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Introduction
The main purpose of the thesis is to describe and test two aspects of simulating
the incompressible Navier-Stokes flows with significant vortex dynamics. Firstly,
the incompressible Navier-Stokes equations are a saddle point problem and the
resulting discrete algebraic problems arising from numerical discretization require
specific solution approaches to be solved efficiently. Secondly, the incompressible
flow problems become difficult to solve in time-dependent domains as special
formulation of the equations or treatment of boundary conditions is needed. This
thesis describes these problems and their solutions and applies them to numerical
simulations of experiments conducted by the Superfluidity research group based
at Charles University.

The experiments are conducted in liquid Helium at low temperatures (1.5K-
2K). Some simulations of liquid Helium below the lambda temperature (the tem-
perature at which Helium transitions to superfluid Helium II state, approximately
2.17K at 1atm.) have been carried out using the two fluid model [Landau, 1941]
in simpler geometries [Bruce et al., 2017]. One goal of the thesis is to investigate
whether the experiments can be simulated by the simpler incompressible Navier-
Stokes equations under the assumption that the temperature is constant. As the
velocity and vorticity data cannot be directly measured in the experiments, it
is useful to employ the numerical simulations where the data are available. The
simulations are used to establish a relationship between a new quantity called
pseudovorticity and vorticity. Pseudovorticity is a Lagrangian quantity obtained
by tracking the velocity of (ideally massless) particles in a fluid. Pseudovorticity
can be used to identify various properties of vortices such as position and velocity.

The first chapter of the thesis includes a description of the Navier-Stokes
equations which express general conservation laws, specifically, the conservation
of mass and the conservation of linear momentum. The weak formulation of
the equations is stated in the first chapter as the starting point of the thesis
which is followed by a short introduction to a numerical solution of Navier-Stokes
equation and spatial (using the Finite Element Method) and time discretization
of the equations.

Quick, efficient, and scalable solvers are needed in order to solve flow problems
in detail for large systems. This thesis describes two preconditioners and a projec-
tion method as options to replace the direct solver MUMPS with scalable iterative
solvers. These iterative solvers scale much better than MUMPS [Amestoy et al.,
2001] which makes them suitable for computation of large problems on computa-
tional clusters. The Pressure Convection Diffusion Reaction (PCDR) precondi-
tioning [Elman et al., 2014] implemented in FENaPack [Blechta and Řehoř, 2019]
and the Least Squares Commutator preconditioner [Elman et al., 2006] imple-
mented in PETSc [Balay et al., 2015] are explained in the second chapter. These
preconditioners are compared with the direct solver MUMPS and the projection
method Incremental Pressure Correction Scheme (IPCS) [Guermond et al., 2006].
A numerical simulation of the vortex rings experiment [Švančara et al., 2020] is
carried out at the end of the second chapter using previously mentioned meth-
ods. The simulation is used as a performance benchmark for a comparison of the
methods. The ability of pseudovorticity to capture the position and velocity of
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the vortex ring is demonstrated at the end of the chapter.
The third chapter further extends the results of [Outrata, 2018] and outlines

two methods of dealing with the time-dependent domains. These methods are:
the Fictitious Boundary method (FIB) [Turek et al., 2003] which works in the
physical domain of the problem and the Arbitrary Lagrangian Eulerian (ALE)
[Lozovskiy et al., 2018] formulation which transforms the problem into a static
domain where it is solved. These methods are then applied to two problems:
a benchmark test [Schott, 2017] including a computation of the flow around an
oscillating cylinder and a simulation of the experiment documented in [Duda
et al., 2015]. Special outflow conditions and stabilization methods needed to
simulate the experiment are introduced at the end of third chapter. The numerical
comparison of the FIB and the ALE is the subject of the fourth chapter.
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1. Navier-Stokes equations
This chapter will go over some basic equations and relations regarding incom-
pressible Navier-Stokes equations.

1.1 Notation
Definitions and notations needed in the following text:

• Let Ω,Ω0 be open bounded domains in Rd, d = 2, 3 with piecewise smooth
boundaries and unit outer normals n and n0.

• Vector spaces for vector functions are denoted by blackboard letters, such
as V which denotes space

V(Ω) = {f : fi is in V for i = 1, ..., d}

• Sobolev spaces - spaces defined by

H1(Ω) = {f ∈ L2(Ω) :
∫
Ω

|∇f |2 + |f |2 dV < ∞}

H1
0 (Ω) = {f(Ω) ∈ H1 : Tr(f) = 0 on ∂Ω},

where ∇f denotes vector of partial derivatives of f in a weak sense and
Tr() is the trace operator (see [Evans and Society, 1998]).

• Bochner spaces - spaces involving time, especially L2[(0; T ); X], which is
defined by norm

∥f∥L2[(0,T );X] = (
T∫

0

∥f(t)∥2
Xdt) 1

2 < ∞. (1.1)

• Inner products - Let u, v ∈ L2(Ω) and u, v ∈ L2(Ω) (and u, v ∈ H1(Ω) for
product of gradients), then

(u, v) =
∫
Ω

uv dV

(u, v) =
∫
Ω

u · v dV.

(∇u, ∇v) =
∫
Ω

∇u : ∇v dV
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1.2 Navier-Stokes Equations
Let Ω be a domain filled with fluid. The incompressible Navier-Stokes equations
can be written in the strong formulation as follows

∂u
∂t

+ u · ∇u = f − 1
ρ

∇p + ν∆u,

∇ · u = 0 in Ω,

(1.2)

where u denotes the velocity of the fluid, p is the pressure, f are the external
volume forces acting on the fluid, ρ is the density of the fluid and ν denotes
kinematic viscosity of the fluid. We only consider case where ρ is constant so the
following pressure notation is used in the thesis p̃ = p/ρ but we omit the tilde.
Let us define T = −pI + 2νD, where D is the symmetric part of the velocity
gradient. For now, we consider two possible boundary conditions, the Dirichlet
and traction free boundary conditions

u = u∂Ω on ∂Ωd

Tn = 0 on ∂Ωf

(1.3)

under the condition that ∂Ωd ∪ ∂Ωf = ∂Ω and ∂Ωd ∩ ∂Ωf = ∅. The initial
condition is u(x, 0) = u0(x).

These equations can be also rewritten in the dimensionless form

∂u′

∂t′ + u′ · ∇′u′ = 1
Fr2 f ′ − ∇′p′ + 1

Re
∆′u′,

∇′ · u′ = 0
(1.4)

using the Reynolds number Re = UL
ν

, the Froude number Fr = U√
f0L

and the

transformations x′ = x
L

, u′ = u
U

, t′ = tU
L

, p′ = p
ρU2 and f ′ = f

f0
, where U is the

characteristic speed of the system, L is the characteristic length of the system and
f0 is the characteristic force of the system. From the previous form of equations
it can be seen that if the Reynolds number is low, then the viscous forces (cor-
responding to the Laplace operator) dominate the flow while the convection has
smaller effects. Flows at low Reynolds numbers are often called laminar. These
flows are easier to simulate because of the stability ensured by the viscous forces.
If the Reynolds number is high, then the nonlinear term u · ∇u corresponding
to convection dominates the equations and the flows are named turbulent. This
situation is typically much harder to simulate because the lack of viscous forces
leads very small scale features, possible instabilities and chaotic behavior. Up
to this day, the problem of existence and uniqueness of the classical solution to
the Navier-Stokes equations remains unsolved as one of the 7 Millenium prob-
lems announced by the Clay Mathematics institute. The weak formulation of the
Navier-Stokes equations is more suitable for the numerical purposes (from now
on all spatial derivatives are considered as weak derivatives).

The definition of the weak solution (for simplicity with homogeneous Dirichlet
boundary condition) can be specified as follows. Let f ∈ L2[(0, T );L2(Ω)] and
initial condition u0 ∈ H1

0(Ω) be given. We say that pair (u, p) is a weak solution
of the Navier-Stokes problem with homogeneous Dirichlet boundary conditions,
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if u ∈ L2[(0, T );H1
0(Ω)] ∩ L∞[(0, T );L2(Ω)] , p ∈ L2[(0, T ); L2(Ω)] and

(∂u
∂t

, v) + (u · ∇u, v) + ν(2D, ∇v) − (p, ∇ · v) = (f , v)

(∇ · u, q) = 0
u(0) = u0

(1.5)

hold for every v ∈ H1
0(Ω) and q ∈ L2(Ω). Previous equations are meant in the

sense of scalar distributions on interval (0, T ). More detailed information can be
found in [Feistauer, 2006]. It is easy to see, that the classical solution to problem
(1.2) is also a weak solution. The weak formulation of Navier-Stokes equations
is usually formulated using the spaces of solenoidal functions (more information
for example in [Feistauer, 2006]), however such a formulation is not suitable for
the numerical purposes of this thesis. The external forces are omitted in the rest
of the thesis.

1.2.1 Time Discretization
Consider time discretization {tj}K

j=0, tK = T . Two main approaches to discretiza-
tion are described in the thesis. The θ scheme which fully couples velocity and
pressure computation together and the Incremental Pressure Correction Scheme
(IPCS) where the computation of velocity and pressure is decoupled.

The θ scheme can be stated as follows. Let us suppose, that we know a solution
uk, pk for known time tk, k ∈ N and the goal is to find a solution uk+1, pk+1 at
time tk+1 after a time step dt. The problem can be rewritten as

(∂uk+1

∂t
, v) + (pk+1, ∇ · v) + (∇ · uk+1, q) + F (tk+1) = 0, (1.6)

for every v ∈ H1
0(Ω) and q ∈ L2(Ω), where function F (t) stands for rest of the

terms in (1.5). After the use of one step theta time stepping scheme as described in
[Turek et al., 2006], which states that the previous equation can be approximated
as

(uk+1 − uk

dt
, v)+(pk+1, ∇·v)+(∇·uk+1, q)+θF (tk+1)+(1−θ)F (tk) = 0, (1.7)

for θ ∈ (0, 1] for every v ∈ H1
0(Ω) and q ∈ L2(Ω). Two sensible choices are

θ = 0.5 and θ = 1. The scheme is called the Crank-Nicholson scheme for θ = 0.5.
The scheme is called the implicit Euler scheme for θ = 1 (hereinafter only Euler
scheme). The convergence order of the Crank-Nicholson scheme is O(dt2) while
the order of Euler scheme is only O(dt). The disadvantage of the Crank-Nicholson
scheme is its lesser stability.

1.2.2 The Finite Element Method
The Finite Element Method is used for the spatial discretization. This thesis con-
tains only a short intro on the topic, more information can be found in [Feistauer,
2006] or [Glowinski, 2003], Let us have a triangular (tetrahedral in 3D) discretiza-
tion of Ω called Ωh, where h is a discretization parameter. It can be the biggest
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side of the triangle in 2D or radius of the inscribed or circumscribed ball in 3D for
example. Instead of infinite dimensional spaces, a finite dimensional subspaces
will be used for finding the solution. We consider two finite dimensional spaces
of piece-wise polynomial functions, one for approximating velocity Xh, other for
approximating pressure Qh. Spaces Xh, Qh have to satisfy the Babuška-Brezzi
condition

inf
0̸=q∈Q∫

Ω
q dV =0

sup
v∈X

(∇ · v, q)
∥q∥L2∥v∥H1

≥ β (1.8)

for β > 0 to obtain a stable discretization. The Taylor Hood P2/P1 [Feistauer,
2006] and mini [Brezzi and Fortin, 2012] elements will be used in this thesis as
both sastisfy the previous condition. One can then state fully discretized problem
for both time stepping schemes by interchanging the infinite dimensional space
by the finite dimensional subspaces. That is find uk+1

h ∈ Xh, pk+1
h ∈ Qh such that

(uk+1
h − uk

h

dt
, v)+(pk+1

h , ∇·v)+(∇·uk+1
h , q)+θ((∇uk+1

h uk+1
h , v)+(2νDk+1

h , ∇v))

+ (1 − θ)((∇uk
huk

h, v) + (2νDk
h, ∇v)) = 0 (1.9)

for every v ∈ Xh and q ∈ Qh.
By expansions of velocity and pressure into the basis of finite dimensional

spaces (Nu is the number of dof - degrees of freedoms of the velocity space,Np

number of dof of the pressure space)

Xh = {φ1, ..., φNu}
Qh = {ϕ1, ..., ϕNp}

uk
h(x) =

Nu∑
i=1

ûk
i φi(x).

pk
h(x) =

Np∑
i=1

p̂k
i ϕi(x).

(1.10)

One obtains a set of nonlinear (linear for IPCS) equations for each time step.
These equations can be solved via Newton’s method, or other methods for solving
set of nonlinear equations such as Picard iteration. The hat notation ûh =
{ûi}Nu

i=1, p̂h = {p̂i}Np

i=1 is used to distinguish algebraic vectors from functions in the
following chapter.
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2. Vortex Rings
This chapter is focused on a preconditioning of the incompressible Navier-Stokes
equations and the comparison of a fully coupled θ discretization and the projec-
tion IPCS method. The tests are carried out on the vortex rings simulation of
an experiment [Švančara et al., 2020]. The experiment studies behavior of vortex
rings in a liquid 4He at low temperatures (1.3K − 1.9K). The aim of the simu-
lations is to compare new quantity pseudovorticity with vorticity on the vortex
rings. The pseudovorticity could serve as a new tool for tracking and identifying
properties of vortices in the experiments and for this reason it is useful to study
its relationship with vorticity in the simulations.

2.1 Incremental Pressure Correction Scheme
The basic idea of the IPCS scheme [Guermond et al., 2006] is to transform the
nonlinear problem into three linear problems. The boundary conditions for the
IPCS scheme will be discussed at the end of this section.

Consider the velocity equation in (1.5). Let suppose we know the solution
uk, pk at time tk and we want to find solution uk+1, pk+1 at time tk+1. Consider
using θ discretization scheme on the velocity equation, but replacing pressure
unknown pressure pk+1 by known pressure pk and linearizing the inertia term by

uk+1 · ∇uk+1 ≈ uk · ∇uk+1 (2.1)

one obtains the equation for so called tentative velocity ut

(ut − uk

dt
, v) + (uk · ∇(θut + (1 − θ)uk), v)

+ 2ν((θDt + (1 − θ)Dk), ∇v) = (pk, ∇ · v) ∀v ∈ H1
0(Ω). (2.2)

The inertia term is often linearized using the Adam-Bashfort scheme as

uk+1 · ∇uk+1 ≈ 3uk − uk−1

2 · ∇uk+1

however it seemed to make no difference in the simulation of the vortex rings so
the simpler option was chosen instead. In the second step of the IPCS scheme,
one wants find uk+1, pk+1 such that ∇pk+1 is correction to ut to ensure incom-
pressibility of uk+1. This can be achieved by the following steps. Compute the
new pressure pk+1 by solving

(∇pk+1, ∇q) = (∇ · ut

dt
, q) + (∇pk, ∇q) ∀q ∈ L2(Ω) (2.3)

and then update the tentative velocity to obtain the final velocity uk+1

(uk+1, v) = (ut, v) − dt(∇(pk+1 − pk), v) ∀v ∈ H1
0(Ω). (2.4)

The boundary conditions for these equation are problematic and discussed
topic [Gresho and Sani, 1987],[Vreman, 2014]. Let us state boundary conditions
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used for the computations in this thesis and for more information we refer the
reader to the literature for example [Guermond et al., 2006],[Gresho and Sani,
1987],[Vreman, 2014]. Let us start with the equation (2.3). The equation is for-
mulated with implicit boundary condition ∇pk+1n = ∇pkn which is non-physical
and leads to creation of a numerical boundary layer which limits the accuracy of
the scheme [Guermond et al., 2006]. Since pressure is determined up to a con-
stant an additional boundary condition is needed to solve the equation. There are
couple of solutions to this problem, such as imposing Dirichlet BC for pressure
on part of the boundary, Lagrange multipliers to enforce zero mean pressure or
compute the minimal norm solution to the singular problem.

While it is quite straight forward to implement the Dirichlet boundary condi-
tions for equation (2.2) it is complicated to come up with proper outflow condi-
tions. The traction free condition

(−pI + 2νD)n = 0 (2.5)

couples velocity and pressure together. However, notice that pressure is not an
unknown in the first equation. The outflow boundary condition for the projection
scheme are

(−pkI + 2νDt)n = 0 (2.6)
as stated in [Guermond et al., 2006]. The third correction step requires no bound-
ary conditions. It should be mentioned that this scheme is known to require small
time steps to give accurate results. By using the Finite Element Method one ob-
tains a set of 3 linear problems to be solved for each time step.

2.2 Preconditiong of the Navier-Stokes Equa-
tions

Consider the Navier-Stokes equations, temporally discretized using the θ time
stepping scheme and spatially discretized by the FEM and let the finite elements
satisfy (1.8). Consider the decomposition of uk

h, pk
h into the basis of the form

(1.10). Let us take a closer look at the system of the nonlinear equations which
arises for the coefficients. From the balance of linear momentum we get (consider
implicit euler for simplicity)

{Ru(ûk+1, p̂k+1)}j =
Nu∑
i=1

1
dt

(ûk+1
i φi, φj) +

Nu∑
i=1

Nu∑
k=1

ûk+1
i ûk+1

k (∇(φi)φk, φj)+

ν
Nu∑
i=1

ûk+1
i (φi, φj) −

Np∑
i=1

p̂k+1
i (ϕi, ∇ · φj) + G(ûk, p̂k, φj) = 0 ∀j = 1, .., Nu

(2.7)
where G(ûk, p̂k, φj) = 0 is a function of tests function and discrete solution ûk, p̂k

from previous step. From the incompressibility one obtains

{Rm(ûk+1)}j =
Nu∑
i=1

ûk+1
i (∇ · φi, ϕj) = 0 ∀j = 1, .., Np. (2.8)
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Let us take a look at one iteration of Newton’s method for this system of nonlinear
equations that is

ûk+1
new = ûk+1

old + δû
p̂k+1

new = p̂k+1
old + δp̂

(2.9)

where δû, δp̂ satisfies

J

(
δû
δp̂

)
= −

(
Ru(ûk+1

old , p̂k+1
old )

Rm(ûk+1
old )

)
(2.10)

and J is the Jacobi matrix of the system. Let us take a closer look at the Jacobi
matrix, denoting

M = {(φi, φj)}i,j=Nu
i,j=1

Mp = {(ϕi, ϕj)}i,j=Np

i,j=1

K = {(∇φiuk+1
old , φj)}i,j=Nu

i,j=1

L = {(∇uk+1
old φi, φj)}i,j=Nu

i,j=1

A = {ν((∇φi + (∇φi)T , ∇φj)}i,j=Nu
i,j=1

B = −{(∇ · φj, ϕi)}i=Nu,j=Np

i,j=1

(2.11)

the system of equations (2.10) can be rewritten as:

J
(

δu
δp

)
=
(

1
dt

M + K + L + A BT

B 0

)(
δu
δp

)
= −

(
Ru(ûk+1

old , p̂k+1
old )

Rm(ûk+1
old )

)
(2.12)

If the L term is dropped, the resulting system corresponds to the Picard iteration
[Elman et al., 2014]. We see that the problem has a saddle point structure and
an important block structure. Consider a general problem with the matrix

C =
(

F BT

B 0

)
. (2.13)

solved by the right preconditioned GMRES with the preconditioning matrix

P =
(

F BT

0 −S

)
. (2.14)

where S = BF−1BT denotes the Schur complement of the matrix C. Then the
GMRES [Liesen and Strakoš, 2012] would converge in two iterations [Murphy
et al., 1999], however the matrix S is dense and the action of the F−1 is expensive
as well. That said, the action of the P−1 on a vector would be too expensive to
compute. While the approximation of the F−1 is easy to deal with (see the end
of the chapter), the action of S−1 is difficult to approximate. Following sections
describe two ways of approximating the S−1 for the incompressible Navier Stokes
problem. The options are the Pressure Convection-Diffusion-Reaction (PCDR)
preconditioning and the Least Squares Commutator (LSC) preconditioning.
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2.2.1 Pressure Convection Diffusion Reaction Precondi-
tioning

This section is generally based on information found in [Elman et al., 2014] and
the PhD. thesis of Martin Řehoř [Řehoř, 2018] and Jan Blechta [Blechta, 2019],
the developers of the FENaPack [Blechta and Řehoř, 2019]. Let us make some
simplifications to the problem. Consider a steady problem and F corresponding to
the Picard iteration. The operators in the Jacobian can be formally interpreted as
discretized continuous operators. The operator M−1F (acting on û) corresponds
to the continuous operator F (acting on u)

Fu = uk+1
old · ∇u − div(2νD) (2.15)

where uk+1
old is the known velocity obtained in last iteration of the Picard (or

Newton’s) method. The operator M−1
p B (acting on û) corresponds to −div()

and the operator M−1BT corresponds to ∇ (acting on p̂) (see [Elman et al.,
2014]). That said the operator S formally corresponds to the operator

S = −div ◦ F −1 ◦ ∇ (2.16)

as can be observed from using the discrete operators

M−1
p S = (M−1

p B)(M−1F)−1(M−1BT ) = M−1
p BF−1BT . (2.17)

The main idea in the PCDR preconditioning is to swap the order of operators
and at the same time replace the operator F by its counterpart acting on the
pressure space Fp (the discrete form of the operator Fp is specified later). That
leaves us with two possible versions of the PCDR preconditioning

S−1 ≈ MpF−1
p BM−1BT

S−1 ≈ BM−1BT F−1
p Mp.

(2.18)

Since matrix BM−1BT is generally dense, the sparse discrete laplacian matrix
Âp (defined below) can be under some assumptions (see [Elman et al., 2014])
(matrix is singular, artificial boundary conditions are needed for nonenclosed
flows) used instead. Another approach of approximating the matrix BM−1BT is
to use BD−1

M BT instead, where {DM}i,j = {M}i,jδij is the diagonal matrix of M.
Defining Âp, Kp, Ap analogically as in the (2.11)

Âp = {(∇ϕi, ∇ϕj)}i,j=Np

i,j=1

Kp = {(∇ϕi, uk+1
old ϕj)}i,j=Np

i,j=1

Ap = νÂp

(2.19)

the 2 options for PCDR preconditiong can be summarized as

SBRM1 = ApF−1
p Mp

SBRM2 = MpF−1
p Ap

(2.20)

and their inverse (and corresponding continuous counterparts)

S−1
BRM1 = M−1

p FpA−1
p ≈ Fp ◦ (−∆)−1

S−1
BRM1 = A−1

p FpM−1
p ≈ (−∆)−1 ◦ Fp.

(2.21)
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Let us return to the original problem and specify the operators F and F. The
problem is more complicated for the Newton’s iteration, so let us consider the
operator F coming from the Picard iteration of the unsteady problem, that is

F = 1
dt

M + K + A (2.22)

which approximately corresponds to

Fu = ∂u
∂t

+ uk+1
old · ∇u − div(2νD). (2.23)

The corresponding pressure counterpart can be chosen as follows

Fpp = ∂p

∂t
+ uk+1

old · ∇p − div(ν∇p) (2.24)

and the resulting discrete operator

Fp = 1
dt

Mp + Kp + Ap. (2.25)

Since (2.21) contains at least one Laplace solve an additional artificial bound-
ary conditions are often needed to construct the preconditioner. This topic is
widely discussed (mostly for stationary case) for example in [Blechta, 2019],[El-
man et al., 2014],[Howle et al., 2006],[Olshanskii and Vassilevski, 2007]. The
BRM1 version prescribes homogeneous Dirichlet boundary conditions on the in-
let, while the BRM2 prescribes homogeneous Dirichlet boundary conditions on
the outlet. More about the boundary conditions is explained in [Blechta, 2019]
for both variants of preconditioning. Additional boundary modifications of the
operator Fp are discussed in [Elman et al., 2014].

The PCDR preconditioner is implented in FENaPack in FEniCS[Alnæs et al.,
2015] [Blechta and Řehoř, 2019]. By substituting (2.25) into (2.21) we obtain
(BRM1 version only for simplicity)

S−1
BRM1 = M−1

p ( 1
dt

Mp + Kp + Âp)A−1
p = 1

dt
Â−1

p + νM−1
p (1

ν
KpÂ−1

p + I) (2.26)

where I stands for the identity matrix. It was already mentioned that matrices
Âp and BD−1

M BT have similar properties to BM−1BT . The first term in (2.26)
is instead approximated as

S−1
BRM1 = 1

dt
(BD−1

M BT )−1 + νM−1
p (1

ν
KpÂ−1

p + I) (2.27)

This can be justified for t → 0+ as S−1 = (BF−1BT )−1 ≈ 1
dt

(BM−1BT )−1 and
S−1

BRM1 ≈ 1
dt

(BD−1
M BT )−1. Approximation of the S−1

BRM2 is done in the same
manner.

2.2.2 Least Squares Commutator
The second option of approximating the Schur complement is called the Least
Squares Commutator (LSC) and is implemented in the PETSc library [Balay
et al., 2015] and described well in [Elman et al., 2014]. Let us consider steady
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case and linearization of the convection term via the Picard iteration and corre-
sponding operators

Fu = uk+1
old · ∇u − div(2νD)

Fpp = uk+1
old · ∇p − div(ν∇p).

(2.28)

Consider commutator of these operators with the gradient operator

E = ∇ · F − Fp∇· (2.29)

The key idea is to construct operator Fp such that the commutator will be small
in some sense. Following relation for the discretized operator E is obtained by
using the relations between discretized operators F, Fp and their continuous coun-
terparts F , Fp, mentioned in previous section.

E = (M−1B)(M−1F) − (M−1
p Fp)(M−1B) (2.30)

If we assume that this commutator is small, i.e. E ≈ 0 we obtain

SLSC = BF−1BT ≈ MF−1
p BM−1BT (2.31)

The construction of Fp can be thought as of minimization of the commutator
in the least square sense. Instead of commutator E consider adjoint operator
E∗ defined by (Eu, p) = (u, E∗p). For smooth functions from pressure space
we obtain for the norm of the adjoint operator (using similar relations between
discretized operators and their continuous counterparts as above)

supph ̸=0
∥(−ν∆ + uk+1

old · ∇)∇ − ∇(−ν∆ + uk+1
old · ∇)∥

∥ph∥
=

= supp̸̂=0
∥((M−1FT )(M−1BT ) − (M−1BT )(M−1FT

p ))p̂∥M

∥p̂∥M
(2.32)

where ∥û∥M = ûT Mû, ∥p̂∥M = p̂T Mpp̂. The main idea is to construct Fp such
that the norm (2.32) is as small as possible. One option is to minimize the
norms of the individual vectors of the commutator. This results in a weighted
least-squares problem.

min∥{M−1FT M−1BT }j − (M−1BT M−1){FT
p }j∥M for j = 1, ..., Np (2.33)

The solution to the previous problem gives the solution [Elman et al., 2014]

Fp = (BM−1FM−1BT )(BM−1BT )−1M (2.34)

which results in schur complement of the form

SLSC ≈ (BM−1BT )(BM−1FM−1BT )−1(BM−1BT ) (2.35)

Since M−1 is dense [Elman et al., 2014], it is practical to replace it with D−1
M

(as mentioned before BD−1
M BT is basically scaled sparse Laplacian). The final

approximation to the LSC preconditioning reads

SLSC = (BD−1
M BT )(BD−1

M FD−1
M BT )−1(BD−1

M BT ) (2.36)
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Information regarding boundary modification of the discrete preconditioner SLSC

can be found in [Elman et al., 2014].
One can simplify the preconditioning even more by omitting the diagonal

scaling obtaining
SLSC = (BBT )(BFBT )−1(BBT ) (2.37)

The advantage over the PCDR preconditioning is not having to explicitly con-
struct operator Fp, but on the other hand, it involves two Laplace type solves
instead of one compared to the PCDR.

2.2.3 Remarks - Newton’s Method
Both of the mentioned preconditioners were derived for the Picard iteration,
however it is still possible to use them together with the Newton’s method with
slight modification. The F in the (2.14) comes from the Newton’s method for
both types of approximation to the Schur complement.

The LSC approximation of the Schur complement S (2.37) is constructed from
the exact F coming from the Newton’s method withoud any modifications.

When using the PCDR preconditioner with the Newton’s method, the ap-
proximation of the Schur complement is constructed using only part of F corre-
sponding to the Picard iteration, cf. (2.22).

2.2.4 Approximation of F
There are many ways to approximate the action of the F−1 but only the best
two (performance-wise) are mentioned in the thesis. One Richardson iteration
together with the (hypre) AMG (algebraic multigrid) [Henson and Yang, 2002]
preconditioner is used to approximate action of F−1 for the PCDR preconditioner
as described in [Blechta, 2019]. For the LSC preconditioning we heuristically
found two possible choices which performed well. One option for the LSC was to
use BiCGstab(l) [Fokkema, 1996] preconditioned by Successive-Over-Relaxation
(SOR) [DeLong and Ortega, 1995] to roughly approximate the action of the in-
verse. Second option was to switch the SOR preconditioning by the AMG, how-
ever the first option turned out to be more efficient for the vortex ring experiment
and is used in all of the computations in this chapter.

2.3 Numerical Experiments
This section contains the simulations of a vortex rings experiment and numerical
tests and comparison of the preconditioners and the IPCS projection method.

The setup of the simulation mimics the experiment [Švančara et al., 2020].
Both 2D and 3D simulation of the experiment are considered. Let us start with
the 2D model. Consider domain with boundary conditions illustrated in the
Figure 2.1. The width of the domain is W = 50mm, the length of the domain
is L = 110mm. The height of the jet is chosen to be 10mm and the width
is w = 5mm. The 2D model is not consistent with the experiment because it
does not preserve the axial (axis of the jet) symmetry of the problem, however
the computed velocity and vorticity fields can still be used for the comparison
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with pseudovorticity nevertheless. The inflow function on the top of the jet is a
parabolic velocity profile modified in time that is

u∂Ωin
(x, t) = (0, u0)((

2x

w
)2 + 1)f(t) (2.38)

where u0 is the maximum velocity of the inflow and

f(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

t
0.1 x ≤ 0.1
1 0.1 ≤ x ≤ 0.9
1−t
0.1 0.9 ≤ x ≤ 1
0 1 ̸= x.

(2.39)

The homogeneous Dirichlet boundary conditions are applied everywhere except
for the topmost horizontal wall where traction free boundary condition is used.
The viscosity of the fluid used is ν = 0.01mm2/s.

Figure 2.1: A sketch of the problem with boundary conditions.

The projection method requires use of an artificial boundary condition for the
pressure. It has been verified by numerical tests that prescribed zero pressure on
the topmost horizontal wall of the domain works well if the domain is long enough
even-though it is not the correct condition. Better condition for pressure would
be to enforce zero mean pressure via Lagrange multipliers, however since it makes
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#elements v-dof p-dof total dof
45k 183k 23k 206k
133k 536k 67k 602k
285k 1143k 143k 1287k

Figure 2.2: Number of velocity and pressure dof for the Taylor-Hood elements
for the 2D meshes.

the pressure update problem much harder to solve and makes little difference in
the computations. The Taylor-Hood elements were used as they can capture the
vorticity more accurately than the mini elements but still retain computational
efficiency when proper preconditioning is used. Three meshes of various resolution
(see 2.2) in 2D were used for the computations. The computations on the most
detailed mesh were carried out to study the properties of the vortex rings captured
by theta-pseudovorticity [Švančara et al., 2020] and vorticity which is mentioned
later on. The Figure 2.3 shows the directions of flows in the vicinity of a vortex
ring pair. The vortex ring pair moves upwards in time and eventually stops.

The θ in the time stepping scheme is chosen to be 0.5, i.e. the Crank-Nicholson
scheme is used. The IPCS is used in the Crank-Nicholson form as well. The
computations were carried out using the time step dt = 0.01s (0.001s for the 1.3M
dof mesh) which naturally comes up from the requirements of the experimental
physicists. Smaller time steps make no significant difference in the computations.
This is quite interesting, because one would expect that the projection method
will require smaller time-step to give the same results, however it does not seem
to be the case in this experiment. This behavior is observed if the time step is
increased to dt = 0.05s, however such time step is too large to properly start up
the simulation even with mixed formulation and the simulations then cannot be
used for computations of the pseudovorticity. The length of the simulation is 15s.
Since the differences in the flows computed by the IPCS and θ scheme are almost
negligible and hardly visible all the figures show results computed by the IPCS
scheme.

The impact of the mesh resolution on the computation is illustrated in Figure
(2.4) and (2.5). Even the coarsest mesh captures the vortex ring pair quite
well and the main features of the flow remain to be the same regardless of the
resolution.
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Figure 2.3: The figure illustrates direction of flows around a vortex-ring pair at
time t = 3s on the most detailed mesh (1.3M dof). The flow is symmetric with
respect to the vertical axis of the nozzle of the jet.
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Figure 2.4: Computed velocities(u0 = 10mm/s) for different resolutions of the
2D mesh. On the left 200k, middle 600k and on the right 1.3M dof. Top row
represents time t = 0.5s, middle t = 1.5s and bottom t = 3s.

Figure 2.5: Computed pressures(u0 = 10mm/s) at time t=3s for different reso-
lution of the 2D mesh (again from left 200k,600k,1.3M dof).
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Figure 2.6: The vorticity at times (from left) t = 0.5s, t = 1.5s, t = 3.0s for
the most detailed 2D mesh. The red represents positive vorticity, while the blue
represents areas with negative vorticity.

The interesting part of this numerical experiment is to compare performance
of PCDR and LSC preconditioning against IPCS scheme and the direct solver
MUMPS, their parallel scaling and the robustness with respect to the Reynolds
number of the methods. The robustness is tested by changing the u0 to a higher
(lower) value. The only difference within the simulation is faster movement of
the vortex ring. Both BRM1 and BRM2 versions of PCDR preconditioning were
tested. The most simple version of the LSC preconditioning without the diagonal
scaling (2.37) was used. The reason for using the simpler version of LSC is that
it is implemented in PETSc. Even-though both preconditioning strategies were
derived mainly for linearized approaches like Picard iteration, it was found that
the preconditioners combined with Newton’s method give much better perfor-
mance for this problem, so only the results computed with Newton’s method are
summarized in the thesis. Note that the fixed time step requirement means that
the projection method should be the fastest as the amount of (Krylov method)
iterations needed to solve for one time step is usually lower than for fully coupled
method for small time steps. If the fixed time step would not be a requirement an
implementation of an adaptive time stepping scheme would yield the best com-
parison of the methods as the fully coupled approaches could make use of their
better accuracy compared to the projection method.

The choice of proper solvers for the subproblems arising from the projection
scheme or preconditioning requires fine tuning to get the best results. Let us
briefly describe the setup for the projection scheme which has not been discussed
before. The computation of the tentative velocity and the velocity update is done
using the GMRES preconditioned by the SOR [DeLong and Ortega, 1995] mainly
for its good scalability. We found that the (hypre) AMG works very well too for
the flows with lower Reynolds number however it is a bit less robust with respect
to Reynolds number. The pressure step (Laplace solve) is computed using the
Conjugate Gradients (CG) [Liesen and Strakoš, 2012] preconditioned by (hypre)
AMG.

The solution time is measured for each time step of the simulation. The
sum of the solution times over all time steps is referred to as the computational
time. The relative error of the computational times is estimated to be roughly
5%. The tables 2.7, 2.8 and Figure 2.9 capture computational times and strong
scaling of all the methods on 200k dof and 600k dof meshes. First thing to
notice is that the IPCS is by far the fastest method (as expected). It is about
5x faster than the fully coupled approaches, while giving the same results. The
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fully coupled iterative approaches yield similar computational times regardless
of the preconditioning type. It can be also seen that for higher inflow velocity,
the direct solver tends to be faster especially for low number of cores. Overall
it can be seen that the computational times increase with the increase of inflow
velocity. The least affected is the direct solver MUMPS while the most affected
preconditioner is the LSC. The robustness of the LSC preconditioner could be
improved by using the scaled version of the preconditioning. Both versions of
the PCDR preconditioning yield very similar result, however the BRM2 is a bit
faster for more detailed meshes and small number of cores.

#cores BRM1 BRM2 LSC MUMPS IPCS
2 8053 8010 5714 5623 1504
6 3139 3157 2372 2760 595
12 1595 1588 1322 1425 345
6 9799 9701 6606 8791 1525
12 4642 4312 3960 5006 912
18 3160 2754 2819 3447 588
24 2208 2455 2114 2591 515

Figure 2.7: Relation between computational time (in seconds) and number of
cores used for u0 = 10mm/s. Upper part of the table describes results for 200k
dof mesh. Lower part captures the computational times for the 600k dof 2D
mesh.

#cores BRM1 BRM2 LSC MUMPS IPCS
2 8168 8396 7613 5737 1525
6 3122 3148 2530 2803 606
12 1617 1608 1545 1453 350
6 10949 9422 10526 9140 1848
12 6532 6173 6382 5331 1084
18 4372 4497 4403 3506 799
24 3061 3069 2871 2877 614

Figure 2.8: Relation between computational time (in seconds) and the number
of cores used for u0 = 20mm/s. Upper part of the table describes results for the
200k dof mesh. Lower part captures computational times for 600k dof 2D mesh.
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Figure 2.9: The computational times for u0 = 10mm/s are depicted on the top
and u0 = 20mm/s on the bottom. Left pictures illustrate results for 200k dof 2D
mesh, right results for 600k 2D dof mesh. The IPCS is by far the fastest method.

The advantage of the iterative solvers is their scalability. While the MUMPS
does not scale much beyond 24 cores, the iterative solvers scale very well which
makes them more suitable for larger computations which is described in the fol-
lowing 3D analogue of previous simulation.

In the 3D simulation, the height of the box is reduced to 70mm, the width is
reduced to 40mm to reduce the number of degrees of freedom. The radius and
height of the nozzle represented by a cylinder remains the same. The simulation
is consequently shorter (8s) to reduce the effects of the top wall on the vortex ring.
The 3D mesh captures the geometry of the experiment quite accurately. Note
that the 2D simulation is not consistent with the 3D simulation of the experiment
because the 3D computational domain is (roughly) created by rotating the 2D
computational domain around the axis of the nozzle.

The mesh is refined around the axis of the jet as depicted in Figure 2.10. One
mesh yields together with Taylor-Hood elements approximately 1.2M dof and
serves well for testing purposes and comparing the performance of the solvers.
A finer meshes yielding about 4.5M, 8M and 13M dof were used to get more
detailed results of the flow. The 3D simulation was conducted with the inflow
velocity u0 = 10mm/s as more detailed mesh or additional stabilization is needed
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to increase the inflow velocity (to u0 = 20mm/s).

Figure 2.10: Lower part of the mesh (1.2M dofs) used for 3D simulation. The
mesh is refined around the axis of the nozzle to get more detailed flow of the
vortexring while keeping the number of degrees of freedoms as low as possible.

Both the projection method and fully coupled approaches yield practically the
same results barely distinguishable by a simple comparison. The slice trough a
vortex ring pair is illustrated in the 2.11 and verifies that the flow patterns are
similar as in 2D eventhough the models are not consistent. The evolution of the
vortex ring in 3D illustrated in the Figure 2.12.The simulation suggest that the
vortices are bigger in the 2D simulation (Fig. 2.3) when compared to 3D results
(Fig. 2.11). While it has been observed that the velocity of the vortex ring pair is
roughly the same for both 3D and 2D simulation after time t = 3s, the previous
figures suggest that the vortex ring in 3D is faster for the initial 3s.
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Figure 2.11: Flow patterns in the plane x = 0 of a vortex ring at time t = 3s in
3D on the detailed mesh (13M dofs). The main features of the flow in the plane
x = 0 are similar as the flows obtained in 2D simulations.

Figure 2.12: Computed velocities in the plane x = 0 (u0 = 10mm/s) at times
(from left) 0.5s,1.5s and 3s for the fine 3D mesh (13M dofs).

23



Figure 2.13: The isosurface of the magnitude of the vorticity in the shape of a
torus (ring) at time t = 4s (13M dofs). The arrows on the left represent the
direction of the flow.

The performance of the direct solver MUMPS is so low in this 3D setup that it
fails to give any results within reasonable time. The performance of the iterative
solvers is visible in the table 2.14. The projection method is the fastest method
and is roughly 6x faster compared to the fully coupled approaches. From these
results, the projection method IPCS was chosen as the solver for the detailed
4.5M, 8M and 13M dofs simulation.

Both versions of the PCDR preconditioner yield very similar performance,
but it seems that for this example, the BRM2 is slightly faster. One can see
that while the LSC is faster for number of cores 36 and 72 the PCDR BRM2
preconditioner scales better with more cores and is as efficient as the LSC when
run on 108 cores.

#cores BRM1 BRM2 LSC IPCS
36 13095 12567 10090 2128
72 7326 7332 6820 1091
108 5552 5162 5114 876

Figure 2.14: Computational times (in seconds) for the 3D problem on a less
detailed mesh (1.2M dofs).

The weak scaling of the method is illustrated in the figure 2.15. The test was
carried out on 4 3D meshes with 1.2M dof, 4.5M dof, 8M dof and 13M dof. The
large initial increase is partially caused by slower internodal communication (if
the 1.2M dof computation is run on 2 nodes 18 core each instead 1 node 36 cores
then the computational time increases to 2370s). Further weak scalability shows
positive results as the computational time remains (almost) constant.
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Figure 2.15: Weak scaling of the IPCS (cca 34k dof per core, 1.2M dof, 4.5M dof,
8M dof and 13M dof). The initial increase is caused by running computations on
more than one node which decreases performance. The method scales very well
with more degrees of freedom.

2.4 Pseudovorticity
This section will shortly introduce the pseudovorticity, its relation to vorticity and
how it can be used to identify the vortex rings (vortices) in the simulations and
the experiments. While the complete velocity and vorticity field can be obtained
from the simulations, it is not obtainable from the experiments where typically
only Lagrangian data (positions of particles) can be tracked. The pseudovorticity
is a quantity which allows to estimate strength of the (macroscopic) vortices from
the positions of tracked particles. More details about the relationship of vorticity
and pseudovorticity and their ability to track various properties of the vortex
rings will be hopefully published later this year [Outrata et al.].

The pseudovorticity T is defined as

T(x, t) = 1
N

N∑
i=1

(xi − x) × ui

(x − xi)2 (2.40)

where N is the number of particles with position xi and velocity ui found inside of
an annulus with inner diameter Rin and out diameter Rout and within 10ms time
window centered in t and placed side by side. It can be shown that under certain
assumptions (such as massless particles, smooth velocity field, see [Švančara et al.,
2020]) it holds that

T = 1
2∇ × u (2.41)

in some limit sense.
For our purposes Rout = 3mm is used which roughly relates to size of the single

vortex. Rin = 10−4mm was used to prevent computations with particles located
exactly at the mesh grid points. The particles are in our case massless, and their
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velocity at a given point corresponds to velocity of the flow at the given point.
These particles are put in the simulation at time t = 1s near the nozzle such that
there are as many particles inside of the vortices as possible. Initial position of
the particles in velocity field is illustrated in the Figure 2.16. Software Paraview
and their function ParticleTracer was used for this purpose. The pseudovorticity
was evaluated on a square mesh. The vorticity was interpolated on the same
mesh. The values of the pseudovorticity depend on the number of particles if
there is not enough particles. It has been found, that if the number of particles
is 10k or more, the pseudovorticity does not change with more particles. In
this simulation, 22.5k particles placed as in the Figure 2.16 were used for the
computation of pseudovorticity. The 1.3M dof 2D simulation was used. The
comparison of the pseudovorticity and vorticity can be done in 3D as well but it
is very computationally intensive.

An additional simulation where 5.5k particles are distributed evenly troughout
the computational domain is also considered and referred to as the pseudovorticity
- experiment. This distribution of particles is motivated by experiment and is
similar to what would be observed in the experiment. The particles are put into
the fluid a time t = 0s on a rectangle of dimension 20mm × 79mm centered
above the nozzle. For this distribution of particles the parameters Rout = 5mm
and Rin = 1mm were used (as for the experiment [Švančara et al., 2020]).

Figure 2.16: Initial position of particles at time t = 1s for computation of pseu-
dovorticity. The dimension of the particle array is 10mm × 5mm.

2.4.1 Results-pseudovorticity vs vorticity
Following section describes how the pseudovorticity can be used to track certain
properties (position and velocity) of the vortex ring and how it compares to
tracking the vortex ring by the vorticity.

We want to focus only on fully developed vortex rings so times lower than
t = 4s are neglected. The Figure 2.17 shows comparison of pseudovorticity and
vorticity for the vortex rings simulation. Vortex ring is obtained by applying the
threshold of approximately 10% of a local maximum of the pseudovorticity at
time t = 10s denoted by Tmax (because the simulation is 2D, the pseudovorticity
has only one nonzero component so the maximum makes sense). This means,

26



all mesh points that meet T > 0.1Tmax are assigned to the positive (clockwise)
vortex, while the points that meet T < 0.1Tmax are linked with the negative
vortex. The centre of the positive and negative vortices are then T weighted
centres of these points. The position of a vortex ring is defined as T weighted
average of the position of the 2 vortices. Vortex ring measured by the vorticity
are obtained in the same way. The threshold applied is again approximately 10%
of the maximum of vorticity at time t = 10s. The vorticity in the close viscinity
of the nozzle is not taken in account ( as can be seen in the Figures 2.4 and 2.6
, there are small vortices near the nozzle for later times, however these are of no
interest to us)

Figure 2.17: The vorticity (left), pseudovorticity (middle) and pseudovorticity -
experiment (right) of the vortex ring at time t = 11s.

2.4.2 Position
Vertical position of a vortex ring is tracked accurately by the pseudovorticity if
compared to the vorticity as shown in the Figure 2.18. The difference between
the two is almost negligible. Pseudovorticity - experiment captures the position
of the vortex accurately as well.

Figure 2.18: Vortex ring position vs time.
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2.4.3 Velocity
One can track the velocity of a vortex ring by both pseudovorticity and vorticity
by a convolution of the position of the vortex ring with a suitable Gaussian
kernel (as in [Švančara et al., 2020]). As demonstrated in the Figure 2.19, the
decreasing trend is similar for both vorticity and pseudovorticity, especially for
t > 7s the pseudovorticity can capture the vortex ring velocity quite well if
compared to vorticity, however, there are slightly bigger oscillations in the velocity
of vortex ring tracked by pseudovorticity. The oscilations are much bigger for the
pseudovorticity - experiment simulation.

Figure 2.19: Vortex ring velocity vs time.
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3. Fictitious Boundary Method
and Arbitrary Lagrangian
Eulerian Formulation
Two ways of dealing with moving boundaries are presented in this chapter. The
first is called the Fictitious Boundary method (FIB) and the second is called the
Arbitrary Lagrangian Eulerian (ALE) formulation of the Navier-Stokes equations.

Generally, there are two main approaches to solving problems on a time-
dependent domain, either transform it into some fixed reference domain and solve
the transformed problem and transform the solution back or use some solution
method in the physical time-dependent domain. For example consider the first
problem described in the next chapter, that is an moving cylinder in a rectangular
domain. The Figure 4.1 illustrates the physical time-dependent domain where the
cylinder moves trough the domain. The reference domain can be for example the
domain with the cylinder located exactly in the middle.

The first approach usually includes some ALE-type methods such as [Lo-
zovskiy et al., 2018]. The class of the solution methods in the physical domain
includes methods such as the FIB [Turek et al., 2003], CutFEM [Burman et al.,
2015], penalty methods [Shirokoff and Nave, 2015], full space-time FEM [Mittal
et al., 1991], Lagrange Multipliers [Glowinski et al., 2001].

In the following section, the FIB will be presented as one of the simplest
solution techniques in the physical domain.

3.1 Fictitious Boundary Method
The main idea of the FIB method is to generate one mesh which already contains
most of the geometrical details and then apply the classic solution techniques and
enforce the boundary conditions on the algebraic level. The idea is well summed
up in [Turek et al., 2003]:

”Employ a (rough) boundary parametrization which sufficiently de-
scribes all large-scale structures with regard to the boundary condi-
tions. Treat all fine-scale features as interior objects such that the
corresponding components in all matrices and vectors are unknown
degrees of freedom which are implicitly incorporated into all iterative
solution steps. Hence, standard tools for grid refinement in interior
regions are easily applicable and highly accurate approximations can
be obtained.”

The treatment of the Dirichlet boundary conditions is as follows. Use the
expansion (1.10) and assemble the nonlinear system of equations of the form

Ah(Uh) = Bh (3.1)

for unknown degrees of freedom Uh with the operator Ah and right hand side
Bh. Mark the degrees of freedom corresponding to the boundary (for example
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if you have a moving object occupying part of the domain Ωc, then the dofs
corresponding to the boundary of the object are the ones located inside or on
the boundary of Ωc). In each time step replace the rows corresponding to the
boundary of Ah by identity. Prescribe the given Dirichlet values for all the
components of the vectors Uh, Bh which belong to the boundary. This approach is
called the semi-implicit boundary treatment and most of the software PDE solvers
use it to implement Dirichlet boundary conditions. More about this method,
convergence and error estimates can be found in [Turek et al., 2003].

3.2 The Arbitrary Lagrangian Eulerian Formu-
lation

The second option of dealing with the time-dependent domain described in this
thesis is the Arbitrary Lagrangian Eulerian formulation. The formulation chosen
in this thesis comes up naturally from the weak formulation and its linearized
version is documented in [Lozovskiy et al., 2018] (they refer to the method as
quasi-Lagrangian, however we still prefer to call it an ALE method). While there
exist other ALE formulations such as [Zhu and Yan, 2019] or [Duarte et al.,
2004], their implementation is more complicated for the problems considered in
the thesis.

Consider the Navier-Stokes equations in the time-dependent domain (homo-
geneous Dirichlet BC for simplicity) Ω(t), that is

(∂u
∂t

, v)Ω(t) + (u · ∇u, v)Ω(t) + ν(2D, ∇v)Ω(t) − (p, ∇ · v)Ω(t) = 0 ∀v ∈ X

(∇ · u, q)Ω(t) = 0 ∀q ∈ Q
(3.2)

where X and Q are corresponding function spaces. Consider domain Ω0 and
mapping χ : Ω0×[0, T ] → Ω(t), such that the mapping is a bijection and is smooth
enough. The main idea of this method is to transform the previous equations
into the fixed domain Ω0 and compute the solution there. The coordinates in the
physical domain Ω are denoted x and coordinates in Ω0 are denoted X. Let us
define

F(X, t) = ∇χ(X, t)
J(X, t) = det(F(X, t))
ũ(X, t) = u(χ(X, t), t)
p̃(X, t) = p(χ(X, t), t).

(3.3)

Then it follows that (the gradients are always taken with respect to the variable
of the function, i.e. ∇ũ(X, t) = ∂ũ

∂X , ∇u(x, t) = ∂u
∂x)

∇ũ(X, t) = ∇u(x, t)|x=χ(X,t)F(X, t)
∂ũ(X, t)

∂t
= ∂u(x, t)

∂t
|x=χ(X,t) + ∇u(x, t)|x=χ(X,t)ũm

(3.4)

where ũm denotes ∂χ(X,t)
∂t

and represents the velocity of the transformation of the
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domain. This yields the following set of equation in the reference domain

(∂ũ
∂t

, ṽJ)Ω0 + ((ũ − ũm) · ∇ũF−1, ṽJ)Ω0

+ν(∇ũF−1 + (∇ũF−1)T , ∇ṽF−1J)Ω0 − (p̃, Tr(∇ṽF−1)J)Ω0 = 0 ∀v ∈ X
(Tr(∇ũF−1), qJ)Ω0 = 0 ∀q ∈ Q.

(3.5)
If the transformation χ is smooth enough, one can interchange the spaces X and Q
for their counterparts in the reference domain X̃ and Q̃. That yields the following
set of equation on the reference domain to be solved.

(∂ũ
∂t

, vJ)Ω0 + ((ũ − ũm) · ∇ũF−1, vJ)Ω0+

ν(∇ũF−1 + (∇ũF−1)T , ∇vF−1J)Ω0 − (p̃, Tr(∇vF−1)J)Ω0 = 0 ∀v ∈ X̃
(Tr(∇vF−1), qJ)Ω0 = 0 ∀q ∈ Q̃

(3.6)

Note that the mesh velocity ũm is independent of the velocity ũ. The choice
of the mapping χ and the reference domain is completely arbitrary as long as
mapping χ is a bijection and smooth.

These equations can be again discretized using the Finite Element Method
and θ time stepping scheme. For simplicity only the implicit Euler version is
described. Since the Jacobian depends on time as well, one more term arises in
the formulation. The fully discretized problem reads (by F it is always meant
Fk+1 to simplify the notation)

( ũk+1
h Jk+1 − ũk

hJk

dt
− ∂J

∂t

k+1
ũk+1

h , v)Ω0

+((ũk+1
h − ũk+1

m,h) · ∇ũk+1
h F−1, vJk+1)Ω0+

ν(∇ũk+1
h F−1 + (∇ũk+1

h F−1)T , ∇vF−1Jk+1)Ω0

−(p̃, Tr(∇vF−1)Jk+1)Ω0 = 0 ∀v ∈ X̃h

(Tr(∇ũk+1
h F−1), qJk+1)Ω0 = 0 ∀q ∈ Q̃h.

(3.7)

Generally, the time derivative of the Jacobian is not available, however for the
examples considered in this thesis the time derivative is explicitely known so no
approximations to the derivative have to be made. The corresponding Dirichlet
boundary conditions just simply transform to the reference mesh. Stability of the
linearized version of scheme the scheme can be found in [Lozovskiy et al., 2018].

The projection IPCS can be also modified to the IPCS-ALE ( fully coupled
formulation is reffered to only as ALE). The formulation is analogical to classic
IPCS pulled back to the reference domain (for simplicity only implicit Euler
version). Initially, the tentative velocity is computed from the equation

( ũt
hJk+1 − ũk

hJk

dt
, v)Ω0 − (∂J

∂t

k+1
uk+1

h , v)Ω0 + ((ũt
h − ũk+1

m,h) · ∇ũk
hF−1, vJk+1)Ω0

+ 2ν(∇ũk+1
h F−1 + (∇ũk+1

h F−1)T , ∇vF−1Jk+1)Ω0

= (p̃k
h, Tr(∇vF−1)Jk+1)Ω0 ∀v ∈ H1

0(Ω0). (3.8)
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After obtaining the tentative velocity, the new pressure p̃k+1 is computed using

(∇F−1p̃k+1
h , ∇F−1qJk+1)Ω0 = (Tr(∇ũt

hF−1)
dt

, qJk+1)Ω0

+ (∇F−1p̃k
h, ∇F−1qJk+1)Ω0 ∀q ∈ L2(Ω0). (3.9)

The final velocity ũk+1
h is obtained by correcting the tentative velocity using the

new pressure.
(ũk+1

h , vJk+1)Ω0 = (ũt
h, vJk+1)Ω0 − dt(∇F−1(pk+1

h − pk
h), vJk+1)Ω0 ∀v ∈ H1

0(Ω0)
(3.10)

The boundary equations for these equations are analogical with the standart
IPCS method.

3.3 Special Boundary Conditions and Stabiliza-
tion

3.3.1 Boundary Conditions
The simulation of the experiments requires special outflow boundary conditions
to allow the vortices to leave the domain without ruining the computation. The
boundary condition used in this thesis [Arndt et al., 2016] are called Directional
Do-Nothing (DDN) boundary condition and mimic the classical traction free
boundary condition but lead to an enhanced stability.

Consider part of the domain ∂ΩN where a traction free boundary condition
is employed, that is

((−pI + 2νD)n, v)∂ΩN = 0 (3.11)
The Directional Do-Nothing boundary condition can be written as

(−pI + ν∇u)n = 1
2(u · n)−u on ∂ΩN , (3.12)

where (u · n)− = 0 if (u · n) ≥ 0 and (u · n)− = u · n if (u · n) ≤ 0. The boundary
conditions for the pure outflow turn into classic traction free conditions. Since
the divergence form of Navier-Stokes equations is used, then

((−pI + 2νD)n, v)∂ΩN = (1
2(u · n)−u + ν(∇u)T n, v)∂ΩN . (3.13)

When the ALE formulation is used, the boundary conditions still have to be
mapped into the reference domain (suppose that the boundary ∂ΩN is mapped
to ∂ΩN

0 ), that is

((−p̃I + ν(∇ũF−1 + (∇ũF−1)T ))F−T n0, vJ)∂ΩN
0

=

= (1
2(ũ · F−T n0)−ũ + ν(∇ũF−1)T F−T n0, vJ)∂ΩN

0
. (3.14)

where n0 is the normal vector in the reference configuration to the boundary
∂ΩN

0 .
These boundary conditions are not suitable for the projection scheme as they

are not linear in velocity. We did not manage to find better outflow boundary
conditions for the projection scheme, thus the projection method will not be
tested in the simulation of the experiment.
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3.3.2 Stabilization
When dealing with flows reaching high Reynolds numbers an additional stabi-
lization often has to be introduced to add ”regularity” into the equations. One
possible option is to use interior penalty type of stabilization ([Burman et al.,
2004],[Schott, 2017]) or some older and well known approaches like Streamline
Upwind Petrov-Galerkin (SUPG) [Brooks and Hughes, 1982]. In this thesis, the
SUPG stabilization is used because the transformation to the reference domain
is more straight-forward than the transformation of the interior-penalty type sta-
bilizations and gave overall better results. For the FIB method, both approaches
yielded similar results. The classical SUPG stabilization adds to the LHS of the
weak formulation (implicit Euler is used to simplify the notation) (1.9) term∑

K∈Ωh

τK((∇v)uk+1
h , R)K (3.15)

where R is the strong residual

R = uk+1
h − uk

h

dt
+ ∇pk+1

h + ((∇uk+1
h )uk+1

h − 2νdiv(Dk+1
h ))) (3.16)

and τK is the stabilization parameter projected on element K defined later.
The version of the SUPG stabilization for similar ALE formulation can be

found for example in [Zhu and Yan, 2019]. It corresponds to adding the following
term to the LHS of the weak ALE formualation (3.7)∑

K∈Ωh

τK((∇vF−1)(ũk+1
h − ũk+1

m,h), RALE)K (3.17)

where RALE is the strong residual of the transformed equation, that is

Rk+1
ALE = ũk+1

h Jk+1 − ũk
hJk

dt
− ∂J

∂t

k+1
ũk+1

h

(ũk+1
h − ũk+1

m,h) · ∇ũk+1
h F−1Jk+1 + νdiv((∇ũk+1

h F−1 + (∇ũk+1
h F−1)T )F−T Jk+1)

− ∇p̃F−1Jk+1. (3.18)

The choice of the stabilization parameter is difficult and widely discussed topic
[Tezduyar and Sathe, 2003], [John and Knobloch, 2008], [Tezduyar, 1991],[Tez-
duyar and Osawa, 2000]. We decided to use a form (h denotes diameter of a cell)

τ = α(( 2
dt

)2 + (2|uk
h|

h
)2 + 9(4ν

h2 )2)− 1
2 (3.19)

where α > 0 is an additional parameter which can be tuned to give the best
results (typically α ≤ 1 ). It should be noted that that this coefficient has
to be chosen carefully, big enough to stabilize the system but small enough to
reduce artificial viscosity added to the system by the stabilization. The current
magnitude of the velocity uk+1

h is usually used in the coefficient instead of uk
h

but this choice makes a significant difference when using a Newton’s method
and ruins the quadratic convergence. The LSIC (Least Squares Incompressibility
Constraint) (see [Tezduyar, 2002],[Zhu and Yan, 2019]) type of stabilization is
often added together with SUPG as well. The stabilization reads, add∑

K∈Ωh

τ lsic
K (div(uk+1

h ), div(v))K (3.20)
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to the LHS of the weak formulation (3.7) where τ lsic
K is the stabilization coeffi-

cient projected on the element K. The corresponding stabilization of the ALE
formulation is ∑

K∈Ωh

τ lsic
K (Tr((∇ũk+1

h )F−1), Tr((∇v)F−1)Jk+1)K . (3.21)

The coefficient is chosen in the similar fashion as in [Zhu and Yan, 2019]

τ lsic
K = α2h2

12τ
(3.22)

If the stabilization coefficient is too high, it adds too much dissipation into the
system and leads to incorrect results.

34



4. Numerical Results -
time-dependent Domains
This chapter of the thesis is focused on a simulation of the experiment conducted
by [Duda et al., 2015]. The experimented has already been attempted to simulate
in [Outrata, 2018] by the FIB method [Turek et al., 2003] with unsatisfactory
results. The behavior reached by the FIB did not reach our expectations. The
aim of this chapter is to get the desired behavior by the Arbitrary Lagrangian
Eulerian (ALE) formulation of Navier-Stokes equations and compare them with
the FIB. First of all, a benchmark test [Schott, 2017] is conducted to verify the
methods. The second part of this chapter is focused at the simulation of the
experiment.

4.1 Benchmark Test - Moving Cyllinder
The benchmark simulation of the moving cylinder problem is described and com-
pared to the results obtained in [Schott, 2017] in this section. The benchmark
test simulates flow over a moving cylinder immersed in an incompressible viscous
fluid. The original benchmark test and results can be seen in [Codina et al.,
2009]. The benchmark simulated in this thesis and in [Schott, 2017] differs from
the original benchmark by a slightly asymmetric position of the cylinder with
respect to vertical coordinate.

Consider rectangular domain [0, 2.2] × [0, 0.44] with cylinder of diameter d =
0.2 and the coordinates of its center (xc, yc). The movement of the cylinder is
prescribed to be

xc(t) = 1.1 − 0.8 sin(2π

3 (t − 0.75))

yc(t) = 0.23.
(4.1)

It can be seen, that at time t = 3 the cylinder is returned to its initial position.
The viscosity of the fluid is ν = 0.001. The no-slip boundary conditions are
imposed on the cylinder, top, left and bottom wall. The traction free boundary
condition is imposed at the right wall of the domain. The problem and boundary
conditions are illustrated in the Figure 4.1. The function χ is defined as follows:

χ(X, t) = X +
(

k(t)
0

)
∗ f(X1) (4.2)

where k(t) = −0.8 sin(2π
3 (t − 0.75)) and f(X1) (X1 denotes x coordinate in refer-

ence domain) is a smooth (C1) function illustrated in the Figure 4.2. This function
is constructed using piece-wise linear functions combined with cubic polynomials
to make f smooth. Note that the domain is deformed only in the x direction
while there is no shift in the y direction and that the reference configuration
corresponds to the location of the cylinder in the middle of the domain.

Measured quantities are the density of the force (f1, f2) acting on the cylinder
at two points , the leftmost point of the cylinder and the topmost point of the
cylinder. The forces at the point a are computed using the formula

(f1, f2)(a) = (−pI + 2νD)(a) ∗ n(a) (4.3)
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Figure 4.1: A sketch of the problem with boundary conditions. The dotted line
illustrates the motion of the cylinder.

Figure 4.2: Part of the displacement function. The displacement in the vicinity
of the cylinder is only a translation.

where n(a) is the normal at point a. These are compared to the results in [Schott,
2017], however all of the values in [Schott, 2017] are scaled by a constant which
is not obtainable in the current setup of the benchmark. Since the measurement
in the Fictitious Boundary method is not precise (quantities are measured at
different cells over time) and there are oscillations of pressure, the values are
averaged over 5 time steps to dampen the oscillations. It should be noted that
since the force is computed from point-wise values, the results can be sensitive to
the choice of the mesh.

The benchmark is conducted on 2 meshes roughly the same resolution as the
mesh used in [Schott, 2017]. One mesh has the cylinder cut out of the mesh
and is unstructured, which leads to better representation of the cylinder, while
the other is a structured mesh with crossed diagonals where the cylinder is only
marked as a subdomain in mesh leading to less accurate representation of the
cylinder as illustrated in the Figure 4.3. The ALE formulations are computed on
both meshes. The FIB method is only computed on the structured mesh. Recall
from second chapter that when using the FIB, the mesh has to be fine enough
to resolve the moving object, a cylinder in this case which it is as can be seen in
figures 4.4 and 4.5.

All the schemes are tested in the implicit Euler versions (results in [Schott,
2017] are computed using implicit Euler as well). The time step chosen for the
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Figure 4.3: The structured and unstructured meshes used for the computation.
The close up picture shows the representation of the cylinder for the two meshes.
The representation of the cylinder on the structured mesh is inaccurate regardless
of the method. While the representation of the cylinder for the ALE is fixed (it
is inaccurate but it does not change time) the representation of the cylinder in
the FIB changes for every time step.

fully coupled methods is the same as in [Schott, 2017], that is dt = 0.001 or
dt = 0.002, however the result are very similar, so only the results for dt =
0.001 are presented. The IPCS-ALE requires about 10x smaller time step to
give comparable results so time step dt = 0.0001 was chosen for the projection
method which makes the total computational time roughly 5x bigger compared
to the fully coupled methods.

The zero mean pressure is chosen as the artificial (boundary) condition for
the pressure computation in the IPCS scheme. The condition is enforced via
Lagrange multipliers and resulting algebraic system is a saddle point system. A
direct solver MUMPS is used to solve for the pressure. The solver for the tentative
velocity a velocity update remains to be the same as in the previous chapter.

The computations were carried out using the FEniCS platform [Alnæs et al.,
2015] and postproccesed in Paraview. The Taylor-Hood P2/P1 elements were
used for both methods.

The computed velocities and pressures are illustrated in the Figures 4.4 and
4.5. Both the FIB and ALE yield very good results compared to [Schott, 2017]
regardless of the used mesh. There are minor differences, however the main
features of the flow are the same for all the methods, more specifically the FIB
and ALE yield practically the same results on the same mesh (only FIB is shown).
The results on the structured meshes are almost identical to the results illustrated
in [Schott, 2017], while on the unstructured mesh there are minor differences at
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later times (t=2.29,t=2.46). The IPCS-ALE yields similar flow patterns as the
fully coupled ALE on both structured and unstructured mesh.

The densities of forces are illustrated in the Figure 4.6. Both the FIB and the
ALE capture the main trend very well regardless of the mesh and are in good
comparison with [Schott, 2017]. The IPCS-ALE cannot capture the magnitude of
the force as well as the ALE or the FIB. This can be explained by the creation of
an artificial boundary layer created by the use of the implicit boundary condition
for pressure as mentioned before.
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Figure 4.4: Velocity (scale at the top) and pressure (scale at the bottom) results
at time t=2.29. The FIB method on the structured mesh is at the top, the
IPCS-ALE on the structured mesh (note that the cylinder is only a fixed marked
subdomain in the mesh which leads to its bad representation) is in the middle
and the ALE on the unstructured mesh is at the bottom.
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Figure 4.5: Velocity and pressure results at time t=2.46. The order and scaling
is the same as in the previous figure.
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Figure 4.6: Density of force at the leftmost point and the topmost point of the
cylinder. The FIB is at the top, IPCS-ALE on structured mesh is in the middle
and ALE on the unstructured mesh is at the bottom (the ALE on structured
mesh yields same results as FIB without the oscillations).
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4.2 Simulation of the Experiment
This section is focused on the simulation of an oscillating cyllinder immersed in
incompressible fluid governed by the Navier-Stokes equations. The motivation
behind this simulation is the experiment [Duda et al., 2015] conducted by the
superfluidity research group at Charles university. The experiment involved an
oscillating cylinder of rectangular cross section immersed in liquid He II at low
temperatures (1,25K). The He II can be described as if it displayed two fluid
behavior, one component would be viscous, second would be superfluid. [Barenghi
et al., 2014],[Skrbek and Sreenivasan, 2012] suggests, that on large scales He II
can be considered Newtonian if the temperature is constant. The aim of this
section is to provide numerical simulation of this experiment on large scales. The
author has already tried to simulate the model in his bachelor thesis [Outrata,
2018], however the results were not satisfying.

The model of this experiment will be 2D for two reasons. Firstly, it would
be extremely computationally challenging to provide a reliable 3D model (as a
rough estimate, at least 5 million dof would be needed). Secondly, there should
not exist any major flows in the plane perpendicular to this axis of oscillation
according to [Duda et al., 2015].

The setup is illustrated in the Figure 4.7. The computational domain is a
rectangle of width W = 50mm and height H = 80mm. In the center of the
domain a cyllinder of rectangular cross section (rectangle) oscillates along the
vertical axis. The motion of the center of the cylinder is prescribed by

xc = 0
yc(t) = −5 sin(πt).

(4.4)

The height of the cylinder is l = 3mm and width is D = 10mm. The frequency
of the oscillations is f = 0.5Hz. The no-slip boundary conditions are applied on
the cylinder and the vertical walls of the domain. The DDN boundary conditions
are applied on the horizontal walls at the top and bottom of the domain.
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Figure 4.7: A sketch of the problem. The dotted line illustrates the motion of
the cylinder.

The computations were carried out on uniform symmetric structured meshes
as illustrated in the Figure 4.3. The cylinder is aligned with the elements such that
its representation is exact. The mini elements were used because of their com-
putational performance to reduce computational time. This setup yields about
230k dof on the coarser mesh and 600k dof on more detailed mesh. The viscosity
of the fluid is chosen as ν = 0.001mm2/s. The Newton’s method together with
direct MUMPS solver was used to solve the system of nonlinear equations.

The biggest issue regarding the simulations seems to be the choice of the time
stepping scheme and the stabilization. As for the choice of the stabilization,
the ALE method is computed with the SUPG and LSIC stabilizations and the
FIB method is computed with the SUPG stabilization. The coefficient α in the
stabilization was chosen heuristically. The FIB method is extremely sensitive to
the choice of the stabilization parameter and gives chaotic results otherwise.

The implicit Euler time stepping was used mainly for its dissipative properties.
Other time stepping schemes have been tried as well (Crank-Nicholson, BDF2)
(see the Figure 4.8) however the smaller (or none) dissipation of the schemes lead
to chaotic behavior of the system for both methods. The results become more
chaotic with decreasing time step even with implicit Euler time stepping scheme.
This behaviour might reflect some properties of the He II which incompressible
Navier-Stokes model is not able to capture, however the implementation of dif-
ferent fluid model (two fluid model [Landau, 1941],[Barenghi et al., 2014]) would
be very difficult to implement due to the computationally intensive nature of the
problem (the simulation is 50s−100s long and the chosen time step is dt = 0.01s).
A more detailed mesh yielding roughly 700k dof was employed to confirm these
results and it appears that the dissipation coming from the implicit Euler time
stepping scheme is essential for stability of the computations.
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Figure 4.8: Implicit euler (left) vs the Crank Nicholson (right) time stepping
schemes in time t = 18.5s (ALE). Bottom pictures are computed on more detailed
mesh. It can be seen that the dissipation caused by the Euler scheme makes a
significant difference in the long term behavior.

The results of the simulation are illustrated in the Figure 4.9 and 4.10. It
can be seen that the results computed by ALE and FIB method are similar and
both qualitatively agree with the experiment. Both methods yield the vortex
shedding typical for the experiments and keep the symmetry for the time of the
simulation (50s). There are differences in the shape of the vortices, but that could
be explained by inaccurate representation of the cylinder in the FIB method (the
used mesh was quite coarse for the problem). The results of the ALE do not
change much with more detailed mesh. Additional smaller vortices are formed
with the use of the FIB method on more detailed mesh which cannot be seen for
the ALE computations.
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Figure 4.9: ALE method on the top, FIB method on the bottom at times t = 15s
on the left, t = 15.5s in the middle and t = 16s on the right. Results for the
coarser mesh. Both methods give similar results.

Figure 4.10: Results on the more detailed 600k dof mesh. The ordering and times
are the same as in the previous figure. The ALE results do not change much with
detailed mesh unlike the FIB results.

The Figure 4.11 illustrates the sensitivity of the problem on the used mesh.
If one uses mesh with diagonals in one preferred direction, left instead of crossed,
one gets completely different results in the long run. This has shown to be an
important factor which was not considered in the previous work. Computations
yield the same results for viscosity high enough (ν ≈ 1mm2s−1) regardless of the
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mesh, however with increasing effects of the convection and decreasing viscosity
the system becomes chaotic.

Figure 4.11: Image of structured mesh with left diagonals on the right and be-
havior of the velocity at time t = 16s (ALE). If compared with the Figure 4.9 one
can see that the structure and symmetry of the mesh plays an important role.

The force (or more precisely linear density of force because of the 2D simula-
tion) acting on the cylinder is illustrated in figure 4.12. The force was computed
utilizing the formula

f = ρ(−p + 2νD, n)∂Ωcylinder
(4.5)

where n is the outer normal to the cylinder and ρ = 0.125g/cm3 is roughly the
density of the liquid helium. Because of the symmetry of the problem only the
vertical force is illustrated and computed. Both methods yield the same trend of
the force regardless of the mesh used. The force is the highest when the vortices
are being shed, that is about 0.1s (a little earlier for FIB) before the cylinder
reaches the maximum velocity. The oscillations in the FIB method are caused
by oscillations of pressure and inexact representation of the cylinder, which can
have quite a big impact on the fluid structure interface. The ALE method is in
this sense much more reliable because of the exact representation of the cylinder
and no oscillatory behavior of the pressure. The forces will be compared to the
experiment in the future.
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Figure 4.12: Force (linear density of force)(y-component) acting on the cylinder
for both methods during one period for the coarse mesh (top) and the more
detailed mesh (bottom). Compare with the Figure 4.9 to see the position of the
cylinder (at time t = 15s cylinder is at the top, at time t = 16s at the bottom).
Both methods give similar trend, however the oscillations in the FIB method are
quite significant regardless of the mesh.

The pseuovorticity can be computed for these simulations to get direct com-
parison with the experiment, however there are open boundary which make it
difficult to stabilize the amount of particles in the field of view. This problem is
yet to be addressed as well as the fact that the particles in the experiment have
mass.
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5. Discussion
The thesis describes two topics connected to the numerical solution of the incom-
pressible Navier-Stokes equations. The preconditioning and solution methods
of algebraic saddle point systems arising from the equations are described and
tested in the second chapter. The third chapter describes two distinct methods
of dealing with time-dependent domains which are then used for the benchmark
test and simulation of the experiment in the fourth chapter.

The simulation of the vortex rings was successful as all tested methods gave the
same results regardless of the mesh (in 2D and 3D as well). The computed results
qualitatively agree with the experiment [Švančara et al., 2020] on a sufficiently fine
mesh in 3D. The most suitable method for this particular simulation proved to be
the projection IPCS method, which yielded the best computational time as well as
good scaling. One drawback of the method (and projection methods in general)
is the unclear boundary conditions which can be harder to implement for more
complicated problems such as the simulation of the experiment and generally
fluid-structure interface problems. The modified projection scheme IPCS-ALE
was slower in the benchmark test than the fully coupled approaches and gave the
least accurate results.

The preconditioners LSC and both versions of PCDR appeared to have similar
performance in the the vortex ring simulation. The LSC does not seem to be as
robust with respect to the Reynolds number as the PCDR. The robustness and
performance of the LSC could be rapidly improved by using the scaled version
of the LSC (2.36) according to the [Elman et al., 2006]. As the scaled version
of the LSC is not available in the PETSc nor FEniCS its implementation might
present an interesting opportunity for further research. An alternative to the
preconditioning strategies would be the SIMPLE method [Patankar and Spalding,
1972] or SPAC [Elman et al., 2006]. The performance of the preconditioning varies
with elements. It has been observed that the performance of the preconditioners
(and projection method) was worse while using the mini elements compared to the
Taylor-Hood elements. On the other hand, the structure of the matrix arising
from mini elements is more easily invertible by the MUMPS than the matrix
arising from the Taylor-Hood elements from which we can draw the conclusion
that the comparison may vary with different elements.

Two different approaches of simulating the incompressible viscous Navier-
Stokes fluid in time-dependent domains are presented in the thesis. Both methods
have proved to be reliable at lower Reynolds numbers in the benchmark test,
unfortunately, both methods struggled to simulate the full scale experimental
setup.

The results of the benchmark tests were reproduced at a very good accuracy
for both methods regardless of the mesh and elements used. The fully coupled
approaches gave more accurate results and were faster than the projection IPCS-
ALE scheme.

The simulation of the experiment has shown to be a more complex prob-
lem than the benchmark test. The results computed by the implicit Euler with
given time step on the symmetric mesh were useful and gave meaningful results.
Unfortunately, with the choice of more accurate time stepping scheme (such as
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Crank-Nicholson or BDF2) the system became rather chaotic and the computed
results were completely different than those observed in the experiment. A sim-
ilar behavior was observed when the mesh was not completely symmetric. The
computations quickly tended to lose symmetry and became nonphysical. Since
this happened for both ALE and FIB, it might be the incompressible Navier-
Stokes model of the fluid that is actually not capable of capturing the observed
phenomena. The He II could be described as if it consists of two components,
viscous and non-viscous which are coupled together and sum of their densities is
constant, however, their ratio changes with temperature, which means that if the
temperature were really constant, the mixture should resemble the classical in-
compressible viscous fluid as suggested by [Landau, 1941],[Barenghi et al., 2014].
The authors of the experiment claim to have conducted the experiment with a
constant temperature and were interested in whether the experiment could be
captured by the incompressible Navier-Stokes. What could happen is that there
actually exists a temperature gradient in the areas with higher velocity (near the
cylinder) which changes the dynamics of the fluid and adds some dissipation into
the system (the ratio of viscous part increases with temperature). If one would
want to capture these effects within a solid framework, there are two approaches:
the two fluid model [Landau, 1941] or the single component model described in
[Mongiov̀ı et al., 2018]. It is possible that the dissipative properties of the implicit
Euler time stepping schemes capture similar effect which is crucial for the sta-
bility of the computations and is difficult to impose by other means (just simply
add viscosity for example).

A second option might be that the viscosity is in fact so low, that the flows
are turbulent. A solution to this would be either to use extremely fine mesh
and time step, or to employ a turbulence model. Both of the approaches would
be very difficult to realize as the turbulence is currently not a fully understood
problem. The validity of the 2D model can be questioned as well, however, due
to the computational resources, it is not possible to implement a 3D model in the
time period given.

This conclusion has been drawn after years of struggling to get valid results
after testing many approaches (some of which are not documented in this thesis)
to deal with time-dependent nature of the problem e.g., transforming into the
reference domain of the cylinder, Lagrange multiplier method and the most basic
penalty term method [Shirokoff and Nave, 2015]. The reason why the Lagrange
multipliers are less suitable than other methods is that the resulting algebraic
system requires additional special solution approach or it becomes too costly to
solve. The basic penalty term method struggles to converge as the oscillation of
the cylinder becomes 0.5Hz. Another method which could still be tried but would
require more time to implement, would be CutFEM [Burman et al., 2015](the
CutFEM is yet to be implemented for nonlinear problems), or better penalty
term method [Shirokoff and Nave, 2015] (which works for C1 domains which
is not our case, so some smoothing would be required). The problem of the
stabilization (regardless of the type) is that it adds unwanted artificial viscosity
to the system. This is especially important at high Reynolds numbers, such
as in the experiment. As for the choice of the stabilization, both the interior
penalty type stabilizations and SUPG work well for the Fictitious Boundary
Method. It is difficult to get the exact value of the coefficients to not over-
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stabilize the system. The behavior of the interior penalty method with FIB
was previously tested in the author’s bachelor thesis. It was rather challenging to
find a proper way to transform the interior penalty stabilization into the reference
domain, that is why the SUPG was chosen as the transformation of the method
was fairly straight-forward. The LSIC stabilization improved the stability of
the computations when using the ALE formulation (however, it adds a bit more
dissipation). This combination has proven to work very well since it could stabilize
the computations with the increased frequency of the oscillations f = 1Hz with
the same stabilization parameter and time step. The preconditioners discussed
in the second chapter can be directly used with the FIB, however, they require
further modification so they can be used together with the ALE.

The ALE method has the ability to properly capture the effects on the fluid-
cylinder interface such as the force acting on the cylinder. The FIB gives the
same trend of the forces for the same choice of the mesh after suitable spatial
and temporal averaging; however, the results should be interpreted cautiously
as the method uses very rough (low order) approximation to the fluid-structure
interface.
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Conclusion
Two aspects of the numerical solution to the incompressible Navier-Stokes equa-
tions are explained and tested on real world experiments in the first part of the
thesis. The PCDR and LSC preconditioners were compared with an IPCS projec-
tion method on the vortex rings experiment. While giving the same results, the
IPCS method was much more efficient than the fully coupled approaches for the
vortex ring experiment. The IPCS method showed great parallel scaling up to
13M dof making it the best of all tested methods for the vortex ring experiment.
It has been verified that the pseudovorticity can closely approximate the position
of a vortex ring tracked by vorticity.

Second part of the thesis contains description and comparison of the Arbitrary
Lagrangian Eulerian formulation of Navier-Stokes equations with the Fictitious
Boundary method as two distinct approaches of dealing with time-dependent
domains. Both approaches yield the same results on the benchmark test and
similar results for the simulation of the oscillating cylinder experiment. The
results of the benchmark test obtained by [Schott, 2017] have been accurately
reproduced by both methods using the fully coupled approach. It is probable that
the incompressible Navier-Stokes model is not a suitable model for the oscillating
cylinder experiment and He II specific models should be employed in order to
achieve more accurate results, however the FIB and the ALE still provide results
which qualitatively agree with the experiment (under special circumstances).
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M. Řehoř. Diffuse interface models in theory of interacting continua. Dissertation,
Charles University, Prague, 2018.

H. Elman, V. Howle, J. Shadid, R. Shuttleworth, and R. Tuminaro. Block pre-
conditioners based on approximate commutators. SIAM Journal on Scientific
Computing, 27(5):1651–1668, January 2006. doi: 10.1137/040608817. URL
https://doi.org/10.1137/040608817.

H. Elman, D. Silvester, and A. Wathen. Finite Elements and Fast Itera-
tive Solvers. Oxford University Press, June 2014. doi: 10.1093/acprof:
oso/9780199678792.001.0001. URL https://doi.org/10.1093/acprof:oso/
9780199678792.001.0001.

L.C. Evans and American Mathematical Society. Partial Differential Equations.
Graduate studies in mathematics. American Mathematical Society, 1998. ISBN
9780821807729. URL https://books.google.cz/books?id=5Pv4LVB_m8AC.

M. Feistauer. Theory and numerics for problems of fluid dynamics. Charles
University Prague, Faculty of Mathematics and Physics, 2006.

53

https://hal.inria.fr/inria-00070653
https://hal.inria.fr/inria-00070653
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.4823
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.4823
https://doi.org/10.1016/j.jcp.2008.11.004
http://www.sciencedirect.com/science/article/pii/016892749500080E
http://www.sciencedirect.com/science/article/pii/016892749500080E
http://www.sciencedirect.com/science/article/pii/S0045782504002476
http://www.sciencedirect.com/science/article/pii/S0045782504002476
https://link.aps.org/doi/10.1103/PhysRevB.92.064519
https://doi.org/10.1137/040608817
https://doi.org/10.1093/acprof:oso/9780199678792.001.0001
https://doi.org/10.1093/acprof:oso/9780199678792.001.0001
https://books.google.cz/books?id=5Pv4LVB_m8AC


D.R. Fokkema. Enhanced Implementation of Bicgstab(l) for Solving Linear Sys-
tems of Equations. Universiteit Utrecht. Mathematisch Instituut, 1996. URL
https://books.google.cz/books?id=j7ACrgEACAAJ.

R. Glowinski. Finite element methods for incompressible viscous flow. Handbook
of numerical analysis, 9:3–1176, 2003.

R. Glowinski, T.W. Pan, T.I. Hesla, D.D. Joseph, and J. Périaux. A ficti-
tious domain approach to the direct numerical simulation of incompressible
viscous flow past moving rigid bodies: Application to particulate flow. Jour-
nal of Computational Physics, 169(2):363 – 426, 2001. ISSN 0021-9991. doi:
https://doi.org/10.1006/jcph.2000.6542. URL http://www.sciencedirect.
com/science/article/pii/S0021999100965422.

P. M. Gresho and R. L. Sani. On pressure boundary conditions for the incom-
pressible navier-stokes equations. International Journal for Numerical Meth-
ods in Fluids, 7(10):1111–1145, 1987. doi: 10.1002/fld.1650071008. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650071008.

J.L. Guermond, P. Minev, and J. Shen. An overview of projection methods for in-
compressible flows. Computer Methods in Applied Mechanics and Engineering,
195(44):6011 – 6045, 2006. ISSN 0045-7825. doi: https://doi.org/10.1016/j.
cma.2005.10.010. URL http://www.sciencedirect.com/science/article/
pii/S0045782505004640.

V. E. Henson and U. M. Yang. Boomeramg: A parallel algebraic multi-
grid solver and preconditioner. Applied Numerical Mathematics, 41(1):155
– 177, 2002. ISSN 0168-9274. doi: https://doi.org/10.1016/S0168-9274(01)
00115-5. URL http://www.sciencedirect.com/science/article/pii/
S0168927401001155. Developments and Trends in Iterative Methods for Large
Systems of Equations - in memorium Rudiger Weiss.

V. E. Howle, J. Schroder, and R. Tuminaro. The effect of boundary conditions
within pressure convection–diffusion preconditioners. Technical report, Tech-
nical Report SAND2006-4466, Sandia National Laboratories, Livermore, CA,
2006.

V. John and P. Knobloch. On the choice of parameters in stabilization methods
for convection–diffusion equations. In Karl Kunisch, G. Of, and O. Steinbach,
editors, Numerical Mathematics and Advanced Applications, pages 297–304,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-69777-0.

L. Landau. Theory of the superfluidity of helium ii. Phys. Rev., 60:356–358, Aug
1941. doi: 10.1103/PhysRev.60.356. URL https://link.aps.org/doi/10.
1103/PhysRev.60.356.
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