immune cell phenotyping for flow cytometry 
 

Flow cytometry is a method that provides the analysis of a large number of cell 

subpopulations. Immune cell types can be distinguished by different marker expression 

(Tab. 1).  

3.1.1. Myeloid cell populations  
 

Brain myeloid cell populations consist of microglia, and BMDM infiltrated from 

the periphery. Microglia and BMDM represent two ontogenetically separate myeloid cell 

populations with different origin but similar immunomodulating functions. Microglia 

derive from the progenitors of the yolk sac in early embryogenesis and populate the brain 

parenchyma while BMDM arise from hematopoietic stem cells 110.  

The primary immune cell population maintaining homeostasis in the CNS are 

microglia – resident myeloid cells exclusive for brain tissue. Under pathological 

conditions, microglia are activated and, together with infiltrated BMDM, restore the brain 

equilibrium 111. 
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In the healthy brain, the frequency of microglia is about 10–15% of all brain cells 

112. Microglia play a role in brain development and maintenance of physiological 

conditions of the neural environment. The primary role of microglia is the phagocytosis 

of apoptotic bodies and invading viruses or bacteria. Activated microglia become efficient 

APCs 113. Post-inflammation microglia help repair damaged neural circuits and promoted 

the regrowth of neural tissue 114. 

Both microglia and BMDM express receptor-type tyrosine-protein phosphatase C 

(CD45) but with a different intensity, which is used for the separation of resident 

microglia (CD45low) from BMDM (CD45high) 115. Microglia can be distinguished from 

other myeloid cells by transmembrane protein 119 (TMEM119), which is a specific 

surface marker for brain resident myeloid cells 116. 

Typical markers for pro-inflammatory M1 like myeloid cells are MHC class II 

antigen, CD11c, and CD11b. Tumor supportive M2 myeloid cells can be detected by the 

expression of the macrophage mannose receptor 1 (CD206) 117,118. 

Three distinct CD11b+ myeloid cells were identified, all of which were exclusive 

for the brain and were not observed in peripheral blood. CNS resident myeloid cells were 

positive for receptor-type tyrosine-protein phosphatase C (CD45) and bone marrow 

stromal antigen 2 (CD317) but differ by the expression of MHCII, ectonucleoside 

triphosphate diphosphohydrolase 2 (CD39) and T lymphocyte activation antigen CD86 

(CD86). Simultaneously, they lack lymphoid marker T cell surface glycoprotein CD3 

chains (CD3) (T cells), protein tyrosine phosphatase receptor type C (CD45R/B220) (B 

cells), Ly6C (monocytes) and lymphocyte antigen 6G (granulocytes) 119.  

Levels of macrosialin (CD68) and MHCII significantly increased with age; on the 

other hand, the expression of F4/80 and CD11b do not change during lifetime 120. 

 

3.1.2. Regulatory T cells 
 

Treg are a cell fraction of CD4+ T lymphocytes. Treg regulate immune response 

against both self and non-self antigens by the suppression of T effector cell activation and 

proliferation to prevent the development of various autoimmune diseases 131. There are 

two populations of Treg: more frequent thymus-derived natural Treg (nTreg) and induced 
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Treg (iTreg) derived from peripheral naïve CD4+ T cells 132. In the healthy mouse brain, 

the number of Treg is low but increases in brain tumors 133. During ischaemic brain injury, 

Treg suppress the inflammatory reactivity of astrocytes and potentiate neurological 

recovery 134. 

Compared to other lymphocytes, Treg are characterized by higher expression of 

interleukin-2 receptor subunit α (IL-2Rα) 135. IL-2 is essential for Treg development, 

proliferation, and function 136. By the overexpression of IL-2Rα, Treg obtain IL-2 more 

avidly than other T cells and induce cytokine deprivation-mediated apoptosis of T cells 

137. 

Transcription factor FoxP3, a master regulator in the development and function of 

Treg, was considered to be a concrete Treg marker 138. Attenuated expression of FoxP3 

could result in Treg instability and alteration of their immunosuppressive function 139. 

Activation of Treg could lead to the instability of FoxP3 expression and their 

reprogramming into conventional T cells. However, nTreg are more stable in FoxP3 

expression than iTreg 140. Markers FoxP3 and IL-2Rα were found to be expressed on Treg 

subsets but rarely expressed on conventional T cells 121. 

Another transcription factor crucial for the immunosuppressive functional 

properties of Treg is Helios 141. nTreg are positive for both FoxP3 and Helios, while iTreg 

lack Helios expression 123. Treg that express Helios and FoxP3 simultaneously are 

responsible for the prevention of autoimmune response 142.  

The percentage of Treg characterized as CD4+FoxP3+ cell population from all 

CD4+ cells is approximately 17 % in lymph nodes and 10 % in a spleen. Treg cell 

populations in spleen and lymph nodes are more heterogeneous and numerous than in 

thymus, where they are barely detectable 126. Some cell subsets were identified mostly 

based on L-selectin (CD62L) and lymphocyte antigen 6C (Ly6C) expression. Activated 

Treg express CD44 and display a low or absent expression of CD62L and Ly6C 124–126.  

GITR, a co-stimulatory molecule, is essential for nTreg thymic development and 

expansion. On the other hand, the expression of GITR could result in the loss of FoxP3 

expression, thus reducing Treg population 122,143. Lower expression of GITR could be 

detected on naïve T cells as well and increases after their activation 144.  
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3.1.3. Natural killer cells 
 

NK cells are a cell subpopulation originating from lymphoid lineage. They lack 

antigen-specific cell surface receptors and provide a rapid immune response without 

previous activation. They are essential in an immune response against pathogens and 

tumor cells and are usually the first effector cells at an inflammatory site. Through their 

activating and inhibitory receptors, NK cells are able to recognize stressed, and tumor 

cells with impaired MHC molecules expression [141]. NK cells are almost undetectable 

in the mouse brain under physiological conditions 146. 

Splenic NK cells have a more reactive phenotype than NK cells in peripheral 

blood. In mice, two main subsets of NK cells were identified, referred to as NK1 or NK2 

cells. NK1 cells are defined as CD27 antigen-negative α M (ITGAM) negative (CD27-

CD11b+) and NK2 as CD27+CD11b- 127. NK1 cells are preferentially recruited in the 

tumor microenvironment at early stages during tumor progression and neuroinflammation 

128,147. Brain-infiltrated NK cells showed a less reactive phenotype than splenic NK cells 

128.  

Natural cytotoxicity triggering receptor 1 (NKp46 or CD335) is expressed from 

immature to activating form of NK cells but is not expressed by natural killer T cells 129. 

NK cells belong to Group 3 innate lymphoid cells; thus, they are negative for the CD3 

marker. 
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Table 1: Overview of immune subpopulation phenotypes 

  

 

4. Dissociation methods of tumor tissue for flow cytometry 

measurement 

 

In order to acquire valid cytometry data, it is essential to choose the optimal 

dissociation method in order to have a proper single cell suspension (Tab. 2). Dissociation 

Phenotype Cell type References 

CD4+CD25+ - expressed by all Treg 121 

FoxP3+ - expressed by all Treg, not stable 

 

121,122 

Helios+ - nTreg 123 

GITR+ - nTreg  122 

CD44+Ly6C-CD62L- - the activated phenotype of Treg 124–126 

CD27-CD11b+ - peripheral NK 127 

CD27+CD11b- - NK1 frequently occurred in the 

tumor microenvironment 

128 

NKp46+ - expressed by all NK cells 129 

CD45high 

CD45low 

- BMDM 115 

- microglia 

CD68+ - general 

markers for 

myeloid cells 

- non-stable 

expression 

120 

CD11b+ - stable expression 

F4/80+ - stable expression 

MHCII+, CD86+ - M1 130 

CD206+ - M2 

TMEM119+ - microglia 116 

CD317+ - microglia 119 
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of the tissue to single cell suspension can be done either enzymatically or non-

enzymatically.  

The main goal for preparing a single cell suspension from the solid tissue should 

be the preservation of cell viability and cellular diversity while maintaining qualitative 

and quantitative characteristics of cell population markers to provide the reliable 

cytometry data.  

 

4.1. Non-enzymatic dissociation 

 

Non-enzymatic tissue dissociation includes mechanical dissociation steps, like 

using strainers, tissue chopping, density gradient, trituration strategies, or using 

dissociator instruments without enzymatic digestion. However, using a non-enzymatic 

method could provide insufficient single cell suspension with cell aggregates and 

inconsistent cell yields 148. The density gradient method by Percoll and Ficoll is 

commonly used for isolation of mononuclear cells but with lower cell yield than 

enzymatic dissociation 149–151. On the other hand, the non-enzymatic method preserved 

the high viability of CD45 cells and did not alter the marker expression of immune cells 

after dissociation of tumor tissue 152.  

4.2. Enzymatic dissociation  

 

Selected enzymes should only digest proteins of ECM, proteins of cell-cell 

junctions, and DNA fragments released from dead cells without altering the expression 

of surface markers.  

Papain 

Papain is a cysteine protease that mainly digests proteins of cell-cell junctions. 

Papain was used for the isolation of human microglia, astrocytes for cell culture, and 

mouse medulloblastoma cells 153–155. However, papain digestion leads to the 

contamination of cell suspension by DNA fragments released from lysed cells during an 

enzymatic breakdown, which results in the loss of viable cells 156–158.  
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Deoxyribonuclease  

Deoxyribonuclease (DNAse) should also be included in the enzyme mixture due 

to its ability to prevent cell clustering via the degradation of DNA fragments released 

from dead cells 159. 

Collagenase 

Collagenase is sufficient for the degradation of peptide bonds in collagen, the 

protein of ECM. Collagenase has been used for the isolation of brain endothelial cells 

160,161. A combination of collagenase, hyaluronidase, and DNAse was used for the study 

of human brain tumor cells 156,162. Despite the high viability of lymphocytes, the 

collagenase removed the CD4 surface marker 152. 

Hyaluronidase 

Hyaluronidase is an enzyme degrading hyaluronan, a structural proteoglycan in 

the ECM, and is standardly used in the mixture of enzymes with collagenase, DNAse, 

and neutral protease. This combination of enzymes was used in several studies associated 

with brain tissue dissociation. However, cell suspension treated with this mixture of 

enzymes has a high level of cell clumps, debris, and free DNA fragments 163. 

Accutase 

Accutase is a mixture of proteolytic and collagenolytic enzymes with DNAse 

activity, which preserves antigen expression and maintains intact cell morphology with 

high cell yield. The use of accutase alone is highly beneficial compared to the cocktail of 

several enzymes 164,165.  

Tissue dissociation kit 

Brain Tumor Dissociation kit (BTD) is suitable for the detection of cells in 

dissociated brain tumor tissue by flow cytometry. Tumor Dissociation kit (TDK) has a 

minimal digesting effect on the markers of immune cells isolated from tumor tissue166,167.  

4.3. Debris removal and erythrocyte lysis 

 

Cell debris, dead cells, and erythrocytes provide high background during flow 

cytometry measurement and should be removed from the cell suspension. Cell debris and 
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clusters can be removed by a series of cell strainers and density gradient with Debris 

removal solutions. Commercially available lysing products to lyse erythrocytes differ in 

the mechanisms of the lysing process. We distinguish reagents with a fixative, which 

preserves leukocyte morphology and ammonium chloride-based reagents without a 

fixative.  

Table 2: Overview of enzymes used for dissociation of brain and tumor tissue 

 

Enzymes used in 

tissue dissociation 

Type of 

isolated cells 

Pros Cons References 

Papain microglia, 

astrocytes, tumor 

cells 

digest proteins of 

cell-cell junctions 

Loss of viable cells 

due to a lot of 

released DNA 

fragments 

153–156 

Collagenase, 

Hyaluronidase, 

Deoxyribonuclease 

endothelial cells, 

tumor cells 

degradation of 

ECM proteins, 

high viability of 

leukocytes 

A loss of CD4 

marker, high level of 

cell clumps a debris 

152,156,160–162 

Accutase  oligodendrocytes a mixture of 

enzymes, preserves 

antigen expression, 

high viability of 

cells 

none 165 

TDK, BTD myeloid cells, 

tumor-infiltrating 

lymphocytes 

specifically 

developed for brain 

and tumor tissue 

none 166,167 
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5. Aims of the thesis 

 

Hypothesis  

The presence of Fibroblast activation protein α (FAP) and stromal cells expressing FAP 

in glioblastoma is associated with local immunosuppression due to its effect on the 

specific composition of immune cells in the tumor microenvironment. 

 

To identify immune cell subpopulations present in the tumor microenvironment, we have 

chosen flow cytometry as a tool of multiparametric analysis. For this purpose, we have 

set out the following aims:  

 

Aim 1  

Optimization of the dissociation method for mouse glioblastoma tissue to study infiltrated 

immune cells by flow cytometry analysis. 

 

Aim 2  

Flow cytometry analysis of immune cells (myeloid cell populations, conventional T cells, 

regulatory T cells, and natural killer cells) within the tumor microenvironment in a 

syngeneic glioblastoma model using wild-type and FAP knockout mice.  
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6. Materials and methods 

 

6.1.  Materials 
 

6.1.1. Animals and cells 

 

For all experiments, male mice C57BL/6J WT and C57BL/6 FAP-/-, 6-8 weeks 

old, and weighing 25 g were used. Experimental animals were kept in The Center for 

experimental biomodels at the 1st Faculty of Medicine, Charles University. 

• Male mice C57BL/6J WT (The Jackson Laboratory United States of America) 

and male mice C57BL/6 FAP-/- (Boehringer Ingelheim Pharma Germany) 

• Whole blood obtained from healthy mice C57 BL/6J WT 

• Cells of Peritoneal lavage from healthy mice C57 BL/6J WT 

• Splenocytes from healthy mice C57 BL/6J WT 

• Brain tissue from healthy mice C57 BL/6J WT 

• Brain tumor tissue from mice C57 BL/6J WT and C57 BL/6 FAP-/-  

• GL261 cell line (Charles River Laboratories, United States), T98G, U373, U87, 

U138 (American Type Culture Collection, United States), U118 (Cell Lines 

Service GmbH, Germany), ZAM (cancer-associated fibroblasts derived from the 

skin metastasis of primary nodular melanoma, Department of 

Dermatovenerology, First Faculty of Medicine, Charles University) 168 

 

6.1.2. Chemicals 

 

• 7-amino-4-methyl-coumarin (Sigma-Aldrich Chemie, Czech Republic)  

• Accutase (Sigma-Aldrich Chemie, Czech Republic) 

• Anesthetic mix: 1.5 ml ketamine (100 mg/ml) +1.2 ml xylazine (100 mg/ml) (both 

from Vetoquinol, Czech Republic) +7.3 ml 0.9% saline solution 

• BD FACS™ Lysing Solution, (BD, United States of America)  

• Cell wash (BD, United States of America) 

• Coulter Isoton II Diluent (Beckman Coulter, United States of America) 

• Debris Removal solution (Miltenyi Biotec GmbH, Germany) 



23 
 

• Dulbecco’s modified eagle’s medium F12 (DMEM F12) (Sigma-Aldrich Chemie, 

Czech Republic) 

• Eosin (Sigma-Aldrich Chemie, Czech Republic) 

• Ethanol 96%, 100% (obtained from Penta chemicals, Czech Republic) 

• Fetal bovine serum (FBS) (Sigma-Aldrich Chemie, Czech Republic) 

• Fc receptor blocking reagent, (Miltenyi Biotec GmbH, Germany) 

• Foxp3/Transcription factor staining buffer (RD systems, United States of 

America) 

• GlutaMAX (Thermo Fisher Scientific, United States of America)  

• Hematoxylin (Sigma-Aldrich Chemie, Czech Republic) 

• Hoechst 33258 (Sigma-Aldrich Chemie, Czech Republic) 

• LIVE/DEAD™ Fixable Violet Kit (Invitrogen, United States of America) 

• Ophthalmol-Azulen (Zentiva, Slovak Republic)  

• Phosphate buffer (PBS) – 137 mM NaCl, 4 mM Na2HPO4, 2.68 mM KCl, 1.76 

mM KH2PO4, pH 7.4 (Sigma-Aldrich Chemie, Czech Republic) 

• Roswell Park Memorial Institute 1640 Medium (RPMI 1640 medium) (Sigma-

Aldrich Chemie, Czech Republic) 

• Trypsin-ethylenediaminetetraacetic acid (trypsin-EDTA) (Sigma-Aldrich 

Chemie, Czech Republic) 

• Staining buffer (RD systems, United States of America) 

• Tissue Freezing Medium (Jung, Germany) 

• Tumor Dissociation Kit (Miltenyi Biotec GmbH, Germany)  

 

6.1.3. Antibodies 

 

The complete list of antibodies and their specific targets used in this study is 

shown in Tab. 3.  
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Table 3: Overview of used antibodies 

 

6.1.4. Laboratory equipment 

 

• Autoclave SterilCave 18BDH (Cominox, Italy) 

• BD FACS Verse (BD, United States of America) 

• Centrifuges, Hettich Zentrifugen Universal 320R and Universal 16R (Hettich, 

Germany) 

• Coulter Counter Z2 with 100 μm capillary (Beckman Coulter, Germany) 

• CO2 thermostat (Sanyo, Japan)  

• Cryotome (Bright Instruments, United Kingdom) 

• gentleMACS™ Dissociator, (Miltenyi Biotec GmbH, Germany) 

• Hamilton Syringe (Hamilton Company, United States of America)  

• KS 4000 ic control (IKA, Germany) 

• Laminar Flow cabinet SafeFAST classic 212 (Faster Air, Italy) 

• Microplate fluorimeter Infinite M1000 (Tecan, Austria) 

• Microscope IX70 (Olympus, Japan)  

• Pipetman Classic, P2, P10, P20, P100, P200, P1000 (Gilson, United States of 

America) 

• Pump 11 Elite (Harvard Apparatus, United States of America) 

• Stereotaxic device (Stoelting Co, United States of America)  

• Surgical equipment (P-Lab, Czech Republic) 

• Vortex-Genie2 (Scientific Industries, United States of America) 

• Ultra-Turrax homogenizer fitted with an S8N-5G probe (IKA, Germany) 

Antibody target Clone Isotype Fluorochrome Manufacturer 

CD45 EM-05 Rat IgG PerCP Exbio (Czech Republic) 

 CD3 145-

2C11 

Hamster IgG PE-Cy7 

CD8a 53-6.7 Rat IgG2a kappa PE 

CD4 GK1.5 Rat IgG2b FITC 

CD335 29A1.4 Rat IgG2a kappa PE RD systems (United 

States of America) 
 

F4/80 BM8 Rat IgG2a kappa APC 

CD25 280406 Rat IgG2a APC 

Helios 22F6 Hamster IgG PE (Miltenyi Biotec GmbH, 

Germany) 
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6.1.5. Laboratory consumables 

 

• 96-well plates (Corning Costar, United States of America) 

• Cell culture plastics (Nunc, Denmark) 

• Chirlac braided violet HR22 EP3-USP2/0 1×70 cm (Harrmed Medical, CZ) 

• Eppendorf tubes (Eppendorf, Germany) 

• FACS tubes (BD, United States of America)  

• Falcon tubes (Corning, United States of America) 

• gentleMACS C Tubes (Miltenyi Biotec GmbH, Germany)  

• Gilson tips (Gilson, France)  

6.1.6. Software 

 

• BD FACSuite™ software (BD, United States of America) 

• Flow Jo v10.6.2 software (Flow Jo LLC, United States of America) 

• ImageJ software (National Institute of Health, United States of America) 

• QuickPHOTO MICRO 2.3 software (Promicra, Czech Republic) 

• The Statistica 12 software (StatSoft, Inc., United States of America) 

 

6.2. Methods 

 

6.2.1. Cell culture 

 

Cells were grown under standard cell culture conditions at 37 °C in the RPMI 

1640 medium, supplemented with 10% fetal bovine serum (FBS), under a humidified 

atmosphere of 5% CO2.  

Cells were washed with 3 ml of PBS, and the supernatant was discarded. Then, 

the cells were added with 1 ml of Trypsin-ethylenediaminetetraacetic acid (Trypsin-

EDTA) and incubated in the thermostat for 3 min at 37 °C. Enzymatic activity of Trypsin-

EDTA was stopped by the addition of 4 ml of RPMI 1640 with 10% FBS and 1% 

GlutaMAX. The cells were transferred into a 15ml falcon tube and centrifuged at 250 g 

at 4 °C for 8 min. The supernatant was discarded, and the pellet of cells resuspended in 5 

ml of RPMI 1640 medium. The cells were counted (see 6.2.2.), transferred into a 1.5ml 

eppendorf tube and centrifuged at 250 g at 4 °C for 8 min. The supernatant was discarded, 
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and the pellet resuspended in RPMI 1640 in concentration 2x106/ml cells. The cells were 

distributed into aliquotes at 10 µl volume(one aliquot meant for one animal). 

6.2.2. Cell counting 

 

The cell suspension was diluted 1:200 (40 μl cell suspension in 8 ml of Coulter 

Isoton II Diluent) and counted by Coulter Counter Z2. Objects between 10 – 27 μm were 

counted.  

 

6.2.3. Isolation of peritoneal macrophages 

 

Mice were fully anesthetized and placed and fixed dorsally on the dissection table. 

A small incision was made in the center of the abdomen and firmly peeled the skin off to 

expose the peritoneal wall. The 20G needle was inserted into the peritoneal membrane to 

inject 10 ml of PBS into the peritoneal cavity. The abdomen was massaged for 10 – 15 

seconds. Peritoneal fluid was carefully withdrawn, avoiding organs and fat, which could 

clog the needle. Peritoneal fluid was centrifuged at 250 g for 10 min at 4 °C. The 

supernatant was discarded, and the cell pellet was resuspended in 1 ml of Staining buffer 

prepared for staining. 

6.2.4. Retro-orbital blood collection in mouse 

 

A mouse was fully anesthetized. The mouse neck was gently scruffed, which made 

the eye bulge. A capillary tube with 20 μl of Trypsin-EDTA was inserted in the venous 

sinus. The blood was collected in the amount of 200 μl. Whole blood was resuspended in 

the Staining buffer and prepared for staining. 

6.2.5. Stereotactic intracranial implantation 

 

Mice were fully anesthetized with an intramuscular injection of an anesthetic mix 

before the surgery. The head was shaved, disinfected with Betadine, and a 5 mm incision 

was made longitudinally from the eye-level caudally for visualization of bregma. The 

mouse was placed on a stereotaxic device where its head was fitted into the adapter and 

fixed. The drill tip was placed over the bregma, and the drill tip was moved to a position 

3 mm posterior and 2.5 mm lateral in the right cerebral hemisphere, and a 0.4 mm burr 
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pierced the skull. The GL261 cells were removed from the ice and gently resuspended. 

The cell suspension was slowly drawn by a 30-gauge flat bevel needle attached to a 10μl 

Hamilton syringe to avoid air bubbles into the volume of 6 μl. Then the drill was replaced 

by the Pump 11 Elite with attached Hamilton syringe. An alcohol pad was used to remove 

the cell suspension fluid from the tip of the needle to prevent contamination of the incision 

site with tumor cells, which could result in the extracranial tumor. The syringe was moved 

to the burr hole, maintaining the needle perpendicular to the skull. When the needle 

passed through the skull, the tip was slowly proceeding into the depth of 3 mm over 3 

min.  

The total volume of 5 μl (2000 cells/μl RPMI 1640) of GL261 cell suspension was 

injected in the posterior hippocampus over the time of 5 min (1μl/min) (Fig. 3). After 

injection of the cell suspension into the animal, the Hamilton syringe was left in the brain 

for 2 min and then slowly withdrawn over 3 min. After removing the Hamilton syringe, 

the burr hole was immediately covered by sterile bone wax. The edges of the incision 

were reapproximated with standard sewing atraumatic set 169. All surgical interventions 

were done according to aseptic and antiseptic methods. 

 

Figure 3: Stereotactic intracranial implantation 
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6.2.6. Mouse transcardial perfusion 

 

Mice were fully anesthetized, placed, and fixed dorsally on the dissection board. 

By using iris scissors, a lateral incision was made through the abdominal wall and rib 

cage at both sides in a caudocranial direction to expose the liver and the heart. The 

transcardial perfusion method was done with a 10ml syringe with a 20G needle filled with 

10 ml of PBS. The syringe was injected into the apex of the left ventricle, and the right 

atrium was incised with iris scissors. The transcardial perfusion was started immediately 

with a flow rate of 10 ml/min 170. 

6.2.7. Hematoxylin-eosin staining 

 

Brains were harvested and put into Tissue Freezing Medium. Frozen brains were 

stored at -70 °C. Serial frozen coronal sections 10 μm thick were cut using a cryotome at 

a temperature of –22 °C. Every fifth section was stained by hematoxylin and eosin and 

analyzed. Eosin was diluted in distilled water (1:20). The samples were fixed, rinsed, and 

stained according to Tab. 4. Quantification of the tumor size was done using the 

Cavalieri’s method for unbiased volume estimation in ImageJ software with plugin 

Volumest 171.  

Table 4: Hematoxylin and eosin staining 

Fixation: 4 % paraformaldehyde  10 min 

Rinse: dH2O 5 min 

Staining: Hematoxylin 10 min 

Rinse: H2O 10 min 

Staining: Eosin 3 min 

Rinse: Ethanol 60 % 3 min 

Rinse: Ethanol 96 % 3 min 

Rinse: Ethanol 100 % 3 min 

Fixation: Xylene 3 min 
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6.2.8. Enzymatic activity measurement of Fibroblast activation 

protein  

 

Tissue samples (brain, liver, kidney, lungs, muscle, spleen, pancreas) of one 

C57BL/6J WT and one C57BL/6 FAP-/- mouse and cell lines (T98G, U373, U87, U138, 

U118, ZAM, GL261) were lysed in ice-cold phosphate-buffered saline (PBS), pH 6.0, 

with a homogenizer fitted with an S8N-5G probe and used for enzymatic assay 

immediately. 

Enzymatic activity of FAP in tissue samples was measured in polystyrene flat-

bottom 96-well plates using a kinetic assay with 150 μm of N-(quinoline-4-carbonyl)-D-

Ala-L-Pro-7-amido-4-methyl-coumarin as a fluorogenic FAP-specific substrate. FAP 

assays were done at 37°C in a total reaction volume of 100 μl in a PBS pH 7.5 buffer (8 

mM NaH2PO4/42 mM Na2HPO4 – 150 mM NaCl). Fluorescence of the enzymatically 

released 7-amino-4-methyl-coumarin was measured on a microplate fluorimeter using 

excitation and emission wavelengths/slits of 380/5 nm and 460/5 nm, respectively. 

Measurements were performed in triplicate and calibrated with several concentrations of 

7-amino-4-methyl-coumarin in the assay buffer. 

6.2.9. Dissociation of tissue into single cell suspension 

 

Tissue was dissociated by four different methods (Tab. 5) The tissue (spleen, right 

brain hemisphere) was cut into small 2–3 mm pieces in the Petri dish. 5 ml of DMEM 

F12 + 10% FBS was added to the minced tissue (method A) or 5 ml of accutase (method 

B) and incubated at 37 °C for 30 min. For methods C and D, minced tissue was transferred 

into tubes with 4.7 ml of DMEM F12, and Tumor Dissociation kit (TDK) (method C) or 

5 ml of DMEM F12 + 10% FBS (method D). Minced tissue was dissociated by a 

gentleMACS™ Dissociator with program Brain_03 (60 s) followed with 30 min 

incubation at 37 °C. After the incubation, dissociated tissue was centrifuged at 161 g at 4 

°C for 5 min.  
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Table 5: Methods for the dissociation of mouse tissue to detect immune cells by flow 

cytometry  

A B C D 

Chopping gentleMACS™ Dissociator 

DMEM F12+FBS accutase TDK DMEM F12+FBS 

Incubation  Incubation Incubation Incubation 

Filtration  Filtration Filtration Filtration 

Centrifugation  Centrifugation Centrifugation Centrifugation 

 

6.2.10. Debris removal 

 

Pellet of cells obtained after centrifugation of filtrated cell suspension was 

resuspended with 6.2 ml of PBS, and 1.8 ml of Debris Removal Solution was added. The 

suspension was mixed thoroughly. The suspension was overlayed very gently with 4 ml 

of PBS. The sample was centrifuged at 3000 g at 4 °C for 10 min with full acceleration 

and full brake. After centrifugation, three phases were formed, and the top 2 layers were 

very gently discarded. PBS was added to the volume of 15 ml, and the tube was spun 

upside down three times. The sample was centrifuged at 1000 g at 4 °C for 10 min. After 

centrifugation, the supernatant was discarded, and cells were ready for staining. The 

debris removal protocol was based on manufacturer instructions. 

6.2.11. Lysis of erythrocytes 

 

Erythrocytes in cell suspension were lysed by lysing solution, which was diluted 

1:10 with distilled water. The volume of 3 ml of diluted lysing solution was added to 100 

μl of cell suspension and incubated for 6 min at 4 °C. Erythrocytes were lysed under mild 

hypotonic conditions while leukocytes stayed preserved. The erythrocyte lysis protocol 

was based on manufacturer instructions. 

6.2.12. Fc receptor blockade 

 

Fc receptor is expressed on several subpopulations of immune cells and 

mesenchymal stem cells 172,173. Fc receptor recognizes the Fc fragment of antibodies, 

which could lead to non-specific binding of antibodies and give false-positive results. Fc 

receptor blocking reagent blocks Fc receptors and decreases non-specific binding of 

antibodies. Fc receptor blocking reagent in the volume of 10 μl was added to 90 μl of cell 
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suspension and incubated for 10 min at 4 °C. After incubation, the sample was centrifuged 

at 161 g at 4 °C for 4 min, and the sample was ready for staining. The protocol for Fc 

receptor blocking was based on manufacturer instructions. 

6.2.13. Flow cytometry data acquisition 

 

Data for a flow cytometer BD FACS Verse were acquired by BD FACSuite™ 

software according to the parameters shown in Tab. 6. 

Table 6: BD FACS Verse cytometer characteristics 

Laser  Emission filter Measured fluorochromes 

Violet 405 nm 
448/45 BD Horizon V450 

528/45 None 

Blue 488 nm 

488/15 None 

527/32 FITC 

585/42 PE 

700/54 PerCP 

783/56 PE-Cy7 

Red 640 nm 
660/10 APC 

783/56 None 

 

Three panels were developed for the detection of immune subpopulations by flow 

cytometry (Tab. 7). Immune cells were identified by surface and intracellular positive and 

negative markers.  

Table 7: Panels of antibodies for immune subpopulations detection 

 

 

Panels Cell populations Markers Fluorochrome 

Panel 1 

T cells 

(CD45+CD3+CD4+CD8-) 

(CD45+CD3+CD4-CD8+) 

CD45 PerCP 

CD3 PE-Cy7 

CD8 PE 

CD4 FITC 

Myeloid cells 

(CD45+F4/80+CD3-) 
F4/80 APC 

Panel 2 
NK cells 

(CD45+CD3-CD335+) 

CD45 PerCP 

CD3 PE-Cy7 

CD335 PE 

Panel 3 
Treg cells 

 (CD4+CD25+Helios+) 

 

CD4 FITC 

CD25 APC 

Helios PE 
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6.2.14. Detection of dead cells for flow cytometry 

 

The LIVE/DEAD™ Fixable Violet Dead Cell Stain was used to determine cell 

viability for flow cytometry by channel 448/45 and fluorochrome V450. The dye reacts 

with intracellular and extracellular amines. In the viable cells, the staining is limited only 

to extracellular amines. Cells with compromised membranes are also stained 

intracellularly, so they are more tend to bind a dye (Fig. 4). Dead cell control for gating 

strategy of viable brain cells and splenocytes was performed according to manufacturer 

instructions.  

 

Figure 4: Staining of cells by LIVE/DEAD Fixable Violet Dead Cell Stain Kit 

The dye binds primary amine groups of proteins. Living cells have only cell surface proteins 

labeled while dead cells allow the entry of the dye into the cytoplasm, and intracellular proteins 

are labeled as well. 

 

6.2.15. Cell staining for flow cytometry 

 

The samples of 50 μl of cell suspension were incubated for 30 min in the dark on 

ice with anti-CD45-PerCP, anti-CD3-PE-Cy7, anti-CD8a-PE, anti-CD4-FITC, anti-

Helios-PE, anti-CD335-PE, anti-F4/80-APC, anti-CD25-APC and The LIVE/DEAD™ 

Fixable Violet Dead Cell Stain Kit. Commercial dye for dead cells was diluted 1000×. 

For intracellular staining, cells were fixed and permeabilized by Foxp3/Transcription 

factor staining buffer. The protocol for fixation and permeabilization was based on 

manufacturer instructions.  

 



33 
 

6.2.16. Titration of antibodies 

 

Titration of antibodies was done on the mouse whole blood and peritoneal lavage. 

Whole blood was stained for extracellular markers (CD45, CD3, CD4, CD8, CD335). 

Peritoneal lavage was stained for an extracellular marker (F4/80). Antibodies for CD25 

and Helios were used according to manufacturer instructions due to low levels of 

expression in the whole blood. All antibodies were diluted in PBS, whole blood, and 

peritoneal lavage was measured in the Staining buffer. Whole blood and peritoneal lavage 

were collected (see 6.2.3., 6.2.4.). Serial dilution of individual antibodies was prepared in 

10 µl of PBS, starting from the concentration recommended by the manufacturer (1:5) 

and then decreasing the concentration two-fold in each subsequent well until the final 

dilution of 1:640 in the final volume of 50 µl. Then, 50 µl of whole blood and peritoneal 

lavage were incubated with titrated antibodies for 30 min in the dark at room temperature. 

After 30 min, erythrocytes were lysed (see 6.2.11). Next, the cells were washed by 1 ml 

of cell wash, centrifuged at 215 g for 5 min at 4 °C and immediately analyzed by a flow 

cytometer. The correct dilution of each antibody was chosen according to the mean 

fluorescence intensity (MFI) of both negative and positive populations, which were 

calculated by FlowJo. The measured MFI values are used to create the titration graph and 

calculate the stain index (Fig. 5). The stain index determines the optimal dilution by 

identifying the point of the best separation between positive and negative cell populations 

(Fig. 6).  

 

𝑺𝒕𝒂𝒊𝒏 𝒊𝒏𝒅𝒆𝒙 =
𝑀𝐹𝐼𝑝𝑜𝑠 − 𝑀𝐹𝐼𝑛𝑒𝑔

2𝜎𝑛𝑒𝑔
 

 

Figure 5: Calculation for the Stain index 

The median fluorescence intensity of the negative population is subtracted from the median 

fluorescence intensity of the positive population, and the resulting number is divided by the 

standard deviation of the negative population times two. 
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A) 

 

B) 

 

C) 
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D) 

 

E) 

 

F) 

  

Figure 6: Histograms of expressed markers and titration curves of antibodies 

Histograms of expressed markers (on the left) and titration curve (on the right) of diluted 

antibodies binding CD45 (A), CD3 (B), CD4 (C,) CD8 (D), CD335 (E), F4/80 (F). The histograms 

include unstained control (grey histograms) and positive cell populations. Each dot in the graphs 

of the titration curve represents one dilution in the serial dilution. The optimal antibody 

concentration is labeled in a green rectangle. 
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Table 8: Optimal concentration of antibodies 

Antibody  Stain index/Mean 

fluorescence intensity 

Dilution The concentration of 

antibody (µg/ml) 

CD45 PerCP 13720 1:40 12.5 

CD3 PE-Cy7 36.2 1:40 12.5 

CD4 FITC 61.8 1:80 6.25 

CD8 PE  532 1:40 12.5 

CD335 PE 20.9 1:40 12.5 

F4/80 APC 223.9 1:20 25 

 

6.2.17. Statistical Analysis  

 

All statistical analyses were performed using Statistica 12 software, and value 

p<0.05 was considered statistically significant. Kruskal–Wallis and Mann Whitney U 

tests were used to determine the statistical significance of differences between groups.  

7. Results 
 

7.1. Design methods for dissociation of mouse glioblastoma 

tissue into a single cell suspension to detect immune 

cells 
 

For valid cytometry data, it is crucial to have a proper single cell suspension. To 

obtain a single cell suspension from dissociated tissue, four dissociation methods were 

designed, based on studies that performed comparable processing of a brain or tumor 

tissue (Tab. 2). These methods included a combination of various non-enzymatic and 

enzymatic tissue dissociations. 

Methods A and B involved dissection of tissue using a sterile scalpel. The minced 

tissue was non-enzymatically or enzymatically dissociated using cultivation medium with 

fetal bovine serum (DMEM+FBS) (A) or accutase (ACC, B), respectively. On the other 

hand, methods C or D included dissection of tissue using a gentleMACS™ Dissociator. 

The cell suspension was subsequently enzymatically digested in the Tumor Dissociation 

kit (TDK, C) or non-enzymatically triturated in DMEM+FBS (D). After incubation, the 

suspension was filtered through a 40 µm nylon mesh to remove undigested tissue residues 

(Fig. 7) (see 6.2.9). 
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Each of the methods was evaluated for a viable leukocyte yield and modification 

of surface molecules. The quality of single cell suspension would be further improved by 

the removal of cell debris and lysis of erythrocytes.   
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Figure 7: Overview of different protocols for the dissociation of mouse glioblastoma tissue 

for flow cytometry analysis 

The tissue was mechanically dissociated in two ways using a scalpel or the dissociator. Methods 

A and B include tissue dissociation by chopping followed with either non-enzymatic 

(DMEM+FBS, method A) or enzymatic (Accutase, method B) treatment. Methods C and D include 

tissue dissociation by the dissociator, followed with either non-enzymatic (DMEM+FBS, method 

D) and enzymatic (TDK, method C) treatment. After dissociation, the cell suspensions were 

incubated for 30 min at 37 °C. Then, the cell suspensions were filtered through a 40 µm nylon 

mesh, centrifuged, and analyzed by flow cytometry. 

Tumor Dissociation kit – TDK; DMEM+FBS -  Dulbecco’s modified eagle’s medium F12+fetal 

bovine serum 

 

7.1.1. Cell viability in cell suspension after dissociation of 

mouse tissue  

Preparing a single cell suspension from solid tissue requires the degradation of 

ECM and cell-cell contacts, which may result in damaged cells and reduced cell viability. 

Glioblastoma tumors are typical for necrotic lesions that adversely affect cell viability. 

Therefore, potential dissociation methods were first applied to healthy tissue.  
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For this purpose, the effect of all four dissociation method on viable leukocyte 

yield was evaluated on the spleens of four healthy C57BL/6J mice. Harvested spleens 

were cut in three pieces (for technical triplicate), dissociated, and analyzed for each 

method. 

Cell suspensions obtained from the dissociated spleens were stained for leukocyte 

marker CD45 (a universal marker of hematopoietic cells), cell viability, and measured by 

flow cytometry. The gating strategy excluded cell debris according to forward scatter vs. 

side scatter plot. Viable leukocyte yield was characterized as viable CD45+ cells from all 

cells (Fig. 8A). 

The lowest leukocyte viability (approximately 20 %) was observed in cell 

suspension obtained from spleen non-enzymatically dissociated by the dissociator. 

Slightly higher leukocyte viability was in cell suspension obtained from spleens 

dissociated using a scalpel followed with enzymatic or non-enzymatic treatment. 

The highest viable CD45+ leukocyte viability (almost 90 %) was detected in cell 

suspension obtained from the spleen dissociated using the dissociator and TDK (Fig. 8B).  
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A) 
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B) 

 

Figure 8: Viability of CD45+ cells obtained from mouse spleen 

 

A) Representative gating strategy for viable CD45+ leukocytes performed on the spleen of the 

healthy C57BL/6J mouse. Cells were gated based on their size and complexity according to FSC 

vs. SSC channels, and debris was excluded. Doublets discrimination was based on FSC-A vs. 

FSC-H and SSC-A vs. SSC-W. Gating strategy for viable and dead cells was performed according 

to dead cell control. CD45+ leukocytes were identified according to unstained control. B) 

Viability of CD45+ leukocytes in cell suspensions obtained from spleens of healthy C57BL/6J 

mice dissociated by methods A, B, C, or D; Boxes: middle 25-75% of measured values; triangles: 

raw data; three tissue pieces were dissociated and analyzed for each method; N=1 mice; 

*p<0.05, Kruskal–Wallis test 

 

After evaluating the viability of leukocytes in cell suspensions obtained from the 

dissociated spleens, the methods were applied on mouse GBM tissue to measure viable 

cell yield and infiltration of viable CD45+ cells. 

Four C57BL/6J mice were implanted intracranially with GL261 cells (one for each 

method) (see 6.2.5). The highest viable cell yield in mouse GBM tissue, almost 70 % of 

all cells, was provided by the method using the dissociator and TDK. Similarly, the 

highest proportion of viable leukocytes obtained from mouse GBM was also provided by 

a method using the dissociator and TDK (Tab. 9).  
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Table 9: Proportion of viable cells obtained from mouse GBM 

 

The percentage of viable cells and viable CD45+ leukocytes in the mouse GBM tissue of C57 

BL/6J dissociated by different protocols; N=1 mouse 

 

 

 

7.1.2. Surface marker expression on immune cells after 

enzymatic digestion 
 

Enzymatic digestion of tissue could cleave a variety of cell surface molecules 

depending on the used enzymes. To determine the effect of enzymes on cell surface 

molecules crucial for further analysis - CD3, CD4, CD8, CD45, CD335 and F4/80, mouse 

body fluids (whole blood for lymphocyte markers, peritoneal fluid for myeloid cell 

marker) were enzymatically treated with ACC and TDK and compared to non-

enzymatically treated samples. Marker CD25 was not tested due to low expression levels 

in whole blood and the necessity of fixation. 

In the same way as tumor tissue, mouse body fluids were enzymatically treated 

for 30 min. The cleavage of cell surface markers was quantified by measuring the ratio 

of positive and negative mean fluorescent intensity (MFI) in samples treated with TDK, 

ACC, and non-treated samples. The surface marker expression in enzymatically treated 

samples was not significantly different compared to non-treated samples (Fig. 9).  

Dissociation method 

Viable cell yield in the mouse GBM tissue from all 

cells (%) 

viable cells/ all cells viable CD45+ cells/ all cells 

A (cut+DMEM+FBS) 50.2 6.49 

B (cut+ACC) 43.1 12.5 

C (dissociator+TDK) 69.4 35.8 

D (dissociator+DMEM+FBS)  37.8 18.6 
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Figure 9: Surface marker expression in enzymatically treated whole blood and peritoneal 

lavage in comparison with non-treated samples 

Surface marker expression in enzymatically treated samples of whole blood and peritoneal fluid 

by ACC and TDK was compared to non-treated samples. The results are shown as the ratio of 

positive and negative MFI in boxplots (left) and representative flow cytometry histograms (right), 

from top to bottom: CD45, CD3, CD4, CD8, CD335, F4/80. The experiment was performed in 

triplicate, raw data are shown by triangles; Kruskal–Wallis test CD45 (p=0.252); CD3 

(p=0.288); CD4 (p=0.063); CD8 (p=0.193); CD335 (p=0.252); F4/80 (p=0.067). The relative 

counts shown in histograms for samples treated with ACC (red), TDK (blue), and control (grey) 

are normalized to one hundred.  

 

ACC – accutase, TDK – tumor dissociation kit, control – non-treated samples, MFI – mean 

fluorescence intensity   
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7.1.3. Effect of debris removal on cell suspension quality 
 

Mechanical dissociation and enzymatic digestion of the tissue along with 

preexisting necrotic lesions might cause cellular death resulting in cell aggregates. Cell 

debris and aggregates in cell suspension entail a problem in the analysis of flow cytometry 

data.  

The effect of debris removal from cell suspension was evaluated on a healthy 

mouse brain sample (see 6.2.10). The healthy brain was dissociated by a method using 

the dissociator and TDK (method C), which was previously evaluated to be the most 

suitable for glioblastoma tissue. The cell suspension was excluded from cell debris and 

analyzed by a light fluorescence microscope. The cell suspension was stained with 

Hoechst 33258 (green) either before (Fig. 10A) or after (Fig. 10C) cell debris exclusion. 

To verify that cells were not excluded as well, cell debris was stained with Hoechst 33258 

(Fig. 10B). 

  

  

Figure 10: Removal of debris from cell suspension 

Cell suspension before (a) and after (b) debris removal. The cell nuclei are stained with Hoechst 

33258 (green). Scale bars represent 100 µm. 



46 
 

7.2. Gating strategy for immune cell populations in mouse 

glioblastoma 
 

Gating strategies for immune cells were set on mouse GBM tissue. Viable 

leukocytes were identified with a common marker CD45. Two cell populations were 

identified among CD45+ cells based on cell complexity as CD45+SSChigh and 

CD45+SSClow. CD45+SSChigh and CD45+SSClow were considered to be myeloid cells and 

lymphocytes, respectively. Panel 1 was used for the detection of myeloid cells and 

conventional T cells. Myeloid cells were identified as CD45+F4/80+ and conventional T 

cells as either CD45+CD3+CD4+CD8- or CD45+CD3+CD4-CD8+. (Fig. 11). In Panel 2, 

NK cells were identified as CD45+CD3-CD335+ (Fig. 12). Panel 3 was used for the 

detection of Treg lymphocytes. For the identification of Treg, the cell suspension was 

fixed and permeabilized (see 6.2.15). Since CD4+ lymphocytes represented a minor cell 

population in cell suspension, the viable cells were detected after the identification of 

CD4+ cells. Treg were identified by surface marker expression - CD4 and CD25 markers 

and intracellular marker Helios (Fig. 13). 
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Figure 11: Gating strategy for myeloid and conventional T cells in mouse glioblastoma tissue 

(Panel 1) 

Cells were gated based on their size and complexity according to FSC vs. SSC channels, and 

debris was excluded. Viable cells were identified according to dead cell control. Viable leukocytes 

(CD45+ cells) were detected according to unstained control. Two cell populations were identified 

in CD45+ cells based on complexity as CD45+SSChigh (green arrows) and CD45+SSClow (blue 

arrows) and were analyzed separately. Single cells were identified by FSC-A vs. FSC-H and by 

SSC-A vs. SSC-W channels in both CD45+ cell populations. CD45+SSChigh were gated for F4/80+ 

marker. CD45+F4/80+ cells presented as myeloid cells. Myeloid cells were negative for CD3 

marker. CD45+SSClow cells were gated for the CD3 marker. Then, CD3+ lymphocytes were gated 

for CD4 and CD8 marker. Conventional T cells had either CD45+CD3+CD4+CD8- or 

CD45+CD3+CD4-CD8+ phenotype. CD3+ lymphocytes were negative for F4/80 marker. Adjunct 

histograms were used for better visualization and resolution of positive and negative cell 

populations. 
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Figure 12: Gating strategy for NK cells in mouse glioblastoma tissue (Panel 2) 

Cells were gated based on their size and complexity according to FSC vs. SSC channels, and 

debris was excluded. Viable cells were identified according to dead cell control. Viable leukocytes 

(CD45+ cells) were detected according to unstained control. Lymphocytes were presented as 

CD45+SSClow cells. Single cells were identified by FSC-A vs. FSC-H and by SSC-A vs. SSC-W 

channels in both CD45+ cell populations. NK cells had CD45+CD335+CD3- phenotype. Contour 

plots and adjunct histograms were used for better visualization and resolution of positive and 

negative cell populations. 
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Figure 13: Gating strategy of Treg in mouse glioblastoma tissue (Panel 3) 

CD4+ lymphocytes were gated from all cells. Viable cells were gated after CD4 marker 

identification. Single cells were identified by FSC-A vs. FSC-H and by SSC-A vs. SSC-W channels. 

Treg were detected as CD4+CD25+Helios+ cells. Helios+ cells were identified according to FMO 

control for Helios marker. Contour plots have been used for better visualization and resolution 

of positive and negative cell populations. 

FMO – fluorescence minus one 

 

 

7.3. Characterization of an immunocompetent syngeneic 

mouse model of glioblastoma 
 

Before analyzing how FAP expression influences the specific composition of 

immune cells in the tumor microenvironment, a syngeneic model of GBM in wild-type 

and FAP-/- mice was characterized. 

First, FAP enzymatic activity was measured in GL261 cells and compared to 

human glioma cell lines expressing (U87, U138, U118) or not expressing FAP (T98G, 

U373), as well as to cancer-associated fibroblasts (ZAM) that are known for high FAP 

expression 174. FAP enzymatic activity was hardly detectable in GL261 cells and was 

comparable to FAP enzymatic activity in human glioma cell lines not expressing FAP 

(Fig. 14A) 

To confirm FAP deficiency in FAP-/- mice, FAP enzymatic activity was measured 

in harvested organs of C57BL/6 FAP-/- mouse and compared to organs of C57BL/6J WT 

mouse. FAP enzymatic activity was measured in brain, liver, kidney, lungs, muscle, 

spleen, and pancreas of healthy C57BL/6J WT and C57BL/6 FAP-/- mice. C57BL/6 

FAP-/- mice had barely detectable FAP enzymatic activity in harvested organs. In 

C57BL/6J WT mice, the highest FAP enzymatic activity was measured in pancreas, liver, 

and muscle. FAP enzymatic activity in the brain was more than 2-fold lower compared 

to other harvested organs of C57BL/6J WT mice (Fig. 14B). FAP enzymatic activity was 

significantly higher in all harvested organs of C57BL/6J WT mice compared to C57BL/6 

FAP-/- mice (see 6.2.8). 

To evaluate if tumor growth is affected by FAP expression in host cells in 

C57BL/6J WT and C57BL/6 FAP-/- mice, they were intracranially implanted with 
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GL261 cells. Tumors formed in both C57BL/6J WT and C57BL/6 FAP-/- mice. The brain 

tumors were harvested after four weeks. GBM tumors from both C57BL/6J WT and 

C57BL/6 FAP-/- mice were highly vascularized with wide necrotic areas and non-

infiltrative tumor growth (Fig. 15A). Moreover, tumor volumes were not significantly 

different between C57BL/6J WT and C57BL/6 FAP-/- mice (Fig. 15B). 
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A)  

 

B) 

  

Figure 14: FAP enzymatic activity in organs of healthy C57BL/6J WT and C57BL/6 FAP-

/- mice, human and mouse glioma cell lines and cancer-associated fibroblasts  

A) FAP enzymatic activity (pkat/ 106 cells) determined in a panel of human glioma cell lines 

(T98G, U373, U87, U138, U118), cancer-associated fibroblasts (ZAM) and a mouse glioma cell 

line (GL261). B) FAP enzymatic activity (pkat/1mg of total protein) in harvested organs (brain, 

liver, kidney, lungs, muscle, spleen, pancreas) of healthy C57BL/6J (blue) and C57BL/6 FAP-/- 

(orange) mice; N=1 mice  
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A) 

 

 

B) 

   

Figure 15: Tumorigenicity of GL261 cells in an orthotopic mouse glioblastoma model 

A) Representative microscopy images of hematoxylin-eosin stained sections of mouse 

glioblastomas established by GL261 in the right brain hemisphere of C57BL/6J WT (left) and 

C57BL/6 FAP-/- (right) mouse. Scale bars represent 100 µm.  B) Tumor volume in C57BL/6J WT 

and C57BL/6 FAP-/- mice. Boxes: middle 25-75% of measured values; bars: non-outlier range; 

triangles: raw data; circles: outliers. There was no significant difference in tumor volume 

between C57BL/6J WT and C57BL/6 FAP-/- glioblastoma mouse model; N=6 mice; p=0.128; 

Mann Whitney U test 
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7.4. Detection of immune cells in a syngeneic mouse model 

of glioblastoma in wild-type and FAP-/- mice  
 

In order to determine whether the composition of immune cells in the tumor 

microenvironment is influenced by stromal FAP expression, immune subpopulations in 

the GBM microenvironment of C57BL/6J WT and C57BL/6 FAP-/- mice were analyzed. 

GL261 tumors from both C57BL/6J WT and C57BL/6 FAP-/- mice (three mice per 

group) were dissociated by an optimized method using the dissociator and TDK (method 

C). The viability of cells after tumor dissociation was more than 70 % in both C57BL/6J 

WT and C57BL/6 FAP-/- mice. The immune subsets were analyzed from all and viable 

cells and in the composition of viable leukocytes. 

Leukocytes (CD45+ cells) highly infiltrated into the GBM microenvironment, and 

their proportion was comparable in tumors in C57BL/6J WT and C57BL/6 FAP-/- mice 

(Fig. 16). Similarly, the proportion of individual immune subpopulations in the GBM 

microenvironment was not significantly different between C57BL/6J WT and C57BL/6 

FAP-/- mice.  

Myeloid cells representing approximately one-third of all cells were the major 

immune subpopulation in the GBM microenvironment in both C57BL/6J WT and 

C57BL/6 FAP-/- mice (Fig. 17, 20B).  

 The percentage of infiltrated NK cells in the tumor microenvironment were less 

than 5 % of all cells in both C57BL/6J WT, and C57BL/6 FAP-/- mice and represented 

the smaller fraction leukocytes (Fig. 18, 20B). The frequency of T cells was similar to the 

proportion of infiltrated NK cells in both C57BL/6J WT and C57BL/6 FAP-/- mice (Fig. 

20B).  

The proportion of CD4+ T cells from all viable CD3+ T cells was higher in 

C57BL/6J WT mice compared to C57BL/6 FAP-/- mice (Fig. 20A). Double negative T 

cells (CD4-CD8-) highly infiltrated the GBM microenvironment in both C57BL/6J WT 

and C57BL/6 FAP-/- mice. On the other hand, double positive T cells (CD4+CD8+) 

represented a minor cell population of CD3+ lymphocytes.  

However, there was wide variability between samples in leukocyte composition 

in the mouse GBM microenvironment (Fig. 20A, 21A). 
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Figure 16: Percentage of leukocytes in the GBM microenvironment of C57BL/6J WT and 

C57BL/6 FAP-/- mice  

Flow cytometric analysis of leukocytes (CD45+) in C57BL/6J WT and C57BL/6 FAP-/- mice – 

the percentage of leukocytes in the GBM microenvironment. Boxes: middle 25-75% of measured 

values; triangles: raw data; N=3 mice; (CD45+ of all cells) p=1.0 (left); (CD45+ of viable cells) 

p=1.0 (right); Mann Whitney U test 

 

 

Figure 17: Percentage of myeloid cells in the GBM microenvironment of C57BL/6J WT and 

C57BL/6 FAP-/- mice:  

Flow cytometric analysis of myeloid cells (CD45+F4/80+) in C57BL/6J WT and C57BL/6 FAP-/- 

mice – the percentage of myeloid cells in the GBM microenvironment. Boxes: middle 25-75% of 

measured values; triangles: raw data; N=3 mice; (CD45+F4/80+ of all cells) p=1.0 (left); 

(CD45+F4/80+ of viable cells) p=0.383 (right); Mann Whitney U test 
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Figure 18: Percentage of NK cells in the GBM microenvironment of C57BL/6J WT and 

C57BL/6 FAP-/- mice  

Flow cytometric analysis of NK cells (CD45+CD335+CD3-) in C57BL/6J WT and C57BL/6 FAP-

/- mice – the percentage of T cells in the GBM microenvironment. Boxes: middle 25-75% of 

measured values; triangles: raw data; N=3 mice; (CD45+CD335+CD3- of all cells) p=1.0 (left); 

(CD45+CD335+CD3- of viable cells) p=0.383 (right); Mann Whitney U test 

 

 

Figure 19: Percentage of T cells in the GBM microenvironment of C57BL/6J WT and 

C57BL/6 FAP-/- mice 

Flow cytometric analysis of T cells (CD45+CD3+) in C57BL/6J WT and C57BL/6 FAP-/- mice – 

the percentage of T cells in the GBM microenvironment. Boxes: middle 25-75% of measured 

values; triangles: raw data; N=3 mice; (CD45+CD3+ of all cells) p=0.383 (left); (CD45+CD3+ 

of viable cells) p=0.383 (right); Mann Whitney U test 
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A) 

 Myeloid cells (%) T cells (%) NK cells (%) 

WT 65.3 6.39 3.38 

52.3 9.43 7.97 

73.6 5.62 1.19 

FAP-/- 60.6 7.93 9.33 

86.2 1.31 1.62 

80.5 2.52 2.88 

 

B) 

 

 

 

Figure 20: Composition of viable leukocytes in the GBM microenvironment of C57BL/6J 

WT and C57BL/6 FAP-/- mice  

A) Raw data of viable leukocyte composition in the GBM microenvironment of C57BL/6J WT and 

C57BL/6 FAP-/- mice B) Flow cytometric analysis of the viable leukocytes composition in the 

GBM microenvironment of C57BL/6J WT (left) and C57BL/6 FAP-/- (right) mice – the mean 

values of the percentages of immune subpopulations in the GBM microenvironment shown in pie 

charts; N=3; Myeloid cells (blue), T cells (orange), NK cells (grey) and others (yellow) 

 

A) 

 CD4+ T cells 

(%) 

CD4+ Treg/ 

CD4+ T cells (%) 

CD8+ T cells 

(%) 

DP T cells 

(%) 

DN T cells 

(%) 

WT 50.4 23.9 26.4 1.3 21.8 

51.9 27.8 25.4 2.4 20.3 

47.2 13.6 27.7 8.1 16.5 

FAP-/- 38 20 31.3 4.4 32.9 

30,7 19.4 33.1 6.7 25.3 

44,4 11.9 23.5 2.0 28.6 
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B) 

 

 

 

Figure 21: Composition of viable CD3+ lymphocytes in the GBM microenvironment of 

C57BL/6J WT and C57BL/6 FAP-/- mice  

A) Raw data of viable CD3+ lymphocytes composition in the GBM microenvironment of 

C57BL/6J WT and C57BL/6 FAP-/- mice B) Flow cytometric analysis of the viable CD3+ 

lymphocyte composition in the GBM microenvironment of C57BL/6J WT (left) and C57BL/6 FAP-

/- (right) mice – the mean values of the percentages of T cells in the GBM microenvironment 

shown in pie charts; N=3; all CD4+ T cells (dark and light orange), CD4+ Treg (light orange), 

CD8+ T cells (blue), DP (black) and DN (grey) 

DP – CD4+CD8+ double positive T cells, DN – CD4-CD8- double negative T cells  
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8. Discussion 
 

Tumor microenvironment plays a pivotal role during tumor progression. GBM 

tumors are highly infiltrated with immune cells compared to the healthy non-tumorous 

brain. However, the GBM microenvironment is characterized by strong 

immunosuppression 175. Immunosuppression in the tumor microenvironment is a 

consequence of dynamic interactions among the tumor, immune, and other stromal cells 

28.  

In various tumors, stromal cells expressing FAP were associated with specific 

infiltration of immune cells possessing immunosuppressive properties into the tumor 

microenvironment 58,87,90,91. The role of these cell populations in the immune cell 

composition in the tumor microenvironment was also shown by the ablation of FAP+ 

stromal cells 85,88,89.  

We hypothesized that the expression of FAP modulates the immune cell 

composition in the tumor microenvironment of the mouse GBM model.  

Flow cytometry is used as one of the methods to evaluate the tumor 

microenvironment composition due to its ability to detect different cell subpopulations.  

To acquire reliable data by using flow cytometry, it is crucial to prepare a single 

cell suspension. The preparation of single cell suspension from solid tissue could be 

associated with the loss of cells of interest, reduced cell viability, or marker expression 

modification. All these parameters must be considered in the experimental design. 

Literature evidence suggested that mechanical non-enzymatic dissociation of 

tissue led to the acquirement of cell suspensions with better cell viability in certain tumors 

(breast tumor) 152. However, non-enzymatic digestion of tissue is associated with 

inconsistent cell yield due to an insufficient breakdown of cell-cell junctions and proteins 

of the extracellular matrix. Moreover, mechanical non-enzymatic dissociation tends to 

release the intracellular compartments and nucleic acids that lead to the formation of cell 

aggregates 148.  

In various types of tissue, including brain tumors, enzymatically treated samples 

provided higher counts of viable cells in comparison to non-enzymatically treated 

samples 148,156,176,177. However, enzymatic digestion of tissue could lead to the cleavage 
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of surface markers, or in contrast, cause higher detection of positive cell population due 

to better access to antibodies for the specific epitope 152,178.  

The Brain Tumor Dissociation kit, specifically developed for brain tumors, was 

used for the isolation of myeloid cells from mouse GBM 166. Nevertheless, the Tumor 

Dissociation kit is more suitable for the detection of lymphocytes in the tumor 

microenvironment, due to its minimal effects on the expressed surface markers of 

lymphocytes, according to the manufacturer.  

In order to precisely detect immune subpopulations in the GBM 

microenvironment in our experimental design, optimization of the dissociation method 

was necessary. According to previous studies, four different methods were designed by 

using enzymatic and non-enzymatic digestion in tissue processing 152,165–167.  

The methods were evaluated for viable cell yield and modification of surface 

immune markers. First, the designed protocols were evaluated on mouse spleen tissues to 

determine the loss of viable leukocytes during the tissue dissociation. The highest 

viability of leukocytes in cell suspension from the spleen was obtained by dissociation 

using the dissociator and Tumor Dissociation kit, whereas other dissociation methods 

caused significantly reduced leukocyte viability. Then, the protocols were applied to 

mouse GBM tissue to determine cell viability and viable leukocyte yield. Concordantly 

with the results in the spleen, the method using the dissociator and Tumor Dissociation 

kit led to satisfactory cell viability, and also this method provided the highest viable 

leukocyte yield.  

To evaluate the possible effect of enzymatic treatment on the studied immune cell 

surface molecules in single cell suspensions, peritoneal macrophages, and blood 

lymphocytes were exposed to individual enzymes. Accutase and Tumor Dissociation kit 

had no significant effect on the surface expression of most tested molecules. Surprisingly, 

the cells treated by the Tumor Dissociation kit and accutase had a higher signal of CD335 

molecule (a marker of natural killer cells) compared to the untreated control. 

Based on these results, the method using dissociator and Tumor Dissociation kit 

was considered the most suitable for the dissociation of mouse GBM tissue for flow 

cytometry measurement.  
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The pilot experiment for the characterization of the composition of immune cells 

in the tumor microenvironment of GBM influenced by stromal FAP expression was 

conducted in the syngeneic glioblastoma model using wild-type and FAP knockout mice. 

Immune subpopulations (myeloid cells, conventional T cells, regulatory T cells, 

and natural killer cells) were analyzed by surface and intracellular markers in cell 

suspension obtained from the mouse GBM tissue dissociated by the optimized method. 

Three panels were used to identify different immune subpopulations. Gating strategy for 

the identification of immune cells by flow cytometry included the exclusion of debris, 

doublets, and dead cells.  

The results of the analysis showed that the pattern of infiltrated immune 

subpopulations into the tumor microenvironment was similar in both wild-type and FAP 

knockout mouse model of GBM. Similar to other studies, leukocytes represented a 

substantial portion of the GBM microenvironment 57,179–181.  

The predominant immune subpopulation in both wild-type and FAP knockout 

syngeneic mouse models of GBM was comprised of myeloid cells. However, there was 

no difference in the frequencies of infiltrated myeloid cells in the GBM 

microenvironment in wild-type and FAP knockout mice. Interestingly, a similar pattern 

of infiltrated myeloid cells consisted of microglia and bone marrow-derived 

monocytes/macrophages, was also observed in human GBM 33,50,180,182.  

In GBM tissue of both wild-type and FAP knockout mice, conventional T cells, 

regulatory T cells, and natural killer cells were detected, as described in other studies in 

mouse and human GBM 57,180.  CD3+CD4+ T cells tended to accumulate more in tumors 

of wild-type mice compared to FAP knockout mice. The fraction of CD3+CD8+ T cells 

was similar in both wild-type and FAP knockout mice. A minor lymphocyte fraction 

consisted of regulatory CD4+ T cells in both wild-type mice FAP knockout mice. The 

infiltration of regulatory T cells in mouse tumor tissue was also observed in another study, 

where it was shown that the frequency of regulatory T cells does not significantly change 

in the brain during tumor progression 57. Intratumoral CD4-CD8- double negative T cells 

represented a considerable portion of CD3+ lymphocytes in tumors of FAP knockout 

mice. The presence of these double negative cell population was observed to suppress 

tumor cell proliferation of human pancreatic cancer cells 183. 
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Nevertheless, there was no significant difference in the presence of these immune 

subpopulations between wild-type and FAP knockout mice. 

FAP in the tumor microenvironment of various solid tumors is expressed mainly 

by cancer-associated fibroblasts (CAFs). It was shown that CAFs that express FAP are 

more potent to induce immunosuppression in the tumor microenvironment 58,94,95. 

Stromal cell populations sharing similar phenotypic and functional properties with CAFs 

were identified in the GBM microenvironment 84,96. 

FAP+ stromal cells have been described to stimulate the infiltration of regulatory 

T cells and myeloid cells with immunosuppressive properties into the tumor 

microenvironment 58,91,94,184.  

Moreover, higher FAP expression was correlated with a reduced presence of CD3+ 

cells in the tumor microenvironment in colorectal cancer 94. In accordance, one study has 

demonstrated that FAP knockout mice with pancreatic adenocarcinoma tended to have 

higher frequencies of CD3+ lymphocytes at the tumor site 185. 

Also, higher FAP activity was shown to significantly decreased the frequencies of 

CD8+ T cells in tumors 58.  

The mesenchymal subtype of GBM is linked to a more immunosuppressive 

microenvironment in comparison with other subtypes 98. Also, the expression of FAP is 

associated with the mesenchymal subtype of GBM 84. GL261 model shares similar 

characteristics with the mesenchymal subtype of GBM, and in one study, it is reported 

that infiltrated host mesenchymal cells correlate with tumor progression 181.  

Detection of FAP enzymatic activity in our mouse model of GBM suggested that 

GL261 cell line has a rather low expression of FAP. However, FAP was detected in the 

healthy mouse brain and spleen besides other organs. In another study, FAP was also 

detected in other mouse organs of the immune system, like bone marrow and lymph nodes 

186. In humans, FAP expression was detected in bone marrow as well 79.  

In human GBM, FAP is expressed mainly by mesenchymal-like cells and tumor 

cells 84. In our GBM model, we tried to estimate if FAP expression on stromal cells could 

have an effect on immune cell composition in the GBM microenvironment and tumor 

progression. According to the acquired data, there was no significant difference in the 
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observed parameters of tumor progression like tumor volume or the frequencies of 

infiltrated immune subpopulations of interest between wild-type and FAP knockout mice. 

This study has several potential limitations that are associated with the 

characterization of immune cell composition in the mouse GBM.  

During the acquiring and analysis of cytometry data, there were some technical 

problems with cytometry setting and panel design. Surprisingly, in mouse brain tumor 

tissue, were atypical double-positive populations (F4/80+CD3+ and CD3+CD335+) 

detected. It was assumed that the detection of a double positive population might be a 

result of uncompensated data. A new compensation matrix was set on single stained 

samples of mouse whole blood and mouse peritoneal macrophages obtained by peritoneal 

lavage with the same antibodies and voltage settings as used in the analysis of mouse 

GBM tissues. Unfortunately, after applying a new compensation matrix, there were still 

double-positive populations. The reason for CD3+CD335+ cells might also be the 

instability of tandem dye. Antibody for CD335 marker was equipped with Phycoerythrin 

fluorophore, and an antibody for CD3 marker was conjugated with Phycoerythrin-

Cyanine7. Antibodies conjugated with tandem Phycoerythrin-Cyanine7 are sensitive to 

light and get easily degraded. Therefore, a strong signal could be seen in the donor 

channel Phycoerythrin. However, even nondegradable tandem can provide some weaker 

signals in the donor channel.  

Treg detection in cell suspension also had some technical issues. Longer 

incubation time during fixation and permeabilization of Treg in cell suspension caused 

cell aggregation, and single cell suspension lost its properties suitable for flow cytometry 

measurement. In this work, regulatory T cells were defined as CD4+CD25+Helios+ cells. 

Another possible approach for Treg detection is the negativity of surface marker CD127. 

The marker CD127 is expressed by conventional T cells but not by Treg. Using only 

surface markers might be more suitable for further identification of Treg in the cell 

suspension obtained from dissociated tumor tissue 187.  

Although slight trends indicate a difference in the composition of leukocytes 

between wild-type and FAP knockout mouse model of GBM, the results did not reach 

statistical significance. One of the possible reasons could be the use of small numbers of 

experimental groups.  
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In order to determine whether the composition of immune cells in the tumor 

microenvironment is influenced by stromal FAP expression, the experiment should have 

been conducted on larger groups of mice with a more detailed panel for flow cytometry 

measurement for further characterization of phenotypical properties of immune cells. 

Nevertheless, this work provided an optimized protocol for preparing single cell 

suspensions from mouse GBM tissues suitable for flow cytometry analysis, which will 

be used in further studies of infiltrated immune subsets in mouse models of astrocytic 

tumors. 
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9. Conclusions 
 

Protocol for mouse glioblastoma tissue dissociation and preparation of single cell 

suspension suitable for flow cytometry analysis was optimized.  

The developed and optimized method: 

• provides higher cell viability in cell suspension obtained from mouse GBM tissue 

compared to other dissociation methods 

• provides high viable leukocyte yield 

• minimizes alteration of studied marker expression in immune cells 

• enables the detection of various immune subpopulations (myeloid cells, 

conventional T cells, regulatory T cells, and natural killer cells) 

 

A pilot experiment of a flow cytometry analysis of immune cells in mouse GBM showed 

high infiltration of leukocytes, dominantly myeloid cells, into the tumor 

microenvironment. There were no statistically significant differences in the composition 

of intratumoral immune cells between wild-type and FAP knockout mice. 

The optimized method will be applied to mouse models of astrocytic tumors for further 

characterization of phenotypic properties of immune cells in the tumor 

microenvironment. 
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