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1 Introduction 

Many games today implement some form of procedural content generation[1, 2], 

where some parts of the game are generated by an algorithm. This can greatly reduce 

the work required from designers or artists. It can also improve the replay value of the 

game, as the levels can be generated at runtime whenever the player starts the game. 

The procedural content generation problem can be split into many subproblems – we 

can separately study the best ways to generate many areas of a game, e.g., 

environments or dungeons. In this thesis we will study the procedural generation of 

combat encounters, i.e., how to best select a group of monsters that the player should 

face at once. 

The problem of generating combat encounters is complicated by the many criteria 

we want to consider when generating encounters, some of which cannot be easily 

computed. The encounters need to be varied in tactics needed to approach them. They 

should also be varied in the exact enemies the player fights in the encounter.  But above 

all, the encounter must be exactly as difficult as the designer intends. Too many easy 

encounters in a row might lead to the player getting bored, but too many difficult 

encounters might result in the player being frustrated, neither of which is desirable. 

In this thesis we will focus on procedural generation of combat encounters in role 

playing video games (RPG). In RPGs, the player controls one or more heroes as they 

travel through the game world, fighting enemies and experiencing the game story. 

The central element of RPG games is leveling, where the player characters get stronger 

as they defeat enemies and progress through the story. The player usually has a lot of 

freedom in how she develops her characters. Because of this, the players’ combat 

power differs greatly from player to player. This makes it increasingly difficult to 

design combat encounters as the game progresses, as two players might have 

completely different groups of characters. Procedural generation of combat encounters 

could solve this problem, as the algorithm could generate encounters at runtime. These 

encounters could be tailored to the specific player. Yet it is hard to implement properly, 

mainly because there are many possible configurations of player characters the player 

might have. Some players could also be much better than other players at playing the 

game.  
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Players can also have completely different play styles. Some players might focus 

on the roleplaying aspect and choose equipment and abilities that will match the 

personality of their characters. Other players spend a lot of time on figuring out the 

best possible combinations of abilities and items to create the most powerful party 

possible. And other players might not think about these things at all. Ideally, combat 

encounters should be engaging for all different kind of players or, in other words, RPG 

games should support different play styles. 

We have not found any existing research regarding this specific problem. In this 

thesis we will introduce a new algorithm for solving the problem of generating combat 

encounters in RPGs and we will evaluate it. However, as this problem is quite 

complex, it is not our goal to create a solution that would be ready to use in commercial 

games. Instead, we formulated a general algorithm with loose ends (as even RPG 

games are hard to define formally) and implemented it in a short and simple game we 

developed for the purpose of algorithm’s preliminary validation. Furthermore, the 

algorithm itself is composed of several parts, each solving a certain subproblem, which 

are hard to solve completely by themselves1. For these subproblems we have chosen 

the simplest possible solution, in order to test whether the approach in general is 

promising at all. 

The rest of this work is structured as follows: The rest of this chapter describes 

the problem in more detail and further describes RPG games in general. In chapter 2 

we discuss some related problems, how are they different from our problem and what, 

if anything, is related to this thesis. In chapter 3 we further analyze the problem, listing 

all the things we need to consider while designing the algorithm. In chapter 4 we first 

discuss whether we should study this problem in a custom game or if we should try to 

adapt it to an existing game. After that we introduce our custom game, listing all the 

design elements the reader needs to know about in order to understand further chapters. 

In chapter 5 we propose a new algorithm as a solution for this problem and we explain 

how we implemented it in the game from chapter 4. In chapter 6 we introduce our 

testing methodology, as well as all the hypotheses we want to confirm in our tests. In 

 

1 For example, we need to determine how similar in terms of combat difficulty would two 

completely different encounters be for the player’s party and play style. 
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chapter 7 we list the results of our experiment. In chapter 8 we discuss the results of 

the experiments and suggest possible future work based on this thesis. 

1.1 Introducing RPG games 

In order to describe the problem in more detail, we must first describe its domain 

– role playing games (RPGs). In RPG games, the player controls one or more heroes 

as they travel through the game world. As they travel, they earn experience points by 

defeating enemies and completing quests. When they get enough experience points, 

they can level up. When a hero levels up, she gets stronger in some ways. Often this is 

numerical, e.g., level up might mean simply improving the character’s damage or 

health. In some games the player can choose a new skill for the character to gain. This 

skill can then be used in combat. 

Experience points are not the only reward the player gets while playing the game. 

She can also find new weapons and armor to equip her heroes with. These can modify 

their strength even further. Some skills and equipment complement each other, 

therefore correct gear and skill selection might greatly alter the character’s strength.  

In games where the player controls a party of heroes, it is also common to have 

more heroes in the game than the player can control at once. The player can then select 

which of these available heroes she wants to have in her current party. 

An example of such a game is Dragon Age: Origins[3]:  

  



 
4 

 

Figure 1: Combat in Dragon Age: Origins 

Source: Custom screenshot from the game made by Electronic Arts  

 The above screenshot shows a combat encounter in the game. The characters 

with yellow circles are the player characters and characters with red circles under them 

are enemies. In the bottom part of the screenshot we can see a list of skills the currently 

selected character can use. Each of the player characters has 6 different attributes that 

influence e.g., damage with specific weapons, hit points or defense. Every time a 

character levels up he can increase some of his attributes and gains a new skill. The 

level up bonuses cannot be easily changed. In addition, each character can equip 

different items, e.g., armor, weapons or magic rings. These can be changed whenever 

the player desires. Also, while the player cannot change his main player character, the 

player also controls 3 additional companion characters. The player can select these 

characters from a pool of up to 9 possible companions he can meet during the game. 

 As Dragon Age: Origins is a successful commercial RPG game with many 

combat encounters, we will use it in thesis repeatedly as an example when we wish to 

explain some concept of RPG games. While many RPG games exist, we believe that 

Dragon Age: Origins is complex enough to serve as a model RPG for the purpose of 

this thesis. 
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1.2 Problem overview 

In this section we will define the problem of procedural generation of encounters 

in RPGs and examine the complexity of the problem. 

1.2.1 Definition 

First, we must formally define several terms commonly used in RPG games 

which we will use throughout this thesis (defined terms and their labels are in italics). 

• An enemy is a single opponent the player can fight. For our purposes 

we will define it as a tuple of all the attributes that define the enemy in 

the game world, e.g., its size, durability, damage, skills, or AI. These 

attributes are game specific. We will label the set of all enemies in the 

game E. 

• An enemy group is a multiset formed of elements from E and represents 

a group of enemies the player might meet. 

• A player character is a single actor the player controls in the game 

world. We will define it in the same generic way as an enemy, i.e., as a 

tuple of all attributes that define the player character. 

• A party is a set of all player characters the player currently controls.  

• Combat area represents the part of the game world where the combat 

takes place. In some games this could be a grid, in some games this 

could be a more complex 3D map. We will define it as a set of all 

possible positions where a party member or an enemy can stand. We 

will label this set L. 

• Combat encounter represents a situation where a group of player 

characters must defeat a group of enemies in the game, we label the set 

of all encounters C. We call them combat encounters because games 

might have different types of encounter, e.g., puzzle encounters where 

the player is expected to solve a puzzle. However, as no other kinds of 

encounters are relevant to the thesis, from now on we will refer to them 

as encounters for the sake of brevity. An encounter is defined as a tuple 

of some of these elements: 
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o It must always contain the enemy group the player will fight in 

this encounter. We will label this enemy group Ec. 

o It must contain the party that the player will control in the 

encounter. We will label it P. 

o In some games, enemy placement is important. For these, the 

encounter must also contain an injective mapping se, assigning 

each element from Ec a starting location l from L. 

o Player starting positions can also be defined in the same way, as 

an injective mapping sp from P to L. It should also not map any 

element to locations already used by the mapping se. 

o And there can be many more game specific elements. For 

example, in Dragon Age 2 [4], many encounters are divided into 

several waves, where a next wave appears only when the current 

one is almost defeated. Therefore, the encounter definition 

would contain multiple groups of enemies that would appear 

throughout the encounter. As these elements are specific to each 

game, we consider them to be out of scope for this thesis. 

Furthermore, for every encounter we must be able to measure its quality, which 

would take into the account both the player’s engagement in the encounter as well as 

the designer’s intention. Therefore, we need to define a function f:C→R that will 

assign each encounter a score, where 0 means that the encounter is perfect and the 

higher the number, the worse the encounter. We will call this function encounter 

evaluation function. 

With these definitions, we can now define procedural generation of combat 

encounters as the following optimization problem: 

Given a set of all possible combat encounters C for a given party P and 

combat area L, and an encounter evaluation function f, find cmin from C such that for 

all c in C f(cmin) ≤ f(c). 

We will refer to this problem as encounter generation problem from now on. 
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1.2.2 Complexity 

The main difficulty lies in limiting C and defining f. This will always be greatly 

dependent on the specific game, which the algorithm should be designed for. 

First, let us discuss the set of all possible combat encounters. In the simplest case 

the encounter is a set of enemies. The enemies do not have to be unique, so the number 

of possible encounters with k enemies is |E|k. We can expect that there will be some 

maximum number of enemies that can be spawned called n. Therefore, the number of 

possible will be ∑ |𝐸|𝑘𝑛
𝑘=1 =  

|𝐸|(|𝐸|𝑛−1)

|𝐸|−1
. This can be reasonable in games with a 

limited number of different enemies and/or smaller number of enemies in combat. 

However, in most commercial games there will be dozens of different enemy types, 

each with several possible variations. They also tend to feature larger battles from time 

to time. To get an idea how large these numbers can be in commercial games, we will 

examine encounters in Dragon Age: Origins[3]. 

The Dragon Age wiki2 lists 140 creatures that appear in the game. Actual number 

of enemies in the game is harder to determine, as some of these monsters are boss 

monsters that appear only once per game and probably would not be included in the 

normal encounter generation. On the other hand, most of these creatures exist in 3 

different strength levels (Normal, Elite, Boss). And they also have a numeric level 

between 1-20 which further define their strength. Taking all these factors into account, 

we can safely assume that there are at least 100 different enemies that can appear in 

encounters.  

As for the number enemies that can appear in the one combat, we will look at 

one specific combat, the boss fight near the end of the game (see below). In this 

encounter the player faces 14 enemies at once. So even with very conservative 

estimates of |E|=100 and n=10, we get approximately 1020 different encounters. 

 

2 https://dragonage.fandom.com/wiki/Category:Dragon_Age:_Origins_creatures 

https://dragonage.fandom.com/wiki/Category:Dragon_Age:_Origins_creatures
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Figure 2: Boss encounter in Dragon Age: Origins 

Source: Custom screenshot from the game made by Electronic Arts 

 However, C can be even larger if position is relevant. It can be easily seen that 

the number of possible encounters would increase to ∑ |𝐸|𝑘 ∗ (|𝐿|
𝑘

)𝑛
𝑘=1  Even if we 

assume a very small combat area, a 5x5 grid, it still has 25 possible starting 

locations, which results in approximately 1026  encounters. And usually L will be 

much larger than that.  

From this we can see that especially if locations are important, any algorithm 

solving the encounter generation problem will need to heavily prune the search space 

of possible combat encounters, as enumerating them all would not be possible in real 

time. 

While the space of all encounters is huge yet well defined, encounter evaluation 

function cannot be easily defined, as many of the factors it must consider are 

subjective, e.g., measuring player skill. The following is a non-exhaustive list of 

factors the algorithm must consider when evaluating an encounter.  

• Party configuration – which heroes the player controls and how powerful 

they are. 

• Player skill – how skilled is the player at playing this game. 
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• Desired encounter difficulty – how difficult should the combat encounter 

be. Ideally this should consider both the designer’s directive and the 

player’s previous encounters. For example, if the last encounter was 

supposed to be easy and was instead hard, this encounter’s target 

difficulty might be lower than usual, which should keep the player from 

being frustrated. 

• Fun factor – we need to keep the player entertained and some fights are 

just not as fun as others. 

• Designer constraints – the designer might choose to put some artificial 

constraints to make the experience better. For example, let us say that the 

encounter is a fight against an enemy commander. The designer would 

probably want the encounter to feature as many enemies as possible, to 

make the player feel like he is actually fighting a commander of an army. 

Therefore, the evaluation function might favor encounters with more 

enemies. 

Most of these factors cannot be objectively converted into a number, e.g., there 

is no single number that could describe the player’s skill in an objective way. 

Furthermore, all these factors are likely to change as the game progresses, making it 

more difficult to precompute the possible values for the evaluation function (a favorite 

PCG trick used for algorithms that cannot be used during play time of the game). 

Note that in this definition we concern ourselves only with generating a single 

encounter. However, the ideal algorithm for generating encounters would also 

consider the encounters generated in the past, because the encounters should be 

different from one another, both in terms of enemies generated and in terms of the 

tactics necessary to defeat those enemies. In this thesis we assume that this will be 

done by removing encounters deemed to be too similar from C in some preprocessing 

step before solving the optimization problem. However, it is possible that future 

research will have to extend this definition by letting the evaluation function also 

consider the encounters generated in the past. 

1.3 Generating combat encounters in RPG games 

The player has a great deal of freedom when choosing how to develop and equip 

her player characters and possibly which player characters to bring to an encounter. 
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And as most of these things can be changed between encounters, should the player 

decide to do so, it would affect all future encounters, as suddenly the party 

configuration would be completely different. 

There is also a great variance in the player’s skill. The player’s party might have 

some skills which work great together. However, if the player never uses them like 

that, they cease to be powerful. 

Some RPG games also employ some specific weaknesses and strengths of some 

monsters. For example, a fire golem might be resistant to fire and slashing attacks and 

weak to ice and bludgeoning attacks. So, while this monster might not be difficult for 

an average party, it might be almost undefeatable for a party that uses only fire and 

slashing attacks. 

Positioning is also important in many of these games, mainly because ranged 

characters tend to have high attack while being easy to defeat if an opponent gets close. 

In such a game, three enemy archers and a melee fighter might normally be normally 

an easy encounter, but might be much more difficult if the archers are standing on top 

of a wall and the only way up the wall is blocked by the fighter. 

 RPG games also tend to be focused on the story and the player’s immersion in 

the game world. Any algorithm for generating monsters must take that into account. 

For example, if in the game world goblins and orcs are enemies, they should not appear 

together and fight side by side. 

 And these are just some of the things any procedural combat generator must 

consider while generating enemies for the player in RPGs. Huge variability of player 

strength, large number of possible monsters and complex combat rules make it quite 

difficult to accurately measure the combat’s difficulty, while the setting and the story 

might put constraints on what monsters can be generated.  

 However, as this is the first work dealing with this issue, we do not aim to 

create an algorithm that would excel in all these areas. Instead, we will focus only on 

a small part of the problem and we will try to make an algorithm that could eventually 

be extended to take all these features into account. 
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2 Related works 

While procedural content generation in games is a well-studied field, it seems that 

existing research does not focus on generating encounters. The works we found about 

content generation in RPGs focus either on generating the dungeon levels without 

focus on enemies[5, 6], or they focus on generating quests in the game[7, 8]. But we 

found no research that would focus on generating encounters in RPGs.  

We tried looking at other genres for inspiration, yet we were unable to find any 

relevant research. It seems that even in genres such as platformers[9] or roguelikes[10] 

the main focus is on generating the level, not on generating monsters. 

2.1 Dynamic difficulty  

Even though we found no existing research about generating encounters, we were 

able to find several algorithms that try to adjust the difficulty of a game to the player’s 

ability. And even though there are many criteria to evaluating an encounter’s quality, 

it needs to be appropriately difficult. Therefore, techniques for runtime adjustment of 

difficulty might be relevant for us. 

Xue et al.[11] describe the results of adding a dynamic difficulty to a match-three 

game. While match-three games are quite different from RPG games, two points from 

the paper could be relevant to us. First, adding dynamic difficulty raised engagement 

significantly. And as engagement is one of our main priorities, we should focus on 

providing appropriate difficulty. Second, the algorithm did not have a fixed target 

difficulty for each level. Instead they used a large database of player behavior without 

dynamic difficulty adjustments to compute how difficult should the current level be to 

maximize engagement. While we cannot use the exact algorithm proposed in the paper, 

as engagement in RPG games is more complex than in match-three games, it is 

important to note that our algorithm should probably be able to match any difficulty, 

so it can be used with a difficulty curve, whether the curve is provided by some other 

algorithm or a designer. 

Missura and Gärtner[12] introduced an algorithm that could split the players into 

groups based on their playstyle and assign players to these groups. While this 

algorithm is probably not relevant for this thesis, as it requires a lot of data about player 

behavior that is unavailable to us, we should keep in mind that the possibility of 
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assigning a playstyle to the player exists. It could allow us to make use of offline 

preprocessing for each of these playstyles separately. And during the game we could 

use the correct offline data based on the player’s group. 

2.2 Algorithm evaluation 

The algorithm we design in this thesis will have to be evaluated in some way. As 

the goal of the algorithm will be generating encounters suitably difficult for the 

players, any evaluation must involve real people playing the encounters generated by 

the algorithm. And we will need to find some way of evaluating their experiences. We 

have chosen to measure the player’s feeling of flow[13] as the measure of quality for 

the algorithm. 

In psychology, flow is a state where the person is fully concentrating on some 

task. It is also known as being “in the zone”. A person in a flow state loses track of 

time and she focuses completely on the activity she is doing. To enter the flow state, 

the person must feel competent at the task and the task must be appropriately difficult 

for her. 

And creating appropriately difficult challenges is the goal of this thesis. Therefore, 

if the player is in the flow, we can assume that the algorithm is correctly adjusting the 

difficulty. So, we need to find a way to determine how in the flow the player is feeling. 

We found a survey called Flow Short Scale[14, 15]. This survey measures the flow on 

a 7-point scale and a person’s perceived difficulty of the task related to his other tasks 

on a 9-point scale. We will use this survey to evaluate player’s feeling of flow, which 

will allow us to evaluate the algorithm.  
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3 Analysis 

As there are no existing solutions to this problem, we will have to create a new 

algorithm from scratch. Before doing that, we will need to properly define our 

priorities and limit the scope of the broad problem in order to create an algorithm that 

could serve as a starting point for further research. 

3.1 Priorities 

From our analysis, it seems that the algorithm must be able to fulfill these 

conditions to be usable in commercial RPG games: 

1. The algorithm should work online and adjust itself to player’s party 

configuration and their skill level. 

• This should help us improve engagement. However, the algorithm can 

depend on precomputed data. This is a common practice in game 

development. For example, it is common to precompute navigation 

meshes which specify all the areas where the player can walk. At 

runtime, the pathfinding algorithm can work with these navigation 

meshes instead of working with the complex 3D world geometry. 

2. The designer should be able to influence the encounters generated by the 

algorithm as much as possible. 

• This is necessary if the algorithm should ever be used in story heavy 

games. That is because in these games, there might be constraints on 

which enemies can appear when and which enemies can appear 

together. Control over the algorithm is also necessary in commercial 

games, were the designers need to be able to tweak the algorithm if it 

outputs bad results in some specific cases. 

3. The algorithm should be able to output encounters in whatever difficulty the 

designer desires. 

4. The algorithm should be generic enough to allow it to be used in many 

commercial RPG games. 

• However, we expect that the algorithm will have to be heavily modified 

to fit any specific game. Generating good encounters is likely to be tied 

heavily to the mechanics of the specific game. 
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5. The combat encounters generated should try to vary the enemies generated as 

much as possible.  

• RPG games tend to have many different enemies for the player to fight, 

so the algorithm should try to vary the enemies as much as the designer 

allows. Also, usually different groups of enemies require different 

tactics to defeat. The algorithm should generate combat encounters in 

such a way that would force the player to switch tactics often. We will 

call both conditions together encounter variance. 

3.2 Scope 

As we are creating a completely new algorithm from scratch, it seems likely that 

the algorithm itself will not yet be the perfect algorithm for this problem. Instead it 

will likely be a starting point. Because of that we will try to put some limitations in 

place. These should help us keep the algorithm in the scope of a master thesis, yet it 

should also be easy to overcome them with future research. 

Ideally the algorithm should be implemented and tested in multiple games with 

different mechanics to verify whether it can truly be used universally in RPG games. 

Unfortunately, that would be well beyond the scope of this thesis. Instead we will 

select one specific game which we will use to verify whether the algorithm is at all 

promising. We will also try to limit the complexity of the algorithm as much as 

possible. If we design a simple algorithm and our experiment shows it does not work 

at all, we will know that we should select a different approach in the future. If the 

algorithm were too complex and it did not work, we would not know whether we 

should select a different approach or just tweak it to get better results, e.g., by selecting 

better heuristics. 

Related to the first point, from our priorities it seems clear that there are many 

priorities for the algorithm, which we listed in the previous section. However, 

designing an algorithm that would excel in all these areas would be quite difficult in 

the scope of single thesis. Therefore, our focus will be on creating and evaluating an 

algorithm that can create encounters of a specific difficulty. Yet the algorithm should 

also have the potential to be extended in order to overcome this limitation.  
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4 Testing environment 

From the analysis, it seems clear that any encounter generation algorithm will 

have to be tailored to the specific game it will be implemented in. Therefore, it is 

imperative to choose the game in which we will evaluate the algorithm well. In the 

first section of this chapter we will explain why we chose to create our own game in 

which to evaluate the algorithm instead of implementing the algorithm in an existing 

game. In the second section we will list the basic requirements for the game to be at 

least similar in its basic principles to commercial games. And in the last section we 

will explain the game and its mechanics in detail. 

4.1 Existing game vs. custom game 

Early on we had to choose whether we should try implementing this algorithm 

in one of the existing commercial games or if we should create a new game from 

scratch. There are many commercial RPG games and some of which provide tools to 

extend them, e.g., Dragon Age: Origins[3] or Neverwinter Nights 2[16]. We will now 

list the factors we considered when making this decision and explain why we chose to 

create our own game in the end. 

• When developers release a toolset to their game, the reason behind it is 

usually to allow players to create custom levels, modules, and other 

minor modifications. Therefore, we could not be sure whether these 

toolsets would give us sufficient control over the game and its world to 

implement the algorithm. Such uncertainty does not exist with a custom 

game. 

• Commercial RPGs take at least tens of hours to finish and the game 

design reflects that. They tend to have many rules and features and it 

takes a long time for the player to learn all of them. Therefore, it would 

be difficult to craft a game experience that could be short enough that the 

test subjects could finish it some reasonable timeframe and still learn it 

well enough that they could get into flow. One of the main requirements 

for entering the flow state is that the subject must understand what he is 

doing and feel competent in the area. And an unexperienced player 
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would not feel competent at playing e.g. Dragon Age: Origins after 30 

minutes of playing. 

• Both Dragon Age: Origins and Neverwinter Nights were popular in the 

past. Therefore, it would be quite likely that some players would be much 

better at the game than others. If we also consider that we will most likely 

have very few test subjects, it would make it much harder to do any 

experiment, as our experiment groups would have to be fragmented 

further based on their experience with the game. 

• RPGs tend to have a lot of skills, items, and other ways to customize their 

character. If we implemented our algorithm in a commercial game and it 

would work, it would be great, as we could show that the basic idea of 

the algorithm is solid and can be extended to complex games. However, 

if it did not work, there would be no way to verify whether the problem 

was in the idea behind the algorithm or in our implementation, as we 

likely do not understand the complex mechanics of these games well 

enough. 

• On a related note, as we mentioned in the previous chapter our focus is 

on simplicity. A custom game can be much simpler than a commercial 

project. 

• Creating a custom game would be a lot more work. Therefore, if we 

created a custom game, we would have to spend less time on fine tuning 

the algorithm. 

• As we have little experience with RPG game design, it was quite likely 

that the custom game might have some design issues that might prevent 

players from enjoying the game. Or they might not be able to understand 

it. 

• Our inexperience with RPG design made the prospect of creating a 

custom game appealing, as we could learn a lot of new skills while doing 

that. 

• Extending a commercial game would remove the option of sending the 

game to a wide audience to test, as we do not have the license to freely 

distribute these games. Which means that the people who would want to 

try out our implementation of the algorithm themselves would have to 
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purchase the game, which would further limit the number of people we 

could reach. 

After careful consideration of all these factors, we decided to create a custom 

game tailored to this thesis. Mainly because it would be easier to design an experiment 

and because it would be easier to keep algorithm in the scope of this thesis. We decided 

to name the game we created Thesis Quest. 

4.2 Thesis Quest requirements 

The game needs to be a simplification of RPG games, yet it must not be so 

oversimplified as to make the algorithm irrelevant to commercial games. So, we 

defined this small set of requirements which should keep the game from getting too 

simple. To show that these requirements are present in commercial games, we will 

show how the game Dragon Age: Origins[3], or DAO for short, fulfills them: 

• The player must control several characters at once. These characters must 

be in some ways different from one another. 

o In DAO, the player controls up to 4 party members. Each party 

member has a profession, which is either a fighter, a mage, or a 

thief. The player is likely to develop these characters further to 

fulfill some specific roles, like healing, damaging enemies, 

preventing enemies from fighting etc.  

• The party should grow in power over the course of the game. 

o As mentioned in the introduction chapter, on every level up the 

player can increase character’s attributes and they can also learn 

new skills. The player is also likely to frequently find better 

equipment. 

• The player should be able to make choices that would change how the 

party grows in power. Some of these choices should be better than others.  

o There are many choices the player must make in DAO. As an 

example, the characters can learn only a limited number of skills. 

Some of these skills make encounters much easier, e.g. a sleep 

spell can put many enemies to sleep, which can greatly simplify 

large encounters, as the player can defeat the sleeping enemies 
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one by one. Players who learn this spell might find these large 

encounters to be much easier. 

• There should be a variety of enemies in the game. 

o As mentioned in the introduction chapter, there are 141 different 

creatures listed on the game wiki. 

• The enemies should differ both in their strength and in their approach to 

combat. 

o Each enemy in DAO has a rank and level described in the 

introduction chapter which greatly affect the strength of the 

enemy. Enemies also have different AI scripts and have different 

skills. For example, enemy dogs can pin characters to the ground 

and damage them over time, enemy mages disable player 

characters and archers stand in the back and deal heavy damage 

to their targets. 

• The player should be able to make tactical decisions within an encounter. 

o The player must make many decisions. For example, she chooses 

which enemies to attack first, which to put to sleep or stun in 

some other ways, which skills to use against which enemies, how 

to position her heroes etc. 

• There should be some resource that can be depleted in an encounter. This 

resource can take many forms – in some games the player can gather 

items he can use only once to give himself a temporary boon, other games 

have spells and skills usable once a day and yet others have long term 

injuries from combat which cannot be easily healed. 

o First, DAO has single use items like healing potions or mana 

potions. Also, whenever a character falls in battle, he is 

resurrected after the battle with a random injury which gives a 

long-term disadvantage to the character. For example, a cracked 

skull reduces the character’s cunning attribute. These injuries can 

be healed with single use items or by resting, which cannot be 

done inside a dungeon. 

We believe that a game fulfilling all these requirements would be a reasonable 

simplification of RPG games. We also believe that the game described in the next 
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section fits these criteria. Note that the goal of this game is to allow us to run 

experiments with the encounter generator. Therefore, we did not focus too much on 

game design, as that would be complex enough to warrant its own thesis. Instead we 

created a short game which fulfills these requirements, and which can be completed in 

a reasonable time by inexperienced players. 

4.3 Thesis Quest description 

Thesis Quest is a rogue like RPG in which the player controls a group of three 

heroes. The player must guide them through several floors (levels) of a dungeon. Each 

dungeon floor is comprised of several rooms. And apart from the first room in every 

floor, all rooms contain an encounter. The encounter is generated only when the player 

opens a room, so the encounter should always match the player’s ability. When the 

player opens a door leading to an unexplored room, her heroes enter it and they cannot 

leave the room until the encounter is resolved.  

The game is real-time, but the player can pause the game whenever she wishes. 

While the game is paused, she can still issue commands to her heroes. 

 

Figure 3: Screenshot from Thesis Quest 

4.3.1 Heroes 

The player controls three heroes. Each of these heroes has three abilities that will 

be described below. These abilities differ in who they can target. One ability can target 
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only the hero casting it, one can target only friendly heroes and one can target only 

enemies. Whenever the hero uses one of his abilities, all his abilities are unusable for 

some time. This should force the player to think tactically about which abilities she 

will use and when. 

These are the three heroes the player controls and their abilities: 

• Knight – The knight has high health and moderate damage. His main 

purpose is to be the target of attacks of other enemies. This way he can 

protect other heroes from harm. His skills are: 

o Enemy skill: Power Strike. The knight attacks with a swift blow 

that deals double damage to an enemy and forces that enemy to 

attack the knight for a short time. The enemy will also be knocked 

back and stunned for a second. 

o Personal skill: Taunt. This skill will force all enemies to attack 

the knight. The skill has an exceptionally long cooldown. 

o Friendly skill: To the Rescue. The knight rushes to an ally and 

forces all nearby enemies to attack him. 

• Ranger – The ranger has extremely low health and high damage. His 

main purpose is to defeat the enemies from a distance. However, his low 

health makes him vulnerable should he be attacked. He has the following 

skills: 

o Enemy skill: Sniper Shot. The ranger fires an arrow that does 

quadruple damage, dispatching many enemies in one hit.  

o Personal skill: Rapid Stance. This skill doubles the ranger’s rate 

of fire, although it slightly reduces his damage per shot. Overall, 

his damage per second is increased by 50%. 

o Friendly skill: Poison Cloud. A poison cloud appears around an 

ally, poisoning nearby enemies, halving their attack and 

movement speed. 

• Cleric – The cleric has moderate health and low damage. His main role 

is to keep his allies alive. 

o Enemy skill: Sleep. The target of this spell is put to sleep and is 

unable to act for a while. The target will wake up if he takes 

damage. 
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o Personal skill: Healing Aura. The cleric starts healing nearby 

allies and himself for the duration of this spell. 

o Friendly skill: Heal Other. The targeted hero is completely 

healed. 

4.3.2 Health 

As is common in RPG games, every enemy and hero has hit points (HP), a 

number that specifies how much damage he can survive. When a hero takes damage 

from his enemies, his hit points (HP) decrease. However, unlike most RPGs, when a 

hero’s HP reach zero, he does not die. Instead, the damage taken from then on will 

decrease the hero’s maximum HP limit. Only when his maximum HP reach 0 will he 

die. This applies only to heroes, when an enemy’s HP reaches 0, he dies. 

Heroes are automatically revived after every encounter with low maximum HP. 

There is no way to revive them during an encounter. Some abilities can allow heroes 

to heal each other. However, these abilities cannot heal lost maximum HP, they can 

only restore lost HP up to the current maximum HP. 

The heroes can restore lost maximum HP in two ways.  First, throughout the 

dungeon the player can find potions that can restore lost maximum HP. Second, 

maximum HP are completely restored when the player finishes a level. 

When the player’s entire party dies, the game is over. The player can then choose 

to try again. If she does so, she will start at the beginning of the current floor. 

4.3.3 Enemies 

To allow the players to make meaningful and tactical decisions about which 

enemies to target first, there needs to be a meaningful difference between them, both 

in terms of their power and in their tactics. While designing this system, we were 

inspired by the tabletop roleplaying game Dungeons & Dragons[17]. In the fourth 

edition of this game, the enemies are defined by two criteria. First, each enemy has a 

rank which defines how powerful the monster is. Second, each enemy has a role that 

defines what kind of skills the monster has, its attributes and how it should behave. 

While we cannot directly use these roles and ranks, mainly because our game is much 

simpler, we were inspired by this and chose the following ranks and roles for our 

enemies: 
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• Ranks: 

o Minion – a weak enemy. He can be defeated in one hit and deals 

low damage. Minions should appear in large numbers and always 

together with other monsters. 

o Regular – an average enemy. He has no skills and should be of 

little threat on his own, though they can be dangerous in large 

numbers. 

o Elite – should be twice as strong as regular enemies. He will start 

using skills when his health drops under 50%. 

o Boss – should be twice as strong as elites. He uses skills 

whenever possible. Even a single boss can be a challenge for a 

beginner player with a party without upgrades. 

• Roles – here we will list the different roles in the game and individual 

monsters that have these roles. Unless otherwise stated, the monsters 

exist in three ranks – regular, elite, boss: 

o Minion: Minions have extremely low health and damage.  They 

can only have the minion rank. They attack closest enemies and 

they have no skills. 

▪ Goblin (minion), Imp (minion) 

o Brute – brutes have high health and low damage. They wield only 

melee weapons and attack always the closest enemies. Their skill 

is to become enraged, increasing their attack and movement 

speed. 

▪ Skeleton (regular, elite), Minotaur, Orc Fighter 

o Lurker – lurkers have low health but extremely high damage. 

They attack in melee and try to target and kill the ranger as fast 

as possible. If the ranger is dead, they target the cleric. Their skill 

is to attack their target several times in quick succession. Boss 

lurker is capable of instantly killing weaker characters with this 

attack. Boss lurker is also capable of teleporting directly to his 

target. 

▪ Orc Thief 

o Sniper – snipers have moderate health and moderate damage. 

They attack from a distance. Regular snipers choose their targets 
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randomly with every attack. Elite and boss rangers also choose 

targets randomly, but after the first attack they will lock onto that 

target and shoot at him until he dies. Their skill is to increase their 

attack speed, the same as ranger’s Rapid Stance. 

▪ Evil Ranger, Skeleton Mage 

o Leader – leaders only exist in elite and boss variants. There can 

be only one of them in any single encounter. Leaders have 

moderate health and low damage. They will always go after the 

ranger first, cleric second and knight third. But most importantly, 

if the ranger is alive, the leader will order all other creatures in 

combat to attack the ranger. Leaders also have a skill they use 

when the ranger is dead or if the leader is the last enemy alive. 

Leaders can activate a healing aura just like player’s cleric, 

continuously healing himself and nearby allies. 

▪ Evil Cleric (elite, boss) 

4.3.4 Combat rewards 

In most rooms the player will find not only monsters, but also treasure chests. 

The treasure chests are locked during an encounter, but the player can open them once 

the encounter is over. Each chest can contain one of the following items that give 

bonuses to the hero who picks it up: 

• Health potion – the potion restores 50% of maximum HP lost to the 

character who picks it up. 

• Damage upgrade – a permanent upgrade to hero’s damage output. The 

upgrade will work differently based on the hero who picks it up. Ranger 

will have his damage increased by a large amount, knight by a moderate 

amount and cleric by a low amount. 

• Maximum HP upgraded – this upgrade will permanently increase the 

hero’s maximum HP limit. As with the damage upgrade, the actual bonus 

will depend on the hero who picks it up. The knight will get a large 

increase to his health, cleric will get a moderate increase and ranger will 

get a minor increase. 
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The bonus will always be the same whenever the same character picks the item 

up. This is a change from the original design. We first wanted the items to multiply 

the relevant attribute by 1.2. However, this worked poorly for two reasons. First, the 

initial powerups felt almost worthless. Second, if the player had a single character pick 

up every single powerup, soon the game lost all its tactical depth, as that character 

could easily defeat almost all enemies in one or two hits and was almost invincible 

himself. Therefore, we opted for the option of constant attribute increase. These make 

initial powerups feel powerful without ruining the later parts of the game. 

 To summarize, we will show how this game fulfills the requirements from the 

previous section. 

• The player must control several characters at once. These characters must 

be in some ways different from one another. 

o The player controls three characters, each with different skills, 

attributes, and roles in combat. 

• The party should grow in power over the course of the game. 

o The attribute upgrades the player finds in chests increase stats, 

which increase characters power significantly. For example, if 

the ranger picks up all upgrades, by the end of the game he can 

kill in one shot all normal enemies, many of them even if the 

Rapid Stance is active. And he can kill even boss level enemies 

with the Sniper Shot. 

• The player should be able to make choices that would change how the 

party grows in power. Some of these choices would be better than others.  

o The player chooses how to distribute the stats. Some of these 

options are better than others. For example, giving damage 

upgrades to the ranger is always better than giving them to the 

cleric. 

• There should be a variety of enemies in the game. 

o There are 9 enemies in the game, 21 if we count all elite and boss 

variants of these enemies. 

• The enemies should differ both in their strength and in their approach to 

combat. 
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o Each combat role defines a different approach to combat. The 

monsters exist in regular, elite, and boss variants to create the 

difference in strength. 

• The player should be able to make tactical decisions within an encounter. 

o The player can decide on the order in which she will defeat her 

enemies. She must also carefully think about which skills to use 

when. 

• There should be some resource that can be depleted in an encounter.  

o This resource are the maximum hit points which can be reduced 

during an encounter.  

  



 
26 

5 Algorithm description 

In this chapter we will introduce the algorithm we designed. First, we will 

explain the high-level concept of the algorithm. In the second section we will split 

the problem into several smaller problems. We will explain what each subproblem is 

about and how we decided to solve in Thesis Quest. In the last section we will then 

put all these components together to present the algorithm in detail. 

5.1 Main idea 

The main goal of this algorithm is to create encounters of an appropriate 

difficulty. It uses a precomputed matrix in which the results of many encounters are 

stored. This algorithm can then estimate the difficulty of an encounter by searching the 

matrix for the encounters which are the most similar to the one being evaluated. And 

once we can evaluate a difficulty, it is easy to generate an encounter. We can start with 

a random encounter and then use the hill climbing algorithm to get to the correct 

difficulty. We evaluate the difficulty of the current encounter, remove or add an 

enemy, and repeat this process until the difficulty is satisfactory. 

Once an encounter is over, we can update the matrix, as we just got another 

encounter result. Also, we know exactly how off our original estimate for the difficulty 

was. We can now traverse the entire matrix, find encounters similar to the one which 

just ended and adjust their estimated difficulty appropriately. Over the course of the 

game the matrix should be changing to fit the abilities of the player playing the game. 

5.2 Subproblems 

In this section we will describe several subproblems the algorithm must solve. 

These subproblems are most likely game dependent. Therefore, when adapting the 

algorithm to other games, new solutions will probably have to be found for each of 

these subproblems.  

For Thesis Quest we solved these subproblems with the simplest solutions 

available, because as we mentioned in the analysis, simplicity is one of our goals when 

designing this algorithm. 
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5.2.1 Measuring difficulty 

Our algorithm requires a way to measure the difficulty of an encounter that just 

finished. Ideally, the meaning of this number should remain the same throughout the 

game. E.g., if 2 means that an encounter was of a medium difficulty, it should mean 

that both at the start and at the end of the game. 

In Thesis Quest, we decided to measure difficulty by adding together the 

percentage of the maximum HP the heroes lost during the fight. This means that when 

the combat starts, we will log the current maximum HP of every character. And once 

the combat ends, we will check how many percent of the starting value each character 

lost, and we will add it together. This will give us a number between 0 and 3, where 0 

means that no maximum HP was lost and 3 means that everyone in the party was killed. 

This is indeed a measure of difficulty and has two advantages. First, the designer 

can now set the goal for the algorithm in a very understandable manner. Second, it is 

quite easy to check how close was the algorithm to the target difficulty when 

evaluating the algorithm. 

However, this approach is also not without its flaws. Mainly we cannot 

differentiate between difficulties of extremely easy or difficult combat encounters. 

Therefore, the designer cannot ask for encounters in which no maximum HP would be 

lost, as the algorithm could quite conceivably generate an encounter with a single 

minion. Similarly, on the difficult side, if the party is killed, there is no difference 

between an encounter that was extremely close and the player might win if she tries 

hard enough, and an encounter where the player did not stand a chance. 

5.2.2 Difficulty matrix 

The difficulty matrix is used to store information about which party configurations 

are strong against which enemy groups. In this matrix, the columns are indexed by 

party configurations and the rows are indexed by enemy groups. And for matrix M, 

enemy group e and party configuration p, M [e, p] should contain the estimated 

difficulty of this encounter. The matrix can be sparse, but it should be as populated as 

possible. It should be initialized by values that will estimate a behavior of a beginner 

player as much as possible. During runtime it will be often updated to match the 

player’s actual performance.  
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While it is clear how this matrix should work, it is not evident how to precompute 

the initial matrix. In Thesis Quest, we created a combat simulator to generate it. The 

simulator went through many different combinations of party configurations and 

enemy groups and spawned them both in the game. It let them fight, stored the results 

and prepared the next fight. This process is described below in detail. After several 

days, the matrix was ready to be used by the algorithm. 

The simulator generated the party to fight and the enemy group independently. 

The combat was randomly generated with a given number of monsters to spawn. First 

4000 times it would spawn 2 random monsters, next 4000 times 4 monsters etc. In 

each encounter there was a 50% probability a that a single leader would be in the 

enemy group, otherwise no leader would be present. The rest of the monsters were 

added randomly to the enemy group until the limit was reached. 

We specified several ways how the player might distribute powerups as he picks 

them up, e.g., give all powerups to the knight, distribute them evenly, randomly etc. 

We then used these powerup distribution strategies to create party configurations the 

player would have after picking up some specific number of power ups. These are the 

parties that were fighting against the enemy groups.  

The AI for heroes used in the simulator is extremely simple. When it has nothing 

to do it will either with 66% probability attack the nearest enemy. If it does not decide 

to attack, it will pick a random skill and use it at a random target. If the skills are not 

usable yet, it will always attack.  

We originally wanted to use a more sophisticated AI. This AI made tactical 

decisions about which enemies to target and when to use skills. However, this AI 

created a matrix that was not representative of how an average or a beginner player 

would play the game. It could identify the most dangerous enemies and quickly 

eliminate them, marking extremely dangerous encounters with difficulty 0. 

5.2.3 Enemy group difference function 

This function is used to estimate similarity of encounters, which we need when 

updating the matrix and determining the difficulty of encounters. It should accept two 

enemy groups as parameters and return either 0 if those two enemy groups are the 

same, or a positive number describing how different the enemy groups are from each 
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other. Where the lower the number, the more similar the enemy groups are. The 

function should describe the difference as much as possible for the game. As an 

example, if the game has enemies with elemental strengths and weaknesses, two 

enemy groups of the same approximate difficulty but with monsters of different 

elements should not be considered similar. Similarly, if two enemy groups require 

vastly different tactical approach to defeat, they should not be considered similar. In 

short, the lower the result of the function, the higher the likelihood that the enemy 

groups would be similarly difficult for any possible party in the game.  

In Thesis Quest, we decided not to care about specific enemies in an enemy group. 

While there are, e.g., several different brutes with slightly different attributes, we 

decided that as far as the difficulty is concerned, we will consider all monsters of the 

same rank and role to be equivalent. 

For each monster we determined a single number, a weight, describing how 

dangerous the specific monster is. With these we could calculate the enemy group 

rating by adding together the weights of every enemy in the encounter. And when 

calculating the difference between two enemy groups, we returned the difference 

between their ratings. 

Originally, we wanted to create a better approximation and tried to create a linear 

model on the initial matrix that would predict the results of the encounter based on 

which enemies were in it. Unfortunately, this gave extremely incorrect results. 

However, we still used the coefficients suggested in the linear model as weights for 

individual enemies. While these coefficients did not manage to accurately predict the 

difficulty of an encounter, they did approximately capture how dangerous the monsters 

are in relation to each other. This made them suitable as weights. 

5.2.4 Party difference function 

Like the enemy group difference function, this function is used to determine 

similarity of two encounters. For any two party configurations, this function should 

return how different the two parties are. Like with the encounter difference function, 

the lower the returned positive value, the higher the similarity. And zero means the 

party configurations are the same. And just like with the encounters, the lower the 

returned value, the higher the likelihood that the two parties will perform just as well 

against any possible encounter in the game. 
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In Thesis Quest we calculate the strength of every party member by multiplying 

his damage by his current maximum HP. And we determine the strength of a party by 

adding together the strength values of every party member. Difference between parties 

is the difference between their strengths. 

This approach is simple and properly captures party’s progress, but it does not 

perfectly capture the complexity of the party. For example, ranger’s low health means 

that his damage upgrades do not change party strength as much as upgrades for the 

knight. However, we deemed this approach to be good enough. 

5.2.5 Enemy group adjustment function 

This function is used to adjust an encounter during the hill climbing algorithm. 

It takes two arguments, an enemy group to be modified, and a number specifying how 

much should the function try to shift the difficulty. If the number is positive, the 

encounter is too easy and should be made more difficult. If it is negative, it should 

make the encounter easier. The function should then return the modified encounter. 

In Thesis Quest, this is the function that is responsible for the variance in tactics 

and monsters. At the start of each combat it must be configured by doing the following: 

• First the algorithm must determine which enemies can be spawned in this 

encounter. The designer must provide the algorithm with one or more lists 

of allowed enemies. The algorithm picks one of them. It uses weighted 

selection – once an enemy list is selected, the unselected candidates 

become more likely to be selected in the future. 

• The algorithm goes through this list of monsters and extracts a list of all 

rank and role pairs the monsters in the list have. This gives us a list of roles 

and ranks that can spawn in the encounter. 

• Then the algorithm must select the appropriate encounter type. We 

identified three main points that change how the encounter must be 

approached. By combining these we defined multiple encounter types. The 

algorithm selects those for which it has enemies available and picks one 

of them at random, again preferring those it has not chosen recently. The 

attributes that define an encounter are: 

o Whether there is a boss or not in the enemy group. 
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o Whether there is a leader or not in the enemy group. 

o How attack oriented are the enemies in this enemy group. For each 

monster role we defined a constant value specifying how much is 

the monster attack oriented or defense oriented. For example, a 

lurker is attack oriented, as he has high damage and tries to kill the 

weakest party members first. A brute is defense oriented because 

he has high hit points and low damage.  

When an encounter should be made harder, the function will try to find an enemy 

that would make the encounter closer to the encounter type requested by the 

configuration, e.g., if the enemy group is too defense oriented, it might add a lurker or 

a sniper to the encounter. 

Similarly, when an encounter should be made easier, this function will remove an 

enemy. This function will try not to remove a boss or a leader if they are specified in 

the encounter type. 

5.2.6 Initial enemy group generator 

This function creates the initial solution for the hill climbing algorithm which is 

then improved. It should take 2 arguments, the difficulty requested by the designer for 

this encounter and the current party. It should then return an encounter that should be 

somewhat in the area of that difficulty. But the algorithms here are not expected to be 

accurate in any way, it can use as simple method for this as possible. It can even return 

just an empty encounter, as our algorithm will eventually fit whatever initial encounter 

to the desired difficulty. 

In Thesis Quest the generator first finds any encounter in the matrix with a similar 

party and difficulty. From this it calculates the target enemy group rating of the enemy 

group it should return. Then it creates an empty enemy group and starts adding enemies 

to it using the enemy group adjustment function described above until the rating of the 

enemy group exceeds the target rating. This is the initial candidate.  

5.2.7 Difficulty adjustment function 

After the player finishes an encounter, this function will be called for every 

element in the matrix to adjust it to better fit the player’s skill. It will take seven 

arguments:  



 
32 

• Element difficulty – the current value in the matrix for some encounter. 

• Difficulty difference – what was the difference between the estimated 

difficulty of the just finished encounter and the actual difficulty. 

• Element party – the party that this matrix element represents.  

• Current encounter party – the party that was fighting in the last encounter.  

• Element enemy group – the enemy group that this matrix element 

represents. 

• Current enemy group – the enemy group in the encounter that has just 

ended. 

• Learning factor – A number between 0 and 1 specifying how aggressively 

should the function adjust the matrix. 0 means no adjustments should be 

made and the function should return the current encounter difficulty 

argument, 1 means that the algorithm should change the difficulty as much 

as possible. 

The function should return the new estimate of the difficulty for some encounter 

and some party configuration. 

We will demonstrate how we implemented this function in Thesis Quest via 

the pseoudocode below. These are the arguments for this function: elementDifficulty, 

difficultyDifference, elementParty, currentEncounterParty, elementEnemyGroup, 

currentEnemyGroup., learningFactor. 

partyStrength1 = GetPartyStrength(elementParty) 

partyStrength2 = GetPartyStrength(currentEncounterParty) 

partyDifference = |partyStrength1 – partyStrength2| 

enemyGroupRating1 = GetEnemyGroupRating(elementEnemyGroup)  

enemyGroupRating2 = GetEnemyGroupRating(currentEnemyGroup) 

enemyGroupDifference = |enemyGroupRating1 – enemyGroupRating2| 

partyDifferenceRatio = partyDifference / max(partyStrength1, 

partyStrength2) 

enemyGroupDifferenceRatio = enemyGroupDifference / 

max(enemyGroupRating1, enemyGroupRating2) 

similarity = 1 – partyDifferenceRatio – 

enemyGroupDifferenceRatio 

similarity = similarity < 0 ? 0 : similarity 
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return elementDifficulty + similarity * learningFactor * 

difficultyDifference 

 In short, we calculate a number between 0 and 1 called similarity and then we 

modify the original difficulty by adding the error multiplied by similarity and learning 

factor. 

 When calculating similarity, we use a ratio between the difference and the 

larger of the relevant enemy group ratings or party strengths. We do this because a 

difference between party powers 2000 and 6000 is enormous, while difference 

between party powers 42000 and 46000 is obviously much lower. This ratio should be 

a universal way to calculate how similar enemy groups or parties are. 

5.3 Algorithm 

With all these elements in place, we can now explain in detail how the algorithm 

works and why.  

5.3.1 Difficulty estimation 

First, we will explain how to estimate a difficulty of an encounter and a party 

if we have the difficulty matrix. If the matrix contains an element for that party and 

that encounter, we can just return the value. If it does not, we do have functions that 

can measure distance between encounters and parties. Therefore, we can take n closest 

neighbors of the requested encounter and party and return their weighted average, 

where the closer the encounter and party to the requested ones, the higher the weight. 

5.3.2 Encounter generator 

Whenever the game requests an encounter, the following algorithm will be called. 

Let M be the difficulty matrix, p the current party, requestedDifficulty the difficulty 

requested by the game and Δ be the allowed difficulty error. Then: 
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enemyGroup = InitialEnemyGroupGenerator(requestedDifficulty, 

p) 

difficulty = M.getDifficulty(enemyGroup , p) 

difference = difficulty – requestedDifficulty 

while (|difference| > Δ) { 

enemyGroup = EnemyGroupAdjustmentFunction(enemyGroup, 

difference)  

difficulty = M.getDifficulty(encounter, p) 

difference = difficulty – requestedDifficulty 

} 

5.3.3 Matrix adjustment 

Anytime an encounter is generated, we store in memory the following values: the 

enemy group efought and the party pfought from the generated encounter, as well as the 

original difficulty estimate difficultyEstimate. After every encounter we will then 

measure the actual difficulty of the encounter, difficultyReal. The designer should also 

set learning factor α, which defines how much should the matrix change after an 

encounter. With these values we can now present an algorithm that will adjust the 

matrix after every encounter. 

difficultyError = difficultyEstimate – difficultyReal 

foreach (enemyGroup, party, difficulty) in M { 

newDifficulty = DifficultyAdjustmentFunction(difficulty, 

difficultyError, party, pfought, enemyGroup, efought, α) 

M[encounter, party] = newDifficulty 

} 

M[efought, pfought] = difficultyReal 

 In short, we will adjust the entire matrix based on data and add the fight result 

as a new element in the matrix. Or replace the existing one if this fight was already 

added. 

5.4 Algorithm analysis 

Having described both the algorithm and its individual components, we can now 

further discuss its properties in further details. 
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5.4.1 Difficulty targeting 

This algorithm focuses mainly on providing a way to measure a difficulty of an 

encounter. Unfortunately, we think it is impossible to prove mathematically that this 

algorithm will yield acceptable results. 

The problem lies in the fact that game difficulty is not a well-defined variable. 

There is no mathematical definition so we cannot prove that the algorithm would yield 

acceptable results. And difficulty will always be a subjective variable. Therefore, it 

seems clear that real players will be necessary to evaluate the algorithm.  

Also, even if we assume that the individual subproblems were solved perfectly, 

the hill climbing algorithm might not yield the best results, as it might get stuck on 

local maxima. This is an expected result of our focus on simple solutions described in 

the Analysis chapter. It would be easy to replace the algorithm with a much more 

sophisticated solution if we came to conclusion that this solution is unsatisfactory. 

5.4.2 Priorities 

We can now verify whether the algorithm fits the criteria we outlined in the 

chapter Analysis. For this section we assume that the algorithm works, i.e., that the 

after some time the matrix will represent the player’s current skill level. 

1. The algorithm should work online and adjust itself to player’s party 

configuration and their skill level. 

• We can trivially see that the algorithm works online and that it adjusts 

itself after every encounter. 

2. The designer should be able to influence the encounters generated by the 

algorithm as much as possible. 

• The main way how the designer can influence the algorithm is by 

setting a different target difficulty. They can also have great control 

over concrete enemies being spawned by setting the allowed enemy 

lists. The programmers could easily extend the algorithm to allow the 

designer to select specific encounter types as well. And if there are 

some enemy groups that are too powerful and should never be 

generated, the programmers could easily create a blacklist of 

disallowed enemy combinations. 
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3. The algorithm should be able to output encounters in whatever difficulty the 

designer desires. 

• This was described in detail in the previous subsection. 

4. The algorithm should be generic enough to allow it to be used in many 

commercial RPG games. 

• The solutions listed in the subproblems section would have to be solved 

again for every game. Yet we think that the general approach, i.e., 

having a difficulty matrix and modifying it, could be reused across 

multiple games. 

5. The combat encounters generated should try to vary the enemies generated as 

much as possible.  

• The enemy group adjustment function is responsible for the variation. 

And if required, this function is not dependent on anything else and 

could easily be modified to improve the encounter variance. 
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6 Testing Methodology 

In this chapter we will describe in detail how we wish to evaluate algorithm 

presented in the previous chapters. First, we will list the goals for the experiment, i.e., 

what do we wish to learn. After that we will describe our testing scenario in detail. The 

last section will list the hypotheses which we wish to confirm by the experiment. 

6.1 Experiment goals 

The experiment should evaluate how the algorithm performs. While we mentioned 

many different criteria which RPG encounter generation algorithms should fulfill, the 

focus of this experiment is only on the difficulty. Which means that we will not focus 

on evaluating enemy variance. Instead we will want to show that: 

• As the game progresses, the algorithm should get better at approaching the 

target difficulty. 

• The player should recognize whether an encounter is meant to be difficult 

or not. 

• The player should enjoy the generated encounters. 

•  The challenge should be appropriate to the player, making him feel in the 

flow[13]. 

6.2 Experiment design 

6.2.1 Control group 

We have introduced a new algorithm for generating enemies and we need to 

compare it with some other approach. However, as this algorithm is completely new, 

we cannot compare our solution to some other version of the same algorithm. We have 

also chosen to create a completely new game, which means that we cannot compare 

our encounters against those created by the original game designers. Considering all 

this, we have decided that the best control group available to us are static encounters 

created by the author. 

6.2.2 Experiment phases 

Each player playing the game will play the game in following three phases: 
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• Tutorial phase: A short and easy level created by us. The level exists for 

two reasons. First, it should teach the player the basic mechanics of the 

game. Second, while the algorithm is not generating monsters in this level, 

it is still estimating the difficulty of these static encounters. And when they 

are over it adjusts the matrix as usual. Therefore, after the tutorial level the 

matrix should match the player skill more closely. 

• Static phase: Two levels with encounters placed in the level manually by 

the author. Unlike the tutorial phase, the difficulty matrix is not being 

modified during this phase. 

• Generated phase: Two levels with encounters generated at runtime by the 

algorithm. 

The players will be randomly assigned into one of two groups, G-First and S-First. 

Group S-First will play these in the order they were introduced, group G-First will play 

the Tutorial phase first, then the generated phase and finally the static phase. Once the 

player in any group finishes her second phase, the attributes of her heroes will be reset 

to the same values they had when they finished the tutorial, ensuring that the 

experiences are as similar as possible. 

6.2.3 Door difficulties and colors 

To test whether the players can recognize different difficulties, each of the rooms 

in the experiment has an assigned difficulty. And all doors leading to a room have a 

different color based on what the difficulty of that room is. These colors change for 

the third part of the experiment, so the player must figure them out once more. The 

difficulties are: 

 Target 

difficulty 

Phase 1 

and 2 

color 

Phase 

3 color 

Easy 0.25 Blue Pink 

Medium 1 Turquoise Orange 

Hard 2 Brown Yellow 

Table 1: Door difficultes 
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In generated levels, the room difficulty defines the target difficulty for the 

encounter. For static encounters, we had no concrete method of creating encounters of 

appropriate difficulty. Therefore, these encounters were based only on the author’s 

understanding of the game design. 

6.2.4 Data gathering 

We decided to use two methods for gathering data. First, whenever a combat ends, 

we send a message to our server. The message contains information about the 

encounter, i.e., which enemies were in the encounter, what was the state of the party, 

and how did the encounter end. The data is sufficient to recreate the matrix after every 

single combat encounter, allowing us to see how the matrix was evolving for every 

player. 

Second, after phases 2 and 3, the player is asked to fill out a survey. The survey 

after the second phase asks the player to rate the difficulty of encounters behind 

specific doors, to rate the game so far and fill out the Flow Short Scale[14, 15]. After 

the third phase the player is presented with the same questions. She is also asked to fill 

out some demographic information and give feedback on the game. If a player fails to 

finish the experiment, she is presented with another survey, asking her for a reason for 

quitting. These surveys can be found in the appendix A. 

6.2.5 Experiment distribution 

The experiment was made into a game that could be distributed with little 

additional information. It was then distributed to the general public, primarily over 

social media, to gain as many respondents as possible. To improve engagement the 

game also included a short humorous story. This story was told between every two 

levels, as well as at the start and end of the experiment. 

6.3  Hypotheses 

We have formed these hypotheses which the experiment should be able to prove 

and which should help us to better understand the behavior of the algorithm: 

1. The players should be able to correctly order the doors based on their 

difficulties in generated levels better than in static levels. 

2. The players should rate the dynamic phase as better than the static phase. 
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3. In the dynamic phase the players should be more in the flow than in the 

static phase. 

4. The perceived difficulty of the game should be closer to 5 (average 

difficulty) for generated levels than for the static levels.  

5. The absolute value of the error in difficulty estimation should be getting 

lower as the game progresses. 

• As this is a research of a new algorithm, we do not have any other 

solution to compare these values with. Therefore, we will explore 

different statistics and see if they suggest the error is lowering over 

time.   
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7 Results 

In this chapter we will present the results of the experiment. We will show data 

related to our hypotheses as well as other interesting information gained from the 

experiment. 

7.1 First experiment run 

When we ran the experiment for the first time, 31 people in total finished the 

experiment. However, when analyzing the data, we noticed a major bug in the 

algorithm implementation. Due to a typo, the algorithm was creating much more 

difficult encounters than it was supposed to create and did not properly adjust the 

matrix as it was supposed to. The first version also had an issue where in some rare 

instances no monsters were generated at all.  

Due to these issues we have declared the data from this experiment run as unusable 

in regards to the evaluation of the effectiveness of the algorithm. The only useful data 

from this experiment run are the open questions from which we can gain feedback on 

the game and the experiment. These could be useful if we decide to expand upon this 

thesis in the future. 

7.2 Second experiment run 

After we fixed all the issues from first run, we repeated the experiment. 11 people 

in total finished the experiment. 6 of them were in the G-First group, 5 of them were 

in the S-First group. 

7.3 Result Analysis 

In this section we will present the results of the experiment. First we will present 

raw results, then we will show several different summaries of the data.  
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7.3.1  Experiment results 

Table 2: Result analysis – Experiment results 

 Here we can see the raw results of the individual players who successfully completed the experiment. First half of the table shows how 

the users experienced the generated levels. The second half shows their experience with static levels. Values in the column „Did order doors 

correctly? “are 1 if the player’s rated easy doors as just as difficult or easier than the medium doors and medium doors as easier or the same as 

hard doors. Otherwise the value in the column is 0.  

Group 
Generated 

levels rating 

Generated 

levels flow 

Generated  

levels 

difficulty 

Generated 

levels – did 

order doors 

correctly? 

Static 

levels 

rating 

Static 

levels 

flow 

Static levels 

difficulty 

Static levels – 

did order 

doors 

correctly? 

G-First 5 5.50 5 1 4 5.40 6 1 

G-First 4 5.50 6 1 5 6.30 5 0 

G-First 5 5.10 4 0 4 5.30 3 0 

G-First 5 5.70 3 1 5 4.70 3 1 

G-First 4 3.60 5 1 5 4.10 4 1 

G-First 5 6.20 6 1 5 5.10 8 1 

S-First 5 5.80 6 0 4 4.90 6 1 

S-First 5 6.10 5 1 5 5.90 5 0 

S-First 5 5.90 5 1 5 5.70 5 1 

S-First 1 3.00 7 0 3 3.20 4 1 

S-First 5 6.50 6 1 5 6.20 5 1 
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7.3.2 Comparing experiment groups 

Variable 
Generated 

levels rating 

Generated 

levels flow 

Generated  

levels difficulty 

Generated 

levels – did 

order doors 

correctly? 

Static 

levels 

rating 

Static levels 

flow 

Static levels 

difficulty 

Static levels – 

did order 

doors 

correctly? 

G-First 

Average 
4.67 5.27 4.83 0.83 4.67 5.15 4.83 0.67 

S-First 

Average 
4.20 5.46 5.80 0.60 4.40 5.18 5.00 0.80 

Total 

Average 
4.45 5.35 5.27 0.73 4.55 5.16 4.91 0.73 

G-First St. 

Dev 
0.47 0.81 1.07 0.37 0.47 0.67 1.77 0.47 

S-First St. 

Dev 
1.60 1.25 0.75 0.49 0.80 1.08 0.63 0.40 

Total St. 

Dev 
1.16 1.04 1.05 0.45 0.66 0.88 1.38 0.45 

Pooled St. 

Dev 
1.18 1.06 0.92 0.44 0.66 0.90 1.33 0.44 

Cohen’s d -0.39566 0.182984 1.048840027 -0.53609 -0.40614 0.033353 0.125294 0.304997 

Table 3: Resuts analysis – Comparing experiment groups 

 This table shows the average and standard deviation of all the variables from the previous table for the entire experiment and for each group 

separately. For all these values we then calculate Cohen’s d to measure the effect size. Note the large difference in perceived difficulty of levels 

between groups. For some reason, the G-First group found the generated levels to be much easier. 
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7.3.3 Comparing second and third phase 

Table 4: Result analysis - Comparing second and third phase 

 Next, we decided to compare how the users experienced the second phase of 

the experiment compared to the third phase. We wanted to see if there was a significant 

difference, e.g., if the users found the third phase to be easier, as they probably got 

better at the game. However, we saw no significant difference here. 

7.3.4 Comparing generated and static levels 

 Rating Flow Difficulty 

Did order 

doors 

correctly? 

Generated levels Mean 4.45 5.35 5.27 0.73 

Static levels Mean 4.55 5.16 4.91 0.73 

Generated levels St. Dev 1.16 1.04 1.05 0.45 

Static levels St. Dev 0.66 0.88 1.38 0.45 

Pooled St. Dev 0.94 0.96 1.23 0.45 

Cohen’s d 0.10 -0.20 -0.30 0.00 

Table 5: Result analysis – Comparing generated and static levels 

 The focus of the experiment was on evaluating the algorithm, therefore the 

comparison between the generated and static levels is the most important one. It seems 

that there was not a significant difference between the player’s experience in generated 

and static levels. 

 Rating Flow Difficulty 

Did order 

doors 

correctly? 

Second 

phase 

Mean 

4.55 5.23 4.91 0.82 

Third 

phase 

Mean 

4.45 5.29 5.27 0.64 

Second 

phase St. 

Dev 

0.66 0.94 0.90 0.39 

Third 

phase St. 

Dev 

1.16 0.99 1.48 0.48 

Pooled St. 

Dev 
0.940371 0.968854 1.226431 0.435985 

Cohen’s d -0.10 0.07 0.30 -0.42 
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7.4 Hypotheses testing 

In this section we will test the hypotheses that we explained in the previous 

section. 

1. The players should be able to correctly order the doors based on their 

difficulties in generated levels better than in static levels. 

• H0: Generated levels – did order doors correctly? = Static levels – 

did order doors correctly? 

• HA: Generated levels – did order doors correctly?  > Static levels – 

did order doors correctly? 

• The p-value for the paired sample t-test for our data is 0.5, 

therefore we have failed to reject the null hypothesis. 

2. The players should rate the dynamic phase as better than the static phase. 

• H0: Generated levels rating = Static levels rating 

• HA: Generated levels rating > Static levels rating 

• The p-value for the paired sample t-test for our data is 0.62, 

therefore we have failed to reject the null hypothesis. 

3. In the dynamic phase the players should be more in the flow than in the 

static phase. 

• H0: Generated levels flow = Static levels flow 

• HA: Generated levels flow > Static levels flow 

• The p-value for the paired sample t-test for our data is 0.16, 

therefore we have failed to reject the null hypothesis. 

4. The perceived difficulty of the game should be closer to 5 (average 

difficulty) for generated levels than for the static levels.  

• H0: |Generated levels difficulty – 5| = |Static levels difficulty – 5| 

• HA: : |Generated levels difficulty – 5| < |Static levels difficulty – 5| 

• The p-value for the paired sample t-test for our data is 0.28, 

therefore we have failed to reject the null hypothesis. 

5. The absolute value of the error in difficulty estimation should be getting 

lower as the game progresses. 

• As we do not know how to properly evaluate this hypothesis, in the 

next subsection we will show several interesting statistics about it. 
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7.4.1 Evaluating the difficulty error decreasing over time hypothesis 

First, to get an intuitive understanding of how the difficulty error behaved, we 

decided to plot the difficulty error change over time for several specific players. For 

all these graphs, positive error means the combat was easier than estimated, negative 

error means it was more difficult. 

 

Figure 4: Difficulty error over time – highest difficulty 

 This graph shows the difficulty error development of player c898d197-387d-

45bc-bc10-3f0675438637, whose perceived difficulty of generated levels was the 

highest of all players, 7. We can see that for this player the average error was constantly 

changing, therefore for this player the algorithm seems to have failed. 
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Figure 5: Difficulty error over time - lowest difficulty 

 This graph represents the playthrough of player 2ab2cade-4c66-49ac-86d7-

531f14b6731c, whose difficulty rating was the lowest of all players, 3. Apart from few 

large spikes in the first 9 encounters, the algorithm seemed to be quite close when 

estimating difficulty and when there was a large spike near the end, it was because the 

encounter was too easy, which probably explains the low difficulty rating. 
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Figure 6: Difficulty error over time - average difficulty 

 This is a graph of player 598b1b49-73d1-4757-be05-b9c70b9a085b, who rated 

the difficulty as 5, i.e., average. For this player, the algorithm seemed to perform 

exactly as expected – after first five encounters it adjusted itself to the player’s ability 

almost perfectly with only very minor errors. 

 

Figure 7:Difficulty error over time – unfinished experiment player 

 This is a graph of player a543bd42-5e2a-47fd-965a-9eddf33ccccd, who did not 

finish the experiment. Most of the time the error seems to lie between 0 and 1. And 

once more we can see that the error is not decreasing. 
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 To compare the data of all successful players, for each player we split all their 

encounter results into halves and quarters and calculated the average error in these 

parts. Ideally, the average error should be decreasing in later halves and quarters. In 

this table we considered only the absolute value of the error, so it does not matter 

whether the algorithm overestimated or underestimated the difficulty.  

Group 

Generated 

levels 

difficulty 

Avg. 

Error 

Avg. 

Error 

Half 

1 

Avg. 

Error 

Half 

2 

Avg. 

Error 

Quarter 

1 

Avg. 

Error 

Quarter 

2 

Avg. 

Error 

Quarter 

3 

Avg. 

Error 

Quarter 

4 

G-First 5 0.56 0.43 0.71 0.39 0.48 0.67 0.75 

G-First 6 0.64 0.57 0.70 0.48 0.71 0.51 0.86 

G-First 4 0.68 0.62 0.74 0.50 0.76 0.60 0.88 

G-First 3 0.68 0.72 0.64 0.53 0.91 0.60 0.68 

G-First 5 0.41 0.51 0.30 0.60 0.39 0.21 0.40 

G-First 6 0.41 0.45 0.37 0.44 0.46 0.58 0.16 

S-First 6 0.71 0.66 0.76 0.70 0.61 0.64 0.88 

S-First 5 0.58 0.54 0.63 0.52 0.55 0.92 0.35 

S-First 5 0.68 0.57 0.81 0.45 0.71 0.75 0.87 

S-First 7 0.79 0.72 0.85 0.58 0.88 0.74 0.96 

S-First 6 0.76 0.71 0.82 0.61 0.84 0.83 0.81 

Table 6: Algorithm average error 

 However, it seems this was not the case. For all but three players the average 

error in the first half was lower than the average error in the second half. And there are 

only two players whose average error in the last quarter of the encounters was lower 

than in all the other quarters. 

7.5 Additional results 

These are all the results that could be easily summarized with tables and graphs. 

However, there are also data which could not be easily shown in this thesis and are 

provided on the attached DVD. Of note are the answers to the open question of all our 

respondents which contain valuable information. 

 We have also visualized the development of the difficulty matrix for all players 

over time. The visualization looks like this: 
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Figure 8: Initial matrix visualization 

 This is a representation of the matrix when the game starts. Each element of 

the matrix is placed here and colored based on its difficulty. The x coordinate of the 

element is the party power, the y coordinate is the combined strength of the monsters. 

Green is difficulty 0, yellow is difficulty 1, red is 2 and black is 3.  

 For each player we have generated these visualizations of the matrix after every 

single encounter. The folders with the visualizations also contain a log file showing 

which encounter each of these visualizations represent. The matrix visualizations with 

the log file together present a detailed account of the player’s experience in the 

generated encounters and how the algorithm adjusted to the player. Unfortunately, 

these are not summarized easily, so they can only be found on the DVD.  
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8 Discussion 

In this chapter we will discuss the results of the experiment, as well as how could 

this thesis be expanded upon in the future. 

8.1 Algorithm evaluation 

We could not prove any of our hypotheses regarding the algorithm’s performance. 

Therefore, we can only evaluate the algorithm by comparing Cohen’s d effect size and 

the means of the different variables. 

When ignoring the experiment groups and looking only at the comparison 

between static levels and generated levels, the data suggest that there is not a 

significant difference between the two. The largest difference is that the generated 

levels were slightly more difficult than static levels. The difference between means for 

this variable was 0.36. This seems to suggest that there was not a major difference 

between the static and generated levels. 

But we should also consider that there were 37 people who did not finish the game, 

10 of whom listed as their reason for quitting that the game was too difficult. 

Unfortunately, as we do not have the user ids of the players who failed to finish the 

game, we cannot be certain about their reasons and whether they quit in the generated 

or the static levels. Also, without pairing the survey with the gameplay data we cannot 

determine which survey results belong to which test run. Therefore, we cannot tell how 

many of the users who quit played the first version of the game, in which the algorithm 

was bugged.  

Another interesting point is that the people who played the generated levels first 

found them to be easier that the group which started with the static levels. We think 

the most likely explanation is that the users who started with the static levels were 

more used to the game by the point they got to the generated levels. Therefore, they 

made fewer mistakes, built their characters better and the algorithm presented them 

with more difficult encounters. However, this is only a hypothesis and we have not 

gathered any data which could support this hypothesis. 
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Without being able to properly analyze the results of the users who did not finish 

the game, the only thing we can say is that the results suggest that the algorithm can 

generate encounters similar in quality to the encounters created by the author. 

8.2 Experiment evaluation 

In retrospect we have made several mistakes in the experiment design. 

First, the game was not tested extensively. Apart from the author, only two people 

played the game before the release, the thesis supervisor and the experiment 

consultant. Both of whom were involved with the experiment before they played the 

game. As we expected a small number of players, we did want to disqualify some of 

them from the experiment by having them playtest the game. However, this led to 

several critical bugs not being detected before the experiment launch. And because of 

these bugs we had to restart the experiment, losing a lot more test subjects.  

Second, we have not provided sufficient introduction to the players. From the 

open questions we can see that many players failed to learn the basics of the game. 

Namely: 

• How health works. Many players thought that they found a bug when they 

could not heal their lost Max HP. 

• That they must use the knight’s abilities to taunt monsters. Some players 

failed to defeat the first boss because they did not taunt him, and they could 

not progress. 

• That when the enemy cleric orders his allies to target the ranger, it 

overrides the Taunt skill used by the knight. Because of this, many players 

said that the taunt seems to randomly not work and were frustrated by it. 

All these issues could have been be easily fixed had we known about them, either 

by UI fixes or by hints on the game over screen. But, as we did not play test properly, 

we did not know about them. 

Third, we have gathered our players on social media. Therefore, most of our 

players had known the author of the thesis personally before playing. Which means 

that we cannot be sure whether their rating and feedback is truly objective. 
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Fourth, the hypothesis about the players correctly ordering the difficulty of the 

doors might have been flawed. The first room in every floor was always an easy room 

and the last room was always a difficult room, a boss fight. The boss fight was also 

visibly different from the rest of the rooms, as it featured a different music and had a 

unique room layout. It is conceivable that some players could have ordered the room 

difficulties based on the level layout and the conventions of the genre instead by 

evaluating their actual difficulty. 

Fifth, we used the same door colors in the tutorial section as in the second phase. 

This could have made it easier for the players in the second phase to estimate the door 

colors, as almost all rooms in the tutorial phase were easy. 

  And last, we were comparing our algorithm with a static level created by the 

author. While we did not have a better option available, right now we cannot say much 

about the quality of the algorithm. 

However, for all its problems the experiment had its strengths. Players rated the 

game generally favorably. We have also gained a lot of data about the algorithm and 

its performance. The data can be used by further researchers to improve the algorithm.  

Also, we got a lot of feedback on how to improve the game. Should another 

researcher expand upon it, she could use it to make a game that would be more 

accessible to the general public. This would then help her get a lot more test subjects 

who would play the game. 

8.3 Future work 

We think that the algorithm seems to be promising. While it cannot be used in 

any real game in its current form, we think that the experiment results suggest that it 

has a potential to be improved and used in a commercial product. We think so because 

overall the encounters were of the same quality as the static ones and there was at least 

one person for whom the algorithm worked as intended. In general, we see two ways 

how future researchers could expand upon this work – they could implement the 

algorithm in a commercial game, or they could improve the algorithm in Thesis Quest. 
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8.3.1 Commercial game 

There are two main ways how this algorithm could be implemented in a 

commercial product – by adding it to an existing game or by implementing it in a new 

game being produced. However, as this algorithm was not yet proven to give great 

results, we think it is quite unlikely that a game studio would risk their game’s success 

on a new algorithm. Therefore, the more likely future work in this direction would be 

adapting the algorithm to an existing game. 

The researcher going in this direction could use the general idea behind this 

algorithm. However, he would have to start from scratch with most of the game 

specific components of the algorithm. He would have to create abstractions to 

represent the enemies and the party, as there would be much greater variety of 

characters than in this small game. He would also need to figure out how to update the 

matrix, and to do that, he would need to come up with a function that could compare 

vastly different parties and enemy groups.  

While this would be a great amount of work, in the end this could prove that the 

algorithm is useful in commercial games. Also, it would be possible to compare the 

generated encounters with encounters created by the original designers. That could 

show whether the algorithm can create encounters that would be better than those of 

professional designers. 

8.3.2 Small game 

Should the researcher choose to work on a smaller project, she would have two 

approaches available. She could either improve Thesis Quest, or she could create 

another game entirely. We will focus only on extending Thesis Quest, as we see that 

as a more efficient approach. 

While there are many gameplay elements that could be improved, we will not 

focus on those. Instead we direct the reader to the attached DVD where they can find 

the survey responses of our players. Many possible adjustments can be seen in the 

feedback of our players, e.g., they would like a better and shorter tutorial, improved 

UI or controls. 

Instead we will focus on the algorithm. And the potential for improvements in 

this area is clear – for all the subproblems the algorithm solves we selected the simplest 
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solution available. Therefore, further research could build upon these and find better 

solutions. For example, when comparing the encounters, the algorithm right now 

compares only the sum of the monster strengths. However, when a leader is present 

and the player does not know how to deal with him targeting the ranger, the leader can 

increase the difficulty of the battle significantly, especially when combined with 

multiple sniper enemies. Therefore, the algorithm should take composition of enemies 

and how they complement each other into account. 

An algorithm with these modifications could then be compared to the algorithm 

without them. Furthermore, these modifications could be turned off and on easily, 

which could help the researcher find out which changes are improvements, and which 

do not help. 

8.3.3 Inclusion in larger systems 

The algorithm could also be improved in other ways both in a commercial game 

and in Thesis Quest. In general, encounter generation is only a small part of the game 

and must work together with all the other game systems.  

For example, instead of a designer specifying the parameters of the generator, 

the parameters could be set by another system that would try to control the player 

experience. An example of this system would be the AI Director system in the game 

Left 4 Dead 2 [18]. The AI director tries to control different aspects of the game in 

order to create unique experiences that keep the player engaged. If such a system 

worked together with this algorithm, it would try to generate encounters that would 

sometimes be easy, sometimes challenging, whatever the AI Director would feel is 

necessary. Furthermore, whenever the algorithm would make a significant error the AI 

Director could fix the issue – if the encounter were too difficult, there could be more 

rewards from it and the next encounter might be easier. 

Or the algorithm could work together with a system that could determine a 

person’s playstyle and preferences, like the algorithm described by Missura and 

Gärtner[12]. The algorithm could then work differently based on the player’s 

preferences. For example, it might use a different initial matrix more representative of 

the player’s strategies. Or it might change the learning factor, changing how responsive 

the matrix is to the player’s results. 
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But even if the game does not use these complex systems, it would need some 

way to adjust the difficulty. Some players want to breeze through the game while 

others want to struggle through every encounter. Most commonly this is solved by 

letting the player choose a difficulty setting. Which means that the algorithm must 

have some way of responding to the difficulty. In the game we presented, this could 

be accomplished by simply changing the target difficulty of the individual rooms. 

However, the algorithm might also use a different initial matrix for higher difficulties. 

By using a different matrix, e.g., one generated with heroes controlled by a smarter AI, 

the matrix could then match the player’s skill much more quickly. 
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Conclusion 

In this thesis we explored and formalized the problem of generating combat 

encounters in RPG games. We created a small game which approximated RPG games 

while greatly reducing their complexity. In this game we implemented a new algorithm 

for generating encounters. We tried to implement this algorithm in the simplest 

possible way, so we could evaluate the general idea behind the algorithm. We then 

distributed the game to the general public to evaluate our solution. The data we 

gathered from this experiment failed to prove any of our hypotheses, however they 

also suggest that the encounters generated by the algorithm are just as good as the 

encounters manually defined by the author of this thesis. While the algorithm in its 

current form is probably not ready to be used in new commercial games, we believe 

that this thesis is a good starting point into further research extending this algorithm, 

either by improving it in the context of our game or by implementing it in an older 

commercial game. 
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Appendix A – Survey Questions 

In this section we will list all three surveys the players had to fill out during the 

experiment. 

Phase two survey 

 This survey was displayed after the player finished the phase two of the 

experiment. 

Survey title – Halfway there! 

First page 

Please fill out a survey about the first half of the game 

1. User ID (meant to pair responses with the game data) 

2. How did you enjoy the first half of the game? 

o 1-5 stars 

3. How would you rate the difficulty of combat encounters in rooms with CYAN 

doors? (picture of the doors from the game) 

o 1 (very easy) – 10 (very difficult) 

4. How would you rate the difficulty of combat encounters in rooms with 

BROWN doors? (picture of the doors from the game) 

o 1 (very easy) – 10 (very difficult) 

5. How would you rate the difficulty of combat encounters in rooms with BLUE 

doors? (picture of the doors from the game) 

o 1 (very easy) – 10 (very difficult) 

Second page – Flow[14, 15] 

Please check how much you agree with several statements about how much in the flow 

you were during the first half of the game. 

6. I feel just the right amount of challenge. 

o 1 (not at all) – 7 (very much) 

7. My thoughts/activities run fluidly and smoothly. 

o 1 (not at all) – 7 (very much) 

8. I don’t notice the time passing. 
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o 1 (not at all) – 7 (very much) 

9. I have no difficulty concentrating. 

o 1 (not at all) – 7 (very much) 

10. My mind is completely clear. 

o 1 (not at all) – 7 (very much) 

11. I am totally absorbed in what I am doing. 

o 1 (not at all) – 7 (very much) 

12. The right thoughts/movements occur of their own accord. 

o 1 (not at all) – 7 (very much) 

13. I know what I have to do each step of the way. 

o 1 (not at all) – 7 (very much) 

14. I feel that I have everything under control. 

o 1 (not at all) – 7 (very much) 

15. I am completely lost in thought. 

o 1 (not at all) – 7 (very much) 

Third page – Overall difficulty 

Please answer some general questions regarding the overall difficulty of the first half 

of the game. 

16. Compared to all other activities which I partake in, this one is … 

o 1 (easy) – 9 (difficult) 

17. I think my competence in this area is … 

o 1 (low) – 9 (high) 

18. For me personally, the current demands are … 

o 1 (too low) – 9 (too high) 

Phase three survey 

First 18 questions are the same as from the phase two, only asking about the 

second half of the game and about different colors, yellow, pink and orange. After that, 

the following pages are displayed: 

Survey title – Almost done! 

Fourth page – Demographic Questions 
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19. What is your gender? 

o Male 

o Female 

o Prefer not to say. 

20. What is your age? 

o Under 18 

o 18-24 

o 25-34 

o 35-44 

o 45-54 

o 55-64 

o Age 65 and older 

21. What is your highest level of education you have completed? 

o None 

o Elementary School 

o High School 

o Bachelor’s Degree 

o Master’s Degree 

o Postgraduate 

22. Which of the following games did you play? 

o Multiple choices allowed: 

▪ Baldur’s Gate 1 or 2 

▪ Icewind Dale 1 or 2 

▪ Planescape Torment 

▪ Neverwinter Nights 1 or 2 

▪ The Temple of Elemental Evil 

▪ Dragon Age 1, 2 or Inquisition 

▪ Divinity: Original Sin 1 or 2 

▪ Fallout 1, 2 or Brotherhood 

▪ Fallout 3, 4 or New Vegas 

▪ The Elder Scrolls – any game in the series 

▪ The Witcher 1, 2 or 3 

23. On average, how many hours per week do you spend playing video games? 

o Less than one hour 
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o 1 – 2 hours 

o 2 – 5 hours 

o 5 – 10 hours 

o 10 – 20 hours 

o 20 – 30 hours 

o 30 – 40 hours 

o More than 40 hours 

24. Please list the last three games you have played. 

o Open question 

25. Please list your favourite video game genres. 

o Open question 

Fifth page – Feedback 

26. Would you like to see more of this game, see it extended, with better level 

design, more levels and such? 

o Sure, and I might be even willing to pay for it! 

o If it were free, sure. 

o No, I do not think this game would interest me even if it were free. 

o Other – please specify. 

27. What do you feel should be improved in the full game? Which area did you 

find the most lacking? 

o Open question. 

28. Do you have anything more to say to us? You can write anything here, this is 

an open question for the developer to get feedback on the game, the experiment 

or anything else you might want to write in here. 

o Open question. 

Premature exit survey 

 This survey appears when the play closes the game during an experiment for 

any reason other than revoking her privacy agreement. 

Survey title – So sad to see you go! 
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Survey subtitle – Hey there! It seems you’ve exited the game before finishing the 

experiment. Would you mind filling a short survey for us, so we can understand why 

you chose to do that? 

1. What was the main reason why you shut down the game? 

o I closed it accidentally. 

o I ran out of time. 

o I do not enjoy playing this kind of games. 

o I did not enjoy playing this game in particular. 

o The game was too difficult. 

o I only wanted to try out the game, I did not plan to finish it. 

o Other – please specify. 

2. If you want to, please elaborate on your decision to quit the game. 

o Open question. 

3. What is your gender? 

o Female 

o Male 

o Prefer not to say 

4. What is your age? 

o Under 18 

o 18 – 24  

o 25 – 34 

o 35 – 44 

o 45 – 54 

o 55 – 64 

o Age 65 and older 

5. What is your highest level of education you have completed? 

o None 

o Elementary School 

o High School 

o Bachelor’s Degree 

o Master’s Degree 

o Postgraduate  
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Appendix B – Technical documentation 

In this appendix we will explain the technical details about the Thesis Quest 

game. In the first section of this chapter we will explain how to run the game, how to 

set up the development environment and how to run the analysis of the data. In the 

second section we will briefly introduce the architecture of the project, which should 

help reader understand the source code. 

Throughout this chapter we will assume that the reader has basic familiarity 

with the Unity game engine. If the reader needs to, there are many great resources 

online that can help the reader learn the basics3. 

Installation Instructions 

Thesis Quest installation instructions 

 It is not necessary to install Thesis Quest in any way. In the folder 

Binaries/Thesis Quest you will find Windows, macOS and Linux versions of the game 

which were distributed during the experiment. Select the appropriate zip file for your 

system, extract it, and play the game. 

 If you wish to see how the matrix generation worked, you can find the combat 

simulator in the folder Binaries/Encounter Simulator. For this simulator we provided 

only the Windows build, as we could not test it on any other platform. The encounters 

will start playing one by one and a file TestResults.csv will be generated next to the 

executable with the results of the experiment. The simulator was done for development 

purposes, so it has no UI and can be only exited by closing the application, e.g., by 

pressing ALT+F4 during the game. 

Setting up the development environment 

 To run the Unity project used to build these executables, you will need to do 

the following steps. If any of the applications listed in the guide are already installed, 

you do not need to reinstall them. 

 

3 https://learn.unity.com/course/getting-started-with-unity 

https://learn.unity.com/course/getting-started-with-unity
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1. Copy all the files from the DVD to some location on your hard drive. 

2. Install Visual Studio 20194, any edition. 

3. Install Unity 2019.2.12. This version can now be only installed from the 

download archives5. 

4. Download the LITE - Fantasy - Headstrong Archer Character Voice 

Sound Pack6 and extract it to the folder 

Source/Assets/Sounds/Voices/Ranger. There should already be a folder 

with the same name present in this location. 

• For every file in the sound pack, a file with the same name and the 

.meta extension will already exist in that existing folder. Make sure 

that the extracted files are in the same folder as the corresponding 

.meta file. 

5. Open Unity  

6. Open the project located in the Source folder. 

7. Select Window -> TextMeshPro -> Import TMP Essential Resources 

8. Download the following assets from the Unity Asset Store. These are 

optional and some of these are paid. If the reader does not download them, 

the game will work, but relevant sound effects and music will not play: 

• Action RPG Music Free7 

• Medieval Combat Sounds8 

• Magic Spells Sound Effects9 

o Unfortunately, since we implemented these sound effects in 

the game, the distributor of this pack released a 2.0 version 

of this pack with a different file structure. Therefore, spell 

effect sounds will not work. The only way to solve this issue 

is to ask the developer for the old version of the assets. And 

we are unsure whether the developer will agree to providing 

this older version. 

 

4 https://visualstudio.microsoft.com/cs/vs/ 

5 https://unity3d.com/get-unity/download/archive 

6 https://bobfeeservo.itch.io/lite-fantasy-headstrong-archer-character-voice-sound-pack  

7 https://assetstore.unity.com/packages/audio/music/action-rpg-music-free-85434 

8 https://assetstore.unity.com/packages/audio/sound-fx/weapons/medieval-combat-sounds-

149395 

9 https://assetstore.unity.com/packages/audio/sound-fx/magic-spells-sound-effects-114628 

https://visualstudio.microsoft.com/cs/vs/
https://unity3d.com/get-unity/download/archive
https://bobfeeservo.itch.io/lite-fantasy-headstrong-archer-character-voice-sound-pack
https://assetstore.unity.com/packages/audio/music/action-rpg-music-free-85434
https://assetstore.unity.com/packages/audio/sound-fx/weapons/medieval-combat-sounds-149395
https://assetstore.unity.com/packages/audio/sound-fx/weapons/medieval-combat-sounds-149395
https://assetstore.unity.com/packages/audio/sound-fx/magic-spells-sound-effects-114628
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Running results analysis 

 This process works only on Windows. If you wish to run the scripts for 

analyzing the results of the thesis, you need to set up the development environment as 

described in the previous section. After that you need to do the following steps: 

1. Download and install R10. 

2. Add the folder where R executable is located to your PATH variable. 

3. Copy the entire Results folder from the DVD to the source folder of your 

project. 

4. If you want to see how the files are created from scratch, delete the folder 

Source/Results/Processed. 

5. Open the Unity project and open the scene Scenes/AnalysisHelperScene. 

6. Start play mode. 

7. Wait until all the objects delete themselves and the only object in the scene 

is Main Camera. After that you can stop the game. 

8. Run the PowerShell script DrawAllAlgorithmErrorGraphs.ps1 located in 

the source folder.  

o If the script fails to run, you might need to change your execution 

policy. Open PowerShell as administrator and run the following 

command: 

Set-ExecutionPolicy unrestricted 

9. Open the generated results file 

Source/Results/Processed/Summary/SuccessfulUsersSummary.csv. This 

should be the same file as the one used for the analysis in the folder 

Results/SummaryAnalysis/SuccessfulUsersSummary.csv. 

Note that the entire result analysis was done with no focus on user friendliness 

and maintainability, as the process was always meant to be single use only. Therefore, 

some of these steps might take a long time and freeze the UI while they do their work. 

 

10 https://www.r-project.org/ 

https://www.r-project.org/
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Project documentation 

 In this section we will provide a high-level summary of the project. However, 

we will not go into concrete implementation details that could be easily understood 

from the source code. Before trying to understand the code, we recommend playing 

the game, as being familiar with how the game works should help the reader 

understand what is going on under the hood. 

Terminology 

 There are several terms we use throughout the code which the reader should 

familiarize herself with. 

• Combatant – This is the umbrella term for all enemies and player characters. 

• Hero/Player Character – These are used interchangeably in code. They 

represent a single character the player controls. 

• Monster/Enemy – These are also used interchangeably and represent a single 

enemy that can appear in the game. 

• Encounter – throughout the code, we use encounter in the same context we 

used enemy group in the thesis, i.e., the list of all enemies appearing in an 

encounter. 

• Cutscene – A sequence of events in the game in which the characters do 

something, and the player has no control over it. In Thesis Quest this is a 

situation where characters enter a room when it is opened. 

Scenes overview 

 In the folder Source/Assets/Scenes you can find 5 different scenes: 

• MainMenu – This is the entry point of the game. It shows the GDPR consent 

screen and the main menu. It also shows the intro text if the user chooses to 

start a new game. 

• DungeonScene – This is the main scene of the game. When it is loaded, the 

Map Loader object tries to find a Level Loader Object. This is an object that is 

not destroyed between scenes and provider information about which map 

should be loaded. Map Loader generates the appropriate dungeon and spawns 

the player. Once the player reaches the end of the level, the Level Loader shows 
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the next story segment, asks the player to fill out a survey if necessary, and 

loads the next level. That level will be either another DungeonScene or the 

Credits Scene. 

• Credits – This scene shows the end credits of the game. Once the credits are 

over, the session is reset, new User ID is generated, and the game goes back to 

the game menu. 

• CombatSimulator – Development only scene. This scene is similar to the 

DungeonScene. It is used to generate a difficulty matrix. When it is loaded, the 

CombatSimulator object will spawn some enemies and heroes controlled by 

AI. Once the encounter is over, the object logs the result, removes all enemies 

and heroes from the game and spawns new ones. This is repeated indefinitely, 

the user is expected to close the game by force when there are enough results. 

As this was always meant to be development only, parametrization of the 

combat simulator can only be done directly in code 

• AnalysisHelper – Another development only scene. It exists only to analyze 

results. This entire process was done in the simplest way possible with no focus 

on reusability or maintainability, as we do not expect to repeat the analysis in 

the future. 

These scenes use a decentralized architecture. Whenever a component requires 

some dependency, it searches the entire scene for it, throwing an exception if the 

dependency could not be found. Not finding a dependency leads to undefined behavior. 

The functionality of most of these components should be clear from their name, source 

code, and the reference documentation.  

Some of these scenes might be inefficient when used during development. For 

example, the DungeonScene loads the entire difficulty matrix into memory when the 

scene launches, which freezes the engine. However, this is not a problem during the 

actual gameplay, as the matrix is preloaded on a different thread in the main menu 

before it is needed for the first time. 

When trying to get an understanding of these scenes, note that the Generated 

dungeon object also contains several important components, namely components 

handling pathfinding, information about room layout and the component responsible 
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for spawning heroes and enemies. This Generated dungeon object does not exist before 

runtime and can only be seen in the play mode. 

Level generation 

 For level generation we use the dungeon generator library created by 

Nepožitek[6]. The documentation for this library is available online11. We use an older, 

v1 version of the library than the one available right now, so some details might be 

different. 

 This library requires as its input a graph describing the rooms that should 

appear and which rooms should be connected to each other. Example of such a graph 

is the file Source/Scenes/LevelGraphs/TestLevelGraph, which can be only opened 

directly in Unity. The designer must specify game objects that specify rooms that can 

appear in the game and corridors that can connect these rooms. We have extended the 

level graph to allow the designer to set parameters for individual rooms. These 

parameters specify what kind of an encounter should happen in the room the player 

enters and what should the rewards be. 

 This level graph is than passed to the Dungeon Generator object in the 

DungeonScene. This object contains a pipeline of steps that will be executed in 

sequence when a dungeon should be generated. We extended this pipeline with custom 

steps. These are the steps with the “EG” prefix. They do game specific tasks like 

adding custom objects to the map or storing information about the level layout to be 

used at runtime. 

Note that the architecture of the original library requires us to go through 

several objects to get to the implementation of each pipeline step. If you double-click 

on some step in the pipeline, it will open a scriptable object in the project. If you double 

click on the Script property of the object, a source code will appear, e.g., 

SpawnObjectConfig. However, this still represents only the data this pipeline step 

needs. To get to the implementation of this pipeline step, you need to find the matching 

 

11 https://ondrejnepozitek.github.io/Edgar-Unity/docs/introduction/ 

https://ondrejnepozitek.github.io/Edgar-Unity/docs/introduction/
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task for this config object, e.g., SpawnObjectTask. It is always located in the same 

folder as the Config class, in the Source/Assets/Scripts/DungeonGenerator folder. 

 To specify which levels should appear, we created one more scriptable object, 

LevelDefinition. This object contains additional data about a level, e.g., which story 

text should appear, a link to the survey that should appear before this level, the graph 

of the level to generate etc. The Level Loader prefab contains the ordered list of these 

LevelDefinition objects and opens the next level when it should appear. 

Prefabs 

  Whenever a game object is complex enough or is reused between scenes, we 

place it in a prefab to improve maintainability. These are stored in the folder 

Scenes/Assets/Prefabs. Whenever you wish to know how some specific object works 

in the game, e.g., some specific enemy, try to find the appropriate prefab in this folder 

and examine it.   
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Appendix C – DVD contents 

 In this section we will describe the structure of the DVD that is attached to this 

thesis. 

• Binaries – Contains the executable files relevant to this thesis. 

o Encounter Simulator – The application which generates the initial 

matrix. 

o Thesis Quest – The binaries of the game itself which were distributed 

to the players. Each folder contains a zip which must be extracted 

before playing. Do not try to extract the macOS and Linux builds on 

Windows, they can contain symlinks which will break on Windows. 

▪ Linux – The Linux build of the game. 

▪ Mac – The macOS build of the game. 

▪ Windows – The Windows build of the game. 

• Documentation – The generated reference documentation of the project. 

o index.html – To read the documentation, open this file in a web 

browser. The generator also created files that would enable search 

functionality if the site were hosted online. However, we do not 

officially support that functionality, the documentation is meant to be 

viewed locally without being hosted anywhere.  

• Results – Both raw and processed results of the experiment. 

o Processed – The raw data processed into a more user-friendly form. 

▪ Summary – Contains only a single file, 

SuccessfulUsersSummary.csv, that served as the base for the 

analyzed CSV files in the SummaryAnalysis folder described 

below. 

▪ IndividualTests – Contains the results of each separate 

experiment session. They are split into many subfolders to help 

the user with finding the relevant data. First the data are split by 

the version of the experiment (v1 is the first experiment run with 

bugs, v2 is the fixed version). These folders are split by the 

experiment group. In addition to the G-First (GeneratedFirst) 

and S-First (StaticFirst), there are also groups for users who did 
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not finish the tutorial (TutorialOnly) and for users who 

experienced the bug which caused the enemies to stop 

appearing (InvalidValues). The groups are further split into 

subfolders based on how many levels did the player complete. 

These subfolders then contain a folder for each test run, with the 

name of the folder corresponding to the user ID of the player 

who played the test. Each folder contains some of the following: 

• errorGraph.png – The graph describing how the 

algorithm error developed over time. 

• log.txt – User friendly description of the individual 

encounters in this experiment. Lists only those that 

affected the matrix. 

• rawdata.csv – Contains a subset of data from data.csv 

described below, specifically, only those rows relevant 

to the current experiment session. This file is still not 

human friendly, as it mixes data of different kinds in a 

single file. 

• HalfSurvey.csv – The survey the user filled out in the 

middle of the experiment. 

• Endsurvey.csv – The survey the user filled out at the end 

of the experiment. 

• Unfinished.csv – The survey the user filled out when he 

did not finish the experiment. We are not sure if these 

are properly assigned. For each experiment session we 

found the time of the last event sent to the server and 

tried to match it with a survey with similar start time. 

However, this is not 100% reliable. 

• VisualizationX.png – X is the index of the encounter. 

Contains the visualization of the matrix after the Xth 

encounter. The encounter details can be found in the 

log.txt file. 

o Raw – The files with unprocessed results of the experiment. 
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▪ data.csv – All the data that were uploaded to our server, 

containing results of every single encounter of every player. 

▪ GeneratedFirstComplete.csv – Survey results for the G-First 

group at the end of the experiment. 

▪ GeneratedFirstHalf.csv – Survey results for the G-First group 

in the middle of the experiment. 

▪ StaticFirstComplete.csv – Survey results for the S-First group 

at the end of the experiment. 

▪ StaticFirstHalf.csv – Survey results for the S-First group in the 

middle of the experiment. 

▪ Unfinished.csv – Survey results of the players who did not 

finish the experiment. 

o SummaryAnalysis – Analysis of the SuccessfulUsersSummary.csv file 

described above. 

▪ AllPlayers_GeneratedVsStaticEncounters.csv – This file 

compares how all successful players viewed static encounters 

when compared with the generated encounters. 

▪ DifficultyHypothesis.csv – This file has details about our 

testing of the fourth hypothesis described in the section 6.3. 

▪ DoorOrderHypothesis.csv – This file has details about our 

testing of the first hypothesis described in the section 6.3. 

▪ FlowHypothesis.csv – This file has details about our testing of 

the third hypothesis described in the section 6.3. 

▪ GeneratedVsStaticFirst.csv – This file compares the 

experiences if the G-First group with experiences of the S-First 

group. 

▪ GFirst_GeneratedVsStaticEncounters.csv – This file compares 

how players from the G-First group viewed static encounters 

when compared with the generated encounters. 

▪ RatingHypothesis.csv – This file has details about our testing of 

the second hypothesis described in the section 6.3. 

▪ SecondPhaseVsThirdPhase.csv – This file compares how all 

successful players viewed the second phase with how they 

viewed the third phase of the experiment. 
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▪ SFirst_GeneratedVsStaticEncounters.csv – This file compares 

how players from the S-First group viewed static encounters 

when compared with the generated encounters. 

▪ SuccessfulUsersSummary.csv – The source data for this 

analysis. 

• Source – The source files for the game. Described in detail in Appendix B. 


