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Abstract: The goal of this thesis is to determine the asymptotic behaviour of the
number of quadratic extensions of a number field in terms of the discriminant.
We will be particularly interested in extensions of imaginary quadratic number
fields with odd class number. For a given number field K we will define the group
of ideles IK and the idele class group CK , which capture the local behaviour of a
number field. Then we use the Artin reciprocity theorem to give a correspondence
of quadratic extensions and quadratic characters on CK . When the class number
is odd, quadratic characters on CK reduce to characters on the product of groups
of units of local fields. These characters can be given explicitly and we compute
the discriminant of the corresponding extension from their local conductors. We
put this information together in the form of a zeta function and finally use a
Tauberian theorem to compute the asymptotic behaviour.
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Introduction
For every prime p of a number field K we can define a local field Kp, which is
a finte extension of the p-adic numbers Qp. We can put them all together to
form the group of idèles IK . Class field theory tells us that there is a canonical
homomorphism

IK/K× → Gal(K/K)ab.

This gives us a way to transform questions about extensions of K to questions
about local fields, which we are able to solve. We can use this to count abelian
extension of a number field K. Using this theorem one can estimate the asymp-
totic behavior of the function aK(n) which is the number of abelian extensions
of K with discriminant ≤ n satisfying certain properties. For example in chapter
8 of [Woo14] it is shown using the Artin reciprocity that the function aK(n) for
the number of quadratic extensions of K = Q grows as

aQ(n) = 6
π2 n + o(n).

In this thesis we will extend this theorem for K an imaginary quadratic field with
odd class number. We will find that

aK(n) = Cn + o(n).

where C is a constant we can write exactly using the Dedekind zeta function of
K. Simial method can be used to count cubic or higher degree extension or count
extensions with certain splitting properties at a set of primes.
The main idea is to view quadratic extensions of K as open index 2 subgroups of
the absolute Galois group of K (the Galois group of the algebric closure of K) and
use the Artin reciprocity to transform them to subgrups of the group of idèles.
These can also be seen as kernels of certain homomorphism from idèles to Z/2Z.
If K has odd class number, then all such homomorphisms can be constructed as
sums of homomorphisms from local fields to Z/2Z such that they send all units
of OK to 0.
If the class number is odd, then there are two problems. Firstly there are homo-
morphisms from the class group ClK to Z/2Z, which would have to be taken to
account. Also there would be more homomorphisms from local fields than homo-
morphisms from the idèles, because a certain group Ext1(ClK ,Z/2Z) would be
nonzero and to calculate it, we would need to know nontrivial information about
the structure of the class group. This theorem can’t also be easily extended to
real quadratic fields, because the group of units of OK is infinite and we would
need to know, what elements generate it.
The discriminant of each extensions can be computed from the local homomor-
phisms. The information about the extension can be put into one function called
the counting function. The asymptotic behaviour is then estimated from the
counting function using a Tauberian theorem, if we rewrite the counting function
using certain zeta and L-functions.
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1. Preliminaries
We first we recall some commutative algebra and algebraic number theory and
then we take a brief introduction to local fields and the group of idèles, to get our
main result. A short summary is in the following sections. All proofs and more
details can be found in [NS99] Chapter II.

1.1 Commutative algebra
The localization of a ring R by a multiplicatively closed subset S containing 1 is
the ring of fractions a

s
a ∈ R, s ∈ S modulo the relation r

d
∼ s

e
iff x(er − ds) = 0

for some x ∈ S. The localization is denoted S−1R. The prime ideals of S−1R
correspond to the prime ideals of R disjoint from S by sending S−1R ⊃ I ↦→ I∩R.
It also preserves the Noetherian property (i.e. if every ideal of R is finitely
generated, then every ideal of S−1R is finitely generated). See Proposition 38(c)
and (d) in Chapter 15.4 of [DF04] for the proofs.
For two k-algebras A and B, we can define their tensor product A ⊗k B as the
product A × B modulo the ideal generated by elements of the form (ra, b) −
(a, rb), (a + a′, b) − (a, b) − (a′, b), (a, b + b′) − (a, b − (a, b′)) for all a, a′ ∈ A, b, b′ ∈
B, r ∈ k. This is also a k-algebra, for more information see Section 10.4 in
[DF04].
The algebraic closure of a field K is an algebraic extension K/K, where K is
algebraically closed (every polynomial has a root). For a field of characteristic 0,
there always exist an algebraic closure and all closures are isomorphic.

1.2 Algebraic number theory
We will review some basic algebraic number theory, see for example Chapter I.
in [NS99]. Recall that for an extension of L/K of number fields with rings of in-
tegers OL, OK , a prime p of K is nonzero prime ideal of OK . Since every nonzero
ideal in the ring of integers factors uniquely as a product of prime ideals, the ideal
pOL factors as pOL = ∏

qei
i for some distinct prime ideals qi of L. In this case we

say that the qi are above p. The numbers ei are called the ramification degrees
and the numbers fi = [(OL/qi)/(OK/p)] (which are finite) are called degrees of
inertia. For every extension L/K we have ∑

eifi = [L/K]. In particular for
quadratic extensions we have three cases for every prime p, either ei = 1, fi = 1
or ei = 1, fi = 2 or ei = 2, fi = 1. In these cases we call the prime split, inert or
ramified, respectively.
To every number field K we associate the multiplicative free abelian group gener-
ated by the nonzero prime ideals of OK , denoted JK . Its elements are also called
the fractional ideals. Let c ∈ K be a nonzero element. It can be written as a

b

with a, b ∈ OK . The elements a, b define ideals with unique factorizations into
distinct prime ideals (a) = ∏

i p
di
i and (b) = ∏

j q
kj

j . The nonzero ideals of OK

are elements of this group. Then we have a group homomorphism K× → JK ,
c ↦→ ∏

i p
di
i × ∏

j q
−kj

j . Elements in the image are called principal fractional ideals
and the cokernel is called the ideal class group denoted ClK and a famous theo-
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rem in algebraic number theory says that it is finite (Theorem 6.3 in Chapter I.
[NS99]). The size of ClK is called the class number hK .
For a number field extension L/K the relative norm NL/K(−) of a nonzero prime
ideal q in OL is defined by NL/K(q) = pf where p = OK ∩ q and f is the degree
of inertia of q over p. The norm is extended to every ideal by defining the norm
of an ideal as the product of norms of the prime ideals in its decomposition. The
norm of the extension K/Q is called the absolute norm N(−) and it is an ideal
of Z, so we can identify it with a natural number.
A number field K has r1 embeddings into the real numbers τi : K → R and r2
pairs of conjugate embeddings to the complex numbers σj, σj : K → C. Then
there is a homomorphism logK : K → Rr1+2r2 defined by
a ↦→ (log |τi(a)|, log |Re(σj(a))|, log |Im(σj(a))|). If H is the subspace H = {hi ∈
Rr1+2r2| ∑

i hi = 0}, then the unit group O×
K maps to H under logK and the image

is a complete lattice Zr1+2r2−1. The area of the fundamental mesh of this lattice
divided by

√
r1 + r2 is called the regulator RegK of K. See [NS99] Chapter I.,

Sections 5 and 7 for more information.

1.3 Local fields
A valuation on a field A is a surjective function ν : A× → Z satisfying these
conditions:

• ν(ab) = ν(a) + ν(b)

• ν(a + b) ≥ min(ν(a), ν(b))

One usually defines ν(0) = ∞. Every valuation defines an absolute value (or
norm) on A by |a| = q−ν(a) for some q > 1. It is discrete (meaning its image
in R is discrete outside of 0) and defines a topology on A. We say two absolute
values are equivalent if they define the same topology. Choosing different q gives
equivalent absolute values.
The topology defined may not be complete, but there always exists a completion
Ã with dense homomorphism A → Ã (Theorem 7.23 in [Mil17]). This can be
done by setting Ã to be the field of all Cauchy sequences module an equivalence
a ≡ b ⇐⇒ a − b is a sequence going to zero. The absolute value on A extends
to Ã and is also discrete (because the absolute value of element in Ã is a limit of
elements in |A| which is discrete).
The p-adic absolute value on Q for a prime p is defined for a by writing a as
the product of distinct prime powers a = pdqe1

1 . . . qen
n and setting |a| = p−d and

|0| = 0.
Rational numbers are not complete with respect to the p-adic absolute value.

Their completion is called the p-adic numbers and denoted Qp. Every element
of Qp can be uniquelly written as an infinite sum ∑∞

n=k anpn where k ∈ Z and
ai ∈ {0, 1, . . . , p − 1}.

Theorem 1 (Ostrowski). The only nontrivial absolute values up to equivalence
on Q are the standard absolute value and the p-adic ones for all primes p.

Proof. Theorem 4.2 in Chapter II. in [NS99].

4



Fields with an absolute value that possess nice properties are called local
fields.

Definition 2. A local field is a field with a nontrivial absolute value such that it
is locally compact, i.e. every point has an open neighborhood the closure of which
is compact.

A field together with the topology defined by a complete valuation is a local
field. We will call a local field non-archimedean if it satisfies a stronger version
of the triangle inequality: |a + b| ≤ max(|a|, |b|) otherwise it is archimedean.

Theorem 3. Every local field A of one of the following types

• if A is archimedean, then it is isomorphic to R or C

• if A is non-archimedean and of characteristic 0, then it is isomorphic to a
finite extension of some Qp

• if A is non-archimedean and of characteristic p, then it is isomorphic to a
finite extension of Fp((t)) (the ring of formal Laurent series with coefficients
in Fp)

Proof. Proposition 5.2 in Chapter II. in [NS99].

For a non-archimedean local field A we define the ring of integers OA = {x ∈
A : |x| ≤ 1}, its maximal ideal m = {x ∈ A : |x| < 1} and the residue field
κA = OA/mA which is finite. The discreteness of the norm implies that the max-
imal ideal is principal and its generator is called uniformizer π. The absolute
value is usually normalized so that the uniformizer has norm q−1 where q is the
cardinality of the residue field. The units in OA are exactly the elements with
|a| = 1. For example for Qp the ring of integers is called the p-adic integers Zp

and the maximal ideal is generated by p.

1.4 Groups of units of local fields
For our main result we will need to know more about the structure of the group of
units of local fields. For a local field A we define the n-th unit group U (n) = 1+mn

and U = O× = U (0).

Theorem 4. We have A× ∼= (π) × U ∼= (π) × U/U (1) × U (1) and the quotients

U/U (n) ∼= (O/mn)× and U (n)/U (n+1) ∼= U/m

for n ≥ 1.

Proof. See 3.10 and 5.3 in Chapter II. in [NS99].

Theorem 5. For a non-archimedean local field A of characteristic 0 there is an
isomorphism

exp : U (n) → mn

5



with the inverse log for n > e
p−1 where p is the characteristic of the residue field

and e is the normalized valuation of p. The functions are given by the power
series

exp(x) =
∞∑

k=0

xk

k! , log(1 + x) =
∞∑

k=0

(−1)kxk

k

which converge on their domain of definition.

Proof. Propositition 5.5 in Chapter II: in [NS99].

We can put this together with the fact mn = (πn)U ∼= O ∼= Z[A/Qp]
p as additive

groups to get

Theorem 6. For a local field A of characteristic 0 and its ring of integers OA

we have:

A× ∼= Z × Z/(q − 1)Z × Z/(pa)Z × Zd
p

O×
A

∼= Z/(q − 1)Z × Z/(pa)Z × Zd
p

where p is the characteristic of the residue field and q is its order, d is the degree
of A over Qp and a is some integer.

Proof. Proposition 5.7 in Chapter II. in [NS99].

1.5 Places
We will denote a number field by K and its ring of integers by OK or just O.
Recall that a ring being Noetherian means that every ideal is finitely generated.
For a nonzero prime ideal p of OK consider the localization Op = (O\p)−1O.
The ring O is Noetherian, integrally closed and is of Krull dimension 1 (every
nonzero prime ideal is maximal). The local ring Op is Noetherian since localiza-
tion preserves this property. The prime ideals of S−1R correspond to the prime
ideals of R disjoint from S. Therefore the only prime ideals of Op are the zero
ideal and pOp, in other words Op is a local Noetherian domain. It is also integrally
closed since if a

b
in the field of fractions of O is a root of xn + c1

s1
xn−1 + · · ·+ cn

sn
= 0

where si /∈ p then sa
b

, where s = ∏
si, solves a monic polynomial with coefficients

in O and so sa
b

= σ ∈ O and a
b

= σ
s

∈ Op. Thus R satisfies one of the equivalent
conditions of being a discrete valuation ring (DVR), defined by the equivalent
conditions below.

Theorem 7. The following are equivalent:

• R is a local Noetherian domain of Krull dimension 1 and integrally closed

• R is a unique factorization domain with one irreducible element up to as-
sociates

Proof. Theorem 7 in Chapter 16.2 in [DF04].
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This means R only has one prime ideal p which is principal and every ideal
is its power. We can define a discrete valuation on O by setting ν(x) to be such
that (x) = pν(x). It can be extended to K by ν(a/b) = ν(a) − ν(b). We can
complete K with respect to the absolute value induced by this valuation and we
get a non-archimedean characteristic 0 local field Kp.

Prime ideals of O are also called finite places. We can also define infinite
places:

Definition 8. A real infinite place of K is an embedding τ : K → R. A complex
infinite place is a pair of conjugate embeddings σ, σ̄ : K → C that are not real.

Note that the number of real plus twice the number of complex embeddings
is equal to the degree of the number field K. To each infinite place we associate
the local field R or C if it is real or complex respectively. The number field is
embedded in the local field by the corresponding embedding.

1.6 Extensions of local fields
For an extension of number fields L/K and primes q of L above p (this means that
p = OK ∩ q), the local fields Lq and Kp form an extension with properties that
tells us information about the primes. For proofs of these theorems see Chapter
7 and 8 of [Mil17].

Definition 9. If A/B is an extension of non-archimedean characteristic 0 local
fields with normalized valuations and uniformizers πA, πB,
then we define the degree of inertia as the degree of the extension of finite fields
fA/B = [κA/κB] = [(OA/(πA))/(OB/(πB))] and the ramification index as eA/B =
νA(πB). An extension is unramified if the degree of ramification is 1.

Theorem 10 (Local field extensions). For an extension of number fields L/K and
nonzero primes p ⊂ OK and q ⊂ OL such that q ∩ OK = p we have an extension
of local fields Lq/Kp. If qi are all the primes of L above p, then L⊗K Kp

∼=
∏

Lqi
.

Furthermore the degree of inertia of the local field extension is equal to the degree
of inertia of the primes and the same for the ramification index.

Proof. See Proposition 8.2 in [Mil17].

Theorem 11. Finite unramified extensions L/K of non-archimedean local field
K correspond to finite extensions of the residue field κK = OK/(πK) by sending
L ↦→ κL = OL/(πL) and if κL = κK [X]/(f(X)), then L = K[X]/(f(X)) for some
lift f(X) of f(X) to K[X].

Proof. Proposition 7.50 in [Mil17].

1.7 Idèles
We follow Chapter VI of [NS99]. We have a number field K and the set of its
places p and the corresponding local fields Kp. The group of idèles is an object
IK that collects all the local fields into one.
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Definition 12. The group of idèles is defined

IK =
∏̂

p placesK
×
p = {(ap) ∈

∏
p places

K×
p |all but finitely many ap are in Up}

We can put a topology on idèles by defining a system of neighbourhoods of 1
to be the sets: ∏

p∈S

Wp ×
∏
p/∈S

Up

where S is a finite set of places including the infinite ones and Wp are systems
of neighbourhoods of 1 in K×

p . Systems of neighbourhoods of other points are
obtained by translations.
From the inclusions K ⊂ Kp we get the diagonal embedding K× → IK . The
quotient IK/K is called the idèle class group CK and it inherits the quotient
topology from IK (open sets in CK are the ones whose preimage is open in IK).
There is a natural homomorphism IK → JK , (ai) ↦→ ∏

p finite p
νp(ap). It is obviously

surjective. This homomorphism factorizes to a surjection CK → ClK since K×

maps exactly to principal fractional ideals.
For a set of places S we have a subgroup of idèles IS

K = ∏
p∈S K×

p × ∏
p/∈S Up.

If S is the set of infinite places we will denote it by I∞
K .

Theorem 13. There is an exact sequence

0 →→ I∞
K K×/K× →→ CK

→→ ClK →→ 0

Proof. See Proposition 1.3 in Chapter VI. in [NS99].

Note that by the second isomorphism theorem I∞
K K×/K× ∼= I∞

K /(I∞
K ∩ K×).

Definition 14. The absolute Galois group G(K) of a field K of characteristic
0 is the Galois group of the algebraic closure K. It can be given a topology
whose open neighbourhoods of 1 are the subgroups Gal(K/L) where L is a finite
Galois extension of K. This makes G(K) into a topological group (multiplication
and inversion are continuous). Open subgroups of G(K) correspond to finite
extensions of K and closed subgroups correspond to all extensions of K. For
more details see Chapter 7 of [Mil20].

Definition 15. For a group G its abelization Gab is its largest abelian quotient,
that is if [G, G] is the commutator subgroup, then Gab = G/[G, G]. It is clearly
abelian and there is a surjection G → Gab and every group homomorphism G → H
to an abelian group H factors through Gab.

Idèles can be used to conveniently formulate the main result of class field
theory: the global Artin reciprocity.

Theorem 16 (Artin reciprocity). There is a continuous homomorphism from the
idèle class group of a number field to the abelization of its absolute Galois group

CK → Gal(K)ab

called the Artin map. In particular every subgroup of CK of finite index corre-
sponds to an abelian extension L/K. Furthermore this homomorphism is surjec-
tive and its kernel is the largest connected component of CK that includes 1.
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Proof. Chapter V.5 of [Mil13].

This powerful result tells us that abelian extensions of K can be described by
the idèle class group.

9



2. Counting extensions

2.1 Field extensions
In this section we will assume that K is an imaginary quadratic number field
and that the class number of K is odd. We will use some basic abelian group
cohomology, an introduction to which can be found in Chapter 17 of [DF04]. For
an exact sequence of abelian groups

0 →→ A →→ B →→ C →→ 0

and another abelian group D the contravariant functor Hom(−, D) is left exact,
that is the sequence

0 →→ Hom(C, D) →→ Hom(B, D) →→ Hom(A, D)

is exact. There exist functors Exti(−, D), i ≥ 0, where Ext0(−, D) = Hom(−, D),
such that we have a long exact sequence

0 c0 →→ Hom(C, D) b0 →→ Hom(B, D) a0 →→ Hom(A, D) c1 →→

c1 →→ Ext1(C, D) b1 →→ Ext1(B, D) a1 →→ Ext1(A, D) c2 →→

· · ·

ci →→ Exti(C, D) bi →→ Exti(B, D) ai →→ Exti(A, D) ci+1 →→ .

The functors Exti(A, D) can be computed via a free resolution of A

· · · f2 →→ F1
f1 →→ F0

f0 →→ A →→ 0

by applying the functor Hom(−, D)

0 →→ Hom(F0, D) g0 →→ Hom(F1, D) g1 →→ Hom(F2, D) g2 →→ · · · .

The groups Exti are the cohomology groups of this complex, that is Exti(A, D) =
im(gi)/ker(gi−1).

We can use the Artin reciprocity to classify all quadratic extensions of an
imaginary quadratic number field K. All quadratic extensions are abelian. By
Galois theory they correspond to index 2 (necessarily normal) open subgroups of
G(K), the absolute Galois group of K. All finite extensions of K correspond to
open subgroups of G(K) with finite index. Its commutator Γ = [G(K), G(K)]
is a normal subgroup which is contained in all normal subgroups H such that
G(K)/H is abelian. So all index 2 open subgroups correspond to index 2 open
subgroups that lie in G(K)ab = G(K)/Γ or equivalently continuous surjective ho-
momorphisms that lie in Hom(G(K)ab,Z/2Z). We will call Homc(G(K)ab,Z/2Z)
the subgroup of continuous homomorphisms. Now we use the Artin reciprocity
to transform this to homomorphisms to Z/2Z from the idèle class group.

10



Theorem 17. The inclusion I∞
K K×/K× → CK induces an isomorphism

Hom(CK ,Z/2Z) → Hom(I∞
K K×/K×,Z/2Z) for K with odd class number (not

necessarily imaginary quadratic).
Proof. We have the exact sequence

0 →→ I∞
K K×/K× →→ CK

→→ ClK →→ 0.

We will apply the left exact functor Hom(−,Z/2Z) to the sequence and use the
property of Ext functors:

Hom(ClK ,Z/2Z) →→ Hom(CK ,Z/2Z) →→

→→ Hom(I∞
K K×/K×,Z/2Z) →→ Ext1(ClK ,Z/2Z)

The edge terms are 0 as we will now show. Because ClK is finite and of odd
order ClK ∼=

∏n
i=1 Z/pai

i Z, so we have a free resolution

0 →→ Zn M →→ Zn →→ ClK

where M is the diagonal matrix M = diag(pa1
1 , . . . , pan

n ).
By applying Hom(−,Z/2Z) to the resolution we get:

0 →→ (Z/2Z)n M̃ →→ (Z/2Z)n →→ 0

The map M̃ takes h ∈ Hom(Zn,Z/2Z) ∼= (Z/nZ)n to h ◦ M ∈ Hom(Zn,Z/2Z) ∼=
(Z/nZ)n. This map is the identity because M has odd numbers on the diagonal
and multiplication by odd numbers is the identity on Z/2Z. So the cohomology
groups of the chain above are 0 (it is exact), which are exactly Ext0(ClK ,Z/2Z) =
Hom(ClK ,Z/2Z) and Ext1(ClK ,Z/2Z).

We need to restrict ourselves to continuous homomorphisms. The topology on
IK induces the subset topology on I∞

K (open sets are the sets that are intersections
of open sets in IK with I∞

K ) and the quotient topology on I∞
K /(I∞

K ∩ K×) (open
sets are those whose preimage is open in I∞

K ). Note that we have I∞
K K×/K× ∼=

I∞
K /(I∞

K ∩ K×).
Theorem 18. There is an isomorphism of continuous homomorphisms
Homc(CK ,Z/2Z) → Homc(I∞

K /(I∞
K ∩ K×),Z/2Z) for K with odd class number,

where Homc(A, B) is the group of continuous homomorphisms from A to B.
Proof. From the previous theorem we have a bijection of all homomorphisms
Hom(CK ,Z/2Z) → Hom(I∞

K K×/K×,Z/2Z) ∼= Hom(I∞
K /(I∞

K ∩ K×),Z/2Z). The
inclusion map I∞

K /(I∞
K ∩K×) → CK is continuous, so a continuous homomorphism

maps to a continuous homomorphism. So there is a map Homc(CK ,Z/2Z) →
Homc(I∞

K /(I∞
K ∩ K×),Z/2Z) and it is injective.

If the preimage of χ ∈ Homc(I∞
K /(I∞

K ∩K×),Z/2Z) ⊂ Hom(I∞
K /(I∞

K ∩K×),Z/2Z)
is ν ∈ Hom(CK ,Z/2Z), it is enough to prove that the kernel of ν is open so
that ν is continuous. Because I∞

K is open in IK (every point a ∈ I∞
K has an open

neighbourhood a
∏

p infinite K×
p × ∏

p finite Up), we have that I∞
K /(I∞

K ∩ K×) is open
in CK (its preimage in IK is I∞

K ). The kernel H of χ is open in I∞
K /(I∞

K ∩ K×)
and thus in CK . The kernel of ν includes H and so it is a union of cosets of H in
CK and therefore open.
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Lemma 19. There is a bijection between quadratic extensions of any number
field K and continuous surjective homomorphisms CK → Z/2Z given by the
Artin map.

Proof. Quadratic extensions of K correspond to open index 2 subgroups of G(K).
If O is the connected component of 1 in CK , then the Artin map gives an isomor-
phism CK/O → G(K). This gives correspondence of open index 2 subgroups of
G(K) and CK/O. These subgroups of CK/O can be seen as kernels of continu-
ous surjective homomorphisms CK/O → Z/2Z. These correspond to continuous
surjective homomorphisms CK → Z/2Z since the connected component of 1 is
always mapped to 0 by continuity.

We will now look at Hom(I∞
K ,Z/2Z) with I∞

K ∩K× in the kernel. The elements
of I∞

K ∩ K× all generate the unit ideal. Therefore they are exactly the units of
OK which are {+1, −1} if K ̸= Q[i],Q[e2π/3].

Lemma 20. For an imaginary quadratic number field K, continuous homomor-
phisms I∞

K → Z/2Z are finite sums of local homomorphisms Up → Z/2Z for some
distinct primes p of K. More explicitely χ = ∑

p χp where χp is χ composed with
the inclusion Up = (1, . . . , Up, . . . , 1) → I∞

K .

Proof. Composition with the inclusion Up = (1, . . . , Up, . . . , 1) → I∞
K induces ho-

momorphisms χp : Up → Z/2Z. The kernel of the homomorphism χ : I∞
K → Z/2Z

is open, so there is a finite set S of primes such that the kernel includes ∏
p∈S Wp×∏

p/∈S Up, so all but finitely many χp are trivial and χ(. . . , ap, . . . ) = ∏
p χp(ap).

The local field at the infinite place C× is always mapped to 0 (since every element
in C× has a square root), so the sum only includes finite primes.
Conversely every finite sum of local homomorphisms gives a continuous homo-
morphism as we will show. Let χ = ∑

p∈S χp. As we will see in Lemma 23, every
local homomorphism χp : Up → Z/2Z has some subgroup U (np)

p in the kernel and
if S is the set of primes in the sum, then every element g in the kernel has an
open neighbourhood g

∏
p∈S U (np)

p × ∏
p/∈S Up, so the kernel is open.

All these theorems can be summarized as:

Theorem 21. Quadratic extensions of an imaginary quadratic number field K
with odd class number are in bijection with finite sums χ : I∞

K → Z/2Z, that can
be written as sums χ = ∑

p χp of homomorphisms χp : Up → Z/2Z with I∞
K ∩K× in

the kernel of χ and χp is χ composed with the inclusion Up = (1, . . . , Up, . . . , 1) →
I∞

K .

2.2 Conductors
Now we need to know how can we compute the discriminant of a number field
defined by such homomorphisms. We can do it using conductors.

Definition 22. For a homomorphism χp : Up → C× we define the local Artin con-
ductor to be the smallest integer fχp such that U (fχp )

p ⊂ ker χp. We define the global
Artin conductor f of a homomorphism χ : G(K)ab → C× as f = ∏

p p
fχp where

χp are the homomorphisms induced from χ by the map Up = (1, . . . , Up, . . . , 1) →
IK → CK → G(K)ab.

12



We can interprete the group Z/nZ as a subgroup of C× generated by the
n-th roots of unity. In our case χ is a homomorphism χ : G(K)ab → Z/2Z ∼=
{+1, −1} ⊂ C×.

Lemma 23. For a character χ : Up → Z/nZ the conductor is finite.

Proof. We have to show that some U (m)
p is in the kernel of χ. Since Z/nZ is

finite, the power (Up)n is in the kernel. From Theorem 5 there is an isomorphism
log : U (k)

p
∼= (π)k for k larger than some constant l, where π is the uniformizer of

Kp. We find that U (k)
p ⊂ (Up)n since every element log(a) ∈ (π)k has an n-th root

log(a)/n ∈ (π)k−νp(n) ∼= U (k−νp(n))
p if we choose k so that k − νp(n) > l. Therefore

all elements in U (k)
p are n-th powers, so U (k)

p ⊂ (Up)n.

If the character is a sum, the conductor is computable from the summands.

Theorem 24. Let χ be a sum of local characters χ = ∑
p χp over distinct primes,

like in Theorem 21. The conductor of χ is ∏
p p

fp, where fp is the local conductor
of χp.

Proof. The characters χp are obtained from χ by composition with the inclusion
Up = (1, . . . , Up, . . . , 1) → IK , so this holds by the definition of the conductor.

Definition 25. The relative discriminant of a Galois number field extension L/K
is the ideal dL/K of OK generated by d(b1, b2, . . . , bn) where bi is an basis of L
over K with bi ∈ OL and d(b1, b2, . . . , bn) is the determinant det(σi(bj))2 with
σi ∈ Gal(L/K). The relative discriminant dK/Q is a principal ideal of Z and we
can interprete it as a natural number called the absolute discriminant of K.

The relationship between conductor and discriminant is given by the following
formula.

Theorem 26. For an abelian number field extension L/K the relative discrimi-
nant dL/K is given by

dL/K =
∏

χ∈Char(Gal(L/K))
fχ

where Char(G) is the set of characters of G, that is homomorphisms G → C×.

Proof. Can be found in [NS99], VII.11.9.

If L/K is a quadratic extension, Gal(L/K) ∼= Z/2Z and there are only 2
characters with one trivial. The trivial character has conductor 1. If χ : G(K) →
Z/2Z is a continuous character and L is the number field corresponding to the
open subgroup ker(χ) by the Galois correspondence, then it factors as G(K) →
G(K)/ker(χ) = Gal(L/K) → Z/2Z and hence χ gives the nontrivial character
on Gal(L/K) so we can compute its conductor locally and thus get the relative
discriminant of L/K. The absolute discriminant of L is then easily computable.

Theorem 27. Given a tower of number fields L/K/S then the relative discrim-
inant of L/S can be computed as

dL/S = NK/S(dL/K)ddeg L/K
K/S

where NK/S(−) is the ideal norm of K/S.
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Proof. See [NS99] III.2.10.

Let’s calculate the conductor of local fields for our quadratic imaginary num-
ber field K. We will start with the odd primes.

Lemma 28. If p is a prime of K not above 2 (i.e. p∩Z = (p) for an odd prime
p), then Up

∼= Z/(pi − 1)Z × Z/paZ × Zd
p where i is the degree of inertia of p in

K/Q. The number d is 1 if p is split and 2 if inert or ramified and a is some
integer.

Proof. We know from Theorem 10 that Kp is an extension of Qp and the degree
of inertia and ramification is the same as for p in K/Q. We will use Theorem 6.
From this theorem we know that i is the degree of inertia. The number d is the
degree of Kp/Qp is using Theorem 10 the ramification degree times the inertia
degree.

We can see that there are only 2 local characters for primes not above 2:

Lemma 29. If p is a prime not above 2, then there are two characters on Up one
of which is trivial.

Proof. There are no nontrivial homomorphisms to Z/2Z from Z/paZ since it has
odd size and neither from Zp, since 1

2 ∈ Zp because 1
2 ∈ Qp and νp(1

2) = 0 for
odd p. Finally there is a nontrivial homomorphism from Z/(pi − 1)Z with kernel
(pi−1)

2 Z/(pi − 1)Z since 2|(pi − 1).

The conductors of these local characters are easily computable:

Lemma 30. If p is prime not above 2, then the local conductor of the trivial local
character on Up is 0 and for the nontrivial one with kernel (pi−1)

2 Z/(pi − 1)Z it is
1.

Proof. The trivial one has kernel Up = U (0)
p and the nontrivial one factors through

U (1)
p since Up/U (1)

p
∼= Z/(pi − 1)Z by Theorem 4.

If p is above 2, then we have three cases depending whether 2 is split, ramified
or inert in K. Notice that 2 can’t be ramified if K is imaginary quadratic with
odd class number unless K = Q(i) or Q(

√
−2).

Theorem 31. The prime 2 is not ramified in the extension K/Q, where K is
quadratic imaginary with odd class number unless K = Q(i) or Q(

√
−2).

Proof. We will show that the ideal 2Ok cannot be written as a principal ideal
squared. If the only units in OK are +1,-1, then 2 is associated with a square
only if 2 = x2 or −2 = x2 for some x ∈ OK . The first case is not possible since K
is imaginary and the second case is possible only in Q(

√
−2). If there are more

units then K = Q(i) or K = Q(
√

−3) and for Q(
√

−3) 2 is inert. If (2) = q2

for some non-principal ideal q, then it has order 2 in the class group, which is a
contradiction.

Lemma 32. If 2 is split, we have two primes p and q above 2 and UI
∼= Z×

2
∼=

Z/2Z × Z2 for I = p, q. If 2 is inert, we have U2 ∼= Z/3Z × Z/2Z × Z2
2.

14



Proof. We can use Theorem 10 to see that KI is isomorphic to Q2 if I is split
and K2 is an unramified degree 2 extension of Q2 if it is inert.
If 2 is split we can use Theorem 6 and the fact that OI is isomorphic to Z2. The
exponent a at Z/2aZ is 1 since −1 ∈ Z2, but x2 = −1 has no solution in Z2 (it
doesn’t have a solution in Z/4Z), so there is a second primitive root of unity in
Z2, but no primitive forth root of unity.
If 2 is inert we use the same theorem, O2 is the ring of units of an unramified
degree 2 extension of Z2. From Theorem 11 it can be written as Q2[X]/(f(X))
where f(X) is a polynomial such that Z/2Z[X]/(f(X)) is a degree two field
extension of the local field Z/2Z, i.e. it is irreducible in Z/2Z. This polynomial
is f(X) = X2 + X + 1. So the local field is isomorphic to Q2[X]/(X2 + X + 1)
and O2 ∼= Z2[X]/(X2 + X + 1) (the elements with valuation ≥ 0). We also have
a = 1 since x2 = −1 doesn’t have a solution in Z/4Z[X]/(X2 + X + 1), so there
is no primitive forth root of unity.

Lemma 33. There is an isomorphism (Z/4Z[X]/(X2 + X + 1))× ∼= (Z/3Z) ×
(Z/2Z) × (Z/2Z)

Proof. The invertible elements in Z/4Z[X]/(X2 +X +1) are of the form AX +B
where both A, B are not zero divisors in Z/4Z, that is 0 or 2. Therefore there
are 4 · 4 − 4 = 12 elements, so the group is isomorphic to Z/3Z × Z/2Z × Z/2Z
or Z/3Z × Z/4Z. The elements 2X + 1, 2X + 3 and 3 have order 2 and so the
group must be isomorphic to Z/3Z × Z/2Z × Z/2Z.

Lemma 34. There is an isomorphism (Z/8Z[X]/(X2 + X + 1))× ∼= (Z/3Z) ×
(Z/2Z) × (Z/2Z) × (Z/4Z)

Proof. The invertible elements in Z/8Z[X]/(X2 +X +1) are of the form AX +B
where both A, B are not zero divisors in Z/8Z, that is 0,2,4 or 6. Therefore there
are 8 · 8 − 4 · 4 = 48 elements. Every element can be multiplied by one of 1, X, X2

so that it is of the form 2AX + B. It can then be multiplied by one of +1, −1 so
that B is 1 + 4C. These elements 2AX + 4C + 1 form a subgroup with 4 · 2 = 8
elements and it has an element 2X +1 of order 4 and 3 elements 5, 4X +1, 4X +5
of order 2, so it is isomorphic to Z/2Z × Z/4Z.

It is now possible to determine all characters for even primes.

Lemma 35. For split primes over 2 we have 3 nontrivial characters with local
conductors 2,3 and 3. If 2 is inert we have 7 nontrivial characters, 3 of them
with local conductor 3 and 4 with local conductor 3.

Proof. There are two homomorphism Z2 → Z/2Z. One is trivial and the other
one is nontrivial with kernel 2Z2 (because 2Z2 is always in the kernel and so the
homomorphism is determined by the image of 1).
For split primes we have UI

∼= Z/2Z×Z2 using Lemma 32 so there are 2 × 2 = 4
characters of which 3 are nontrivial (with kernels (0, 2Z2), (Z/2Z, 0), (Z/2Z, 2Z2)).
Also UI/U (2)

I
∼= (Z2/4Z2)× ∼= (Z/4Z)× ∼= Z/2Z using Theorem 4, so one of them

has conductor 2 (a character factorizes through U/U (n) iff it has local conductor
≤ n). We also have UI/U (3)

I
∼= (Z/8Z)× ∼= Z/2Z × Z/2Z and so there are 3

nontrival characters with local conductors ≤ 3. One of them has local conductor
2, so the other two have local conductor 3.
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From the proof of Lemma 32, for inert prime 2 the local field is isomorphic to
O2 ∼= Z2[X]/(X2 + X + 1). The group of units is U2 ∼= (Z2[X]/(X2 + X + 1))× ∼=
Z/3Z × Z/2Z × Z2

2 using Theorem 6. So there are 7 nontrivial characters total.
Using Theorem 4 and 33, we can see that U2/U (2)

2
∼= (Z/4Z[X]/(X2 + X +

1))× ∼= Z/3Z × Z/2Z × Z/2Z so 3 of them have conductor 2 and U2/U (3)
2

∼=
(Z/8Z[X]/(X2 + X + 1))× ∼= Z/3Z × Z/2Z × Z/4Z × Z/2Z using Lemma 34, so
all other characters factorize through U (3)

2 and so have conductor 3.

2.3 Counting function
We put all information about quadratic extensions of a number field K into one
function. We still assume that K is imaginary quadratic with odd class number.
In this chapter we will assume that K ̸= Q(i),Q(

√
−2),Q(

√
−3).

Definition 36. The counting function fK(s) of a number field K is a function
of a complex variable s defined as the series

fK(s) =
∞∑

n=0
ann−s

where an is the number of quadratic field extensions of K with absolute discrimi-
nant n.

We have already seen in Theorem 19 that quadratic extensions correspond to
nontrivial continuous homomorphisms I∞

K K×/K× ∼= I∞
K /(I∞

K ∩ K×) → Z/2Z. If
K ̸= Q(i),Q(

√
−3), we have O×

K = {+1, −1}. Let’s first look at homomorphisms
I∞

K → Z/2Z.
In our case of an imaginary quadratic field we have I∞

K = C× × ∏
p finite Up. We

know from Theorem 21 that each character is a sum of a finite number of homo-
morphisms Up → Z/2Z.
We will see that the counting function can be written as a product of local fac-
tor over the primes. For convenience we will define the absolute conductor of a
character as the norm of the conductor of the character, which is natural number
instead of an ideal.

Definition 37. We define the local factor gp(s) at a prime p to be the function

gp(s) =
∑

χi characters on Up

N(p)−fis

where fi is the local conductor of χi

From Lemma 30 we get that:

Theorem 38. For primes p not above 2 the local factor is

gp(s) = (1 + N(p)−s)

Similarly from Lemma 35 we get
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Theorem 39. If 2 is inert, then the local factor g2(s) is:

g2(s) = (1 + 3N(2)−2s + 4N(2)−3s)

and if 2 is split, then for the primes I above 2 we have

gI(s) = (1 + N(I)−2s + 2N(I)−3s).

First we show that a simplified counting function can be written as a product
of local factors.

Theorem 40. The counting function f0(s) = ∑
n≥1 ann−s where an is the number

of continuous characters I∞
K → Z/2Z with absolute conductor n can be written as

f0(s) =
∏

p primes of K

gp(s) =
∏

p primes above 2
g(s)p ×

∏
p other primes of K

(1 + N(p)−s).

Furthermore it converges for Re(s) > 1.

Proof. Notice that the function f0(s) can also be written as a sum over ideals of
OK , that is f0(s) = ∑

I ideal of OK
aIN(I)−s, where aI is the number of homomor-

phisms with conductor I. This is the same sum, we are just indexing the terms
by the conductors (ideals) instead of their norms (natural numbers).
Using the theorems in Section 2.1, we know that every nontrivial homomorphism
χ : I∞

K → Z/2Z can be uniquely written as a sum of finitely many homomor-
phisms χp : Up → Z/2Z over distinct primes. Denote Dk the set of primes of OK

with norm less than k and Hk the set of ideals, that can be written as products
of prime ideals from Dk. The set Dk is finite, beacuse the are only finitely many
ideals with norm less then some number ([Mil17] Theorem 4.4). Every character
χ whose conductor is in Hk can be written as a sum of local characters over primes
in Dk. This is because the absolute conductor of a sum of local homomorphisms
over distinct primes ∑

p χp is ∏
p N(p)fp , by 24.

We have ∑
I∈Hk

aIN(I)−s = ∏
p∈Dk

gp(s) as we will show. The local factors gp(s)
are sums of the terms N(p)−fps for all local characters χp on Up to the power
−s (here fp is the local conductor of χp). If we multiply out all the local fac-
tors for primes in Dk, we get exactly the sum of absolute conductors of all sums
of local characters of primes in Dk to the power −s. Therefore the product is∑

χ character with conductor in Hk
N(Iχ)−s = ∑

I∈Hk
aIN(I)−s where Iχ is the conductor

of χ.

From this and the form of the factors gp(s), we can see that aI is at most 4,
so the sum f0(s) = ∑

I ideal of OK
aIN(I)−s converges for Re(s) > 1. We get the

inequality
|f0(s) −

∏
p∈Dk

gp(s)| ≤
∑

I /∈Hk

aIN(I)−Re(s).

So on the halfplane Re(s) > 1 the product converges to f0(s) by letting k go to
infinity.

The counting function looks like an Euler product for the Dedekind zeta func-
tion as defined below.
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Theorem 41. The Dedekind zeta function of the number field K is the complex
function

ζK(s) =
∑

I nonzero ideals in OK

1
N(I)s

which converges to a holomorphic function for Re(s) > 1. It can also be given as
the Euler product

ζK(s) =
∏

p nonzero prime ideals of K

1
1 − N(p)−s

Furthermore, it can be analytically extended to a holomorphic function on C\{1}
with a simple pole at 1 and ζK(s) is nonzero for Re(s) > 1 (none of the factors
are zero there).

Proof. See theorems in [NS99], Section 5, Chapter VII.

In fact, we have

Theorem 42. The function f0(s) can be expressed as

f0(s) = ζK(s)
ζK(2s) ×

∏
p primes above 2

g(s)p
(1 + N(p)−s

and therefore can be analytically extended to a holomorphic function for Re(s) >
1/2, s ̸= 1 with a simple pole at 1.

Proof. We can write

f0(s) =
∏

p primes above 2
g(s)p ×

∏
p other primes of K

(1 + N(p)−s) =

=
∏

p primes above 2

g(s)p
(1 + N(p)−s

×
∏

p all primes of K

(1 + N(p)−s) =

=
∏

p primes above 2

g(s)p
(1 + N(p)−s

×
∏

p all primes of K

(1 − N(p)−2s)
(1 − N(p)−s) =

=
∏

p primes above 2

g(s)p
(1 + N(p)−s

× ζK(s)
ζK(2s) .

The function ζK is holomorphic outside 1 with a simple pole at 1. It also has no
zeros for Re(s) > 1 so the function 1

ζK(2s) is holomorphic on the halfplane Re(s) >

1/2. There are only 1 or 2 primes above 2, so the first factor is holomorphic on
C.

From Theorem 21 we know that quadratic extensions of K correspond to
homomorphisms from I∞

K to Z/2Z with I∞
K ∩ K× in the kernel. So far we have

only looked at homomorphisms I∞
K → Z/2Z, so we need to figure out which

ones send I∞
K ∩ K× to 0 ∈ Z/2Z. As we saw just before Lemma 20, we have

I∞
K ∩ K× = {+1, −1}. So the characters need to send −1 to 0. We will call a

character even is it does send −1 to 0 and odd otherwise.
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Definition 43. We define the odd local factor g−(s)p at a prime p to be the
function

gp(s) =
∑

χi characters on Up

σiN(p)−fis

where fi is the local conductor of χi and σi is 1 if the character is even and −1
if it is odd.

From Lemma 30 we get that:

Theorem 44. For primes p not above 2 the odd local factor is

g−(s)p = (1 + N(p)−s)

if p is inert or the prime p (where p is above p) is 1 mod 4 and

g−(s)p = (1 − N(p)−s)

if it is not inert and p is 3 mod 4.

Proof. Same as for the ordinary local factor, but now we have to look where is
−1 sent by the nontrivial character on Up. From 28 we get that UK

∼= Z/(pi −
1)Z×Z/paZ×Zd

p. The element −1 is mapped to ( (pi−1)
2 , 0, 0) by the isomorphism.

If p is inert, then i = 2 and 4|(pi − 1), so −1 is mapped to 0 by the nontrivial
character. This is also the case if 4|(p − 1). Otherwise −1 is sent to 1 ∈ Z/2Z
and the nontrivial character on Up is odd.

We will write S for the set of primes that satisfy the first condition in the
previous theorem.
Similarly from Lemma 35 we get

Theorem 45. If 2 is inert, then the odd local factor g−(s)2 is:

g−(s)2 = (1 + N(2)−2s − 2N(2)−2s + 2N(2)−3s − 2N(2)−3s)

and is 2 s split, then for the primes I above 2 we have

g−(s)I = (1 − N(I)−2s − N(I)−3s + N(I)−3s).

Proof. Same as for the ordinary local factor, but we use Lemmas 33 and 34 to
figure out what characters are odd.
If 2 is split, then -1 maps to 1 ∈ Z/2Z ∼= (Z/4Z)× ∼= U/U (2) and to (1, 0) ∈
Z/2Z × Z/2Z ∼= (Z/8Z)× ∼= U/U (3), so one character of local conductor 2 is
odd and two characters of local conductor at most 3 are odd, onee of them has
local conductor 2. In total there is one odd character of local conductor 2 and
one odd character of local conductor 3. Thus the local factor, denoted g−(s)I , is
(1 − N(I)−2s − N(I)−3s + N(I)−3s).
If 2 is inert, -1 maps to (0, 1, 0) ∈ Z/3Z × Z/2Z × Z/2Z ∼= U/U (2) and to
(0, 1, 0, 0) ∈ Z/3Z × Z/2Z × Z/2Z × Z/4Z ∼= U/U (3) and we can see that two
characters of conductor 2 are odd, and two characters of conductor 3 are odd,
and thus the local factor is (1 + N(2)−2s − 2N(2)−2s + 2N(2)−3s − 2N(2)−3s).
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Theorem 46. The counting function f−(s) = ∑
n≥1 bnn−s where bn is the number

of continuous characters I∞
k → Z/2Z with absolute conductor n that are even

minus the number characters with conductor n that are odd, can be written as

f−(s) =
∏

p primes of K

g−(s)p =

=
∏

p primes above 2
g−(s)p

∏
p/∈S and not above 2

(1 + N(p)−s)
∏
p∈S

(1 − N(p)−s)

Furthermore it converges for Re(s) > 1.

Proof. The proof is similar to the one for the counting function f0(s). If we write
a character on I×

K as a sum of local characters on Up, than the character is even iff
there is an even number of odd characters in the sum, since −1 is then mapped
to 0 in Z/2Z. If we multiply out the product, the terms correspond to sums of
local characters and the sign is positive if the sum has even number of odd local
characters and negative if it has an odd number of odd local characters.

Finally the counting fuunction of K is expressed as:

Theorem 47. The counting function fK(s) can be written as

fK(s) = d−2s
K

1
2(f0(s) + f−(s)) − d−2s

K

where K is a quadratic imaginary number field with odd class number different
from Q(i),Q(

√
−2),Q(

√
−3) and dK is the discriminant of K as a natural num-

ber.

Proof. We know from Theorem 21 that quadratic extensions of K correspond to
nontrivial continuous on I∞

K → Z/2Z with (I∞
K ∩ K×) in the kernel. We have

(I∞
K ∩ K×) = {+1, −1} for our K and so the extensions correspond to even

nontrivial continuous characters. Furthermore the absolute discriminant of the
extension corresponding to the character χ is from Theorem 27 equal to N(Iχ)d2

K

where Iχ is the conductor of χ.
The function f0 counts all characters, and the function f− counts even characters
minus odd characters. Therefore adding them with a factor of one half counts
only even characters. The terms in this counting function have terms N(I)−s,
so we have to multiply it by d−2s

K to get terms with the absolute discriminant.
The term −d−2s

K is the eliminate the trivial character which correspond to the
extension K/K which we don’t count.

2.4 Asymptotical distribution of number fields
We can use the counting function to get the asymptotical distribution of quadratic
extensions of K.
Recall the little o notation, a positive real function f(s) is o(g(s)) iff lims→∞

f(s)
g(s) =

0.
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Theorem 48. Let f(s) = ∑
n≥1 ann−s be convergent for Re(s) > a > 0. Assume

that in the domain of convergence f(s) = g(s)(s − a)−w + h(s) holds, where
g(s),h(s) are holomorphic functions in the closed half plane Re(s) ≥ a, and g(a) ̸=
0, and w > 0. Then

∑
1≤n≤X

an = g(a)
aΓ(w)Xa(log X)w−1 + o(Xa(log X)w−1)

As a special case, if f(s) converges for Re(s) > 1 and has meromorphic continu-
ation to Re(s) ≥ 1 with a simple pole at s = 1 with residue r, then∑

1≤n≤X

an = rX + o(X)

Proof. Corollary on page 121 of [Nar83]

We know that the function f0(s) is up to some simple factors equal to ζK(s)
ζK(2S) .

This function satisfies the special case of the previous theorem, we just have to
compute the residue. The residue is Ress=1

ζK(s)
ζK(2s) = Ress=1ζK(s)

ζK(2) . The residue of
the Dedekind zeta function is given by the class number formula.

Theorem 49. The residue of the Dedekind zeta function of the number field K
is

Ress=1ζK(s) = 2r
1(2π)r2RegKhK

wK

√
dK

where r1 and r2 is the number of real and complex places respectively, RegK is the
regulator of K, hK is the class number and wK is the number of roots of unity
in K. In particular, for an imaginary quadratic number field r1 = 0, r2 = 1 and
RegK = 1

Proof. See [NS99] VII. 5.11.

The value ζK(2) for imaginary quadratic number field is calculated in [Zag86]
Theorem 2.

ζK(2) = π2

6
√
dK

∑
0<n<dK

(−dK

n

)
A

(
cot(πn

dK

)
)

where the function A(x) is defined as

A(x) = 2
∫ ∞

0

tdt

x sinh2 t + x−1 cosh2 t

and (a
b
) is the Kronecker symbol.

Now for the function f−(s). We can express it using Dirichlet L-functions. A
Dirichlet character is a homomorphism χ : (Z/mZ)× → C×. We can extend it
to Z by defining χ(a) = 0 if gcd(m, a) ̸= 1. For example we have a character
χ4 : (Z/4Z)× → C where χ4(3) = −1. For an imaginary quadratic number field
K there is a character (the Kronecker symbol (−dK

x
)) χK : (Z/dKZ)× → C such

that χK(p) is 1 if p splits in K and -1 if p is inert in K.

For every character we have an L-function
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Definition 50. If χ : (Z/mZ)× → C× is the Dirichlet character, we define a
function

L(χ, s) =
∏

p prime

1
1 − χ(p)p−s

which converges to a holomorphic function for Re(s) > 1. If χ is not the trivial
character, then L(χ, s) can be extended to a holomorphic function on the entire
complex plane. See Section 2 in Chapter VII. in [NS99].

If we ignore the factors from primes above 2, the function f−(s) is equal to
(recall that S is the set of primes not above 2 that are inert, or 1 mod 4)∏
p/∈S and not above 2

(1 + N(p)−s)
∏
p∈S

(1 − N(p)−s) =

=
∏

p inert
(1 + p−2s)

∏
p splits and is 1 mod 4

(1 + p−s)2 ∏
p splits and is 3 mod 4

(1 − p−s)2 × R(s)

since the norm of a prime ideal p above p is p2 if it is inert and p otherwise and
p is odd in all products. Here R(s) is the factor for the (finitely many) ramified
primes R(s) = ∏

p ramified, 1 mod 4(1 + N(p)−s) × ∏
p ramified, 3 mod 4(1 − N(p)−s).

We will denote I, S, R the set of inert, split and ramified primes of K not above
2 and Ii, Si, Ri i = 1, 3 the subset of primes that are i mod 4.
Now we can write:∏

p∈I

(1 + p−2s)
∏

p∈S1

(1 + p−s)2 ∏
p∈S3

(1 − p−s)2R(s) =

=
∏

p∈I(1 − p−4s) ∏
p∈S(1 − p−2s)2∏

p∈I(1 − p−2s) ∏
p∈S1(1 − p−s)2 ∏

p∈S3(1 + p−s)2 ×

×
∏

p∈R(1 − p−2s)∏
p∈R1(1 − p−s) ∏

p∈R3(1 + p−s) =

= B(s)/ζK(2s)∏
p∈I1(1 − p−s) ∏

p∈I3(1 + p−s) ∏
p∈S1∪R1(1 − p−s) ∏

p∈S3∪R3(1 + p−s)

× 1∏
p∈I1(1 + p−s) ∏

p∈I3(1 − p−s) ∏
p∈S1(1 − p−s) ∏

p∈S3(1 + p−s) =

= L(χ4, s)L(χ4χK , s)
ζK(2s) × B(s)

where χ4χK is a character on (Z/lcm(4, dK)Z)× and B(s) = ∏
p over 2 1/(1 −

N(p)−2s) is the factor of ζK(2s) at 2. For this character χ4χK(p) = 1 if p is
inert and 3 mod 4 or split and 1 mod 4 , χ4χK(p) = 0 is p is ramified or 2 and
χ4χK(p) = −1 otherwise. We can summarize it in the following theorem.

Theorem 51. Let K be a imaginary quadratic number field with odd class number
not equal to Q[i],Q[

√
−3],Q[

√
−2]. Then the function f−(s) can be written as

f−(s) = L(χ4, s)L(χ4χK , s)
ζK(2s) ×

∏
p primes above 2

g−(s)p × B(s)

In particular, it is holomorphic for Re(s) ≥ 1.
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Proof. The equation is clear from the preceding discussion we just added the
factors for the primes above 2. The Dedekind zeta function ζ(2s) is holomorphic
and nonzero on the halfplane Re(s) > 1/2. Since the characters χ4 and χ4χK are
nontrivial if K ̸= Q(i), the L-functions are holomorphic for all s.

We can put everything together te get the main result

Theorem 52. For a quadratic imaginary number field K with odd class number
not equal to Q[i],Q[

√
−3],Q[

√
−2] the function aK(n) = #{L/K| deg(L/K) =

2, dL ≤ n} is asymptotically equal to

aK(n) = Cn + o(n)

where C is given by

C = 1
2d2

K

Ress=1ζK(s)
ζK(2)

∏
p over 2

gp(1)
(1 + N(p)−1) = d

−5/2
K πhK

2ζK(2)
∏

p over 2

gp(1)
(1 + N(p)−1)

Proof. Apply the special case of Theorem 48 to the function
fK(s) = d−2s

K
1
2(f0(s) + f−(s)) − d−2s

K . This function is holomorphic for Re(s) ≥ 1
except for a pole at 1. The functions f−(s) and d−2s

K have no pole at 1, so it
doesn’t affect the asymptotic growth. The number C is the residue of fK(s) at
1, which is thus 1

2d2
K

times the residue of f0(s). Then use Theorem 49 to get the
formula for the residue.

2.5 Special cases
We left the cases of K = Q(i),Q(

√
−3),Q(

√
−2) as last. We will show that the

main Theorem 52 holds for these fields in this form:

Theorem 53. For a quadratic imaginary number field K with odd class number
the function aK(n) = {L/K| deg(L/K) = 2, dL ≤ n} is asymptotically equal to

aK(n) = Cn + o(n)

where C is given by

C = d
−5/2
K πhK

wKζK(2)
∏

p primes over 2

gp(1)
(1 + N(p)−1)

where wK is the number of roots of unity in K and gp(s) is

gp(s) =

⎧⎪⎨⎪⎩
(1 + 2−2s + 2 · 2−3s), if 2 is split in K
(1 + 3 · 4−2s + 4 · 4−3s), if 2 is inert in K
(1 + 2−2s + 2 · 2−4s + 4 · 2−5s), if 2 is ramified in K

⎫⎪⎬⎪⎭
Proof. We only need to show this for K = Q(i),Q(

√
−3),Q(

√
−2).

The only problem with Q(
√

−3) is that the unit group has six elements, O×
K

∼=
Z/6Z ∼= Z/2Z × Z/3Z. The Z/2Z part is generated by −1 and the Z/3Z is
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generated by the image of ζ3 = e2πi/3. But ζ3 must map to 0 ∈ Z/2Z for every
local character, since it has order 3, and so the Theorem 52 works for the number
field Q(

√
−3), except now wK = 6 in the formula for the residue of the Dedekind

zeta function.
For the number field Q(

√
−2) the problem is that 2 is ramified, which means that

the local factor g√
−2(s) is going to be different. We can calculate it similarly as

in Lemmas 35 and 39. From Theorem 10, we can see that at
√

−2 the local field
is Q[X]/(X2 + 2) ⊗Q Q2 ∼= Q2[X]/(X2 + 2) and its ring of integers is O√

−2
∼=

Z2[X]/(X2 + 2). Using Theorem 6 we get U√
−2

∼= Z/2Z×Z2
2, so there are also 7

non-trivial characters. The uniformizer in the local field is not 2, but
√

−2 = X
(it is the element with the lowest nonzero valuation and ν√

−2(2) = 2). Using
Theorem 4, we can see that U/U (n) ∼= (Z2[X]/(X2 + 2, Xn))×. By analyzing
the structure of these groups, we can calculate the local factor to be g√

−2(s) =
(1 + 2−2s + 2 · 2−4s + 4 · 2−5s) .
For Q(i) there are two problems. The prime 2 is ramified ((2) = (1 + i)2) and
the ring of integers of the local field is Z2[X]/(X2 + 1) and the uniformizer is
(1 + i) = (1 + X). We can compute the local factor as in the previous case and
it is also g1+i(s) = (1 + 2−2s + 2 · 2−4s + 4 · 2−5s).
The unit group has 4 elements and is generated by i. So i has to be mapped to
0 in Z/2Z by the character, which means it has to be mapped to 1 by an even
number of local characters. The number i is an element of order 4. If p is inert,
that it is equal to 3 mod 4, then 8|p2 − 1 and so i gets mapped to 0. If p is
split, then i is mapped to 0 iff p is 1 mod 8. The counting function is constructed
similarly, only now the function f−(s) is equal to

f−(s) =
∏

p inert
(1 + p2)

∏
p split, 1 mod 8

(1 + p)2 ∏
p split, 5 mod 8

(1 − p)2 × g−(s)1+i,

which can also be written as L(χ8, s)L(χ4χ8, s)/ζQ(i)(2s) × B(s) similarly as in
Theorem 51, where the character χ8(s) = −1 for s = 5, 7 mod 8 and χ8(s) = 1
otherwise. This function is holomorphic in the region Re(s) ≥ 1 and so the
Theorem 52 holds even for Q(i).
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