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Abstrakt 
Priming T-lymfocytů je komplikovaný signalizační proces zahrnující několik úrovní 

molekulární a časoprostorové regulace. To, zda je zahájena TCR signalizace, závisí na 

signalizačním prahu TCR, který je pravděpodobně nastaven pomocí molekul CD5 a CD6 

během vývoje T-lymfocytů v thymu. Vlastní TCR signalizace („Signal 1“) zahrnuje několik 

drah, které vedou k produkci hlavních prozánětlivých transkripčních faktorů – NF-κB, NFAT 

a AP-1. Tyto transkripční faktory se účastní transkripce prozánětlivých cytokinů, z nichž 

nejdůležitější roli hraje IL-2. Molekulární úroveň primingu T-lymfocytů zahrnuje signalizaci 

z kostimulačních receptorů CD28, CD27 a HVEM, které jsou lokalizovány v imunologické 

synapsi. Signální dráhy kostimulačních molekul a TCR sdílejí významnou část signálních 

molekul, což zajišťuje, že aktivita kostimulačních molekul TCR signalizaci zesiluje. Krátce 

po aktivaci T-lymfocytů je zvýšena exprese koinhibičních molekul CTLA-4 a PD-1, které 

naopak TCR signalizaci a signalizaci z kostimulačních molekul tlumí. Souhra mezi 

kostimulačními a koinhibičními molekulami představuje „Signal 2“, který je zodpovědný za 

další šíření signálu během T-lymfocytové signalizace. 

  

Klíčová slova 
priming T-lymfocytů, TCR signalizace, kostimulace T-lymfocytů, koinhibice T-lymfocytů, 

TCR signalizační práh, imunologická synapse   
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Abstract 
T cell priming is a complicated signalling process involving several levels of 

molecular and spatiotemporal regulation. Whether TCR signalling is initiated depends on the 

TCR signalling threshold which is thought to be set during the T cell development in thymus 

by CD5 and CD6. TCR intrinsic downstream signalling (“Signal 1”) involves several 

pathways which result in the production of the main proinflammatory transcription factors, 

namely NF-κB, NFAT and AP-1. Those transcription factors participate in the transcription of 

proinflammatory cytokines such as IL-2. The molecular interface of T cell priming involves 

signalling from several types of costimulatory receptors, namely CD28, CD27 and HVEM, 

which are allocated to the immunological synapse. A significant overlap is present between 

the downstream signalling networks of TCR and costimulatory molecules which amplifies the 

transcription of proinflammatory genes. Shortly after T cell priming, coinhibitory molecules, 

namely CTLA-4 and PD-1, are upregulated to deliver negative signals to tune the stimulatory 

signalling. The interplay between costimulatory and coinhibitory molecules represents 

“Signal 2” that is responsible for further progression of T cell signalling.  

 

Key words 
T cell priming, TCR signalling, T cell costimulation, T cell coinhibition, TCR signalling 
threshold, immunological synapse  
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1 Introduction 
T cells represent the centrepiece of adaptive immune responses. Once naïve T cells 

leave the thymus, they are fully competent to recognize antigen peptides presented by MHC 

molecules (pMHC), clonally expand, differentiate into effector cells and potentially 

differentiate into long lived memory cells. The process of antigen recognition and induction 

of differentiation is termed T cell priming1.  

 T cell priming is tightly regulated to prevent spontaneous T cell activation that could 

result in harmful autoimmune diseases. Several levels of regulation are present at the 

molecular and cellular interface of T cell priming2,3.  

Regulation of T cell priming at the molecular level involves signalling from several 

types of receptors. The first step in naïve T cell activation is the pMHC recognition by the T 

cell receptor (TCR) followed by subsequent downstream signalling events, also referred to as 

“Signal 1”. However, TCR signalling alone is not sufficient for full T cell activation and 

results in the induction of T cell anergy4. For full activation, T cells depend on additional 

signals from costimulatory and coinhibitory molecules termed as “Signal 2”. Finally, the 

effector functions of the T cell are finely tuned by cytokine signalling in the local 

microenvironment termed as “Signal 3”5,6.  

 All signalling events are also spatiotemporally regulated at the cellular level. Naïve T 

cells can be primed only by the professional antigen presenting cells such as dendritic cells 

(DC). At the beginning of the immune response, mature DCs transport captured antigen to the 

lymph node where they interact with naïve T cells and form a contact termed immunological 

synapse (IS)7. 

 The IS represents a multiprotein signalling platform which comprises TCR, 

costimulatory and coinhibitory molecules and adhesion molecules that are spatially arranged 

for optimal signal transduction that leads to full T cell activation8.  

 Although intensively studied, the process of naïve T cell priming is still not 

completely understood. Identification of the molecular and cellular pathways involved in T 

cell priming is important for the development of T cell transfer based cancer immune 

therapies as it would allow for in vitro generation of so-called third-party cancer specific T 

cells from healthy donors, that could establish long lasting immune control of malignant 

disease.   
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2 Receptors and pathways involved in T cell priming 

2.1 TCR signalling 
The TCR is a multiprotein complex capable of recognizing antigen peptides presented by 

MHC class I or class II molecules, delivering the first signals required for T cell activation.  

In majority of T cells, TCR is structurally composed of αβ heterodimers associated with CD3 

multimeric complex composed of CD3γ, CD3δ, CD3ε, and CD3ζ subunits which form δε, γε, and ζζ 

dimers (see Fig.1). Neither TCR nor associated CD3 possess kinase activity, instead, signalling occurs 

through the cytoplasmic ITAMs of the CD3 subunits9. 

 
Fig. 1 TCR structure and signalling. TCR is αβ heterodimer associated with CD3, a multimeric complex consisting of δε, γε, 
and ζζ dimers. Upon pMHC II or pMHC I engagement with TCR, CD3 is phosphorylated by Lck brought into the complex by 
CD4 or CD8.  Zap70 binds to phosphotyrosines on CD3. Lck further phosphorylates Zap70 and brings it into proximity with 
LAT. Tyrosine residues of LAT are then phosphorylated by Zap70. Phosphotyrosines of LAT subsequently bind PLCγ1 and 
adaptor proteins Grb2 and Gads. PLCγ1 cleaves PIP2 into IP3 and DAG. IP3 diffuses into cytoplasm where it binds to IP3R1 on 
ER resulting in Ca2+ cytoplasmic influx. Ca2+ then binds to calcineurin allowing it to dephosphorylate NFAT which can then 
enter the nucleus. DAG recruits RASGRP1 and PKCθ. Both RASGRP1 and SOS1 are capable of activating Ras GTPase resulting 
in MAP kinase signalling: Ras/Raf/MEK/Erk/AP-1. PKCθ phosphorylaes CARMA1 which leads to CARMA1-BCL10-MALT1 
signalosome responsible for NF-κB activation. Gads binds SLP-76 which can then recruit Vav1. Similarly, Grb2 can recruit 
Vav1 too. Vav1 signalling results in Jun and Fos production via two MAP kinase pathways of JNK and p38. Source: Gaud, G., 
Lesourne, R. & Love, P.E. Regulatory mechanisms in T cell receptor signalling. Nat Rev Immunol 18, 485–497 (2018).  
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2.1.1 Initiation of TCR signalling 
One of the most important molecules for the initiation of TCR signalling is the Src 

family kinase Lck which is placed to the TCR-CD3 complex by the cytoplasmic domains of 

TCR co-receptors CD4 or CD810. Lck fulfils 3 major functions – it creates docking sites for 

other signalling proteins by phosphorylating ITAMs of CD3, it activates ZAP70 and finally, 

Lck functions as a molecular bridge between ZAP70 and LAT. Phosphorylated ITAMs 

represent docking sites for SH2 domain-containing molecules such as Zap70, that is crucial 

for T cell function as Zap-70-deficient patients lack functioning T cells and therefore suffer 

from severe combined immunodeficiency syndrome (SCID)11. Prior to T cell activation, 

Zap70 remains within cytoplasm in its autoinhibited form. Upon stimulation, Zap70 

recruitment to phosphorylated ITAMs uncovers its SH2 domain. However, for Zap70 to be 

fully activated, its phosphorylation of Y319 by Lck is needed. Moreover, Lck binds to 

phosphorylated Zap70 on Y319 through its SH2 domain while at the same time binding a 

proline-rich motif on LAT utilizing its SH3 domain. The engagement of both SH2 and SH3 

domains prevents Lck to adopt inactive conformation which amplifies its signalling properties 

and it creates a molecular bridge between Zap70 and LAT which is important for the 

formation of LAT signalosome12.  

Zap70-dependent LAT phosphorylation further propagates the initial TCR signal via 

phosphorylation of LAT on four major sites: Y132, Y171, Y191 and Y226. Phosphorylated 

Y132 on LAT binds the SH2 domain of PLCγ113. Phosphorylated Y171, Y191 and Y226 

represent docking sites for the adaptor protein Grb2 which then associates with guanosine 

exchange factor SOS. Phosphorylated Y171 and Y191 of LAT bind the adaptor protein Gads 

which then associates with SLP-7613.  

SLP-76 is an adaptor protein that has been shown to utilize its proline-rich domain to 

bind SH3 domain of PLCγ1. SLP-76 further recruits a tyrosine kinase Itk which 

phosphorylates PLCγ1 on Y783 resulting in PLCγ1 activation14.  

LAT signalosome is not the only source of Itk. Itk can be alternatively activated by 

PIP3 which is generated by the PI3K pathway (described in detail in chapter 2.1.5). When Itk 

is activated by PIP3, it then interacts with SLP-76 via its SH2 domain connecting the LAT 

signalosome to the PI3K signalling network15. Similarly to Itk recruited by the LAT 

signalosome, Itk recruited by PI3K signalling has also been shown to phosphorylate PLCγ116.  
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2.1.2 NFAT pathway 
Upon its phosphorylation by Itk, PLCγ1 generates a secondary messengers IP3 and 

DAG. IP3 can freely diffuse in cytoplasm where it binds to its receptor IP3R present within 

the membrane of ER. Upon IP3 binding Ca2+ is released from the ER to activate more 

signalling molecules such as calcineurin which further dephosphorylates NFAT resulting in 

NFAT nuclear translocation17.  

 

2.1.3 MAP kinase pathway 
DAG generated by PLCγ1 remains anchored in the plasma membrane owning to its 

two fatty acid chains. DAG further recruits guanosine exchange factor RasGRP1 and PKCθ. 

Both guanosine exchange factors RasGRP1 and SOS (recruited through LAT signalosome, 

see chapter 2.1.1) can activate Ras GTPase which further propagates signalling via 

Ras/Raf/MEK/Erk/AP-1 pathway resulting in inflammatory cytokine expression18. 

AP-1 is a transcription factor consisting of two subunits, namely Fos and Jun. Another 

pathway that is involved in AP-1 production, specifically in the production of its Fos subunit, 

is mediated by Vav1. Vav1 is a cytoplasmic guanosine exchange factor for Rho/Rac GTPases 

that is recruited to phosphorylated Y112 and Y128 of an adaptor protein SLP-7619. Vav1 has 

a complicated protein structure which allows it to mediate both upstream and downstream 

signalling20. Vav1 activity propagates MAP kinase pathway of 

Rac/Cdc42/MEKK/JNK/Jun9,21. Fos MAP kinase pathway is also mediated by Vav1 resulting 

in signalling of Rac/Cdc42/MEKK/p38/Fos9.  

A study using phosphoproteomics visualized that Vav1 is able to negatively regulate 

Lck as Vav1 deficient Jurkat cells presented with increased phosphorylation of Lck substrates 

such as ITAMs of CD3 or Zap70. The study also revealed capability of Vav1 to mediate 

crosstalk between the TCR and CD28. This crosstalk was characterized by reduced 

phosphorylation on Y191 of CD28 in Vav1 deficient Jurkat cells as well as decreased 

colocalization of TCR with CD2820. 
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2.1.4 Canonical NF-κB pathway 

Canonical NF-κB pathway is promoted by the downstream signalling events of 

CARMA1-BCL10-MALT1 (CBM) signalosome. CBM signalosome is assembled upon 

PKCθ-mediated phosphorylation of CARMA1 which induces CARMA1 conformational 

changes that reveal its caspase recruitment domain (CARD)22. CARMA1 utilizes its CARD 

domain to bind to BCL10 which promotes BCL10 nucleation. BCL10 forms a filamentous 

network owning to CARD-CARD interactions between individual BCL10 molecules. C-

terminal domain of BCL10 then interacts with MALT1. MALT1 is a paracaspase that can 

promote NF-κB signalling in two ways. Firstly, it binds TRAF6 which then promotes NF-κB 

activation. TRAF6 contributes to IKK activation, it is an E3 ubiquitin ligase mediating K63-

linked polyubiquitination which both directly and indirectly activates IKK that is further 

responsible for NF-κB activation. TRAF6 directly polyubiquitinates IKK-γ/NEMO subunit of 

IKK which results in IKK activation and subsequent IκB phosphorylation. Phosphorylation of 

IκB results in its ubiquitination and subsequent degradation which releases NF-κB allowing 

for its rapid translocation into the nucleus. The polyubiquitination of IKK-γ/NEMO by 

TRAF6 is facilitated by a signalling adaptor protein p62. Depletion of p62 by shRNA has 

been shown to impair NF-κB production, however, interaction between TRAF6 and NEMO 

appeared to be undisturbed23.   

The indirect effect of TRAF6 on IKK is dependent on TRAF6 ability to undergo K63 auto-

ubiquitination. TRAF6 then recruits TAK1 to its K63 polyubiquitinated chain. TAK1 further 

phosphorylates IKK-β, an IKK subunit. IKK-β then phosphorylates IκB. Phosphorylation of 

IκB results in NF-κB activation and its nuclear translocation24.  

Secondly, MALT1 is activated by K63-linked ubiquitination mediated by TRAF6 and 

it subsequently cleaves A20, a deubiquitinating enzyme functioning as one of the negative 

regulators of IKK/NF-κB signalling. To balance out MALT1 signalling, A20 is massively 

upregulated in the response of post-inductive TCR signalling and it is capable of removing 

K63-linked polyubiquitin chain from TRAF6 and MALT1 chains resulting in the deactivation 

of IKK25.  

Another negative feedback loop to regulate CBM signalling is driven by TAK1. 

Silencing of TAK1 increases CBM signalosome assembly and ubiquitination of MALT126. 
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2.1.5 PI3K/Akt pathway 
PI3K/Akt pathway represents an important source of signals that promote T cell 

survival, cell growth and proliferation. The signalling starts upon TCR engagement, when 

PI3K phosphorylates PIP2 to produce membrane-bound PIP3 which serves as a docking 

protein for PH domain-containing molecules such as Itk, Akt or SIN127,28.  

Akt is a serine-threonine kinase that activates mTOR, a kinase consisting of two 

subunits, namely mTORC1 and mTORC2. Akt activates mTORC1 by an inhibitory 

phosphorylation of a small GTPase TSC 1/229. TSC 1/2 is a GTPase-accelerating protein 

which keeps Rheb GTPase in its inactive GDP form. Upon its phosphorylation, TSC 1/2 

releases Rheb which then binds GTP and activates mTORC130. mTORC1 enhances the 

expression of Myc which has been shown to promote metabolic shift leading to cell growth 

and cell cycle progression31. 

mTORC2 is kept inactive via SIN1 that supresses its intrinsic kinase domain. Binding 

of PIP3 to the PH domain of SIN1 releases SIN1 from the interaction with mTORC2 leading 

to mTORC2 activation32. mTORC2 is then required for FOXO signalling which is a 

transcription factor for pro-apoptotic genes. Upon mTORC2 activation FOXO translocates 

from the nucleus to the cytoplasm resulting in the promotion of T cell survival33. 

 
2.1.6 Prevention of spontaneous TCR activation 

To prevent spontaneous TCR autoactivation negative regulation of Lck is needed. 

RhoH, a small GTPase serves as a docking protein for Csk kinase which phosphorylates 

inhibitory tyrosine (Y505) on Lck preventing its autophosphorylation and subsequent 

downstream signallig. Inhibitory activity of Csk is counteracted by CD45 which 

dephosphorylates Y505 resolving in Lck activation. During early immunological synapse 

formation and T cell signaling massive tyrosine phosphorylation occurs, therefore it is not 

desired for a phosphatase not to be present in the center of an immunological synapse 

anymore. CD45 is pasively excluded to the periphery owning to its large extracellular 

domain2,34. Lck is also regulated by Zap70-dependent phosphorylation of Y192 within SH2 

domain of Lck. When not phosphorylated, SH2 domain of Lck is responsible for its 

association with CD45. Activated Zap70 therefore serves as a negative regulator of Lck 

activity3,35.  
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2.2 Fine-tuning of TCR signalling threshold 
The magnitude of TCR downstream signalling is determined in the earliest moments 

after pMHC recognition. All T cell are selected for low affinity recognition of cognate pMHC 

and therefore are constantly receiving sub-threshold signals. For priming to occur, TCR 

signals have to exceed a given threshold that is specific for every cell and is determined 

during thymic development long before naïve T cell encounters foreign antigen. Two 

molecules have been implied in the determination and fine tuning of this threshold – namely 

CD5 and CD6 36.  

 

2.2.1 CD5 and CD6 tune TCR signalling 
CD5 and CD6 molecules are constitutively expressed on the developing and mature T 

cells37,38. They impact T cell development in thymus and the activation of naïve T cells via 

altering TCR signalling in both coinhibitory and costimulatory manner. Both CD5, CD6 share 

the ability to recruit SH2 domain-containing molecules which allows them to form 

multiprotein signalosomes. CD5 can be phosphorylated through four major tyrosine residues 

which can then recruit Lck, PI3K, SHP1 and Csk39–43. Similarly, CD6 can be phosphorylated 

on nine tyrosine residues which can result in recruitment of Lck, Zap70, Itk, Vav1 and adapor 

proteins – SLP76, Grb2 and Gads44–46. The CD6 signalosome shares many similarities with 

the LAT signalosome, a recent study has found that LAT and CD6 signalosomes can interact 

via T cell‐specific adaptor protein (TSA d). This interaction is facilitated by the SH2 domain 

of TSA d protein which binds phosphotyrosines of both CD6 and LAT47.  

Nowadays CD5 and CD6 are considered to be mainly inhibitory despite recruiting 

many downstream signalling molecules responsible for T cell activation. However, the 

outcome of their signalling seems to be context dependent – the majority of studies showing 

that CD5 is inhibitory were performed on developing T cell whereas the stimulatory effect of 

CD5 has been mainly demonstrated on mature T cells48. 

 

2.2.2 Molecular basis of CD5 cosignalling 
CD5 belongs to to the superfamily of scavenger receptor cysteine-rich (SRCR) 

glycoproteins. Currently no physiological ligand has been described49, however, it has been 

shown that CD5 doesn’t require to bind ligands to exert its inhibitory function50. The 

inhibitory properties of CD5 could be partially mediated by recruitment of Csk kinase and 
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SHP1 phosphatase43. Recent study, however, pointed out that the inhibitory activity of CD5 

was independent of SHP139.  

The magnitude of CD5 mediated signalling has been shown to depend on the affinity of 

the pMHC-TCR complex established during thymic selection with the affinity of pMHC-TCR 

being positively corelated with CD5 expression on T cells51. The inhibitory activity of CD5 

which tunes TCR signalling during T cell development was found to be dependent on its 

carboxy-terminal region which is necessary for c-Cbl ubiquitin ligase phosphorylation and 

subsequent degradative ubiquitination of Vav152.   

Naïve T cells circulating in the periphery are constantly interacting with endogenous 

self-peptides on MHCs. Recent findings indicate that the interaction with self-peptides 

provides T cells with subthreshold (tonic) TCR signals that have been of importance in the 

maintenance of naïve T cell viability49. Several studies have demonstrated that the contact 

between naïve T cell and self-peptide is important for an adequate response to foreign 

antigens. T cells that have been deprived of encountering endogenous self-peptides presented 

with an insufficient response to foreign antigens. The insufficient response was characterized 

by reduced phosphorylation on ITAMs of TCR ζ chain53 and significantly reduced IL-2 

response in CD4+ 54. The increased reactivity found in T cells with higher affinity to self-

peptides is correlated with high expression of CD5. This was demonstrated in a recent study 

where CD5hi CD8+ and CD4+ naïve T cell subsets showed increased expression of the Nur77-

GFP reporter gene in response to self-peptide compared to CD5lo. However, it remains 

unclear how CD5 specifically influences the capacity of T cells to respond towards a foreign 

antigen55.   

A study has shown that in naïve CD4+ and CD8+ T cells, increased expression of CD5 

influences TCR subthreshold signalling during self-antigen encounters which translates into 

magnified IL-2 production upon foreign antigen encounter and subsequent T cell maturation 

indicating that in this specific context CD5 has a stimulatory function54. In another study, the 

increase in CD5 expression was found to be positively correlated with cytokine receptors 

clustering which resulted in an increased IL-2 sensitivity56. Naïve T cells expressing high 

levels of CD5 have been found to be more immunocompetent compared to the ones 

expressing low CD5 levels49. To promote these relatively more self-reactive and therefore 

more immunocompetent T cells, high expression of CD5 ensures that TCR signalling during 

thymic selection is finely tuned in favour of the slightly self-reactive T cells. This is possible 

owning to CD5 having mainly coinhibitory contribution to TCR signalling during T cell 
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development in thymus. Tuning the signalling of relatively self-reactive TCR by high levels 

of CD5 allows these T cells to survive the thymic selection49.  

The molecular mechanism underlying the duality of CD5 signalling is not clear. Recent 

study shows that CD5 actively adjusts NF-κB signalling in both developing and peripheral T 

cells. CD5 doesn’t seem to influence Zap70, PLCγ or LAT expression levels, instead it was 

found to alter the levels of IκBα expression. During T cell development, CD5 expression 

level typically reflects thymocyte development with double negative thymocytes expressing 

very little CD5 which then increases as the thymocytes proceed to exhibit single positive 

phenotype. The increase in CD5 expression was found to be positively correlated with IκBα 

expression due to CD5–/– T cells being unable to maintain high expression of IκBα 

simultaneously with their inability to express p65, the NF-κB subunit. In contrast, CD5hi T 

cells expressed high levels of IκBα as well as high levels of p65. The high expression of p65 

could be a possible explanation for why high expression of CD5 ensures that T cells are more 

immunocompetent upon foreign antigen encounter. At the same time the simultaneous high 

expression of IκBα could be a part of the inhibitory mechanism of CD5 that is independent of 

SHP1 ensuring that although CD5hi T cells have a significant depot of p65 they remain self-

tolerant57.  

 

2.2.3 Molecular basis of CD6 cosignalling 
CD6 utilizes its ectodomain through which it binds to CD166 which is abundantly 

expressed on reticular epithelia of thymus providing developing T cells with strong adhesion. 

CD6 and CD166 together form one of the strongest bond amongst surface adhesion 

molecules58, however, CD6 doesn’t require to bind ligands to exert its inhibitory function59. 

Nonetheless, CD6-CD166 bond could possibly enhance naïve T cell activation by elongating 

the contact with APCs when scanning for foreign antigen. The inhibitory effect of CD6 has 

been shown to be dependent on its cytoplasmic domain59. Recent data shows that CD6-

CD166 interaction results in an increased association of CD6 with SLP76 and Zap70. 

Interestingly, the same interaction also results in an increased phosphorylation of CD6 linked 

SHP1 phosphatase60. SHP1 has been shown to negatively regulate CD4+ and CD8+ 

proliferation in response to TCR stimulation. When T cells lack SHP1, they become resistant 

to Treg suppression due to enhanced Akt phosphorylation which indicates that the PI3K/Akt 

pathway is more active in SHP1 deficient T cells leading to uncontrolled T cell activation61. 

Nonetheless, whether specifically SHP1 stands behind the inhibitory mechanism of CD6 



  17 

remains unclear60.  

Similar to CD5, CD6 was also found to set TCR signalling threshold during T cell 

development in thymus. CD6 level of expression has also been shown to positively correlate 

with the transition from DN to SP CD4+ and CD8+ T cells. As CD6 expression increases, 

developing T cells receive more anti-apoptotic signals indicating that CD6 drives T cells 

through the process of positive selection62. In a recent study, CD6–/– mice presented with 

decreased positive selection of T cells represented by reduced single positive CD4+ and CD8+ 

T cell populations while the overall T cell count stayed the same within the population of 

CD6–/– T cells. The upregulation of CD6 was also found to correlate with the upregulation of 

the early activation marker CD69 which only supports the fact that CD6 plays key role in 

regulating TCR signalling in favour of T cells surviving negative selection. In the same study, 

peripheral T cells in CD6–/– mice presented with exacerbated autoimmune conditions which 

could be due to an increased CD4+ response indicating for a coinhibitory function of CD6.63  
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3 Costimulation and coinhibition in early T cell signalling 
The transition from naïve T cells to the activated T cells referred to as T cell priming 

is facilitated through the costimulatory receptors that can colocalize with TCR-CD3 complex 

to deliver the earliest costimulatory signals.8 TCR signalling results in the production of three 

main transcription factors: AP1, NFAT and NF-κB64. In the process of T cell priming, the 

signalling pathways of costimulatory molecules intertwine with the signalling pathways of 

TCR which ultimately leads to the amplification of the signal. The costimulatory molecules, 

namely CD28, CD27 and HVEM, are constitutively expressed on T cell surface and 

participate in T cell priming in case TCR signalling occurs. During T cell priming, most of the 

coinhibitory receptors are not detectable5.  

To model the situation of early T cell signalling, the Tidal model of T cell cosignalling 

has been proposed. This model takes into consideration the overlapping expression of 

cosignalling molecules during T cell activation. After antigen encounter, early costimulatory 

molecules are upregulated to participate in T cell priming. This is followed by the recruitment 

of more costimulatory molecules to the immunological synapse. Shortly after however, T cell 

starts expressing coinhibitory signalling molecules which serve as a negative feedback. The 

Tidal model suggests that at the peak of the tide both costimulatory and coinhibitory 

molecules are expressed. The accumulation of signalling from both of these molecule groups 

at a given time is what influences the outcome of the naïve T cell signalling and is termed as 

Signal 25.  

As signalling pathways downstream of TCR often overlap with signalling pathways 

downstream of CD28, CD27 and HVEM, this chapter will discuss how these early 

costimulatory molecules intertwine with TCR signalling. This chapter will also discuss the 

involvement of coinhibitory molecules in TCR signalling, namely CTLA-4 and PD-1 that are 

upregulated shortly after the costimulatory molecules. 
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3.1 Costimulatory molecules 

3.1.1 CD28 cosignalling in T cell priming 
CD28 is constitutively expressed on naïve T cell surface and in association with 

CD80/CD86 on APCs it is the predominant source of an early costimulatory signalling 

resulting in activation of anti-apoptotic pathways and production of cytokines. Similar to 

CD3, the cytoplasmic domain of CD28 also lacks intrinsic signalling properties but it contains 

conserved tyrosine-based motifs which bind SH2-conatining molecules upon phosphorylation 

as well as proline-rich domains which bind SH3-containing molecules65.  

Phosphorylation of the tyrosine residues by Lck and Fyn kinases occurs immediately 

after binding of CD28 to its CD80/CD86 ligands, which leads to CD28 cross-linking66.  

One of the prominent binding partners od CD28 is PI3K that binds to Y191 of CD28 

via the p85α regulatory subunit67. This binding induces PI3K activation which activates Akt 

that delivers signals for cell cycle progression as well as anti-apoptotic signals33.  

Another important binding partner of CD28 is the adaptor protein Grb2 which links 

CD28 signalling to MAP kinase and NFAT pathways. Grb2 binds to YMNM motif of CD28 

through its SH2 domain or it binds the PYAP motif through the SH3 domain68,69. 

The enhancement of the NF-κB pathway by CD28 is driven through its interaction 

with Gads and subsequent formation of the CBM signalosome70. 

 

 
Fig. 2 CD28 cytoplasmic docking sites for signalling molecules. PI3K binds through its SH2 domain to the YMNM motif. Itk 
utilizes its SH3 domain to bind to PRRPGP motif. Grb binds either to the YMNM motif through its SH2 domain or it utilizes its 
SH3 domain to bind the PYAP motif which can be also bound by the SH3 domain of Lck. Source: Riha P, Rudd CE. CD28 co-
signaling in the adaptive immune response. Self Nonself. 2010;1(3):231-240. doi:10.4161/self.1.3.12968 
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In a recent study, CD28 signalling in vivo was systematically characterized using 

phosphoproteomic analysis (see Fig. 3). In this study phosphorylation of CD28 downstream 

signalling molecules was revised upon selective CD28 blockade using CTLA-4 while TCR 

signalling remained intact which provided an insight into how CD28 operates under 

physiological conditions71.  

The inhibition of CD28 by CTLA-4 resulted in a decreased phosphorylation of Y191 

which is responsible for recruitment of the p85α subunit of PI3K. The phosphorylation of 

PI3K and mTOR was also altered upon CD28 blockade. CD28-proximal signalling molecules 

such as Vav1, PLCγ and SHC1 presented with decreased tyrosine phosphorylation. 

Downstream signalling molecules of PKCθ such as CARMA1 and NF-κB have also exhibited 

decreased phosphorylation. Vav1, PLCγ, SHC1, PKCθ, CARMA1 and NF-κB need to be 

phosphorylated in order to exert their stimulatory function. Therefore, the decrease in their 

phosphorylation upon CD28 blockade indicates that CD28 is in charge of activating these 

specific molecules71. 

On the contrary, NFAT requires to be dephosphorylated to exhibit its stimulatory 

function. It has been shown that CD28 blockade results in an increased NFAT 

serine/threonine phosphorylation showing that CD28 is responsible for NFAT activation . 

Together these phosphoproteomics data correspond with the signalling events taking 

place during TCR signalling. CD28 therefore enhances TCR signalling through quantitatively 

increasing the amount of stimulatory downstream signalling molecules which ultimately leads 

to T cell priming71. 
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Fig. 3 CD28 pathway based on phosphoproteomics. Dowstream signalling molecules with phosphorylation sites regulated by 
inhibiton of CD28 are marked in gray. Phosphorylation of downstream signalling molecules marked in white hasn’t been 
shown to be influenced by CD28 inhibition. Source: Tian, R. et al. Combinatorial proteomic analysis of intercellular signaling 
applied to the CD28 T-cell costimulatory receptor. Proc. Natl. Acad. Sci. 112, E1594–E1603 (2015). 
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3.1.2 CD27 cosignalling in T cell priming 
CD27 synergizes with TCR-CD3 signalling during T cell priming to deliver one of the 

first costimulatory signals8. CD70 is the only known ligand for CD27 and its expression is 

tightly regulated. The expression of CD70 is transient and it’s mainly expressed on mature 

DCs72. Upon CD27 upregulation, three CD27 monomers bind CD70 trimer on APCs forming 

a ligand-receptor trimeric complex73. Assembly of the trimeric ligand-receptor complex 

enables the cytoplasmic tail of CD27 to bind TRAF adaptor proteins. TRAFs further activate 

downstream signalling molecules. CD27 has been shown to bind TRAF2, TRAF3 and 

TRAF58.  

TRAF2 and TRAF5 are responsible for both canonical and non-canonical NF-κB 

signalling (see Fig. 4) as well as for Jun activation74–76. On the contrary, TRAF3 has been 

shown to inactivate the non-canonical NF-κB pathway75.  

 
Fig. 4 The general model of non-canonical NF-κB 
pathway induced by TNFRSF signalling. The non-
canonical NF-κB pathway is mediated by signalling from 
TNFRSF and results in gradual activation of NF-κB-
inducing kinase (NIK). When TNFRs are left 
unstimulated, constitutively synthetized NIK undergoes 
a degradative polyubiquitination mediated by E3 
ubiquitin ligase complex cIAP-TRAF2-TRAF3 complex. 
When TNFRs are stimulated, TRAF2, TRAF3 and cIAP are 
recruited to the cytoplasmic domain of TNFR. cIAP then 
mediates degradative K48 polyubiquitination of TRAF3 
which results in TRAF3 degradation and subsequent 
cumulation of NIK in the cytoplasm. NIK then 
phosphorylates IKKα which further phosphorylates 
p100. Phosphorylated p100 then undergoes 
proteasomal processing resulting in the formation of 
NF-κB heterodimer RelB-p52 and its translocation into 
the nucleus. The non-canonical NF-κB pathway is 
negatively regulated by TRAF3 deubiquitination which 
prevents NIK enrichment in the cytoplasm. Direct 
negative regulation of NIK is facilitated by IKKα-
mediated phosphorylation which also doubles as a 
negative feedback loop. Another phorphorylation 
leading to inactivation of NIK is facilitated by TBK1. 
Source: Sun, S. The non-canonical NF-κB pathway in 
immunity and inflammation. Nat Rev Immunol 17, 545–
558 (2017). 

 

. 
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The basis of the molecular interactions between downstream signalling molecules of 

CD27 signalling is still incomplete77. However, several studies have been made on the 

detailed mechanisms of the individual downstream molecules of CD27. For instance, a recent 

study on NIK has found that NIK deficiency in mice T cells results in an impaired T cell 

priming upon experimental autoimmune encephalomyelitis (EAE) induction. The impaired 

priming led to a decrease of antigen-experienced T cells which resulted in a complete 

resistance to EAE78.  

This could be due to several reasons. Firstly, the same study found that NIK deficient T 

cell displayed impairments an immunological synapse formation due to the dysregulation of 

F-actin expression78. F-actin couples with CD28, possibly the most important cosignalling 

molecule in T cell priming, hence the dysregulation of F-actin expression could have also 

negatively impacted the role of CD28 during T cell priming and IS formation79. The 

dysregulation in F-actin expression was characterized by an increased F-actin expression 

upon naïve T cell activation78.  

Secondly, additional analysis of NIK deficiency in T cell has found that NIK deficient T 

cells have shown decreased phosphorylation in Zap70, LAT, AKT, ERK1/2 and PLCγ in 

response of TCR engagement which implies that NIK could also regulate TCR signalling78. 

Another study has shown that NIK mutant T cell present with an impaired production of 

IL-2 upon anti-CD3 stimulation80. Moreover, a different study has shown that there could be a 

link between TCR and NIK as an increased activation of NIK and IKKα was observed upon 

TCR stimulation. However, the processing of p100/p52 was not observed simultaneously with 

the TCR downstream activation of NIK and IKKα81. Nevertheless, the information on the 

molecular mechanisms underlying direct engagement of NIK in TCR signalling still remains 

unknown78. 

 Taken together, CD27 signalling has a close relationship to TCR signalling – both 

canonical NF-κB and Jun pathways have been meticulously studied and are both an 

established part of TCR signalling. However, the role and molecular mechanism of the non-

canonical NF-κB signalling and its relationship between CD27 and TCR signalling is yet to 

be discovered. 
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3.1.3 HVEM cosignalling in T cell priming 
Herpesvirus entry mediator (HVEM) consists of CRD1, CRD2, CRD3 and CRD4 

ectodomains which are responsible for ligand-binding. HVEM has been shown to interact 

with LIGHT, BTLA and CD160. The interaction between HVEM and LIGHT is facilitated by 

CRD2 and CRD3 interaction. The interaction of HVEM with BTLA and CD160 is facilitated 

by CRD1 and CRD2 domains82,83. The outcomes of HVEM-mediated signalling are 

somewhat complicated as HVEM has both costimulatory and coinhibitory properties as well 

as the signalling of HVEM and its ligands is bidirectional83. 

All of the ligands of HVEM mentioned above – LIGHT, BTLA and CD160 – are 

orchestrated in a self-regulatory network83. HVEM and BTLA are constitutively expressed on 

naïve T cells, however, HVEM is kept inactive due to its cis interaction with BTLA. It has 

been estimated that up to 80% of HVEM on the T cell surface is bound in the cis HVEM-

BTLA complex. It has been shown that the HVEM-BTLA complex is capable of bidirectional 

signalling hence the inhibitory activity is mediated by the cytoplasmic domain of BTLA 

which has the ability to recruit SHP-1 and SHP-2 phosphatase through its phosphorylated 

ITIM domain. The remaining amount of unbound HVEM has the potential to deliver 

costimulatory signalling through trans interactions during T cell priming. The trans 

interaction between LIGHT and HVEM has been shown to deliver costimulatory NF-κB 

through TRAF2 molecule84. 

Upon TCR triggering, LIGHT is transiently expressed on a T cell surface. 

Subsequently, BTLA in the cis HVEM-BTLA complex is displaced by LIGHT which results 

in cis HVEM-LIGHT internalization which terminates the coinhibitory signalling delivered 

by the cis HVEM-BTLA complex. The membrane-bound BTLA is then free to engage in a 

trans interaction with HVEM expressed on surrounding T cells which results in PI3/AKT 

signalling83.  

  
  



  25 

3.2 Coinhibitory molecules 
3.2.1 CTLA-4 

Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is a coinhibitory molecule 

that is recruited to the immunological synapse after CD28 is upregulated. CTLA-4 and CD28 

are homologues and both share the same MYPPPY motif for binding CD80 or CD86 with the 

fact that CTLA-4 binds CD80/CD86 with significantly higher affinity85. Shared homology 

allows for competitive binding of CTLA-4 to CD80/86 which physically sequesters CD28 

outside of cSMAC86. The search for differences between CD28-CD80 and CTLA-4-CD80 

complexes are under way. Recent study shows that TRP50 on CD80 contributes to CD28 

affinity as mutation of TRP50 abolishes CD28-CD80 complex formation. Based on 

mathematical modelling, CD28 might also possess bivalent nature similar to CTLA-4 

meaning that it could also bind two molecules of CD80. However, it still remains to be 

determined what aspects partake in CTLA-4-CD80 high binding affinity85. 

The inhibitory activity of CTLA-4 is mediated through the recruitment of SHP2 and 

PP2A phosphatases which results in Zap70, LAT, ERK and JNK dephosphorylation.87–89 

 
3.2.2 PD-1 

Programmed cell death 1 (PD-1) is also a checkpoint inhibitor that is recruited to the 

immunological synapse during the early T cell signalling90. PD-1 binds two ligands to exert 

its inhibitory function, namely PD-L1 and PD-L2. After PD-1 engages with its ligands it is 

phosphorylated on ITIM and ITSM which results in the recruitment of SHP2. PD-1 mediated 

SHP2 signalling has been shown to dephosphorylate Lck, Zap70 and SLP-76 which 

counteracts TCR signalling and CD28 and CD27 cosignalling. The decreased phosphorylation 

of Lck, Zap70 and SLP-76 then resolves in the decline of Ras/Raf/MEK/Erk signalling as 

well as the decline of PI3K/AKT signalling91–93.  

It has been shown that PD-1 upon its activation by PD-1L preferentially 

dephosphorylates CD28, not TCR. The dephosphorylation of CD28 is mediated by the SHP2 

recruited to PD-193.     
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4 Spatiotemporal regulation of T cell priming at the 

immunological synapse 
The immunological synapse (IS) represents a specialized cellular structure that forms 

between T-cells and APCs. It incorporates four types of receptors – TCR, adhesion molecules, 

costimulatory and coinhibitory receptors. The signalling processes involved in IS formation 

represent the first step of T cell priming and ultimately decide if an immune response is 

initiated8.  

Structurally, the mature IS consists of central, peripheral and distal supramolecular 

radially symmetric activation complexes (cSMAC, pSMAC and dSMAC). cSMAC is 

enriched with TCR and CD28 microclusters that are responsible for the recruitment of the 

earliest signalling molecules. cSMAC also comprises coinhibitory molecules CTLA4 and PD-

1 that deliver negative feedback during the early T cell signalling. Clustering of adhesion 

molecules is typical for pSMAC which contains LFA-1 and VLA-4. Both adhesion molecules 

have been shown cooperate with the early cosignalling molecules and even some cosignalling 

properties have been ascribed to LFA-1 alone. For dSMAC, the presence of CD45 is typical 

as CD45 is a phosphatase which could possibly interfere with the phosphorylation events that 

are typical for the early T cell cosignalling8,34,94.  

The formation and stability of IS is dependent on integrins, namely LFA-1 and VLA-

4. In resting T cell, integrins remain in inactive states. TCR signalling triggers inside-out 

signalling responsible for immediate conformational changes and clustering of adhesion 

molecules. LFA-1-ICAM-1 interaction resolves in outside-in signalling responsible for actin 

reorganisation and recruitment of cosiganlling molecules as many of them have been proven 

to couple with actin95. LFA-1 activity is directly influenced by colocalization with tetraspanin 

CD9 which exerts inhibitory outcome on LFA-1 adhesive capacity by disrupting LFA-1 

microcluster formation95. LFA-1 has the potential activate CD8+ cytotoxic T lymphocytes 

even in the absence of CD28-mediated costimulation , LFA-1 has also been shown to decrease 

T cell activation threshold94. VLA-4 centralizes in pSMAC, it has been shown that its ligation 

inhibits TCR microcluster movement allowing for prolonged transmission of downstream 

signalling97. 

The relevance of IS composition and formation lies in the clustering of cosignalling 

molecules and early activation markers. A close contact between cells within cSMAC is 

formed with the help of CD2 molecule, molecules with large extracellular domains such as 

CD45 are excluded to the periphery2. In the beginning of IS formation CD2-CD58 complex 
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colocalizes with TCR in microclusters within cSMAC. Shortly after, however, CD2-CD58 

moves to LFA1-ICAM-1 rich pSMAC and continues to move further to dSMAC where it 

forms a corolla (petal-like circular structure). The corolla has the ability to capture CD28-

CD80 and ICOS-ICOS-L. Corolla-mediated TCR signalling has been shown to augment T-

cell activation by recruiting LAT. In contrast to that, high PD-1 levels significantly decrease 

CD2 signalling98.  

CD28 is allocated to cSMAC via size-based segregation. Both CD28 and LFA1 couple 

with F-actin. LFA-1-ICAM-1 forms a radially symmetric pSMAC, its F-actin coupling is 

what prevents molecules from either entering or escaping cSMAC. Simultaneously, CD28-

CD80 is driven to form microclusters with TCR owning to its F-actin coupling and its 

relatively small extracellular domain79. How CD27 and HVEM are allocated to the IS remains 

unknown.  

CTLA-4 is one of the checkpoint inhibitors within the IS, its recruitment to cSMAC 

steadily increases upon CD28 upregulation whereas CD28 is constitutively expressed on the 

naïve T cell surface in case TCR signalling occurs8,99 . 

PD-1 represents another checkpoint inhibitor within the IS. Live imaging of inhibitory 

synapse formation provided visualization of PD-1 dynamics showing that PD-1-PD-L1 

complex centralizes in cSMAC in the early inhibitory IS formation and then it migrates to the 

periphery90.  
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5 Conclusion 
T cell priming is a complex process involving several levels of molecular and 

spatiotemporal levels of regulation. Firstly, the most important step leading to T cell priming 

is the initiation of the TCR signalling. Whether TCR signalling is initiated is manipulated by 

the TCR threshold which represents a minimum cumulative TCR signalling. TCR threshold is 

thought to be set during the T cell development in thymus by CD5 and CD6 molecules. It has 

also been found that TCR threshold is dependent on the earliest downstream signalling 

molecules. 

Secondly, TCR intrinsic downstream signalling involves several pathways all of which 

are interconnected through the formation of the LAT signalosome. The main results of the 

TCR signalling is the production of the proinflammatory transcription factors, namely NF-κB, 

NFAT and AP-1. Those transcription factor participate in a proinflammatory gene 

transcription cytokines such as IL-2. However, TCR signalling alone can’t initiate a 

successful immune response and results in T cell anergy. 

Thirdly, T cell priming requires cosignalling molecules orchestration within the 

immunological synapse. Immunological synapse is a place of contact between T cells and 

DCs and it allows costimulatory molecules, namely CD28, CD27 and HVEM, to participate 

in naïve T cell priming by intertwining with the TCR signalling. The interaction of 

costimulatory molecules with TCR signalling lies either in the recruitment, phosphorylation 

or dephosphorylation of shared downstream signalling molecules which results in 

amplification of TCR signalling. However, TCR signalling alone can’t initiate a successful 

immune response and results in T cell anergy. The effects of costimulatory molecules 

participating in T cell priming are shortly after their upregulation tuned by the upregulation of 

coinhibitory molecules, namely CTLA-4 and PD-1, which represent an immune checkpoint to 

prevent autoimmune reactions. The signalling events downstream of costimulatory and 

coinhibitory molecules represent the “Signal 2” during which it is being decided whether T 

cell can further progress in the process of differentiation to the “Signal 3” that represents 

signalling events mediated by the cytokines present in T cell microenvironment.  
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