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Abstract
The central theme of this thesis is a description of information processing in the

sound localization circuit of the auditory pathway. The focus is on principal neurons

of the medial superior olive (MSO), the first major convergence point for binaural

information. Selected properties and relations of MSO neurons are derived and

expressed through models.

In the thesis we present three modeling studies. The first one clarifies a relation-

ship between biophysical parameters of the MSO neuron and its ability to detect

coincidental spikes from the left and the right ear. The second study describes the

statistical behavior of spike trains on the input and output of the MSO neuron. In

the third work, we studied how interaural coherence could guide localization of sound

sources in complex listening situations with multiple sound sources in reverberant

environments.

The main results are analytical and numerical models describing the aforemen-

tioned relations and behaviors. Secondary results include that inhibitory input to

the MSO neuron narrows and shifts the time range of coincidence detection, that

ergodic assumption from statistical physics and circular statistics are beneficial in

the description of spike trains in the auditory pathway, and that interaural level

difference of parts of the signal with high interaural coherence could explain human

localization performance in complex listening scenarios.
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Abstrakt
Ústředním tématem této práce je popis zpracování informace v lokalizačním obvodu

sluchové dráhy. Důraz je kladen na první místo konvergence binaurální informace,

neurony mediální olivy superior (MSO). Vybrané vlastnosti a vztahy neuronů MSO

jsou odvozeny a vyjádřeny prostřednictvím modelů.

V disertační práci uvádíme tři modelovací studie. První objasňuje vztah mezi bio-

fyzikálními parametry neuronu MSO a jeho schopností detekovat simultánní signá-

ly z levého a pravého ucha. Druhá studie popisuje statistické distribuce vzruchů

na vstupu a výstupu neuronu MSO. Ve třetí práci jsme studovali roli interaurální

koherence při lokalizaci ve složitých poslechových situacích s více zdroji zvuku v

dozvukovém prostředí.

Hlavní výsledky jsou analytické a numerické modely popisující výše uvedené vz-

tahy a chování. Aplikací modelů jsme získali sekundární výsledky: (1) inhibiční vst-

up do neuronu MSO zužuje a posunuje časový rozsah detekce simultánních signálů,

(2) ergodický předpoklad ze statistické fyziky a cirkulární statistika jsou vhodné

nástroje při popisu vzruchů v sluchové dráze a (3) hlasitostní rozdíl v části signálu s

vysokou interaurální koherencí může vysvětlit přesnost lidské lokalizace ve složitých

poslechových situacích.

Klíčová slova

binaurální slyšení, binaurální neuron, model, lokalizace zvuku
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Introduction
The simple question “why do we have two ears?” may have a simple answer: “so we

can hear better”. However, if we want to know how this “better hearing” is achieved

the answer is not that simple and may trigger many more questions.

This question was scientifically addressed with the advent of psychoacoustics in

the nineteenth century. It did not take long to realize that the main advantage of

a pair of ears is their different spatial position. A trivial observation — at least for

high frequencies or complex sounds — was that a sound is perceived as louder with

an ear closer to the source, thus, we know whether the source is on the left or right

side.

In 1907, Lord Rayleigh demonstrated that the human brain can also detect

disparities in the phase of sound arriving at individual ears. He stated that the

brain utilizes differences in sound pressure level for high frequencies and differences

in sound phase for low frequencies (Rayleigh, 1907). This theory was later named

the “Duplex theory”. For time differences the term Interaural Time Difference (ITD)

was coinded, and differences in sound pressure levels were known as Interaural Level

Difference (ILD).

After the measurement of human performance in sound localization and the

precision in angles translated to corresponding ITD and ILD values (Mills, 1958),

and the first electrophysiological measurements of auditory brainstem neurons with

microsecond precision (Goldberg and Brown, 1969), an intriguing question arose.

How can neural circuits, where the expression of information (action potential) lasts

milliseconds, detect time differences as small as ten microseconds (two orders lower

than the duration of action potential)?

Computational models may be useful tools for studying brain functions. A well-

known example is the famous Jeffress model (Jeffress, 1948). In 1948, Jeffress pro-

posed a neural circuit incorporating asymmetric delays produced by nerve fibers of

different lengths (delay lines) and neurons performing time-limited spatial summa-

tion of inputs (coincidence detectors, CDs). This model, which could detect very

small ITDs, was not based on any anatomical study. In fact, it was proved (in

the case of birds) much later (Carr and Konishi, 1988). For mammals, the lack of
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anatomical evidence of delay lines and the presence of inhibitory inputs prompted

new theories of sound localization (Grothe, 2003). Nevertheless, it is still generally

accepted that the first binaural neuron acts as a coincidence detector. The Jeffress

model contributed not only to the field of neuroanatomy by proposing which circuit

should be searched for, but also to the field of neurocomputing suggesting a new

mechanism of how neurons can process information. Afterwards, multiple models

were published, we can mention a quantification of Jeffress model (Colburn, 1973)

and the equalization-cancellation model (Durlach, 1963), among others (Colburn

et al., 1990; Batra et al., 1997; Brand et al., 2002; Hancock and Delgutte, 2004;

Marsalek and Lansky, 2005; Zhou et al., 2005; Leibold, 2010; Franken et al., 2014;

Ashida et al., 2015). More detailed descriptions of binaural models can be found in

the classic review (Colburn and Durlach, 1978) or in more recent reviews (Braasch,

2005; Jennings and Colburn, 2010; Grothe et al., 2010).

A starting-point for the presented work is the model of binaural hearing devel-

oped by a group of people around prof. Marsalek over a period of around ten years

(Marsalek and Kofranek, 2004; Marsalek and Lansky, 2005; Marsalek and Drapal,

2008; Sanda and Marsalek, 2012). The main focus of their study was the relation-

ship between probability distributions of input and output spike trains, hence the

model is named “Probabilistic delay model”. In this model, the principal neuron is

reduced to a simple mathematical formulation — spikes are represented by point

processes and the neuron detects coincidence if and only if spikes are closer in time

than a certain constant (coincidence window). The category of models that do not

deal with biophysical properties of neurons are also known as black-box models.

Nowadays, there is an ongoing debate about how exactly principal neurons of the

MSO are performing coincidence detection and which mechanisms are utilized to

tune their function. Many extensive neurophysiological studies have been published

recently trying to resolve these questions, but the issue is still not clear (Couchman

et al., 2010; Jercog et al., 2010; Van der Heijden et al., 2013; Roberts et al., 2013;

Myoga et al., 2014). From this point of view, it is important to question whether a

black-box model has support in recent neurophysiological findings.

Regarding data from psychoacoustic studies, Probabilistic delay model was com-

pared to the Mills study (Mills, 1958; Marsalek and Lansky, 2005) to show that
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the model accounts for a dip in localization performance between low and high

frequencies. Confrontation of the model with more complex psychoacoustic mea-

surements including multiple speakers and reverberant environments (Kopco et al.,

2010) showed that Probabilistic delay model alone is not able to explain localization

with concurrent sound sources. A higher level model with the ability to separate

cues from individual sound sources (Faller and Merimaa, 2004; Dietz et al., 2011)

was needed to explain the results of Kopco et al. (2010).

After this introductory chapter, a short outline of principles of binaural hearing

and a brief description of information processing in the auditory system follow. The

rest of the thesis is our original work consisting of three modeling studies. The first

two extend Probabilistic delay model of the MSO neuron: The first one clarifies a

relationship between biophysical parameters of the MSO neuron and its ability to

detect coincidental spikes from the left and the right ear. The second study describes

the statistical behavior of spike trains on the input and output of the MSO neuron.

In the third work, we studied how interaural coherence could guide localization

of sound sources in complex listening situations with multiple sound sources in

reverberant environments. The manuscripts of all three studies are enclosed in the

appendix.
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1. Binaural Hearing
Hearing is the ability to perceive and make sense of sound. Although hearing with

one ear (monaural hearing) is possible and in many situations sufficient, hearing

with two ears (binaural hearing) provides many advantages. Two main abilities

in which binaural hearing has a prominent role are sound source localization and

auditory scene analysis.

Precise information about sound source location can be essential. For many

nocturnal animals, it is, in fact, a matter of survival. In order to avoid predators or

catch prey, the brain utilizes subtle differences in sounds induced by specific location

of the sound source.

Although people no longer have to rely often on sound localization to escape

danger, communication and social interaction is an important part of our everyday

life. Communication often takes place among multiple talkers with the presence

of background noise, but the listener is still able to focus on one talker and sup-

press other sounds (so-called “Cocktail party effect”, Cherry, 1953). This effect is

explained by auditory scene analysis (Bregman, 1990), in which binaural hearing al-

lows better segregation of sounds from spatially separated sources (binaural release

from masking) and suppression of reflected sounds (dereverberation).

This chapter outlines selected underlying principles of binaural hearing.

1.1 Auditory space

To localize an object in a three-dimensional environment, the estimation of three

coordinates is needed. The head-centered spherical coordinate system has the origin

in the middle of two ears, and these three coordinates sufficient to determine the

location of the object are: 1. azimuth, 2. elevation, and 3. distance.

Azimuth is the angle between the medial sagittal plane and the object projected

to a transverse (horizontal) plane. The changes in azimuth cause differences in

sounds reaching the left and right ear. These differences can be used as cues for

azimuth estimation. As they are based on information received from both ears, we

call them binaural cues (section 1.2).
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Elevation is the angle between the object and its orthogonal projection to a trans-

verse (horizontal) plane. In case of organisms with symmetric ears, the changes in

elevation while preserving the same azimuth and distance do not produce signif-

icant differences in sounds reaching the left and right ear. Instead, the shape of

pinna serves as a filter and modifies the sound spectrum depending on the elevation.

Modified spectrum of sound is compared to expected spectrum of sound to estimate

elevation. This type of cue does not require two hearing ears, and so is known as a

monaural cue.

The last coordinate is the distance between the origin and the object. Estimation

of a distance is based mainly on monaural cues. The sound is being attenuated as it

propagates through the environment. As this attenuation is frequency dependent,

the spectral shape changes with the distance. In reverberant environments, distance

can be estimated from the time lag between direct sound and reflection.

Sound sources have their spatial location in the environment determined by

three coordinates. Nevertheless, an auditory space can be distorted by reflections,

background noise, or interference of other sound sources due to the nature of the

sound. Even if these phenomena may be helpful to some extent, generally, they pose

a difficult task in the creation of a map of auditory space.

1.2 Binaural cues

Binaural cues are the basis of binaural hearing. The different spatial position of the

ears means that the sound in the left ear is slightly different to the sound in the

right ear.

As for sounds originating out of the midsagittal plane, the distance from the

sound source to the left and right ears is not the same, and the time of arrival of

sound differs in both ears. This disparity is called Interaural Time Difference (ITD).

The sound is propagating in waves, thus, the temporal disparity after the time of

arrival is preserved as Interaural Phase Difference (IPD).

Classical formula for ITD is (Woodworth, 1938):

ITD = a

c
(θ +sinθ), −π/2 ≤ θ ≤ π/2, (1.1)
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where a is the radius of the head, c is the speed of the sound, and θ is the azimuth

in radians. This formula assumes a planar wave front which approximately holds

for sources at distances greater than 3a (Carlile, 1996).

For humans, the typical value of a is 8.75 cm (Hartley and Fry, 1921). With c =

343 m/s this formula yields maximal ITD around 660 µs (for sounds at 90◦). Small

rodents, such as gerbils or kangaroo rats, have these values even smaller (120 µs or

80 µs, respectively) (Brand et al., 2002).

While the maximal ITD for humans is around 660 µs, detectable ITDs are even

smaller. Experiments measuring human localization performance show that humans

can achieve precision around 1◦ (Mills, 1958). This translates to the ability to detect

time disparity in the order of tens of microseconds.

ITDs are only slightly frequency-dependent and the range of ITDs is smaller for

higher frequencies due to the frequency dispersion of the diffracted waves (Schnupp

et al., 2011).

IPD depends on the frequency of the sound and the distance between the ears:

IPD = ITDω, where ω is angular frequency. To avoid ambiguity, the period of sound

should be longer than ITD. Maximal ITD of 660 µs corresponds to a frequency of

1500 Hz. Consequently, for frequencies above 1500 Hz, IPD is not a reliable cue.

Interaural Level Difference (ILD) is due to the head acting as an acoustic obsta-

cle, reflecting and diffracting the sound wave (Carlile, 1996). The interference of the

head is highly frequency-dependent. For sounds with wavelengths greater than the

size of the head, the interference is not significant. For wavelengths much smaller

than the size of the head, one ear may appear in head shadow while the other can

have amplified sound due to reflections from the head and pinna (near ear effect).

The ILD for high frequencies can be up to 40 dB. Since the ILD is dependent on

azimuth, frequency, distance and exact shape of head and pinnae, there is no simple

formula as in case of ITD.

The fact that ITD/IPD is suitable only for low frequency sounds and ILD is

suitable only for high frequency sounds led to the Duplex theory. This theory

states that humans utilize ITD and IPD for localization of low frequency sounds

and ILD for localization of high frequency sounds (Rayleigh, 1907). Experiments

proved that duplex theory is accurate in relation to pure tones, but in the case of
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more complex tones, both cues are used in a more complicated way. For instance,

the auditory system can detect ITD of an envelope of amplitude-modulated high

frequency signals.

1.3 Virtual auditory space

Virtual auditory space refers to special artificial stimuli presented over headphones

creating the illusion that origins of stimuli are in the surrounding space.

Listening to acoustic stimuli over headphones usually leads to the perception

that the sound is originating in the center of the head. If the sound presented over

one headphone is louder than the sound in the other (i.e. it has nonzero ILD),

listeners can observe lateralization, i.e. the perception that the sound originates

inside the head closer to the ear in which the sound is louder. Generally, if the

sounds presented over headphones are only modified in overall sound levels and

timing (to achieve desired ILD and ITD), the sound is perceived as originating

inside the head.

To achieve externalization, the perception that the sound originates outside the

head, monaural cues need to be incorporated. The intent is to deliver to the ear

tube a sound similar to a real situation where the sound is altered by the presence

of head and pinnae.

The simple way to determine effects of head and pinnae is to record sounds us-

ing small microphones placed in the ear tubes. As the alterations are direction- and

frequency-specific, a convenient way is to play brief broadband sounds (impulses)

from different locations in space. The recorded sounds are responses to these im-

pulses and are called head-related impulse responses (HRIRs). HRIRs are usually

recorded in the anechoic chamber. When recordings are performed in a reverberant

room, these responses also obtains various reflections and are called binaural room

impulse responses (BRIRs).

The convolution of a sound with HRIR or BRIR related to specific location places

the sound source to this location in virtual space.

Fourier transform of HRIR is called the head-related transfer function (HRTF).

HRTF shows how spectrum is altered by the head and pinnae.
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2. Information processing in the

auditory system
The auditory system is a biological system for processing information contained in

sound. It consists of two main parts. First, the periphery (the ears), that transduces

mechanical vibrations to electrical impulses conducted by nerves. The second is

the central auditory system containing neural circuits that process the information

carried by the electrical impulses.

The auditory system varies across different species. Here, the focus is the manner

of processing auditory information in mammals and, especially, humans. First, the

function of each part of the ear (namely outer ear, middle ear, and inner ear) is

described. It is followed by the description of neural pathways and circuits up to

the nuclei where the pathways from the left and right ear meet, as the information

processing in higher stages of the central auditory system is immensely complex and

out of the scope of this work.

2.1 Outer ear

The outer ear is the external, visible part of the ear. It consists of the pinna and

the ear canal. The main function of the outer ear is to collect sound and to funnel

it to the eardrum. The secondary function is the frequency- and direction-specific

amplification of the sound.

The pinna is a prominent fold of cartilage-supported skin. In the case of low fre-

quencies (up to 500 Hz), sound reflected from the pinna amplifies direct sound. For

higher frequencies, owing to the pinna’s specific asymmetrical shape, amplification

or attenuation depends on the vertical direction of sound. Maximal direction-specific

modification is for frequencies close to 5000 Hz (Syka et al., 1981). The pinna also

creates significant acoustic shade for sounds originating from behind.

The ear canal, or auditory canal, is a tube of approximately 2.5 cm length that

ends with the eardrum. Closed tube resonance amplifies a relatively broad band

of frequencies, from 2000 Hz to 6000 Hz, with peak amplification of 12 dB for
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frequencies between 3000 Hz and 4000 Hz (Syka et al., 1981).

The modification of sound frequency spectrum by the outer ear, together with

effect of the head, is usually described with HRTFs (section 1.3).

2.2 Middle ear

The part of the ear between the tympanic membrane and oval window is called the

middle ear. Its main function is to efficiently transduce the (longitudinal) compres-

sional waves in the air to (transverse) fluid-membrane waves in the cochlea (Voss

et al., 2013). To efficiently transfer the acoustic energy, the system has to compen-

sate for the impedance of cochlear fluid being 4000 times greater than the impedance

of air. Impedance matching is secured by ossicles functioning as a lever and the mem-

branes of different areas. This mechanical system is not able to perform with the

same efficiency of transfer across the whole frequency spectrum. Transfer function

favors frequencies around 1 kHz. During very loud sounds, the reflexive contrac-

tion of muscles, called stapedius reflex, reduces the transfer of acoustic energy and

protects the inner ear from sound overexposure.

2.3 Inner ear

The two main parts of the inner ear are the cochlea and the vestibular system.

The vestibular system provides the sense of balance and does not contribute to the

processing of auditory information.

The cochlea is a spiral-shaped bone structure with three liquid-filled ducts sep-

arated by two membranes. This hydrodynamic apparatus is capable of mechanical

analysis of sound frequency.

The basilar membrane is the main structural component of the cochlea that de-

termines the propagation of mechanical vibrations. Oscillatory pressure differences

produced by the motion of stapes propagate in the fluid along the cochlea and cre-

ate a traveling wave in the basilar membrane. Because the basilar membrane does

not have the same mechanical properties along its extent (it is narrow and stiff at

the base and wide and floppy at the apex), its maximal displacement happens at

a particular location depending on sound frequency, with lower frequencies having
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locations further from the base. The base has maximal displacement at frequencies

around 20 000 Hz while the apex at frequencies around 20 Hz. Logarithmic arrange-

ment of “best frequencies” along the cochlea resembles a piano keyboard and is called

tonotopy (Kandel et al., 2013). Alongside the basilar membrane is the organ of corti

containing receptor cells called hair cells. Hair cells are mechanoelectrical transduc-

tors that react to mechanical movement in one direction with increased probability

of neurotransmitter release. Because the mechanical movement at a particular site

of the basilar membrane is proportional to the magnitude of corresponding frequen-

cy, each hair cell has its “best frequency” and the probability of response is bigger

with bigger magnitude. However, hair cells react also to adjacent frequencies, but

the response is smaller.

Although fourier transforms are usually used for spectral analysis, the specifici-

ty of spectral analysis of the cochlea is best modeled by set of gammatone filters

(Schnupp et al., 2011). Hair cell transduction is usually modeled as a probability

of auditory nerve excitation that is derived from gammatone-filtered signal after

compression and rectification.

2.4 Auditory nerve

Primary sensory neurons in the auditory system have their bodies in the spiral gan-

glion and innervate cochlear hair cells. The auditory nerve conveys the information

between the hair cells and the brain in a bidirectional manner. Afferent nerve fibers

carry signals mostly from inner hair cells to the brain and efferent fibers carry signals

from the brain to mainly outer hair cells that act as amplifiers.

At least 90 % of nerve cells innervate inner hair cells. From these, each nerve

cell innervates only one inner hair cell, but one inner hair cell has connections to on

average 10 nerve cells. Thus, information from one receptor is encoded in several

parallel channels and the tonotopy is preserved, that is, each nerve cell can be linked

to the frequency that excites it most (Kandel et al., 2013).

Because the hair cells have maximal probability of discharge during the maximal

displacement, which happens during the amplitude of a sound wave, auditory nerve

cells tend to discharge periodically with sound frequency. This phenomenon is called
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phase-locking and, after tonotopy, it is the second way in which information about

frequency is represented in the auditory nerve. However, this way of coding is limited

to lower frequencies.

The auditory nerve cell does not have to fire with every sound cycle. The magni-

tude of each frequency is represented by the discharge rates of corresponding nerve

cells. To better handle the range of possible sound intensities, there are several

types of cells with respect to the threshold of excitation. One type of cells responds

to very low intensities and usually have high spontaneous firing rates, and another

type of cells responds only to sounds with higher intensities and usually have lower

spontaneous firing rates.

2.5 Cochlear nucleus complex

The cochlear nucleus complex is the first relay station in the auditory system. Here,

parallel ascending pathways with preserved tonotopy are created and projected to

several higher areas. Neurons of the cochlear nucleus complex are the first to perform

integration of information across auditory nerve cells.

Two main regions are distinguished in the cochlear nucleus complex, the dorsal

cochlear nucleus (DCN) and the ventral cochlear nucleus (VCN).

The dorsal cochlear nucleus is believed to process spectral cues for localization

(i.e. cues for elevation) and does not project to the superior olivary complex, thus

is not considered to be directly involved in binaural hearing (Kandel et al., 2013).

The ventral cochlear nucleus enhances temporal and spectral information for

further processing in other nuclei. It contains different types of cells with morphology

specialized to particular functions. Octopus cells have dendrites with a large span

summing smaller inputs from a large amount of auditory nerve fibers. Octopus cells

are broadly tuned and detect onsets, transients and periodicity of sounds (Kandel

et al., 2013). Stelate and bushy cells have short dendrites with a smaller number

(up to 10) of strong inputs. They provide sharp tuned and temporally precise

firing patterns. Outputs of bushy cells have better synchronization to the sound

phase than the auditory nerve (Joris et al., 1994) and project to the superior olivary

complex.
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2.6 Superior olivary complex

Three primary nuclei of superior olivary complex are the medial superior olive

(MSO), the lateral superior olive (LSO), and the medial nucleus of the trapezoid

body (MNTB). LSO and MSO neurons are the first neurons where the information

from both ears meets.

The function of MNTB neurons is to quickly and reliably switch excitatory inputs

from VCN to inhibitory inputs for other nuclei, especially for LSO and MSO.

The LSO specializes in interaural level difference processing. Neurons of the LSO

have excitatory inputs from ipsilateral VCN and inhibitory inputs from contralateral

VCN through ipsilateral MNTB. LSO neurons perform subtraction of contralateral

inputs from ipsilateral inputs.

MSO neurons are sensitive to time differences. They have excitatory and in-

hibitory inputs from both ipsilateral and contralateral VCN (inhibitory inputs are

relayed through MNTB). MSO neurons perform coincidence detection, or multipli-

cation, of contralateral and ipsilateral inputs.

There are two prominent theories how azimuth can be coded in the first binaural

neurons. The first theory emerged with Jeffress’s seminal work in which the place

code was proposed (Jeffress, 1948). In the place code theory, individual neurons

represent different azimuths and the array of such neurons creates a map of azimuthal

space. It is assumed that this type of coding is utilized in avian auditory systems

(Carr and Konishi, 1988). The rate code theory suggests that each neuron codes the

azimuth with the actual spike rate. Averaging across the population of neurons or

averaging the spike rate of one neuron in time yields the desired precision of azimuth

estimation. This theory suits better to the mammalian auditory system in which

inhibition plays an important role (Grothe, 2003).

Principal neurons of the MSO can be modeled on many levels, from highly ab-

stract models to detailed physiological models. Studies that do not focus on mod-

eling of MSO and only need ITD extraction often use cross-correlation (Faller and

Merimaa, 2004) or complex-valued gammatone filters (Dietz et al., 2011) to analyti-

cally derive ITD. Works that pay attention mainly to spike trains tend to use black-

box models where MSO neurons are represented by coincidence window (Marsalek

and Kofranek, 2004; Franken et al., 2014). Studies that focus on MSO properties
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use Hodgkin-Huxley models or formal neuron models with fixed thresholds (Colburn

et al., 1990; Brand et al., 2002; Zhou et al., 2005) or models in which the proba-

bility of spiking correlates with the maximal membrane potential achieved by the

summation of postsynaptic potentials (Batra et al., 1997; Leibold, 2010).
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3. Goals
In our study of information processing in the auditory system, we focus on the

sound localization circuit as it shows remarkable computational properties. Based

on previous work in the field, we formulated several questions grouped into three

research projects:

Analytical description of coincidence detection. In the black box model developed

by our research group (Marsalek and Kofranek, 2004; Marsalek and Lansky, 2005),

MSO neuron acts as a coincidence detector that reports coincidence if and only if

excitatory inputs from both sides are closer in time than a constant ∆, or, excitatory

input follows inhibitory input in a time shorter than ∆. This constant forms a time

window called a coincidence window. However, the nature of a coincidence window

is more complex, as was shown by recent physiological studies that explored the

role of inhibition in mammalian MSO (McAlpine et al., 2001; Grothe, 2003; Pecka

et al., 2008) and its importance in tuning of coincidence detection (Myoga et al.,

2014; Franken et al., 2015). The research questions were:

• What is the relationship between biophysical neuronal parameters and the size

and position of the coincidence window?

• How can inhibitory input influence parameters of the coincidence window?

Ergodicity and statistical properties in auditory circuits. One of the character-

istic traits of low-frequency auditory nerve fibers is the periodicity of spike trains:

neuronal discharges are phase-locked, i.e. the probability of spike is a function of

the sound phase. As we measure spike timing on an angular scale, it is beneficial to

use circular statistics to describe the stochastic processes in the auditory pathway.

Another characteristic trait of the auditory nerve is high redundancy, as a large

number of neurons carry information about the same sound feature. It was shown

that a large number of auditory neurons converging in a subsequent nucleus resulted

in increased precision (Joris et al., 1994; Marsalek et al., 1997). The precision in the

auditory pathway also increases with a longer duration of stimulus. We borrowed

the concept of ergodicity from statistical physics. It states that an average taken

over a smaller set of units and longer time should equal a larger set of units and
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shorter period of time. With the help of circular statistics and ergodicity concept,

we ask:

• Can we calculate a vector strength of neural spike timing and spike train

variability?

• How is the output spiking density of MSO neuron dependent on interaural

time delay?

Sound localization in complex acoustic scenes. A psychoacoustical study showed

that human localization is quite precise even in the presence of five concurrent talkers

and reverberation (Kopco et al., 2010). In such complex environments, multiple

sound waves reaching ears simultaneously results in unreliable binaural cues. One

theory states that parts of the signal that are dominated by only one sound source

have high interaural coherence. The auditory system thus can pick binaural cues

from parts of the signal with high interaural coherence for precise localization of

multiple sound sources (Faller and Merimaa, 2004; Dietz et al., 2011). Although a

recent study claimed good results with ITD model that utilized interaural coherence

in complex scenes (Josupeit et al., 2016), it did not explore the contribution of

interaural coherence per se. A clarification of the following is needed:

• Could models that select binaural cues based on interaural coherence explain

the level of precision of human sound localization in complex acoustic scenes

with several concurrent talkers and reverberation?

• Could interaural level differences be more reliable than interaural time differ-

ences in complex acoustic scenes?
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4. Methods and models

4.1 Analytical description of coincidence detec-

tion

To describe the relationship between biophysical neuronal parameters and the size

and position of the coincidence window, we used a simplified version of the formal

biological neuron model called the Spike response model (SRM0), as defined by

Gerstner and Kistler (2002). This model does not use differential equations for

the description of the course of the neuronal membrane potential but is formulated

using linear summations of the membrane potential responses on synaptic inputs.

Postsynaptic potential (PSP) was modeled as a subtraction of two exponentials (Eq.

4.4). We created two models, ECD having one excitatory input from each side and

ICD with one additional contralateral inhibitory input.

In SRM0, the dependence of the response function on previous action potentials

is removed. The time course of voltage u in time t on the membrane of a neuron i

is defined by the equation:

ui(t) = Ur +
∑︂

j

sij

∑︂
tj

ϵ0(t− tj), (4.1)

where j is an index of the presynaptic neurons, sij is the efficiency of synapse, ϵ0(t)

is the response function to a presynaptic AP (defined below), tj are the spike times

in presynaptic neurons, and Ur is the resting potential. The action potential is

generated if the membrane potential ui(t) crosses the threshold ϑ

max(ui(t)) ≥ ϑ. (4.2)

A natural response function following presynaptic action potential is the PSP

caused by neurotransmitter-induced changes in postsynaptic membrane conductance

(PSG). We model the course of the PSG g with exponential decay function using
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the time constant τ . This exponential decay is expressed as

g(t) = Gexp
(︃

− t

τ

)︃
, t ≥ 0, (4.3)

where G is the maximum value of the postsynaptic conductivity. Substituting to the

equations for postsynaptic currents and voltages adapted from the leaky integrate-

and-fire model (Gerstner and Kistler, 2002; Tuckwell, 1988) leads to the normalized

response function ϵ0(t)

ϵ0(t) = q

C
· 1
1− τ/τm

[︃
exp

(︃−t

τm

)︃
− exp

(︃−t

τ

)︃]︃H(t)
UM

, (4.4)

where q is the total charge passed through the membrane, τm is the membrane time

constant and τm = RC. R and C are the resistance and trans-membrane capacitance,

respectively. H(t) is the Heaviside step function: H(t) = 0 for t < 0, otherwise 1. UM

is a normalization factor.

The model is illustrated in Fig. 4.1.

The coincidence window is defined as a range of ITDs that elicit coincidences.

Within the duration of one sound period, the coincidence window is determined by

the smallest and the largest ITD that evokes coincidence.

The analytical description of the relationship between neuron parameters and

coincidence window is constructed through analyzing the local extremes of summed

PSPs. We obtain the function m returning maximum total potential for the given

ITD and neuron parameters. The ITD for which this reaches the threshold marks

either the beginning or the end of the coincidence window. The inverse functions

w to the monotonic parts of the function m thus form a relation that returns ITDs

that mark the beginning and the end of the coincidence window for the given AP

threshold and other neuron parameters.

The analytical description is constructed under the following assumptions: First,

two equally large excitatory PSPs meet in the coincidence detection window. Second,

one excitatory PSP is not enough to elicit an AP and two excitatory PSPs should be

able to elicit an AP. Third, the inhibitory PSP precedes the contralateral excitatory

PSP and the inhibitory PSP amplitude is not greater than the excitatory PSP

amplitude. The last assumption needed for analytical description of the coincidence
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detection is that τm is twice as fast as τ .
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Figure 4.1: Individual PSPs with τm = 0.180 ms and τ = 0.360 ms, are shown by
green dashed, dash-dot and violet dotted lines. Inhibitory PSP precedes the first
excitatory PSP by 0.5 ms. The second excitatory PSP follows the first one after
ITD = 0.5 ms. The total potential (sum of the individual PSPs) is shown by solid
line. In this example, the total potential crosses the threshold ϑ, shown by thin solid
line, and AP is generated.

A straightforward numerical approach is used to explore the coincidence detec-

tion outside the restricted range of parameters posed by these assumptions and

inherent limitations of the SRM0. The coincidence window size is determined by

evaluating the model equation across the range of parameters and ITDs and subse-

quently comparing this to the AP threshold. The numerical method allows differ-

ently parameterized response functions ϵ0 to be used for each input.

4.2 Ergodicity and statistical properties in audi-

tory circuits

Definitions, distributions and models used to derive statistical properties of spike

trains are described in this section. Numerical computations with the descriptive

circular statistics were realized with the help of a library package in MATLAB by
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Berens (2009).

The periodicity of neural spikes are measured by vector strength defined for

vector φ1, . . . ,φN as (Gumbel et al., 1953; Goldberg and Brown, 1969):

r(φ) = 1
N

⌜⃓⃓⃓
⎷⎛⎝ N∑︂

i=1
cosφi

⎞⎠2

+
⎛⎝ N∑︂

i=1
sinφi

⎞⎠2

. (4.5)

For continuous phase space φ that attains all values from an interval of [0,2π) with

the probability density function g(φ), we use the definition of continuous vector

strength (van Hemmen, 2013):

r(φ) =

⌜⃓⃓⎷(︄∫︂ 2π

0
g(φ)cosφ dφ

)︄2
+
(︄∫︂ 2π

0
g(φ)sinφ dφ

)︄2
. (4.6)

To calculate vector strength of spike train with the beta distribution, we intro-

duce a three parameter version of the standard beta distribution (Mardia, 1972).

This way we can use appropriate forms of the distribution regardless, whether the

support is on the interval [0,1), or on the interval [0,2π). This can be decided by

setting values of scale coefficient s = (2π)−1 or s = 1. Continuous values of s ∈ (δ,1]

with small δ describe continuously parameterized phase locking input spikes. The

beta distribution has then a probability density function written as:

fB(t,a,b,s) = sB(a,b)−1(t/s)a−1(1− t/s)b−1H(t/s)H(1− t/s), (4.7)

with variable t and parameters a,b ≥ 1, s > 0. The formula of the distribution is

normalized by Euler beta function B(a,b) to give unity integral (Cipra, 1994). Its

range is cut off by Heaviside function H(t), H(t) = 1 for t > 0, otherwise H(t) = 0.

We calculate the output spike density of MSO neuron dependent on the time

delay T between the right and left side as a difference of the two random variables,

T + Y and X. By the statistical calculus, the probability density function h of

random variable Z = (T +Y )−X is given by convolution

h(t) = g(t−T,a−T,b−T,u)∗g(−t,a,b,u) (4.8)

of probability densities of random variables (T + Y ) and X. We can use the op-
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eration of convolution because under the ergodic assumption and the assumption

that the resulting spikes form a renewal process, all the interspike intervals have the

same probability distribution, and all are mutually independent. For the probability

density of the right and left input X and Y we use a three-parameter probability

distribution of the phase φ:

f(φ,α,β,u) = 1
β −α

[︄
1−ucos

(︄
2π

φ−α

β −α

)︄]︄
H(φ−α)H(β −φ). (4.9)

It is a mixture of uniform and sine distribution and the parameter u is a weight of the

sinusoidal part. Parameters α and β are bounds of the support of the distribution

that satisfy 0 ≤ α ≤ β ≤ 2π. The weight parameter, u, is limited to interval [0,1].

When u = 0, f(φ) becomes the probability density of the uniform distribution on

interval [α,β]. Pure sinusoidal distribution is achieved for u = 1.

4.3 Sound localization in complex acoustic scenes

Our model of sound localization in complex acoustic scenes consisted of four stages:

virtual auditory scene, auditory periphery, binaural processing and target detection.

We implemented two variants of binaural processing: IC-based model and target-

search-based model. Modeling work was realized in MATLAB with the AM toolbox.

Virtual auditory scene. Spatial configurations of speakers and room acoustics

were modeled by convolving speech samples with binaural room impulse responses

(BRIR) for desired positions. The speech samples were drawn from the same speech

corpus of monosyllabic words recorded at Boston University’s Hearing Research

Center (Kidd et al., 2008) that was used in the experimental study (Kopco et al.,

2010). The levels of samples were adjusted for the desired target-to-masker ratio. We

used BRIR measured in a slightly reverberant room on a KEMAR manikin (Shinn-

Cunningham et al., 2005) similar to the room in which the experimental study took

place. To get rid of slight asymmetries in the BRIR we replaced recordings for

positive azimuths with recordings of respective negative azimuth with switched left

and right channels. An additional set of pseudo-anechoic BRIR was created by

cutting off BRIR at 5.5 ms with 0.25 ms long cosine-square ramp.

Auditory periphery was modeled in a standard way (Faller and Merimaa, 2004).
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The frequency analysis of the basilar membrane was modeled by a gammatone fil-

terbank (Patterson et al., 1995) splitting left and right ear signals into twenty-nine

frequency bands ranging from 200 Hz to 10 000 Hz. A model of basilar membrane

compression and neural transduction (Bernstein et al., 1999) was applied to each

frequency band: a Hilbert envelope was compressed by raising to a power of 0.23,

then half-wave, square-law rectified, and filtered with a fourth-order low-pass filter

with a cutoff frequency of 425 Hz. No additional internal noise was added.

IC-based localization. The binaural processor that computes ITD, ILD and IC

was implemented as in (Faller and Merimaa, 2004). For every time-frequency bin,

a normalized interaural cross-correlation was computed in a range of time shifts on

defined exponential-decaying time window with time constant of 10 ms. The max-

imum of interaural cross-correlation was assigned as the IC value, and the lag of

the maximum was assigned as the ITD. ILD was computed as a ratio of power of

the left signal to the power of the right signal, over exponential-decaying time win-

dow lagged according to ITD. Only ITDs and ILDs of bins with IC higher than the

threshold are selected for azimuth estimation. To combine localization information

across critical bands, we first translated cues into azimuths and constructed PDF of

individual azimuth estimations. A median of PDF is taken as a final azimuth esti-

mation. Two azimuth estimations were computed - one from ITD cues of frequency

bands below 1400 Hz and one from ILD cues of frequency bands above 1400 Hz.

Target-search-based localization. This model searches for a target in the temporal

domain of both the left and right signals and estimates target sound source location

from ITD as a difference of target timing between the left and the right signal.

Search for a target was realized by computing cross-correlation function of a signal

and a target template. A dot product on the window of target template size is

computed for every possible shift in a temporal domain. Local maxima of resulting

function were considered as candidates of the target position on time axis. An

internal representation of a vowel from the target word "two" was used as a target

template: a vowel was convolved with pseudo-anechoic BRIR at zero azimuth and

preprocessed by auditory periphery.

Target detection. To distinguish between target and masker cues at IC-based

localization, we computed a binary target mask that marked time-frequency bins in
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which the target is expected to have some minimal energy. The mask was created

from target-only scene. We utilized two types of masks - an ideal target mask, com-

puted from true target position, and a generalized target mask, computed from the

target at the position of 0◦ azimuth. Target-search-based localization had inherent

target detection thus we did not use binary target mask in that model.

Simulations. Four basic types of model were tested: 1. low-frequency ITD only

IC-based model with an ideal target mask, 2. high-frequency ILD only IC-based

model with an ideal target mask, 3. high-frequency ILD only IC-based model with

a generalized target mask, 4. target-search based model. The first three models were

tested for a range of IC threshold settings. Each simulation consisted of multiple

trials. In each trial, speech samples were presented from a subset of eleven evenly

spaced loudspeakers (−50◦ to 50◦ with 10◦ separation). Target sound could be

presented from any of the loudspeakers, and maskers were arranged in one of five

possible patterns. Maskers were presented either at the same level as the target

or 5 dB louder, yielding target-to-masker ratio (TMR) of 0 dB, or, respectively,

TMR of -5 dB. The target word was word "two" uttered by one of the female voices.

Masker words were four different randomly drawn nondigit words spoken by four

different male voices. Fifty different combinations of masker words were generated

ensuring that individual variability in masker words combinations would not bias

overall behavior.
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5. Results

5.1 Analytical description of coincidence detec-

tion

The main function of the MSO neuron is coincidence detection. The range of ITDs

that elicit a response of the neuron depends on its biophysical parameters. The

analytical relation that determines the two boundaries of the coincidence window as

a function of the relative threshold of a neuron with given parameters is expressed

as two branches w+ and w− of the curve w,

w+,−(ϑ′) = 2τm log
⎛⎝a2 ±

√︂
ϑ′[a2

2 − (ϑ′ −1)a1]
ϑ′ −1

⎞⎠ , (5.1)

valid in the interval ϑ′ ∈ (1,1+a2
2/a1], where

a1 = 1+ sI exp
(︃

TINH
τm

)︃
, (5.2)

a2 = 1+ sI exp
(︃

TINH
τ

)︃
. (5.3)

ϑ′ is the threshold for generating the action potential relative to the size of normal-

ized excitatory PSP, τm is the membrane time constant (Eq. 4.4) and τ is the time

constant of postsynaptic membrane conductance exponential decay function (Eq.

4.3). The expressions a1 and a2 reflect the effect of the inhibitory input: sI is the

synaptic efficiency of the inhibitory input relative to the excitatory input and TINH

is the temporal difference between the inhibitory and the same-side excitatory input.

In the case of the coincidence detection without inhibition sI = 0 and a1 = a2 = 1.

The two solutions correspond to two roots of quadratic equation, which can be

clearly seen in the argument of logarithm in the formula. The function (5.1) splits

at the ITD at which the highest total potential is achieved, called the best ITD,

that is

TMAX = 2τm log
(︃

a1
a2

)︃
. (5.4)
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The center of the coincidence window wC is at

wC(ϑ′) = w−(ϑ′)+(w−(ϑ′)+w+(ϑ′))/2. (5.5)

Two examples of the functions w+ and w− are shown in Fig. 5.1 below.
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Figure 5.1: Branches of the curve w, function w+, shown in blue, and w−, shown in
red, determine the boundaries of coincidence windows for the given relative threshold
and neuron parameters. The curve w for ECD is shown by thick solid lines and the
curve w for ICD is shown by thick dashed lines. The points where the corresponding
branches meet are marked with thin lines. The parameters are τm = 0.180 ms, d =
2, TINH = -0.2 ms, and sI = -0.5.

5.2 Ergodicity and statistical properties in audi-

tory circuits

Spike trains phase locked to sound phase are described by circular statistics. We

present vector strengths of spike trains with various underlying probability densities.

Vector strength r of a spike train with the spike phases relative to sound phase

distributed according to the beta distribution (4.7) with the lowest natural number

non-trivial parameters a = b = 2 and the scaling parameter s attaining values from
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0 ≤ s < 2π can be expressed as

r = 12s−3|scos(s/2)−2sin(s/2)|. (5.6)

For any given natural a and b, r can be expressed with the use of hyper-geometric

function, however, a formula for all arbitrary values of a and b does not exist.

Vector strength r of a spike train with the spike phases relative to sound phase

distributed according to the compound uniform and sine distribution (4.9) is

rf = 8π2 +2δ2(u−1)
δ(4π2 − δ2) sin δ

2 , (5.7)

dependent on the length of the support, δ, and the weight, u. In the temporal

representation of the delay, expressed in terms of t = φT/2π, where T denotes the

period of the sound, and the length of the support is denoted analogously by d = b−a,

it is

rg = T 2 +d2(u−1)
πd(T 2 −d2) T sin πd

T
. (5.8)

On the output of MSO neuron, the probability density function of the interspike

intervals (ISIs) dependent on the time delay T between the right and left side is

equal to

h(t) = d−|t−T |
d2 + u2(d−|t−T |)

2d2 cos 2π|t−T |
d

+ u(4−u)
4πd

sin 2π|t−T |
d

(5.9)

for |t−T | ≤ d. This probability distribution has support [T −d,T +d], and depends

on the parameter d and the weight, u. The resulting probability density has zero

skewness, its mean value is equal to

µh = T (5.10)

and variance equal to

σ2
h = d2

6π2 (π2 −6u). (5.11)

The coefficient of variation is often used for the description of the firing characteris-

tics of a spike train. The derived distribution of ISI has coefficient of variation equal
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to

CVh = d

πT

√︄
π2 −6u

6 . (5.12)

Expressing the weight, u, from (5.12) and substituting it into (5.8), we obtain the

vector strength of the output spike train as a function of the coefficient of variation

of the ISIs of the input spike train,

rh = T

6πd(T 2 −d2)
[︂
π2(d2 −6T 2C2

Vh)+6(T 2 −d2)
]︂
sin πd

T
, (5.13)

with the parameter d controlling the length of both the supports of the delay and

ISIs.

5.3 Sound localization in complex acoustic scenes

The aim of simulations of the complex acoustic environments was to find computa-

tional descriptors, which govern the subject’s decisions of the target voice location

in the complex auditory stimulus containing voice maskers.

Results are described individually for each of the simulations. For overall com-

parison we used root mean square error (RMSE) and a percentage of failed trials

as the failure rate across the trials in one of the three runs - control run (target

only), masker runs with TMR 0, and masker runs with TMR -5. For masker runs,

RMSE were computed both relative to the true target position and relative to the

model estimation in control run. For more detailed evaluation that includes RMSE,

mean locations, and failure rate computed separately for each target-maskers spatial

configuration, see appendix.

Simulation 1: IC-based, low-frequency ITD model with ideal target mask. RMSE

and failure rate for IC-based, low-frequency ITD model with ideal target mask are

shown on fig. 5.2 on the top row. For control run, although RMSE for low IC

thresholds are higher than RMSE without cue selection ( RMSE = 8.7◦ for IC0 = 0

vs. RMSE = 14.5◦ for IC0 = 0.5), increasing IC threshold leads to low RMSE in

the range of 2.6 − 3.1 for IC0 ≥ 0.985. Failure rate is always zero, meaning that for

each IC threshold there was at least one sample selected. Both masker conditions

show similar trends: RMSE are relatively stable in a range of 25◦ − 32◦ for TMR 0
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and 29◦ − 34◦ for TMR -5 up to IC0 = 0.985. Above that threshold we can observe

slight decrease of RMSE, down to 21◦ for TMR 0 and 31◦ for TMR -5 connected

with sharp increase of failure rate to 85% for both TMRs.

Simulation 2: IC-based, high-frequency ILD model with ideal target mask. RMSE

is decreasing monotonically with higher IC thresholds for both control and masker

conditions (fig. 5.2, middle row). For control condition, even low IC thresholds

bring significant reduction in RMSE (RMSE = 23.8◦ for IC0 = 0 vs. RMSE = 8.7◦

for IC0 = 0.5 ). For highest IC0 = 0.995 RMSE drops below 1◦ with failure rate

around 18%. Masker conditions follow the same trend. Absolute RMSE are 13.8◦

(TMR 0), resp. 17.4◦ (TMR -5) for low IC0, and decreasing to around 2◦ for highest

IC0 = 0.995. Above IC0 = 0.98, the failure rate rises sharply. Masker conditions

relative to control do not decrease up to IC0 = 0.98, above that value both decrease.

Failure rate is zero for lower IC0 and starts rising at around IC0 = 0.98 for simulations

with maskers (both TMR 0 and TMR -5).

Simulation 3: IC-based, high-frequency ILD model with generalized target mask.

Results of simulation 3 (fig. 5.2, bottom row) are similar to the results of simulation

2. Trends are the same, only values differ: Simulation 3 results show higher RMSE

for control condition and slightly lower RMSE for masker conditions. Failure rate

is higher compared to simulation 2.

Simulation 4: Target-search based model. Simulation 4 has overall RMSE of 2.6◦

and 0% failure rate for control condition, overall RMSE of 9.9◦ (9.1◦ re. control)

and 1.5% failure rate for TMR 0 masker condition, overall RMSE of 17.2◦ (17.3◦ re.

control) and 5.9% failure rate for TMR -5 masker condition.
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Figure 5.2: RMSE (left column) and failure rate (right column) of IC-based mod-
els as a function of IC threshold. Models showed are: low-frequency ITD model
with ideal target mask (top row), high-frequency ILD model with ideal target mask
(middle row), and high-frequency ILD model with generalized target mask (bottom
row). Control runs are plotted with red squares, TMR 0 masker runs are plotted
with green circles, and TMR -5 masker runs are plotted with blue diamonds. For
masker runs, absolute errors are plotted with full marks and errors relative to control
run are plotted with empty marks.
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6. Discussion

6.1 Analytical description of coincidence detec-

tion

The Spike Response Model SRM0 was chosen after the consideration of specific prop-

erties of MSO neuron and its function as a coincidence detector. We are not mod-

eling the exact time or course of the AP since the question is whether or not the

AP was generated. Synaptic interactions are examined within one sound period

and we assume no interaction from previous sound cycles as inputs are phase-locked

and sparse (Joris et al., 1994). Linear summation of inputs is in correspondence

with electrophysiological measurements of MSO neuron (Van der Heijden et al.,

2013; Roberts et al., 2013). However, spike generation is nonlinear (Van der Heijden

et al., 2013) and that may affect the computation of the output spike rates based

on the coincidence window in the similar way as the input jitter does (Marsalek and

Lansky, 2005).

Postsynaptic potentials. The response function with parameters corresponding

to that measured experimentally: τm = 0.180 ms, τ = 0.360 ms, (Myoga et al.,

2014), yields the half-width of 0.635 ms and rise time of 0.097 ms, which is on

a par with experimentally measured data (Myoga et al., 2014). For slower τ =

1.440 ms, as is the case for inhibitory synapses, the correct half-width of 1.531 ms

is observed, but there is a faster rise time of 0.155 ms, while the desired rise time is

around 0.3 ms. The way we model postsynaptic conductance yields very low values

of the onset latencies, 0.019 ms and 0.029 ms versus the desired value of 0.1 ms. We

argue that this small difference does not affect the model significantly as the relative

timing of the response function peaks has been preserved. Analytical relation has a

constraint τ = 2τm. For excitatory postsynaptic potential (EPSP), this is biologically

plausible, as mentioned above. For inhibitory postsynaptic potential (IPSP), this

means an unrealistically fast τ for an inhibitory input. Although it is possible to find

models using the same fast constants for excitatory and inhibitory inputs (Brand

et al., 2002), we run numerical simulations with specific time constants for both

excitatory and inhibitory inputs. The finding is that the ratio of time constants has
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an influence on the coincidence window, but the main results discussed here have

universal relevance regardless of the ratio of τ to τm.

Coincidence window duration. Experimental data suggest that the maximal du-

ration of coincidence window is around 200 - 300 µs (Jercog et al., 2010; Roberts

et al., 2013; Myoga et al., 2014). Computational studies also assume narrow coin-

cidence windows (Sanda and Marsalek, 2012; Franken et al., 2014). In the present-

ed model, with parameterization based on a recent electrophysiological experiment

(Myoga et al., 2014), the window function w is relatively broad. Duration of the

coincidence window around 200 - 300 µs is achieved with the relative threshold for

the AP generation about 5% below the maximum of EPSP summation. This im-

plies the necessity of precise setting of the AP generation threshold relative to the

EPSP size. One way to adjust the duration of the coincidence window is to change

the strengths of EPSPs or the threshold potential. However, if the developmental

changes of the EPSP and AP generation kinetics have another aim, for example to

attenuate AP backpropagation to soma or to achieve cycle-to-cycle independence of

EPSP summation (Scott et al., 2005), there should be another mechanism capable

of adjusting the duration of the coincidence window. Varying inhibition size shifts

the window function w towards the lower values of ϑ′, or, respectively, narrows the

coincidence window for a fixed threshold value. We suppose that this mechanism

does not need precisely delayed inhibition and could work even if IPSPs sum across

cycles, as it happens with sounds of higher frequencies. Narrowing of coincidence

window as an effect of inhibitory input is a general finding in many experimental

studies (Brand et al., 2002; Pecka et al., 2008; Franken et al., 2015).

Coincidence window position. The window function for ECD is symmetrical and

both the best ITD and the center of the coincidence window are at ITD = 0. In

ICD, these two values show us the shifts and asymmetry in the coincidence detection

induced by inhibitory input. In theory, lowering the thresholds could result in the

center of the coincidence window shifted much further away from the midline than

the best ITD for broad coincidence windows. In the parametrization we use, the

difference between the coincidence window shift and the best ITD shift is negligible

for the threshold within 5% range of its maximal values. The size and the nature

of possible shift is in accordance with data from experimental studies (Brand et al.,
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2002; Pecka et al., 2008). Specifically, we can observe very similar dependence of the

best ITD shift on the relative inhibitory delay as in a recent study by Myoga et al.

(2014). Shift of the best ITD depends on the exact delay of the inhibitory input

relative to the excitatory input from the same side. Jitter in this relative timing

may further reduce the size of this shift. We can hypothesize that this shift could

be more reliably achieved with the delay of the excitatory input respective to the

contralateral excitatory input.

Further considerations in relation to other studies. One of the aims of this study

was to validate an asymmetric rule for coincidence detection in the probabilistic

delay model. Using this rule, Sanda and Marsalek (2012) explored the duration of

the coincidence window from 60 µs up to 2 ms and found that the best value is

600 µs. In this model, the shift of both coincidence window boundaries to positive

values of ITDs is possible, but it is associated with a very narrow ICD coincidence

window. Furthermore, in this case, the ECD coincidence window does not consti-

tute a symmetrical complement to the ICD coincidence window. A comparison of

coincidence windows with and without inhibition for the same relative threshold

shows that inhibition narrows and shifts the coincidence window. However, the pos-

sible values of these effects are limited and some relations, for example, as in the

asymmetric rule for coincidence detection, where inhibition halves and shifts the

whole coincidence window to positive values, are excluded. In this model, we have

determined the coincidence window for two coinciding excitatory inputs. There is

evidence that multiple fibers innervate MSO cells (Couchman et al., 2010). A re-

cent model based on coincidence window explored properties of complex coincidence

detection (Franken et al., 2014) and confirmed that for low binaural thresholds, mul-

tiple fibers from each side are necessary, even though this number was lower for a

broader coincidence window. Here, the decision to model only one input per side

was based on the fact that in the probabilistic delay model (Marsalek and Lansky,

2005), multiple fibers can be considered in the input probability function. However,

this approach could not account for monaural coincidences.
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6.2 Ergodicity and statistical properties in audi-

tory circuits

In our computations we sought a simple description of spike trains following a sound

phase. The candidate functions we tried were circular normal and circular beta

distribution functions. These are circular counterparts of normal and beta PDFs.

The choice of the PDFs (normal, circular normal, beta, sine) in the calculations was

made based on the correspondence between PDFs on the aperiodic versus on the

periodic supports. A sine is circular and is parameter-free, and it is the simplest of

all the circular PDFs. When we use compound density, a weighted sum of uniform

and of sine density, we arrive at an arbitrary value of vector strength. We can

invert monotonous dependencies of vector strength on standard deviation and other

parameters of circular densities. By using this procedure, we can fit the ratio of

uniform and sine component to the vector strength of experimental spike trains.

Vector strength is an important parameter (Goldberg and Brown, 1969). It can

be found virtually at all levels of spike train description, which takes into account

spike timing relative to the stimulus phase of another spike train. Marsalek (2001)

discusses vector strength in the MSO nucleus at low frequencies. Vector strength can

be described at the moment of mechanical-to-electrical transduction in the cochlea

(Camalet et al., 2000) and then at many places upwards in the auditory pathway

and beyond.

Convolution is an important operator in signal processing. For the convolution

calculation in the auditory pathway and comparison of beta and normal densities in

this context, see Drapal and Marsalek (2010, 2011). The convolution of two spike

time densities is used here for the ISI calculation. Another interpretation of the

calculation and the parameters is possible - the output density also represents the

probability of generating output spike in a neural circuit of the MSO as a function

of the time delay imposed into the circuit by the spike arrival difference from the

neurons of the peripheral pathways from the left and right ears. The ensemble code

produced this way signals the azimuth of the sound source location.

Cochlear implants are successful in replicating a series of action potentials in

the auditory nerve by imitation of the mechanical to electrical transduction in the
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cochlea by contemporary electronics (Drapal and Marsalek, 2010). Constructing

cochlear implants involves reverse biomimetic and neuromimetic engineering. The

biomimetic and neuromimetic approaches are an engineering method to construct

industrial sensors by mimicking nature’s solution to the problem. Both reverse and

neuromimetic engineering are very dependent on computational modeling, on the

right choice of models and on their complexity. The knowledge that neural pathways

calculate a quantity does not necessarily tell us how it is computed. Therefore,

phenomenological models of the auditory brainstem computation are useful as a

first approximation, which can be refined in subsequent research (Marsalek and

Kofranek, 2005).

6.3 Sound localization in complex acoustic scenes

Simulations revealed that the IC-based model failed in our complex localization task

using low frequency ITD cues. Errors remained high for every IC threshold setting

in masker runs. A slight decrease in RMSE for IC thresholds above 0.985 could

be attributed to increased model failure in lateral target positions that were the

most erroneous ones. The IC-based model using low frequency ITD cues performed

well in control runs, however, control runs are a much easier localization task with

only one sound source in a reverberant room. This is in accordance with original

papers presenting models, showing there was a possibility to localize two sound

sources in a reverberant environment with some error (Faller and Merimaa, 2004)

and concluding that localization of more sound sources in a reverberant room was

not possible (Dietz et al., 2011). Josupeit et al. (2016) used an IC-based model using

low frequency ITD cues for the same localization task and reported good results for

TMR 0 condition. However, they combined the IC-based model with target masks

that ensured certain minimal instantaneous target-to-masker ratio, meaning that

target masks alone selected time-frequency bins having the target as a dominant

sound source. In our study we explored the ability of the IC-model to select bins

having one dominant sound source from a set of all target bins independent of

instantaneous target-to-masker ratio.
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IC-based model using high frequency ILD cues showed surprisingly good per-

formance, comparable to that of humans. The precision of localization increased

monotonically with IC threshold for control run and masker runs. RMSE of masker

runs relative to control run shows the contribution of maskers presence to degra-

dation of localization performance. ILD localization has very low values of RMSE

re. control for any IC threshold setting compared to ITD localization, suggesting

that the level of masking is much lower at high frequencies than at low frequencies.

Moreover, RMSE re. control is relatively constant up to IC0 = 0.98 suggesting that

for IC0 ≤ 0.98 all the improvement in localization is based on target echo suppres-

sion. For IC0 > 0.98, model was able to filter out bins with maskers energy, however,

failure rates sharply increased mainly for target at lateral positions or TMR -5. Nat-

urally, for more lateral positions left and right BRIR differ more, resulting in lower

interaural coherence and higher probability that there will be zero bins with high

enough interaural coherence to select.
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7. Conclusion
We have presented three modeling studies of binaural hearing.

The first study describes a relationship between biophysical parameters of the

MSO neuron and its ability to detect coincidental spikes from the left and the right

ear. The most important of these parameters are membrane time constants, con-

ductance decay constants, relative action potential threshold, and relative synaptic

strengths. Analytical relation enables better understanding of possible parametriza-

tions of coincidence windows for neurons with known biophysical properties. Com-

parison of coincidence windows of neurons with excitatory and inhibitory inputs and

of neurons with excitatory inputs only shows the major impact of inhibition on the

duration and position of the coincidence window. The presence of inhibitory inputs

results in a shift of the coincidence window outside the axis of symmetry of ITD

and in shortening its duration. Precise value of the threshold potential relative to

the EPSP size is essential for a narrow coincidence window. This is achieved also

by adjusting the strength of the inhibitory input.

The second study presents models of output spiking densities of the MSO neuron

and provides formulas for vector strengths for various density functions of spike

trains.

In the third study we model localization of sound sources in complex listening

situations with multiple sound sources in a reverberant environment. We conclude

that: highly correlated parts of the signal, if available, provide reliable ILD estimates

sufficient for precise target localization comparable to that of human subjects; low

frequency ITD cues of highly correlated parts of the signal alone are not sufficient

to explain human performance; and localization based on ITD is possible in combi-

nation with accurate target template.
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8. Souhrn
Představili jsme tři modelovací studie binaurálního slyšení. První studie popisuje

vztah mezi biofyzikálními parametry neuronu MSO a jeho schopností detekovat si-

multánní signály z levého a pravého ucha. Nejdůležitější z těchto parametrů jsou

membránové časové konstanty, konstanty poklesu vodivosti, prahová hodnota rela-

tivního akčního potenciálu a relativní synaptické síly. Analytický vztah umožňuje

lepší pochopení možných parametrizací koincidenčních oken pro neurony se známý-

mi biofyzikálními vlastnostmi. Srovnání koincidenčních oken neuronů s excitačními

a inhibičními vstupy a neurony s pouze excitačními vstupy ukazuje zásadní vliv

inhibice na trvání a polohu koincidenčního okna. Přítomnost inhibičních vstupů má

za následek posun koincidenčního okna mimo osu symetrie ITD a zkrácení doby

jeho trvání. Přesná hodnota prahu vzhledem k velikosti EPSP je nezbytná pro úzké

koincidenční okno. Toho se dosáhne také úpravou síly inhibičního vstupu.

Druhá studie představuje modely pravděpodobnostní hustoty výstupního neu-

ronu MSO a poskytuje vztahy pro vektorovou sílu pro různé pravděpodobnostní

rozdělení vzruchů.

Ve třetí studii jsme modelovali lokalizaci zdrojů zvuku ve složitých poslechových

situacích s více zdroji zvuku v dozvukovém prostředí. Došli jsme k závěru, že: vysoce

korelované části signálu, pokud jsou k dispozici, poskytují spolehlivé odhady ILD

dostatečné pro přesnou lokalizaci srovnatelnou s lidskými subjekty; nízkofrekvenční

ITD klíče vysoce korelovaných částí signálu samy o sobě nestačí k vysvětlení lid-

ského výkonu; a lokalizace založená na ITD je možná v kombinaci s přesnou cílovou

šablonou.
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