
Functional Arabic Morphology

Formal System and Implementation

��ù

	
®� J

	
£�

�
ñË@

��ú

G
.�

�Q
�
ªË@

�	
¬Qå

��
�Ë

�
@

�
é
��
®J

�
®� m

�
��
'

�
ð ��ù

Ö�
Þ�

��QË @ �
ÐA

�	
¢

��	
JË

�
@

Otakar Smrž

Doctoral Thesis

Prague 2007

INSTITUTE OF FORMAL AND APPLIED LINGUISTICS

FACULTY OF MATHEMATICS AND PHYSICS

CHARLES UNIVERSITY IN PRAGUE

Supervisor Mgr. Barbora Vidová Hladká, Ph.D.
Institute of Formal and Applied Linguistics
Faculty of Mathematics and Physics
Charles University in Prague

Opponents Doc. RNDr. Jan Hajič, Dr.
Institute of Formal and Applied Linguistics
Faculty of Mathematics and Physics
Charles University in Prague

Nizar Y. Habash, Ph.D.
Center for Computational Learning Systems
Columbia University

to my family and friends

Abstract

Functional Arabic Morphology is a formulation of the Arabic inflectional system seek-
ing the working interface between morphology and syntax. ElixirFM is its high-level im-
plementation that reuses and extends the Functional Morphology library for Haskell.

Inflection and derivation are modeled in terms of paradigms, grammatical categories,
lexemes and word classes. The computation of analysis or generation is conceptually
distinguished from the general-purpose linguistic model.

The lexicon of ElixirFM is designed with respect to abstraction, yet is no more com-
plicated than printed dictionaries. It is derived from the open-source Buckwalter lexicon
and is enhanced with information sourcing from the syntactic annotations of the Prague
Arabic Dependency Treebank.

MorphoTrees is the idea of building effective and intuitive hierarchies over the in-
formation provided by computational morphological systems. MorphoTrees are imple-
mented for Arabic as an extension to the TrEd annotation environment based on Perl.

Encode Arabic libraries for Haskell and Perl serve for processing the non-trivial and
multi-purpose ArabTEX notation that encodes Arabic orthographies and phonetic tran-
scriptions in parallel.

In the dark, I will tell you I know
myself three times the way I do . . .

Lucie, the nightly Noc

Preface

There is a birthplace of this thesis. But it’s not one place. It’s many.
It lies between Seoul and Sanaa. Between Budapest and Cairo. Philadelphia and DC.

Edinburgh and Barcelona. Between Tehran and Seattle. Between Pardubice and Prague.
Between Hadramawt and Isfahan. Between Vlčice and Chrudim.

It lies between here and all the countless places where I felt so happy within the past
six years of my studies.

I would like to thank Barbora Vidová Hladká for encouraging me on my way. To Jan
Hajič, Jarmila Panevová, Eva Hajičová, and Petr Sgall for their gentle personal guidance
and the unlimited institutional support they provided me with.

I would like to thank Mark Liberman, Chris Cieri, Mohamed Maamouri, Hubert Jin,
Kazuaki Maeda, David Graff, Wigdan Mekki, Dalila Tabessi, Farimah Partovi, and espe-
cially Ann Bies and Tim Buckwalter for welcoming me most warmly every time, and for
having let me spend my Fulbright-Masaryk Fellowship at the Linguistic Data Consortium.

I would like to thank Petr Zemánek and my other friends and colleagues involved in
the Prague Arabic Dependency Treebank project, as I am very grateful they share their
interests with mine, and enjoy working with them.

Of the colleagues from the Institute of Formal and Applied Linguistics, I would like
to thank Zdeněk Žabokrtský and Magda Ševčı́ková for letting me talk to them about
anything anytime, and for their sense of humor. Let me thank also to Petr Pajas, Jan
Štěpánek, Jiřı́ Havelka, and Ondřej Bojar for many enjoyable and inspiring discussions,
and to Libuše Brdičková and Marie Křı́žková for their kindness and care.

This thesis would not have developed into the present form were it not for the unique
work of Tim Buckwalter, Markus Forsberg, Aarne Ranta, Peter Ljunglöf, and Ali El Dada,
as well as Nizar Habash, Owen Rambow, and Khalil Sima’an. I would like to thank them
very much for that, and for the interest and attention that they have paid to my work.

I am indebted to Benjamin Pierce for having taught me the elements of Haskell, and
to Jiřı́ Fleissig, Charif Bahbouh, Najet Boumellala, Cho Seung Kyu, Tomáš Horák, Kim
Cheong Min, Zahwa Khira, Hamoud Hubaysh, and Dina Nourelahian for having amazed
me with Oriental languages. Thank you very much.

I would like to thank my dear friend Hadoon Al-Attass and his family in Yemen for
everything, and would like to greet You Hyun Jo and his family in Korea.

2

3

I would like to thank my parents for their endless love and support in all my life, and
to all my family. And I would like to thank Iveta’s parents for their kindest support and
understanding, too.

I would like to thank my dear Iveta for creating the home for me, everywhere we
went. As to this thesis, Iveta always listened carefully when I needed to discuss pieces
of the work, shared my emotions and thoughts about it, and gave me her best response.
I am happy she would just smile whenever I happened to be staring at Claude Monet’s
Water-Lily Pond and appeared being purely lazy, yet later blamed that on Haskell, calling
it functional programming . . .

Otakar Smrž

Contents

1 Introduction 7
1.1 Morphological Models . 7
1.2 Functional Approximation . 10
1.3 Reused Software . 11

1.3.1 Buckwalter Arabic Morphological Analyzer 11
1.3.2 Functional Morphology Library . 12
1.3.3 TrEd Tree Editor . 12

1.4 Running ElixirFM . 12
1.5 Original Contributions . 13

2 Writing & Reading Arabic 14
2.1 Orthography and Buckwalter Transliteration 14
2.2 ArabTEX Notation . 15

2.2.1 Standard notation . 17
2.2.2 Extended notation . 21

2.3 Recognition Issues . 23

3 Morphological Theory 25
3.1 The Tokenization Problem . 25
3.2 Functional and Illusory Categories . 27
3.3 Inflectional Morphology . 31
3.4 Neutralization vs. Uninflectedness . 32
3.5 The Pattern Alchemy . 33
3.6 The Inflectional Invariant . 36

4 Impressive Haskell 37

5 ElixirFM Design 40
5.1 Morphosyntactic Categories . 41
5.2 ElixirFM Lexicon . 43
5.3 Morphological Rules . 49
5.4 Applications . 54

4

CONTENTS 5

6 Other Listings 56

7 MorphoTrees 61
7.1 The MorphoTrees Hierarchy . 61
7.2 MorphoTrees Disambiguation . 63
7.3 Further Discussion . 65

8 Lexicon versus Treebank 67
8.1 Functional Description of Language . 67

8.1.1 Analytical Syntax . 68
8.1.2 Tectogrammatics . 69

8.2 Dependency and Inherent vs. Inflectional Properties 70
8.3 Tectogrammatics and Derivational Morphology 70

9 Encode Arabic 74
9.1 Extending ArabTEX . 74
9.2 Encode Arabic in Perl . 74
9.3 Encode Arabic in Haskell . 74

9.3.1 Functional Parsing . 75
9.3.2 Encode Mapper . 75
9.3.3 Longest Match Insight . 77
9.3.4 Encode Extend . 79
9.3.5 Encode Arabic . 79
9.3.6 ArabTEX Encoding Concept . 81
9.3.7 Encode Arabic ArabTEX . 81
9.3.8 Encode Arabic ArabTEX ZDMG . 89
9.3.9 Discussion . 90

Conclusion 94

Bibliography 95

Index 104

List of Figures

2.1 Letters of Arabic orthography. 16
2.2 Different written representations of Arabic. 24

3.1 Tokenization of orthographic strings. 26

5.1 Entries of the ElixirFM lexicon nested under the root k t b I.
�
J» using mor-

phophonemic templates. 44
5.2 Implementation of verbal inflectional features and paradigms in ElixirFM. . 49

7.1 Analyses of the orthographic word AlY úÍ@ turned into the MorphoTrees
hierarchy. 62

7.2 MorphoTrees of the orthographic string fhm Ñê
	
¯ including annotation with

restrictions. 64
7.3 Discussion of partitioning and tokenization of orthographic strings. 66

8.1 Analytical representation of a plain verbal sentence. 71
8.2 Tectogrammatical representation of a plain verbal sentence. 71
8.3 Analytical representation of a verbal sentence with coordination and a rel-

ative clause. 72
8.4 Tectogrammatical representation of a verbal sentence with coordination and

a relative clause. 73

9.1 Trie structures illustrating efficient longest match parsing. 77

6

I would not have made this so long
except that I do not have the leisure
to make it shorter.

Blaise Pascal, Lettres Provinciales

Chapter 1

Introduction

In this thesis, we are going to develop a computational model of the morphological pro-
cesses in Arabic. With this system, we will become able to derive and inflect words, as
well as analyze the structure of word forms and recognize their grammatical functions.

The approach to building our morphological model will strive to be comprehensive
with respect to linguistic generalization, and high-level and modern with respect to the
programming techniques that we will employ. We will describe the linguistic concept and
will try to implement it in a very similar, yet abstract way, using the declarative func-
tional programming language Haskell. We will promote the flexibility of our system, its
reusability and extensibility.

1.1 Morphological Models

One can observe several different streams both in the computational and the purely lin-
guistic modeling of morphology. Some are motivated by the need to analyze word forms
as to their compositional structure, others consider word inflection as being driven by the
underlying system of the language and the formal requirements of its grammar.

How do the current morphological analyzers of Arabic interpret, for instance, the
number and gender of the masculine plurals ǧudud X

�
Y

�
g. ‘new ones’ or qud. āh �

èA
�	

�
��
¯ ‘judges’,

or the case of mustawan ø
�

ñ
��
J

�
�

�
Ó ‘a level’? Do they identify the values of these features that

the syntax actually operates with, or is the resolution hindered by some too generic as-
sumptions about the relation between meaning and form? What is the internal structure
of the words? What lexemes or other word classes do they belong to?

There are substantial discrepancies between the grammatical descriptions of Arabic
represented e.g. by (Fischer, 2001) or (Holes, 2004), and the information that the available
morphological computational systems provide. One of the reasons is that there is never
a complete consensus on what the grammatical description should be. The other source
of the incompatibility lies in the observation that many implementations overlook the
following general linguistic fact, restated in various contexts as the principal difference
between the function and the form of a linguistic symbol:

7

1.1. MORPHOLOGICAL MODELS 8

The morphosyntactic properties associated with an inflected word’s individual
inflectional markings may underdetermine the properties associated with the
word as a whole. (Stump, 2001, p. 7)

According to Stump (2001), morphological theories can be classified along two scales.
One of them deals with the question of inferability of meaning, and theories divide into:

incremental words acquire morphosyntactic properties only in connection with acquiring
the inflectional exponents of those properties

realizational association of a set of properties with a word licenses the introduction of the
exponents into the word’s morphology

The other opposition concerns the core or the process of inflection:

lexical theories associate word’s morphosyntactic properties with affixes

inferential theories consider inflection as a result of operations on lexemes; morphosyn-
tactic properties are expressed by the rules that relate the form in a given paradigm
to the lexeme

Evidence favoring inferential–realizational theories over the other three combinations
is presented by Stump (2001) as well as Spencer (2004) or Baerman et al. (2006). We will
discuss that in Chapter 3, presenting the risks that esp. the lexical–incremental approaches
run into on concrete Arabic examples.

Many of the computational models of Arabic morphology, including in particular
(Beesley, 2001), (Ramsay and Mansur, 2001) or (Buckwalter, 2002), are lexical in nature,
i.e. they tend to treat inflectional affixes just like full-fledged lexical words. As they are
not designed in connection with any syntax–morphology interface, their interpretations
are destined to be incremental. That means that the only clue for discovering a word’s
morphosyntactic properties is through the explicit affixes and their prototypical functions.

Some signs of a lexical–realizational system can be found in (Habash, 2004). The author
mentions and fixes the problem of underdetermination of inherent number with plurals,
when developing a generative counterpart to (Buckwalter, 2002).

The computational models in (Cavalli-Sforza et al., 2000) and (Habash et al., 2005)
attempt the inferential–realizational direction. Unfortunately, they implement only sec-
tions of the Arabic morphological system. The Arabic resource grammar in the Gram-
matical Framework (El Dada and Ranta, 2006) is perhaps the most complete inferential–
realizational implementation to date. Its style is compatible with the linguistic description
in e.g. (Fischer, 2001) or (Badawi et al., 2004), but the lexicon is now very limited and some
other extensions for data-oriented computational applications are still needed.

ElixirFM, the implementation of the system developed in this thesis, is inspired by the
methodology in (Forsberg and Ranta, 2004) and by functional programming, just like the

1.1. MORPHOLOGICAL MODELS 9

Arabic GF is (El Dada and Ranta, 2006). Nonetheless, ElixirFM reuses the Buckwalter lex-
icon (Buckwalter, 2002) and the annotations in the Prague Arabic Dependency Treebank
(Hajič et al., 2004b), and implements a yet more refined linguistic model.

In our view, influenced by the Prague linguistic school and the theory of Functional
Generative Description (Sgall et al., 1986, Sgall, 1967, Panevová, 1980, Hajičová and Sgall,
2003), the task of morphology should be to analyze word forms of a language not only by
finding their internal structure, i.e. recognizing morphs , but even by strictly discriminating
their functions, i.e. providing the true morphemes . This doing in such a way that it should
be completely sufficient to generate the word form that represents a lexical unit and features
all grammatical categories (and structural components) required by context, purely from
the information comprised in the analyses.

It appears from the literature on most other implementations (many summarized in
Al-Sughaiyer and Al-Kharashi, 2004) that the Arabic computational morphology has un-
derstood its role in the sense of operations with morphs rather than morphemes (cf. El-
Sadany and Hashish, 1989), and has not concerned itself systematically and to the neces-
sary extent with the role of morphology for syntax.1 In other terms, the syntax–morphol-
ogy interface has not been clearly established and respected.

The outline of formal grammar in (Ditters, 2001), for instance, works with grammatical
categories like number, gender, humanness, definiteness, but one cannot see which of the
existing systems could provide for this information correctly, as they misinterpret some
morphs for bearing a category, and underdetermine lexical morphemes in general as to
their intrinsic morphological functions. Nowadays, the only exception to this is the Arabic
Grammatical Framework (El Dada and Ranta, 2006, Dada, 2007), which implements its
own morphological and syntactic model.

Certain syntactic parsers, like (Othman et al., 2003), may resort to their own morpho-
logical analyzers, but still, they do not get rid of the form of an expression and only inci-
dentally introduce truly functional categories. In syntactic considerations they often call
for discriminative extra-linguistic features instead.2 Commercial systems, e.g. (Chalabi,
2004), do not seem to overcome this interference either.

The missing common rationale as to what higher linguistic framework the computa-
tional morphology should serve for crystalizes in the number of individual, ad hoc feature
sets and a very rare discussion of their motivation, completeness, relevance and actual
expressive power. Even when addressing the tokenization problem of word forms tied
together in the Arabic script, authors do not recognize the crucial mutual differences in
their solutions, and do not define precisely the objectives of their models.

1Versteegh (1997b, chapter 6) describes the traditional Arabic understanding of s.arf
	

¬Qå
�
� ‘morphology’

and nah. w ñm�
�	
' ‘grammar, syntax’, where morphology studied the derivation of isolated words, while their

inflection in the context of a sentence was part of syntax.
2Many people call those features semantic (cf. El-Shishiny, 1990), but we perceive them as ontological—our

point is that those features are bound to some limited description of reality, not to the linguistic meaning itself.

1.2. FUNCTIONAL APPROXIMATION 10

1.2 Functional Approximation

Let us describe how the theoretical model of Functional Arabic Morphology, belonging to
the inferential–realizational family, compares to the style of the Buckwalter Arabic Mor-
phological Analyzer, classified as lexical–incremental . We will try to convert its informa-
tion into the format of our model. The result will be called the functional approximation .

Buckwalter Arabic Morphological Analyzer (Buckwalter, 2002, 2004a) consists of a lex-
icon and a Perl program implementing an original algorithm for recognizing inflected
Arabic words. It is the most widely used tool of its kind. The coverage of the lexicon is
excellent (Buckwalter, 2004b, Maamouri and Bies, 2004) and the runtime performance of
the program is very reasonable. Importantly enough, the first version of the Buckwalter
analyzer was published as open-source software.

The analyzer consumes an ordinary Arabic text, resolves its contiguous orthographic
strings , and produces morphological analyses characterizing each of them as a whole. The
format of the output can be schematically depicted as follows:

(compositionofmorphs) [lemma_id]

morph_1/tag_1 + morph_2/tag_2 + . . . + morph_n/tag_n

The morphs group implicitly into the prefix, stem and suffix segments ,3 and the lemma
identifies the semantically dominant morph, usually the stem, if there is one. Morphs are
labeled with tags giving them the feel that they must be morphemes, which is the source of
the disagreement between incremental and realizational interpretations, as noted earlier.

Let us illustrate these terms on a common example. Buckwalter’s morphology on the
string wbjAnbhA AêJ.

	
K Aj. K. ð meaning ‘and next to her’ would yield

(wabijAnibihA) [jAnib_1]

wa/CONJ + bi/PREP +

jAnib/NOUN +

i/CASE_DEF_GEN + hA/POSS_PRON_3FS

prefix(es)
stem
suffix(es)

with the segments now indicated explicitly. The underlying lexical words or the syntactic
tokens , as we denote them, are however still implicit. They read wa wa- �

ð ‘and’, bi bi- K.�

‘at’, jAnib+i ǧānib-i I.�

	
K� A

�
k. ‘side-of’ and hA -hā A

�
ê ‘her’. Note the morph i, which is a mere

affix and not a run-on token, unlike the other three clitics .
There is not enough functional information provided in this kind of analyses, which we

claim in Chapter 3. Yet, in the past experience with Buckwalter morphology (cf. Hajič
et al., 2004b, 2005), we tried to approximate the functional views as closely as possible, and
developed our tokenization and tag conversion algorithms (Smrž and Pajas, 2004).

3Some researchers use the term segment for what is called a morph here, and allow strings to decompose
to multiple prefixes and suffixes, possibly including even cliticized lexical words.

1.3. REUSED SOFTWARE 11

When morphs are regrouped into tokens, their original tags form sequences (central
column below) which map into a vector of values of grammatical categories. The tokens of
our example will receive these converted, quasi-functional, positional4 tags (left column):

C--------- wa CONJ �
ð wa-

P--------- bi PREP K.�
bi-

N-------2R jAnib+i NOUN+CASE_DEF_GEN I.�

	
K� A

�
k. ǧānib-i

S----3FS2- hA POSS_PRON_3FS A
�
ê -hā

The positional notation starts with the major and minor part-of-speech and proceeds
through mood and voice up to person (position six), gender, number, case, and state. The
values of the categories are unset, i.e. rendered with -, either if they are irrelevant for the
particular part-of-speech and its refinement (positions one and two), or if there are no ex-
plicit data present in the original analysis, like no information on gender and number in
jAnib+i. On the contrary, categories may be implied in parallel, cf. suffixed possessive
pronouns being treated as regular pronouns, but in functional genitive (position nine).
Some values can only be set based on other knowledge, which is the case of formal re-
duced definiteness, referred to also as state (position ten).

In Figure 3.1, this whole transformation is illustrated on a excerpt from a running text.
Strings in the first column there break into tokens, as indicated by dotted lines, and for
tokens, quasi-functional tags are derived. Glosses as well as token forms with hyphens
for morph boundaries are shown in the two rightmost columns of the figure.

1.3 Reused Software

The ElixirFM implementation of Functional Arabic Morphology would not have come to
being were it not for many open-source software projects that we could use during our
work, or by which we got inspired.

ElixirFM and its lexicons are licensed under GNU General Public License and are
available on http://sourceforge.net/projects/elixir-fm/, along with other
accompanying software (MorphoTrees, Encode Arabic) and the source code of this thesis
(ArabTEX extensions, TreeX).

1.3.1 Buckwalter Arabic Morphological Analyzer

The bulk of lexical entries in ElixirFM is extracted from the data in the Buckwalter lexicon
(Buckwalter, 2002). Habash (2004) comments on the lexicon’s internal format. We devised
an algorithm in Perl using the morphophonemic patterns of ElixirFM that finds the roots

4Esp. in Arabic, position five is reserved. Similar notations have been used in various projects, notably the
European Multext and Multext-East projects, for languages ranging from English to Czech to Hungarian.

http://sourceforge.net/projects/elixir-fm/

1.4. RUNNING ELIXIRFM 12

and templates of the lexical items, as they are available only partially in the original, and
produces the ElixirFM lexicon in customizable formats for Haskell and for Perl.

1.3.2 Functional Morphology Library

Functional Morphology (Forsberg and Ranta, 2004) is both a methodology for modeling
morphology in a paradigmatic manner, and a library of purposely language-independent
but customizable modules and functions for Haskell. It partly builds on the Zen computa-
tional toolkit for Sanskrit (Huet, 2002). Functional Morphology is also related to the Gram-
matical Framework, cf. (El Dada and Ranta, 2006) and http://www.cs.chalmers.se/

˜markus/FM/. Functional Morphology exists e.g. for Urdu (Humayoun, 2006).

1.3.3 TrEd Tree Editor

TrEd http://ufal.mff.cuni.cz/˜pajas/tred/ is a general-purpose graphical ed-
itor for trees and tree-like graphs written by Petr Pajas. It is implemented in Perl and is
designed to enable powerful customization and macro programming. We have extended
TrEd with the annotation mode for MorphoTrees, cf. Chapter 7.

1.4 Running ElixirFM

ElixirFM 1.0 is intended for use with the Hugs interactive interpreter of Haskell, available
for a number of platforms via http://haskell.org/hugs/.

Download and install Hugs, or esp. the WinHugs graphical interface, on your system.
ElixirFM needs some language extensions that must be specified when Hugs is run.

Remember to use the option -98 when invoking Hugs, i.e. hugs -98. With WinHugs,
note the menu File > Options.

Install Hugs and, to minimize any confusion, run it from the directory where your
ElixirFM.hs is located. In the first Hugs session, the search path -P .:../Encode:

should be defined, and overlapping instances allowed, as follows:

Hugs> :s -P .:../Encode:

Hugs> :s +o

Hugs> :l ElixirFM

In your future sessions, you only need to load the module :l ElixirFM directly. On
success, the prompt will change to

ElixirFM>

upon which you are most welcome to read Chapters 4, 5, and 6.
It may be instructive to experiment with the settings of Hugs, to appreciate its interac-

tive features. Please, consult the online documentation for both Hugs and ElixirFM.

http://www.cs.chalmers.se/~markus/FM/
http://www.cs.chalmers.se/~markus/FM/
http://ufal.mff.cuni.cz/~pajas/tred/
http://haskell.org/hugs/

1.5. ORIGINAL CONTRIBUTIONS 13

1.5 Original Contributions

Let us list the most important and original contributions of this thesis:

A Recognition of functional versus illusory morphological categories, definition of a
minimal but complete system of inflectional parameters in Arabic

B Morphophonemic patterns and their significance for the simplification of the model
of morphological alternations

C Inflectional invariant and its consequence for the efficiency of morphological recog-
nition in Arabic

D Intuitive notation for the structural components of words

E Conversion of the Buckwalter lexicon into a functional format resembling printed
dictionaries

F ElixirFM as a general-purpose model of morphological inflection and derivation in
Arabic, implemented with high-level declarative programming

G Abstraction from one particular orthography affecting the clarity of the model and
extending its applicability to other written representations of the language

H MorphoTrees as a hierarchization of the process of morphological disambiguation

I Expandable morphological positional tags, restrictions on features, their inheritance

J Open-source implementations of ElixirFM, Encode Arabic, MorphoTrees, and exten-
sions for ArabTEX

And now read out the crossword’s
solution, I can’t see it so well.
ŠHARDKP LITL NN OP ’N TRESBD
. . . is it in Arabic or what?

Hurvı́nek & Spejbl’s Crossword Puzzle

Chapter 2

Writing & Reading Arabic

In the context of linguistics, morphology is the study of word forms. In formal language
theory, the symbols for representing words are an inseparable part of the definition of
the language. In human languages, the concept is a little different—an utterance can have
multiple representations, depending on the means of communication and the conventions
for recording it. An abstract computational morphological model should not be limited to
texts written in one customary orthography.

Following (Beesley, 1997, 1998) on this issue, let us summarize our understanding of
the present terms by emphasizing these characteristics:

orthography set of conventions for representing a language using an associ-
ated set of symbols

transcription alternative, phonetically or phonologically motivated represen-
tation of the language, possibly romanization

transliteration orthography with carefully substituted symbols, yet preserv-
ing the original orthographic conventions

encoding transliteration mapping the orthographic symbols into numbers im-
plemented as characters or bytes

This chapter will explore the interplay between the genuine writing system and the
transcriptions of Arabic. We will introduce in detail the ArabTEX notation (Lagally, 2004),
a morphophonemic transliteration scheme adopted as the representation of choice for our
general-purpose morphological model. We will then discuss the problem of recognizing
the internal structure of words given the various possible types of their record.

2.1 Orthography and Buckwalter Transliteration

The standard Arabic orthography is based on the Arabic script. It has an alphabet of over
30 letters written from right to left in a cursive manner, and of about 10 other symbols
written optionally as diacritics above or below the letters.

14

2.2. ARABTEX NOTATION 15

Phonologically, Arabic includes 28 consonants that are evenly divided into two groups
according to their potential to assimilate with the definite article al-. They are called solar
consonants al-h. urūf aš-šamsı̄ya and lunar consonants al-h. urūf al-qamarı̄ya in the linguistic
tradition. Of the lunar consonants, y, w, and ↩are weak in some contexts.

There are only six vocalic phonemes in Modern Standard Arabic, namely the short a,
i, u and the long ā, ı̄, ū, the explicit spelling of which needs diacritics. In the dialects, the
range of vowels is extended, but the script does not have any extra graphemes for encod-
ing them. On the other hand, the diacritics also include symbols indicating an absence of
a vowel after a consonant, or marking the indefinite article -n combined with the vocalic
endings into distinct orthographic symbols.

Several letters of the script serve as allographs representing the single phoneme hamza,
the glottal stop. Other allographs are motivated by morphophonemic changes or the his-
torical development of the language and the script (Fischer, 2001, Holes, 2004, pages 3–34,
resp. 89–95).

The set of letters is shown in Figure 2.1. The survey of conventions for using them and
interleaving them with the diacritics will emerge shortly as a side-effect of our describing
the ArabTEX notation.

Buckwalter transliteration (Buckwalter, 2002, 2004b) is a lossless romanization of the
contemporary Arabic script, and is a one-to-one mapping between the relevant Unicode
code points for Arabic and lower ASCII characters. It is part of Figure 2.1.1

2.2 ArabTEX Notation

The ArabTEX typesetting system (Lagally, 2004) defines its own Arabic script meta-encod-
ing that covers both contemporary and historical orthography to an exceptional extent.
The notation is human-readable and very natural to write with. Its design is inspired by
the standard phonetic transcription of Arabic, which it mimics, yet some distinctions are
introduced to make the conversion to the original script or the transcription unambiguous.

Unlike other transliteration concepts based on the strict one-to-one substitution of
graphemes, ArabTEX interprets the input characters in context in order to get their proper
meaning. Deciding the glyphs of letters (initial, medial, final, isolated) and their ligatures
is not the issue of encoding, but of visualizing of the script. Nonetheless, definite arti-
cle assimilation, inference of hamza carriers and silent ↩alifs, treatment of auxiliary vow-
els, optional quoting of diacritics or capitalization, resolution of notational variants, and
mode-dependent processing remain the challenges for parsing the notation successfully.

ArabTEX’s implementation is documented in (Lagally, 1992), but the parsing algorithm
for the notation has not been published except in the form of the source code. The TEX code

1Buckwalter transliteration will be displayed in the upright typewriter font, whereas the ArabTEX nota-
tion will use the italic typewriter shape.

2.2. ARABTEX NOTATION 16

Lunar consonants Solar consonants

hamza ↩ ’| ’ Z t t t �
H

b b b H. t
¯

_t v �
H

ǧ ˆg j h. d d d X

h. .h H h d
¯

_d *
	
X

h
˘

_h x p r r r P

↪ayn ↪ ‘ E ¨ z z z 	P

ġ .g g
	

¨ s s s �

f f f
	

¬ š ˆs $ �
�

q q q
�

� s. .s S �

k k k ¼ d. .d D 	
�

m m m Ð t. .t T

h h h è z. .z Z 	

w w w ð l l l È

y y y ø

n n n 	
à

Variants of ↩alif Suffix-only letters

↩alif (ā) A A @ ↩alif maqs. ūra (ā) Y Y ø

was. la ’ " {
�
@ tā↩marbūt.a (t/h) T p

�
è

Variants of hamza Non-Arabic consonants

madda ↩̄a ’A |
�
@ p p P H�

↩ ’a O

@ č ˆc J h�

↩ ’i I @

ž ˆz R �P

↩ ’w W

ð v v V

�
¬

↩ ’y }
ø g g G À

Figure 2.1 The letters h. urūf
	

¬ð �Q
�

k of the Arabic orthography (extended with
graphemes for some non-Arabic consonants) and their corresponding Buckwalter
transliteration (the XML-friendly version), ArabTEX notation (in the mode with
explicit hamza carriers), and phonetic transcription, listed in the right-to-left order.

2.2. ARABTEX NOTATION 17

is organized into deterministic-parsing macros, yet the complexity of the whole system
makes consistent modifications or extensions by other users quite difficult.

We are going to describe our own implementations of the interpreter in Chapter 9,
where we will show how to decode the notation and its proposed extensions. To encode
the Arabic script or its phonetic transcription into the ArabTEX notation requires heuristic
methods, if we want to achieve linguistically appropriate results.

2.2.1 Standard notation

Let us first deal with the notational conventions that the current version of ArabTEX sup-
ports (Lagally, 2004).

Our explanation will take the perspective of a child learning how the sounds are rep-
resented in the writing, rather than of a calligrapher trying to encrypt the individual
graphemes into the notation. This may bring some difficulty to those who think of the
language primarily through orthography and not phonology.

Phonemes The notation for consonants is listed in Figure 2.1. Short vowels are coded
as a, i and u, the long ones A, I and U. We concatenate consonants and vowels in their
natural order.

darasa darasa �
� �P

�
X darasa ‘he studied’

sAfarat sāfarat
��

H�Q
�	
¯A

�
� saAfarato ‘she travelled’

yaˆglisUna yaǧlisūna
�	
àñ

�
�Ê�

�
m.
�

�
'

 yajolisuwna ‘they sit’

kitAbuhA kitābuhā A
�
î
�
E. A

��
J»� kitaAbuhaA ‘her book’

.hAsUbI h. āsūbı̄ ú

G
.�
ñ

�
�A

�
g HaAsuwbiy ‘my computer’

Long vowels produce a combination of a diacritic and a letter in the script. Doubling
of a consonant is indicated with the šadda �

' ˜ diacritic, while no vowel after a consonant

results in the sukūn �
' o. These rules interoperate, so U an I can often, even though not

always, behave in the orthographic representation like uw and iy would.

.sarra.ha s.arrah. a �
h

��Qå
�
� Sar˜aHa ‘he explained’

ˆgayyidUna ǧayyidūna
�	
àð

�
Y

��
J

�
k. jay˜iduwna ‘good ones’

qawIyayni qawı̄yayni 	á
�

�
�

��
K
ñ

�

��
¯ qawiy˜ayoni ‘two strong ones’

‘adUwuhu ↪adūwuhu �
è
��
ð

�
Y

�
« Eaduw˜uhu ‘his enemy’

zuwwArunA zuwwārunā A
�	
K �P@

��
ð

�	P zuw˜aArunaA ‘our visitors’

tuwAfiqu tuwāfiqu
��

�
	
�̄ @

�
ñ

��
K tuwaAfiqu ‘you agree’

The consonant T and the long vowel Y can only appear as final letters, otherwise the
former changes to t and the latter to A or ay. Determination of the orthographic carrier
for hamza is subject to complex rules, but phonologically, there is just one ’ consonant.

2.2. ARABTEX NOTATION 18

’as’ilaTu ↩as↩ilatu
��
é
�
Ê

J�

�
�

�

@ Oaso}ilapu ‘questions-of’

’as’ilatunA ↩as↩ilatunā A
�	
J
��
J
�
Ê

J�

�
�

�

@ Oaso}ilatunaA ‘our questions’

yarY yarAnI yarā yarānı̄ ú

	
G
�
@ �Q

�
K
 ø �Q

�
K
 yaraY yaraAniy ‘he sees (me)’

‘alY ‘alayhi ↪alā ↪alayhi é�
�
J

�
Ê
�
« ú

�
Î

�
« EalaY Ealayohi ‘on (him)’

Articles The definite article al- is connected by a hyphen with the word it modifies. If
assimilation is to take place, either the word’s initial consonant is doubled, or the l of the
article is replaced with that consonant directly.

al-qamaru al-qamaru �Q
�
Ò

��
®
�
Ë
�
@ Aaloqamaru ‘the moon’

al-ˆsˆsamsu aš-šamsu �
�

�
Ò

��
�

�Ë
�
@ Aal$˜amosu ‘the sun’

aˆs-ˆsamsu aš-šamsu �
�

�
Ò

��
�

�Ë
�
@ Aal$˜amosu ‘the sun’

al-lawnu al-lawnu
�	
à

�
ñ

��
ÊË

�
@ Aall˜awonu ‘the color’

al-llawnu al-lawnu
�	
à

�
ñ

��
ÊË

�
@ Aall˜awonu ‘the color’

al-’alwAnu al-↩alwānu
�	
à@

�
ñ

�
Ë

�

B
� �
@ AaloOalowaAnu ‘the colors’

The indefinite article N must be distinguished by capitalization. Whether or not the
orthography requires an additional silent ↩alif, need not be indicated explicitly.

baytuN baytun
��

I
�
�

�
K. bayotN ‘a house nom.’

baytiN baytin �
I
�

�
�

�
K. bayotK ‘a house gen.’

baytaN baytan A
��
J
�
�

�
K. bayotFA ‘a house acc.’

madInaTuN madı̄natun
��
é
�	
JK
Y�

�
Ó madiynapN ‘a city nom.’

madInaTiN madı̄natin �
é
�

�	
JK
Y�

�
Ó madiynapK ‘a city gen.’

madInaTaN madı̄natan
��
é
�	
JK
Y�

�
Ó madiynapF ‘a city acc.’

It is, however, possible to enforce a silent prolonging letter after an indefinite article
(cf. Lagally, 2004). Most notably, it is used for the phonologically motivated ending aNY.

siwaNY siwan ø
�

ñ�� siwFY ‘equality’

quwaNY quwan ø
�

ñ
��
¯ quwFY ‘forces’

ma‘naNY ma↪nan ú
�	
æ

�
ª

�
Ó maEonFY ‘meaning’

Extras The silent ↩alif also appears at the end of some verbal forms. It is coded UA if
representing ū, and aWA or just aW if standing for aw.

katabUA katabū @ñ
�
J.

��
J
�
» katabuwA ‘they wrote’

ya.sIrUA yas. ı̄rū @ð
�Q�
��

�
�
 yaSiyruwA ‘that they become’

da‘aWA da↪aw @
�

ñ
�
«

�
X daEawoA ‘they called’

2.2. ARABTEX NOTATION 19

tatamannaW tatamannaw @
�

ñ

��	
J
�
Ò

��
J
��
K tataman˜awoA ‘that you wish pl.’

raW raw @
�
ð �P rawoA ‘do see pl.’

insaW insaw @
�

ñ
�

�
�	
� @� AinosawoA ‘do forget pl.’

The phonological auxiliary vowels that are prefixed are preserved in the notation, yet,
they can be elided in speech or turned into was. la

�
@ { in the script. The auxiliary vowels

that are suffixed can be marked as such by a hyphen, if one prefers so.

_dawU aˆs-ˆsa’ni d
¯

awū ’š-ša↩ni 	
à
�

�

A

��
�

�Ë
�
@ ð

�
ð

�	
X *awuw {l$˜aOoni ad a.

qAla iyqa.z qāla ’yqaz.
�	

¡
��
®

�
K

�
@

�
ÈA

��
¯ qaAla {yoqaZo ad b.

‘an-i ismI ↪an-i ’smı̄ ù

Ö�
Þ
�
�
�
@ 	á

�

�
« Eani {somiy ad c.

al-i-iˆgtimA‘u al-i-’ǧtimā↪u
�
¨A

�
Ò
�
J�

�
k.

�
B�

�
@ Aali{jotimaAEu ad d.

a. ‘those concerned’ b. ‘he said wake up’ c. ‘about my name’ d. ‘the society’

The defective writing of the long ā is _a, of the short u it is _U. Other historical writings
of long vowels can also be expressed in the standard notation. The description of _i, _u,
ˆA, ˆI, ˆU, as well as _aU, _aI, _aY, is given in (Lagally, 2004, Fischer, 2001).

l_akinna lākinna
��	áº�

�
Ë l‘kin˜a ‘however’

h_a_dA hād
¯

ā @

�	
Y

�
ë h‘*aA ‘this’

_d_alika d
¯

ālika
�
½Ë�

�	
X *‘lika ‘that’

h_a’ulA’i hā↩ulā↩i Z�B
� �

ñ

�
ë h‘WulaA’i ‘these’

’_Ul_a’ika ↩ulā↩ika
�
½

J�

�
Ëð

�

@ Ouwl‘}ika ‘those’

The dialectal pronunciation of vowels, namely e, ē and o, ō, can be reflected in the
phonetic transcription only. In orthography, this makes no difference and the vowels are
rendered as i, ı̄ and u, ū, respectively. A real solution to the dialectal phonology might be
more complex than this, but the approach of interpretable phonological notation is valid.

sOhaˆg" sōhaǧ i.

�
ëñ

�
� suwhaj ‘Sohag’

as-suwEs" as-suwēs ��
ñ
�

��
�Ë

�
@ Aals˜uwiys ‘Suez’

.hom.s" h. oms. �
�
Ô

�
g HumoS ‘Homs’

‘omAn" ↪omān 	
àA

�
Ô
�
« EumaAn ‘Oman’

al-ma.greb" al-maġreb H. Q
�

�	
ª�Ü

�
Ï
�
@ Aalomagorib ‘Maghreb’

There are some other symbols in the notation that allow us to encode more information
than is actually displayed in the script or its transcription. One of those is " suppressing
the printing of a sukūn, like in the examples above, or of a vowel diacritic. Another is |,
the invisible consonant useful in some tricky situations, and finally B, the tat.wı̄l, a filler for
stretching the adjacent letters apart in the cursive script.

2.2. ARABTEX NOTATION 20

Words Due to the minute form of certain lexical words, the Arabic grammar has devel-
oped a convention to join them to the ones that follow or precede, thus making the whole
concatenation a single orthographic word.

Although by any criteria separate words, wa ‘and’, fa ‘so’, bi ‘in, by, with’ and
li ‘to, for’ are written as if they were part of the word that follows them. Func-
tionally similar words that are “heavier” monosyllables or bisyllabic, for ex-
ample, ↩aw ‘or’, fı̄ ‘in’, ↪alā ‘on’, are not so written. (Holes, 2004, p. 92)

This concatenation rule applies further to prefixed ta ‘by oath particle’, sa ‘will future
marker’, ka ‘like, as’, la ‘emph. part.’, as well as to suffixed personal pronouns in genitive
and accusative, and variably to mā, ma ‘what’ (Fischer, 2001, p. 14).

The ArabTEX notation suggests that such words be hyphenated if prefixed and merely
annexed if suffixed, to ensure proper inference of hamza carriers and was. las.

bi-bu.t’iN bi-but. ↩in Z
�

�
¡

�
J. K.�

bibuTo’K ‘slowly’

bi-intibAhiN bi-’ntibāhin è
�
A
�
J.
�
��

�	
K
�
AK.�

bi{notibaAhK ‘carefully’

bi-al-qalami bi-’l-qalami Õ
�

�
Î

��
®
�
Ë
�
AK.� bi{loqalami ‘with the pen’

fa-in.sarafa fa-’ns.arafa
�	

¬�Qå
�
�

�	
�
�
A
�	
¯ fa{noSarafa ‘then he departed’

ka-’annanI ka-↩annanı̄ ú

	
æ
�

��	
K

�

A
�
¿ kaOan˜aniy ‘as if I’

li-’ArA’ihi li-↩̄arā↩ihi é�

K� @

�P
�
B� li|raA}ihi ‘for his opinions’

sa-’u‘.tIka sa-↩u↪t. ı̄ka
�
½J
¢�

�
«

�

A

�
� saOuEoTiyka ‘I will give you’

wa-lahu wa-lahu �
é
�
Ë
�
ð walahu ‘and he has’

ka-_d_alika ka-d
¯

ālika
�
½Ë�

�	
Y

�
» ka*‘lika ‘as well, like that’

wa-fI-mA wa-fı̄-mā A
�
ÒJ

	
�̄

�
ð wafiymaA ‘and in what’

The cliticized li and la must be treated with exceptional care as they interact with the
definite article and the letter after it. In the current version of the ArabTEX standard, this
is not very intuitive, and we propose its improvement in the next subsection.

lil-’asafi lil-↩asafi 	
­�

�
�

�

C
�
Ë� liloOasafi ‘unfortunately’

lin-nawmi lin-nawmi Ð
�

�
ñ

��	
JÊË� liln˜awomi ‘for the sleep’

li-llaylaTi li-llaylati �
é�

�
Ê
�
J

��
ÊË� lil˜ayolapi ‘for the night’

li-ll_ahi li-llāhi é�

��
<Ë� lil˜‘hi ‘for God’

Modes One of the highlights of ArabTEX is its invention of an artful high-level notation
for encoding the possibly multi-lingual text in a way that allows further interpretation by
the computer program. In particular, the notation can be typeset in the original orthogra-
phy of the language or in some kind of transcription, under one rendering convention or

2.2. ARABTEX NOTATION 21

another. These options are controlled by setting the interpretation environment, and no
change to the data resources is required. Reseting of the options can be done even locally
with individual words or their parts.

We leave the listing of all the options up to the ArabTEX manual (Lagally, 2004). Yet,
let us illustrate the flexibility of the notation and, more importantly, of any system that
shall reuse it. The vocalization degree tells what kinds of diacritics be overt in the script:

bi-al-‘arabIyaTi bi-’l-↪arabı̄yati ‘in Arabic’

\fullvocalize
�
é�

��
J
K.�

�Q
�
ª

�
Ë
�
AK.�

bi{loEarabiy˜api

\vocalize
�
é�

��
J
K.�

�Q
�
ªËAK.�

biAlEarabiy˜api

\novocalize
�
é
�
J
K. QªËAK. bAlErby˜p

The interpretation of the notation is language-dependent. With \setarab, which is the
default, the Arabic rules for determining the hamza carriers or silent ↩alifs are enforced. The
\setverb option switches into the verbatim mode instead, c.f. Figure 2.1.

The style of the phonetic transcription is also customizable, and several schemes are
predefined. While the Arabic script does not capitalize its letters, using the \cap sequence
in the data would capitalize the very next letter in the transcription.

There are also options affecting some calligraphic nuances. With \yahnodots, for in-
stance, every final glyph of yā↩ø

y appears as if ↩alif maqs. ūra ø Y were in its place.

2.2.2 Extended notation

Distinguishing between specification and implementation, let us describe the extensions
to the notation here, and design new or modified interpreters for it in Chapter 9.

Doubled vowels ii and uu are set equal to I, resp. U, in all contexts, just like aa turns
into A in the standard. The distinction between I versus iy and U versus uw is retained.

zuuwaarii zūwārı̄ ø

P
�
@
��
ð

�	P zuw˜aAriy ‘my visitors’

zuwwaariy zuwwāriy ø

P
�
@
��
ð

�	P zuw˜aAriy ‘my visitors’

zUwArI zūwārı̄ ø

P
�
@
��
ð

�	P zuw˜aAriy ‘my visitors’

Suffix-only letters T and Y become treated as t and A automatically if occurring inside
an orthographic word due to morphological operations, esp. suffixation of pronouns.

laylaTAni laylatāni 	
à
�

A
��
J
�
Ê
�
J

�
Ë layolataAni ‘two nights’

.hayATuN h. ayātun
��
èA

�
J

�
k HayaApN ‘a life’

.hayATI h. ayātı̄ ú

�
G
�
A
�
J

�
k HayaAtiy ‘my life’

siwYhu siwāhu �
è @

�
ñ�� siwaAhu ‘except for him’

yarYnI yarānı̄ ú

	
G
�
@ �Q

�
K
 yaraAniy ‘he sees me’

2.2. ARABTEX NOTATION 22

Underlying ↩alif maqs. ūra can always be coded in the data with Y, yet would appear cor-
rectly as normal ↩alif if preceded by yā↩, to avoid forms like dunyā ú

�
æ

�	
K
�
X (Fischer, 2001, p. 8).

dunyY dunyā A
�
J

�	
K
�
X dunoyaA ‘world’

’a.hyY ↩ah. yā A
�
J

�
k

�

@ OaHoyaA ‘he revived’

Silent ↩alif spelled as UW or uW compares more easily with the other aW variant of the
verbal ending, while supporting both the ū and uw style. Writing uuW is equivalent to UW.

katabUW katabū @ñ
�
J.

��
J
�
» katabuwA ‘they wrote’

katabuW katabuw @ñ
�
J.

��
J
�
» katabuwA ‘they wrote’

katabuuW katabū @ñ
�
J.

��
J
�
» katabuwA ‘they wrote’

Defective writing of _I enables easy encoding of mi↩ah �
é
�

KAÓ� ‘hundred’ and its derivatives

in this archaic version, just like _U works for ↩ulā↩ika
�
½

J�

�
Ëð

�

@ ‘those’.

m_I’aTuN mi↩atun
��
é
�

KAÓ� miA}apN ‘a hundred’

mi’aTuN mi↩atun
��
é
�

JÓ� mi}apN ‘a hundred’

m_I’aTAni mi↩atāni 	
à
�

A
��
J
�

KAÓ� miA}ataAni ‘two hundred’

tis‘um_I’aTiN tis↪umi↩atin �
é
�

�

KAÒ

�
�
ª

�
�

�
�� tisoEumiA}apK ‘nine hundred’

m_I’AtuN mi↩̄atun
��

HA
�

KAÓ� miA}aAtN ‘hundreds’

Clitics interaction of the pattern lV-al-, lV-al-CC, lV-aC-C, and lV-all, where V

stands for a short vowel (possibly quoted with " or simply omitted) and C represents a
consonant, is resolved according to the rules of orthography. Joining li or la with al- is
therefore not a burden on the notation, and all clitics can just be concatenated, cf. page 20.

li-al-’asafi li-’l-↩asafi 	
­�

�
�

�

C
�
Ë� liloOasafi ‘unfortunately’

li-an-nawmi li-’n-nawmi Ð
�

�
ñ

��	
JÊË� liln˜awomi ‘for the sleep’

li-al-laylaTi li-’l-laylati �
é�

�
Ê
�
J

��
ÊË� lil˜ayolapi ‘for the night’

li-al-l_ahi li-’l-lāhi é�

��
<Ë� lil˜‘hi ‘for God’

al-la_dayni al-lad
¯

ayni 	á
�

�
K

�	
Y

��
ÊË

�
@ Aall˜a*ayoni ‘those two who’

li-al-la_dayni li-’l-lad
¯

ayni 	á
�

�
K

�	
Y

��
ÊË� lil˜a*ayoni ‘for those two who’

alla_dIna allad
¯

ı̄na �	áK

	
Y�

��
Ë
�
@ Aal˜a*iyna ‘the ones who’

li-alla_dIna li-’llad
¯

ı̄na �	áK

	
Y�

��
ÊË� lil˜a*iyna ‘for the ones who’

Extended options such as \noshadda for removing even �
' ˜ from the displayed script.

2.3. RECOGNITION ISSUES 23

2.3 Recognition Issues

Arabic is a language of rich morphology, both derivational and inflectional. Due to the
fact that the Arabic script does usually not encode short vowels and omits some other
important phonological distinctions, the degree of morphological ambiguity is very high.

In addition to this complexity, Arabic orthography prescribes to concatenate certain
word forms with the preceding or the following ones, possibly changing their spelling and
not just leaving out the whitespace in between them. This convention makes the bound-
aries of lexical or syntactic units, which need to be retrieved as tokens for any deeper
linguistic processing, obscure, for they may combine into one compact string of letters
and be no more the distinct ‘words’.

Thus, the problem of disambiguation of Arabic encompasses not only diacritization
(discussed in Nelken and Shieber, 2005), but even tokenization, lemmatization, restoration
of the structural components of words, and the discovery of their actual morphosyntactic
properties, i.e. morphological tagging (cf. Hajič et al., 2005, plus references therein). These
subproblems, of course, can come in many variants, and are partially coupled.

When inflected lexical words are combined, additional phonological and orthographic
changes can take place. In Sanskrit, such euphony rules are known as external sandhi.
Inverting sandhi is usually nondeterministic, but the method is clear-cut (Huet, 2003, 2005).

In Arabic, euphony must be considered at the junction of suffixed clitics, esp. pronouns
in genitive or accusative. In the script, further complications can arise, some noted earlier
in this chapter, some exemplified in the chart below:

dirAsaTI dirāsatı̄ ú

�
æ
�

�
�@ �PX� → dirAsaTu |I dirāsatu ı̄ ø

'
�

��
é

�
�@ �PX�

→ dirAsaTi |I dirāsati ı̄ ø

'
�

�
é�

�
�@ �PX�

→ dirAsaTa |I dirāsata ı̄ ø

'
�

��
é

�
�@ �PX�

mu‘allimIya mu↪allimı̄ya ��ù

Ò
�

��
Ê
�
ª

�
Ó → mu‘allimU |I mu↪allimū ı̄ ø

'
�

ñ
�
Ò

��
Ê
�
ª

�
Ó

→ mu‘allimI |I mu↪allimı̄ ı̄ ø

'
�

ù

Ò
�

��
Ê
�
ª

�
Ó

katabtumUhA katabtumūhā A
�
ëñ

�
Ò

��
J
�
�.

��
J
�
» → katabtum hA katabtum hā A

�
ë �Õ

��
æ

�
J.

��
J
�
»

’iˆgrA’uhu ↩iǧrā↩uhu �
è
�

ð@ �Q

�
k. @

�
→ ’iˆgrA’u hu ↩iǧrā↩u hu �

è
�
Z @ �Q

�
k. @

�

’iˆgrA’ihi ↩iǧrā↩ihi é�

K� @

�Q
�

k. @

�
→ ’iˆgrA’i hu ↩iǧrā↩i hu �

è Z� @
�Q

�
k. @

�

’iˆgrA’ahu ↩iǧrā↩ahu �
è
�
Z @ �Q

�
k. @

�
→ ’iˆgrA’a hu ↩iǧrā↩a hu �

è
�
Z @ �Q

�
k. @

�

li-al-’asafi li-’l-↩asafi 	
­�

�
�

�

C
�
Ë� → li al-’asafi li al-↩asafi 	

­�
�

�

�

B
� �
@ È

�

Modeling morphosyntactic constraints among the reconstructed tokens, such as that
verbs be followed by accusatives and nominals by genitives, can be viewed as a special
case of restrictions on the tokens’ features, which we deal with in Chapter 7.2

2ElixirFM 1.0 can recognize only well-tokenized words. Implementing tokenization and the euphony rules
is due in its very next version. Please, check http://sf.net/projects/elixir-fm/ for the updates.

http://sf.net/projects/elixir-fm/

2.3. RECOGNITION ISSUES 24

‘All human beings are born free and equal in dignity and rights. They are endowed with
reason and conscience and should act towards one another in a spirit of brotherhood.’

.
�

�
�
ñ

��
®

�
m

�
Ì'

�
@
�
ð �

é�

�
Ó@ �Q

�
º

�
Ë
�
@ ú

	
¯
�

�	áK
ð
�
A

�
�

��
�
�
Ó @ �P@ �Q

�
k

�

@ ��A

��	
JË

�
@

�
©J
Ô�

�
g
.

�
Y

�
Ëñ

�
K

. Z� A
�	

gB

�

��
@ h

�
ð �QK.�

A
�	

�
�
ª

�
K.

�
Ñ

�
îD

�	
�

�
ª

�
K.

�
ÉÓ� A

�
ª

�
K

�	
à

�

@

�
Ñî

�

�
D

�
Ê
�
«

�
ð @

�Q�
Ö�
Þ

�	
�

�
ð C

� ��
®

�
« @ñ

�
J.ë�

�
ð

�
Y

��
¯

�
ð

yuwladu jamiyEu {ln˜aAsi OaHoraArFA mutasaAwiyna fiy {lokaraAmapi wa{loHuquwqi.

waqado wuhibuwA EaqolAF waDamiyrFA waEalayohimo Oano yuEaAmila baEoDuhumo

baEoDFA biruwHi {loIixaA’i.

.
�

�ñ
�
®mÌ'@ð �

éÓ@QºË@ ú

	
¯ 	áK
ðA�

�
�Ó @P@Qk

@ �A

	
JË @ ©J
Ô

g
.

YËñK

. Z A
	

gB

@ hðQK. A
	

�ªK. ÑîD
	
�ªK. ÉÓAªK

	
à

@ ÑîD
Ê«ð @Q�
ÖÞ

	
�ð C

�
®« @ñJ.ëð Y

�
¯ð

ywld jmyE AlnAs OHrArA mtsAwyn fy AlkrAmp wAlHqwq.

wqd whbwA EqlA wDmyrA wElyhm On yEAml bEDhm bEDA brwH AlIxA’.

Yūladu ǧamı̄↪u ’n-nāsi ↩ah. rāran mutasāwı̄na fı̄ ’l-karāmati wa-’l-h. uqūqi. Wa-qad wuhibū ↪aqlan
wa-d. amı̄ran wa-↪alayhim ↩an yu↪̄amila ba↪d. uhum ba↪d. an bi-rūh. i ’l-↩ih

˘
ā↩i.

Júladu džamı́cu an-nási ’ah. ráran mutasávı́na fı́ al-karámati va-al-h. uk. úk. i. Va-k. ad vuhibú cak. lan
va-d. amı́ran va-calajhim ’an jucámila bacd. uhum bacd. an bi-rúh. i al-’ichá’i.

\cap yUladu ˆgamI‘u an-nAsi ’a.hrAraN mutasAwIna fI al-karAmaTi wa-al-.huqUqi.

\cap wa-qad wuhibUW ‘aqlaN wa-.damIraN wa-‘alayhim ’an yu‘Amila ba‘.duhum

ba‘.daN bi-rU.hi al-’i_hA’i.

Figure 2.2 Universal Declaration of Human Rights, Article 1, in the following
versions: English, fully vocalized versus non-vocalized Arabic (including Buck-
walter transliteration), the standard ZDMG phonetic transcription versus its ex-
perimental Czech modification, and the source text in the ArabTEX notation. In-
spired by Simon Ager’s http://www.omniglot.com/.

Figure 2.2 illustrates the different written representations of Arabic. In the script, the
diacritics, and even some instances of hamza indicated in red, can often be omitted in
the normal usage. Some other kinds of orthographic variation are also common (Buck-
walter, 2004b). Note that our morphological model is designed to understand all these
‘languages’. Tokenization is exemplified in Figures 3.1, 7.1, and 7.2.

http://www.omniglot.com/

.
�
é
�
Ë

�
Ég� A

�
� B

�
�Qm�

�
'
.

��
é
��
J
K.�

�Q
�
ªË

�
@

Al-↪arabı̄yah bah. r lā sāh. ila lahu.
Arabic is an ocean without a shore.

popular saying

Chapter 3

Morphological Theory

This chapter will define lexical words as the tokens on which morphological inflection
proper will operate. We will explore what morphosyntactic properties should be included
in the functional model. We will discuss the linguistic and computational views on inflec-
tional morphology.

Later in this chapter, we will be concerned with Arabic morphology from the struc-
tural perspective, designing original morphophonemic patterns and presenting roots as
convenient inflectional invariants.

3.1 The Tokenization Problem

In the previous chapter, we observed that the lexical words are not always apparent, nei-
ther in the Arabic orthography, nor in the transcriptions that we use.

Tokenization is an issue in many languages. Unlike in Korean or German or Sanskrit
(cf. Huet, 2003), in Arabic there are clear limits to the number and the kind of tokens
that can collapse into one orthographic string.1 This idiosyncrasy may have lead to the
prevalent interpretation that the clitics , including affixed pronouns or single-letter ‘parti-
cles’, are of the same nature and status as the derivational or inflectional affixes. In effect,
cliticized tokens are often considered inferior to some central lexical morpheme of the or-
thographic string, which yet need not exist if it is only clitics that constitutes the string . . .

We think about the structure of orthographic words differently. In treebanking, it is
essential that morphology determine the tokens of the studied discourse in order to pro-
vide the units for the syntactic annotation. Thus, it is nothing but these units that must be
promoted to tokens and considered equal in this respect, irrelevant of how the tokens are
realized in writing.

To decide in general between pure morphological affixes and the critical run-on syn-
tactic units, we use the criterion of substitutability of the latter by its synonym or analogy
that can occur isolated. Thus, if hiya �ù

ë� ‘nom. she’ is a syntactic unit, then the suffixed

1Even if such rules differ in the standard language and the various dialects.

25

3.1. THE TOKENIZATION PROBLEM 26

String Token Tag Buckwalter Morph Tags Full Token Form Token Gloss

Ñ
�
ë

�Q�.�

	
j

�
J

�
�

F--------- FUT �
� sa- will

VIIA-3MS-- IV3MS+IV+IVSUFF_MOOD:I
�Q�.�

	
m�

�
'

 yu-h

˘
bir-u he-notify

S----3MP4- IVSUFF_DO:3MP Ñ
�
ê -hum them

�
½Ë�

�	
YK.�

P--------- PREP K.�
bi- about/by

SD----MS-- DEM_PRON_MS
�
½Ë�

�	
X d

¯
ālika that

	á
�
« P--------- PREP 	á

�
« ↪an by/about

�
�
�
K
Q

�

�
£ N-------2R NOUN+CASE_DEF_GEN

�
�
�
K
Q

�

�
£ t.arı̄q-i way-of

É
�

K� A

�
�

��QË
�
@ N-------2D DET+NOUN+CASE_DEF_GEN É

�

K� A

�
�

��QË
�
@ ar-rasā↩il-i the-messages

�
è�

�Q�
��

��
®Ë

�
@ A-----FS2D

DET+ADJ+NSUFF_FEM_SG+
+CASE_DEF_GEN

�
è�

�Q�
��

��
®Ë

�
@ al-qas. ı̄r-at-i the-short

�
I
�

	
K�
Q�
��
	
KB

�

@
�
ð

C--------- CONJ �
ð wa- and

Z-------2D
DET+NOUN_PROP+

+CASE_DEF_GEN
�

I
�

	
K�
Q�

��
	
KB

�

�
@ al-↩internet-i the-internet

A
�
ëQ

�
�

�	
«

�
ð

C--------- CONJ �
ð wa- and

FN------2R NEG_PART+CASE_DEF_GEN Q
�
J

�	
« ġayr-i other/not-of

S----3FS2- POSS_PRON_3FS A
�
ê -hā them

Figure 3.1 Tokenization of orthographic strings into tokens in he will notify them
about that through SMS messages, the Internet, and other means, and the disam-
biguated morphological analyses providing each token with its tag, form and
gloss (lemmas are omitted). Here, token tags are obtained from Buckwalter tags.

-hā A
�
ê ‘gen. hers / acc. her’ is tokenized as a single unit, too. If sawfa

�	
¬ñ

�
� ‘future marker’ is

a token, then the prefixed sa- �
�, its synonym, will be a token. Definite articles or plural

suffixes do not qualify as complete syntactic units, on the other hand.
The leftmost columns in Figure 3.1 illustrate how orthographic strings are tokenized in

the Prague Arabic Dependency Treebank (Hajič et al., 2004b), which may in detail contrast
to the style of the Penn Arabic Treebank (examples in Maamouri and Bies, 2004).

Discussions can be raised about the subtle choices involved in tokenization proper,
or about what orthographic transformations to apply when reconstructing the tokens.
Habash and Rambow (2005, sec. 7) correctly point out the following:

There is not a single possible or obvious tokenization scheme: a tokenization
scheme is an analytical tool devised by the researcher.

Different tokenizations imply different amount of information, and further influence
the options for linguistic generalization (cf. Bar-Haim et al., 2005, for the case of Hebrew).
We will resume this topic in Chapter 7 on MorphoTrees.

3.2. FUNCTIONAL AND ILLUSORY CATEGORIES 27

3.2 Functional and Illusory Categories

Once tokens are recognized in the text, the next question comes to mind—while concerned
with the token forms, what morphosyntactic properties do they express?

In Figure 3.1, the Buckwalter analysis of the word ar-rasā↩il-i É
�

K� A

�
�

��QË
�
@ ‘the messages’ says

that this token is a noun, in genitive case, and with a definite article. It does not continue,
however, that it is also the actual plural of risāl-ah �

é
�
Ë A

�
�P

�
‘a message’, and that this logical

plural formally behaves as feminine singular, as is the grammatical rule for every noun
not referring to a human. Its congruent attribute al-qas. ı̄r-at-i �

è�
�Q�
��

��
®Ë

�
@ ‘the short’ is marked

as feminine singular due to the presence of the -ah �
è
�
' morph. Yet, in general, the mere

presence of a morph does not guarantee its function, and vice versa.
What are the genders of t.arı̄q �

�K
Q
�

�
£ ‘way’ and al-↩internet �

I
	
K�
Q�
��
	
KB

�

�
@ ‘the Internet’? Their

tags do not tell, and t.arı̄q �
�K
Q

�

�
£ actually allows either of the genders in the lexicon.

This discrepancy between the implementations and the expected linguistic descrip-
tions compatible with e.g. (Fischer, 2001, Badawi et al., 2004, Holes, 2004) can be seen as
an instance of the general disparity between inferential–realizational morphological theo-
ries and the lexical or incremental ones. Stump (2001, chapter 1) presents evidence clearly
supporting the former methodology, according to which morphology needs to be mod-
eled in terms of lexemes, inflectional paradigms, and a well-defined syntax–morphology
interface of the grammar. At least these three of Stump’s points of departure deserve
remembering in our situation (Stump, 2001, pages 7–11):

The morphosyntactic properties associated with an inflected word’s individual
inflectional markings may underdetermine the properties associated with the
word as a whole.

There is no theoretically significant difference between concatenative and non-
concatenative inflection.

Exponence is the only association between inflectional markings and mor-
phosyntactic properties.

Most of the computational models of Arabic morphology are lexical in nature, i.e. they
associate morphosyntactic properties with individual affixes regardless of the context of
other affixes (cf. a different assumption in Roark and Sproat, 2007). As these models are
not designed in connection with any syntax–morphology interface, their interpretation
is destined to be incremental, i.e. the morphosyntactic properties are acquired only as a
composition of the explicit inflectional markings. This cannot be appropriate for such a
language as Arabic,2 and leads to the series of problems that we observed in Figure 3.1.

2Versteegh (1997b, chapter 6, page 83) offers a nice example of how the supposed principle of ‘one morph
one meaning’, responsible for a kind of confusion similar to what we are dealing with, complicated some
traditional morphological views.

3.2. FUNCTIONAL AND ILLUSORY CATEGORIES 28

Functional Arabic Morphology endorses the inferential–realizational principles. It re-
establishes the system of inflectional and inherent morphosyntactic properties (or gram-
matical categories or features , in the alternative naming) and discriminates precisely the
senses of their use in the grammar. It also deals with syncretism of forms (cf. Baerman
et al., 2006) that seems to prevent the resolution of the underlying categories in some mor-
phological analyzers.

The syntactic behavior of ar-rasā↩il-i É
�

K� A

�
�

��QË
�
@ ‘the messages’ disclosed that we cannot dis-

pense with a single category for number or for gender, but rather, that we should always
specify the sense in which we mean it: 3

functional category is for us the morphosyntactic property that is involved in grammat-
ical considerations; we further divide functional categories into

logical categories on which agreement with numerals and quantifiers is based

formal categories controlling other kinds of agreement or pronominal reference

illusory category denotes the value derived merely from the morphs of an expression

Does the classification of the senses of categories actually bring new quality to the
linguistic description? Let us explore the extent of the differences in the values assigned.
It may, of course, happen that the values for a given category coincide in all the senses.
However, promoting the illusory values to the functional ones is in principle conflicting:

1. Illusory categories are set only by a presence of some ‘characteristic’ morph, irre-
spective of the functional categories of the whole expression. If lexical morphemes
are not qualified in the lexicon as to the logical gender nor humanness, then the log-
ical number can be guessed only if the morphological stem of the logical singular
is given along with the stem of the word in question. Following this approach im-
plies interpretations that declare illusory feminine singular for e.g. sād-ah �

è
�
XA

�
� ‘men’,

qād-ah �
è
�
XA

��
¯ ‘leaders’, qud. -āh �

èA
�	

�
��
¯ ‘judges’, dakātir-ah �

è �Q
�
K� A

�
¿

�
X ‘doctors’ (all functional

masculine plural), illusory feminine plural for bās. -āt �
HA

�
�A

�
K. ‘buses’ (logical mascu-

line plural, formal feminine singular), illusory masculine dual for ↪ayn-āni 	
à
�

A
�	
JJ

�
« ‘two

eyes’, bi↩r-āni 	
à
�

@
�Q

�K.�

‘two wells’ (both functional feminine dual), or even rarely illusory
masculine plural for sin-ūna

�	
àñ

�	
J�� ‘years’ (logical feminine plural, formal feminine

singular), etc.

2. If no morph ‘characteristic’ of a value surrounds the word stem and the stem’s mor-
pheme does not have the right information in the lexicon, then the illusory category
remains unset. It is not apparent that h. āmil ÉÓ� A

�
g ‘pregnant’ is formal feminine singu-

lar while h. āmil ÉÓ� A
�

g ‘carrying’ is formal masculine singular, or that ǧudud X
�
Y

�
g. ‘new’

3One can recall here the terms ma↪nawı̄y �ø

ñ
�

�	
Jª

�
Ó ‘by meaning’ and lafz. ı̄y �ù

	
¢�

	
®
�
Ë ‘by expression’ distinguished

in the Arabic grammar. The logical and formal agreement, or ad sensum resp. grammatical, are essential
abstractions (Fischer, 2001), yet, to our knowledge, implemented only recently in (El Dada and Ranta, 2006).

3.2. FUNCTIONAL AND ILLUSORY CATEGORIES 29

is formal masculine plural while kutub I.

��
J
�
» ‘books’ is formal feminine singular. The

problem concerns every nominal expression individually and pertains to some ver-
bal forms, too. It is the particular issue about the internal/broken plural in Arabic,
for which the illusory analyses do not reveal any values of number nor gender. It
would not work easily to set the desired functional values by some heuristic, as this
operation could only be conditioned by the pattern of consonants and vowels in the
word’s stem, and that can easily mislead, as this relation is also arbitrary. Consider
the pattern in ↪arab H.

�Q
�
« ‘Arabs’ (functional masculine plural) vs. ǧamal É

�
Ô

�
g
.

‘camel’
(functional masculine singular) vs. qat.a↪ ©

�
¢

��
¯ ‘stumps’ (logical feminine plural, for-

mal feminine singular), or that in ǧimāl ÈA
�
Ôg

.�
‘camels’ (logical masculine plural, for-

mal feminine singular) vs. kitāb H. A
��
J»� ‘book’ (functional masculine singular) vs. ↩ināt

¯
�

HA
�	
K @

�
‘females’ (logical feminine plural, formal feminine singular or plural depending

on the referent), etc.

Functional Arabic Morphology enables the functional gender and number informa-
tion thanks to the lexicon that can stipulate some properties as inherent to some lexemes,
and thanks to the paradigm-driven generation that associates the inflected forms with the
desired functions directly.

Another inflectional category that we discern for nominals as well as pronouns is
case. Its functional values are nominative, genitive, and accusative. Three options are
just enough to model all the case distinctions that the syntax–morphology interface of the
language requires. The so-called oblique case is not functional, as long as it is the mere de-
notation for the homonymous forms of genitive and accusative in dual, plural and diptotic
singular (all meant in the illusory sense, cf. Fischer, 2001, pages 86–96).

Neither do other instances of reduction of forms due to case syncretism need special
treatment in our generative model, cf. Chapter 5. In a nutshell—if the grammar asks for
an accusative of ma↪n-an ú

�	
æª

�
Ó ‘meaning’, it does not care that its genitive and nominative

forms incidentally look identical. Also note that case is preserved when a noun is replaced
by a pronoun in a syntactic structure. Therefore, when we abstract over the category of
person, we can consider even ↩anā A

�	
K

�

@ ‘nom. I’, -ı̄ ù

'
�

‘gen. mine’, and -nı̄ ú

	
æ
�

‘acc. me’ as
members of the pronominal paradigm of inflection in case.

The final category to revise with respect to the functional and illusory interpretations
is definiteness. One issue is the logical definiteness of an expression within a sentence, the
other is the formal use of morphs within a word, and yet the third, the illusory presence
or absence of the definite or the indefinite article.

Logical definiteness is binary, i.e. an expression is syntactically either definite, or in-
definite. It figures in rules of agreement and rules of propagation of definiteness (cf. the
comprehensive study by Kremers, 2003).

Formal definiteness is independent of logical definiteness. It introduces, in addition
to indefinite and definite, the reduced and complex definiteness values describing word

3.2. FUNCTIONAL AND ILLUSORY CATEGORIES 30

formation of nomen regens in construct states and logically definite improper annexations,
respectively. In Chapter 5, we further formalize this category and refine it with two more
values, absolute and lifted , and adopt the denotation of it as state. Let us give examples:

indefinite h. ulwatu-n
��
è
�

ñÊ
�

g ‘nom. a-sweet’, S. an↪̄a↩a �
ZA

�
ª

	
J

�
� ‘gen./acc. Sanaa’, h. urray-ni 	á

�
K

��Q
�

k

‘gen./acc. two-free’, tis↪ū-na
�	
àñ

�
ª�

�
�� ‘nom. ninety’, sanawāti-n �

H
�

@
�

ñ
�	
J

�
� ‘gen./acc. years’

definite al-h. ulwatu
��
è
�

ñÊ
�
mÌ'

�
@ ‘nom. the-sweet’, al-h. urray-ni 	á

�
K

��Q
�
mÌ'

�
@ ‘gen./acc. the-two-free’, at-

tis↪ū-na
�	
àñ

�
ª�

���
�Ë

�
@ ‘nom. the-ninety’, as-sanawāti �

H
�

@
�

ñ
�	
J

��
�Ë

�
@ ‘gen./acc. the-years’

reduced h. ulwatu
��
è
�

ñÊ
�

g ‘nom. sweet-of’, wasā↩ili É
�

K� A

�
�

�
ð ‘gen. means-of’, wasā↩ila

�
É

K� A

�
�

�
ð ‘acc.

means-of’, h. urray ø

��Q
�

k ‘gen./acc. two-free-in’, muh. āmū ñ
�
ÓA

�
m
�

× ‘nom. attorneys-of’, ma↪̄a-
nı̄ ú

	
G
�
A
�
ª

�
Ó ‘nom./gen. meanings-of’, sanawāti �

H
�

@
�

ñ
�	
J

�
� ‘gen./acc. years-of’

complex al-muta↪addiday-i ’l-luġāti �
H
�

A
�	
ª

��
ÊË @ ø

�

�
X

��
Y

�
ª

��
J �ÜÏ

�
@ ‘gen./acc. the-two-multiple-of the-lan-

guages, the two multilingual’, al-h. ulwatu ’l-i-’btisāmi Ð
�
A

�
�

�
��K. B� @

��
è
�

ñÊ
�
mÌ'

�
@ ‘nom. the-sweet-of

the-smile, the sweet-smiled’ 4

Proper names and abstract entities can be logically definite while formally and illu-
sorily indefinite: fı̄ Kānūna ’t

¯
-t
¯
ānı̄ ú

	
G
�
A

��
�
JË @

�	
àñ

�	
KA

�
¿ ú

	
¯
�

‘in January, the second month of Kānūn’.
Kānūna

�	
àñ

�	
KA

�
¿ ‘Kānūn’ follows the diptotic inflectional paradigm, which is indicative of

formally indefinite words. Yet, this does not prevent its inherent logical definiteness to
demand that the congruent attribute at

¯
-t
¯
ānı̄ ú

	
G
�
A

��
�
JË

�
@ ‘the-second’ be also logically definite.

At
¯
-t
¯
ānı̄ ú

	
G
�
A

��
�
JË

�
@ ‘the-second’ as an adjective achieves this by way of its formal definiteness.

From the other end, there are adjectival construct states that are logically indefinite, but
formally not so: rafı̄↪u ’l-mustawā ø

�
ñ

��
J��ÜÏ @

�
©J

	
�̄

�P ‘a high-level, high-of the-level’. Rafı̄↪u �
©J

	
�̄

�P

‘high-of’ has the form that we call reduced, for it is the head of an annexation. If, however,
this construct is to modify a logically definite noun, the only way for it to mark its logical
definiteness is to change its formal definiteness to complex, such as in al-mas↩ūlu ’r-rafı̄↪u ’l-
mustawā ø

�
ñ

��
J��ÜÏ @

�
©J

	
�̄

��QË @
�

Èð
�

ñ��ÜÏ
�
@ ‘the-official the-high-of the-level’. We can now inflect the

phrase in number. Definiteness will not be affected by the change, and will ensure that the
plural definite and complex forms do get distinguished: al-mas↩ūlū-na ’r-rafı̄↪ū ’l-mustawā
ø

�
ñ

��
J��ÜÏ @ ñ

�
ªJ

	
�̄

��QË @
�	
àñ

�
Ëð

�

ñ��ÜÏ

�
@ ‘the-officials the-highs-of the-level’.

In our view, the task of morphology should be to analyze word forms of a language
not only by finding their internal structure, i.e. recognizing morphs, but even by strictly
discriminating their functions, i.e. providing the true morphemes. This doing in such a
way that it should be completely sufficient to generate the word form that represents a
lexical unit and features all grammatical categories (and structural components) required
by context, purely from the information comprised in the analyses. Functional Arabic
Morphology is a model that suits this purpose.

4The dropped- 	
à-plus-Ë @ cases of al-↩id. āfah ġayr al-h. aqı̄qı̄yah �

é
��
J

�
®� J

�
®�

�
mÌ'@ Q�

�	
«

�
é
�	
¯A

�	
�B

�

�
@ ‘the improper annexation’

clearly belong here (cf. Smrž et al., 2007, for how to discover more examples of this phenomenon).

3.3. INFLECTIONAL MORPHOLOGY 31

3.3 Inflectional Morphology

In the main matter of his book, Stump (2001) presents his theory of Paradigm Function
Morphology. Although our implementation of inflection is independent of this theory (cf.
Forsberg and Ranta, 2004, El Dada and Ranta, 2006, Smrž, 2007), the central notion he
formulates is useful for the later exposure of ElixirFM paradigms, too:

A paradigm function is a function which, when applied to the root of a lex-
eme L paired with a set of morphosyntactic properties appropriate to L, de-
termines the word form occupying the corresponding cell in L’s paradigm.
(Stump, 2001, p. 32)

The ‘root’ should not be understood in the sense of Semitic linguistics. Rather, it is the
core lexical information associated with the lexeme and available to the inflectional rules.
Spencer (2004) argues for a Generalized PFM, thanks to which the paradigm function can
express much more than concatenative inflection, i.e. some kind of internal inflection or
derivational morphology can be modeled.

There is some controversy about (Stump, 2001). Stump’s arguments for preferring
inferential–realizational theories, his notation of Paradigm Function Morphology, and the
implementations using the DATR formalism (Evans and Gazdar, 1996, plus references
therein) have been critically evaluated by some of the versed computational morpholo-
gists. Karttunen (2003) makes the point that DATR/KATR (Finkel and Stump, 2002) is
not efficient enough for morphological recognition, and questions the clarity of the no-
tations. He presents his implementation of verbal morphology of Lingala written in the
xfst language (Beesley and Karttunen, 2003) for defining and computing with finite-state
transducers, and essentially refuses to accept Stump’s method as well as his classification
of morphologies.

Roark and Sproat (2007) take even more examples from Stump’s book, and propose
that the linguistic distinctions between inferential vs. lexical and realizational vs. incre-
mental are less important from the computational point of view. They reimplement some
phenomena from Sanskrit, Swahili, and Breton using the lextools notation, compiled to
transducers again (Sproat, 2006). They credit inferential–realizational views as possibly
more suitable for generalizations and linguistic insight, but otherwise equate them with
the other approaches:

But no matter: what is clear is that whatever the descriptive merits of Stump’s
approach, it is simply a mistake to assume that this forces one to view mor-
phology as realizational–inferential rather than, say lexical–incremental, at a
mechanistic level. The two are no more than refactorizations of each other.
(Roark and Sproat, 2007, online draft, chapter 3)

3.4. NEUTRALIZATION VS. UNINFLECTEDNESS 32

Unfortunately, though, it may be the case that Roark and Sproat (2007) actually assume
different definitions than Stump (2001), as to how computationally strong ‘transducer
composition’ and ‘affix composition’ actually are. It seems that we share with (Stump,
2001) the objections against any ‘illusory’ instances of analysis, which are, however, a
property of the linguistic model, and not of the components of its implementation.

Roark and Sproat (2007, online draft, chapter 3) describe the ongoing debate as follows:

As much as anything else, what is at issue here is not whether inferential–reali-
zational or lexical–incremental theories are sometimes motivated, but whether
they are always motivated, and whether there is any justification in the all-or-
nothing view that has prevailed in morphological thinking.

We take from Stump’s presentation the warnings about facts that may be ‘risky’ to
accommodate properly in lexical or incremental approaches, which we have, after all,
exemplified in the previous section.

Nonetheless, in our implementation, we use the programming techniques and formal
notations that we find best suited for expressing the properties of the morphology that we
wish to enforce with our model.

At the same time, we agree that one of the results of our model, namely the pairing of
the valid morphological surface forms with their corresponding abstract representations,
can as well be encoded in different ways, possibly using finite-state technology.

The advantage of our generic approach is that the morphological model is available in
the programming language of our choice, with full abstractions that we can and would like
to achieve. The reimplementations of the model, in any other formalisms, can be viewed
as applications or translations thereof, and can be generated algorithmically (Forsberg
and Ranta, 2004). After all, both (Forsberg and Ranta, 2004) and (Huet, 2002) directly
show the co-existence of high-level models and their applications compiled into finite-
state machines for efficient recognition of the modeled languages.

3.4 Neutralization vs. Uninflectedness

Syncretism is the morphological phenomenon that some words or word classes show in-
stances of systematic homonymy.

With the notion of paradigms and syncretism in mind, one should ask what is the
minimal set of combinations of morphosyntactic inflectional parameters that cover the
inflectional variability.

For example, it seems fine in Arabic to request the pronoun for first person feminine
singular, despite it being homonymous with first person masculine. Other homonymy
occurs in first person dual and plural, irrespective of gender. However, homonymy does
not occur with second person pronouns, for instance, and neither is gender neutralized

3.5. THE PATTERN ALCHEMY 33

with the verbal or nominal predicates. That is, in the sentences ↩anā ta↪bānu
�	
àA

�
J.
�
ª

��
K A

�	
K

�

@ ‘I am

tired masc.’ and ↩anā ta↪bānatun
��
é
�	
K A

�
J.
�
ª

��
K A

�	
K

�

@ ‘I am tired fem.’, the gender of ↩anā A

�	
K

�

@ ‘I’ is made

explicit through subject–predicate agreement. It is not the case that ↩anā A
�	
K

�

@ would have no

gender, neither that it would have both.
Baerman et al. (2006, pp. 27–35) characterize neutralization and uninflectedness as

cases of morphological syncretism distinguished by the ability of the context to ‘demand’
the morphosyntactic properties in question:

Whereas neutralization is about syntactic irrelevance as reflected in morphol-
ogy, uninflectedness is about morphology being unresponsive to a feature that
is syntactically relevant. (Baerman et al., 2006, p. 32)

So what we have observed with first person pronouns is not neutralization, but rather
uninflectedness. It is therefore right to allow parameter combinations such as those men-
tioned above, i.e. SP---1[MF]S1- ↩anā A

�	
K

�

@ ‘I’ and SP---1[MF][DP]1- nah. nu �	á

�
m�

�	
' ‘we’.

On the other hand, one might claim that in Arabic the mood feature is neutralized with
perfective or imperative verb stems, while it is distinguished with imperfective stems.
Also, imperative stems are fixed as inherently active and second person, presumably.

Thus, in our morphological model, the shorthand verbal tag V--------- is expanded
heterogeneously: with imperatives it becomes VC----[MF][SDP]--, with perfectives it is
VP-[AP]-[123][MF][SDP]--, with imperfectives VI[ISJE][AP]-[123][MF][SDP]--.

3.5 The Pattern Alchemy

In Functional Arabic Morphology, patterns constitute the inventory of phonological mel-
odies of words, regardless of the words’ other functions. Morphophonemic patterns ab-
stract from the consonantal root , which is often recognized or postulated on etymological
grounds. Other types of patterns, like the decomposition into separate CV patterns and
vocalisms , can be derived from the morphophonemic patterns . In the inverse view, roots
and patterns can interdigitate or interlock together to form the morphological word stem.

The traditional terms are ǧad
¯

r P
	
Y

�
g. for root and wazn 	

à 	P
�
ð for pattern . There are, how-

ever, multiple notions associated with either of these terms, as we discuss further. The
prototypical root in Arabic linguistics is f ↪ l Éª

	
¯, delivering the meaning of ‘doing, acting’.

Fischer (2001) uses patterns that abstract away from the root, but can include even
inflectional affixes or occasionally restore weak root consonants. For instance, we can find
references to patterns like ↩af↪ala for ↩ah. sana �	á

�
�

�
k

�

@ ‘he did right’ or ↩ahdā ø

�
Y

�
ë

�

@ ‘he gave’,

but ↩af↪alu for ↩a↪lā ú
�
Î

�
«

�

@ ‘higher’. In our model, the morphophonemic pattern pertains to

the morphological stem and reflects its phonological qualities. Thus, our patterns become
HaFCaL for ↩ah. sana �	á

�
�

�
k

�

@, while HaFCY for both ↩ahdā ø

�
Y

�
ë

�

@ and ↩a↪lā ú

�
Î

�
«

�

@.

3.5. THE PATTERN ALCHEMY 34

Holes (2004) distinguishes between ‘morphosemantic’ and ‘morphosyntactic’ patterns,
but this distinction does not seem at issue here. More importantly, he uses the term ‘pat-
tern’ in connection with denoting specific derivational classes in morphology, which we
denote by Roman numerals as well, but call them derivational forms in that context.5

For the discussion of phonological processes with weak verb or noun patterns , with
various examples on consonantal assimilation and analysis of vocalization patterns , con-
sult (Beesley, 1998a). For discussing the consonant gemination patterns and extended
derivational forms, see (Beesley, 1998b). In both works, the author uses the term ‘mor-
phophonemic’ as ‘underlying’, denoting the patterns like CuCiC or staCCaC or maCCuuC.
Yet, he also uses the term for anything but the surface form, cf. “an interdigitated but
still morphophonemic stem” or “there may be many phonological or orthographical vari-
ations between these morphophonemic strings and their ultimate surface pronunciation
or spelling” (Beesley, 1998a).

Eleven years earlier, twenty from today, Kay (1987) gives an account on finite-state
modeling of the nonconcatenative morphological operations. He calls CV patterns as
‘prosodic templates’, both terms following (McCarthy, 1981). For further terminological
explanations, cf. (Kiraz, 2001, pages 27–46).

We choose to build on morphophonemic patterns rather than on CV patterns and vo-
calisms. Words like istaǧāb H. A

�
j.

��
J

�
�@� ‘to respond’ and istaǧwab H.

�
ñ

�
j.

��
J

�
�@� ‘to interrogate’ have

the same underlying VstVCCVC pattern, so information on CV patterns alone would not
be enough to reconstruct the differences in the surface forms. Morphophonemic patterns,
in this case IstaFAL and IstaFCaL, can easily be mapped to the hypothetical CV patterns
and vocalisms, or linked with each other according to their relationship. Morphophone-
mic patterns deliver more information in a more compact way.

For the design of our morphophonemic patterns, we have two extreme options: either
enforce the patterns in the non-assimilated and prototypical versions only, or define the
patterns so that they reflect the result of any plausible phonemic transformations that
might apply. We decide for the latter option, except for the case with the derivational
Form VIII and Form VII, where we compute the assimilations at the Ft and nF boundaries
on the fly during the interlock method, cf. Chapters 5 and 6. Such morphophonemic
patterns are also directly indicative of any weak phonological behavior when involved in
inflection or even derivation. Still, all pattern operations are most efficient.

With this approach, we are also given more precise control on the actual word forms—
we explicitly confirm that the ‘word’ the pattern should create does undergo the implied
transformations. One can therefore speak of ‘weak patterns’ rather than of ‘weak roots’.

Let us recycle the notable quotation of the grammarian Ibn Jinnı̄, appearing in (Kiraz,
2001, p. 47) and itself taken from (Versteegh, 1997a), which might remind us not to break

5These derivational classes are analogous to binyanim in Hebrew linguistics (cf. Finkel and Stump, 2002).
The confusion of the terms is understandable, as typically a class is represented by or referred to via a proto-
typical pattern. However, patterns are by themselves independent of the classes.

3.5. THE PATTERN ALCHEMY 35

the balance between the abstract and the concrete, nor interchange them inappropriately,
at least when considering the issue of patterns and their linguistic relevance:

The underlying form of qāma ‘stood up’ is qawama. . . . This had led some peo-
ple to believe that such forms, in which the underlying level is not identical
with the surface form, at one time were current, in the sense that people once
used to say instead of qāma zaydun: qawama zaydun ‘Zaid stood up’. . . . This is
not the case, on the contrary: these words have always had the form that you
can see and hear now. Ibn Jinnı̄ (932–1002), al-H

˘
as. ā↩is.

The idea of pre-computing the phonological constraints within CV patterns into the
‘morphophonemic’ ones is present in (Yaghi and Yagi, 2004), but is applied to verbs only
and is perhaps not understood in the sense of a primary or full-fledged representation.
However, parallels with our definition of the patterns exist:

Data [for stem generation were] designed initially with no knowledge of the
actual patterns and repetitions that occur with morphophonemic and affix
transformation rules. . . . To optimize further, the transformation may be made
on the morphological pattern itself, thus producing a sound surface form tem-
plate. This procedure would eliminate the need to perform morphophonemic
transformations on stems. . . . A coding scheme is adopted that continues
to retain letter origins and radical positions in the template so that this [op-
timization] will not affect [the author’s model of] affixation. . . . The surface
form template can be rewritten as @�hF 2

���
HhM0 �

'hL2ø' AiF2t˜aM0aL2Y. This
can be used to form stems such as ø

�
Y

���
K @� Ait˜adaY by slotting the root ø

Xð wdy.

(Yaghi and Yagi, 2004, sec. 5)

Yaghi’s templates are not void of root-consonant ‘placeholders’ that actually change
under inflection, cf. hF 2 hL2 indexed by the auxiliary integers to denote their ‘substi-
tutability’. The template, on the other hand, reflects some of the orthographic details and
includes Form VIII assimilations that can be abstracted from, cf. esp. the

���
H t˜a group.

With Functional Arabic Morphology, the morphophonemic pattern of ittadā ø
�
Y

���
K @� is

simply IFtaCY, the root being wdy ø

Xð. One of its inflected forms is IFtaCY |<< "tumA"

ittadaytumā A
�
Ò

��
J
�
K

�
Y

���
K @� ‘the two of you accepted compensation’, to follow again the example in

(Yaghi and Yagi, 2004).6 We describe the essence of this notation in Chapter 5.
CV templates are viewed from the perspective of moraic templates in the Prosodic

Morphology (McCarthy and Prince, 1990a,b), later discussed by Kiraz (2001) within his
development of a multitier nonlinear morphological model. An implementation of Ara-
bic morphology derived from this work is presented in (Habash et al., 2005, Habash and

6With the root wqy ú

�
¯ð attested in (Fischer, 2001, Buckwalter, 2002), we have IFtaCY |<< "tumA" it-

taqaytumā A
�
Ò

��
J
�
J

��
®

���
K @� ‘the two of you bewared’, or IFtaCY |<< "UW" ittaqaw @

�
ñ

��
®

���
K @� ‘they bewared’.

3.6. THE INFLECTIONAL INVARIANT 36

Rambow, 2006). The moraic approach can be summarized as taking into account the in-
ternal structure and weight of syllables, distinguishing open and closed syllables as one
opposition, and light versus heavy ones as another (cf. Bird and Blackburn, 1991).

Given that we can define a mapping from morphophonemic templates into prosodic or
moraic templates, which we easily can, we claim that the prosodic study of the templates is
separable from the modeling of morphology. Nonetheless, connections between both can
still be pursued, and morphology should keep in mind to alter the patterns if phonology
requires so. The morphophonemic information in the lexicon is rich enough to allow that,
and the availability of the data in our computational model makes linguistic analyses of
the lexicon, like those of broken plurals mentioned in (McCarthy and Prince, 1990a, Kiraz,
2001, Soudi et al., 2001), rather straightforward and empirically verifiable.

3.6 The Inflectional Invariant

In our approach, we define roots as sequences of consonants. In most cases, roots are
triliteral, such as k t b I.

�
J», q w m Ðñ

�
¯, d s s ��X, r ↩y ø

@P, or quadriliteral, like d h. r ǧ h. QkX,

t. m ↩n 	
à

AÒ£, z l z l È 	QË 	P.

Roots in Arabic are, somewhat by definition, inflectional invariants. Unless a root
consonant is weak, i.e. one of y, w or ↩, and unless it assimilates inside a Form VIII pattern,
then this consonant will be part of the inflected word form. This becomes apparent when
we consider the repertoire and the nature of morphophonemic patterns.

The corollary is that we can effectively exploit the invariant during recognition of word
forms. We can check the derivations and inflections of the identified or hypothesized roots
only, and need not inflect the whole lexicon before analyzing the given inflected forms in
question! This is a very fortunate situation for the generative model in ElixirFM.

While this seems the obvious way in which learners of Arabic analyze unknown words
to look them up in the dictionary, it contrasts strongly with the practice in the design of
computational analyzers, where finite-state transducers (Beesley and Karttunen, 2003), or
analogously tries (Forsberg and Ranta, 2004, Huet, 2002), are most often used. Of course,
other languages than Arabic need not have such convenient invariants.

I love you when you dance,
when you freestyle in trance,
so pure, such an expression.

Alanis Morissette, So Pure

Chapter 4

Impressive Haskell

Haskell is a purely functional programming language based on typed λ-calculus, with
lazy evaluation of expressions and many impressive higher-order features. For a remedy
to this definition, please visit http://haskell.org/.

Haskell was given its name after the logician Haskell Brooks Curry (1900–1982).
It is beyond the scope of this work to give any general, yet accurate account of the lan-

guage. We will only overview some of its characteristics. Please, visit Haskell’s website for
the most appropriate introduction and further references. Textbooks include e.g. (Hudak,
2000) or (Daumé III, 2002–2006).

In Chapter 5, we exemplify and illustrate the features of Haskell step by step while de-
veloping ElixirFM. In Chapter 9, we present the implementation of a grammar of rewrite
rules for Encode Arabic.

Types are distinct sets of uniquely identified values. Data types describe data structures,
the function type -> can be viewed as an encapsulated operation that would map input
values to output values. In a rather coarse nutshell, types describe and control the space
and time of computation.

Values can be defined on the symbolic level, and can be atomic or structured. Num-
bers, characters, lists of values, sets, finite maps, trees, etc. are all different data types.

data Language = Arabic | Korean | Farsi | Czech | English

data Family = Semitic | IndoEuropean | Altaic

data Answer = Yes | No | Web

isFamily :: Language -> Family -> Answer

isFamily Arabic Semitic = Yes

isFamily Czech Altaic = No

isFamily _ _ = Web

The structure of a program must conform to the type system, and conversely, types
of expressions can be inferred from the structure of the program. The verification of this

37

http://haskell.org/

38

important formal property is referred to as type checking. Type correctness guarantees
the syntactic validity of a program, and is a prerequisite, not a guarantee, to its semantic
correctness.

Polymorphism means that types can be parametrized with other types. The following
implementation of lists is an example thereof: 1

data List a = Item a (List a) | End

In other words, lists of some type a consist of an Item joining the value of type a with
the rest of List a, which repeats until the End. Lists like these are homogeneous—all
elements of a given list must have the same type a.

Universal and existential quantification over types is explained in (Pierce, 2002, chap-
ters 23–24). While the former scheme is much more common, both ElixirFM and Encode
Arabic make a little use of existential types (Jones, 1997) to achieve elegant heterogeneous
collections where appropriate, cf. the Wrap and Mapper type constructors, respectively.2

Type classes allow us to define functions that can be overloaded depending on the types
the functions are instantiated for.

class Encoding e where

encode :: e -> [UPoint] -> [Char]

decode :: e -> [Char] -> [UPoint]

instance Encoding ArabTeX where

encode = ...

decode = ...

instance Encoding Buckwalter where

encode = ...

decode = ...

Here, we declare that the ArabTeX and Buckwalter types belong to the class of Encodings.
That means that they provide functions that take the particular encoding of type e and
convert a string of characters into a list of Unicode code points, or vice versa.

Type classes with functional dependencies (Jones, 2000) are another useful extension
of Haskell, exemplified in the Morphing and Parser classes, Chapters 5 and 9.

For more on types, type classes, and generic programming, cf. (Hinze and Jeuring,
2003b,a) and (Wadler and Blott, 1989).

1In Haskell, lists are pre-defined and recognize the : and [] values instead of Item and End.
2In interpreters like Hugs, you can explore the definitions and the source code via the :info, :find, or

:edit commands.

39

Monads are famous also due to their very useful application in parsing, esp. recursive
descent parsing (Ljunglöf, 2002, plus references). Monadic parsers strongly resemble the
declarative definition of rewrite rules in the specification of the grammar they implement.

It is ‘impressive’ that lists, and many other polymorphic data types, belong to the class
of monads. This class is used for sequencing of computations—a seemingly imperative
issue, yet completely declarative (Wadler, 1997)! Therefore, the do notation, which is seen
in Chapter 9, can be applied to lists, too, and the list comprehension syntax translates
directly to the essential monadic operations (Wadler, 1985, Hudak, 2000).

Um, ah, you mean, um
I think that’s a sort of surreal masterpiece
It has a semi-autobiographical feel about it
A bit of a mixture, you mean, mish-mash
That’s the word I was looking for

Queen in Queen Talks

Chapter 5

ElixirFM Design

Functional Arabic Morphology is a formulation of the Arabic inflectional system seeking
the working interface between morphology and syntax. ElixirFM is its high-level imple-
mentation that reuses and extends the Functional Morphology library for Haskell (Fors-
berg and Ranta, 2004), yet in the language-specific issues constitutes our original work.

Inflection and derivation are modeled in terms of paradigms, grammatical categories,
lexemes and word classes. The functional and structural aspects of morphology are clearly
separated. The computation of analysis or generation is conceptually distinguished from
the general-purpose linguistic model.

The lexicon of ElixirFM is designed with respect to abstraction, yet is no more com-
plicated than printed dictionaries. It is derived from the open-source Buckwalter lexicon
(Buckwalter, 2002) and is enhanced with information sourcing from the syntactic annota-
tions of the Prague Arabic Dependency Treebank (Hajič et al., 2004b).

In Section 5.1, we survey some of the categories of the syntax–morphology interface
in Modern Written Arabic, as described by Functional Arabic Morphology. In passing, we
will introduce the basic concepts of programming in Haskell, a modern purely functional
language that is an excellent choice for declarative generative modeling of morphologies,
as Forsberg and Ranta (2004) have shown.

Section 5.2 will be devoted to describing the lexicon of ElixirFM. We will develop a so-
called domain-specific language embedded in Haskell with which we will achieve lexical
definitions that are simultaneously a source code that can be checked for consistency, a
data structure ready for rather independent processing, and still an easy-to-read-and-edit
document resembling the printed dictionaries.

In Section 5.3, we will illustrate how rules of inflection and derivation interact with the
parameters of the grammar and the lexical information. We will demonstrate, also with
reference to the Functional Morphology library (Forsberg and Ranta, 2004), the reusabil-
ity of the system in many applications, including computational analysis and genera-
tion in various modes, exploring and exporting of the lexicon, printing of the inflectional
paradigms, etc. Further interesting examples will be provided in Chapter 6.

40

5.1. MORPHOSYNTACTIC CATEGORIES 41

5.1 Morphosyntactic Categories

Functional Arabic Morphology and ElixirFM re-establish the system of inflectional and
inherent morphosyntactic properties (alternatively named grammatical categories or fea-
tures) and distinguish precisely the senses of their use in the grammar.

In Haskell, all these categories can be represented as distinct data types that consist of
uniquely identified values. We can for instance declare that the category of case in Arabic
discerns three values, that we also distinguish three values for number or person, or two
values of the given names for verbal voice:

data Case = Nominative | Genitive | Accusative

data Number = Singular | Dual | Plural

data Person = First | Second | Third

data Voice = Active | Passive

All these declarations introduce new enumerated types, and we can use some easily-
defined methods of Haskell to work with them. If we load this (slightly extended) pro-
gram into the interpreter,1 we can e.g. ask what category the value Genitive belongs to
(seen as the :: type signature), or have it evaluate the list of the values that Person allows:

. . . ? :type Genitive −→ Genitive :: Case

. . . ? enum :: [Person] −→ [First, Second, Third]

Lists in Haskell are data types that can be parametrized by the type that they contain.
So, the value [Active, Active, Passive] is a list of three elements of type Voice, and we
can write this if necessary as the signature :: [Voice]. Lists can also be empty or have
just one single element. We denote lists containing some type a as being of type [a].

Haskell provides a number of useful types already, such as the enumerated boolean
type or the parametric type for working with optional values:

data Bool = True | False

data Maybe a = Just a | Nothing

Similarly, we can define a type that couples other values together. In the general form,
we can write

data Couple a b = a :-: b

introducing the value :-: as a container for some value of type a and another of type b.2

1Details on Hugs http://haskell.org/hugs/ are given in Chapter 1.
2Infix operators can also be written as prefix functions if enclosed in (). Functions can be written as

operators if enclosed in ‘‘. We will exploit this when defining the lexicon’s notation.

http://haskell.org/hugs/

5.1. MORPHOSYNTACTIC CATEGORIES 42

Let us return to the grammatical categories. Inflection of nominals is subject to several
formal requirements, which different morphological models decompose differently into
features and values that are not always complete with respect to the inflectional system,
nor mutually orthogonal. We will explain what we mean by revisiting the notions of state
and definiteness in contemporary written Arabic.

To minimize the confusion of terms, we will depart from the formulation presented
in (El Dada and Ranta, 2006). In there, there is only one relevant category, which we can
reimplement as State’:

data State’ = Def | Indef | Const

Variation of the values of State’ would enable generating the forms al-kitābu �
H. A

��
Jº� Ë

�
@

def., kitābun �
H. A

��
J»� indef., and kitābu �

H. A
��
J»� const. for the nominative singular of ‘book’. This

seems fine until we explore more inflectional classes. The very variation for the nomi-
native plural masculine of the adjective ‘high’ gets ar-rafı̄↪ūna

�	
àñ

�
ªJ

	
�̄

��QË
�
@ def., rafı̄↪ūna

�	
àñ

�
ªJ

	
�̄

�P

indef., and rafı̄↪ū ñ
�
ªJ

	
�̄

�P const. But what value does the form ar-rafı̄↪ū ñ
�
ªJ

	
�̄

��QË
�
@, found in im-

proper annexations such as in al-mas↩ūlūna ’r-rafı̄↪ū ’l-mustawā ø
�

ñ
��
J��ÜÏ @ ñ

�
ªJ

	
�̄

��QË @
�	
àñ

�
Ëð

�

ñ��ÜÏ

�
@

‘the-officials the-highs-of the-level’, receive?
It is interesting to consult for instance (Fischer, 2001), where state has exactly the values

of State’, but where the definite state Def covers even forms without the prefixed al- Ë
�
@

article, since also some separate words like lā B
�

‘no’ or yā A
�
K
 ‘oh’ can have the effects on

inflection that the definite article has. To distinguish all the forms, we might think of
keeping state in the sense of Fischer, and adding a boolean feature for the presence of the
definite article . . . However, we would get one unacceptable combination of the values
claiming the presence of the definite article and yet the indefinite state, i.e. possibly the
indefinite article or the diptotic declension.

Functional Arabic Morphology refactors the six different kinds of forms (if we consider
all inflectional situations) depending on two parameters. The first controls prefixation of
the (virtual) definite article, the other reduces some suffixes if the word is a head of an
annexation. In ElixirFM, we define these parameters as type synonyms to what we recall:

type Definite = Maybe Bool

type Annexing = Bool

The Definite values include Just True for forms with the definite article, Just False

for forms in some compounds or after lā B
�

or yā A
�
K
 (absolute negatives or vocatives), and

Nothing for forms that reject the definite article for other reasons.
Functional Arabic Morphology considers state as a result of coupling the two indepen-

dent parameters:

type State = Couple Definite Annexing

5.2. ELIXIRFM LEXICON 43

Thus, the indefinite state Indef describes a word void of the definite article(s) and not
heading an annexation, i.e. Nothing :-: False. Conversely, ar-rafı̄↪ū ñ

�
ªJ

	
�̄

��QË
�
@ is in the state

Just True :-: True. The classical construct state is Nothing :-: True. The definite state
is Just _ :-: False, where _ is True for El Dada and Ranta and False for Fischer. We may
discover that now all the values of State are meaningful.3

Type declarations are also useful for defining in what categories a given part of speech
inflects. For verbs, this is a bit more involved, and we leave it for Figure 5.2. For nouns,
we set this algebraic data type:

data ParaNoun = NounS Number Case State

In the interpreter, we can now generate all 54 combinations of inflectional parameters
for nouns. Note that these can be shown in the positional notation as well, cf. Chapter 6:

. . . ? [NounS n c s | n <- enum, c <- enum, s <- values] −→

[NounS Singular Nominative (Nothing :-: False),

NounS Singular Nominative (Nothing :-: True),

NounS Singular Nominative (Just True :-: False),

...

NounS Dual Genitive (Just True :-: False),

NounS Dual Genitive (Just True :-: True),

NounS Dual Genitive (Just False :-: False),

...

NounS Plural Accusative (Just False :-: False),

NounS Plural Accusative (Just False :-: True)]

The function values is analogous to enum, and both need to know their type before
they can evaluate. The ‘magic’ is that the bound variables n, c, and s have their type
determined by the NounS constructor, so we need not type anything explicitly. We used the
list comprehension syntax to cycle over the lists that enum and values produce, cf. (Hudak,
2000, Wadler, 1985, Daumé III, 2002–2006).

5.2 ElixirFM Lexicon

Unstructured text is just a list of characters, or string:

type String = [Char]

Yet words do have structure, particularly in Arabic. We will work with strings as
the superficial word forms, but the internal representations will be more abstract (and
computationally more efficient, too).

3With Just False :-: True, we can annotate e.g. the ‘incorrectly’ underdetermined rafı̄↪ū ñ
�
ªJ

	
�̄

�P in hum-
u ’l-mas↩ūlūna rafı̄↪ū ’l-mustawā ø

�
ñ

��
J��ÜÏ @ ñ

�
ªJ

	
�̄

�P
�	
àñ

�
Ëð

�

ñ��ÜÏ@

�
Ñ

�
ë ‘they-are the-officials highs-of the-level’, i.e. ‘they

are the high-level officials’.

5.2. ELIXIRFM LEXICON 44

|> "k t b" <| [

FaCaL ‘verb‘ ["write", "be destined"] ‘imperf‘ FCuL,

FiCAL ‘noun‘ ["book"] ‘plural‘ FuCuL,

FiCAL |< aT ‘noun‘ ["writing"],

FiCAL |< aT ‘noun‘ ["essay", "piece of writing"] ‘plural‘ FiCAL |< At,

FACiL ‘noun‘ ["writer", "author", "clerk"] ‘plural‘ FaCaL |< aT

‘plural‘ FuCCAL,

FuCCAL ‘noun‘ ["kuttab", "Quran school"] ‘plural‘ FaCACIL,

MaFCaL ‘noun‘ ["office", "department"] ‘plural‘ MaFACiL,

MaFCaL |< Iy ‘adj‘ ["office"],

MaFCaL |< aT ‘noun‘ ["library", "bookstore"] ‘plural‘ MaFACiL]

Figure 5.1 Entries of the ElixirFM lexicon nested under the root k t b I.
�
J» using

morphophonemic templates.

The definition of lexemes can include the derivational root and pattern information if ap-
propriate, cf. (Habash et al., 2005), and our model will encourage this. The surface word
kitāb H. A

��
J»� ‘book’ can decompose to the triconsonantal root k t b I.

�
J» and the morphophone-

mic pattern FiCAL of type PatternT:

data PatternT = FaCaL | FAL | FaCY | FaCL

| HaFCAL | HACAL | HaFCA’ | HACA’

| FiCAL | FiCA’

| FuCCAL | FUCAL

| TaFACuL | TaFACI

| MustaFCaL | {- ... -} | MustaFaCL

{- ... -}

deriving (Eq, Enum, Show)

The deriving clause associates PatternT with methods for testing equality, enumerat-
ing all the values, and turning the names of the values into strings:

. . . ? show FiCAL −→ "FiCAL"

We choose to build on morphophonemic patterns rather than CV patterns and vo-
calisms. Words like istaǧāb H. A

�
j.

��
J�@� ‘to respond’ and istaǧwab H.

�
ñj.

��
J�@� ‘to interrogate’ have

5.2. ELIXIRFM LEXICON 45

the same underlying VstVCCVC pattern, so information on CV patterns alone would
not be enough to reconstruct the surface forms. Morphophonemic patterns, in this case
IstaFAL and IstaFCaL, can easily be mapped to the hypothetical CV patterns and vo-
calisms, or linked with each other according to their relationship. Morphophonemic pat-
terns deliver more information in a more compact way.

For ease of editing of the above enumeration, we can for instance arrange it into six
columns that include the same kind of phonologically transformed patterns. We can in
fact introduce functions that would classify the patterns explicitly with their underlying
phonological information, as well as verify the completeness of their definition. This kind
of checking seems beneficial, and desirably ‘algebraic’.4

Of course, ElixirFM provides functions for properly interlocking the patterns with the
roots, cf. the interlock method for details:

. . . ? merge "k t b" FiCAL −→ "kitAb"

. . . ? merge "ˆg w b" IstaFAL −→ "istaˆgAb"

. . . ? merge "ˆg w b" IstaFCaL −→ "istaˆgwab"

. . . ? merge "s ’ l" MaFCUL −→ "mas’Ul"

. . . ? merge "z h r" IFtaCaL −→ "izdahar"

The izdahar Q
�
ë

�
X 	P@� ‘to flourish’ case exemplifies that exceptionless assimilations need not

be encoded in the patterns, but can instead be hidden in rules.
The whole generative model adopts the multi-purpose notation of ArabTEX (Lagally,

2004) as a meta-encoding of both the orthography and phonology. Therefore, instantiation
of the "’" hamza carriers or other merely orthographic conventions do not obscure the
morphological model. With Encode Arabic interpreting the notation, ElixirFM can at the
surface level process the original Arabic script (non-)vocalized to any degree or work with
some kind of transliteration or even transcription thereof.

Morphophonemic patterns represent the stems of words. The various kinds of abstract
prefixes and suffixes can be expressed either as atomic values, or as literal strings wrapped
into extra constructors:

data Prefix = Al | LA | Prefix String

data Suffix = Iy | AT | At | An | Ayn | Un | In | Suffix String

al = Al; lA = LA -- function synonyms

aT = AT; ayn = Ayn; aN = Suffix "aN"

Affixes and patterns are arranged together via the Morphs a data type, where a is
a triliteral pattern PatternT or a quadriliteral PatternQ or a non-templatic word stem
Identity of type PatternL:

4We cannot resist noting, after http://wikipedia.org/, that the discipline of algebra derives its name
from the treatise “The Compendious Book on Calculation by Completion and Balancing” written in Arabic
by the Persian mathematician and astronomer al-Khwārezmı̄ (780–850), also the father of algorithm.

http://wikipedia.org/

5.2. ELIXIRFM LEXICON 46

data PatternL = Identity

data PatternQ = KaRDaS | KaRADiS {- ... -}

data Morphs a = Morphs a [Prefix] [Suffix]

The word lā-silkı̄y
�

ú

¾
�
Ê�

�
B
�

‘wireless’ can thus be decomposed as the root s l k ½Ê� and
the value Morphs FiCL [LA] [Iy]. Shunning such concrete representations, we define new
operators >| and |< that denote prefixes, resp. suffixes, inside Morphs a:

. . . ? lA >| FiCL |< Iy −→ Morphs FiCL [LA] [Iy]

Implementing >| and |< to be applicable in the intuitive way required Haskell’s multi-
parameter type classes with functional dependencies (Jones, 2000):

class Morphing a b | a -> b where

morph :: a -> Morphs b

instance Morphing (Morphs a) a where

morph = id

instance Morphing PatternT PatternT where

morph x = Morphs x [] []

The instance declarations ensure how the morph method would turn values of type
a into Morphs b. Supposing that morph is available for the two types, |< is a function
on y :: a and x :: Suffix giving a value of type Morphs b. The intermediate result of
morph y is decomposed, and x is prepended to the stack s of the already present suffixes.

(|<) :: Morphing a b => a -> Suffix -> Morphs b

y |< x = Morphs t p (x : s)

where Morphs t p s = morph y

(>|) :: Morphing a b => Prefix -> a -> Morphs b

x >| y = Morphs t (x : p) s

where Morphs t p s = morph y

If it is strings that we need to prefix or suffix into Morphs, then two more operators can
come handy:

5.2. ELIXIRFM LEXICON 47

(>>|) :: Morphing a b => String -> a -> Morphs b

x >>| y = Prefix x >| y

(|<<) :: Morphing a b => a -> String -> Morphs b

y |<< x = y |< Suffix x

With the introduction of patterns, their synonymous functions and the >| and |< op-
erators, we have started the development of what can be viewed as a domain-specific
language embedded in the general-purpose programming language. Encouraged by the
flexibility of many other domain-specific languages in Haskell, esp. those used in func-
tional parsing (Ljunglöf, 2002) or pretty-printing (Wadler, 2003), we may design the lexi-
con to look like e.g.

module Elixir.Data.Lexicon

import Elixir.Lexicon

lexicon = listing {- lexicon’s header -}

|> {- root one -} <| [{- Entry a -}]

|> {- root two -} <| [{- Entry b -}]

-- other roots or word stems and entries

and yet be a verifiable source code defining a data structure that is directly interpretable.
The meaning of the combinators |> and <| could be supplied via an external module
Elixir.Lexicon, so is very easy to customize. The effect of these combinators might be
similar to the : and :-: constructors that we met previously, but perhaps other data struc-
tures might be built from the code instead of lists and pairs. These are some of our current
definitions in Elixir.Lexicon:

type Lexicon = [Wrap Nest]

type Root = String

data Nest a = Nest Root [Entry a] deriving Show

data Lexeme a = RE Root (Entry a) deriving Show

data Wrap a = WrapS (a String)

| WrapT (a PatternT)

| WrapQ (a PatternQ)

| WrapL (a PatternL) deriving Show

5.2. ELIXIRFM LEXICON 48

instance Wrapping PatternT where wrap = WrapT

unwrap (WrapT x) = x

instance Wrapping PatternQ where wrap = WrapQ

unwrap (WrapQ x) = x

instance Wrapping PatternL where wrap = WrapL

unwrap (WrapL x) = x

instance Wrapping String where wrap = WrapS

unwrap (WrapS x) = x

(<|) :: Wrapping a => Root -> [Entry a] -> Wrap Nest

(<|) r l = wrap (Nest r l)

(|>) :: [a] -> a -> [a]

(|>) x y = (:) y x

Individual entries can be defined with functions in a convenient notational form using
‘‘. Infix operators can have different precedence and associativity, which further increases
the options for designing a lightweight, yet expressive, embedded language.

In Figure 5.1, each entry reduces to a record of type Entry PatternT reflecting inter-
nally the lexeme’s inherent properties. Consider one such reduction below. Functions like
plural or gender or humanness could further modify the Noun’s default information:

. . . ? FiCAL |< aT ‘noun‘ ["writing"] −→

noun (FiCAL |< aT) ["writing"] −→

Entry (Noun [] Nothing Nothing)

(morph (FiCAL |< aT))

["writing"] −→

Entry (Noun [] Nothing Nothing)

(Morphs FiCAL [] [AT])

["writing"]

The lexicon of ElixirFM is derived from the open-source Buckwalter lexicon (Buck-
walter, 2002).5 We devised an algorithm in Perl using the morphophonemic patterns of
ElixirFM that finds the roots and templates of the lexical items, as they are available only
partially in the original, and produces the lexicon in formats for Perl and for Haskell.

Information in the ElixirFM lexicon can get even more refined, by lexicographers or by
programmers. Verbs could be declared via indicating their derivational verbal form (that

5Habash (2004) comments on the lexicon’s internal format.

5.3. MORPHOLOGICAL RULES 49

data Mood = Indicative | Subjunctive | Jussive | Energetic deriving (Eq, Enum)

data Gender = Masculine | Feminine deriving (Eq, Enum)

data ParaVerb = VerbP Voice Person Gender Number

| VerbI Mood Voice Person Gender Number

| VerbC Gender Number deriving Eq

paraVerbC :: Morphing a b => Gender -> Number -> [Char] -> a -> Morphs b

paraVerbC g n i = case n of

Singular -> case g of Masculine -> prefix i . suffix ""

Feminine -> prefix i . suffix "I"

Plural -> case g of Masculine -> prefix i . suffix "UW"

Feminine -> prefix i . suffix "na"

_ -> prefix i . suffix "A"

Figure 5.2 Excerpt from the implementation of verbal inflectional features and
paradigms in ElixirFM.

would, still, reduce to some Morphs a value), and deverbal nouns and participles could
be defined generically for the extended forms. The identification of patterns as to their
derivational form is implemented easily with the isForm method:

data Form = I | II | III | IV {- .. -} XV

. . . ? isForm VIII IFtaCaL −→ True

. . . ? isForm II TaKaRDuS −→ True

. . . ? filter (‘isForm‘ MuFCI) [I ..] −→ [IV]

Nominal parts of speech need to be enhanced with information on the inherent num-
ber, gender and humanness, if proper modeling of linguistic agreement in Arabic is de-
sired.6 Experiments with the Prague Arabic Dependency Treebank (Hajič et al., 2004b)
show that this information can be learned from annotations of syntactic relations.

5.3 Morphological Rules

Inferential–realizational morphology is modeled in terms of paradigms, grammatical cat-
egories, lexemes and word classes. ElixirFM implements the comprehensive rules that
draw the information from the lexicon and generate the word forms given the appro-
priate morphosyntactic parameters. The whole is invoked through a convenient inflect

6Cf. e.g. (El Dada and Ranta, 2006, Kremers, 2003).

5.3. MORPHOLOGICAL RULES 50

method, which is instantiated for various combinations of types in ElixirFM, and is further
illustrated in Chapter 6:

class Inflect m p where

inflect :: (Template a, Rules a, Forming a,

Morphing a a, Morphing (Morphs a) a) =>

m a -> p -> [(String, [(Root, Morphs a)])]

The lexicon and the parameters determine the choice of paradigms. The template se-
lection mechanism differs for nominals (providing plurals) and for verbs (providing all
needed stem alternations in the extent of the entry specifications of e.g. Hans Wehr’s dic-
tionary), yet it is quite clear-cut!

Alternations of verbal stems between perfective vs. imperfective and active vs. passive
rely on the verbStems method, instantiated for all pattern types, and on a simple boolean
function isVariant which decides, based merely on the inflectional parameters, whether
phonological variants of weak or gemination patterns are needed or not.

Below is the implementation of verbal stem inflection for verbs of Form X. Note that it
is only here and in Form I that the actual root consonants need to be taken into account.
In all other Forms, the morphophonemic patterns associated normally, i.e. even implicitly,
with the entries in the lexicon provide all the required phonological information.

verbStems X r

| let x = words r in if null x || length x > 2 && x !! 1 == x !! 2

then False

else head x ‘elem‘ ["w", "y"] = [

(Nothing, IstaFCaL, UstUCiL, StaFCiL, StaFCaL),

(Nothing, IstaFCY, UstUCI, StaFCI, StaFCY)

]

| otherwise = [

(Nothing, IstaFCaL, UstuFCiL, StaFCiL, StaFCaL),

(Just (IstaFaL, UstuFiL, StaFiL, StaFaL),

IstaFAL, UstuFIL, StaFIL, StaFAL),

(Nothing, IstaFCY, UstuFCI, StaFCI, StaFCY),

(Nothing, IstaFY, UstuFI, StaFI, StaFY), -- ista.hY

(Just (IstaFCaL, UstuFCiL, StaFCiL, StaFCaL),

IstaFaCL, UstuFiCL, StaFiCL, StaFaCL)

]

5.3. MORPHOLOGICAL RULES 51

This seems as a novel abstraction, not present in the grammars (Fischer, 2001, Holes,
2004, Badawi et al., 2004). It simplifies greatly the morphological model. Again, we credit
this to the particular design of the morphophonemic patterns, cf. Chapter 3.

In Figure 5.2, the algebraic data type ParaVerb restricts the space in which verbs are
inflected by defining three Cartesian products of the elementary categories: a verb can
have VerbP perfect forms inflected in voice, person, gender, number, VerbI imperfect forms
inflected also in mood, and VerbC imperatives inflected in gender and number only.7

The paradigm for inflecting imperatives, the one and only such paradigm in ElixirFM,
is implemented as paraVerbC. It is a function parametrized by some particular value of
gender g and number n. It further takes the initial imperative prefix i and the verbal
stem (both inferred from the morphophonemic patterns in the lexical entry) to yield the
inflected imperative form. Note the polymorphic type of the function, which depends on
the following:

prefix, suffix :: Morphing a b => [Char] -> a -> Morphs b

prefix x y = Prefix x >| y

suffix x y = y |< Suffix x

If one wished to reuse the paradigm and apply it on strings only, it would be sufficient
to equate these functions with standard list operations, without any need to reimplement
the paradigm itself.

The definition of paraVerbC is simple and concise due to the chance to compose with .

the partially applied prefix and suffix functions and to virtually omit the next argument.
This advanced formulation may seem not as minimal as when specifying the literal end-
ings or prefixes, but we present it here to illustrate the options that there are. An abstract
paradigm can be used on more abstract types than just strings.8 Inflected forms need not
be merged with roots yet, and can retain the internal structure:

. . . ? paraVerbC Feminine Plural "u" FCuL −→ "u" >>| FCuL |<< "na"

. . . ? merge "k t b" (Prefix "u" >| FCuL |< Suffix "na") −→

fem.: "uktubna" uktubna
�	á
�
�.

��
J
�
»

�
@ pl. ‘write!’

. . . ? [merge "q r ’" (paraVerbC g n "i" FCaL) | g <- values,

n <- values] −→

masc.: "iqra’" iqra↩
�

@ �Q

��
¯@� sg. "iqra’A" iqra↩̄a

�
@ �Q

��
¯@� du. "iqra’UW" iqra↩ū @ð

�

ð �Q

��
¯@� pl. ‘read!’

fem.: "iqra’I" iqra↩̄ı ú

G
�

�Q
��
¯@� sg. "iqra’A" iqra↩̄a

�
@ �Q

��
¯@� du. "iqra’na" iqra↩na

�	
à

�

@ �Q

��
¯@� pl.

7Cf. (Forsberg and Ranta, 2004, El Dada and Ranta, 2006).
8Cf. some morphology-theoretic views in (Spencer, 2004).

5.3. MORPHOLOGICAL RULES 52

The highlight of the Arabic morphology is that the ‘irregular’ inflection actually rests
in strictly observing some additional rules, the nature of which is phonological. There-
fore, surprisingly, ElixirFM does not even distinguish between verbal and nominal word
formation when enforcing these rules.9 This reduces the number of paradigms to the pro-
totypical 3 verbal and 5 nominal! Yet, the model is efficient.

The nominal paradigms of inflection discern five kinds of structural endings. The
paraMasculine and paraFeminine are just names for the illusory plural endings -ūn 	

àñ
�
' and

-āt �
HA

�
', paraDual is for the illusory dual ending -ān 	

àA
�
'. None of these paradigms implies

anything about the functional morphosyntactic gender and number! Note the types of the
paradigms.

paraTriptote, paraDiptote, paraDual, paraMasculine, paraFeminine ::

Morphing a b => Case -> Definite -> Annexing -> a -> Morphs b

paraTriptote c d a = case (c, d, a) of

(Nominative, Nothing, False) -> suffix "uN"

(Genitive, Nothing, False) -> suffix "iN"

(Accusative, Nothing, False) -> suffix "aN"

(Nominative, _ , _) -> suffix "u"

(Genitive, _ , _) -> suffix "i"

(Accusative, _ , _) -> suffix "a"

paraDiptote c d a = case (c, d, a) of

(Nominative, Nothing, False) -> suffix "u"

(_ , Nothing, False) -> suffix "a"

(Nominative, _ , _) -> suffix "u"

(Genitive, _ , _) -> suffix "i"

(Accusative, _ , _) -> suffix "a"

paraDual c d a = case (c, d, a) of

(Nominative, _ , False) -> suffix "Ani"

(_ , _ , False) -> suffix "ayni"

(Nominative, _ , True) -> suffix "A"

(_ , _ , True) -> suffix "ay"

paraMasculine c d a = case (c, d, a) of

(Nominative, _ , False) -> suffix "Una"

(_ , _ , False) -> suffix "Ina"

9Cf. (Fischer, 2001, pp. 21–23, 30, 94–95, 135–139) and (Holes, 2004, pp. 112–114, 172).

5.3. MORPHOLOGICAL RULES 53

(Nominative, _ , True) -> suffix "U"

(_ , _ , True) -> suffix "I"

paraFeminine c d a = case (c, d, a) of

(Nominative, Nothing, False) -> suffix "uN"

(_ , Nothing, False) -> suffix "iN"

(Nominative, _ , _) -> suffix "u"

(_ , _ , _) -> suffix "i"

Given that the morphophonemic patterns already do reflect the phonological restric-
tions, the only places of further phonological interaction are the prefix boundaries and the
junction of the last letter of the pattern with the very adjoining suffix. The rules are imple-
mented with ->- and -<-, respectively, and are invoked from within the merge function:

merge :: (Morphing a b, Template b) => [Char] -> a -> [Char]

(->-) :: Prefix -> [Char] -> [Char]

(-<-) :: Char -> Suffix -> [Char]

’I’ -<- x = case x of AT -> "iyaT"

Iy -> "Iy"

Un -> "Una"

In -> "Ina"

Suffix "" -> "i"

Suffix "Una" -> "Una"

Suffix "U" -> "U"

Suffix "UW" -> "UW"

Suffix "Ina" -> "Ina"

Suffix "I" -> "I"

Suffix x | x ‘elem‘ ["i", "u"] -> "I"

| x ‘elem‘ ["iN", "uN"] -> "iN"

| "n" ‘isPrefixOf‘ x ||

"t" ‘isPrefixOf‘ x -> "I" ++ x

_ -> "iy" ++ show x

’Y’ -<- x = case x of AT -> "AT"

Iy -> "awIy"

Un -> "awna"

In -> "ayna"

5.4. APPLICATIONS 54

Suffix "" -> "a"

Suffix "Una" -> "awna"

Suffix "U" -> "aw"

Suffix "UW" -> "aW"

Suffix "Ina" -> "ayna"

Suffix "I" -> "ay"

Suffix x | x ‘elem‘ ["a", "i", "u"] -> "Y"

| x ‘elem‘ ["aN", "iN", "uN"] -> "aNY"

| "at" ‘isPrefixOf‘ x -> x

Suffix "aˆgIy" -> "aˆgIy"

_ -> "ay" ++ show x

(-<-) is likewise defined when matching on ’A’, ’U’, and when not matching. (->-)

implements definite article assimilation and occasional prefix interaction with weak verbs.
Nominal inflection is also driven by the information from the lexicon and by phonol-

ogy. The reader might be noticing that the morphophonemic patterns and the Morphs a

templates are actually extremely informative. We can use them as determining the inflec-
tional class and the paradigm function, and thus we can almost avoid other unintuitive or
excessive indicators of the kind of weak morphology, diptotic inflection, and the like.

5.4 Applications

The ElixirFM linguistic model and the data of the lexicon can be integrated into larger
applications or used as standalone libraries and resources.

The language-independent part of the system could rest in the Functional Morphology
library (Forsberg and Ranta, 2004). Among other useful things, it implements the compi-
lation of the inflected word forms and their associated morphosyntactic categories into
morphological analyzers and generators. The method used for analysis is deterministic
parsing with tries, cf. also (Huet, 2002, Ljunglöf, 2002).

Nonetheless, ElixirFM provides its original analysis method exploiting the inflectional
invariant defined in Chapter 3. We can, at least in the present version of the implementa-
tion, dispense with the compilation into tries, and we use rather minimal computational
resources.

We define a class of types that can be Resolved, which introduces one rather general
method resolveBy and one more specific method resolve, for which there is a default
implementation. It says that the form in question should be resolved by equality (==)

5.4. APPLICATIONS 55

with the inflected forms in the model. The generic resolveBy method can be esp. used for
recognition of partially vocalized or completely non-vocalized representations of Arabic,
or allow in fact arbitrary kinds of omissions. We illustrate this in Chapter 6.

class Eq a => Resolve a where

resolveBy :: (String -> String -> Bool) -> a -> [[Wrap Token]]

resolve :: a -> [[Wrap Token]]

resolve = resolveBy (==)

data Token a = Token { lexeme :: Lexeme a,

struct :: (Root, Morphs a),

tag :: String } deriving Show

data Entry a = Entry { entity :: Entity a,

morphs :: Morphs a,

reflex :: Reflex } deriving Show

type Reflex = [String]

The Token a type refers to the complete information on the underlying lexeme, as
well as describes the structure of the inflected form and its positional morphological tag,
cf. Chapter 7. In contrast, Entry a types constitute the complete entries in the Lexicon,
except that they inherit the information on Root which is shared in the whole Nest a, but
which can be overridden. The Entity a record covers the inherent grammatical informa-
tion. Reflex can be the lexical definition of the entry, i.e. in particular the English gloss
extracted from the Buckwalter lexicon.

Reusing and extending the original Functional Morphology library, ElixirFM also pro-
vides functions for exporting and pretty-printing the linguistic model into XML, LATEX,
Perl, SQL, and other custom formats.

We have presented ElixirFM as a high-level functional implementation of Functional
Arabic Morphology. Next to some theoretical points, we proposed a model that represents
the linguistic data in an abstract and extensible notation that encodes both orthography and
phonology, and whose interpretation is customizable. We developed a domain-specific
language in which the lexicon is stored and which allows easy manual editing as well
as automatic verification of consistency. We believe that the modeling of both the written
language and the spoken dialects can share the presented methodology.

Only bad boys use such recursive calls,
but only good girls use this package.
Thus the problem is of minor interest.

Carsten Heinz, the listings package

Chapter 6

Other Listings

This chapter is a non-systematic overview of the features of ElixirFM. It can serve as a
tutorial for the first sessions with ElixirFM in the environment of the Hugs interpreter.

For information on installation and the initial settings, cf. Chapter 1.
Note that the order of queries is not significant for the results. Unless, of course, dif-

ferent Hugs settings apply.
The repertoire of the user functions may be somewhat preliminary, and will be ex-

tended as practice requires. The function names that appear bold, thanks to the listings
package of LATEX, are implemented in standard Haskell, and can as well be explored using
:info or :find.

Hugs> :l ElixirFM

ElixirFM> :f $

ElixirFM> :f .

ElixirFM> :i lexicon

lexicon :: Lexicon

ElixirFM> countNest lexicon

4290

ElixirFM> countEntry lexicon

13429

The lexicon that is normally loaded is defined in the Elixir.Data.Lexicons module.
It is an abridged version of the ElixirFM lexicon. Working with it is faster, and it should
cover most of the newswire text vocabulary. To access the complete lexicon, we need to
:load, and import in the source code, the Elixir.Data.Buckwalter module instead.

ElixirFM> :e ElixirFM.hs

ElixirFM> :e FM/Arabic/Dictionary.hs

ElixirFM> :e Elixir/Data/Lexicons.hs

ElixirFM> :e Elixir/Data/Buckwalter.hs

56

57

ElixirFM> :l Elixir.Data.Buckwalter

Elixir.Data.Buckwalter> countNest lexicon

9916

Elixir.Data.Buckwalter> countEntry lexicon

40134

Elixir.Data.Buckwalter> :l ElixirFM

Let us find out what the Show class and the :s -u and :s +u options are responsible for:

ElixirFM> :s -u

ElixirFM> lA >| FiCL |< Iy

Morphs FiCL [LA] [Iy]

ElixirFM> IFtaCY |<< "UW"

Morphs IFtaCY [] [Suffix "UW"]

ElixirFM> :s +u

ElixirFM> lA >| FiCL |< Iy

lA >| FiCL |< Iy

ElixirFM> IFtaCY |<< "UW"

IFtaCY |<< "UW"

ElixirFM> IFtaCY |< Suffix "UW"

IFtaCY |<< "UW"

Some Arabic linguistic preliminaries:

ElixirFM> enum :: [PatternT]

[FaCaL,FAL,FaCY,FaCL,FaCA,FaCiL,FaCI,FaCuL,FaCU,FuCiL,...

...,IFCanLY,UFCunLY,FCanLI,FCanLY,IFCinLA’,MuFCanLI,MuFCanLY]

ElixirFM> [unwraps root x | x <- lexicon]

...

ElixirFM> (take 10 . drop 50) [unwraps root x | x <- lexicon]

["’ .t l","’ _d _d","’ _d ’","’ ˆs r","’ ˆg w d",

"’ ˆg r","’ _h ’","’ _d y","’ _d r","’ _d n"]

Simple lookup on the nests and entries of the [Wrap Nest] that you explicitly provided
it with:

ElixirFM> :i lookupRoot

lookupRoot :: Root -> Lexicon -> [Wrap Nest]

ElixirFM> :i lookupEntry

58

lookupEntry :: String -> Lexicon -> [Wrap Lexeme]

ElixirFM> :i lookupLemma

lookupLemma :: String -> Lexicon -> String

ElixirFM> lookupRoot "ˆg _d r" lexicon

[WrapT (Nest "ˆg _d r" [Entry {entity = Noun [Right FuCUL,Right FaCL]

Nothing Nothing, morphs = FiCL, reflex = ["root","stub"]},Entry

{entity = Adj [] Nothing, morphs = FiCL |< Iy, reflex = ["radical","root"]}])]

ElixirFM> lookupEntry "kitAb" lexicon

[WrapT (RE "k t b" Entry {entity = Noun [Right FuCuL] Nothing Nothing,

morphs = FiCAL, reflex = ["book"]})]

ElixirFM> lookupLemma "kitAb" lexicon

"kitAb (k t b) FiCAL\n\tNoun [Right FuCuL] Nothing Nothing\nbook\n\n"

ElixirFM> putStr $ lookupLemma "kitAb" lexicon

kitAb (k t b) FiCAL

Noun [Right FuCuL] Nothing Nothing

book

Exploration of the inflect method. Note that it works on the information that you
give it. To ensure that the lexical information is correct, provide it with the results of
lookupEntry.

ElixirFM> inflect (FiCAL ‘noun‘ []) "--------2-"

[("N------S2I",[("f ‘ l",FiCAL |<< "iN")]),("N------S2R",[("f ‘ l",...

ElixirFM> pretty $ inflect (FiCAL ‘noun‘ []) "--------2-"

("N------S2I",[("f ‘ l",FiCAL |<< "iN")])

("N------S2R",[("f ‘ l",FiCAL |<< "i")])

("N------S2D",[("f ‘ l",al >| FiCAL |<< "i")])

("N------S2C",[("f ‘ l",al >| FiCAL |<< "i")])

("N------S2A",[("f ‘ l",FiCAL |<< "i")])

("N------S2L",[("f ‘ l",FiCAL |<< "i")])

("N------D2I",[("f ‘ l",FiCAL |<< "ayni")])

("N------D2R",[("f ‘ l",FiCAL |<< "ay")])

("N------D2D",[("f ‘ l",al >| FiCAL |<< "ayni")])

("N------D2C",[("f ‘ l",al >| FiCAL |<< "ay")])

("N------D2A",[("f ‘ l",FiCAL |<< "ayni")])

("N------D2L",[("f ‘ l",FiCAL |<< "ay")])

("N------P2I",[])

("N------P2R",[])

("N------P2D",[])

("N------P2C",[])

("N------P2A",[])

("N------P2L",[])

ElixirFM> pretty $ inflect (RE "k t b" $ FiCAL ‘noun‘ []) "-------S2[IDR]"

59

("N------S2I",[("k t b",FiCAL |<< "iN")])

("N------S2R",[("k t b",FiCAL |<< "i")])

("N------S2D",[("k t b",al >| FiCAL |<< "i")])

ElixirFM> uncurry merge ("k t b", FiCAL |<< "iN")

"kitAbiN"

ElixirFM> pretty $ inflect (RE "k t b" $ FiCAL ‘noun‘ [] ‘plural‘ FuCuL)

"-------P2[IDR]"

("N------P2I",[("k t b",FuCuL |<< "iN")])

("N------P2R",[("k t b",FuCuL |<< "i")])

("N------P2D",[("k t b",al >| FuCuL |<< "i")])

Resolving well-tokenized inflected forms:

ElixirFM> pretty $ resolveBy (omitting "aiuAUI") "ktbuN"

N------S1I kitAbuN "k t b" FiCAL ["book"]

N------P1I kutubuN "k t b" FiCAL ["book"]

N------S1I kAtibuN "k t b" FACiL ["writer","author","clerk"]

A-----MS1I kAtibuN "k t b" FACiL ["writing"]

ElixirFM> pretty $ resolveBy (omitting "aiuAUI") "’ArA’"

N------P1R ’ArA’u "r ’ y" FaCL ["opinion","view","idea"]

N------P1A ’ArA’u "r ’ y" FaCL ["opinion","view","idea"]

N------P1L ’ArA’u "r ’ y" FaCL ["opinion","view","idea"]

N------P2R ’ArA’i "r ’ y" FaCL ["opinion","view","idea"]

N------P2A ’ArA’i "r ’ y" FaCL ["opinion","view","idea"]

N------P2L ’ArA’i "r ’ y" FaCL ["opinion","view","idea"]

N------P4R ’ArA’a "r ’ y" FaCL ["opinion","view","idea"]

N------P4A ’ArA’a "r ’ y" FaCL ["opinion","view","idea"]

N------P4L ’ArA’a "r ’ y" FaCL ["opinion","view","idea"]

ElixirFM> pretty $ resolveBy (omitting $ (encode UCS . decode Tim) "˜aiuKNF")

(decode Tim "lAslky")

A-----MS1I lA-silkIyuN "s l k" lA >| FiCL |< Iy ["wireless","radio"]

A-----MS1R lA-silkIyu "s l k" lA >| FiCL |< Iy ["wireless","radio"]

A-----MS1A lA-silkIyu "s l k" lA >| FiCL |< Iy ["wireless","radio"]

A-----MS1L lA-silkIyu "s l k" lA >| FiCL |< Iy ["wireless","radio"]

A-----MS2I lA-silkIyiN "s l k" lA >| FiCL |< Iy ["wireless","radio"]

A-----MS2R lA-silkIyi "s l k" lA >| FiCL |< Iy ["wireless","radio"]

A-----MS2A lA-silkIyi "s l k" lA >| FiCL |< Iy ["wireless","radio"]

A-----MS2L lA-silkIyi "s l k" lA >| FiCL |< Iy ["wireless","radio"]

A-----MS4R lA-silkIya "s l k" lA >| FiCL |< Iy ["wireless","radio"]

A-----MS4A lA-silkIya "s l k" lA >| FiCL |< Iy ["wireless","radio"]

A-----MS4L lA-silkIya "s l k" lA >| FiCL |< Iy ["wireless","radio"]

ElixirFM> pretty $ resolveBy (omitting $ (encode UCS . decode Tim) "˜aiuKNF")

(decode Tim "ktAb")

N------S1I kitAbuN "k t b" FiCAL ["book"]

N------S1R kitAbu "k t b" FiCAL ["book"]

60

N------S1A kitAbu "k t b" FiCAL ["book"]

N------S1L kitAbu "k t b" FiCAL ["book"]

N------S2I kitAbiN "k t b" FiCAL ["book"]

N------S2R kitAbi "k t b" FiCAL ["book"]

N------S2A kitAbi "k t b" FiCAL ["book"]

N------S2L kitAbi "k t b" FiCAL ["book"]

N------S4R kitAba "k t b" FiCAL ["book"]

N------S4A kitAba "k t b" FiCAL ["book"]

N------S4L kitAba "k t b" FiCAL ["book"]

N------P1I kuttAbuN "k t b" FACiL ["writer","author","clerk"]

N------P1R kuttAbu "k t b" FACiL ["writer","author","clerk"]

N------P1A kuttAbu "k t b" FACiL ["writer","author","clerk"]

N------P1L kuttAbu "k t b" FACiL ["writer","author","clerk"]

N------P2I kuttAbiN "k t b" FACiL ["writer","author","clerk"]

N------P2R kuttAbi "k t b" FACiL ["writer","author","clerk"]

N------P2A kuttAbi "k t b" FACiL ["writer","author","clerk"]

N------P2L kuttAbi "k t b" FACiL ["writer","author","clerk"]

N------P4R kuttAba "k t b" FACiL ["writer","author","clerk"]

N------P4A kuttAba "k t b" FACiL ["writer","author","clerk"]

N------P4L kuttAba "k t b" FACiL ["writer","author","clerk"]

ElixirFM> :q

Yet trees are not ‘trees’, until
so named and seen—
and never were so named, till
those had been

John Ronald Reuel Tolkien,
Mythopoeia

Chapter 7

MorphoTrees

The classical concept of morphological analysis is, technically, to take individual sub-
parts of some linear representation of an utterance, such as orthographic words, interpret
them regardless of their context, and produce for each of them a list of morphological
readings revealing what hypothetical processes of inflection or derivation the given form
could be a result of. One example of such a list is seen at the top of Figure 7.1.

The complication has been, at least with Arabic, that the output information can be
rather involved, yet it is linear again while some explicit structuring of it might be prefer-
able. The divergent analyses are not clustered together according to their common char-
acteristics. It is very difficult for a human to interpret the analyses and to discriminate
among them. For a machine, it is undefined how to compare the differences of the analy-
ses, as there is no disparity measure other than unequalness.

MorphoTrees (Smrž and Pajas, 2004) is the idea of building effective and intuitive hi-
erarchies over the information presented by morphological systems (Figure 7.1). It is es-
pecially interesting for Arabic and the Functional Arabic Morphology, yet, it is not limited
to the language, nor to the formalism, and various extensions are imaginable.

7.1 The MorphoTrees Hierarchy

As an inspiration for the design of the hierarchies, consider the following analyses of the
string fhm Ñê

	
¯. Some readings will interpret it as just one token related to the notion of ‘un-

derstanding’, but homonymous for several lexical units, each giving many inflected forms,
distinct phonologically despite their identical spelling in the ordinary non-vocalized text.
Other readings will decompose the string into two co-occurring tokens, the first one, in its
non-vocalized form f

	
¬, standing for an unambiguous conjunction, and the other one, hm

Ñë, analyzed as a verb, noun, or pronoun, each again ambiguous in its functions.
Clearly, this type of concise and ‘structured’ description does not come ready-made—

we have to construct it on top of the overall morphological knowledge. We can take the
output solutions of morphological analyzers and process them according to our require-
ments on tokenization and ‘functionality’ stated above. Then, we can merge the analyses

61

7.1. THE MORPHOTREES HIERARCHY 62

Morphs Form Token Tag Lemma Morph-Oriented Gloss

|laY+(null) ↩̄alā VP-A-3MS-- ↩̄alā promise/take an oath + he/it

|liy˜ ↩̄alı̄y A--------- ↩̄alı̄y mechanical/automatic
|liy˜+u ↩̄alı̄y-u A-------1R ↩̄alı̄y mechanical/automatic + [def.nom.]
|liy˜+i ↩̄alı̄y-i A-------2R ↩̄alı̄y mechanical/automatic + [def.gen.]
|liy˜+a ↩̄alı̄y-a A-------4R ↩̄alı̄y mechanical/automatic + [def.acc.]
|liy˜+N ↩̄alı̄y-un A-------1I ↩̄alı̄y mechanical/automatic + [indef.nom.]
|liy˜+K ↩̄alı̄y-in A-------2I ↩̄alı̄y mechanical/automatic + [indef.gen.]

|l + ↩̄al N--------R ↩̄al family/clan
+ iy -ı̄ S----1-S2- ↩anā my

IilaY ↩ilā P--------- ↩ilā to/towards

Iilay + ↩ilay P--------- ↩ilā to/towards
+ ya -ya S----1-S2- ↩anā me

Oa+liy+(null) ↩a-lı̄ VIIA-1-S-- waliya I + follow/come after + [ind.]
Oa+liy+a ↩a-liy-a VISA-1-S-- waliya I + follow/come after + [sub.]

AlY úÍ@
|lY úÍÆ@
|lY úÍÆ@ú �ÍÆ@ ↩̄alā

u

|ly ú
ÍÆ@
|ly ú
ÍÆ@�ú
Í�Æ@ ↩̄alı̄y

u u u u u u

|l y ø
 ÈÆ@
|l ÈÆ@ÈÆ@ ↩̄al

u

y ø
ø
 '� ı̄

u

IlY úÍ@

IlY úÍ@
ú �Í@
� ↩ilā

u

Ily y ø
 ú
Í@

Ily ú
Í@
ú �Í@
� ↩ilā

u

y ø
�ø
 ya

u

Oly ú
Í
@
Oly ú
Í
@�ú
Í� �ð waliya

u uúÍ@

úÍ@

Figure 7.1 Analyses of the orthographic word AlY úÍ@ turned into the Mor-
phoTrees hierarchy. The full forms and morphological tags in the leaves are
schematized to triangles.

and their elements into a five-level hierarchy similar to that of Figure 7.2. The leaves of
it are the full forms of the tokens plus their tags as the atomic units. The root of the hier-
archy represents the input string, or generally the input entity (some linear or structured
subpart of the text). Rising from the leaves up to the root, there is the level of lemmas of
the lexical units, the level of non-vocalized canonical forms of the tokens, and the level of
decomposition of the entity into a sequence of such forms, which implies the number of
tokens and their spelling.

Let us note that the MorphoTrees hierarchy itself might serve as a framework for eval-
uating morphological taggers, lemmatizers and stemmers of Arabic, since it allows for
resolution of their performance on the different levels, which does matter with respect to
the variety of applications.

7.2. MORPHOTREES DISAMBIGUATION 63

7.2 MorphoTrees Disambiguation

The linguistic structures that get annotated as trees are commonly considered to belong
to the domain of syntax. Thanks to the excellent design and programmability of TrEd,1

the general-purpose tree editor written by Petr Pajas, we could happily implement an
extra annotation mode for the disambiguation of MorphoTrees, too. We thus acquired a
software environment integrating all the levels of description in PADT.

The annotation of MorphoTrees rests in selecting the applicable sequence of tokens that
analyze the entity in the context of the discourse. In a naive setting, an annotator would
be left to search the trees by sight, decoding the information for every possible analysis
before coming across the right one. If not understood properly, the supplementary levels
of the hierarchy would rather tend to be a nuisance . . .

Instead, MorphoTrees in TrEd take great advantage of the hierarchy and offer the op-
tion to restrict one’s choice to subtrees and hide those leaves or branches that do not con-
form to the criteria of the annotation. Moreover, many restrictions are applied automati-
cally, and the decisions about the tree can be controlled in a very rapid and elegant way.

The MorphoTrees of the entity fhm Ñê
	
¯ in Figure 7.2 are in fact annotated already. The

annotator was expecting, from the context, the reading involving a conjunction. By press-
ing the shortcut c at the root node, he restricted the tree accordingly, and the only one eli-
gible leaf satisfying the C--------- tag restriction was selected at that moment. Nonethe-
less, the fa-

	
¬ ‘so’ conjunction is part of a two-token entity, and some annotation of the

second token must also be performed. Automatically, all inherited restrictions were re-
moved from the hm Ñë subtree (notice the empty tag in the flag over it), and the subtree
unfolded again. The annotator moved the node cursor2 to the lemma for the pronoun,
and restricted its readings to the nominative --------1- by pressing another mnemonic
shortcut 1, upon which the single conforming leaf hum Ñë ‘they’ was selected automat-
ically. There were no more decisions to make and the annotation proceeded to the next
entity of the discourse.

Alternatively, the annotation could be achieved merely by typing s1. The restrictions
would unambiguously lead to the nominative pronoun, and then, without human inter-
vention, to the other token, the unambiguous conjunction. These automatic decisions need
no linguistic model, and yet they are very effective.

Incorporating restrictions or forking preferences sensitive to the surrounding annota-
tions is in principle just as simple, but the concrete rules of interaction may not be easy to
find. Morphosyntactic constraints on multi-token word formation are usually hard-wired
inside analyzers and apply within an entity—still, certain restrictions might be general-
ized and imposed automatically even on the adjacent tokens of successive entities, for

1TrEd is open-source and is documented at http://ufal.mff.cuni.cz/˜pajas/tred/.
2Navigating through the tree or selecting a solution is of course possible using the mouse, the cursor

arrows, and the many customizable keyboard shortcuts. Restrictions are a convenient option to consider.

http://ufal.mff.cuni.cz/~pajas/tred/

7.2. MORPHOTREES DISAMBIGUATION 64

f
h
m

Ñê	 ¯
f

h
m

Ñë	 ¬

f

	 ¬ � 	 ¬fa u C---------
�	¬ fa-

h
m

Ñë

� � Ñ� ëhamma u VP---3MS--
��Ñ �ë hamm-a

� Ñ� ëhamm

u N---------
�Ñ �ë hamm

u N-------1R
��Ñ �ë hamm-u

u N-------4R
��Ñ �ë hamm-a

u N-------2R
��Ñ �ë hamm-i

u N-------1I
��Ñ �ë hamm-un

u N-------2I
��Ñ �ë hamm-in

Ñ� ëhum u S----3MP1- Ñ �ë hum

f
h
m

Ñê	 ¯
f
h
m

Ñê	 ¯
� Ñê �� 	 ¯fahimaÑ
ê� 	 ¯fahm� Ñ� � ê� 	 ¯fahhama

C
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
1
-

� 	 ¬fa
an

d
,s

o

� � Ñ� ë hamma
to

b
e

re
ad

y,
in

te
n

d

� Ñ� ë hamm
co

n
ce

rn
,i

n
te

re
st

Ñ� ëhum
th

ey

� Ñê �� 	 ¯ fahima
to

u
n

d
er

st
an

d

Ñê� 	 ¯fahm
u

n
d

er
st

an
d

in
g

� Ñ� � ê� 	 ¯ fahhamato
m

ak
e

u
n

d
er

st
an

d

Figure 7.2 MorphoTrees of the orthographic string fhm Ñê
	
¯ including annotation

with restrictions. The dashed lines indicate there is no solution suiting the inher-
ited restrictions in the given subtree. The dotted line symbolizes there might be
implicit morphosyntactic constraints between the adjacent tokens in the analyses.

7.3. FURTHER DISCUSSION 65

instance. Eventually, annotation of MorphoTrees might be assisted with real-time tagging
predictions provided by some independent computational module.

Just for illustration, let us extract a snippet from the MorphoTrees implementation
written in Perl. The function restrict applied to two tags --------1- and S----3MP4-

would yield S----3MP1-. Naturally, the first argument can specify more positions at once,
e.g. VI-A--F---. Nodes become hidden if their tags do not conform to the inherited
restrictions, which we can formulate using restrict in the criterion below:

sub restrict {

my @restrict = split //, length $_[0] == $dims ? $_[0] : ’-’ x $dims;

my @inherit = split //, $_[1];

return join ’’, map { $restrict[$_] eq ’-’ && defined $inherit[$_] ?

$inherit[$_] : $restrict[$_] } 0 .. $#restrict;

}

$node->{’hide’} = ’hide’ if $node->{’tag’} ne

restrict($node->{’inherit’}, $node->{’tag’});

7.3 Further Discussion

Hierarchization of the selection task seems to be the most important contribution of the
idea. The suggested meaning of the levels of the hierarchy mirrors the linguistic the-
ory and also one particular strategy for decision-making, neither of which are universal.
If we adapt MorphoTrees to other languages or hierarchies, the power of trees remains,
though—efficient top-down search or bottom-up restrictions, gradual focusing on the so-
lution, refinement, inheritance and sharing of information, etc.

The levels of MorphoTrees are extensible internally (More decision steps for some lan-
guages?) as well as externally in both directions (Analyzed entity becoming a tree of per-
haphs discontiguous parts of a possible idiom? Leaves replaced with derivational trees
organizing the morphs of the tokens?) and the concept incites new views on some issues
encompassed by morphological analysis and disambiguation.

In PADT, whose MorphoTrees average roughly 8–10 leaves per entity depending on
the data set while the result of annotation is 1.16–1.18 tokens per entity, restrictions as a
means of direct access to the solutions improve the speed of annotation significantly.3

How would the first and the second level below the root in MorphoTrees be defined, if
we used a different tokenization scheme? Some researchers do not reconstruct the canon-
ical non-vocalized forms as we do, but only determine token boundaries between the
characters of the original string (cf. Diab et al., 2004, Habash and Rambow, 2005). Our

3We have also implemented MorphoLists, a format of the data that simulates the classical non-hierarchical
approach to disambiguation, with the MorphoTrees annotation context being reused for this format, too.

7.3. FURTHER DISCUSSION 66

AlY úÍ@0 1A @ 2l È 3Y øAlY úÍ@
Al È@ lY úÍ

ε ε

AlY úÍ@
|lY úÍÆ@ |ly ú
ÍÆ@ IlY úÍ@
 Oly ú
Í
@ Al Y ø È@

|l y ø
 ÈÆ@ AlY ε ε úÍ@
Ily y ø
 ú
Í@

úÍ@
úÍ@

Figure 7.3 Discussion of partitioning and tokenization of orthographic strings.

point in doing the more difficult job is that (a) we are interested in such level of detail (b)
disambiguation operations become more effective if the hierarchy reflects more distictions
(i.e. decisions are specific about alternatives).

The relation between these tokenizations is illustrated in Figure 7.3. The graph on
the left depicts the three ‘sensible’ ways of partitioning the input string AlY úÍ@ in the
approach of (Diab et al., 2004), where characters are classified to be token-initial or not.
In the graph, boundaries between individual characters are represented as the numbered
nodes in the graph. Two of the valid tokenizations of the string are obtained by linking
the boundaries from 0 to 3 following the solid edges in the directions of the arrows. The
third partitioning AlY ε ε úÍ@ indicates that there is another fictitious boundary at the end
of the string, yielding some ‘empty word’ ε ε, which together corresponds to leaping over
the string at once and then taking the dashed edge in the graph.

Even though conceptually sound, this kind of partitioning may not be as powerful and
flexible as what MorphoTrees propose, because it rests in classifying the input characters
only, and not actually constructing the canonical forms of tokens as an arbitrary function
of the input. Therefore, it cannot undo the effects of orthographic variation (Buckwalter,
2004b), nor express other useful distinctions, such as recover the spelling of tā↩marbūt.a or
normalize hamza carriers.

We can conclude with the tree structure of Figure 7.3. The boundary-based tokeniza-
tions are definitely not as detailed as those of MorphoTrees given in Figure 7.1, and might
be occasionally thought of as another intermediate level in the hierarchy. But as they are
not linguistically motivated, we do not establish the level as such.

In any case, we propose to evaluate tokenizations in terms of the Longest Common
Subsequence (LCS) problem (Crochemore et al., 2000, Konz and McQueen, 2000–2006).
The tokens that are the members of the LCS with some referential tokenization, are con-
sidered correctly recognized. Dividing the length of the LCS by the length of one of the
sequences, we get recall, doing it for the other of the sequences, we get precision. The
harmonic mean of both is Fβ=1-measure (cf. e.g. Manning and Schütze, 1999).

Lexical closure means that an anonymous
function carries its native environment
wherever it goes, just like some tourists I
have met.

Mark Jason Dominus, Higher-Order Perl

Chapter 8

Lexicon versus Treebank

Let us give a rough outline of the structure of linguistic description in the framework of
Functional Generative Description and motivate our specific concerns about Arabic within
the Prague Arabic Dependency Treebank.

8.1 Functional Description of Language

Prague Arabic Dependency Treebank (Hajič et al., 2004a,b) is a project of analyzing large
amounts of linguistic data in Modern Written Arabic in terms of the formal representation
of language that originates in the Functional Generative Description (Sgall et al., 1986,
Sgall, 1967, Panevová, 1980, Hajičová and Sgall, 2003).

Within this theory, the formal representation delivers the linguistic meaning of what is
expressed by the surface realization, i.e. the natural language. The description is designed
to enable generating the natural language out of the formal representations. By construct-
ing the treebank, we provide a resource for computational learning of the correspondences
between both languages, the natural and the formal.

Functional Generative Description stresses the principal difference between the form
and the function of a linguistic entity,1 and defines the kinds of entities that become the
building blocks of the respective level of linguistic description—be it underlying or sur-
face syntax, morphemics, phonology or phonetics.

In this theory, a morpheme is the least unit representing some linguistic meaning, and
is understood as a function of a morph , i.e. a composition of phonemes in speech or ortho-
graphic symbols in writing, which are in contrast the least units capable of distinguishing
meanings.

Similarly, morphemes build up the units of syntactic description, and assume values
of abstract categories on which the grammar can operate. In FGD, this very proposition

1It seems important to note that the assignment of function to form is arbitrary, i.e. subject to convention—
while Kay (2004) would recall l’arbitraire du signe in this context, Hodges (2006, section 2) would draw a
parallel to wad. ↪ ©

	
�

�
ð ‘convention’.

67

8.1. FUNCTIONAL DESCRIPTION OF LANGUAGE 68

implies a complex suite of concepts, introduced with their own terminology and consti-
tuting much of the theory. For our purposes here, though, we would only like to reserve
the generic term token to denote a syntactic unit, and defer any necessary refinements of
the definition to later sections.

The highest abstract level for the description of linguistic meaning in FGD is that of
the underlying syntax. It comprises the means to capture all communicative aspects of
language, including those affecting the form of an utterance as well as the information
structure of the discourse. From this deep representation, one can generate the lower
levels of linguistic analysis, in particular the surface syntactic structure of a sentence and
its linear sequence of phonemes or graphemes.

In the series of Prague Dependency Treebanks (Hajič et al., 2001, 2006, Cuřı́n et al.,
2004, Hajič et al., 2004a), this generative model of the linguistic process is inverse and
annotations are built, with minor modifications to the theory, on the three layers denoted
as morphological, analytical and tectogrammatical.

Morphological annotations identify the textual forms of a discourse lexically and rec-
ognize the morphosyntactic categories that the forms assume. Processing on the analytical
level describes the superficial syntactic relations present in the discourse, whereas the tec-
togrammatical level reveals the underlying structures and restores the linguistic meaning
(cf. Sgall et al., 2004, for what concrete steps that takes).

Linguistic data, i.e. mostly newswire texts in their original written form, are gradually
analyzed in this system of levels, and their linguistic meaning is thus reconstructed and
made explicit.

8.1.1 Analytical Syntax

The tokens with their disambiguated grammatical information enter the annotation of
analytical syntax (Žabokrtský and Smrž, 2003, Hajič et al., 2004b).

This level is formalized into dependency trees the nodes of which are the tokens. Rela-
tions between nodes are classified with analytical syntactic functions. More precisely, it is
the whole subtree of a dependent node that fulfills the particular syntactic function with
respect to the governing node.

In Figures 8.1–8.4, we analyze the following sentence from our treebank:

(1) . AëXYî
�
E ú

�
æË @ PA¢

	
k

B@ð

�
éJ
K. QªË@

�
é

	
ªÊË @

�
éJ

	
�

�
¯

�
éÊj. ÖÏ @

�
IkQ£ H. X

B@

	
­ÊÓ ú

	
¯ð

Wa-fı̄ milaffi ’l-↩adabi t.arah. ati ’l-maǧallatu qad. ı̄yata ’l-luġati ’l-↪arabı̄yati wa-’l-↩ah
˘

t. āri ’llatı̄
tuhaddiduhā.

‘In the section on literature, the magazine presented the issue of the Arabic language
and the dangers that threaten it.’

8.1. FUNCTIONAL DESCRIPTION OF LANGUAGE 69

Figure 8.1 depicts a simplified plain verbal sentence. In Figure 8.3, we extend the
structure with coordination and a subordinate relative clause. Coordination is depicted
with a diamond node and dashed ‘dependency’ edges between the coordination node
and its member coordinants.

Both clauses and nominal expressions can assume the same analytical functions—the
attributive clause in our example is Atr, just like in the case of nominal attributes. Pred
denotes the main predicate, Sb is subject, Obj is object, Adv stands for adverbial. AuxP,
AuxY and AuxK are auxiliary functions of specific kinds.

The coordination relation is different from the dependency relation, however, we can
depict it in the tree-like manner, too. The coordinative node becomes Coord, and the
subtrees that are the members of the coordination are marked as such (cf. dashed edges).
Dependents modifying the coordination as a whole would attach directly to the Coord
node, yet would not be marked as coordinants—therefrom, the need for distinguishing
coordination and pure dependency in the trees.

The immediate-dominance relation that we capture in the annotation is independent
of the linear ordering of words in an utterance, i.e. the linear-precedence relation (De-
busmann et al., 2005, Debusmann, 2006). Thus, the expressiveness of the dependency
grammar is stronger than that of phrase-structure context-free grammar. The dependency
trees can become non-projective by featuring crossing dependencies, which reflects the
possibility of relaxing word order while preserving the links of grammatical government.

8.1.2 Tectogrammatics

The analytical syntax is yet a precursor to the deep syntactic annotation (Sgall et al., 2004,
Mikulová et al., 2006). We can note these characteristics of the tectogrammatical level, and
compare the representations of example (1) in Figures 8.1 vs. 8.3 and Figures 8.2 vs. 8.4:

deleted nodes only autosemantic lexemes and coordinative nodes are involved in tec-
togrammatics; synsemantic lexemes, such as prepositions or particles, are deleted
from the trees and may instead reflect in the values of deep grammatical categories,
called grammatemes, that are associated with the relevant autosemantic nodes

inserted nodes autosemantic lexemes that do not appear explicitly in the surface syntax,
yet that are demanded as obligatory by valency frames or by other criteria of tec-
togrammatical well-formedness, are inserted into the deep syntactic structures; the
elided lexemes may be copies of other explicit nodes, or may be restored even as
generic or unspecified

functors are the tectogrammatical functions describing deep dependency relations; the
underlying theory distinguishes arguments (inner participants: ACTor, PATient, AD-
DRessee, ORIGin, EFFect) and adjuncts (free modifications, e.g.: LOCation, CAUSe,

8.2. DEPENDENCY AND INHERENT VS. INFLECTIONAL PROPERTIES 70

MANNer, TimeWHEN, ReSTRictive, APPurtenance) and specifies the type of coor-
dination (e.g. CONJunctive, DISJunctive, ADVerSative, ConSeQuential)

grammatemes are the deep grammatical features that are necessary for proper generation
of the surface form of an utterance, given the tectogrammatical tree as well (cf. Hajič
et al., 2004b)

coreference pronouns are matched with the lexical mentions they refer to; we distinguish
grammatical coreference (the coreferent is determined by grammar) and textual coref-
erence (otherwise); in Figure 8.4, the black dotted arcs indicate grammatical corefer-
ence, the loosely dotted red curves denote textual coreference.

Note the differences in the set of nodes actually represented, esp. the restored AD-
DRessee which is omitted in the surface form of the sentence, but is obligatory in the
valency frame of the semantics of the PREDicate.

8.2 Dependency and Inherent vs. Inflectional Properties

Analytical syntax makes the agreement relations more obvious. We can often use those
relations to infer information on inherent lexical properties as to gender, number, and
humanness, as other words in the relation can, with their inflectional properties, provide
enough constraints.

So this problem is a nice example for constraint programming. Our experiments with
the treebank so far have been implemented in Perl, and the inference algorithm was not
optimal. Neither was the handling of constraints that (perhaps by an error in the annota-
tion) contradict the other ones. Anyway, we did arrive at promising preliminary results.

These experiments have not been fully completed, though, and their revision is needed.
In view of that, we consider formulating the problem in the Mozart/Oz constraint-based
programming environment (Van Roy and Haridi, 2004, chapters 9 and 12).

8.3 Tectogrammatics and Derivational Morphology

We can define default derivations of participles and deverbal nouns, the mas.dars, or con-
sider transformations of patterns between different derivational forms, like in the case of
Czech where lexical-semantic shifts are also enforced in the valency theory (cf. Žabokrtský,
2005). If the default happens to be inappropriate, then a lexical entry can be extended to
optionally include the lexicalized definition of the information that we might require.

The concrete transformations that should apply on the tectogrammatical level are a
research in progress, performed by the whole PADT team.

The ability to do the transformations, however, is expected in near future as a direct
extension of the ElixirFM system.

8.3. TECTOGRAMMATICS AND DERIVATIONAL MORPHOLOGY 71

AuxS

AuxY

AuxP

Adv

Atr

Pred

Sb

Obj

Atr

Atr

AuxK

�
ð wa- and C---------

ú

	
¯
�

fı̄ in P---------
��	

­
�
ÊÓ� milaffi collection/file-of N-------2R

H.�

�
X

�

B

�
@ al-↩adabi the-literature N-------2D

�
I

�
k�Q

�
£ t.arah. at it-presented VP-A-3FS--

��
é

��
Ê

�
j.

�ÜÏ
�
@ al-maǧallatu the-magazine N-----FS1D

��
é
��
J

	
��

��
¯ qad. ı̄yata issue-of N-----FS4R

�
é�

�	
ª

��
ÊË

�
@ al-luġati the-language N-----FS2D

�
é�

��
J
K.�

�Q
�
ªË

�
@ al-↪arabı̄yati the-Arabic A-----FS2D

. . . G---------

Figure 8.1 In the section on literature, the magazine presented the issue of the
Arabic language. Analytical representation.

SENT

LOC

PAT

PRED

ACT

ADDR

PAT

ID

RSTR

�	
­

�
ÊÓ� milaff collection Masc.Sing.Def

H.

�
X

�

@ ↩adab literature Masc.Sing.Def

h �Q
�

£ t.arah. to present Ind.Ant.Act
�
é

��
Ê
�
m.

�
× maǧallah magazine Fem.Sing.Def

�
ñ

�
ë huwa someone GenPronoun

�
é
��
J

	
��

��
¯ qad. ı̄yah issue Fem.Sing.Def

�
é

�	
ª

�
Ë luġah language Fem.Sing.Def

�ú

G
.�

�Q
�
« ↪arabı̄y Arabic Adjective

Figure 8.2 In the section on literature, the magazine presented the issue of the
Arabic language. Tectogrammatics.

8.3. TECTOGRAMMATICS AND DERIVATIONAL MORPHOLOGY 72

AuxS

AuxY

AuxP

Adv

Atr

Pred

Sb

Obj

Atr

Atr

Coord

Atr

AuxY

Atr

Obj

AuxK

�
ð wa- and C---------

ú

	
¯
�

fı̄ in P---------
��	

­
�
ÊÓ� milaffi collection/file-of N-------2R

H.�

�
X

�

B

�
@ al-↩adabi the-literature N-------2D

�
I

�
k�Q

�
£ t.arah. at it-presented VP-A-3FS--

��
é

��
Ê

�
j.

�ÜÏ
�
@ al-maǧallatu the-magazine N-----FS1D

��
é
��
J

	
��

��
¯ qad. ı̄yata issue-of N-----FS4R

�
é�

�	
ª

��
ÊË

�
@ al-luġati the-language N-----FS2D

�
é�

��
J
K.�

�Q
�
ªË

�
@ al-↪arabı̄yati the-Arabic A-----FS2D

�
ð wa- and C---------

P
�
A

�
¢

	
k

�

B

�
@ al-↩ah

˘
t. āri the-dangers N-------2D

ú

�
æ
�

��
Ë
�
@ allatı̄ that SR----FS--

�
X

��
Y

�
î
��
E tuhaddidu they-threaten VIIA-3FS--

A
�
ë -hā it S----3FS4-

. . . G---------

Figure 8.3 In the section on literature, the magazine presented the issue of the
Arabic language and the dangers that threaten it. Analytical representation.

8.3. TECTOGRAMMATICS AND DERIVATIONAL MORPHOLOGY 73

SENT

LOC

PAT

PRED

ACT

ADDR

PAT

ID

RSTR

CONJ

ID

RSTR

ACT

PAT

�	
­

�
ÊÓ� milaff collection Masc.Sing.Def

H.

�
X

�

@ ↩adab literature Masc.Sing.Def

h �Q
�

£ t.arah. to present Ind.Ant.Act
�
é

��
Ê
�
m.

�
× maǧallah magazine Fem.Sing.Def

�
ñ

�
ë huwa someone GenPronoun

�
é
��
J

	
��

��
¯ qad. ı̄yah issue Fem.Sing.Def

�
é

�	
ª

�
Ë luġah language Fem.Sing.Def

�ú

G
.�

�Q
�
« ↪arabı̄y Arabic Adjective

�
ð wa- and Coordination

Q
�

¢
�	

k h
˘

at.ar danger Masc.Plur.Def

X
��
Y

�
ë haddad to threaten Ind.Sim.Act

�ù

ë� hiya it PersPronoun

�ù

ë� hiya it PersPronoun

Figure 8.4 In the section on literature, the magazine presented the issue of the
Arabic language and the dangers that threaten it. Tectogrammatics.

You’ll be relieved to know that I
have no opinion on it. :-)

Larry Wall quoted on use Perl;

Chapter 9

Encode Arabic

This chapter contains details about the implementations related to processing the ArabTEX
notation and its extensions described in Chapter 2. The mentioned software is open-source
and is available via http://sourceforge.net/projects/encode-arabic/.

9.1 Extending ArabTEX

The alocal package implements some of the notational extensions of Encode Arabic to
work in ArabTEX. It is invoked by ArabTEX as the file containing local modifications.

The acolor package adds colorful typesetting to ArabTEX. I would like to thank Karel
Mokrý for having implemented the core of this functionality, and for having introduced
me to ArabTEX almost a decade ago.

There are further options for typesetting the Arabic script with TEX or X ETEX, cf. (Jabri,
2006) resp. (Charette, 2007). The latter system, ArabX ETEX, implements translation of the
ArabTEX notation into Unicode via the TECkit conversion engine distributed with X ETEX.

9.2 Encode Arabic in Perl

The Perl implementation of Encode Arabic is documented at http://search.cpan.
org/dist/Encode-Arabic/.

9.3 Encode Arabic in Haskell

We present parts of an implementation of a Haskell library for processing the Arabic lan-
guage in the ArabTEX transliteration (Lagally, 2004), a non-trivial and multi-purpose no-
tation for encoding Arabic orthographies and phonetic transcriptions in parallel. Our ap-
proach relies on the Pure Functional Parsing library developed in (Ljunglöf, 2002), which
we accommodate to our problem and partly extend. We promote modular design in sys-
tems for modeling or processing natural languages.

74

http://sourceforge.net/projects/encode-arabic/
http://search.cpan.org/dist/Encode-Arabic/
http://search.cpan.org/dist/Encode-Arabic/

9.3. ENCODE ARABIC IN HASKELL 75

9.3.1 Functional Parsing

Parsing is the process of recovering structured information from a linear sequence of sym-
bols. The formulation of the problem in terms of functional programming is well-known,
and both excellent literature and powerful computational tools are available (Wadler,
1985, 1995, Hutton and Meijer, 1996, 1998, Swierstra and Duponcheel, 1996, Swierstra,
2001, Leijen and Meijer, 2001, Marlow, 2001, 2003) .

The overall parsing process can be divided into layers of simpler parsing processes.
Typically, there is one lexing/scanning phase involving deterministic finite-state tech-
niques (Chakravarty, 1999), and one proper parsing phase resorting to context-free or even
stronger computation to resolve the language supplied by the lexer.

Most of the libraries, however, implement parsers giving fixed data types for them, and
implicitly restrict the parsing method to a single technique. Lexing with Chakravarty’s
CTK/Lexers and proper parsing with Leijen’s Parsec would imply ‘different’ program-
ming.

A unifying and theoretically instructive account of parsing in a functional setting
was presented by Peter Ljunglöf in his licentiate thesis (Ljunglöf, 2002). Pure Functional
Parsing, esp. the parts discussing recursive-descent parsing using parser combinators,
seemed the right resource for us to implement the grammars we need. This library in
Haskell, called PureFP in the sequel, abstracts away from the particular representation
of the parser’s data type. It provides a programming interface based on type classes and
methods, leaving the user the freedom to supply the parser types and the processing func-
tions quite independently of the descriptions in the grammars.

9.3.2 Encode Mapper

In the Encode Mapper module, we implement a lazy deterministic finite-state transducer.
This kind of parser is in the first approximation represented as a trie, i.e. a tree structure
built from the lexical specification in the grammar. In the trie, edges correspond to input
symbols and nodes to states in which output results are possibly stored. A path from the
root of the trie to a particular node encodes the sequence of symbols to be recognized in
the input, if the result associated with that node is to be emitted.

Chakravarty (1999) gave an account on building tries with possible repetitions and
cycles. The results can be actions or meta-actions—the latter being a device to escape to
non-regular capabilities of the parsers, such as recognizing nested expressions or changing
the parser dynamically during parsing. The parser does not allow ambiguous results, and
parsing is controlled by the principle of the longest match.

Ljunglöf (2002) re-formulates such kind of parsing in terms of his library, and offers
further explanation and discussion on the whole issue. While he develops several data
representations of tries suited for ambiguous grammars and supporting efficient sharing
of subtries in memory, he leaves the question of longest match aside.

9.3. ENCODE ARABIC IN HASKELL 76

The Encode Mapper implements something in between the two. The nature of our
Mapper parser is the AmbExTrie parser described in detail in (Ljunglöf, 2002, sec. 4.3). We
add to it the abilities to ‘cheat’ by rewriting the input with other symbols while still pro-
ducing results of the general type a, and to parse ambiguously using a breadth-first or a
depth-first longest match algorithm.

module Encode.Mapper where

import PureFP.OrdMap

import PureFP.Parsers.Parser

data Mapper s a = [Quit s a] :&: Map s (Mapper s a)

| forall b . FMap (b -> a) (Mapper s b)

type Quit s a = ([s], a)

A node in the Mapper s a trie is the tuple :&: of a list of results of type Quit s a and a
finite map from input symbols to subtries, mimicking the labeled directed edges. For bet-
ter memory representation, subtries can be wrapped into the FMap constructor introduced
in the original work. For finite maps, we use Ljunglöf’s PureFP.OrdMap similar to Data.Map

of the Haskell libraries.
The Quit s a data type is a tuple of a sequence of input symbols to be returned to the

input upon a match, and of the result to be reported.
Our notation for expressing grammars will use four new infix operators, the definition

of which follows. The |+| appends an alternative rule. A completely matching input
sequence with no cheating is combined with the result by |.|. In case of cheating, i.e.
input rewriting, the matching and the cheating sequences are joined with |-|, and that is
combined with the result via |:|.

infix 4 |-| -- rule = "a" |.| 1

infix 3 |:|, |.| -- |+| "a" |.| 2

infixl 2 |+| -- |+| "b" |-| "aa" |:| 3

(|:|) :: InputSymbol s => (a -> Mapper s a) -> a

-> Mapper s a

(|:|) x y = x y

(|-|) :: InputSymbol s => [s] -> [s] -> a -> Mapper s a

(|-|) x y z = syms x >> [returnQuit y z] :&: emptyMap

(|.|) :: InputSymbol s => [s] -> a -> Mapper s a

(|.|) x y = x |-| [] |:| y

(|+|) :: InputSymbol s => Mapper s a -> Mapper s a

-> Mapper s a

(|+|) = (<+>)

9.3. ENCODE ARABIC IN HASKELL 77

0

1

4

‘a’

‘b’

2

3

5

6

7

8

‘d’

‘b’

‘c’

‘a’

‘b’

‘a’

‘c’

→ “x”

“b”← → “a”

→ “ab”←↩ “b”“ba”←

→ “abacbd”(a
)

m
em

or
y

re
pr

es
en

ta
ti

on
w

it
h

no
de

la
be

ls
be

in
g

th
e

as
-

so
ci

at
ed

re
su

lt
s

sp
ec

ifi
ed

in
th

e
gr

am
m

ar

0

1

4

‘a’

‘b’

2

3

5

6

7

8

‘d’

‘b’

‘c’

‘a’

‘b’

‘a’

‘c’

→ “x”

“b”← → “a”

→ “ab”“ba”←

→ “abacbd”

→ “ab”

→ “ab”, “ba”

→ “ab”, “ba”, “x”

(b
)

co
lle

ct
io

n
of

re
su

lt
s

du
r-

in
g

co
m

pu
ta

ti
on

sh
ow

n
as

no
de

la
be

ls
,

an
d

th
e

hy
po

-
th

et
ic

al
fa

ilu
re

fu
nc

ti
on

Figure 9.1 Trie structures illustrating efficient longest match parsing.

The combinators in a grammar for Mapper are actually constructors that take care of
building the trie gradually with rules. The trick to improve subtrie sharing rests in de-
laying function application on the results, and instead storing the modification functions
inside the FMap value. We once again refer the reader to (Ljunglöf, 2002) for the proper
discussion of this technique.

9.3.3 Longest Match Insight

Consider the following rules defining our example trie in Figure 9.1a:

trie :: Mapper Char [Char]

trie = (many (syms "c") >> return "x") -- loop over "c"

|+| "b" |.| "b" -- equal to syms "b"

|+| "a" |.| "a"

|+| "ab" |-| "b" |:| "ab" -- cheating with "b"

|+| "ba" |.| "ba"

|+| "abacbd" |.| "abacbd"

We can view this trie as a dictionary specifying a language. Its words are composed of
the labels of those edges that create a path from the root to some node with a non-empty

9.3. ENCODE ARABIC IN HASKELL 78

list of results. Given an arbitrary input string, we would like to use this trie for finding
and translating the longest non-overlapping substrings that belong to the dictionary. Yet,
cheating and ambiguities will be allowed.

The inspiration for us is the Aho–Corasick algorithm for text search (Aho and Corasick,
1975). The important insight is the idea of a failure function, depicted with dashed lines
in Figure 9.1b.

If parsing cannot proceed along the labeled, solid edges in the trie, there is no chance
for any longer match. Then, we can report the longest match results we had collected (the
node labels in this subfigure). But we also have to keep in mind that the input symbols
accepted after the latest match can form a prefix of a new successful match. The failure
function serves to move us to this prefix. From that point and with the same input symbol,
we iterate this process until we succeed or reach the root in the trie. Then we parse the next
input symbol, or conclude by following the failure functions and reporting the collected
results until we reach the root.

In our implementation in Haskell, we are not going to construct the failure function
in the trie. It would require to traverse the whole data structure before parsing a single
symbol. Thus, we would lose the great advantage of lazy construction of the trie. The
Mapper would also become restricted to finite tries only, which we cannot easily guarantee
given the power of the combinator grammar.

Therefore, the parsing process itself will have to simulate what the failure function
provides. We can either develop parallel hypotheses about where the actual match occurs
(breadth-first search), or try the hypotheses in a backtracking manner using an accumula-
tor for the non-matched input (depth-first search).

Let us see what results we get at this moment for our example trie:

ex :: [Char] -> [[[[Char]]]]

ex = unParseWide trie . parseWide trie [initPW trie id]

ex "ab" → [[["ab"],["b"]]]

ex "aba" → [[["ab","ba"]]]

ex "abacba" → [[["ab","ba","x","ba"]]]

ex "abacbc" → [[["ab","ba","x","b","x"]]]

ex "abacbccc" → [[["ab","ba","x","b","x"]]]

ex "eabacbee" → [[["x","ab","ba","x","b","x","x"]]]

In case of trie’ with ‘problematic’ rules and ex’ defined likewise:

trie’ = trie |+| "ab" |.| "ab" -- ambiguity

|+| "" |-| "a" |:| "y" -- undefined

|+| "c" |-| "abac" |:| "" -- expansion

ex’ "abab" → [[["ab","ba","b"]], -- cheating difference

[["ab","ab"],["b"]],

9.3. ENCODE ARABIC IN HASKELL 79

[["ab","ab"]]]

ex’ "cc" → [[["x"]]] -- unique longer match

ex’ "c" → [[["x"]],

[[""],["ab","ba","x"]],

[[""],["ab","ba",""],["ab","ba","x"]], ...

-- iterating ["ab","ba",""] infinitely

ex’ "cbd" → [[["x","b","x"]],

[["x","b","y"]], -- double match for ’d’

[["","abacbd"]]] -- finite ’c’ rewriting

9.3.4 Encode Extend

In this section, we will describe the Encode Extend module implementing a general
recursive-descent parser derived in the standard approach as a state transformer monad
(Wadler, 1995). The ‘extension’ is that we decompose the state into the input being pro-
cessed and the environment supplying any other needed parameters.

The Extend e parser is based on the Standard parser discussed in (Ljunglöf, 2002, sec.
3.2). Its state is a combination InE s e of a list of input symbols s and a stack of environ-
ment settings e s.

9.3.5 Encode Arabic

Before applying Encode Mapper and Encode Extend to the notation of ArabTEX, let us
reformulate the idea of converting textual data from one encoding scheme into another in
the way inspired by the Encode module in Perl (Kogai, 2002–2006).

We introduce the internal representation UPoint as the intermediate data type for these
conversions. The distinction between this representation and characters Char is inten-
tional, as ‘decoded’ and ‘encoded’ data are different entities. Since UPoint is an instance
of the Enum class, the type’s constructor and selector functions are available as toEnum and
fromEnum, respectively.

module Encode where

newtype UPoint = UPoint Int deriving (Eq, Ord, Show)

instance Enum UPoint where

fromEnum (UPoint x) = x

toEnum = UPoint

class Encoding e where

encode :: e -> [UPoint] -> [Char]

decode :: e -> [Char] -> [UPoint]

encode _ = map (toEnum . fromEnum)

decode _ = map (toEnum . fromEnum)

9.3. ENCODE ARABIC IN HASKELL 80

Encoding schemes are modeled as data types e of the Encoding class, which defines the
two essential methods. Developing a new encoding means to write a new module with a
structure similar to Encode.Arabic.Buckwalter or Encode.Unicode, for instance.

module Encode.Arabic.Buckwalter (Buckwalter (..)) where

import Encode

import PureFP.OrdMap

data Buckwalter = Buckwalter | Tim deriving (Enum, Show)

instance Encoding Buckwalter where

encode _ = recode (recoder decoded encoded)

decode _ = recode (recoder encoded decoded)

recode :: (Eq a, Enum a, Enum b, Ord a)

=> Map a b -> [a] -> [b]

recode xry xs = [lookupWith ((toEnum . fromEnum) x)

xry x | x <- xs]

recoder :: Ord a => [a] -> [b] -> Map a b

recoder xs ys = makeMapWith const (zip xs ys)

decoded :: [UPoint]

decoded = map toEnum $ []

++ [0x0640] ++ [0x0623, 0x0624, 0x0625]

++ [0x060C, 0x061B, 0x061F]

++ [0x0621, 0x0622] ++ [0x0626 .. 0x063A]

++ [0x0641 .. 0x064A]

++ [0x067E, 0x0686, 0x06A4, 0x06AF]

++ [0x0660 .. 0x0669]

++ [0x0671] ++ [0x0651]

++ [0x064B .. 0x0650] ++ [0x0670] ++ [0x0652]

encoded :: [Char]

encoded = map id $ []

++ "_" ++ "OWI"

++ ",; . . . ? "

++ "’|" ++ "}AbptvjHxd*rzs$SDTZEg"

++ "fqklmnhwYy"

++ "PJVG"

++ [’0’ .. ’9’]

++ "{" ++ "˜"

++ "FNKaui" ++ "‘" ++ "o"

The Buckwalter encoding is a lossless romanization of the standard Arabic script, and
is a one-to-one mapping between the Unicode code points for Arabic and lower ASCII.

9.3. ENCODE ARABIC IN HASKELL 81

module Encode.Unicode (Unicode (..)) where

import Encode

data Unicode = Unicode | UCS deriving (Enum, Show)

instance Encoding Unicode

9.3.6 ArabTEX Encoding Concept

The ArabTEX typesetting system (Lagally, 2004) defines its own Arabic script meta-encod-
ing that covers both contemporary and historical orthography in an excellent way. More-
over, the notation is human-readable as well as very natural to learn to write with. The
notation itself is quite close to the phonetic transcription, yet extra features are introduced
to make the conversion to script/transcription unambiguous.

Unlike other transliteration concepts based on the one-to-one mapping of graphemes,
ArabTEX interprets the input characters in context to get their right meaning. Finding
the glyphs of letters (initial, medial, final, isolated) and their ligatures is not the issue of
encoding, but of visualizing only. Nonetheless, definite article assimilation, inference of
hamza carriers and silent ↩alifs, treatment of auxiliary vowels, optional quoting of diacritics
or capitalization, resolution of notational variants, and mode-dependent processing are
the challenges for our parsing exercise now.

ArabTEX’s implementation is documented in (Lagally, 1992), but the parsing algorithm
for the notation has not been published. The TEX code of it is organized into deterministic-
parsing macros, yet the complexity of the whole system makes consistent modifications
or extensions by other users very difficult, if not impossible.

We are going to describe our own implementation of the interpreter, i.e. we will show
how to decode the notation. To encode the Arabic script or its phonetic transcription into
the ArabTEX notation requires some heuristics, if we want to achieve linguistically appro-
priate results. We leave these for future work.

9.3.7 Encode Arabic ArabTEX

This module relates the ArabTEX notation and the Arabic orthography. It provides defi-
nitions of the ‘lexicon’ of type LowerUp, which lists the distinct items in the notation and
associates them with the information for their translation. Lexical items are identified in
the lexing phase by an instance of Encode Mapper of type Mapping. The proper parsing
phase uses Encode Extend parsers of type Parsing.

module Encode.Arabic.ArabTeX (ArabTeX (..)) where

import Encode

9.3. ENCODE ARABIC IN HASKELL 82

import Encode.Mapper

import Encode.Extend

import PureFP.OrdMap

data ArabTeX = ArabTeX | TeX deriving (Enum, Show)

instance Encoding ArabTeX where

encode _ = error "’encode’ is not implemented"

decode _ = concat . parseFull decoderParsing .

concat . parseLongest decoderMapping

type Parsing = Extend Env [Char] ([UPoint] -> [UPoint])

type Environ = Env [Char]

type Mapping = Mapper Char [[Char]]

type LowerUp = Map [Char] [UPoint]

The environment Environ is needed to store information bound to the context—other-
wise, parsing rules would become complicated and inefficient.

data Mode = Nodiacritics | Novocalize | Vocalize | Fullvocalize

deriving (Eq, Ord)

data Env i = Env { envQuote :: Bool, envMode :: Mode,

envWasla :: Bool, envVerb :: Bool,

envEarly :: [i] }

setQuote q (Env _ m w v e) = Env q m w v e

setMode m (Env q _ w v e) = Env q m w v e

setWasla w (Env q m _ v e) = Env q m w v e

setVerb v (Env q m w _ e) = Env q m w v e

setEarly e (Env q m w v _) = Env q m w v e

instance ExtEnv Env where

initEnv = Env False Vocalize False False []

Note that the decode method ignores the encoding parameter. If our definitions were
slightly extended, the ArabTeX data type could be parametrized with Env to allow user’s
own setting of the initial parsing environment, passed to Encode.Extend.parseFull’.

Lexicon The design of the lexicon cannot be simpler—the presented lexicon is nearly
complete, but can be easily modified and extended. Lexical items are referred to in the
mapping and the parsing phases by the sets they belong to, thus robustness is achieved.

9.3. ENCODE ARABIC IN HASKELL 83

define :: [([Char], [Int])] -> LowerUp

define l = makeMapWith const [(x, map toEnum y) |

(x, y) <- l]

consonant :: LowerUp

consonant = unionMap [sunny, moony, bound]

sunny = define [

("t", [0x062A]), ("ˆs", [0x0634]),

("_t", [0x062B]), (".s", [0x0635]),

("d", [0x062F]), (".d", [0x0636]),

("_d", [0x0630]), (".t", [0x0637]),

("r", [0x0631]), (".z", [0x0638]),

("z", [0x0632]), ("l", [0x0644]),

("s", [0x0633]), ("n", [0x0646])]

invis = define [("|", [])]

empty = define [("", [0x0627])]

shadda = define [("*", [0x0651])]

silent = define [

("A", [0x0627]), ("W", [0x0627])]

wasla = define [("W", [0x0671])]

taaaa = define [

("T", [0x0629]), ("H", [0x0629])]

bound = define [

("’A", [0x0622]), ("’w", [0x0624]),

("’a", [0x0623]), ("’y", [0x0626]),

("’i", [0x0625]), ("’|", [0x0621])]

moony = define [

("’", [0x0621]), ("f", [0x0641]),

("b", [0x0628]), ("q", [0x0642]),

("ˆg", [0x062C]), ("k", [0x0643]),

(".h", [0x062D]), ("m", [0x0645]),

("_h", [0x062E]), ("h", [0x0647]),

("‘", [0x0639]), ("w", [0x0648]),

(".g", [0x063A]), ("y", [0x064A]),

("B", [0x0640]), ("c", [0x0681]),

("ˆc", [0x0686]),

("p", [0x067E]), (",c", [0x0685]),

("v", [0x06A4]), ("ˆn", [0x06AD]),

("g", [0x06AF]), ("ˆl", [0x06B5]),

9.3. ENCODE ARABIC IN HASKELL 84

("ˆz", [0x0698]), (".r", [0x0695])]

vowel = define [

("a", [0x064E]), ("_a", [0x0670]),

("i", [0x0650]), ("_i", [0x0656]),

("u", [0x064F]), ("_u", [0x0657]),

("e", [0x0650]), ("o", [0x064F])]

multi = define [("A", [0x064E, 0x0627]),

("I", [0x0650, 0x064A]),

("U", [0x064F, 0x0648]),

("Y", [0x064E, 0x0649]),

("E", [0x0650, 0x064A]),

("O", [0x064F, 0x0648]),

("_I", [0x0650, 0x0627]),

("_U", [0x064F, 0x0648]),

("aNY", [0x064B, 0x0649]),

("aNA", [0x064B, 0x0627])]

nuuns = define [("aN", [0x064B]),

("iN", [0x064D]),

("uN", [0x064C])]

other = define [("_aY", [0x0670, 0x0649]),

("_aU", [0x0670, 0x0648]),

("_aI", [0x0670, 0x064A]),

("ˆA", [0x064F, 0x0627, 0x0653]),

("ˆI", [0x0650, 0x064A, 0x0653]),

("ˆU", [0x064F, 0x0648, 0x0653])]

Mapping The Encode Mapper tokenizes the input string into substrings that are items
of the lexicon, or, which is very important, rewrites and normalizes the notation in order
to make proper parsing clearer. It guarantees the longest match, no matter what order the
rules or the lexicon are specified in.

decoderMapping :: Mapper Char [[Char]]

decoderMapping = defineMapping

(pairs [sunny, moony, invis, empty, taaaa, silent,

vowel, multi, nuuns, other, sukun, shadda,

digit, punct, white])

<+> rules

<+> "" |.| error "Illegal symbol"

rules :: Mapping

rules = "aN_A" |-| "aNY" |:| [] |+|

"_A" |-| "Y" |:| []

9.3. ENCODE ARABIC IN HASKELL 85

|+| ruleVerbalSilentAlif |+| ruleInternalTaaaa

|+| ruleLiWithArticle |+| ruleDefArticle

|+| ruleIndefArticle

|+| ruleMultiVowel |+| ruleHyphenedVowel

|+| ruleWhitePlusControl |+| ruleIgnoreCapControl

|+| ruleControlSequence |+| rulePunctuation

In the rules, for instance, care of the silent ↩alif after the ending aN is taken, or the
variants of definite article notation are unified. So is the notation for long vowels, which
offers freedom to the user, yet must strictly conform to the context of the next syllable in
orthography.

ruleIndefArticle =

anyof [c ++ m ++ "aNY" |-| m ++ "aNY" |:| [c] |+|

c ++ m ++ "aNA" |-| m ++ "aNA" |:| [c] |+|

c ++ m ++ "aN" |-| m ++ "aNA" |:| [c]

| c <- elems [sunny, moony],

m <- ["", "-", "\"", "-\""]]

|+| anyof [

v ++ "’’" ++ m ++ "aN" |-|

m ++ "aN" |:| [v, "’", "’"] |+|

v ++ "’" ++ m ++ "aN" |-|

m ++ "aN" |:| [v, "’"]

| v <- ["A", "a"], m <- ["", "-", "\"", "-\""]]

ruleDefArticle =

anyof ["l" ++ "-" ++ c ++ c |-|

"-" ++ c |:| [c]

| c <- elems [sunny, moony]]

ruleMultiVowel =

"iy" |-| "I" |:| [] |+|

"Iy" |-| "yy" |:| ["i"] |+|

"uw" |-| "U" |:| [] |+|

"Uw" |-| "ww" |:| ["u"] |+|

"aa" |-| "A" |:| []

|+| anyof [

"iy" ++ v |-| "y" ++ v |:| ["i"] |+|

"uw" ++ v |-| "w" ++ v |:| ["u"]

| v <- elems [vowel, multi, nuuns, other] ++

quote [vowel, multi, nuuns, other, sukun]]

ruleControlSequence =

do x <- sym ’\\’ <:>

some (anySymbol ([’A’..’Z’] ++ [’a’..’z’]))

many whites

return [x]

9.3. ENCODE ARABIC IN HASKELL 86

The list comprehension syntax in Haskell allows us to write rules in form of templates,
where we can iterate over the elements of the lexical sets and give them symbolic names.
In the last example of a Mapping rule, we combine consonants c and short vowels v, the
latter possibly preceded by a quote \".

ruleLiWithArticle =

anyof ["l" ++ v ++ "-a" ++ c ++ "-" ++ c |-|

"l" ++ v ++ c ++ "-" ++ c |:| []

| c <- elems [sunny, moony], c /= "l",

v <- elems [vowel, sukun] ++ quote [vowel, sukun]]

|+| anyof [

"l" ++ v ++ "-a" ++ c ++ "-" ++ c |-|

"l" ++ v ++ "|-" ++ c ++ c |:| [] |+|

"l" ++ v ++ "-a" ++ c ++ "-" ++ c ++ c |-|

"l" ++ v ++ "|-" ++ c ++ c |:| [] |+|

"l" ++ v ++ "-a" ++ c ++ "-" |-|

"l" ++ v ++ c ++ "-" |:| [] |+|

"l" ++ v ++ "-a" ++ c ++ c |-|

"l" ++ v ++ "|-" ++ c ++ c |:| []

| c <- elems [sunny, moony], c == "l",

v <- elems [vowel, sukun] ++ quote [vowel, sukun]]

This rule alleviates a limitation in the original ArabTEX’s coding of the prefixed words
li and la when followed by a definite article. Due to an exceptional convention in or-
thography (cf. Lagally, 2004, sec. 4.1), li-’l-mawzi 	PñÖÏB is not acceptable, and one has to
write lil-mawzi 	PñÒÊË instead. Further complication comes with l, so lil-lawzi 	PñÊÊË has to be
transformed to li-llawzi 	PñÊË.

With the ruleLiWithArticle rewriting, one need not distinguish these anymore, and
can just join words, like in other cases.

Parsing The result of complete parsing is [UPoint]. However, to avoid inefficient list
concatenations, the simpler parsers being combined produce ‘show’ functions of type
([UPoint] -> [UPoint]), composed sequentially with plus.

decoderParsing :: Extend Env [Char] [UPoint]

decoderParsing = (fmap (foldr ($) []) . again) $

parseHyphen <|> parseHamza

<|> parseDefArticle

<|> parseDoubleCons <|> parseSingleCons

<|> parseInitVowel

<|> parseWhite <|> parsePunct

<|> parseDigit

<|> parseQuote <|> parseControl

infixr 7 ‘plus‘ -- infixr 9 .

-- infixr 5 ++

9.3. ENCODE ARABIC IN HASKELL 87

plus :: (a -> b) -> (c -> a) -> c -> b

plus = (.)

Unlike decoderMapping, ordering of rules in decoderParsing does matter. The again

and <|> combinators try the parsers in order, and if one succeeds, they continue again
from the very first parser.

parseHyphen = do lower ["-"] []

resetEnv setEarly []

parseNothing

This one is rather simple. The lower parser consumes tokens that are specified in its
first argument, and returns to the input the tokens of its second argument. Thus, - is
removed from the input, the memory of previous input tokens is erased with setEarly,
and no new output is produced, i.e. parseNothing = return id.

Parsing an assimilated definite article is perhaps even more intuitive, once
ruleDefArticle is in effect. We look for any consonant c followed by a hyphen - and
the same consonant. If we succeed, we return the two consonants back to the input, as
they will form a regular ‘syllable’ eventually. We look up the translation for the letter l in
the sunny set, and make it the output of the parser.

parseDefArticle = do c <- oneof [consonant]

lower ["-", c] [c, c]

upper ["l"] [sunny]

The compilation of ‘syllables’ in the Arabic script rests in putting vocalization marks
onto the ‘consonantal’ letters. Processing of these marks is subject to the settings of the
environment, in particular the envQuote and envMode values. We generalize upper to
upperWith, to allow this processing.

parseDoubleCons =

do c <- oneof [consonant, taaaa, invis, silent]

lower [c] []

x <- upper [c] [consonant, taaaa, invis, silent]

y <- upperWith shaddaControl

["*"] [shadda]

parseSyllVowel c (x ‘plus‘ y)

parseSyllVowel :: [Char] -> ([UPoint] -> [UPoint])

-> Parsing

parseSyllVowel c x =

do v <- parseQuote <|> parseNothing >>

oneof [vowel, multi, nuuns, other] <|>

return ""

9.3. ENCODE ARABIC IN HASKELL 88

y <- upperWith (vowelControl c)

[v] [vowel, multi, nuuns, other, sukun]

completeSyllable [c, v] (x ‘plus‘ y)

completeSyllable :: [[Char]] -> ([UPoint] -> [UPoint])

-> Parsing

completeSyllable l u = do resetEnv setQuote False

resetEnv setWasla True

resetEnv setEarly (reverse l)

return u

The definitions of vowelControl and shaddaControl are clear-cut. The parseSingleCons

and parseInitVowel parsers go in the spirit of their namesakes that we have seen. The
parseControl parser interprets control sequences that affect the parsing environment, in-
cluding possible localization/nesting of the settings.

The last non-trivial parser is parseHamza. It does not produce any output, but computes
the so-called carrier for the hamza consonant. In the \setverb mode, this carrier appears
in the input after ’’ or ’-’ or ’. In the complementary \setarab mode, this carrier must
be determined according to some rather complex orthographic rules. In either case, the
hamza combined with the carrier is distributed back to the input.

parseHamza = do h <- oneof [hamza]

e <- inspectEnv

let combineWithCarrier = if envVerb e

then parseVerbHamza h

else parseArabHamza h

; do lower [h] []

b <- combineWithCarrier

lower [] [b, b]

<|>

do lower ["-", h] []

b <- combineWithCarrier

lower [] [b, "-", b]

<|>

do b <- combineWithCarrier

lower [] [b]

parseNothing

parseVerbHamza :: [Char] -> Extend Env [Char] [Char]

parseVerbHamza h =

do i <- inspectIList

case i of

x : y -> returnIList ((h ++ x) : y)

_ -> returnIList [h]

oneof [bound]

9.3. ENCODE ARABIC IN HASKELL 89

We provide the definition of parseArabHamza at the end of this chapter, for we believe
it has never been published in such a complete and formal way. The algorithm essentially
evaluates the position of the hamza in the word, and the context of vowels and consonants.

9.3.8 Encode Arabic ArabTEX ZDMG

This module relates the ArabTEX notation and the ZDMG phonetic transcription. The
organization of the module is very similar to the previous one.

module Encode.Arabic.ArabTeX.ZDMG (ZDMG (..)) where

import Encode

import Encode.Mapper

import Encode.Extend

import PureFP.OrdMap

data ZDMG = ZDMG | Trans deriving (Enum, Show)

instance Encoding ZDMG where

encode _ = error "’encode’ is not implemented"

decode _ = concat . parseFull decoderParsing .

concat . parseLongest decoderMapping

Let us therefore only show how capitalization is implemented. The lexicon stores dia-
critized lowercase characters used as the standard phonetic transcription. Capitalization
is possible, but hamza ’ and ↪ayn ‘ are ‘transparent’ to it and let capitalize the following
letter.

minor = define [

("’", [0x02BE]), ("‘", [0x02BF])]

sunny = define [("t", [0x0074]),

("_t", [0x0074, 0x0331]),

("d", [0x0064]),

("_d", [0x0064, 0x0331]),

("r", [0x0072]),

("z", [0x007A]),

("s", [0x0073]),

("ˆs", [0x0073, 0x030C]),

(".s", [0x0073, 0x0323]),

(".d", [0x0064, 0x0323]),

(".t", [0x0074, 0x0323]),

(".z", [0x007A, 0x0323]),

("l", [0x006C]),

("n", [0x006E])]

parseSingleCons =

9.3. ENCODE ARABIC IN HASKELL 90

do c <- oneof [consonant, extra, invis]

x <- upperWith consControl

[c] [consonant, extra, invis]

resetEnv setCap False

parseSyllVowel c x

<|>

do c <- oneof [minor]

x <- upper [c] [minor]

parseSyllVowel c x

consControl :: OrdMap m => [Char] -> [m [Char] [UPoint]]

-> Environ -> [[UPoint]]

consControl x l e = if envCap e

then [capFirst n | n <- noChange]

else noChange

where noChange = lookupList x l

capFirst [] = []

capFirst (x:xs) = (toEnum . flip (-) 0x0020 .

fromEnum) x : xs

9.3.9 Discussion

Next to the original ArabTEX parser (Lagally, 1992, 2004), there is an implementation in
Perl of the Encode Mapper and Encode Arabic modules (Smrž, 2003–2007) with which the
interpreter is built as a multi-layer finite-state automaton. The method used there, how-
ever, does not achieve the elegance, clarity nor flexibility as the presented Haskell imple-
mentation. Lazy construction of the automaton and the power of functional combinator
parsing is simply missing there.

The significance of the ArabTEX notation, devised with modifications also for lan-
guages other than Arabic, in lexicography, linguistics, and education is discussed in (La-
gally, 1994).

Our motivation for developing this approach was the use of the notation in computa-
tional systems for Arabic language modeling, such as in ElixirFM. Further extensions of
our work are expected, and inclusion of the programming library in various information
processing systems is a possible next application.

This is the complete parser for determining the carrier of hamza from the context, ac-
cording to the rules of Arabic orthography.

parseArabHamza :: [Char] -> Extend Env [Char] [Char]

parseArabHamza h =

do e <- inspectEnv

b <- prospectCarrier

let carryHamza = case envEarly e of

[] -> case b of

9.3. ENCODE ARABIC IN HASKELL 91

"’y" -> "’i"

"’i" -> "’i"

"’A" -> "’A"

_ -> "’a"

"i" : _ -> "’y"

"_i" : _ -> "’y"

"e" : _ -> "’y"

"I" : _ -> caseofMultiI b

"_I" : _ -> caseofMultiI b

"E" : _ -> caseofMultiI b

"ˆI" : _ -> caseofMultiI b

["", "y"] -> caseofMultiI b

"u" : _ -> caseofVowelU b

"_u" : _ -> caseofVowelU b

"o" : _ -> caseofVowelU b

"U" : _ -> caseofMultiU b

"_U" : _ -> caseofMultiU b

"O" : _ -> caseofMultiU b

"ˆU" : _ -> caseofMultiU b

"a" : _ -> caseofVowelA b

"_a" : _ -> caseofVowelA b

"A" : _ -> caseofMultiA b

"ˆA" : _ -> caseofMultiA b

["", "’A"] -> caseofMultiA b

"" : _ -> case b of

"’y" -> "’y"

"’w" -> "’w"

"’A" -> "’A"

"’a" -> "’a"

_ -> "’|"

_ -> error "Other context"

case carryHamza of

"’A" -> lower ["A"] []

_ -> return []

return carryHamza

9.3. ENCODE ARABIC IN HASKELL 92

where prospectCarrier = do parseQuote

b <- lookaheadCarrier

lower [] ["\\\""]

resetEnv setQuote False

return b

<|> lookaheadCarrier

caseofMultiI b = case b of

"’i" -> "’|"

"’|" -> "’|"

_ -> "’y"

caseofMultiU b = case b of

"’i" -> "’|"

"’|" -> "’|"

"’y" -> "’y"

_ -> "’w"

caseofMultiA b = case b of

"’y" -> "’y"

"’w" -> "’w"

_ -> "’|"

caseofVowelU b = case b of

"’y" -> "’y"

_ -> "’w"

caseofVowelA b = case b of

"’y" -> "’y"

"’w" -> "’w"

"’i" -> "’i"

"’A" -> "’A"

_ -> "’a"

lookaheadCarrier =

do v <- oneof’ ’-’ [multi, other] <|>

oneof [multi, other]

let carryHamza = case v of

"I" -> "’y"

"_I" -> "’y"

"ˆI" -> "’y"

"E" -> "’y"

"U" -> "’w"

"_U" -> "’w"

"ˆU" -> "’w"

"O" -> "’w"

9.3. ENCODE ARABIC IN HASKELL 93

"A" -> "’A"

"aNA" -> "’N"

_ -> "’a"

lower [] [v]

return carryHamza

<|>

do v <- oneof [vowel, nuuns] <|> return ""

c <- oneof [sunny, moony, taaaa, invis, silent]

let carryHamza = case v of

"i" -> "’y"

"iN" -> "’y"

"_i" -> "’y"

"e" -> "’y"

"u" -> "’w"

"uN" -> "’w"

"_u" -> "’w"

"o" -> "’w"

"a" -> "’a"

"aN" -> "’a"

"_a" -> "’a"

_ -> "’|"

case v of "" -> lower [] [c]

_ -> lower [] [v, c]

return carryHamza

<|>

do v <- oneof [vowel, nuuns] <|> return ""

let carryHamza = case v of

"i" -> "’i"

"iN" -> "’i"

"_i" -> "’i"

"e" -> "’i"

_ -> "’|"

case v of "" -> lower [] []

_ -> lower [] [v]

return carryHamza

Thoughts are not thoughts any more
Merely a feeling in disguise . . .

Lucie, the nightly Noc

Conclusion

In this thesis, we developed the theory of Functional Arabic Morphology and designed
ElixirFM as its high-level functional and interactive implementation written in Haskell.

Next to numerous theoretical points on the character of Arabic morphology and its re-
lation to syntax, we proposed a model that represents the linguistic data in an abstract and
extensible notation that encodes both orthography and phonology, and whose interpretation
is customizable. We developed a domain-specific language in which the lexicon is stored
and which allows easy manual editing as well as automatic verification of consistency. We
believe that the modeling of both the written language and the spoken dialects can share
the presented methodology.

ElixirFM and its lexicons are licensed under GNU General Public License and are
available on http://sourceforge.net/projects/elixir-fm/. We likewise pub-
lish the implementations of Encode Arabic, MorphoTrees, and ArabTEX extensions.

The omissions and imperfections that we have committed are likely to be improved
with time. We intend to integrate ElixirFM closely with MorphoTrees as well as with both
levels of syntactic representation in the Prague Arabic Dependency Treebank.

It is time to return to the beginning.

94

http://sourceforge.net/projects/elixir-fm/

Bibliography

Aho, Alfred V. and Margaret J. Corasick. 1975. Efficient String Matching: An Aid to Bibli-
ographic Search. Communications of the ACM 18(6):333–340.

Al-Sughaiyer, Imad A. and Ibrahim A. Al-Kharashi. 2004. Arabic Morphological Analysis
Techniques: A Comprehensive Survey. Journal of the American Society for Information
Science and Technology 55(3):189–213.

Badawi, Elsaid, Mike G. Carter, and Adrian Gully. 2004. Modern Written Arabic: A Compre-
hensive Grammar. Routledge.

Baerman, Matthew, Dunstan Brown, and Greville G. Corbett. 2006. The Syntax-Morphology
Interface. A Study of Syncretism. Cambridge Studies in Linguistics. Cambridge University
Press.

Bar-Haim, Roy, Khalil Sima’an, and Yoad Winter. 2005. Choosing an Optimal Architecture
for Segmentation and POS-Tagging of Modern Hebrew. In Proceedings of the ACL Work-
shop on Computational Approaches to Semitic Languages, pages 39–46. Ann Arbor, Michi-
gan: Association for Computational Linguistics.

Beesley, Kenneth R. 1997, 1998. Romanization, Transcription and Translit-
eration. http://www.xrce.xerox.com/competencies/content-analysis/

arabic/info/romanization.html.

Beesley, Kenneth R. 1998a. Arabic Morphology Using Only Finite-State Operations. In
COLING-ACL’98 Proceedings of the Workshop on Computational Approaches to Semitic lan-
guages, pages 50–57.

Beesley, Kenneth R. 1998b. Consonant Spreading in Arabic Stems. In Proceedings of the
17th international conference on Computational linguistics, pages 117–123. Morristown, NJ,
USA: Association for Computational Linguistics.

Beesley, Kenneth R. 2001. Finite-State Morphological Analysis and Generation of Arabic at
Xerox Research: Status and Plans in 2001. In EACL 2001 Workshop Proceedings on Arabic
Language Processing: Status and Prospects, pages 1–8. Toulouse, France.

95

http://www.xrce.xerox.com/competencies/content-analysis/arabic/info/romanization.html
http://www.xrce.xerox.com/competencies/content-analysis/arabic/info/romanization.html

BIBLIOGRAPHY 96

Beesley, Kenneth R. and Lauri Karttunen. 2003. Finite State Morphology. CSLI Studies in
Computational Linguistics. Stanford, California: CSLI Publications.

Bird, Steven and Patrick Blackburn. 1991. A Logical Approach to Arabic Phonology. In
EACL, pages 89–94.

Buckwalter, Tim. 2002. Buckwalter Arabic Morphological Analyzer Version 1.0. LDC
catalog number LDC2002L49, ISBN 1-58563-257-0.

Buckwalter, Tim. 2004a. Buckwalter Arabic Morphological Analyzer Version 2.0. LDC
catalog number LDC2004L02, ISBN 1-58563-324-0.

Buckwalter, Tim. 2004b. Issues in Arabic Orthography and Morphology Analysis. In
Proceedings of the COLING 2004 Workshop on Computational Approaches to Arabic Script-
based Languages, pages 31–34.

Cavalli-Sforza, Violetta, Abdelhadi Soudi, and Teruko Mitamura. 2000. Arabic Morphol-
ogy Generation Using a Concatenative Strategy. In Proceedings of NAACL 2000, pages
86–93. Seattle.

Chakravarty, Manuel M. T. 1999. Lazy Lexing is Fast. In FLOPS ’99: Proceedings of the
4th Fuji International Symposium on Functional and Logic Programming, vol. 1722 of Lecture
Notes in Computer Science, pages 68–84. London, UK: Springer-Verlag.

Chalabi, Achraf. 2004. Sakhr Arabic Lexicon. In NEMLAR International Conference on Arabic
Language Resources and Tools, pages 21–24. ELDA.

Charette, François. 2007. ArabX ETEX: An ArabTEX-like interface for typesetting languages
in Arabic script with X ELATEX. Tech. Rep. 2007/05.

Crochemore, Maxime, Costas S. Iliopoulos, Yoan J. Pinzon, and James F. Reid. 2000. A Fast
and Practical Bit-Vector Algorithm for the Longest Common Subsequence Problem. In
Proceedings of the 11th Australasian Workshop On Combinatorial Algorithms. Hunter Valley,
Australia.

Cuřı́n, Jan, Martin Čmejrek, Jiřı́ Havelka, Jan Hajič, Vladislav Kuboň, and Zdeněk
Žabokrtský. 2004. Prague Czech-English Dependency Treebank 1.0. LDC catalog num-
ber LDC2004T25, ISBN 1-58563-321-6.

Dada, Ali. 2007. Implementation of the Arabic Numerals and their Syntax in GF. In
ACL 2007 Proceedings of the Workshop on Computational Approaches to Semitic Languages:
Common Issues and Resources, pages 9–16. Prague, Czech Republic: Association for Com-
putational Linguistics.

Daumé III, Hal. 2002–2006. Yet Another Haskell Tutorial. http://www.cs.utah.edu/

˜hal/docs/daume02yaht.pdf.

http://www.cs.utah.edu/~hal/docs/daume02yaht.pdf
http://www.cs.utah.edu/~hal/docs/daume02yaht.pdf

BIBLIOGRAPHY 97

Debusmann, Ralph. 2006. Extensible Dependency Grammar: A Modular Grammar Formalism
Based On Multigraph Description. Ph.D. thesis, Saarland University.

Debusmann, Ralph, Oana Postolache, and Maarika Traat. 2005. A Modular Account of
Information Structure in Extensible Dependency Grammar. In Proceedings of the CICLing
2005 Conference. Mexico City/MEX: Springer.

Diab, Mona, Kadri Hacioglu, and Daniel Jurafsky. 2004. Automatic Tagging of Arabic
Text: From Raw Text to Base Phrase Chunks. In HLT-NAACL 2004: Short Papers, pages
149–152. Association for Computational Linguistics.

Ditters, Everhard. 2001. A Formal Grammar for the Description of Sentence Structure
in Modern Standard Arabic. In EACL 2001 Workshop Proceedings on Arabic Language
Processing: Status and Prospects, pages 31–37. Toulouse, France.

El Dada, Ali and Aarne Ranta. 2006. Open Source Arabic Grammars in Grammatical
Framework. In Proceedings of the Arabic Language Processing Conference (JETALA). Rabat,
Morocco: IERA.

El-Sadany, Tarek A. and Mohamed A. Hashish. 1989. An Arabic morphological system.
IBM Systems Journal 28(4):600–612.

El-Shishiny, Hisham. 1990. A Formal Description of Arabic Syntax in Definite Clause
Grammar. In Proceedings of the 13th Conference on Computational Linguistics, pages 345–
347. Association for Computational Linguistics.

Evans, Roger and Gerald Gazdar. 1996. DATR: A Language for Lexical Knowledge Rep-
resentation. Computational Linguistics 22(2):167–216.

Finkel, Raphael and Gregory Stump. 2002. Generating Hebrew Verb Morphology by De-
fault Inheritance Hierarchies. In Proc. of the Workshop on Computational Approaches to
Semitic Languages, pages 9–18. Association for Computational Linguistics.

Fischer, Wolfdietrich. 2001. A Grammar of Classical Arabic. Yale Language Series. Yale
University Press, third revised edn. Translated by Jonathan Rodgers.

Forsberg, Markus and Aarne Ranta. 2004. Functional Morphology. In Proceedings of the
Ninth ACM SIGPLAN International Conference on Functional Programming, ICFP 2004,
pages 213–223. ACM Press.

Habash, Nizar. 2004. Large Scale Lexeme Based Arabic Morphological Generation. In
JEP-TALN 2004, Session Traitement Automatique de l’Arabe. Fes, Morocco.

Habash, Nizar and Owen Rambow. 2005. Arabic Tokenization, Part-of-Speech Tagging
and Morphological Disambiguation in One Fell Swoop. In Proceedings of the 43rd Annual
Meeting of the ACL, pages 573–580. Ann Arbor, Michigan.

BIBLIOGRAPHY 98

Habash, Nizar and Owen Rambow. 2006. MAGEAD: A Morphological Analyzer and
Generator for the Arabic Dialects. In Proceedings of the 21st International Conference on
Computational Linguistics and 44th Annual Meeting of the ACL, pages 681–688. Sydney,
Australia.

Habash, Nizar, Owen Rambow, and George Kiraz. 2005. Morphological Analysis and
Generation for Arabic Dialects. In Proceedings of the ACL Workshop on Computational Ap-
proaches to Semitic Languages, pages 17–24. Ann Arbor, Michigan: Association for Com-
putational Linguistics.

Hajič, Jan, Eva Hajičová, Petr Pajas, Jarmila Panevová, Petr Sgall, and Barbora Vidová-
Hladká. 2001. Prague Dependency Treebank 1.0. LDC catalog number LDC2001T10,
ISBN 1-58563-212-0.

Hajič, Jan, Eva Hajičová, Jarmila Panevová, Petr Sgall, Petr Pajas, Jan Štěpánek, Jiřı́
Havelka, and Marie Mikulová. 2006. Prague Dependency Treebank 2.0. LDC catalog
number LDC2006T01, ISBN 1-58563-370-4.

Hajič, Jan, Otakar Smrž, Tim Buckwalter, and Hubert Jin. 2005. Feature-Based Tagger of
Approximations of Functional Arabic Morphology. In Proceedings of the Fourth Workshop
on Treebanks and Linguistic Theories (TLT 2005), pages 53–64. Barcelona, Spain.

Hajič, Jan, Otakar Smrž, Petr Zemánek, Petr Pajas, Jan Šnaidauf, Emanuel Beška, Jakub
Kráčmar, and Kamila Hassanová. 2004a. Prague Arabic Dependency Treebank 1.0. LDC
catalog number LDC2004T23, ISBN 1-58563-319-4.

Hajič, Jan, Otakar Smrž, Petr Zemánek, Jan Šnaidauf, and Emanuel Beška. 2004b. Prague
Arabic Dependency Treebank: Development in Data and Tools. In NEMLAR Interna-
tional Conference on Arabic Language Resources and Tools, pages 110–117. ELDA.

Hajičová, Eva and Petr Sgall. 2003. Dependency Syntax in Functional Generative Descrip-
tion. In Dependenz und Valenz – Dependency and Valency, vol. I, pages 570–592. Walter de
Gruyter.

Hinze, Ralf and Johan Jeuring. 2003a. Generic Haskell: Applications. In R. Backhouse
and J. Gibbons, eds., Generic Programming: Advanced Lectures, vol. 2793 of LNCS, pages
57–97. Springer.

Hinze, Ralf and Johan Jeuring. 2003b. Generic Haskell: Practice and theory. In R. Back-
house and J. Gibbons, eds., Generic Programming: Advanced Lectures, vol. 2793 of LNCS,
pages 1–56. Springer.

Hodges, Wilfrid. 2006. Two doors to open. In Mathematical Problems from Applied Logic I:
Logics for the XXIst century, pages 277–316. New York: Springer.

BIBLIOGRAPHY 99

Holes, Clive. 2004. Modern Arabic: Structures, Functions, and Varieties. Georgetown Classics
in Arabic Language and Linguistics. Georgetown University Press.

Hudak, Paul. 2000. The Haskell School of Expression: Learning Functional Programming
through Multimedia. Cambridge University Press.

Huet, Gérard. 2002. The Zen Computational Linguistics Toolkit. ESSLLI Course Notes,
FoLLI, the Association of Logic, Language and Information.

Huet, Gérard. 2003. Lexicon-directed Segmentation and Tagging of Sanskrit. In XIIth
World Sanskrit Conference, pages 307–325. Helsinki, Finland.

Huet, Gérard. 2005. A Functional Toolkit for Morphological and Phonological Processing,
Application to a Sanskrit Tagger. Journal of Functional Programming 15(4):573–614.

Humayoun, Muhammad. 2006. Urdu Morphology, Orthography and Lexicon Extraction. Mas-
ter’s thesis, Göteborg University & Chalmers University of Technology.

Hutton, Graham and Erik Meijer. 1996. Monadic Parser Combinators. Tech. Rep.
NOTTCS-TR-96-4, Department of Computer Science, University of Nottingham.

Hutton, Graham and Erik Meijer. 1998. Monadic Parsing in Haskell. Journal of Functional
Programming 8(4).

Jabri, Youssef. 2006. Typesetting Arabic and Farsi with the Arabi package. The Users Guide.
Tech. Rep. 2006/12, École Nationale des Sciences Appliquées, Oujda, Morocco.

Jones, Mark P. 1997. First-class Polymorphism with Type Inference. In Conference Record
of POPL ’97: The 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 483–496. Paris, France.

Jones, Mark P. 2000. Type Classes with Functional Dependencies. In ESOP ’00: Proceedings
of the 9th European Symposium on Programming Languages and Systems, pages 230–244.
London, UK: Springer. ISBN 3-540-67262-1.

Karttunen, Lauri. 2003. Computing with Realizational Morphology. In CICLing Confer-
ence on Intelligent Text Processing and Computational Linguistics, pages 205–216. Springer
Verlag.

Kay, Martin. 1987. Nonconcatenative Finite-State Morphology. In Proceedings of the Third
Conference of the European Chapter of the ACL (EACL-87), pages 2–10. ACL, Copenhagen,
Denmark.

Kay, Martin. 2004. Arabic Script-Based Languages Deserve to Be Studied Linguistically.
In COLING 2004 Computational Approaches to Arabic Script-based Languages, page 42.
Geneva, Switzerland.

BIBLIOGRAPHY 100

Kiraz, George Anton. 2001. Computational Nonlinear Morphology with Emphasis on Semitic
Languages. Studies in Natural Language Processing. Cambridge University Press.

Kogai, Dan. 2002–2006. Encode. Character encodings module in Perl, http://perldoc.
perl.org/Encode.html.

Konz, Ned and Tye McQueen. 2000–2006. Algorithm::Diff. Programming module reg-
istered in the Comprehensive Perl Archive Network, http://search.cpan.org/
dist/Algorithm-Diff/.

Kremers, Joost. 2003. The Arabic Noun Phrase. A Minimalist Approach. Ph.D. thesis, Univer-
sity of Nijmegen. LOT Dissertation Series 79.

Lagally, Klaus. 1992. ArabTEX: Typesetting Arabic with Vowels and Ligatures. In EuroTEX
92, page 20. Prague, Czechoslovakia.

Lagally, Klaus. 1994. Using TEX as a Tool in the Production of a Multi-Lingual Dictionary.
Tech. Rep. 1994/15, Fakultät Informatik, Universität Stuttgart.

Lagally, Klaus. 2004. ArabTEX: Typesetting Arabic and Hebrew, User Manual Version 4.00.
Tech. Rep. 2004/03, Fakultät Informatik, Universität Stuttgart.

Leijen, Daan and Erik Meijer. 2001. Parsec: A Practical Parser Library. http://

research.microsoft.com/˜emeijer/.

Ljunglöf, Peter. 2002. Pure Functional Parsing. An Advanced Tutorial. Licenciate thesis,
Göteborg University & Chalmers University of Technology.

Maamouri, Mohamed and Ann Bies. 2004. Developing an Arabic Treebank: Methods,
Guidelines, Procedures, and Tools. In Proceedings of the COLING 2004 Workshop on Com-
putational Approaches to Arabic Script-based Languages, pages 2–9.

Manning, Christopher D. and Hinrich Schütze. 1999. Foundations of Statistical Natural Lan-
guage Processing. Cambridge: MIT Press.

Marlow, Simon. 2001. Happy: The Parser Generator for Haskell. http://www.

haskell.org/happy/.

Marlow, Simon. 2003. Alex: A Lexical Analyser Generator for Haskell. http://www.

haskell.org/alex/.

McCarthy, John and Alan Prince. 1990a. Foot and Word in Prosodic Morphology: The
Arabic Broken Plural. Natural Language and Linguistic Theory 8:209–283.

McCarthy, John and Alan Prince. 1990b. Prosodic Morphology and Templatic Morphol-
ogy. In M. Eid and J. McCarthy, eds., Perspectives on Arabic Linguistics II: Papers from the
Second Annual Symposium on Arabic Linguistics, pages 1–54. Benjamins, Amsterdam.

http://perldoc.perl.org/Encode.html
http://perldoc.perl.org/Encode.html
http://search.cpan.org/dist/Algorithm-Diff/
http://search.cpan.org/dist/Algorithm-Diff/
http://research.microsoft.com/~emeijer/
http://research.microsoft.com/~emeijer/
http://www.haskell.org/happy/
http://www.haskell.org/happy/
http://www.haskell.org/alex/
http://www.haskell.org/alex/

BIBLIOGRAPHY 101

McCarthy, John J. 1981. A Prosodic Theory of Nonconcatenative Morphology. Linguistic
Inquiry 12:373–418.

Mikulová, Marie et al. 2006. A Manual for Tectogrammatical Layer Annotation of the
Prague Dependency Treebank. Tech. rep., Charles University in Prague.

Nelken, Rani and Stuart M. Shieber. 2005. Arabic Diacritization Using Finite-State Trans-
ducers. In Proceedings of the ACL Workshop on Computational Approaches to Semitic Lan-
guages, pages 79–86. Ann Arbor.

Othman, Eman, Khaled Shaalan, and Ahmed Rafea. 2003. A Chart Parser for Analyzing
Modern Standard Arabic Sentence. In Proceedings of the MT Summit IX Workshop on
Machine Translation for Semitic Languages: Issues and Approaches, pages 37–44.

Panevová, Jarmila. 1980. Formy a funkce ve stavbě české věty [Forms and Functions in the
Structure of the Czech Sentence]. Academia.

Pierce, Benjamin C. 2002. Types and Programming Languages. Cambridge, MA, USA: MIT
Press. ISBN 0-262-16209-1.

Ramsay, Allan and Hanady Mansur. 2001. Arabic morphology: a categorial approach.
In EACL 2001 Workshop Proceedings on Arabic Language Processing: Status and Prospects,
pages 17–22. Toulouse, France.

Roark, Brian and Richard Sproat. 2007. Computational Approaches to Morphology and Syntax.
Oxford University Press. http://catarina.ai.uiuc.edu/L406_06/Readings/
rs.pdf.

Sgall, Petr. 1967. Generativnı́ popis jazyka a česká deklinace [Generative Description of Language
and Czech Declension]. Academia.

Sgall, Petr, Eva Hajičová, and Jarmila Panevová. 1986. The Meaning of the Sentence in Its
Semantic and Pragmatic Aspects. D. Reidel & Academia.

Sgall, Petr, Jarmila Panevová, and Eva Hajičová. 2004. Deep Syntactic Annotation: Tec-
togrammatical Representation and Beyond. In HLT-NAACL 2004 Workshop: Frontiers in
Corpus Annotation, pages 32–38. Association for Computational Linguistics.

Smrž, Otakar. 2003–2007. Encode::Arabic. Programming module registered in
the Comprehensive Perl Archive Network, http://search.cpan.org/dist/

Encode-Arabic/.

Smrž, Otakar. 2007. ElixirFM — Implementation of Functional Arabic Morphology. In
ACL 2007 Proceedings of the Workshop on Computational Approaches to Semitic Languages:
Common Issues and Resources, pages 1–8. Prague, Czech Republic: ACL.

http://catarina.ai.uiuc.edu/L406_06/Readings/rs.pdf
http://catarina.ai.uiuc.edu/L406_06/Readings/rs.pdf
http://search.cpan.org/dist/Encode-Arabic/
http://search.cpan.org/dist/Encode-Arabic/

BIBLIOGRAPHY 102

Smrž, Otakar and Petr Pajas. 2004. MorphoTrees of Arabic and Their Annotation in the
TrEd Environment. In NEMLAR International Conference on Arabic Language Resources
and Tools, pages 38–41. ELDA.

Smrž, Otakar, Petr Pajas, Zdeněk Žabokrtský, Jan Hajič, Jiřı́ Mı́rovský, and Petr Němec.
2007. Learning to Use the Prague Arabic Dependency Treebank. In E. Benmamoun, ed.,
Perspectives on Arabic Linguistics, vol. XIX. John Benjamins.

Soudi, Abdelhadi, Violetta Cavalli-Sforza, and Abderrahim Jamari. 2001. A Computa-
tional Lexeme-Based Treatment of Arabic Morphology. In EACL 2001 Workshop Proceed-
ings on Arabic Language Processing: Status and Prospects, pages 155–162. Toulouse.

Spencer, Andrew. 2004. Generalized Paradigm Function Morphology. http://

privatewww.essex.ac.uk/˜spena/papers/GPFM.pdf.

Sproat, Richard. 2006. Lextools: a toolkit for finite-state linguistic analysis. AT&T Labs.
http://www.research.att.com/˜alb/lextools/.

Stump, Gregory T. 2001. Inflectional Morphology. A Theory of Paradigm Structure. Cambridge
Studies in Linguistics. Cambridge University Press.

Swierstra, S. Doaitse. 2001. Combinator Parsers: From Toys to Tools. In G. Hutton, ed.,
Electronic Notes in Theoretical Computer Science, vol. 41. Elsevier Science Publishers.

Swierstra, S. Doaitse and Luc Duponcheel. 1996. Deterministic, Error-Correcting Com-
binator Parsers. In J. Launchbury, E. Meijer, and T. Sheard, eds., Advanced Functional
Programming, vol. 1129 of LNCS-Tutorial, pages 184–207. Springer-Verlag.

Van Roy, Peter and Seif Haridi. 2004. Concepts, Techniques, and Models of Computer Program-
ming. Cambridge: MIT Press.

Versteegh, Kees. 1997a. Landmarks in Linguistic Thought III: The Arabic Linguistic Tradition.
Routledge.

Versteegh, Kees. 1997b. The Arabic Language. Edinburgh University Press.

Wadler, Philip. 1985. How to Replace Failure by a List of Successes. In Proceedings of a
Conference on Functional Programming Languages and Computer Architecture, vol. 201 of
Lecture Notes in Computer Science, pages 113–128. New York, NY, USA: Springer-Verlag.
ISBN 3-387-15975-4.

Wadler, Philip. 1995. Monads for Functional Programming. In Advanced Functional Pro-
gramming, First International Spring School on Advanced Functional Programming Tech-
niques, vol. 925 of Lecture Notes in Computer Science, pages 24–52. London, UK: Springer-
Verlag. ISBN 3-540-59451-5.

http://privatewww.essex.ac.uk/~spena/papers/GPFM.pdf
http://privatewww.essex.ac.uk/~spena/papers/GPFM.pdf
http://www.research.att.com/~alb/lextools/

BIBLIOGRAPHY 103

Wadler, Philip. 1997. How to Declare an Imperative. ACM Computing Surveys 29(3):240–
263.

Wadler, Philip. 2003. A Prettier Printer. In J. Gibbons and O. de Moor, eds., The Fun of
Programming, Cornerstones of Computing, pages 223–243. Palgrave Macmillan.

Wadler, Philip and Stephen Blott. 1989. How to Make Ad-Hoc Polymorphism Less Ad
Hoc. In Conference Record of the 16th Annual ACM Symposium on Principles of Programming
Languages, pages 60–76. ACM.

Yaghi, Jim and Sane Yagi. 2004. Systematic Verb Stem Generation for Arabic. In COLING
2004 Computational Approaches to Arabic Script-based Languages, pages 23–30. Geneva,
Switzerland.

Žabokrtský, Zdeněk. 2005. Valency Lexicon of Czech Verbs. Ph.D. thesis, Charles University
in Prague.

Žabokrtský, Zdeněk and Otakar Smrž. 2003. Arabic Syntactic Trees: from Constituency to
Dependency. In EACL 2003 Conference Companion, pages 183–186. Budapest, Hungary.

Linguistic Index

absolute state, 30

clitic, 10, 25
complex state, 30
CV pattern, 33

definite state, 30
derivational form, 34

encoding, 14

feature, 28
form, 7, 67
formal category, 28
function, 7, 67
functional approximation, 10
functional category, 28

gemination pattern, 34, 50
grammatical category, 28

illusory category, 28
incremental theory, 8
indefinite state, 30
inferential theory, 8
inferential–realizational, 10

lexical theory, 8
lexical word, 10
lexical–incremental, 10
lifted state, 30
logical category, 28

morph, 9, 10, 67

morpheme, 9, 67
morphology, 9, 30
morphophonemic pattern, 33
morphosyntactic property, 28

neutralization, 33

orthographic string, 10, 23
orthography, 14

paradigm, 32
paradigm function, 31
pattern, 33
positional notation, 11

realizational theory, 8
reduced state, 30
romanization, 14
root, 33

segment, 10
syncretism, 28, 32
syntax–morphology interface, 9

tag, 10
token, 10, 23, 68
transcription, 14
transliteration, 14

uninflectedness, 33

vocalism, 33
vocalization pattern, 34

weak pattern, 34, 50

104

