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Introduction
The roots of computer games date back to the 1960s. In 1962, Steve Russell
created a program, which is considered to be the first computer game, called
Spacewar! [1, Chapter 2]. The game consisted only of two user-controlled space-
ships, a star with gravity in the middle and a few small stars in the background
with no functionality. Since then, computer games evolved rapidly. Today’s
games content is much larger; for example, in No Man’s Sky (Hello Games, 2016)
the player can visit more than 18 quintillions (264) planets [2].

Generating this amount of content is possible only by Procedural Content
Generation (PCG). Using this technique, the content is generated algorithmi-
cally, rather than manually (described in more detail in Chapter 1). Not only it
allows for a much larger amount of content in games, but it also speeds up game
development and improves the game’s replayability.

PCG was used in computer games since the 1980s [3]. At the time, its main
benefit was a smaller game size. As technology evolved, space capacity became
less of an issue, and the main advantages of PCG became its gameplay improve-
ments. Nowadays, it is rarely used primarily to save space, but there are still
games (e.g. No Man’s Sky) whose size would probably be unsustainable without
PCG. It is used to generate a large variety of content in various games, includ-
ing textures, music, vegetation, buildings, entity behavior, levels, story and more.
Some examples of famous games using PCG are Diablo 3 (Blizzard Entertain-
ment, 2012) for map and items generation, Minecraft (Mojang Studios, 2009) for
world generation, Borderlands 3 (2K Games, 2019) for weapons generation or
Spore (Electronic Arts, 2008) for creatures and their animations generation.

When generating game maps or levels via PCG, they need to be evaluated
to determine if they fit the game’s needs. This can be done by letting players
play through the generated content and let them measure its quality. However,
when using human players, this approach requires many resources. Using players
controlled by Artificial Intelligence (AI) is more suitable because they can play
through the content much faster, resulting in more evaluations in a shorter time
(and without subjective errors). Another advantage of AI players is that they
can be used during runtime in the background. Still, there exist games that use
human-controlled players’ performance to adjust game’s content, for example, to
tailor the game experience to player’s game style like in Left for Dead (Valve,
2008) [4].

AI was present in games since the beginnings of the game industry. Many
games used it to control non-player characters (NPCs). One of the earliest NPCs
were aliens in Space Invaders (Taito, 1978). However, they only moved on fixed
paths. One of the first NPCs which reacted to the environment appeared in Pac-
Man (Namco, 1980). In this game, ghosts chased or ran away from the player,
depending on the game’s state. Next to controlling only characters, AI was also
used to control players in games. There had been Pong (Atari, 1972) clones where
AI controlled one of the paddles [5]. In today’s games, AI players are used in
many game genres: sports games, real-time strategies, racing games, card games,
and more.

AI-controlled players can also be used in single-player games. One reason for
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this is that some games are suitable for benchmarking different AI approaches.
For example, Super Mario was used for multiple AI championships [6]. Another
usage of AI players is for content evaluation, as already mentioned.

In this thesis, we will be generating content via PCG and evolving AI players
for Super Mario game. The game was released in 1985 and now it is considered
a classic. Since then, multiple newer versions were released and are still being
released to this day. Not only that, but it also laid the foundations to the whole
platformer games genre. This makes the game still relevant for research even
today, since its results can be extended to multiple other games in the genre.

Goals of this thesis
In this thesis, we will use evolutionary algorithms to evolve AI players and level
generators for a Super Mario game. We will implement multiple algorithms in
both cases, and then we will choose the fittest ones and combine them in one
coevolution. We specify two goals of the coevolution:

• Create a sequence of level generators for Super Mario game where each next
generator produces slightly more challenging levels than the previous one,

• Explore whether evolving AI players using coevolution is more feasible or
yields better results than using single evolution.

Structure of this thesis
The following work is divided into multiple chapters. In Chapter 1 we describe
the platformer games genre and Super Mario game. Then we define and briefly
explain fields relevant to this work - PCG and AI. At the end of this chapter, we
give a high-level overview of the algorithms we will use. In Chapter 2 we analyze
our goal and propose how we will solve it. In the following chapters 3, 4 and 5 we
look at AI, level generation, and their coevolution in more detail. We mention
related works and describe our work in these fields. In the final Chapter 6 we
explain, how we implemented our work. It is followed by the conclusion of the
thesis and a list of options for future work.
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1. Background
In this chapter we will briefly describe all the fields relevant to this work. We start
with describing platformer games genre and Super Mario Bros game. Then we
continue with outlining procedural content generation and artificial intelligence in
games. Finally, we will look at the algorithms used in this work. These algorithms
include primarily evolutionary algorithms, neural networks, their combination
using neuroevolution and coevolution. We will also describe Markov chains, which
is a statistical model we will use for level generation.

1.1 Platformer games
Platformer games (or platformers) is a popular genre among computer games.
The main characteristic of this genre is that the player controls a character,
which needs to jump or walk over many platforms placed throughout the world
while avoiding obstacles to finish the game. Probably the most common obstacles
are gaps between platforms, which usually need to be jumped over. Another type
of obstacles are different kinds of enemies with their custom mechanics specific
for each game. Many platformers contain also some kind of collectibles, which
can increase player’s score, player’s character’s skills or have other benefits.

While platformers started as 2D games, there are also some famous 3D incar-
nations like Crash Bandicoot series (Sony Computer Entertainment, 1996-1998).
The main mechanics in 3D worlds stay the same as described above.

1.1.1 Game levels
Some games are split into levels. These are discrete parts of the game with a given
objective for the player. Especially platformer games are commonly divided into
many levels, where each level’s objective is to reach a given place in the level
without losing all lives as depicted in Figure 1.1.

Figure 1.1: Depiction of different objectives in platformer games. On the left
side we can see Super Mario Bros level finish, which is always on the right
end of the level. On the right side we can see Prince of Persia level finish,
which the player first needs to find and unlock.
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1.1.2 Super Mario Bros game
Mario Bros game, released in 1983 by Nintendo was the first game in the Super
Mario game series. Its subsequent successor, Super Mario Bros (Figure 1.3),
released in 1985, is now a classic platformer game. The games’ rules are almost
the same for each game in the series, excluding the non platformer versions and
3D incarnations, and pretty simple.

In Super Mario Bros, the player controls its main protagonist, Mario, to finish
multiple levels to save princess Peach. Mario needs to be navigated through many
platforms in the levels, trying to avoid different obstacles to reach goal pole or
(fake) Bowser at the end of each level. Mario can perform only a few actions,
which are move right, move left, jump and shoot. Moving right and left can be
combined with sprint, which increases Mario’s speed. Shooting is available only
if Mario manages to pick up a specific powerup which enables it.

Game’s primary obstacles are gaps and various enemies, from which the most
common are Goombas, Koopas or Flowers (Figure 1.2). All enemies defeat Mario
if they touch him. Most of the enemies can be defeated by jumping on them, but
some will defeat Mario even if jumped on (e.g. Spiky and Flower).

Figure 1.2: Subset of enemies appearing in Super Mario Bros game. From left to
right: Goomba, Red Koopa, Green winged Koopa, Spiky, Bullet Bill Blaster,
Flower in a pipe and Bowser.

Another obstacle in the game are pipes, which need to be jumped over, but can
also contain secret passages. Some pipes contain Flowers which are appearing and
disappearing in intervals. The game also contains platforms made from bricks,
which can be destroyed if Mario hits them from the bottom, or question mark
blocks, which can contain coins or different power ups. Coins can appear also
outside of these blocks, and if the player acquires 100 coins he gets one more life.
List of powerups appearing in Super Mario Bros game and their descriptions can
be seen in Table 1.1.

To finish a level, Mario must reach its right-most end without losing all his
remaining lives. The levels are split into eight worlds, each containing four of
them. After finishing fourth level of the eighth world by defeating the game’s
main antagonist, Bowser, the game is successfully finished, and Mario happily
reunites with the princess.
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Powerup type Bonus Image
Super Mushroom Makes Mario one tile higher, and

adds him one hit point.
Fire Flower Enables shooting and adds one

hit point to Mario. They will
appear instead of Super

Mushrooms if Mario has already
picked up one and has not lost
its effect by loosing hit points.

Super Star Makes Mario invincible for a
short time.

1-Up Mushroom Adds one life to the player.

Table 1.1: The table of powerups, that can appear in Super Mario Bros game,
with their descriptions.

Figure 1.3: The title screen of the original Super Mario Bros game.
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1.1.3 Mario AI Framework
Mario AI Framework [7] is an open-source implementation of Super Mario game.
It was implemented as a part of tournaments of Super Mario AI players and
PCG generators of levels. The game simulator is based on Infinite Super Mario
by Markus Persson, which is only slightly different than the original Super Mario
Bros game. It uses different tilesets and some game rules are taken from other
Super Mario games. The most notable changes are Flowers going up more than
one tile, Koopas can be picked up by Mario and some missing powerups (1 UP and
invincibility). It also does not support all of the Super Mario Bros enemies. The
supported ones are: Goomba, green Kooopa, red Koopa, Spiky, Flower and Bullet
Bill Blaster, which include also winged versions of Koopas and flying version of
Goomba.

During implementation of this thesis, a newer version of the platform came
out called 10th Anniversary Edition. However, the implementation was in its
later stages, so we sticked with the older one.

1.2 Procedural Content Generation in games
Procedural Content Generation is the algorithmical creation of game content
with limited or indirect user input [8, Chapter 1]. By this definition, PCG can
be combined with hand crafted material. This approach is called mixed initiative
[8, Chapters 1, 11]. However, in our work we will be generating content solely
algorithmically.

The most common usage of PCG today is in video games. It is used to
generate a wide variety of content, using many different techniques [3]. Using
PCG, we can also generate levels for platformer games [9] [10]. This will allow
us to have a practically infinite number of levels in the game.

There are various approaches for generating levels. Some of the following
terms are not well standardized yet, so we will be using terminology from PCG
lecture at Charles University [11]:

• Building blocks - we create a library of various blocks of levels (e.g.
chunks) and combine them to create levels [12],

• Template instantiation - similar to building blocks, but the blocks are
only templates, which, when instantiated (put into level), are varied in some
ways,

• Multipass - the level generation is done in multiple phases. In each of
them, the algorithm passes through the level and generates different fea-
tures. For example, one phase can generate terrain, enemies or items [13],

• Grammars - we apply the grammatical evolution algorithm [14, 15] on a
custom grammar whose symbols represent parts of a level. Result of the
evolution is a sentence of the grammar, from which a level is constructed.

In our work, we will be generating levels using building blocks and multipass
approaches.
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1.3 Artificial Intelligence in games
Artificial Intelligence is a set of methods, which try to think or act humanly or
rationally [16, Chapter 1]. While it is used in many computer science fields, in
this thesis we will be concerned specifically about AI in games.

One concrete use of AI in games is to control game entities or even non human
players [17, Chapter 3]. Some games use this kind of AI to let human players play
against (or with) another players without the need of additional human players.
This is very useful for e.g., sport games, shooter games or real-time strategies.
These players can also be used to evaluate PCG content [17, Chapter 4]. They
are useful for this purpose because we can use their performance on the generated
content as an evaluation metric. AI-controlled players are more preferable than
human players in our case since we will need thousands of evaluations on many
different levels.

1.4 Artificial neural networks
Artificial neural networks (ANNs) are structures inspired by real-life human neu-
ral system. Just like their biological counterpart, they consist of a set of neurons
and oriented connections between them. In the following sections we will describe
them as they are defined in Deep Learning Book [18].

1.4.1 Neuron
Each connection in an ANN has its own weight and every neuron has it own com-
puted value. To calculate it, we firstly compute a weighted sum of values of the
neurons connected to the concerned node. Then, we apply an activation function
to the sum and its output is the value of our neuron. Any (one dimensional)
function can be used as an activation function, but there are only a few of them
which are commonly used. The most widely used ones are the following:

• ReLU (rectified linear unit) - ReLU(x) = max(0, x)

• Sigmoid - σ(x) = 1
1+e−x

• Tanh - tanh(x) = 2
1+e−2x − 1

• Identity - id(x) = x

An example of computing an activation function can be seen in Figure 1.4. Neu-
rons, whose values are above a given threshold, are commonly called activated.

The only neurons, whose values are not computed are input neurons. These
are assigned an instance of a problem being solved by the network. Output neu-
rons then contain output of the network when all neurons’ values are computed.
Usually, only activated output neurons determine the network’s output.

There are multiple types of ANNs which are generally used. In the following
sections we will describe those, that we will use in our work.
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Figure 1.4: Computation of a neuron’s (orange) value with tanh activation func-
tion and three neurons (red) with already computed values connected to
it. Firstly, we compute weighted sum of values of connected neurons (us-
ing weights from connections) and then apply activation function.

1.4.2 Feedforward layered networks
Feedforward layered networks [18, Chapter 6] are a special kind of ANNs with
two distinctive features. They are:

• layered - all the neurons are split into disjoint sets called layers. Generally,
we distinguish three types of layers. Input layer, which contains all the input
nodes and no others, output layer containing all the output nodes and no
others. The other layers are called hidden, primarily because they do not
interact with the outer world,

• feedforward - values from the neurons are always fed forward to one of
the later layers and never to itself or a previous layer.

There exist multiple types of connections of neurons between layers. In our
work, we will be working only with the dense connection. This type of connection
between two layers specifies that each neuron from one layer is connected to each
neuron from the next layer. A simple neural network with dense layers can be
seen in Figure 1.5.

Figure 1.5: An example of an artificial neural network with input layer (red),
two hidden dense layers (orange) and an output layer (blue).

Feedforward layered networks are used to approximate a high dimensional
function. They usually perform very well on classifying tasks [19].
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1.4.3 Recurrent networks
Recurrent networks are used for processing sequential data, where some kind
of state needs to be preserved between processing of the individual sequence
elements [18, Chapter 10].

These networks got their name because of the fact that they contain recurrent
connections between nodes. We compute values of these nodes a little differently
than in feedforward networks. The computation involves not only value received
from the previous node(s), but also values the neuron computed in previous steps.
After calculating current value, an activation function is applied to it, just like in
feedforward networks, which results in the node’s value for the current element
in the sequence.

As already mentioned, this architecture is designed for processing sequential
data where there are relationships between consecutive elements. They perform
well, for example, on natural language processing tasks [20].

1.4.4 Artificial neural networks in games
ANNs can be used to control AI players in games. Recently, they are getting
pretty successful, especially deep neural networks (networks with many hidden
layers or nodes). They were successfully trained to superhuman performance in
some classical board games [21]. In recent years, deep reinforcement learning
is getting to the state-of-the-art level in even more of these games [22]. This
technique was also used to train reactive agents [23]. However, in this work we
will not be using deep ANNs. Our networks will not have more than 2 hidden
layers, or more than a few tens of neurons (excluding input and output neurons).

1.5 Evolutionary algorithms
Evolutionary algorithms (EAs) are optimization algorithms based on real-world
biochemical processes and Charles Darwin’s evolution theory [24, Chapter 3]. As
optimization algorithms, they try to find the best possible solution for a given
problem.

They begin with a number of randomly generated solutions, also called indi-
viduals. Each one of them is then evaluated using a user-defined fitness function,
which computes how well the individual is performing in solving the given prob-
lem. Then, tuples (pairs, triplets or larger) of individuals (parents) are selected
for recombination which creates a new individual (offspring). These are then
modified using random mutations and evaluated. Finally, some of them are se-
lected to survive to the next cycle and the process repeats from the selection
parents again.

This cycles, also called generations, end after a given termination condition.
One of the most common conditions is a fixed number of generations. After that,
the individual with the highest value of fitness function is selected as the best
found solution to the problem. This general scheme of evolutionary algorithms is
depicted in Figure 1.6.

There exists a large number of types of evolutionary algorithms. They differ in
representation of individuals, fitness computation, can contain additional steps or
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compute mutation and crossover differently. In our work, we will be using mostly
genetic algorithms or genetic algorithms with a small adjustments.

Figure 1.6: General scheme of evolutionary algorithms.

1.5.1 Genetic algorithms
Genetic algorithms (GAs) are a special kind of evolutionary algorithms. They
have multiple variations, but the simplest form is called Simple Genetic Algorithm
(SGA), conceived by John H. Holland [24, Chapter 6]. Individuals in SGA are
bit-strings, mutations randomly flip a gene’s value and they use 1-point crossover
for recombination. This operation takes 2 random individuals, splits them on a
random index and swaps one part of the genes between the parents. Roulette wheel
selection is used for selecting parents. It assigns each individual a probability
relative to its fitness value and randomly picks one.

SGAs, however, have some flaws. It is not always appropriate to encode our
solutions as bit-strings, so some GAs use non-binary representations. Generally,
GA individuals are 1D arrays of any type.

There are also various mutations we can perform in general GA, some of which
are:

• standard mutator swaps a gene’s value with probability p to a random
new value,

• gaussian mutator selects a random value from normal distribution (with
given mean and standard deviation) and adds it to the gene’s current value
with probability p.

GAs also use multiple types of crossovers, some of which are:
• n-point crossover splits individuals on n places and swaps all even or odd

parts between them (an example of 2-point can be seen in Figure 1.7),
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• uniform crossover chooses each gene uniformly randomly from one of the
parents.

Another downside of SGA is its survivor’s selector, where only offspring are
selected for the next generation. In generic GA, we can use elitism, which is a
selector preserving the best individuals from the parents population. Roulette
wheel selection can also be replaced by different parents selectors:

• Stochastic universal sampling (SUS) can be imagined as splitting [0, 1]
interval into smaller intervals representing individuals. Each individual’s
interval size is proportionate to its fitness. Then, we choose individuals,
whose intervals contain points k/n, where n is the required number of se-
lected individuals and k acquires integer values from 1 to n. This selection
is preferred to Roulette Wheel selection because it yields better sample of
the parents distribution [24, Chapter 5],

• Tournament selection of size k selects k individuals, plays a tournament
between them and selects the winner as one of the parents. This is repeated
until we have enough parents. Sometimes, we specify probability p for
selecting the winner as a parent and lesser probability for selecting one
of the others. This selection can have multiple advantages over SUS and
Roulette Wheel selections based on the scenario in which it is used:

– adding (multiplying by) a constant to the fitness function does not
affect the selection’s results,

– the fitness does not need to be quantifiable, we just need to be able to
compare 2 (or more) individuals,

– we do not necessarily need to compute fitness of all the individuals.

.

Figure 1.7: An illustration of 2-point crossover. In this example, the indexes
where the individuals are split are randomly chosen to be 4 and 12.

1.5.2 Neuroevolution
Neuroevolution is a class of evolutionary algorithms, where individuals represent
ANNs. It was used in a few games for various purposes [25]. For example, in The
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Open Racing Car Simulator it is used to control player [26], while in Galactic
Arms Race it is used to generate game content [27].

There are multiple types of neuroevolution algorithms. They differ in what
kind of ANNs they are evolving and which parts of them are they evolving. In
our work, we will be using a simple algorithm which we call neuroevolution of
weights and also NEAT algorithm [28].

Neuroevolution of weights

Probably the most straightforward implementation of a neuroevolution algorithm
is to evolve only weights of a given network with non changing topology. We will
take all the weights of the ANN and put them in a one dimensional array. Such
arrays with different values will represent networks with the same structure but
different weights. They can be then used as individuals in a GA.

NEAT

Neuroevolution of Augmenting Topologies (NEAT) [28] is a neuroevolution class
algorithm which evolves weights as well as structure of ANNs.

The individuals in this algorithm are lists of connections, where each gene
represents one connection. A connection defines the in-node, the out-node, the
connection’s weight, whether the connection is enabled or disabled and its in-
novation number (Figure 1.8). The initial population consists of minimal neural
networks with only input neurons which are directly connected to output neurons.

Figure 1.8: An example of NEAT individual (top) and the ANN it represents
(bottom). The genome in the implementation contains only the list of con-
nections, the list of nodes is redundant. The image is taken from the original
paper about NEAT [28].

The algorithm uses three mutation operators:

• weight change - randomly perturbs weight of a connection,
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• add a connection - chooses two random nodes which are not yet connected
and creates connection (new gene) between them in the individual. This
mutation can also create a recurrent connection by connecting a node to
some other node which appears topologically before the first selected node,

• add a node - adds a new node to the individual. This is done by randomly
choosing an existing connection, disabling it, and then creating two new
connections: one from the original in-node to the newly created node and
the second one from the new node to the original out-node.

Crossover in neuroevolution is not a simple operation. Two different networks
solving the same problem may have very different topology, and solve the problem
differently. Because of this, if we just choose random connections from two parents
and create a new offspring from them it would result in a useless network in most
cases.

To solve this issue, NEAT keeps track of every gene’s historical origin. The
assumption here is that the genes with the same origin will be solving the same
subproblem in the network. The tracking is done by storing a global innovation
number and whenever a new gene is created, NEAT assigns it the current value
of that number and increases it. The innovation numbers of genes therefore
represent chronology of genes’ appearances.

With each connection (gene) having assigned an innovation number, NEAT
can perform crossover between two individuals. Firstly, it divides the genes into
three groups:

• matching genes - those, whose innovation numbers appear in both par-
ents,

• disjoint genes - those, whose innovation numbers appear only in one of the
parents, and are inside the range of the other parent’s innovation numbers,

• excess genes - those, whose innovation numbers appear only in one of the
parents, and are outside the range of the other parent’s innovation numbers.

When creating a new offspring, we randomly take one gene from each pair of
matching genes. Disjoint and excess genes are taken from parent with higher
fitness. In case of parents having the same fitness, they are taken randomly.
Visualisation of the gene division and the crossover process can be seen in Figure
1.9.

1.5.3 Coevolution
Coevolution has its roots in nature again. We will use its definition from Co-
evolutionary Computation article by Jan Paredis [29]. Coevolution differs from
previously described evolution in that it evolves more than one population at a
time and they constantly interact with each other throughout the evolution. It
can be divided into two types:

• cooperative - fitness of one population increases when fitness of some other
population increases. Thus, it is beneficial for the populations if any of them
increase their performance,
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Figure 1.9: An illustration of crossover in NEAT algorithm. On the top we can
see the two parent networks. The middle part displays alignment of connec-
tions with the same innovation numbers for better illustration. The bottom
part displays the resulting offspring network. The parents are assumed to
have the same fitness, so excess and disjoint genes from parents are chosen
randomly. The image is taken from the original paper about NEAT [28].

17



• competitive - the populations are competing against each other. Increase
of a fitness in one population leads to decrease of fitness in another pop-
ulation. However, the goal is that by repeating this process, the overall
objective of the whole environment will be improving.

If we observe nature we can find many examples of both of these types. Typ-
ical example of competitive coevolution would be populations of predators and
preys. While preys evolve their survivability techniques (camouflage, running
speed, etc.), the predators must adapt to these changes and they evolve better
hunting abilities (longer claws, better eye-sight, etc.). An example of cooperative
coevolution can be seen between many kinds of plants and bees.

Simulating this nature behavior in computer science has already proven su-
perior to single evolution for some problems [29] so it makes sense to try it for
other problems. In our work, we will be using competitive type of coevolution.

1.6 Markov chains
In this section we will define Markov chains, which we will use later for levels
generation.

A stohchastic process is a collection of random variables:

{X(t), t ∈ T}

where t is usually understood as time, and X(t) as a state of some environment
at time t [30, Chapter 2.9]. A Markov chain is such stochastic process, where the
value of the state in the following time step is dependent only on the value of
the state in the current time step. More formally, let {Xn, n = 1, 2, 3, . . .} be a
stochastic process, where Xi are independent random variables and each acquires
finite or countable number of values. We then say, that the process is a Markov
chain if the following equation holds

P (Xn+1 = j|Xn = k) = P (Xn+1 = j|Xn = k, Xn−1 = in−1, . . . , X0 = i0)

for each j, k, sequence of states i and n ∈ N [30, Chapter 4.1]. We can then
define Pkj := P (Xn+1 = j|Xn = k) and put these values to a (possibly infinite)
matrix:

P =

⎛⎜⎜⎝
P00 P01 · · ·
P10 P11 · · ·
... ...

⎞⎟⎟⎠
Matrix P is called transition (probability) matrix. Each row i of such a ma-
trix then specifies probabilities of a transition from state i to every other state.
This means, that the sum of probabilities in each row must be 1, because the
probability of transitioning from one state to any state is 1.

When we will be using this transition matrix in our algorithm to generate
a sequence of states, we will firstly need to generate the initial state. For this
purpose, it is desired to define a distribution of the initial state [30, Chapter 4.2]:

αi := P (X0 = i), i ≥ 0,
∞∑︂

i=0
αi = 1

We will call a vector of value αi an initial state (probabilities) vector.
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2. Analysis
In this chapter, we will analyze our options to achieve the goals we stated in
Introduction chapter. After that, we choose approaches which we will use and
also mention some high level decisions for implementation, such as chosen pro-
gramming language and used 3rd party libraries. More detailed description of
our implementation is presented in Chapter 6.

2.1 AI player evolution
In order to implement our coevolution, we must decide which evolutionary algo-
rithms to use for AI players and level generators in the first place. We will start
with AI players evolution. Firstly, we need to choose, what type of an agent we
want. We can select from two kinds of agents:

• reactive agent decides which action to play at each game step based only
on the actual state of the game. Therefore, its decision making process is
fast and the agent can quickly react to changes in the environment,

• lookahead agent chooses which action to play using actual game state and
a number of simulated future states. Because this process is more difficult
then the previous one it takes more time, but the agent’s performance is
potentially better.

We have decided to choose reactive type agent, because Super Mario game’s
environment is dynamic and requires fast reactions to its changes. Levels of the
original game are also designed in a way that they do not require planning ahead
to be solved (e.g. they do not contain dead ends and overcoming enemies is pretty
straightforward).

Reactive agents can be implemented using various techniques. Some of the
common ones are the following:

• rule-based - as the name suggest, these agents are given a set of if-then
rules according to which they will behave (e.g., if the next tile is a gap,
jump),

• finite state machine (FSM) [17, Chapter 2] - there is a defined set
of states, in which the agent can be, and a list of transitions which define
conditions to move between states. In each state, the agent has defined
actions to perform,

• behavior trees [17, Chapter 2] - the agent is controlled by a special
kind of oriented tree graph. In this tree, each leaf represents an action
the agent can perform. In each game tick we traverse through the tree
(starting from the root node) and let the agent perform the action from the
leaf node where we ended. When traversing through the tree, every parent
node selects (according to given rules) to which child to continue,

• ANN based - an artificial network (Section 1.4) is evaluated at each game
step, and its output chooses which actions the agent will play.
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Because ANNs are most easily trained from the mentioned methods and scored
pretty good results recently in AI in games, we chose to use this technique. It is
also a pretty general and can be easily reused in other games, while the others
would need to be reimplemented for each game.

When using an ANN-controlled agent, we can use neuroevolution, reinforce-
ment learning (RL) or some kind of supervised learning. Supervised learning
in our context is practically impossible, because our agents will be trained on
generated levels. We chose neuroevolution over RL, since it is more natural to
use EAs in coevolution than gradient descent techniques and because of previous
familiarity.

It is difficult to see which algorithm should provide the best results beforehand,
so we chose to implement two of them, and then compare their performance and
suitability for coevolution. The first one is neuroevolution of weights and the
second one is NEAT (Section 1.5.2).

2.2 Level generator evolution
Like with AI players, there exist multiple approaches for generating levels in
2D space. Some of these are building blocks approach, grammars or multipass
approach (Section 1.2). Again, it is not easy to see, which algorithm should work
better, so we decided to implement two algorithms, compare them and choose
the one which is performing better.

We decided to implement one algorithm based on building blocks principle. It
is one of the most basic approaches and already had nice results [12]. Using this
approach we will create a library of chunks, which we will then use to generate
levels. To combine these chunks we will use a Markov chain and an EA to evolve
its transition matrix and initial state vector.

The second approach we chose is multipass generation. It is a pretty common
approach for levels generation for platformers and also won one of the Mario AI
tournaments [13]. In this algorithm, we will generate each kind of obstacle that
can appear in the game in a different stage while traversing the level from left to
right. Each obstacle type will have its own probability to appear at the current
location. Since Super Mario game does not contain many obstacles, we will not
have to implement many passes.

Because both chosen algorithms can be configured using different set of prob-
abilities, we will use evolutionary algorithms to find the most suitable ones.

2.3 Coevolution
Our goals are to evolve well performing AI player and specific level generators
for Super Mario game. We propose to achieve this by using coevolution of these
using algorithms selected in sections 2.1 and 2.2.

The evolutions of AI players and level generators will be taking turns for
some number of generations. When evolving AI players, we will try to evolve
such, which solve as many levels generated by the currently best level generator
as possible. When evolving level generators, we will try to evolve such, that
generate levels which are adequately difficult for the currently best AI player.
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This way, when we will be doing the AI players evolution, it may be easier
to learn on adequately difficult levels than on very difficult ones for the current
players. When switching back to the level generators evolution, we should have
better AI players, so it should result in level generator which generates more
difficult levels than the previous one.

After each level generators evolution run, we will store the best one. When
the whole process finishes, we should have a list of generators, which generate
gradually more and more difficult levels. The last evolved AI player should also
be able to solve these.

From the definition of our coevolution, we can see that this will be a compet-
itive type coevolution (Section 1.5.3).

2.4 Game engine
In this work, we will use Super Mario engine from Mario AI Framework [7]. This
engine was implemented to be used for benchmarking AI agents playing the game
and generators generating levels for the game. It was already used in multiple AI
and PCG tournaments so it should be capable of handling our needs.

We will use Jakub Gemrot’s more polished version of the framework [31],
because it is easier to work with1.

2.5 Kotlin
Since we decided to use pre-existing game engine, which is written in Java lan-
guage, we are bound to use a JVM based language for our implementation. The
most straightforward option is to use Java. However, even though Java is getting
more attention from its developers in recent years and getting modernized, we
still find it a little outdated language which lacks some of the modern concepts.

There are multiple alternatives for Java that can be used like Scala, Kotlin or
Groovy. Kotlin is a modern language running on JVM2 which was first released
in 2011. It has been developed by JetBrains and is 100% interoperable with Java.

We chose Kotlin because it uses many modern programming constructs (null
safety, smart casts, functional programming and more) which Java does not (or
only partially) support. Its syntax is also more compact contributing to faster
development and more readable code.

2.6 Third party libraries
Some of the algorithms and structures we will use in our implementation were
already implemented as libraries by other developers. List of all 3rd party libraries
we used (including their version) can be seen in Table 2.1.

We decided to use Jenetics library for evolutionary algorithms and Deeplearn-
ing4j for neural networks. Since these libraries have been around for a longer time

1The newer 10th Anniversary version, which was released after we started working on this
thesis, is probably also quite polished.

2Currently, Kotlin can be compiled also to JavaScript (Kotlin/JS) and to native binary
(Kotlin/Native), which supports multiple platforms.
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and used by many users, their implementation should have minimum number of
bugs. For NEAT algorithm we decided to use evo-NEAT [32] library because of
its relative ease of use and available source code.

For displaying and storing different charts we decided to use XChart library,
which is capable of displaying line charts and their realtime updating, which can
be useful during evolutions.
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3. AI player evolution
We start describing our evolutionary algorithms in more detail with evolution of
AI player. Firstly, we will mention some related works, and then we will look
at our two approaches - the neuroevolution of weights and NEAT. Then, we will
follow with describing our results with these players and finally, we will draw
conclusions from them.

3.1 Related works
AI in games is a very large field and so we will mention only works which concern
directly Super Mario game. Some more generic work in field of AI players for
games was already mentioned in sections 1.4.4 and 1.5.2.

Many works were submitted for Mario AI tournaments [6], where multiple
different approaches were used. The best scoring approaches were state search
via A* algorithm (won the 2009 tournament) and another search via A*, which
used actions evolved beforehand using EAs (won the 2010 tournament). EA and
ANN approaches performed poorly in comparison with the others, according to
the paper. However, coevolution may yield better results and our aim is not for
perfect AI but multiple AIs with increasingly better performances.

In other work, the authors compared neuroevolution based agents, where one
used feedforward layered network, the second a recurrent ANN, and the third
HyperGP algorithm [33]. The result of this work was that the agents were able to
solve levels with “occasional gaps and healthy number of enemies”, but had “prob-
lems with generalization”. All three agents achieved similar results, while agents
with smaller ANNs (less layers and neurons) performed better than agents with
larger ANNs. This counter-intuitive result may be caused by higher dimensional-
ity of search space, which makes the ANN more difficult to train, or overfitting.

There were also attempts to evolve behavior trees for a Super Mario agent
[34]. According to the results shown in the paper, the resulting evolved agent
performed similarly to the other EA based agents in a competition mentioned in
the work.

3.2 Our approach
In Chapter 2, we decided to implement two reactive agents based on ANNs. To
use this approach, we must first design the networks we will use:

• Input - in order for an ANN to be able to decide which action to play,
it must know how the environment around Mario looks like. Therefore,
our input will contain one 2D grid of tiles surrounding Mario and second
one containing enemies. The grids will contain immediate surroundings of
Mario.
However, since the tiles and enemies, which are behind Mario pose almost
no threat and Mario does not need to know about them in order to progress
in the level, we will offset the grid a little to the right (Mario will be on its
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left end). This is illustrated in Figure 3.1. Thanks to this, Mario can see a
few more tiles further in front of him while the grid size remains unchanged.
Our input layer will contain neurons each representing one tile of one of the
two grids.
Therefore, it will have 5 × 5 × 2 = 50 neurons when using neuroevolution of
weights and 7 × 7 × 2 = 98 neurons when using NEAT (these exact values
were chosen by results of the following experiments). They will acquire
values based on the type of the tile/enemy which is on the given position.
The specific values are taken from the Mario AI Framework (e.g. 0 - empty
tile, -60 - impassable block, 80 - Goomba, etc.),

• Output - the output of our networks should decide, which actions the agent
will play in a given situation. Therefore, the output layer will contain one
node for each possible action the agent can play, which are go right, go left,
jump and shoot, resulting in 4 neurons. We excluded sprint, because it is
not required to solve the levels and would therefore unnecessarily increase
dimensionality of the search space,

• Hidden nodes - in case of NEAT algorithm, we do not need to decide
how the hidden nodes will look like since they are being evolved inside the
algorithm. For the neuroevolution of weights algorithm, we will use smaller
networks, which had better success in the mentioned related works. They
will contain one hidden layer with 7 nodes. We will use dense connection
between each layer.

Figure 3.1: An illustration of which tiles (red) surrounding Mario the agent will
see for grid size 5x5.
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3.2.1 Fitness function
The ultimate goal of our AI players is to solve as many levels our generators will
generate as possible. Thus, we use the number of solved levels as an objective
function for the agents. However, this function’s range is too sparse, and does
not reflect that some agents may have solved larger portions of levels than others.
Because of this, our fitness function will sum the distances the agent reached in
the levels on which it was being evaluated.

After some experiments, we found out that the evolution tends to quickly
find agents, which are going right and jumping all the time. This is because these
agents will get pretty far in the levels and this strategy is pretty simple, therefore,
the evolution will evolve them easily. However, they will also easily jump right
into a gap or an enemy, and it seems to be difficult for the evolution to find
agents which jump only when needed, so it gets stuck in this local maximum
of the fitness function. To counter this issue, we implemented a second fitness
function, which slightly penalizes the agents for each jump.

3.2.2 Training data set
Since we do not have our level generators yet, we will need to create some levels,
which will be used for evaluation of our agents. We decided that original levels
of Super Mario Bros could be a good benchmark, so we reimplemented 4 of them
in the Mario AI Framework1.

We decided to reimplement only some of the original 32 levels, because using
all of them would slow down the evolution and not bring more new features.
Some of the features are not even implemented in the framework2. We chose
levels of subjectively various difficulties and containing all features present in the
framework. The levels we decided to implement are listed in Table 3.1.

Level Brief level description
Stage 1 Level 1

(S1L1)
Pretty simple level, containing only a few gaps,
Goombas, Koopas and pipes without Flowers

Stage 2 Level 1
(S2L1)

Contains more enemies than S1L1 and also
pipes with Flowers and flying Green Koopas

Stage 4 Level 1
(S4L1)

Contains less enemies than S1L1, but contains
also pipes with Flowers and Spikies

Stage 5 Level 1
(S5L1)

Similar to S2L1 but contains also Bullet Bills

Table 3.1: The table containing levels we decided to reimplement in Mario AI
Framework and their brief description.

For better evaluation purposes, we also split the levels into multiple parts.
This way, if a level contains an obstacle the agent cannot solve right at the
beginning, but otherwise could solve the level, it will get more appropriate score
by the fitness and objective functions. After this splitting, we had 23 level parts.

110th Anniversary version of the framework, which was released after we started working on
this thesis, contains these levels, but the older one we are using does not.

2Examples of missing features are lifts, fire bars or some kinds of enemies. In the 10th
Anniversary version they are already present.
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We also implemented two artificial levels. The first one is path-only level,
which contains only flat ground and no obstacles. This level is implemented to
help the evolution find agents which learn to go the right. The second one is gaps
level, containing only gaps of various widths unevenly placed. This forces the AI
to learn when to jump correctly and penalize players which jump all the time.

We then used these 25 levels when evaluating the agents during evolutions.

3.2.3 Neuroevolution of weights
The first neuroevolution algorithm we are going to implement is the neuroevolu-
tion of weights (Section 1.5.2). When using this approach, we encode a network
as an fixed-size array of the network’s weights. We use gaussian mutator with
mean 0, and standard deviation 1. We decided not to use crossover in this evolu-
tion because we assume that combining weights of two different networks hardly
creates a better network.

3.2.4 NEAT
We did not do any changes to the NEAT algorithm, meaning that it works exactly
as described in Section 1.5.2.

3.3 Our results
To find the most suitable values of various hyperparameters, we ran multiple
experiments. We will describe them in the following sections. The results of all
of them (evolved agents, evolution charts) are a part of the electronic attachment
(see Appendix A.1).

3.3.1 Experiments: Neuroevolution of weights
Before the final experiments, we fixed all the hyperparameters to values that can
be seen in Table 3.2 after a few initial experiments. With these initial settings,
we chose one hyperparameter, and run multiple experiments with various values
of the hyperparameter and chose the one with which the evolution produced the
best performing agent. Then, we chose a different hyperparameter and did the
same thing.

This way, we have sequentially experimented with mutation probability, popu-
lation size, input grids size, hidden layer size, fitness function3 and finally network
weights range. Each of these experiments were run 4 times and their results were
averaged. In Figure 3.2 we can see the results of these experiments. The resulting
best values of the hyperparameters we found are listed in Table 3.34.

As for the reliability of these tests, it has a problem that a change in one hy-
perparameter may affect results of experiments with other ones. Ideally, in order
to find the best hyperparameter values, we would need to run the experiments

3Comparing fitness values of different fitness functions is meaningless, so to choose the best
hyperparameter value we used objective values.

4Even though when using population size 150 had a slightly better result, it was so insignif-
icant that we stuck with population size 50 for which evolution runs much faster.
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Neuroevolution of weights
Hyperparameter Value

Mutation probability 0.2
Population size 50
Input grids size 5x5

Hidden layer size 5
Fitness function Distance only

Network weights range [−2.0, 2.0]

Table 3.2: The initial state of the hyperparameters before experiments with the
neuroevolution of weights.

Figure 3.2: Results of running experiments with the neuroevolution of weights
algorithm using various hyperparameter values. Each experiment (cell) was
run 4 times and the results were averaged. Red color represent fitness values
and blue one objective values (number of finished levels). The lighter the
color is, the lesser value it scored, down to white, which is used for the
lowest value. The highest value is always highlighted with a border. DO
stands for distance only fitness and DWP x stands for distance with penalties
fitness function using penalty x. We can see, that the best found values of
the hyperparameters are: 0.65 (mutation probability), 150 (population size),
5x5 (input grids size), 7 (hidden layer size), distance only (fitness function)
and [-25.0, 25.0] (weights range).
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Neuroevolution of weights
Hyperparameter Value

Mutation probability 0.65
Population size 50
Input grids size 5x5

Hidden layer size 7
Fitness function Distance only

Network weights range [−25.0, 25.0]

Table 3.3: The hyperparameters of the neuroevolution of weights with which we
achieved the best results.

with each possible hyperparameter value combination. This method is called grid
search and is sometimes used. However, it creates a combinatorial explosion in
their number. Combined with the fact that using different hyperparameter values
in our experiments did not change results too much, we decided to run them at
least in this independent way.

3.3.2 Experiments: NEAT
Like with the neuroevolution of weights, we ran multiple experiments with NEAT
algorithm too. Following the tradition, we were trying different values of hyper-
parameters one at a time. The initial configuration can be seen in Table 3.4 and
the experiments were executed for population size, input grids size and fitness
function5. The results of these experiments can be seen in Figure 3.3. The re-
sulting best values of hyperparameters for NEAT we found are listed in Table
3.56.

NEAT
Hyperparameter Value

Population size 100
Input grids size 5x5
Fitness function Distance only

Table 3.4: The initial state of the hyperparameters before experiments with
NEAT.

3.3.3 Additional improvements
After all these experiments, we tried two more improvements:

• Dense input - we made the input grid 2 times denser in each dimension,
making one neuron represent quarter of the original tile. The idea behind
this was that thanks to this approach, the agent would have a better sight
of how close it is to enemies or gaps,

5To choose the best hyperparameter setting we compared objective values instead of fitness
values.

6Even though when using population size 200 and 300 had a slightly better result, it was so
insignificant that we stuck with population size 100 for which evolution runs much faster.
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Figure 3.3: Results of running experiments with NEAT algorithm using various
hyperparameter values. Each experiment (cell) was run 4 times and the re-
sults were averaged. Red color represents fitness values and blue one objective
values (number of finished levels). The lighter the color is, the lesser value
it scored, down to white, which is used for the lowest value. The highest
value is always highlighted with a border. DO stands for distance only fitness
and DWP x stands for distance with penalties fitness function using penalty
x. We can see, that the best found values of the hyperparameters are: 100
(population size), 7x7 (input grids size) and distance only (fitness function).

NEAT
Hyperparameter Value

Population size 100
Input grids size 7x7
Fitness function Distance only

Table 3.5: The hyperparameters of NEAT with which we achieved the best
results.
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• One-hot encoded enemies - we used one-hot encoding for enemies. Using
this encoding, instead of having one tile represented by only one neuron in
the input layer, it will be represented by as many neurons as we have types
of enemies. These neurons will then acquire values either 1 or 0 based
on whether an enemy of the given type appears in the corresponding tile.
Using this technique, the AI player can better distinguish between enemy
types appearing in the game.

However, after multiple experiments we came to the conclusion that these
improvements had insignificant or no impact on the agent’s performance. Because
of this fact, we decided not to use them in the future experiments to keep the
network simpler to achieve faster evaluations and possibly also convergence in the
evolutions.

3.3.4 Running times
All the experiments from this section were run on a machine with Intel R⃝ CoreTM

i7-7700HQ processor which has 4 cores running at 2.80GHz and uses hyperthread-
ing, 16GB memory and Ubuntu 20.04 LTS operating system. Both algorithms
are implemented to evaluate individualls in parallel, so they can both exploit the
advantage of having 8 threads.

The experiments, where the player was evolved by the neuroevolution of
weights algorithm, usually converged in under 50 generations. Those, with the
hyperparameter values we finally selected, ran in average a little more than 20
minutes. When using population size 150 instead of 50, which had a slightly
better results, the average time was almost hour and a quarter, so we decided to
use population size 50 in the later coevolution instead.

The experiments with NEAT algorithm required much more generations to
converge, but because the networks are smaller, they are evaluated faster. Those
experiments with the hyperparameter value we finally selected took on average
a little more than one hour to finish. We decided to use population size of 100,
instead of 300, because those experiments ran more than 2.5 times longer.

Averaged evolution charts of the experiment using the best found hyperpa-
rameter values can be seen in Figure 3.4.

3.4 Conclusion
We have implemented an AI player for Super Mario game, which uses an ANN to
decide what actions to play in each game step. Then, we used two neuroevolution
algorithms to evolve the networks to get the best performing player. One of them
was the neuroevolution of weights and the other one NEAT.

After that, we ran multiple experiments using various hyperparameter values
to find out which of them work best. However, for the later coevolution, we have
decided to use slightly different values than those, with which we evolved the best
performing agents. The reason for this was, that the slightly better performance
is too insignificant to pay for it with a much larger execution time.

Finally, players evolved by the neuroevolution of weights algorithm performed
somewhat worse than those evolved by NEAT, but took much less time to con-
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Figure 3.4: Averaged chart of 4 runs of the neuroevolution of weights (top) and
NEAT (bottom) using the best found hyperparameter values. The fitness
function is summed distance the player had reached on the evaluation levels
and the objective function is the number of levels solved times 1000. We
can see, that on average the best player solved almost 10 levels when using
neuroevolution of weights and almost 14 levels when using NEAT. The chosen
number of generation also seems to be enough for the evolutions to converge.
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verge. This may make the first approach more suitable for coevolution, where
the experiments will run even longer. However, because NEAT evolved players’
performance is better, we choose to use both approaches in the final coevolution,
but constrain the one using NEAT more (e.g., by running for less generations).
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4. Level generators evolution
After implementing the evolution of AI players, we will implement one also for
the level generators so we can combine them in one coevolution. Once again,
we will implement two different algorithms to have better possibilities for the
coevolution.

We will implement algorithms we specified in Chapter 2. Unlike ANNs for
agents in the previous chapter, they can both be manually configured to generate
feasible levels. However, the EAs will be used to fine-tune the generators for the
player they are creating the levels for.

We will start by mentioning some previous works done in this field. After
that, we will describe our level generators and their evolution in detail. Finally,
we will showcase the results achieved by these methods.

4.1 Related works
Multiple works tried to generate levels for various games. Some tried level gener-
ation for general 2D games using the General Video Game AI framework (GVG-
AI) [35]. In this work, the authors generated levels on a small 2D grid. They
compared three approaches: random level generation, constructive level gener-
ation and search-based level generation. The random level generator generated
the tiles randomly. The constructive level generator used the multipass approach
and utilized game information retrieved from the framework. The search-based
generator used the feasible-infeasible genetic algorithm. Finally, they let human
players compare levels from each of the generators. In this survey, the search-
based generator ranked best among these, as expected.

Others tried to generate platforms for platformer games based on rhythm [9]
[10]. They combined smaller pieces of levels into larger ones aiming to make
the player jump in a rhythm, which should help the player be in the flow [36].
Launchpad does this by firstly generating rhythms and then using design grammar
to convert it into levels. The generator generates levels of various difficulties and
obstacles. They are visually appealing and the generator has multiple parameters
that can be configured from the outside.

One work tried to imitate the levels of Super Mario Bros game [37]. The au-
thors created a set of 24 one tile wide columns that appear in the game (primarily
in the first two levels) and used an EA to combine them to form a level. The in-
dividuals were sequences of these columns. Their fitness was computed based on
how many and how difficult patterns from the original game they contain. These
patterns were observed beforehand. To evaluate their results, they implemented
another fitness function, which punished levels for containing patterns similar to
those in the original game. Then, they let human players play through levels
evolved by EAs using the different fitness functions. The survey found out, that
the levels which were evolved to contain similar patterns as those in the original
game are only slightly more fun and similar to the original game’s levels than
those evolved using the other fitness.

Finally, there were multiple works submitted to the Mario AI Championship’s
Level-generation track [6] [13]. Various techniques were used in these generators
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including building blocks (could generate pretty complex levels but with occasional
errors) and multipass generation (winner of one of the championships).

4.2 Our approach
Both our level generators are probabilistic. That means that they generate levels
based on a list of given probabilities. It may be difficult to manually specify these
probabilities so that the generators will generate levels with abstractly defined
properties, like adequate difficulty or fun to play. For this purpose, we will use
EAs. We will define fitness function that measures these properties and use an
EA to find required generators.

The generated levels will contain all features commonly appearing in Super
Mario games, which are primarily gaps, platforms and pipes. From the enemies,
we decided to generate the following ones: normal Goomba, green Koopa, red
Koopa, green winged Koopa, Spiky and Bullet Bill Blaster (Figure 1.2).

4.2.1 Chunked Markov Chain level generator
The first level generator we will implement is based on building blocks principle
(Section 1.2). We will create multiple chunks, which will then be combined using
Markov chains into one sequence of chunks. This sequence will then form a level.

Chunks

Firstly, we need to decide what our chunks will look like. If we look at some
Super Mario Bros game levels, we will find out that they do not contain many
different environmental features. There are primarily gaps, pipes, bullet bills,
question mark blocks and brick blocks. And there is not much variation even in
this small number of types of features. Gaps, pipes and bullet bills come with a
few different sizes, because they are bound by how far (or high) Mario can jump.
Additionally, platforms made of question mark blocks and brick blocks always
appear at only two different levels above ground.

Thanks to this, we can make one chunk for each of the mentioned features
which follow the stated constraints, and our library of chunks will still be pretty
compact. It will contain the following chunks: path (of lengths 3, 4, 5, 6), gap
(of lengths 2, 3, 4), platform (of lengths 1, 3, 5 using either bricks or question
mark blocks), pipe (of heights 2, 3, 4), bullet bill (of heights 1, 2, 3, 4), stairs (of
lengths 2, 3, 4) and double platform (of length 5, each platform being composed
of bricks or question mark blocks). An example subset of these chunks can be
seen in Figure 4.1.

The next thing we need to solve is how we are going to connect two neigh-
bouring chunks. Since we already decided that they will be placed right next to
each other, we only need to choose at which height they will be placed. We can’t
put the next chunk too high, because Mario would not be able to jump on it.
When placing the next chunk lower than the previous one, theoretically, there is
no limit on how much lower it can go so that Mario can still pass through these
chunks. However, if we want to preserve the ability of Mario to go back in the
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Figure 4.1: Example subset of chunks for our Chunked Markov Chain level
generator. On the top row, from left to right, we can see the following chunks:
gap of size 3, pipe of height 3, stairs of length 3, bullet bill of size 4 and single
question mark platform of length 5. On the bottom row, from left to right,
we can see these chunks: single bricks platform of length 5, double bricks
platform of length 5, pipe of height 4, path of length 7 and stairs of length 4.

level we need to limit this change in height by the height which Mario can jump,
too. Because Mario can jump 4 tiles up, the height change interval will be [−4, 4].

Now that we have constrained the height change between two chunks, the
generator still needs to decide its concrete values. We can let the generator
randomly choose it between each two chunks. However, this way, we would not
be able to configure the generator to generate e.g., only flat levels (which ones
will be useful later in coevolution). So we will add a probability to the generator,
which will tell how probable it is to change the height between two chunks, and
then the actual height can be chosen randomly. Setting this probability to 0 will
tell the generator to generate only flat levels.

The last thing to consider is how to deal with unsolvable levels. We could
implement an AI player that can solve any solvable level (e.g., by using depth-
first search). This has a disadvantage that such validation would be too slow. A
second option is not to generate unsolvable levels at all. Thanks to our design
of chunks, they can all be traversed by Mario. And thanks to our constraints to
chunk placements, Mario will also be able to cross through each chunk switch.
This way, our generator can not generate unsolvable levels.

Combining chunks using Markov chains

Now that we have defined how we are going to connect different chunks, we need
to specify how the generator will choose among them when generating a new
chunk. We propose to use a Markov chain (Section 1.6). It will contain one state
for each chunk type. The initial state vector will specify probabilities that the
given state (chunk) will appear first in the level. Then, element pij of the state
transition matrix will define the probability to generate chunk j after previous
chunk i.

Instead of Markov chains we could have one parameter for each chunk type
which specifies its probability to appear in the level. However, Markov chains are
more powerful in that they specify this probability for each pair of chunk types.
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Now, we only need to know when to stop the level generation. This can be
easily achieved by simply specifying the number of chunks the generator should
generate. We will also hardwire the first and the last chunks to be empty paths
for better game design [38].

Enemies

The next problem we need to solve is the generation of enemies. If we would place
them directly into our chunks, the chunks would soon become too repetitive. To
fight this issue, we could create different chunks with all the possible positions of
all types of enemies. However, this way, the number of our chunks would grow
considerably. Because of this, we decided to generate enemies independently of
chunks generation.

After the level is generated, we will traverse through the level tile by tile, and
on each tile, we will decide whether to generate an enemy or not. Each type of
enemy will have its own probability of spawning. This way, we also increase the
generator’s configuration and possible levels space.

An example level generated by this generator can be seen in Figure 4.2. The
probabilities in the Markov chain transition matrix and initial state vector were
set to the same value. The probabilities of enemies were set to custom values.

Figure 4.2: A part of a random level generated by Chunked Markov Chain level
generator.

4.2.2 Multipass level generator
The second level generator we will implement is based on the multipass approach.
We will fix its levels’ length, and then the algorithm will traverse the currently
generated level from left to right, tile by tile, multiple times. On each tile, the
algorithm will generate some environmental features according to their defined
probability. As discussed in Chapter 2, Super Mario Bros levels do not contain
many different features, so each one can be generated in its own level pass. We
propose the following passes:

1. Ground pass - firstly, we need to generate the overall terrain of the level
before we can start generating other features. We will start with a random
initial height, and on each tile, we will generate ground of the current height.
While traversing the level, one or none of the following three events may
occur:

• Increase or decrease current height - if we want to have all the levels
generated by the generator playable, we will need to constraint this
height change to be at most the height Mario can jump (which is 4
tiles),
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• Generate gap - if this event occurs, the generator will start a gap of a
random length at the current position. The gap’s length will need to
be at most the distance Mario can jump,

2. Pipes pass - when we have the level’s terrain generated, we can start
generating other features. We will generate pipes of random height during
this pass, but not more than Mario can jump. We will also need to forbid
generating pipes at the places where are gaps or right after a gap or height
increase because it may make the level impassable,

3. Bullet Bills pass - this pass is almost identical to the previous one only
instead of generating pipes we will generate bullet bills,

4. Stairs pass - another feature that sometimes appears in Super Mario lev-
els is stairs made of stone blocks so we decided to generate them too. The
algorithm will randomly choose the length of the stairs. To not generate
uselessly long stairs, we will constrain the maximum length to some rea-
sonable number. The only thing we need to watch out for in this pass is to
not generate them in places of gaps, or through other features since they
are longer than one tile,

5. Platforms pass - the last feature we will want to generate are platforms.
These platforms are made of question mark blocks or brick blocks placed
next to each other multiple times. In Super Mario Bros game, they always
appear 4 or 7 levels above ground, so we will use this constraint too. Each
type will have its own probability. Like stairs, they can have any length,
but we will constrain it by some reasonable constant. We will also need to
watch out not to generate them through other features,

6. Enemies - the final pass will generate enemies. Each enemy type will have
its own probability to be generated.

A list of all required probabilities is displayed in Table 4.1, and the results of
all the passes are illustrated in Figure 4.3.

Pass Probabilities
Ground 2 (height change, gap)
Pipes 1 (pipe)

Bullet Bills 1 (bullet bill)
Stairs 1 (stairs)

Platforms 3 (single platform, double platform, powerup
in platform block)

Enemies 5 (one for each type of enemy)

Table 4.1: The table containing all the probability parameters our Multipass
level generator uses.
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Figure 4.3: Visualisation of all level passes of our Multipass level generator.
From top to bottom, each image displays the currently generated level after
each pass.
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4.2.3 Level postprocessing
We will also implement level postprocessing for purely aesthetic purposes. When
generating levels, for simplicity, we were using only two types of ground tiles in
both level generators: dirt tile and dirt tile with grass on the top. However, the
tileset coming with Mario AI Platform contains also dirt tiles with grass on other
sides to make the grass in levels continuous. To make our levels more visually
appealing, we will implement level postprocessor, which will change border dirt
tiles to dirt tiles with grass in the correct position. We will also generate some
environmental tiles (e.g., arrow displaying direction of the level, plants) which
have no impact on the level. An example of this postprocessing can be seen in
Figure 4.4.

Figure 4.4: An example of level postprocessing. The original level is on the top
and its postprocessed version on the bottom.

4.2.4 Evolution
Both our generators described above can be configured to generate a large variety
of different kinds of levels. We will use evolutionary algorithms to find those
configurations, which have properties we want.

Because the configurations are arrays of numbers (probabilities), we can use
genetic algorithms for both. Our individuals will be fixed-size arrays of floating
point numbers in the range [0, 1]. In the case of Chunked Markov Chain level
generator, we will reshape the MC’s transition matrix to a 1D array. We will run
the evolution for a fixed number of generations using gaussian mutator, elitism,
which preserves 2 best parents, and roulette wheel selection.

One thing we need to be careful with is the mutation in our Chunked Markov
Chain level generator. We can not simply perturb probabilities in the individuals,
because that would result in an invalid Markov chain. To solve this issue, we will
implement a custom mutator for this evolution. It will do the following:

• decrease a probability - for each gene, with probability p decrease its
value by a random value from interval [0, 1]. Then, coerce the resulting
probability in [0, 1], resulting in the final decrease by x. Finally, increase
the values of all the other probabilities in the same row of the transition
matrix (or the initial state vector) by x/(n − 1) (n is the length of the row
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or the initial state vector). This will preserve the constraint that each row
of the transition matrix and initial state vector represent distributions of a
random variable,

• switching random variables - to add more power to the mutator, we will
also allow it to randomly switch transition matrix’s rows.

4.2.5 Fitness function
Now that we have described how our evolution of level generators will look like,
the only thing left is to define fitness function. We want our levels to be fun
and interesting. The problem is that defining fun is not that easy. Instead of
trying to do so, we propose to split this metric into multiple components. We
will try to define these simpler metrics so that combined, they should measure
how interesting the generated levels are.

We will want from our levels that their terrain won’t be too flat, so we will
need to define metric which measures their linearity. Next, we will want our levels
to be challenging so that we will define a difficulty metric. The last thing we will
want is, that the generators will generate all the possible features in a complex
way. It would not be interesting if the levels would be empty, or contain only
pipes, or some other feature. In the following sections, we will define these three
metrics so that a computer will understand them, and we could use them in our
fitness function.

Linearity

Terrain linearity is pretty straightforward to define. We can compute the average
height change per tile at the given level and use it as this metric. Using this
definition, a level with whose terrain relief is far from a line will actually have
high linearity metric value.

Another way to compute this metric (and probably more common) is to cal-
culate linear regression [39] (a straight line which approximates the level’s terrain
the most accurately). Then we can compute the distance of the actual terrain
from the line. However, our metric also yields good results, as shown later.

Difficulty

Because difficulty is subjective metric (various players may be differently skilled,
some may find a specific obstacle more difficult than others), we decided for the
following approach. We assigned each type of obstacle a difficulty value and then
sum them for each obstacle in the currently evaluated level. Table 4.2 displays
the subjective difficulty values we assigned to each obstacle type and explanations
why we decided on these values. As a starting point, we decided that normal
Goomba will have difficulty value 1.

This approach is similar to difficulty graphs [40], which are sometimes used
for difficulty evaluation.
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Obstacle type Difficulty Explanation
Goomba 1 Pivot value

Green Koopa 2 Has 2 lives
Red Koopa 2 Has 2 lives

Spiky 3 More dangerous than Koopas since
Mario will die when jumping on it

Flower 3 Basically the same mechanic as
Spiky, only vertical

Green winged Koopa 4 Based on personal experience, these
Koopas are pretty difficult. Even

more difficult than Spiky
Bullet Bill 1.5 (height 1),

1 (other)
Bullet Bill is very similar to

Goomba, but moves towards Mario.
However, Bills flying above ground

are not immediate threat.
Gap 0.5 (length 1),

0.5 + 0.5 *
length (other)

Gaps of length x are basically x not
moving Goombas in a row that

cannot be jumped on. Gap of length
1 can be walked over on full speed

Platform -0.8 * length Platforms reduce difficulty in a way,
that if enemies are spawned below

them, Mario can just jump and walk
on the platform without any threat

Table 4.2: Subjective difficulty values of all the obstacles occurring in the levels
generated by our generators. Contains also brief explanation why we decided
on the given values.
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Complexity

The final metric we want to define is measuring the complexity of levels, meaning
the diversity of appearing features. This is not an easy task on its own, but we
propose the following solution. We will take an image of the level and compress
it using a suitable compression algorithm, and the resulting image’s size will be
our complexity value.

Because compression algorithms can be pretty time consuming, computing
this metric can have a significant impact on our evolution running time. To fight
this issue, we will generate level images, where one tile takes space of 1x1 pixels
(each tile using a different color) instead of 16x16, which will significantly improve
compression time. An example of this minified image can be seen in Figure 4.5.

Figure 4.5: Illustration of our level image minification. Original image (top) is
minified to a much smaller size (bottom, enlarged for better viewing), where
one tile’s size is 1x1 pixels. The minified image is used when computing
complexity metric via an image compression algorithm.

The next thing we need to decide is which algorithm to use. We are look-
ing for a compression, which takes advantage of repeating patterns. The more
complex a level is, the more complex its image is, the less different patterns are
repeated in the image, so the resulting size of the compressed image is higher.
The PNG image format uses one such compression. It is called DEFLATE and
uses a combination of LZSS [41] and Huffman compression. Both algorithms are
particularly designed to look for repeating patterns, and the more such patterns
they find, the more they reduce the size of the resulting image. Because of this
property of these algorithms, we decided to use the size of the PNG image of a
level as its complexity metric.

Fit for agent

The next property we will want from our generator is that it generates levels that
are adequately difficult for the agent, so the agent can later improve by learning
to solve them. We propose to achieve this by using fitness, which computes the
agent’s win/loss ratio on the current level generator. We will want to achieve
a state where the agent solves 50% of these levels. This is inspired by machine
learning techniques where half of the population are positive individuals and half
negative ones to improve the learning process.

We can compute the difference between wins and losses on some number of
levels and minimize this fitness. However, our previous metrics were designed to
be maximized. Because we will be combining them, it would be more suitable to
have this metric maximized too. Thanks to the fact that we will know the amount
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of levels on which the generator will be evaluated, we can simply subtract the
win/loss difference from that number. The resulting formula will be the following:

fitF itness = c − abs(2w − c)

where c is the number of levels on which the generator was evaluated, and w is
the number of levels the agent solved.

4.3 Our results
We ran multiple experiments to verify whether we can achieve viable results
by using evolution as specified previously. Firstly, we ran the evolutions while
maximizing only one of the metrics at a time. By this approach, we wanted to
find out whether our model is capable of evolving generators with the individual
properties. In Figure 4.6, we can see a random level from each experiment.
These images demonstrate that these experiments were successful for both types
of generators.

After that, we tried to combine these metrics with the fit for agent metric.
However, we excluded the difficulty metric because we were trying to make it fit
the agent and not maximize it. The fit for agent metric is also the most important
one. This is because we want to find out, whether the evolution can find level
generators personalized for the player playing them. Because of this, we designed
our combined fitness in the following way:

fitness = f ∗ (1 + c + l)

where f is result from our fit for agent metric, c is result from our complexity
metric, and l is result from our linearity metric. Both c and l metrics were
normalized to the interval [0, 1]. To normalize linearity, we divided the original
value by the length of the level and coerced it in the required interval. Finding
maximum value of the complexity metric would be too difficult, so we run the
evolution multiple times while maximizing that metric and used the maximum
value the evolution found.

Using this fitness, we achieved that if the fit for agent metric is low, the
resulting combined fitness is also low, so we force the evolution to primarily
maximize this metric. A random level from some of the generators evolved using
this fitness and various AI players for evaluation can be seen in Figure 4.7.

By running multiple experiments, we found out that population size of 50 can
be evolved in 50 generations for preferred results. An evolution chart of one of
the runs for each level generator can be seen in Figure 4.8. Looking at objective
values in these charts, we can see that the evolution can find generators fit for
the agent already in the first generations. More experiments can be found in the
electronic attachment (Appendix A.1).

There is one difference between our generators evolved using fit for agent
metric that stands out. Chunked Markov Chain level generator tends to put
all the obstacles right at the beginning of levels, and the rest is just non-linear
terrain. On the other hand, Multipass level generator places the obstacles more
uniformly, which is expected from its definition.
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Figure 4.6: Examples of random levels generated by generators evolved using
various fitness functions. From top to bottom:

• Multipass level generator - maximizing linearity metric,

• Multipass level generator - maximizing difficulty metric,

• Multipass level generator - maximizing complexity metric,

• Chunked Markov Chain level generator - maximizing linearity metric,

• Chunked Markov Chain level generator - maximizing difficulty metric,

• Chunked Markov Chain level generator - maximizing complexity metric.
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Figure 4.7: Examples of random levels generated by generators evolved using
combination of fit for agent, complexity and linearity fitness functions and
various AI players. When using an agent, which only goes right, the evolved
generator generates flat levels with some obstacle, which appears only rarely,
so that the agent solves 50% of the levels. When using an agent that goes
to the right and jumps all the time, we can see that the evolved generator
generates non-linear levels with occasional obstacles which can kill the agent.
When using the best evolved NEAT agent, the evolved generator generates
more complex levels. From top to bottom:

• Multipass level generator + going right agent,

• Multipass level generator + going right and jumping agent,

• Multipass level generator + best NEAT agent,

• Chunked Markov Chain level generator + going right agent,

• Chunked Markov Chain level generator + going right and jumping agent,

• Chunked Markov Chain level generator + best NEAT agent.
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Figure 4.8: Charts of the evolution of Multipass level generator (top) and Chun-
ked Markov Chain level generator (bottom). Both charts are averaged over
4 runs and use fitness, which combines linearity, complexity and fit for agent
metrics using the best evolved NEAT player. The objective function is only
fit for agent metric. Each metric’s maximal value is 1. We can see, that even
though the best evolved level generator did not maximize all of them (the
fitness values do not reach value 3), it maximized fit for agent metric which
we deemed to be the most important.
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4.4 Conclusion
We have implemented two level generators, one using a multipass approach and
the second one building blocks approach with Markov chains. Afterward, we used
genetic algorithms to maximize the following properties of the levels they gener-
ate: linearity, difficulty, complexity and fit for agent. Linearity was computed as
the average height change in the level, difficulty was calculated by summing up
our subjective difficulty values of individual obstacles in the level, complexity by
the size of compressed image of the level and fit for agent by win/loss ratio on
multiple levels.

By running multiple experiments, we first proved that the evolution can max-
imize each of these metrics individually. After that, we were successful in maxi-
mizing the combined metric of these too, on both level generators.

There was one problem with Chunked Markov Chain level generator, and
that was that it generates levels, where the obstacles are only at the beginning.
However, during the following coevolution, it will be forced to generate more
and more challenging levels, so it may be able to force it to generate obstacles
throughout whole levels.

Because of these results, we find both generators to be good candidates for
the later coevolution.
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5. Coevolution of AI and level
generators
After having the evolution of AI players and level generators for Super Mario
implemented (chapters 3 and 4), we can start with the coevolution. We will start
by examining some previous works, and then we will describe our approach. After
that, we present our results and draw conclusions from this part of our work.

5.1 Related work
Similar work to ours was done by using coevolution to evolve endless runner type
games [42]. It is a subgenre of platformer games, where the player is constantly
running. The work was successful in generating new game rules and level genera-
tors and AI players for the generated game. It was initial research to coevolution
usage in such a way. Our work differs from this in that it focuses more on com-
petition between AI players and PCG content and explores this field in more
depth.

Other work described POET (Paired Open-Ended Trailblazer) algorithm [43].
Even though it was not used for a computer game, it is very similar to our
setting because it coevolved population of AI players and a 2D environment. The
coevolution here is a little specific in that it evolved pairs of one player and one
environment and occasionally swapped individuals between two pairs. Similarly,
like we will be doing, they tried to evolve environments, which are adequately
difficult for its paired AI player and then evolve the player to solve the new
environment. After multiple runs, they took some of the evolved environments
and tried to evolve AI players using the same evolution as in POET directly on
these environments. They found out that it was unable to find players which
would solve them as POET could.

In a different work, the authors used competitive coevolutionary techniques on
the existing SANE algorithm, which evolves Go players [44]. In their algorithm,
they coevolved two populations of AI players. The results of their work were that
the coevolution evolved “better game-playing behavior” than standard evolution.

In other work, authors used cooperative and competitive coevolution to evolve
AI player for Chinese Chess [45]. This work shows, again, that coevolved players
perform “relatively well”. They also show a difference in results when using
competitive vs. cooperative coevolution.

Different type of coevolution called cultural coevolution was developed to
evolve AI players for game Go [46]. In this coevolution, only one population
is being evolved, and the other (culture) contains the best individuals from some
points of the evolution. Despite the fact that when faced against three bench-
mark agents, the simple evolution evolved agents performed better, when faced
in tournaments against each other, coevolved agents won more tournaments.

There are also some works where the term coevolution was used when an EA
algorithm evolved a single population, and the individuals of the same generation
competed against each other [47] [48].

Except for the coevolution of endless runner games and POET, all these works
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have the same trait: whether using one or more populations, they evolve only AI
players. In the following sections, we will describe how we used the coevolution
of populations of AI players and level generators for the Super Mario game.

5.2 Our approach
As decided in Chapter 2, we will be using competitive coevolution. It will evolve
two populations: population of AI players and population of level generators.

At one time, only one of the populations will be evolving. While evolving
population of AI players, we will use the best level generator from its population
for evaluation, and vice versa, when evolving population of level generators, we
will use the best AI player from its population for evaluation.

Now we must decide which population will be evolved first. If we want to
start with the evolution of level generators, we would need to provide some AI
player for evaluation, which we do not have. Randomly initialized AI player
would probably only stand and do no actions. Because of this, it is impossible for
the evolution of level generators to evolve such individuals upon which the player
would have a 0.5 win/loss ratio (Section 4.2.5). On the other hand, if we start
by evolving AI players, thanks to the design of our level generators, we can easily
initialize both of them to generate only flat levels, which is a perfect starting
point for evolving AI players.

After the evolution of AI players population finishes, we start the evolution
of the level generators population, using the best evolved AI player for their
evaluation. When this evolution finishes, we start our AI players evolution again,
using the final population of the evolution’s previous run as initial population
of this run, and the best evolved level generator for evaluation. This process is
repeated for some number of generations and is illustrated in Figure 5.1.

Figure 5.1: Our coevolution scheme.

When the coevolution finishes after x generations, we have a sequence of x AI
players, which should be better and better, and a sequence of x level generator,
which should generate more and more difficult and complex levels.
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5.2.1 Encountered issues
After some experiments, we found a few shortcomings in our approach, which we
tried to eliminate:

• Difficulty cycling - the first problem that arose was that the evolutions
of level generators were not evolving generators which generated more and
more difficult levels, but only “cycled” different obstacles. The best gen-
erator from the first generation learned to generate one type of obstacles.
After that, the AI players learned to overcome them. Then, the next level
generator learned to generate a different kind of obstacles, and the AI play-
ers learned to overcome them again but forgot how to overcome the first
kind of obstacles. So, the next level generator learned to generate them
again instead of the previous one. This created an infinite cycle, where
the level generators were not generating more difficult levels gradually. To
counter this issue, we have implemented a sliding window of level gener-
ators, which contained 5 latest best level generators, and the AI players
were evaluated on these, instead of only on the last one, similarly as in the
cultural coevolution,

• Non-stability of AI player evaluations - although evolved AI players
had approximately 0.5 win/loss ratio on the best evolved level generators,
when we rerun the evaluations again after the coevolution, we found a
pretty significant deviation from this value. This was probably caused by
the random behavior of our level generators, so increasing the length and
number of the levels on which the players are evaluated during the evolution
helped counter this issue,

• Difficulty in multipass level generator - the evolution of Multipass level
generator tended to evolve generators, which generated levels consisting of
one long brick platform with many enemies below it. The agent’s perfor-
mance then depended only on whether it was able to get on top of the
platform at the beginning of the level. Similarly, some evolved generators
generated only stairs next to each other, which causes a similar problem.
Some such levels are depicted in Figure 5.2. To resolve this issue, we con-
strained the generator not to be able to generate platform, stairs and many
enemies directly next to each other.

5.3 Chosen algorithms
In Chapter 3, we saw that the NEAT algorithm produced better-performing play-
ers than neuroevolution of weights, but ran longer. For that reason, we will run
the coevolution using both algorithms, but when using NEAT, we will run it with
a smaller number of coevolution generations.

Later in Chapter 4, we saw that EAs of both our level generator produced
similar results, so we will use both of them too, in case that some will yield better
results in the coevolution.
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Figure 5.2: An illustration of difficulty and complexity metrics not mirroring the
actual state in levels generated by Multipass level generator. Even though
their values are high, the levels are not really difficult neither complex.

5.4 Our results
We ran the coevolution using all four possible combinations of our evolutionary
algorithms. Each of these experiments was executed 10 times to get more relevant
results.

5.4.1 Experiments using neuroevolution of weights
When using the neuroevolution of weights algorithm for AI player evolution, we
let the coevolution run for 20 generations. The averaged coevolution charts of
objective values from 10 runs can be seen in Figure 5.3.

From these, we can see that the coevolution is pretty successful in finding
level generators that generate levels of adequate difficulty for a given player.
The objective value for a level generator is 50000 when the player scores 0.5
win/loss ratio on its levels (evaluated on 30 levels). The value drops linearly to
0 when the ratio drops to 0 or jumps to 1. The charts show that throughout
the whole coevolution, the best individual from the level generators population
scores maximal objective value after each level generator evolution run.

The objective value of AI players is computed as a number of solved levels
times 1000. The maximum value is therefore 25000 because the players were
evaluated on 25 levels. We can see that only in the first generation of the coevo-
lution can the best players learn to solve all the levels (which are only flat levels
with no obstacles). Afterward, only in a few following generations the players
are able to learn to overcome the new obstacles (the maximal objective value of
AI players is increasing during one evolution run). This is more apparent when
Multipass level generator was used (Figure 5.3).

A video showcasing one of the coevolution runs can be found in the electronic
attachment1 (see A.1).

1Also at https://www.youtube.com/watch?v=bthgxZYPaCs
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Figure 5.3: Charts of objective values averaged over 10 coevolution runs. The
x-axis on both charts contains single evolution generation numbers normal-
ized so that one unit represents one evolution run. In other words, it contains
coevolution generation numbers. The y-axis contains objective values (fit for
agent metric). The neuroevolution of weights evolved the AI player. The
level generators used were Chunked Markov Chain level generator (top) and
Multipass level generator (bottom). From the objective values of level gen-
erators (fit for agent metric), we can see that the coevolution easily finds
level generators which generate adequate levels for the players. We can also
see that during the first runs of AI evolution, it is able to learn players to
overcome the new, more difficult levels.
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5.4.2 Experiments using NEAT
When using NEAT for AI player evolution, we run only 10 generations of coevo-
lution. We also reduced the number of generations in the evolution to 400 (down
from 500) to fight the higher run time of NEAT. The averaged coevolution charts
of objective values from 10 runs can be seen in Figure 5.4.

Similarly to experiments with the neuroevolution of weights, the evolutions
of level generators can easily find required level generators. The objective values
of NEAT individuals, on the other hand, do not increase at all except in the very
first run. Upon observing the agents, they do not seem to learn more than going
right and jumping. This is an interesting result because NEAT evolved better
agents than the neuroevolution of weights when trained on a fixed set of levels
(Chapter 3). This may be caused by NEAT overfitting on that training set and
being unable to generalize on PCG generated levels.

5.4.3 Running times
Most of the coevolution experiments were run on a machine with Intel R⃝ CoreTM

i7-6700 processor which has 4 cores running at 3.40GHz and uses hyperthreading,
16GB memory and Gentoo 2.6 operating system. The average run times can be
seen in Table 5.1.

5.5 Evaluation of AI players
To evaluate whether our players evolved by coevolution perform better than play-
ers evolved by an evolution, we will execute the following experiment. We will
take some of the level generators evolved by coevolution and let our EAs evolve
players using this generator. In the end, we will compare how many levels that
evolved player solved with how many levels the player evolved by coevolution
solved. A similar evaluation of coevolution evolved players was done with the
POET algorithm [43].

We chose five of the final level generators evolved by our coevolution, and
run the neuroevolution of weights using this generator. We did not run this
experiment with NEAT players because they did not seem to perform well.

We let the evolutions run for 150 generations (3 times more than we used
for training data set in Chapter 3). After that, we took the evolved agent and
coevolved agent from the same experiment and let them run 200 levels generated
by the generator.

In each of these experiments, the coevolved agent solved more levels than the
evolved one, as can be seen in Table 5.2. However, the difference does not seem
to be as significant as for the POET algorithm [43], for example. The evolution
chart of the first experiment is depicted in Figure 5.5.

5.6 Evaluation of level generators
To evaluate whether the level generators are improving between generations of
the coevolution, we plotted our individual metrics on each generation’s best level
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Figure 5.4: Charts of objective values averaged over 10 coevolution runs. The x-
axis on both charts contains single evolution generation numbers normalized
so that one unit represents one evolution run. In other words, it contains
coevolution generation numbers. The y-axis contains objective values (fit for
agent metric). NEAT evolved the AI player. The level generators used were
Chunked Markov Chain level generator (top) and Multipass level generator
(bottom). From the objective values of level generators, we can see that the
coevolution easily finds level generators which generate adequate levels for
the players.
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Algorithms Total time AI
evolution

time

LG
evolution

time
NoW + Chunked 8:42 6:46 1:57
NoW + Multipass 14:05 7:57 6:08
NEAT + Chunked 14:40 14:09 0:31
NEAT + Multipass 30:30 28:34 1:55

Table 5.1: Average running times of coevolution experiments. The times are in
hours. NoW stands for neuroevolution of weights, Chunked for evolution of
Chunked Markov Chain level generator and Multipass evolution of Multipass
level generator.

Coevolution
experiment

Levels solved by
coevolved agents

Levels solved by
evolved agent

Multipass - 5 33% 7%
Multipass - 8 49% 48%
Multipass - 10 49% 37%
Chunked - 3 36% 34%
Chunked - 7 51% 45%

Table 5.2: Comparison of coevolution evolved (using either Multipass or Chun-
ked Markov Chain level generator) and the neuroevolution of weights evolved
agents. The level generators used are taken from the results of picked coevo-
lution experiments. Each player played 200 levels.

Figure 5.5: Evolution chart of neuroevolution of weights using the final level
generator from one of the coevolution experiments. The player was evaluated
on 20 levels during the evolution. The fitness function is the sum of distances
the player reached in all the levels and objective function in the number of
levels it solved times 1000.
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generator. Because we ran 10 experiments for each coevolution, we averaged
results from all of them.

The charts showed that linearity and complexity were increasing during the
coevolution. It even seems that for Multipass level generator, they are not yet
converged and that they would increase for a few more generations. The difficulty
of levels generated by Multipass level generator seem to be increasing at least for
the few generations, where the performance of AI player was increasing too. All
of this can be seen in Figure 5.6.

Figure 5.6: Evaluation chart of cevolution of Chunked Markov Chain level gen-
erator (top) and Muultipass level generator (bottom). The x-axis contains
coevolution generation. The y-axis contains fitness values of the best evolved
level generator from a given generation, averaged over 50 levels it generated.
The difficulty is not increasing much, while complexity and linearity are. For
Multipass level generator, it even seems that it would increase in a few future
generations.
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5.7 Conclusion
In this chapter, we have implemented the coevolution of populations of AI players
and level generators for the Super Mario game. For AI players evolution, we have
used the neuroevolution of weights and NEAT algorithms. For level generators,
we have used evolutions of Chunked Markov Chain level generators and Multipass
level generators.

After implementing the coevolution, we have run experiments using all four
possible combinations of these algorithms. Each experiment ran multiple hours,
was run 10 times, and their results were averaged.

From the coevolution charts, we could see that evolutions of level generators
were pretty easily able to find adequate level generators for the AI players on
which they were evaluated. The evolutions of AI players, on the other hand,
were not always able to find agents which would solve all the generated levels.
Specifically, they were able to find such only in the very first generations of the
coevolution.

Still, because the AI players’ performance improved at least slightly in the
coevolution generations, we got our sequence of level generators, whose generated
levels’ difficulty is gradually increasing.
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6. Implementation
In this chapter, we will describe our implementation of this work in more detail.
Firstly, we will outline the code structure, then we will describe important parts
of the code and finally we will look at the code documentation.

The whole codebase can be found either in the electronic attachment (see
Appendix A.1) or as a git repository on GitHub1.

6.1 Code organisation
As decided in Chapter 2, all of our code is written in Kotlin language. The only
parts of the codebase written in Java are two libraries which are not downloaded
automatically by our build tool, Gradle. One of them is Mario AI Framework and
the second one is NEAT. The reason why they are not automatically downloaded
is that we made a few changes in them, so they need to be recompiled during the
build process.

The project is split into two subprojects. One containing the Mario AI Frame-
work (folder MarioAI4J ) and the second one is our project (folder MarioDou-
bleEvolution). MarioDoubleEvolution subproject follows Gradle’s standard di-
rectory structure. The sources are split into two directories: src/main which
contains implementation of the functionality and src/test containing unit tests.
Source files in these two folders are then split into subdirectories by the language
in which they are written. The only Java code in this subproject is the NEAT
algorithm, located in src/main/java. All the other code is in src/main/kotlin.
Resource files like tilesheets are located in src/main/resources.

All of our packages start with prefix cz.cuni.mff.aspect. This package is
split into multiple child packages, which we will later refer to as root packages:

• coevolution - contains implementation of our coevolution from Chapter 5,

• controllers - contains implementation of a few simple AI players used for
benchmarking,

• evolution - contains implementation of all our evolutions mentioned in
Chapters 3 and 4,

• launch - contains multiple entry points. They are all described in Appendix
B in more detail,

• mario - contains integration between our codebase and Mario AI Frame-
work,

• storage - contains implementation of storing JVM objects to binary files
and text to text files on the disk,

• utils - contains utility functions and extension methods used in multiple
places in the project,

• visualisation - contains implementation of various visualisations.
1https://github.com/Aspect26/MarioDoubleEvolution
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6.2 Mario AI Framework integration
The integration with Mario AI Framework is implemented in the root package
mario. It contains class GameSimulator, which provides multiple methods to run
Super Mario game using specified AI player and levels. Levels are represented by
our MarioLevel interface, and AI players implement interface MarioController.

Mario AI Framework uses its own level generator for generating levels in its
simulator. Because we needed to tell the simulator to play a concrete level, we im-
plemented SingleLevelLevelGenerator, which gets an instance of tMarioLevel,
converts it to level representation used in the framework and returns it when asked
from the simulator to generate new level.

6.3 Evolutions
All evolutionary algorithms are implemented in the evolution root package. It
is split into multiple subpackages, notably: controller for AI player EAs and
levels for level generator EAs. To easily switch different EAs in our coevolution,
we created interfaces ControllerEvolution which every EA of AI player must
implement and LevelGeneratorEvolution which every EA of level generators
must implement. Additionally, each EA except NEAT is implemented using jenet-
ics library, so all the common code is extracted to ChartedJeneticsEvolution
abstract class, which also contains implementation of plotting the evolution to a
line chart. This whole hierarchy can be seen in Figure 6.1.

Figure 6.1: Hierarchy of our classes representing EAs. Arrows are pointing from
a child class to a class from which it inherits (or interface it implements).
There are inserted white space after each word in the class/interface name
for better readability.

6.4 Coevolution
Our coevolution algorithm is implemented in the coevolution root package,
specifically in Coevolution class. As an input, the algorithm takes an object
of CoevolutionSettings type, which specifies particularly which EAs should
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the coevolution use, the initial level generator and AI player and for how many
generations the coevolution should run.

In case a long running coevolution should crash or stop for any reason, we
have implemented a way to restore it. The state of coevolution, represented by an
instance of CoevolutionState class, is stored on a disk after each single evolution
is finished. Thanks to this, using the same CoevolutionSettings object that
was used to start the coevolution it can be restarted from this point. This will
result in losing only the last non-finished single evolution progress, which does
not take a large amount of time.

A CoevolutionResult object is returned after the coeovolution is finished,
which contains the best evolved controller and level generator. The best indi-
viduals from each single evolution’s generation are stored on the disk. These
can be loaded via ObjectStorage to retrieve our sequence of level generators of
increasing difficulty.

6.5 Visualisations
In our project, we have implemented two kinds of visualisations. One displays
image of a Super Mario level and the other displays linechart of an evolution.

6.5.1 Level visualiser
We have implemented LevelToImageConverter object, which takes as an input a
MarioLevel object and creates an image of the level. MarioLevel object specifies
exactly what tiles are at which positions in the level, as well as all the entities.
In combination with using tilesheets from Mario AI Framework it creates the
resulting image of the input level2. The converter can create also minified image
of a level as specified in Section 4.2.5.

LevelVisualiser then creates a GUI frame using Java’s Swing library with a
single component. This component draws the image received from the previously
mentioned converter. One such visualisation can be seen in Figure 6.2

Figure 6.2: An example of a level visualisation using our level visualiser tool.

6.5.2 Evolution charts visualiser
To get a better insight into what is happening during our evolutions, we have im-
plemented a visualiser which displays its state in real-time - EvolutionLineChart

2We rotated the enemy sprites around the vertical axis because it makes more sense for the
entities to be left-facing (in direction of Mario’s location).
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class. Specifically, it displays the best fitness value, the average fitness value, the
best objective value and the average objective value on y-axis of each generation
(x-axis). Each of these values are displayed as one line in a linechart.

We have implemented also a different linechart visualisation for coevolution
- CoevolutionLineChart class. It gets two EvolutionLineChart objects as an
input, which it combines into two coevolution charts. One displays the average
and the best fitness values of both evolutions and the other the average and the
best objective values of both evolutions. It also changes the x-axis so that one
unit on the axis corresponds to one evolution run.

All of our linecharts use LineChart class to display the charts, which uses
XCharts library for the actual rendering. It implements also some additional
functionalities, which are:

• storing the data series, thanks to which we can recreate and/or edit the
charts later,

• easier update of the data series,

• storing the chart on the disk as an SVG image.

Finally, we have implemented AverageLineChart, which can take multiple
LineChart objects as an input, matches series based on their labels and draws a
new chart where the values from the input charts are averaged.

6.6 3rd party libraries changes
We needed to do a few changes in the 3rd party libraries that we use in our
project. These changes affect NEAT library and Mario AI Framework, and they
are described in the following sections.

6.6.1 NEAT library changes
The most notable changes we did in NEAT library are the following:

• serialization - in order to be able to store the coevolution state, we needed
to store and load the last population of NEAT evolution. The library does
not provide this functionality, so we had to implement it ourselves, as well
as retrieving the population in the last generation,

• configuration - the configuration of the algorithm was originally in a
static class, implemented as set of constants, meaning that it could not
be changed, stored nor loaded. To resolve this issue, we made the pa-
rameters we use (input/output nodes count and population size) instance
parameters,

• population initialisation - the initial population was always initialized
to the initial NEAT individuals (Section 1.5.2). However, we needed to
be able to initialize it to a specific population in some cases (e.g., when
starting a next NEAT evolution in a coevolution), so we implemented also
this possibility.
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6.6.2 Mario AI Framework changes
The following changes were done to the Mario AI Framework:

• gradle - we’ve added gradle support to the framework, so that we can
integrate it into our project more easily,

• singleton environment - the framework has an issue that we could not run
multiple simulations at a time because some classes and members were static
or implemented as a singleton. Because of this, we made static members
instance members, and reimplemented the singleton LevelGenerator into a
standard class,

• interface LevelGenerator - we also interfaced its level generator so that
we can use our own implementation,

• Mario’s initial state - the simulator starts with Mario being in Fire state
(the state after picking up Fire Flower powerup). We changed this so that
Mario starts in its initial state just like in the original game.

6.7 KDoc
More specific details about our implementation can be found in the code docu-
mentation in electronic attachment (see Appendix A.1), which is also published
at the project’s GitHub pages3. It was generated using dokka tool, which uses
KDoc documentation comments in the code [49].

3https://aspect26.github.io/MarioDoubleEvolution/-mario-double-evolution/
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Conclusion
In this work, we looked at a “competition” between AI players and level gener-
ators for classic game Super Mario. We implemented multiple EAs which evolve
these. Afterward, we implemented the competitive coevolution of these two pop-
ulations and measured improvements in results when using this approach instead
of evolving each population individually.

To evolve AI players, we used the neuroevolution of weights and NEAT al-
gorithms. To evaluate which agents performed better, we let them play through
some of the original Super Mario Bros game levels. NEAT players were able to
solve more levels, however; they took more time to evolve than neuroevolution of
weights.

We also created two level generators. One of them was based on the build-
ing blocks principle combined with Markov chains (Chunked Markov Chain level
generator). The other one was based on the multipass approach (Multipass level
generator). Both of the generators were probabilistic, meaning that they gener-
ate levels based on given probabilities. We then used evolutionary algorithms
to evolve these probabilities so that the levels they generate have properties we
wanted. After various experiments, we found out that the generators’ expressive
range allows them to generate levels that are highly non-linear, difficult or com-
plex and also combination of these. Finally, we were also able to generate levels
which are adequately difficult for a given AI player. However, Multipass level
generator generated more appealing levels because Chunked Markov Chain level
generator tended to generate all the obstacles right at the beginning and then
just empty terrain.

Finally, we implemented coevolution where evolutions of populations of AI
players and level generators take turns. Even though NEAT players performed
better when being evolved on a fixed set of levels, when evolved by coevolution
on randomly generated levels, they performed worse than those evolved by the
neuroevolution of weights. This may have been caused by NEAT overfitting on
the training data set or bad generalization. When evaluating our coevolution
evolved players, we found out that it was able to find players, which solved
more complicated levels than the neuroevolution of weights. This leads us to
the conclusion that it may be easier to learn AI players step by step rather than
let them learn directly on difficult levels.

Regarding level generators, we thought that the problem with our Chunked
Markov Chain level generator would be solved by evolving better-performing
players during coevolution, which would force it to fill up the levels with obstacles.
However, the evolved players’ performance turns out to be insufficient to achieve
this, so levels generated by Multipass level generator looked more natural (in a
way, level generators were more successful at their task of presenting challenges
to the players than the players were at their task of solving them).

Linearity and complexity of the best level generators from each coevolution
generation were also visibly improving. This means that we were able to get a
sequence of level generators, which gradually generated more and more interesting
levels. However, the difficulty was not increasing that much. This was most
probably caused by the fact that after some point, the evolution of AI players
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was not able to find better players, which would solve more difficult levels.

Future work
There are various ways in which our work may be enhanced. One of them is
implementing better AI player, which might be achieved through deep reinforce-
ment learning, for example. This improvement is desirable because the evolution
of level generators seemed to be more powerful than that of AI players. It could
result in having more level generators of different difficulties as a result of our
coevolution. If the learning technique would be more precise, we could even end
up with finer difficulty steps in the level generators.

Another potential update to our work would be implementing a system for
learning an AI player to mimic a human player’s behavior. If we would use this
player in our evolution of level generators, we would end up with a level generator
which would generate personalized content for the human player. Additionally,
by using different win/loss ratios in our fitness, we could prepare a set of level
generators of various difficulties tailored for the specific human player.

If we leave the world of Super Mario, we can still use the same evolutionary
algorithm for AI player, since it is not bound to this game only. By replacing
our level generator evolution with something more general, e.g., by using GVGAI
platform [35], our coevolution would then be able to generate our sequence of
level generators of gradually increasing difficulties for any game.
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A. Attachments
In this Appendix, we describe our attachments of this thesis.

A.1 Electronic attachment
In this section, we describe the electronic attachment. It is split into multiple
directories:

• documentation - contains the source code documentation generated by
dokka tool. It is a collection of HTML pages and one CSS file with entry-
point being -mario-double-evolution/index.html. It contains descrip-
tions of all packages, classes and chosen methods. Each package and class
has its own subpage, which can be navigated to from the index page,

• experiments - contains experiments we did with our algorithms, which in-
cludes all four evolutions and the final coevolution. More details on struc-
ture of this folder can be found in Section A.1.1,

• src - contains source code of our project, whose structure is more described
in Chapter 6,

• video - contains video which showcases one of the coevolution runs.

A.1.1 Experiments folder
In this section, we describe hierarchy of experiments folder in more detail. It
is split into multiple subdirectories based on which algorithms were used in the
given experiment:

• ai/neuro - contains experiments with our neuroevolution of weights algo-
rithm. Each experiment is in its own directory which has the following form:
<name>/<configuration>. The value of <name> is a name of the experi-
ment and <configuration> specifies configuration of the given experiment.
Its form is following:
<generations>:<population-size>:<fitness-function>:<mutation-
probability>:<hidden-layer-size>:<input-grid-size>:<weights-
range>:<dense-input>:<one-hot-encoded-enemies>.
For example: 50:50:DO:0.65:3:5x5:-2,2:false:false, where the value
of <fitness-function> is either DO for distance only fitness and DWPx for
distance with penalties where x is the value of penalty,

• ai/neat - contains experiments with NEAT. Each experiment is in its own
directory which has the following form: <name>/<configuration>. The
value of <name> is a name of the experiment and <configuration> is con-
figuration of the given experiment. Its form is following:
<generations>:<population-size>:<fitness-function>:<input-grid
-size>:<dense-input>:<one-hot-encoded-enemies>.
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For example: 500:100:DO:5x5:false:false, where <fitness-function>
acquires the same values as in the experiments with the neuroevolution of
weights directory,

• lg/pc and lg/pmp - contain experiments with the evolution of Chunked
Markov Chain level generator, resp. Multipass level generator. Each of the
experiments uses different fitness function and was run 4 times. Only ex-
perimentes with combined fitness function have objective function defined,
which returns 1 when the win/loss ratio of the agent on a level generator is
0.5 and the farther away the ratio is from this value the lower the objective
value is. In each experiment, every level generator was evaluated on 20
levels, so the maximal fitness value for difficulty and linearity is 20. When
using complexity metric it was not normalized to [0, 1] interval, and in the
combined fitness the maximal value is 3 (maximally 1 for each component),

• coev - contains experiments with our coevolution algorithm. They are
split into four subdirectories based on which two evolutionary algorithms
were used in the coevolution. They are: neuro pc (the neuroevolution
of weights and the evolution of Chunked Markov Chain level generator),
neuro pmp (the neuroevolution of weights and the evolution of Multipass
level generator), neat pc (NEAT and the evolution of Chunked Markov
Chain level generator) and neat pmp (NEAT and the evolution of Multipass
level generator). Because we ran each experiment 10 times, each is in its
own directory. This directory then contains the following files:

– ai.svg - evolution chart of all the runs of the player evolution split
by black vertical lines,

– ai x.ai - serialized best evolved player from xth generation of the
coevolution,

– coev-fitness.svg - coevolution chart of fitness values. The fitness
values of level generators is upscaled to be visible next to the fitness
values of AI players,

– coev-objective.svg - coevolution chart of objective values. The ob-
jective values of level generators is upscaled to be visible next to the
objective values of AI players,

– lg.svg - evolution chart of all the runs of the level generator evolution
split by black vertical lines,

– lg. x.lg - serialized best evolved level generator from the xth gener-
ation of the coevolution,

– *.dat files - files representing state of the coevolution or charts’
data so they can be reconstructed.

Each neuroevolution of weights and NEAT experiment was executed four
times. The experiment’s folder contains an evolution chart of each run, an
averaged chart, and a data file for each chart so it can be reconstructed. It
also contains the best evolved controller from each run, which is a serialized
MarioController object, that can be loaded via our ObjectStorage.

The objective values on charts of the evolution of AI players display number of
solved levels multiplied by 1000 so that it has similar scale to the fitness functions.
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B. Running the evolutions
In this Appendix, we will describe how our implementation can be used to run
the evolutions.

B.1 Gradle
Our project can be built using Gradle Build Tool of version 6.5. Gradle requires
JAVA HOME environment variable to be set up properly. We recommend using
Java version 11, because the Mario AI Platform had problems with some other
versions.

In addition to gradle’s default tasks, we have implemented some custom tasks
for easier manipulation.

B.1.1 Gradle wrapper
Gradle Wrapper tool provides easier manipulation with Gradle. To get the wrap-
per, the user needs to download Gradle of any version at first. Then, the user
needs to run the following command from the project root folder:

gradle wrapper --gradle-version 6.5

This command will download Gradle Wrapper tool for the project as well as
Gradle of the given version.

If the user does not want to use the wrapper, he will need to download gradle
of version 6.5 and replace ./gradlew with gradle in the following commands.

B.1.2 Gradle projects
Our project is split into two Gradle projects:

• MarioAI4J is the Mario AI Framework project,

• MarioDoubleEvolution is the project containing our evolutions.

B.1.3 Gradle tasks - MarioAI4J
MarioAI4J contains only one notable task which needs to be run, and that is
jar. It builds the projects and creates jar library which is a dependency for
MarioDoubleEvolution project. The following command executes the task:

./gradlew MarioAI4J:jar

B.1.4 Gradle tasks - MarioDoubleEvolution
MarioDoubleEvolution project contains various custom tasks:

./gradlew MarioDoubleEvolution:test

Executes unit tests of the project.
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./gradlew MarioDoubleEvolution:runCoevolution

Executes the coevolution of AI players and level generators.

./gradlew MarioDoubleEvolution:dokka

Generates KDoc documentation for the project.

B.2 Launchers
MarioDoubleEvolution project contains multiple entry points (main functions)
which can be run using some IDE or the following command:

./gradlew runLauncher -PlaunchClass=<launcher-class>

<launch-class> specifies which class containing main function should be run.
The following list contains all available launchers with their description:

• CoEvolveExperiment - runs coevolutions as they were run in the final ex-
periment,

• CoEvolveMulti - runs one coevolution which can be configured in the source
file, by modifying NeuroEvolution (neuroevolution of weights AI evolu-
tion), NEATEvolution, PCEvolution (Chunked Markov Chain level gen-
erator evolution) or PMPEvolution (Multipass level generator evolution)
objects,

• EvolveAINeat - runs NEAT evolution of AI player once. The hyperparam-
eters of the evolution can be specified by modifying controllerEvolution
object in evolve() function. By running function playLatest() instead
of evolve() from main(), the application will launch Super Mario game
with the latest evolved agent using this launcher,

• EvolveAINeuro - runs the neuroevolution of weights of AI player once.
The hyperparameters of the evolution can be specified by modifying object
controllerEvolution in evolve() function. By running playLatest()
function instead of evolve() from main(), the application will launch Su-
per Mario game with the latest evolved agent using this launcher,

• EvolveAIMany - runs multiple evolutions of AI players (NEAT or the neu-
roevolutiono of weights), which are defined in evolutions array either in
doManyNeuroEvolution() function or doManyNEATEvolution() function,

• EvolveLGPC - runs evolution of Chunked Markov Chain level generator
once, which can be configured by modifying levelGeneratorEvolution
object in evolve() function. By running function playLatest() instead
of evolve() from main(), the application will launch Super Mario game
with the level generator evolved in the latest run of the evolution using this
launcher,
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• EvolveLGPMP - runs evolution of Multipass level generator once, which can
be configured by modifying levelGeneratorEvolution object in evolve()
function. By running function playLatest() instead of evolve() from
main(), the application will launch Super Mario game with the level gen-
erator evolved in the latest run of the evolution using this launcher,

• EvolveLGMany - runs multiple evolutions of a given level generator (Chun-
ked Markov Chain or Multipass). Their parameters are defined in the
launchers array either in function doManyPMPEvolution() (evolution of
Multipass level generator) or doManyPCEvolution() (evolution of Chunked
Markov Chain level generator),

• PlayMarioAI - starts Super Mario simulator using defined AI player, which
will play the specified levels,

• PlayMarioKeyboard - starts Super Mario simulator with agent controlled
by keyboard, which will play the specified levels.

Because Kotlin wraps functions outside of a class to a generated class of the
same name as the file in which they are defined with suffix Kt, the actual values
of the <launch-class> parameter also need this suffix. The parameter also
expects the full name of the classes, so for better accessibility we put all the entry
points to package cz.cuni.mff.aspect.launch. Example of a correct value of
<launch-class> is then cz.cuni.mff.aspect.launch.PlayMarioKeyboardKt
(for PlayMarioKeyboard launcher).
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