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Introduction
For humans, vision plays the most important role in building representation of
the surrounding environment. We rely on sight heavily – some even estimate
that information from our eyes accounts for eighty percent of stimuli from the
environment. It is, therefore, no wonder that, with the help of cheap recording
devices that everybody carries in their pockets, we have become obsessed with
capturing what we see.

Smartphones enabled us to record every moment of our lives, and personal
archives of photos and videos started growing rapidly. With the rise of social
networks and the internet in general, we began not only capturing photos and
videos but also sharing them online. In 2013 it was reported that just only
Facebook’s databases contained 250 billion photos with 350 million new photos
added every day by its users1 – a figure that has probably grown since. Video
platform YouTube announced in 2019 that it had been receiving more than 500
hours of video every minute2. To put that in context, humans live shorter lives
than the length of videos uploaded to the service every day.

With such amount of multimedia being recorded, new problems and challenges
arise. Given the enormous sizes of collections, it is impossible to sequentially
browse through the data. Efficient methods for work with multimedia collections
need to be utilized. The use-cases for these methods vary from a plethora of
methods for searching and transcribing the content to the summarization of the
individual parts of the collections [1, 2, 3]. Multimedia in the collections are,
however, usually not manually annotated, and contain only basic metadata such
as date, time, and location, if any at all.

In recent years, thanks to deep learning, we have seen huge improvements in
many areas, including automatic annotation of images, videos, and other types of
multimedia. Yet video, one of the richest type of multimedia, still presents multi-
ple challenges, such as its enormous size. Compared to other types of media like
text, audio, or images, video sizes are whopping – a short clip can easily require
a hundred times as much space as a single image. Comparison is even starker
in the case of audio and text. As the deep learning-based approaches usually re-
quire large datasets, applying deep learning on video-related tasks depends upon
the collection of harder to obtain and more time consuming to annotate datasets
when compared to their image counterparts. Furthermore, training of the models
requires more computational power and time due to the increased dimensionality
of the problem.

A popular approach to circumvent the need for large training datasets or lack
of computational power in end-to-end deep learning is to decompose a problem
into multiple sub-problems, solving each independently. In the video domain,
that means, for example, to extract image features from each frame and train a
model utilizing only the extracted features instead of the high dimensional frames
themselves [2, 4]. In the domain of self-driving cars, one can create a model
predicting a depth map from multiple images [5] and then another model for

1https://www.theverge.com/2013/9/17/4741332
2https://www.cnbc.com/2018/03/14/with-over-1-billion-users-heres-how-

youtube-is-keeping-pace-with-change.html
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obstacle detection using the images enriched with their depth [6]. In text-based
systems, it is not uncommon to build on top of Word2Vec-like [7] pre-trained
embeddings instead of training embeddings from scratch [2, 4]. In general, the
less training data there is, the more likely there will be benefits to utilizing the
multi-step approach.

Many video-related methods take the decomposition approach to an extreme
by discarding any temporal information from a video and working only with
single frames or simply averaging multiple frames’ features [2, 4]. Surprisingly,
until very recently [8], these methods dominated many video related benchmarks,
probably due to lack of annotated video data. Strangely, even with the introduc-
tion of large annotated video datasets [9], we do not see such a sharp boost in
performance, which can be seen in the image domain. Some theorize it is in part
due to vagueness and ambiguity of actions observed in videos. Action ‘playing
tennis’ can for different people mean vastly different clips. TV broadcasts from
Wimbledon, table tennis tournament with friends in a basement, a kid hitting a
ball in a backyard, or a computer game are all valid alternatives. Even though
there is also ambiguity between objects, it is usually less pronounced.

To overcome the ambiguity and to correct errors of automatic methods, there
has been research in human-assisted approaches [10]. They revolve around as-
sisted browsing in the collections by utilizing novel user interfaces [11], hierarchi-
cal collection maps [12], or iterative query refinement by positive and negative
examples [13, 14]. However, a comparison of such approaches is difficult because
a person needs to be present in the evaluation loop. In recent years competi-
tions such as Video Browser Showdown (VBS) [10] or Lifelog Search Challenge
(LSC) [15] emerged to accelerate research in human-assisted approaches, in par-
ticular in a task of known-item search. The known-item search (KIS) task rep-
resents a situation where a user searches for a given item (usually an image or a
segment from a video) in a large collection of data. With an increasing amount
of multimedia content we generate, there is a wide range of image or video collec-
tions where know-item search scenario may play an important role – a personal
photo or video archive, footage from CCTV cameras, databases of news clips or
medical videos to name a few.

Over the years, Video Browser Showdown served as a stage for an evaluation
of many known-item search approaches in large video collections. These are
important concepts mentioned by winning teams:

Powerful query initialization. It is beneficial to limit search space by an
initial query that filters out most of the unrelated items or, with enough luck,
immediately discovers the searched video segment. For many years, color
[16] or edge sketches were widely used; however, these are useful only if a
user knows the exact visual representation of a searched scene. Further, with
advances in deep learning, concept and text search replaced sketches as it is a
more effective approach [17, 18]. Lastly, note that the initial query also plays
an important role in many query refinement methods introduced in the next
paragraph as they require negative but also positive samples, which are hard
to gather without good initialization.

Effective query refinement. In large collections with a lot of similar con-
tent, it is unlikely that the searched scene will be found on the first try with
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a query. Many KIS tools support either assisted text query reformulation
based on presented results or encourage users to select positive and negative
examples to further narrow and rearrange the result set [13, 14]. Also, ‘find
similar’ function is widely used to retrieve similar content from the whole col-
lection [19, 18] – nowadays usually implemented as nearest-neighbor search
in high-dimensional representations of the content computed by deep neural
networks.

Fast assisted browsing. Browsing is utilized if a scene is not found us-
ing only the approaches mentioned above. Good browsing approaches should
exploit information from initial query results but also consider further explo-
ration. Some methods of browsing involve computation of 2D image maps
[20, 12], and some utilize the power of virtual reality [11]. Recently, Bayesian
approach that samples images to display based on their probability proved to
be successful [14].

Intuitive user interface. The tools are operated by not only the authors but
also by novice users. A cluttered user interface or hard-to-understand retrieval
models result in lower performance of a tool when operated by novices.

Key frame selection. In general, videos may be too long and may contain
different unrelated scenes. Therefore, the search is often performed on shorter
video segments. Usually, a segment of a video is represented by a single frame
(keyframe). The selection of the segment and its keyframe can be performed
by thresholding differences between (multiple) adjacent frames and their visual
features [21]. However, setting threshold too low results in oversampling,
which increases database size and clutters result lists. Too high threshold
causes some unique video segments to be missed. Recently more accurate
shot boundaries, detected by deep learning-based methods [22], have been
used instead of rather vaguely defined segments.

With these concepts in mind, at VBS 2019 [10] on V3C1 1000 hour dataset [21],
the best performing teams of experts were able to solve all ten tasks where the
search clip was played to an audience, and six out of ten tasks where only a
textual description was available. At VBS 2020, on the same dataset, the best
team in expert session solved five out of six visual tasks and eight out of ten
textual tasks. For the next years, much bigger datasets are planned; however,
given the rapid pace of innovation in deep learning and other related areas, we
expect to see even better results in the foreseeable future.

Our Contribution
In this thesis, we propose, implement, and evaluate new methods and improve-
ments in two key areas of video retrieval. Namely a shot boundary detection
and text search in video or image collections. For the shot boundary detection
– a task to detect continuous video sequence captured by a single camera – we
present a state-of-the-art method based on deep learning that outperforms both
standard thresholding methods as well as more recent learning-based methods
on multiple public benchmarks. For text search in video collections, we improve
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W2VV++ [4] – a model that computes the similarity between a text and video
by projecting both modalities into joint vector space using a neural network. We
enrich W2VV++ with a more powerful natural language model and discuss its
greatly superior performance on some tasks while achieving a bit lower perfor-
mance on others.

Our work is a culmination of many years of research primarily focused on
known-item search in video collections. Some of the work presented in this thesis
has been published at international conferences. Aside from the already pub-
lished content, the thesis contains more detailed method descriptions as well as
additional experiments and ablation studies, while other aspects of known-item
search are mostly left out as the sole focus of the thesis is shot boundary detection
and text search. The main publications regarding the content of the thesis are
the following:

1. A framework for effective known-item search in video [22]
Full paper describing effective approaches to known-item search. The paper
also introduces TransNet shot boundary detection network. Published at
ACM International Conference on Multimedia 2019 (CORE A*).

2. TransNet: A deep network for fast detection of common shot
transitions [23]
Short paper slightly extending the version published at ACM Multimedia.
Published on Arxiv.

3. A W2VV++ Case Study with Automated and Interactive Text-
to-Video Retrieval [24]
Full paper studying W2VV++ query representation learning model [4] in
text-based video retrieval scenarios. The paper also introduces our BERT
extension to the W2VV++ model. Accepted to ACM International Con-
ference on Multimedia 2020 (CORE A*).

4. TransNet V2: An effective deep network architecture for fast shot
transition detection [25]
Short paper describing our TransNet V2 model.

We also list some of the author’s publications in the field of known-item search:

5. Interactive Video Retrieval in the Age of Deep Learning – De-
tailed Evaluation of VBS 2019 [10]
Journal paper analyzing the results of VBS 2019. Published in IEEE Trans-
actions on Multimedia (IF = 6.051).

6. VIRET: A video retrieval tool for interactive known-item
search [26]
Short paper presenting our VIRET tool and showing an analysis of interac-
tion logs from VBS 2019. Published at ACM International Conference on
Multimedia Retrieval 2019.

7. VIRET at Video Browser Showdown 2020 [17]
Demo paper describing latest version of our retrieval tool. Published at
ACM International Conference on Multimedia Modeling 2020.
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Other demo papers [19, 27] were published on the occasions of the VBS and
LSC competitions at MMM and ACM ICMR respectively. Papers Revisiting
SIRET Video Retrieval Tool [28] and Using an Interactive Video Retrieval Tool
for LifeLog Data [29] were already presented in the author’s bachelor thesis.

We proudly report that we achieved first and second place at VBS 2018 and
VBS 2019 respectively. At VBS 2020, two tools [17, 14] using our shot boundary
detection method and a simplification of the W2VV++ model, as reported in
[24], achieved first and second place. Furthermore, we achieved third and second
place at LSC 2018 and LSC 2019 respectively.

Thesis Structure
The thesis is divided into two chapters. The first chapter introduces methods for
shot boundary detection and presents TransNet – a neural network for shot detec-
tion (Section 1.2). Further in the chapter, significant improvements to TransNet
are made, and a new network TransNetV2 is introduced (Section 1.3). Finally,
related works are reevaluated for a fair comparison with TransNetV2 in Section
1.4, and an ablation study is made. The second chapter introduces approaches to-
wards text search in image and video collections, especially the W2VV++ model
by Li et al. [4] (Section 2.1), and our extension W2VV++BERT is presented
in Section 2.2. Both models are thoroughly evaluated together with an ablation
study in Section 2.3.

Source code for TransNetV2, including a version with a trained model for easy
integration and reevaluation, training scripts, and dataset manipulation scripts
are provided as an attachment to the thesis as well as available online at https:
//github.com/soCzech/TransNetV2. Source code for the W2VV++BERT net-
work, together with trained weights and details for feature extraction, are also at-
tached to the thesis as well as available online at https://github.com/soCzech/
w2vvpp_bert.

Authorship
All experiments presented in this thesis have been conducted solely by the author
of the thesis with the only exception of the original TransNet model, described in
Section 1.2, which has been created by Mgr. Jaroslav Moravec. However, further
TransNet evaluations were done by the author of this thesis. Also, the model’s
description in Section 1.2 as well as the paper TransNet: A deep network for
fast detection of common shot transitions [23] and corresponding sections of the
paper A framework for effective known-item search in video [22] were written by
the author of this thesis with the help of his supervisor. TransNetV2 presented
in Section 1.3 has been solely the author’s work.

As the work presented in this thesis has been published at international con-
ferences, some of the thesis’ content may correspond to the author’s publications
listed above. All such possible correspondences were written by the author of this
thesis with the help of his supervisor.
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1. Shot Boundary Detection
Commonly, a video structure is as follows: The video is divided into scenes and
each scene into one or more shots. A shot is a continuous frame sequence cap-
tured by a single camera action [30]. Some works introduce stories, that group
semantically related scenes [31], or threads, that group similar shots, e.g. cap-
tured from the same camera point [32]. Shots are, however, the most studied
and the most used since shot detection is considered a fundamental step in video
analysis. Information about shots is being exploited in video summarization [33],
video retrieval for advanced browsing and filtering [34], or even content-based
copy detection [35]. However, information about the transitions is not available
in the video format. Therefore, automated shot boundary detection methods
need to be employed.

Any successful method must take into account that shot changes can be either
immediate (hard cuts) or gradual. Common types of gradual transitions include
dissolves (interleaving of two shots over a certain number of video frames), fade-
ins and fade-outs (also considered as special types of dissolves where one shot is a
blank image of a single color) and wipes (one shot slides from a side on top of the
other shot). However, there are also many more exotic geometric transformations
from one shot to another one. To make matters worse, shot boundary detectors
must distinguish between shot transitions and sudden changes in a video caused
by flashing light or partial occlusion of the scene by an object passing closer to
the camera. Fast camera motion or motion of an object in the scene should also
not be mistaken for a shot transition. This may indicate that some semantic
representation of a scene is necessary to correctly segment a video.

Lastly, in some cases, a shot boundary is not a well-defined concept and
question whether there is a transition may be subjective. Here we list some
ambiguous cases and leave it for the reader to decide whether it should be a
transition or not. Is a moment when captions are displayed at the end of a movie
a transition? What if they raise from the bottom of the frame? A camera slowly
enters a dark room – is it fade-out? Newscast with two reporters side-by-side
– what if there is cut in a window of one reporter? Yet, with these examples,
we only scratch the surface of the problem. Therefore, when used in the wild,
shot boundary detection methods need to be tuned to eliminate these ambiguities
based on a particular task at hand.

1.1 Related work
There has been a lot of research in shot boundary detection methods. The meth-
ods range from the most basic ones, that utilize only pixel-wise differences [36]
effective for cut detection in stationary shots with a small number of moving
objects, to more robust techniques that have been developed in the last years.
Firstly, we list some of the ‘standard’ methods not based on neural networks, fur-
ther in the section deep learning approaches are discussed. For a more complete
overview of the ‘standard’ methods, we point the reader to some of many review
studies available [31].

Color histograms. Widely used technique for shot boundary detection. It
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Figure 1.1: Visualization of RGB and HSV histogram of a single image. The intensity
of each bin indicates a number of image pixels with the given color. Third dimension
depicting green or value respectively is not shown.

is based on computing histograms for each frame and thresholding distance
between consecutive histogram representations. Instead of traditional RGB
histograms, some works use HSV histograms to reduce disturbance in illumi-
nation [37] (comparison shown in Figure 1.1) or LAB histograms since they
better approximate the way humans perceive color [35]. To improve the de-
tection rate, frames can be divided into multiple patches with histograms
computed for each patch [38]. Also, instead of a distance-based comparison,
χ2 comparison of color histograms is sometimes used.

Feature based methods. One of the earliest feature-based methods com-
putes changes in edges of subsequent frames [39]. It is based on observation,
that during transition, new edges appear far from the locations of old edges
and vice versa. However, the work of Rainer Lienhart [40] shows that the
method brings no significant improvements over color histograms. Nonethe-
less, edge-like features are utilized in shot boundary detector by Shao et al.
[41] where histogram of gradients is used as a secondary method to HSV his-
togram. Apostolidis et al. [42] take advantage of scale and rotation invariant
SURF descriptors [43] to measure differences between a pair of frames.

Clustering. Given a feature vector for each frame such as a color histogram or
more recently a vector computed by a neural network, a clustering algorithm
can be run to determine shot boundaries. Verma et al. [44] use a special form
of hierarchical clustering to join consecutive frames into shots while Baraldi
et al. [45] utilizes clustering to determine which shots belong to a particular
scene.

Support vector machines (SVMs). Given a set of adjacent frame similar-
ities, it may seem arbitrary to select a threshold value that decides whether
there is a transition or not, especially for gradual transitions. In the work of
Chasanis et al. [46], SVMs are trained on a sliding window of neighboring
frame similarities to predict shot boundaries instead of using a simple thresh-
old. Tsamoura et al. [47] increase the chance of detection by adding new
similarity/distance metrics based, for example, on Color Coherence Vectors
[48] to the SVM’s input feature vector.

Flash detection. Commonly, some videos contain either photographic
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flashes or overexposed frames due to change in illumination of a camera sen-
sor, e.g. when a light is turned on. It is not uncommon to perform a post-
processing step that compares frames or their features such as luminance val-
ues that are adjacent to potential shot boundary [49]. If there is no significant
change observed in the adjacent frames, probably a flash occurred.

Other false positive suppression methods. Motion in a scene or motion
of a camera can result in many false positives. Camera motion estimation [50]
or optical flow [51] methods are used to reduce the number of false alarms,
especially for gradual transitions. When not using SVMs, a threshold for
transition detection has to be set. Work of Yeo et al. [52] sets the threshold
adaptively since using the same threshold for different video genres can result
in many false positives in one and false negatives in another.

Between years 2001 and 2007 there had been automatic shot boundary detec-
tion (SBD) challenge held annually at TRECVid (TREC Video Retrieval Eval-
uation) [53] with teams utilizing many of the described techniques; however, it
was discontinued due to no observed improvements over the last years of the
challenge. Significant improvements came with deep learning revolution when,
for example, the work of Hassanien et al. [54] achieved on the RAI dataset F1
score of 0.94 improving previous state-of-the-art by 0.1 from 0.84 [55, 42]. There-
fore, the next paragraphs introduce deep learning approaches towards the shot
boundary detection.

1.1.1 Deep Learning Methods

Figure 1.2: Comparison of early fusion (left), late fusion (middle) and 3D convolutions
(right). In the case of late fusion, some aggregation over frames must be done to capture
temporal information (not shown).

Exciting results of Krizhevsky et al. [56] sparked a great interest in image clas-
sification research using convolutional neural networks. These networks, trained
in a fully supervised manner, learn a rich semantic representation that can be
repurposed to novel generic tasks [57]. Therefore, one of the first deep learning
SBD works [58] revolves around utilizing this readily available ‘deep’ represen-
tation. It uses FC-6 features from AlexNet neural network [56] and employs
cosine similarity between frames’ features in the decision process, whether there
is transition.

To utilize temporal information in a neural network directly, many approaches
have been developed. The late fusion [59] approach extracts features from indi-
vidual images. The features are then merged, for example, by averaging them
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Figure 1.3: C3D architecture by Tran et al. [61]. C3D net has 8 convolution, 5 max-
pooling, and 2 fully connected layers, followed by a softmax output layer.

over time or concatenating a fixed number of them. Fully connected layers are
placed atop the aggregated representation. The early fusion approach stacks N
(subsequent) frames in channel dimension therefore increasing number of chan-
nels in input from three (RGB) to 3 × N . Two-stream architecture [60] utilizes
two networks – one for single frame and another one that processes optical flow
information from multiple adjacent frames. Figure 1.2 shows a visual comparison
between these approaches.

However, all of the above approaches utilize only 2D convolutions. First widely
popular network utilizing 3D convolutions C3D (Figure 1.3) introduced in the
work of Tran et al. [61] showed modest improvements over 2D approaches. Bigger
I3D network [62], closely resembling 2D convolutional network InceptionV1 [63],
brought further improvements and also showed the benefits of the Two-Stream
approach still hold even for 3D convolutional networks. Other improvements
were achieved by separation of 3D convolutions into spatial-only and temporal-
only convolutions [64, 65].

Using 3D convolutions for shot boundary detection has been popularized by
Gygli [66] and Hassanien et al. [54]. The later work introduces DeepSBD frame-
work consisting of a CNN-based classification step, a merging step, and a post-
processing step. The network, based on C3D architecture, takes 16 subsequent
frames and predicts whether the segment contains sharp or gradual transition.
The logits are, however, not used directly, but they are fed to an SVM classifier
to give a labeling estimate. Further, consecutive segments with the same labeling
are merged, and Bhattacharyya distance between color histograms of the first and
the last frame of the proposed transition segment is computed. If the distance
is small, the segment is considered as false positive and removed from a set of
transitions.

The work of Gygli removes all post-processing steps by using only predictions
from a 3D convolutional network. The network consists of 5 convolutional layers
with a much smaller number of parameters than C3D. It takes 10 subsequent
frames and predicts whether there is a transition between the middle frames.
Because of the fully convolutional nature, the network can be stretched to take
N frames and produce output for the middle N −9 frames eliminating the need for
processing most of the frames multiple times. Further, this approach can localize
the exact position of a transition, which is impossible in DeepSBD. However,
reported performance is worse than the one reported by Hassanien et al.

1.1.2 Datasets
The above mentioned deep learning methods all rely on large annotated datasets.
Since most of the available datasets are small and also used for evaluation, both
Gygli [66] and Hassanien et al. [54] overcome the need for the large dataset by
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generating synthetic training examples. Both works generate sharp transitions
(hard cuts), dissolves, and simple horizontal wipes. The DeepSBD system further
enriches a set of possible transitions by non-linearly interleaving dissolves and
more complex wipes. Gygli adds artificial flashes to the non-transition sequences
to make the network invariant to these kinds of changes.

For evaluation TRECVid SBD datasets are commonly used; however, they
are old and publicly unavailable. A small, manually annotated dataset of broad-
casting videos, mainly documentaries and talk shows from the archive of Italian
TV station Rai Scuola [55], has been used by many works. Further, the same au-
thors released manually annotated shot and scene boundaries for all 11 episodes
of the BBC educational TV series Planet Earth [45]. The whole dataset contains
around 4900 shots and 670 scenes. Recently, new database ClipShots [67] was
released containing 4039 online videos with manually double annotated 128636
cut transitions and 38120 gradual transitions. The dataset contains videos from
Youtube and Weibo covering more than 20 categories, including sports, TV shows,
animals, etc. with hand-held camera vibrations, large object motions, and occlu-
sion. Its test set consists of 500 videos with 5876 cut transitions and 2422 gradual
transitions.

The authors of the ClipShots dataset also introduce their system based on
a three-step pipeline. Firstly, SqueezeNet [68] features for each frame are used
to compute similarities between frames to reduce the number of candidates for
transitions. A cut detector is applied to the transition candidates, and, in the
end, if no cut transition is detected, a gradual detector is applied. For the cut
detector, either C3D network or 2D ResNet-50 with the input of 6 concatenated
subsequent frames is used, with the latter achieving better results. For gradual
transition detection, both the DeepSBD-like system and a 3D version of ResNet-
18 [69] are tested. The version with ResNet performs per-frame classification
as well as transition regression similar to region proposal in object detection.
According to the authors, their ResNet based system outperforms DeepSBD1.

1However, the only code provided by the authors is the reimplementation of DeepSBD,
which contains an evaluation script that does not account for double detection of transitions
and possibly other errors. Therefore, the reported results should be taken with a grain of salt.
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1.2 TransNet
This section introduces TransNet, scalable architecture for shot boundary de-
tection introduced in [23, 22]. The network features multiple dilated 3D con-
volutional operations per layer and achieves state-of-the-art results on the RAI
dataset [55]. Firstly, we describe the model architecture, then we introduce per-
formed experiments and report their results. Further, in the next section, im-
provements to the TransNet are presented. Some texts in this section overlap
with our paper [23]. These texts were written by the author of this thesis.

1.2.1 Model Architecture
The proposed TransNet architecture (Figure 1.4) is inspired by many very suc-
cessful convolutional architectures for image classification [56] or action recogni-
tion [61]. Commonly these architectures feature a layer or a cell that consists of a
single or multiple convolutional operations, each with different parameters. These
cells are stacked to form the whole network. To reduce the spatial and temporal
resolution of the network, reduction cells are included in between some of the
standard cells. These consist of either pooling operations or convolutions with
greater strides. TransNet is built upon these concepts with the only exception of
temporal pooling, which is not applied to precisely localize shot boundaries on
the level of individual frames. In general, the network takes a sequence of N con-
secutive video frames and applies series of 3D convolutions returning a prediction
for every frame in the input. Each prediction expresses how likely a given frame
is a shot boundary.

Convolutional neural networks for video-related tasks such as C3D [61] intro-
duced for action recognition employ many 3D convolution layers. However, a big
problem with 3D convolutions is that even minimal 3 × 3 × 3 convolutions can be
prohibitively expensive. Yet it is not uncommon for a transition to span across
dozens of frames; therefore, it is necessary to ensure a wide temporal field of view
for the convolution operations, which is computationally even more expensive.
Also, the larger the convolutional kernels are, the bigger the number of param-
eters is, which can result in over-fitting, especially since shot boundary datasets
are rather small compared to, for example, large image classification datasets
such as ImageNet.

TransNet solves this problem by utilizing dilated convolutions that have been
successfully applied to many tasks ranging from image segmentation [70] to audio
generation [71]. The main building layer of the model, dubbed Dilated Deep
CNN (DDCNN) cell, is designed to have a large field of view with a minimal
number of parameters while still maintaining the ability to capture a change in
two consecutive frames. The cell consists of four 3D 3 × 3 × 3 convolutional
operations each with Nin × 3 × 3 × 3 × Nout/4 learnable parameters where Nin is
number of filters from the previous layer and Nout is number of filters outputted
by the cell. Each of the four convolutions employs different dilation rates for the
temporal dimension. The rates are 1, 2, 4, and 8, i.e. the first convolution is
standard 3 × 3 × 3 convolution that looks one frame to the left and one frame to
the right, the last convolution looks at the eighth frame to the left and the eighth
frame to the right. The four convolutional outputs are concatenated, creating a
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Figure 1.4: TransNet shot boundary detection network architecture [23]. Note that
N represents the length of a video sequence, not batch size.

representation with Nout filters. Compared to standard convolution with the same
number of output filters and the same field of view, the DDCNN cell achieves
more than a six-fold reduction in the number of learnable parameters.

Multiple DDCNN cells on top of each other, followed by spatial max pool-
ing, form a Stacked DDCNN block. The TransNet consists of multiple SDDCNN
blocks, every next block operating on smaller spatial resolution but with a larger
number of filters, further increasing the expressive power and the receptive field
of the network. Two fully connected layers refine the features extracted by the
convolutional layers and predict a possible shot boundary for every frame repre-
sentation independently (layer weights are shared). ReLU activation function is
used in all layers, with the only exception of the last fully connected layer with
softmax output. Stride 1 and the ‘same’ padding is employed in all convolutional
layers.

1.2.2 Datasets and Evaluation Metric
Following the works of Gygli [66] and Hassanien et al. [54], we generate the
dataset synthetically. Unlike Hassanien et al. who generates the transitions prior
to the training, we create transitions on the fly during training, i.e. each network
is trained with slightly different shots. This approach does not require to store
pre-generated combinations of a first shot, a transition, and a second shot and
allows for completely arbitrary shots joined with any transition. We take prede-
fined temporal segments from the TRECVid IACC.3 dataset [72]. The dataset
contains approximately 4600 Internet Archive videos with a mean duration of
almost 7.8 minutes. During training, pairs of the predefined video segments are
randomly selected from a pool of available ones. More specifically, we consider
segments of 3000 IACC.3 randomly selected videos. Segments with less than 5
frames were excluded, and from the remaining set, only every other segment was
picked, resulting in selected 54884 segments.

The validation dataset consists of additional 100 IACC.3 videos not present
in the training set that were manually labeled by Moravec [23]. The dataset
contains approximately 3800 shots. For testing, the RAI dataset [55] of ten
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manually annotated videos is used. The videos are mainly short documentaries
or talk shows from an archive of an Italian TV station.

Following the work of Baraldi et al. [55], we use the F1 score as the evaluation
metric2. Baraldi et al. report the F1 score as an average of individual F1 scores
for each video. We rather use the standard F1 score – a function of true/false
positives and false negatives from all the videos but report both where appro-
priate. In Figure 1.5, we show some cases of detected transitions considered to
be true positives, false positives, or false negatives. A true positive is detected
only if the detected shot transition overlaps with the ground truth transition (3,
4 in green). A false positive is detected, if the predicted transition has no overlap
with the ground truth (1, 4 in red) or the transition is detected for the second
time (3 in red). A false negative is detected if there is no transition overlapping
with the ground truth (1, 2 dotted) – the ground truth transition is missed.
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GT transition
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Figure 1.5: Visualization of the evaluation approach. Predicted transitions shown
with solid and missed with dotted rectangles. Figure taken from [23].

1.2.3 Training Details
The training samples are generated on demand by randomly sampling two videos,
taking first not yet selected shot from both videos, and joining the shots by a
random type of a transition. Only transitions considered for training are hard
cuts and dissolves. The position of the transition is generated randomly. For
dissolves, also its length is generated randomly from the interval [5, 30]. The
length of each training sequence N is selected to be 100 frames. The size of the
input frames is set to 48 × 27 pixels.

For each frame, the network learns to predict whether there is a transition
between the current frame and the next frame. Even in the case of dissolves, when
the transition is over multiple frames, the network is trained to predict only the
middle frame as a shot boundary. Negative training samples with no transition
are not used since the network learns it from the no-transition segments of the
input sequence.

The proposed architecture contains the following meta-parameters. We insti-
gate the best meta-parameter setting by a grid search and report the results in
Section 1.2.5.

1. S – the number of DDCNN cells in a SDDCNN block,

2. L – the number of SDDCNN blocks,

3. F – the number of filters in the first SDDCNN block (doubled in each
following SDDCNN block),

2The original source code of the evaluation method from Baraldi et al. is available at
http://imagelab.ing.unimore.it/imagelab/researchActivity.asp?idActivity=19
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4. D – the number of neurons in the dense layer.

Prior training, weights are initialized by Glorot initializer [73], biases are
initialized by zeros. A batch size of 20 was used for all investigated networks.
To prevent over-fitting to synthetically generated transitions, the networks are
trained only for 30 epochs, each with 300 batches resulting in 180,000 transitions
in total. The best model is selected according to its performance on the validation
set. We use Adam optimizer [74] with the default learning rate 0.001 and cross-
entropy loss function. Depending on the architecture, the whole training takes
approximately two to four hours to complete on a single Tesla V100 GPU.

1.2.4 Prediction Details
The network predicts the likelihood of a transition for all N = 100 input frames.
During validation and testing, only predictions for middle 50 frames are used due
to incomplete temporal information for the first/last frames. Therefore, when
processing a video, the input window is shifted by 50 frames between individual
forward passes through the network. At the start and the end of a video, the first
frame and the last frame respectively are duplicated 25 times to pad the video to
ensure no unexpected transitions are generated at the video’s ends.

For a video, a list of shots is constructed in the following way: A shot starts at
the first frame when the predicted likelihood of a transition drops below a thresh-
old θ and ends at the first frame when the predicted likelihood exceeds θ. Since
the network is trained to predict only one transition frame per any transition,
even in case of long dissolves, we lower the acceptance threshold θ to 0.1 instead
of using the common 0.5 in all our experiments as it performed reasonably well
for most of the models.

1.2.5 Results
As already mentioned in Section 1.2.3, the grid search is performed on four main
meta-parameters of the architecture. In Table 1.1 F1 scores of investigated models
are reported for validation (IACC.3) and test (RAI) datasets. Based on the
evaluations, the best performing model is considered the one with 16 output
filters in every convolution operation in the first SDDCNN block, two DDCNN
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IACC.3 71.0 70.9 72.0 72.0 71.7 71.6 70.4 71.4 69.5 73.4 71.6 72.7 73.1 71.6 69.9
RAI 92.9 94.4 93.6 93.4 93.1 93.8 93.4 94.4 91.9 92.2 93.6 91.4 94.0 91.8 92.9

Table 1.1: Meta-parameter grid search results on validation (IACC.3) and test (RAI)
datasets. Reported values are the F1 score in percents with three top-performing models
in bold. Data taken from [22].
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Figure 1.6: Precision/Recall curve for the best performing model with corresponding
thresholds θ next to the points (in red) and F1 score dependency on the threshold (in
blue). Measured on the RAI dataset. Figure taken from [23].

cells in every one of the three SDDCNN blocks, and with 256 neurons in the
dense layer (F=16, L=3 S=2, D=256).

Since the validation dataset contains various sequences of frames where even
annotators are not sure whether there is a shot transition, the reported scores for
the validation data are lower. Besides, even the top-performing TransNet models
face problems with the detection of some transitions, for example, false positives
in dynamic shots and false negatives in gradual transitions. On the validation
dataset, the selected model detected 1058 false positives and 679 false negatives
with respect to the annotation. This is in contrast to the RAI dataset results
reported in Table 1.2, where the network achieves a lower number of false positives
than false negatives. Based on manual inspection of the videos, we conclude that
the RAI videos do not contain many highly dynamic shots (i.e. resulting in
false positives) compared to the IACC.3 validation set while containing difficult
dissolves spanning over dozens of frames (i.e. resulting in false negatives).

The performance comparison of related works is shown in Table 1.3. The
average F1 score 94% of our top-performing model on the RAI dataset is on
par with the score reported by Hassanien et al. [54]. The overall F1 score even
slightly outperforms the work of Hassanien et al., even though they proposed a
network with more than 40 times as many parameters trained for a larger set of
transition types. Furthermore, our model has the advantage that no additional
post-processing is needed.
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Video #T TP FP FN P R F1
V1 80 57 2 23 96.6 71.3 82.0
V2 146 132 5 14 96.4 90.4 93.3
V3 112 111 4 1 96.5 99.1 97.8
V4 60 59 5 1 92.2 98.3 95.2
V5 104 101 8 3 92.7 97.1 94.8
V6 54 53 3 1 94.6 98.1 96.4
V7 109 103 1 6 99.0 94.5 96.7
V8 196 181 4 15 97.8 92.3 95.0
V9 61 55 2 6 96.5 90.2 93.2
V10 63 57 0 6 100.0 90.5 95.0

Overall 985 909 34 76 96.4 92.3 94.3

Table 1.2: Per video results on the RAI dataset. For each video, the total number
of transitions (#T), true positives (TP), false positives (FP), false negatives (FN),
precision (P), recall (R) and F1 score (F1) are shown. Table taken from [23].

Baraldi et al. Gygli Hassanien et al. ours
average 84 [55] 88 [66] 94 [54] 94
overall - - 93.4 [54] 94.3

Table 1.3: The Average and overall F1 scores for the RAI test dataset of the best
architectures. The overall F1 scores are computed by calculating precision and recall
over the whole dataset, not just a single video. Table taken from [23].
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1.3 TransNet V2
The original TransNet network, as described in the previous section, has a set
of limitations. In this section, we discuss them in detail and propose changes
to mitigate them. In the next section, we thoroughly evaluate and discuss the
proposed solutions. The contributions in this Section are presented in paper [25].

1.3.1 Limitations of TransNet
Shots for TransNet training are created artificially without taking into account
their real distribution in the wild, aside from focusing on the most prevalent types
of transitions. Even though it is convenient, automatically constructing training
samples has multiple downsides. Commonly, in the real videos, subsequent shots
share the same scene only captured from a different angle by another camera
or at a different time. These shots can have very similar features such as color
histograms, which makes them impossible to detect by such simple features. In
TransNet training, as shots are concatenated randomly, the concatenated shots
often do not share semantic meaning across the shots – the shots can be com-
pletely arbitrary – which does not force the network to learn more advanced
features needed for difficult transitions in the real distribution. Another problem
is the selection of the segments/shots. In the case of the IACC.3 dataset, they
are detected automatically by a shot detection algorithm, which itself has false
negatives and false positives. The false negatives do not present a challenge since
they are scarce, and the probability of sampling undetected transitions is low as
the actual shots are usually many seconds long. However, false positives in high
dynamic scenes mean that such hard negatives are missing in the dataset. Since
the dynamic scenes are probably the hardest for any detection algorithm, it may
be needed to manually label at least some dynamic scenes and use them as hard
negatives. This approach was taken, for example, by Hassanien et al. Finally,
the last problem is that the artificially created dataset contains only a fixed set of
selected transition types. However, not many types of transitions are commonly
used, so this does not present a big problem.

The datasets used for TransNet validation and testing are very limited in
size as well as very limited in transition types presented in the data. Also, the
validation dataset is created by a single person without any peer review or in-
dependent verification, and the videos themselves contain mostly user-generated
content of poor quality that no longer reflects the current state of user-generated
videos. Nowadays, many cell phones contain high-resolution cameras with high
dynamic range (HDR) support and image stabilization. HDR suppresses over-
exposures and under-exposures that commonly resulted in false positives. Optical
image stabilization and advanced digital stabilization [75] reduces handshake very
prevalent in content from older devices. Further, professional video equipment
that produces even less of such artifacts is becoming ubiquitous in amateur video
production. Our validation and test sets should also reflect that.

With the automatically precisely generated transitions without any compres-
sion and resizing artifacts, we see rapid over-fitting even already after a few hun-
dred batches, and the technique of early stopping needs to be employed. That
means the model is not trained until convergence, but only until the performance
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on the validation set stops improving. While training the model further improves
loss and performance on the synthetically generated datasets, it harms perfor-
mance on the real data. To mitigate the over-fitting, there have been developed
many techniques such as L2 regularization or dropout [76]. These techniques
impose restrictions preventing the model from being stuck in bad local minima
and forcing the model to focus on all activation values instead of only a small
discriminative set that is sensitive to noise.

Another approach to over-fitting is to vary input data to make models ro-
bust to such changes. In the image domain, there have been developed many
techniques for data augmentation revolving around contrast, color or brightness
changes, input masking [77], and others. Recently, even reinforcement algorithms
were used to create the best augmentation methods for a certain task [78]. In
our work, however, it is necessary to augment not only video frames but also the
transition generation process itself. Such augmentation is unique to shot bound-
ary detection task, and not much work has been done in this area since only a
handful of works use automatically generated datasets. We discuss our solutions
for the input data generation and augmentation in the next paragraphs.

1.3.2 Datasets and Data Augmentation
Unlike Hassanien et al. [54], we refrain from a fixed pre-generated dataset, which
enables us to employ various types of augmentation. We also utilize recently pub-
lished large manually annotated shot boundary dataset ClipShots. We describe
the dataset and augmentation methods, including their technical details, in this
Section.

Large Dataset

With the introduction of ClipShots [67], a dataset purposefully collected for shot
boundary detection, we no longer have to rely on automatic transition generation
since the dataset contains 166,756 manually annotated transitions. Hard cuts
consist of 77 percent of the dataset, while the rest is gradual transitions, including
dissolves and wipes. For training, we extract 160 frames long segments, each with
a transition in the middle, then during training, a randomly cropped segment of
length N = 100 is used. This way we ensure each training segment contains a
transition. We assume hard negatives are contained in these segments, and we
do not explicitly train the network on sequences without any transition.

However, as reported in the results section, interestingly, training only on
real data does not achieve the best performance. We therefore also utilize both
IACC.3 and ClipShot datasets for automatic transition generation. Note the
manual annotation of ClipShots does not have the problem of false positives in
dynamic scenes, as discussed in Section 1.3.1; therefore, we could also benefit from
that fact compared to training only on IACC.3. For the train set, we extract 300
frames long segments from each scene from the start, the middle, and the end of
the scene while skipping some, if the scene is shorter. For scenes shorter than
300 frames, we store the whole scene. During training, we select two random
segments and randomly crop them to the length of 100 frames and join them
by a random transition at a random position. If a segment is shorter than 100
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frames and the position of the transition means the final transition sample would
be shorter than 100 frames, the sample is discarded and not used for training.

Aside from our original IACC.3 100 video validation set, we use 457 videos
from the official ClipShots train set for validation. For testing the official Clip-
Shots test set [67], BBC Planet Earth documentary series [45] and RAI [55]
datasets are used. Again only predictions for 50 middle frames from the whole
100 frame input sequence are used to eliminate errors due to limited context.

Shot Augmentation

We apply standard image augmentation to each shot with all images in the shot
being augmented the same way in order not to create random color changes in
a single shot. When generating transition artificially, we augment the shot prior
to the shot joining. Firstly shot frames are flipped left to right with probability
0.5 and top to bottom with probability 0.1. Further, standard TensorFlow image
operations adjusting saturation, contrast, brightness, and hue are utilized. Satu-
ration and contrast of a shot are changed by a random factor from range [0.8, 1.2].
Brightness and hue are changed by random delta from range [−0.1, 0.1]. We also
use Equalize, Posterize and Color operations from Python image library PIL3.
Each operation is applied with probability 0.05, Posterize randomly keeps four to
seven bits of the original color, Color is applied with random factor from range
[0.5, 1.5].

Transition Types

Similarly to the original TransNet, we generate hard cuts and dissolves. We
generate 50% of hard cuts and 50% of dissolves, the length of each dissolve is
randomly uniformly selected from the set of even lengths {2, 4, . . . , 28, 30}. We
generate only even lengths of dissolve transitions so that the ground truth position
of the transition is exactly defined (for each frame we predict whether there is a
transition from the current frame to the next frame, i.e. in case of odd lengths
the transition can be either to the left or to the right of the middle frame).

3https://pillow.readthedocs.io, re-implemented in TensorFlow at https://github.
com/tensorflow/tpu/blob/master/models/official/efficientnet/autoaugment.py.

Figure 1.7: Examples of additional transition types. Standard wipe (left), flower
scene sliding in while church scene sliding out (middle) and flower scene sliding in while
church scene stationary (right).
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As the ClipShots test set contains also wipes, we experiment with adding
wipes into possible transition types. In 5% of dissolves, we generate wipe instead
of the dissolve. We consider both horizontal and vertical wipes. We also consider
sliding in the entering scene, sliding out the exiting scene, or both. See Figure 1.7
for illustrations of different types of wipes. However, we observe no improvement
in performance with wipes in the train set; therefore, we refrain from generating
them.

Color Transfer

To force the network to learn more advanced local features instead of simple global
features, we introduce shot color augmentation technique we call color transfer.
Given two shots we transfer color from one shot s1 to the other shot s2 by first
transforming both shots to CIE Lab color space, then we compute the new shot
s′

2 by the following equation:

s′
2 = σ1

σ2
(s2 − ŝ2) + ŝ1

where ŝi is mean and σi standard deviation of pixel values for respective shots.
The equation is applied pixel-wise on each of the three Lab channels indepen-
dently. Finally, we transform the new shot back to RGB color space. An example
of the color transfer can be seen in Figure 1.8. During training, the color transfer
is applied randomly to 10% of generated input sequences.

+ →

Figure 1.8: Example of color transfer augmentation technique between two shots.

Suppressing False Positives

We consider adding two types of special augmentation to reduce false positives
caused by handshake and rapid change of illumination e.g. by a passing object
in front of a light source. Handshake is applied to five percent of train sequences
by randomly removing the top (or bottom) k ∈ {1, . . . , 5} pixels from the first m
frames and removing bottom (or top respectively) k pixels from the subsequent
N − m frames. Finally, the frames are bilinearly resized to their original shape.
Illumination change is applied to five percent of train sequences by performing
the standard shot augmentation to only part of the sequence.

As the RAI dataset contains multiple sequences where color is changed be-
tween two subsequent frames, the illumination augmentation slightly improves the
results. However, the opposite is seen on ClipShots and BBC datasets, where the
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Figure 1.9: TransNet V2 shot boundary detection network architecture. Note that
N represents the length of a video sequence, not batch size.

addition of this type of augmentation creates more false negatives than it creates
true negatives since these phenomena are not prevalent in these test sets. There-
fore in the final model training, we use neither artificial illumination changes nor
handshake augmentation. Also, further manual inspection reveals the network
can learn to suppress flashes purely from unaugmented data (Figure 1.15A).

1.3.3 Architecture Improvements
Our TransNet V2 is based on the original TransNet network with three SDDCNN
blocks, each with two DDCNN cells. However, we make a wide range of changes
that substantially improve the network’s performance. A schema of the TransNet
V2 network is shown in Figure 1.9, and all the changes are described in detail in
the following paragraphs.
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Figure 1.10: DDCNN V2 cell with 4F filters.

Convolution Kernel Factorization

The TransNet benefits from using four decoupled convolutions instead of a single
one since the decoupling reduces the number of parameters and the network
is less prone to over-fitting, and also speeds up the computation. We further
investigate how to factorize the convolution kernel to reduce over-fitting while
preserving the benefits of a large field of view. In the image domain, depthwise
separable convolutions have been introduced. The depthwise spatial convolution
acts on each input channel separately and is followed by a pointwise (the standard
1 × 1) convolution, which combines the resulting output channels. This way, the
network is limited to learn only factorizable kernels; however, Chollet [79] shows
it improves classification performance of InceptionV3 network [80] on ImageNet
[81].

In video domain, Xie et al. [64] disentangles 3D k × k × k convolutions into
2D k × k spatial convolution and 1D temporal convolution with kernel size k to
improve I3D’s [62] performance on multiple datasets. Practically the separable
3D convolution can be implemented by two standard 3D convolutions with kernel
shapes 1 × k × k for the spatial and k × 1 × 1 for the temporal convolution. This
factorization of the convolutional kernel forces the network to learn to extract
image features in the first step and to compare them temporarily in the second
step. It also potentially reduces number of trainable parameters – Nin × k2 × F
for the spatial kernel and F × k × Nout for the temporal kernel compared to
standard Nin ×k3 ×Nout. If the number of input filters Nin is the same as output
filters Nout, then if the number of filters F in between the spatial and temporal
convolution is smaller than Nout ·k3/(k2 +k), the number of trainable parameters
of the separable 3D convolution is lower than the number of parameters of the
standard convolution. For kernel size k = 3 we may select any F < 2.25Nout

while still lowering the parameter count.
In our case, we observe that setting F = Nout is too extreme parameter

reduction, hampering the performance of the model. However, setting F = 2Nout

improves the performance substantially. Figure 1.10 shows the new version of the
DDCNN block with factorized convolutions.

Frame Similarities as Features

As already discussed in the related work section, many methods extract individ-
ual frame features and use them to compute similarity scores between consequent
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Figure 1.11: Learnable frame similarities computation with visualization of Pad +
Gather operation (right).

frames. The scores are then used as an input to a machine learning model such as
SVM that predicts the likelihood of transition purely from the similarity scores.
Similarly, we improve the performance of TransNet’s final fully-connected clas-
sifier by enriching the convolutional features by frame similarities. We consider
frame similarities computed both from handcrafted and learnable features. A
simple RGB color histogram with 83 = 512 bins is used for the handcrafted fea-
tures. For the learnable features, we take outputs of all SDDCNN blocks. Those
outputs of shape N × Hl × Wl × Cl are spatially averaged into vectors of shape
N × Cl and vectors from different levels l are concatenated thus every one of
the N frames is represented by vector vi of length ∑︁L

l=0 Cl. A single linear layer
without activation function is applied to reduce the dimension of the vector vi to
128.

For each frame, we compute cosine similarities of its handcrafted or learned
features with fifty frames preceding the frame and fifty frames following the frame.
The similarities are transformed by a single fully connected layer with the ReLU
activation function into 128-dimensional space and are concatenated with the
convolutional features. If not all of the fifty preceding or following frames are
available due to the limited length N of the input sequence zeros are used instead.
Figure 1.11 depicts such computation for the learned features.

Shortcuts

Some transitions are easy to detect by simple differencing in a minimal number
of layers, others need the full depth of the network to be detected. We add a
residual connection in each Stacked DDCNN block from the output of the first
DDCNN cell in the block to the input of the spatial pooling operation.
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Batch Normalization

Neural network training is dependent on the initialization of the network’s param-
eters. If parameters are not initialized carefully, activations inside the network
can rise to extreme values, which in turn can result in getting stuck in poor local
minima. We employ batch normalization technique [82] that normalizes outputs
of each layer by mean and variance computed from the input batch. It allows
us to worry less about the learning rate and be less careful about parameter ini-
tialization. More importantly, it also acts as a regularizer, so the network is less
prone to over-fitting.

Multiple Classification Heads

The original TransNet predicts every transition as a single frame transition, no
matter the length. This representation has its benefit that (almost) every frame
belongs to a scene – no frames are ‘inside’ a transition. Further, if two transitions
are very close to each other, there is no ambiguity if it is a single long transition
or two separate transitions. However, this representation does not provide in-
formation on transition length. Therefore we add a second prediction head that
predicts all in-transition frames instead of only the middle one. In some of our
preliminary experiments adding the second head slightly improves performance.
We hypothesize the network can learn more easily what constitutes as a transi-
tion and how long the transition is. Note that even though the information on
the length of a transition is readily available, we do not use it in any way in the
evaluation phase. However, we believe utilizing this information could, for exam-
ple, eliminate many double detections when a single long transition is detected
multiple times.

1.3.4 Other Changes
Optimizer

In recent years there have been countless efforts to improve the standard stochas-
tic gradient descent optimization method. RMSProp [83] and Adam [74] have
become some of the most widely adopted optimizers with both utilizing esti-
mates of gradients’ second moments. However, many state-of-the-art works in
the image domain [78, 84] refrain from using them and instead use rather prim-
itive stochastic gradient descent with momentum while achieving better results.
In our task, we observe that Adam optimizer is more effective in minimizing the
loss than SGD with momentum; however, we see performance improvements on
validation and test sets when using SGD with momentum compared to Adam.

Regularization

Artificially generated training data distribution is inherently different from the
real data distribution. To reduce generalization error, we restrict the model’s
parameter space by also minimizing the square of L2 norm of the parameters.
Such action increases error on artificially generated validation data; however, it
greatly reduces error on real data. Given the work of Loshchilov et al. [85],
we also investigate whether decoupling the L2 regularization from optimizer step
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computation – a technique known as weight decay – affects model’s performance.
While L2 regularization and weight decay are (after hyper-parameter re-scaling)
equivalent in the case of vanilla SGD, in more advanced optimizers, gradient
moments estimations are affected by the square of L2 norm of parameters in
the loss. Loshchilov et al. argue this phenomenon is responsible for the inferior
performance of Adam. However, in our case, when using SGD with momentum,
we do not see any significant difference between L2 regularization and weight
decay.

Another form of regularization we employ is Dropout [76]. It addresses the
over-fitting problem by randomly dropping units from the neural network during
training. In TransNet V2, we drop activations of the first fully-connected layer
with a probability 0.5.

Class Imbalance

The main classification head of the network is trained with only one frame la-
beled as transition and the other frames as no transition. In the case of long
dissolve transitions, missing the middle transition frame even by a single position
results in a large penalty; therefore, the network is inclined not to predict these
transitions with high confidence at all. The original TransNet solves the problem
by adjusting the decision threshold to 0.1. We look at the problem more gener-
ally and weight the positive class by γ. Based on the exact task and dataset at
hand, we may increase or decrease γ to increase recall or precision respectively.
For example, in retrieval, 100% recall is crucial, whereas high precision may be
preferred elsewhere. In our experiments, γ = 5 is used.

Loss Function

To train both classification heads we use the standard cross entropy loss (Equa-
tion 1.1) with sequence predictions ŷ, sequence ground truth y and possibly a
weight w of the positive is-a-transition class. Since we predict likelihood of a
transition for every frame in an input frame sequence x of length N , the length
of ŷ and y vectors is also N .

L(ŷ, y, w) = −
N∑︂

i=1

[︂
wyi log ŷi + (1 − yi) log(1 − ŷi)

]︂
(1.1)

The joint objective is shown in Equation 1.2. The first term is the loss of the clas-
sification head f s predicting single transition frame for arbitrarily long transition,
the second term is the loss of the classification head fa predicting all transition
frames and is weighted by λa = 0.1. These loss terms are averaged over the batch.
Last term of the objective is L2 regularization of model’s parameters θ weighted
by λp = 0.0001.

min 1
|B|

∑︂
(x,ys,ym)∈B

[︃
L

(︂
f s(x; θ), ys, γ

)︂
+ λaL

(︂
fa(x; θ), ya, 1

)︂]︃
+ λp

2
∑︂
ϑ∈θ

∥ϑ∥2
2 (1.2)

In Figure 1.12 we show a sample frame sequence x with both immediate and
gradual transition and its two types of ground truth vectors ys and ya for the
two classification heads. Note that artificially generated train frame sequences
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Figure 1.12: Frame sequence with its two types of ground truth.

contain only a single transition per sequence; however, when training with real
data, it is possible to have multiple transitions in a single frame sequence if the
transitions are close to each other.
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1.4 Experiments
In this section, we describe in detail the training process of the TransNet V2
model. Further, we compare our model to related works, also detailing our reeval-
uation process for it. Lastly, an ablation study is made to justify our decisions
in making TransNet V2.

1.4.1 Training Details
We initialize weights of all convolution operations by He normal initializer [86].
Fully connected layers are initialized by TensorFlow’s default Glorot initiali-
zer [73]. Biases are initialized by zeros. We optimize the loss function (Equation
1.2) by stochastic gradient descent with momentum set to 0.9 and fixed learning
rate 0.01.

The standard TransNet V2 model is trained only by artificially generated
sequences from IACC.3 and ClipShots datasets as described in Section 1.3.2. Fifty
percent of transitions we generate are hard cuts and fifty percent are dissolves
of max length 30 frames. Besides, we consider training TransNet V2 by 15%
of real transitions from the ClipsShots dataset, 35% of automatically generated
hard cuts, and 50% of automatically generated dissolves. Input to the network is
frame sequences of length N = 100 with each frame of size 48×27.

We train the network for 30 epochs, each with 750 batches of size 16. In case
the network is trained also in part by real manually annotated transitions from
the ClipShots dataset, we add 20 additional epochs, i.e. the network is trained
in total by 600,000 transitions. Training by artificial data only longer than 30
epochs is unnecessary since the network then overfits. The best performing model
on our ClipShots validation set is selected. Together with validation, the training
takes approximately 17 hours on a single Tesla V100 16GB GPU. TensorFlow
deep learning library has been used for all the experiments.

1.4.2 Results
We report results of TransNet V2 trained both with artificial data only and with
15% of real data. Additionally, we report the results of the original TransNet
retrained by our data generation pipeline (Section 1.3.2). For each network we
show mean F1 scores4 and their standard deviations on the test sets in Table
1.4. The statistics are computed from three best epochs from each of three in-
dependent runs as measured on the ClipShots validation dataset. We see a clear
dominance of TransNet V2, especially on the ClipShots dataset. Utilizing real
transitions improves results on BBC Planet Earth dataset while it harms perfor-
mance on ClipShots and especially on RAI. We further discuss this phenomenon
of better results with artificially generated data compared to the real data in the
next section.

We compare TransNet V2 to related work in Table 1.5. For TransNet models,
we report the F1 score of the best model selected out of the nine instances based on

4The same evaluation metric as in Section 1.2.2 is used. However, due to minor errors in
ground truth of some test sets, we also count correctly any detection that misses ground truth
by at most two frames. With correct ground truth its effect compared to the original metric is
minimal.
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Model ClipShots BBC RAI
TransNet 71.9 ± 3.5 94.0 ± 0.6 93.1 ± 0.6
TransNet V2 77.5 ± 0.3 95.1 ± 0.5 93.2 ± 0.9
TransNet V2 (15% real transitions) 77.0 ± 0.8 96.5 ± 0.5 91.2 ± 1.1

Table 1.4: Comparison of the original TransNet and TransNet V2. Mean F1 scores
and standard deviations in percents. Computed from 9 model instances (3 best epochs
of 3 independent runs as measured on ClipShots validation set).

its performance on the ClipShot validation set. To best of our knowledge, the best
shot boundary detectors available, as reported by their authors, are DeepSBD by
Hassanien et al., DSM by Tang et al., and our original TransNet. On RAI dataset
these methods report F1 score 93.4%, 93.5%, and 94.3% respectively. However,
Hassanien et al. report results on neither ClipShots nor BBC dataset. Tang et al.
report results on ClipShots but their validation method differs from our method4

described in Section 1.2.2 and for example incorrectly counts double detection.
Therefore we reevaluate both shot boundary detection models and report only
these results. We discuss reevaluation details in Section 1.4.3.

Model ClipShots BBC RAI
TransNet 74.8 94.6 93.4
TransNet V2 77.5 95.8 94.4
TransNet V2 (15% real transitions) 77.9 96.2 93.9
TransNet† 73.5 92.9 94.3
Hassanien et al. [54] 75.9∗ 92.6∗ 93.9∗

Tang et al. [67], ResNet baseline 76.1∗ 89.3∗ 92.8∗

† The original TransNet as reported in Chapter 1.2 and in [23]. Reevaluated.
∗ Our reevaluation with the best threshold. See Section 1.4.3 for more details.

Table 1.5: Comparison of TransNet V2 with related work. F1 scores in percents. In
the case of TransNet entries, the model with the best F1 score on the validation set is
shown.

TransNet V2 clearly outperforms related work on both ClipShots and BBC
Planet Earth datasets, on the latter almost halving the error achieved by the
previous state-of-the-art. On the RAI dataset, all methods perform comparably.
Relative low performance on ClipShots can be attributed to the fact that it con-
tains multiple seemingly unannotated videos or video parts. Further, in many
cases, a frame is annotated as a transition incorrectly. We show some interesting
transitions with our predictions in Figure 1.15 to illustrate our model’s strengths
and weaknesses, in Figure 1.17 raw predictions are shown on a long video se-
quence comparing the original TransNet and TransNet V2. Here we list some of
the main takeaways:

• Many times the ground truth incorrectly labels flash as a transition; how-
ever, the model can correctly ignore it. Nonetheless, if there is an illumi-
nation change in multiple subsequent frames, the model struggles (Figure
1.15A).
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• Long transitions with custom animations or fade-ins with uncommon colors
are usually missed by the model (Figure 1.15B, only selected frames from
the transition shown).

• It can happen that the model misses a transition that is easily distinguish-
able for humans. However, sometimes these transitions are missing in the
ground truth data (Figure 1.15C).

• The model struggles with heavy motion blur (Figure 1.15D).

• Many times it is subjective whether there is a transition (Figure 1.15E).

All in all, on ClipShots dataset the best instance of TransNet V2 achieves 5.7k
true positives, 1.7k false positives, and 1.5k false negatives. This is in stark
contrast to BBC Planet Earth dataset, where the model achieves almost six
times as many false negatives as false positives (exactly 4537 true positives, 55
false positives, and 307 false negatives). Such discrepancy can be attributed to
already mentioned missing annotations and many long, difficult, and sometimes
ambiguous transitions in ClipShots dataset.

Concerning the RAI dataset, all models perform comparably with a slight
exception of Tang et al. However, we refrain from making any conclusions as the
dataset contains mainly TV shows with visual effects that account for possibly
many ambiguities in the ground truth. For example, the frame sequence in Figure
1.13 is contained with slight variations in the dataset more than 20 times, and
classifying it as transitions can result in almost doubling the number of false
positives achieved by our method.

Figure 1.13: Ambiguous frame sequence from the RAI dataset labeled as no-transition
in the ground truth data.

There are many more ambiguities similar to Figure 1.13; therefore we conclude
it is necessary to adjust the model’s threshold or even training data to compensate
for particularities of a task at hand in case the reader’s definition of a transition
differs from our train and test data. For that reason, we show precision-recall
curves and F1 scores as a function of the model’s threshold for our best model
TransNet V2 trained with 15% real transitions on all test sets (Figure 1.14).

1.4.3 Related Work Reevaluation Details
Hassanien et al. train a neural network with an input of 16 subsequent frames to
predict the likelihood of transition anywhere in between the input frames. The
network is trained to distinguish between no transition, cut transition, and grad-
ual transition. The network’s logit predictions are fed through SVM to predict
transitions and color histograms are used to suppress false positives. However,
the publicly available code5 only contains the neural network model; therefore,

5Available at https://github.com/melgharib/DSBD.
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Figure 1.14: Precision/Recall curve with corresponding thresholds next to the points
(solid) and F1 score dependency on the threshold (dashed) for the best performing
TransNet V2 model on all test sets.

we only use the model without any post-processing. As we do not distinguish
between a cut and a gradual transition, we sum their probabilities into one class.
To generate per-frame predictions, we assign the predicted transition probability
to the middle 8 frames of the 16 frame input sequence and shift the input win-
dow every time by 8 frames. Note that our metric is independent of the length
of predicted or ground truth transition as long as the prediction overlaps with
ground truth at least at one frame. We compute the F1 score for thresholds
{0.1, 0.2, . . . , 0.9} and use 0.9 as it produces on average the best F1 score on the
test sets. Our method of generating transitions from the predictions achieves
a similar result on the RAI dataset as the authors’ SVM and color histogram
method (93.4% vs. 93.9%); therefore, we are confident that its results on Clip-
Shots and BBC datasets objectively represent work of Hassanien et al. Note it is
scientifically questionable to select the decision threshold directly on a test set as
the achieved results can overestimate the actual model’s performance. However,
we want to compare ourselves to the best model available; therefore, we accept
possible bias in the results.

Tang et al. utilize a multi-step process for shot boundary detection. However,
the only publicly available code6 contains only their ResNet-18 baseline similar
to the work of Hassanien et al. When confronting the authors about the code
and questionable validation method, we were only pointed to the baseline code;
therefore, we evaluate the ResNet-18 baseline and report its results. As the
network’s input and output are the same as in the case of DeepSBD, the same
evaluation method was used with the threshold of 0.8 achieving the best results.

1.4.4 Ablation Study
We thoroughly investigate our individual design decisions in the following ab-
lation study. Firstly we examine the effect of different types of training data.
When conducting the first experiments with TransNet V2, we trained it purely

6Available at https://github.com/Tangshitao/ClipShots_basline.
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Figure 1.15: Example TransNet V2 predictions compared to ground truth from the
ClipShots test set. The first line below a frame sequence indicates ground truth scenes.
The second line indicates the model’s prediction (transitions are represented by thick
solid line segments, the dotted line means no transition). We indicate the correctness
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dropped for clarity.
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with ClipShots dataset’s manually annotated transitions. However, such an ap-
proach results in a huge performance drop on both ClipShots and RAI datasets
compared to the artificially generated dataset with 50/50 split between hard cuts
and dissolves. Therefore, we investigate which type of transition is the most re-
sponsible for the performance drop. We substitute half of the real transitions
from the training set by hard cuts or dissolves. As can be seen in Table 1.6,
training the model on 50% real data and 50% artificially generated hard cuts has
almost no effect on the performance while training on real data and artificially
generated dissolves bring the model’s performance close to the artificial-data-only
model. Based on this finding, we conclude it is important for any future work
to concentrate efforts on ensuring dissolves are appropriately represented in a
train set. Such a conclusion is consistent with the findings of Tang et al., who
deliberately extended the ClipShots dataset with additional gradual transitions
after observing a weak performance of their model on these transitions.

Training data ClipShots BBC RAI
100% real transitions 66.4 ± 1.3 96.3 ± 0.5 86.4 ± 1.2
50% real, 50% cuts 68.2 ± 0.7 96.6 ± 0.7 84.4 ± 0.6
50% real, 50% dissolves 75.3 ± 0.8 96.3 ± 0.5 90.7 ± 0.7
15% real, 35% cuts, 50% dissolves 77.0 ± 0.8 96.5 ± 0.5 91.2 ± 1.1
50% cuts, 50% dissolves 77.5 ± 0.3 95.1 ± 0.5 93.2 ± 0.9

Table 1.6: Effects of real and artificially generated transitions on TransNet V2 per-
formance. Mean F1 scores and standard deviations in percents.

Interestingly in Table 1.6 we also see that manually annotated transitions
improve performance of the model on BBC Planet Earth – the dataset that
contains high-quality content mostly with plain hard cuts without any peculiar
gradual transitions, visual banners or animations commonly present in TV studio
broadcast. This is in stark contrast to our initial assumption that real manually
annotated transitions would be necessary to detect exotic types of animated tran-
sitions as in Figure 1.15B but less useful for hard cuts. However, we conclude
these exotic transitions are quite uncommon even in the ClipShots dataset, and
the added benefit of the real data revolves rather around improving the model’s
performance on difficult hard cuts. Even though BBC Planet Earth dataset does
not contain extremely dynamic shots, surprisingly, the dataset still includes many
difficult hard cuts, as can be seen in Figure 1.16. Therefore we train TransNet
V2 with 15% of real transitions, 35% of artificial hard cuts, and 50% of artificial
dissolves, which still significantly improves model’s performance on BBC Planet
Earth while achieving similar performance as the artificial-data-only model on
the other test sets.

A natural question is whether our design changes to the original TransNet
network are needed to achieve better performance. To answer this, we investigate
multiple design decisions – namely the addition of frame similarity features to
the final classifier, shortcuts that effectively halve the shortest path through the
convolutional layers, and separable convolutions that factorize large 3 × 3 × 3
convolution kernels into spatial-only and temporal-only kernels. As seen in Table
1.7, all design decisions prove to be valuable, especially on more challenging
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Figure 1.16: Difficult hard cuts from BBC Planet Earth dataset. Mind the resolution
of the displayed frames is still more than 7 times larger than the network’s inputs size
(48 × 27).

ClipShots dataset where the original TransNet struggles (Table 1.4).

Model ClipShots BBC RAI
TransNet V2 77.5 ± 0.3 95.1 ± 0.5 93.2 ± 0.9
Without frame similarity 77.1 ± 0.5 94.8 ± 0.8 93.5 ± 0.6
Without shortcuts 76.9 ± 0.7 94.8 ± 0.9 93.4 ± 0.5
Without separable convolutions 76.9 ± 0.6 94.8 ± 1.4 93.0 ± 1.2

Table 1.7: Effect of individual components on the performance of TransNet V2. Mean
F1 scores and standard deviations in percents computed from 9 model instances.

Similarly to the original TransNet, we investigate the effect of the network’s
depth on performance (Table 1.8). TransNet V2 consists of three SDDCNN V2
blocks, each with two DDCNN V2 cells with skip connection and ended by spa-
tial average pooling, i.e. in total 3 × 2 DDCNN V2 cells. We increase the depth
by adding one more SDDCNN V2 block with twice as many filters as the pre-
vious block (512 filters). We also test adding one DDCNN V2 cell in each of
three SDDCNN V2 blocks while keeping the number of filters in all SDDCNN V2
blocks the same. Both variants do not perform as well as the 3 × 2 variant. We
hypothesize it is caused by easier over-fitting to the artificial train data – a phe-
nomenon consistently seen in many of our tests when the number of parameters
was increased.

Model ClipShots BBC RAI
TransNet V2 77.5 ± 0.3 95.1 ± 0.5 93.2 ± 0.9
4 × 2 DDCNN V2 cells 77.2 ± 0.6 94.9 ± 1.1 91.5 ± 1.1
3 × 3 DDCNN V2 cells 76.8 ± 0.8 94.2 ± 1.3 92.6 ± 0.9

Table 1.8: Effect of network’s depth on performance. Mean F1 scores and standard
deviations in percents computed from 9 model instances.

As already mentioned in Section 1.3.2, we train the model with additional
augmentation techniques to see whether they are necessary to achieve good per-
formance (Table 1.9). We observe that the addition of artificial camera shake
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yields more false negatives than it reduces false positives. Similarly, we see that
it is not necessary to generate more types of transitions than the standard hard
cuts and dissolves to reach our state-of-the-art results. Finally, we test applying
a random color transformation to part of the input frame sequence with a prob-
ability of five percent. We see slight improvement on the RAI dataset; however,
there is no to a negative effect on ClipShots and BBC Planet Earth.

Model ClipShots BBC RAI
TransNet V2 77.5 ± 0.3 95.1 ± 0.5 93.2 ± 0.9
Camera shake 76.9 ± 1.1 94.0 ± 0.8 93.2 ± 1.1
Wipe transitions 76.6 ± 0.6 94.5 ± 0.5 92.9 ± 1.0
Random color change 77.2 ± 1.0 94.5 ± 1.0 93.8 ± 0.3

Table 1.9: Effect of augmentation methods on the performance. Mean F1 scores and
standard deviations in percents computed from 9 model instances.
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Figure 1.17: Visual comparison of TransNet (left) and TransNet V2 (right). Predic-
tions are shown in green, in blue are shown predictions of the second head of TransNet
V2. For example, a transition on the ninth line is detected by TransNet V2 but not by
TransNet. The original video authored by Blender Foundation licensed under CC-BY.
Some frames skipped due to limited space.
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2. Text-Based Video Retrieval
With the inception and steady rise of large video collections containing a diverse
range of video topics comes the need for fast efficient retrieval. However, even
small to medium-size collections are impossible for humans to be browsed manu-
ally, especially in a timely manner. Over the years, many sketch-based methods,
operating with various visual features, were developed to ease retrieval in these
collections [12, 16, 20, 19]. Nonetheless, it is inherently difficult, especially for a
non-skilled end user, to correctly reproduce a searched object by color, edge, or
another sketch. Therefore, recently with advances in deep learning, an option to
describe the searched object in natural language gained popularity [14, 17].

Retrieval in video collections by textual queries, also called ad-hoc video search
(AVS), represents a great challenge as it is necessary to semantically understand
the content of queries and videos. For example, a query ‘a person talking behind
a podium wearing a suit outdoors after sunset’ requires the system to understand
that person is not on the podium and after sunset means at night not while
the sun is setting. Further, the same information needs to be extracted from
the video to retrieve the scene. This example illustrates how AVS differs from
classical concept-based retrieval – rather, it is a combination of concept and action
detection, relation modeling, and text understanding.

Since 2016 the ad-hoc video search task is annually held at TRECVid with
a goal to model the end-user search use-case. Each year’s task consists of 30
one-sentence queries for segments of video containing persons, objects, activities,
locations, etc. and combinations of the former. Until 2018 IACC.3 dataset [72] of
approximately 4600 Internet Archive videos with 600 hours of content was used.
In 2019 a larger high-resolution V3C1 dataset [21] of 7475 Vimeo videos with
1000 hours of content was introduced and used onward.

In this chapter, the winning solutions of TRECVid Ad-hoc Video Search 2018
and 2019 are discussed, and a new system built upon work of the 2018 winner Li et
al. [4] is proposed achieving results on par with the state-of-the-art on TRECVid
AVS competition data from years 2016 and 2018. On TRECVid AVS 2017 data,
the proposed system improves state-of-art by ten percent showing promising fu-
ture research direction. Further, the proposed system also outperforms Li et al.
on our in-house dataset with over two hundred challenging queries.

2.1 Related Work
With the introduction and broad availability of convolutional neural networks
for image classification [56, 87, 80], many works repurposed those networks for
concept extraction. For example, team NII-HITACHI-UIT [88], the winner of
TRECVid AVS 2016, utilizes multiple readily available networks for concept de-
tection, scene description as well as dense captioning; therefore, the AVS task is
reduced into text-based retrieval task in which similarity scores between query
text and video semantic features are computed using inverted index structure and
TF-IDF weighting. These so-called concept-based retrieval systems are, however,
limited to only fixed sets of concepts and cannot capture relations between the
concepts as the only information available is present or not present with some
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Figure 2.1: ViLBERT model [95] operates over image regions and text segments.
Each stream is a series of transformer and co-attentional transformer layers enabling
information exchange between modalities.

confidence measure.
One of the early works that tries to learn directly the matching between images

and text is by Wang et al. [89]. It encodes images into 4096-dimensional vectors
using VGG network [87]. Sentences are encoded using Word2Vec [7] vectors
transformed into 18000-dimensional space using Fisher Vectors. A set of weights
is then trained to minimize the distance between these two representations. Other
work by Dong et al. [90] encodes sentences by concatenating their Bag-of-Words
representations, Word2Vec vectors, and RNN outputs. These vectors are then
passed through a multi-layer perceptron that is trained together with the RNN
to project them into visual feature space created by e.g. ResNet-152. Aside from
the text-to-image-space model trained and tested using Flickr30K dataset [91]
(containing over 30 thousand images collected from the Flickr website with five
captions each), the authors try to learn a text-to-video-space model utilizing
MSVD dataset. The video features are extracted using the C3D network and
averaged over time; however, better results are achieved by image-based ResNet-
152 network instead of the 3D video network.

The above-mentioned approaches represent an image by a single vector that
is considered as an aggregation of the important image regions. However, in
the process of aggregation, some important information about individual regions
can be lost. Lee et al. [92] introduce Stacked Cross Attention (SCAN), which
performs text to image matching by combining similarities between individual
image regions and a weighted sum of individual word vectors. Image region
vectors are extracted using Faster R-CNN [93] pre-trained on Visual Genomes
dataset [94] and one linear trainable layer is added to project the fixed region
representations. Word vectors are produced by a trainable bi-directional GRU
layer.

ViLBERT [95] network by Lu et al. (shown in Figure 2.1) takes attention-
based approach a step further by repurposing BERT attention-based bidirectional
language model [96]. The original BERT processes each word (token) of an input
sentence independently – the only context is obtained through dozens of atten-
tion layers. With pretraining on a large language corpus, BERT and its variants
achieved state-of-the-art results in many natural language processing tasks via
transfer learning. ViLBERT’s input consists of image description and set of im-
age region features that are extracted the same way as in the work Lee et al.
The network is pre-trained on large Conceptual Captions [97] dataset to predict
alignment score i.e. whether an image description matches a set of image re-
gions’ features. In the end, the network is finetuned on a manually annotated
high-quality Flickr30K dataset. The finetuning is performed by computing the
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min
|B|∑︂
i=1

⎛⎝ ∑︂
j∈N (i)

[δ + S(Vi, Cj) − S(Vi, Ci)]+

+
∑︂

j∈N (i)
[δ + S(Vj, Ci) − S(Vi, Ci)]+

⎞⎠ (2.1)

max
|B|∑︂
i=1

log
⎛⎝ eS(Vi,Ci)

eS(Vi,Ci) + ∑︁
j∈N (i)

[︂
eS(Vi,Cj) + eS(Vj ,Ci)

]︂
⎞⎠ (2.2)

Figure 2.2: Max-margin ranking loss and noise-contrastive estimation loss. S(Vi, Cj)
is a similarity score between video clip Vi and caption Cj , N (i) is a set of negatives
for video/caption i, δ is the margin and [·]+ is max(0, ·). In [8] authors allow for mul-
tiple positive pairs P(i) due to uncertainty in video-caption alignment by substituting
eS(Vi,Ci) for

∑︁
(x,y)∈P(i) eS(Vx,Cy).

alignment score for the correct image-text pair and other three sampled incorrect
pairs. The scores are passed through softmax, and cross-entropy loss is com-
puted. The twelve attention layers in ViLBERT outperform SCAN with only one
attention in image retrieval on the Flickr30K dataset by almost 20% in terms of
Recall@1 (recall at the first position) and by over 7% in Recall@10.

As mentioned by Dong et al., simply exchanging 2D features from networks
such as ResNet for 3D features extracted by e.g. C3D is not sufficient to perform
video retrieval. Moreover, they imply that video retrieval can be performed with
better results by extracting only 2D features. However, it is unfortunate that, by
operating only on single frames, some information about actions, etc. is inevitably
lost. Work of Mithun et al. [98] argues that 3D video features such as I3D and 2D
image features produced by e.g. ResNet focus on different characteristics and are
complementary in some sense. The first focuses on action identification and the
later on identifying objects in the frames. Therefore the authors introduce two
spaces: activity-text space and object-text space. A text query is then evaluated
in both spaces independently, and the fusion of those two rankings is performed.
Nonetheless, work of Yu et al. [99] utilizing again only image-based ResNet-
152 for feature extraction outperforms Mithun et al. by 45% for both Recall@1
and Recall@10 in video retrieval task on MSR-VTT [100] dataset (containing 10
thousand web video videos with 200 thousand short clips each paired with text
descriptions).

2.1.1 Weakly Supervised Approaches
Learning mappings of text and videos into joint embedding space often requires
large manually annotated datasets. Even though there are datasets such as MSR-
VTT or Tumblr GIF (TGIF) [101], each with more than 100 thousand short clips
(or gifs in the latter case) with their natural language descriptions, the work of
Miech et al. [2] shows that even much larger datasets are greatly beneficial to
video retrieval. The authors introduce HowTo100M dataset containing 136 mil-
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lion video clips from 1.22 million narrated instructional web videos, each accom-
panied by automatically or human-generated audio transcriptions. Although the
transcriptions need not to align with the visual content or they may be unrelated
completely, a simple shallow network trained max-margin ranking loss (Equa-
tion 2.1) achieves state-of-the-art results on multiple benchmarks. For video, the
network utilizes 2D and 3D features extracted by Resnet-152 pre-trained on Im-
ageNet and ResNeXt-101 pre-trained on Kinetics respectively. The features are
then aggregated by temporal max-pooling and concatenated. Transcriptions are
embedded using Word2Vec and a shallow 1D convolutional network is used to
extract fixed-sized representation. Further, a single linear fully-connected layer
with a two-layer context gating function is used for both the visual and textual
features. The authors stress that, during training, intra-video negative sampling
strategy is critical for good performance – half of the negative pairs in the loss
belong to the same original video to ensure that the learned embedding focuses
on relevant aspects of the video clip.

In video retrieval task on the MSR-VTT dataset, this network achieves very
similar results as Mithun et al.; however, the network is only trained on HowTo-
100M. Finetuning on MSR-VTT improves the results of Mithun et al. by more
than 110% in Recall@1 and 77% in Recall@10. Additional work by the authors [8]
shows the benefits of training video feature extractors (I3D or S3D) from scratch.
Further it is suggested that noise-contrastive estimation loss ([102], Equation 2.2)
outperforms standard max-margin ranking loss.

2.1.2 Winners of TRECVid Ad-hoc Video Search
This section summarizes approaches used by winning teams of TRECVid AVS
challenge. Namely, it focuses on Dual Encoding by Dong et al. [103] and Word-
To-Visual-Vector (W2VV++) by Li et al. [4] (shown in Figure 2.3) since these
have been used in the winning submissions of 2018 and 2019 [104, 105, 106].

Frame features. Image-based 2D CNNs are used to extract features for
individual frames. In particular Li et al. utilizes two CNNs: ResNeXt-101
from [107] and ResNet-152 from MXNet library [108] both trained on the
ImageNet dataset with over 10 million images and over 10 thousand classes.
Frames are resized to 256 × 256 and CNN features (the output of the penulti-
mate layer) are extracted from its 10 sub-images (i.e. five 224×224 center and
corner patches, all of them also horizontally flipped). The final frame features
are the result of averaging those ten sub-image features and concatenation of
ResNeXt-101 and ResNet-152 features.

Video features. For a given video clip frames are sampled every 0.5 seconds.
Features for each frame are extracted as described above. Then the features
are aggregated by one or more of the following approaches: (1) averaging fea-
tures over time. (2) using a bidirectional recurrent neural network with e.g.
GRU units with outputs of both directions concatenated and averaged over
time. (3) using 1D convolution with outputs averaged over time. (4) comput-
ing differentiable version of VLAD (Vector of Locally Aggregated Descriptors)
– NetVLAD [109]. (5) using graph network [110] to learn a fixed-sized hier-
archical representation of the video among frames.
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Figure 2.3: A diagram of the original version of W2VV++ model, taken from [4].

Wu et al. [104] utilize averaging over time (1). Further GRU (2), NetVLAD
(4), graph network (5) are run in parallel on top of frame features. Video
representation of Dong et al. [103] concatenates output of the approach (1),
GRU (2) and 1D CNN (3) run on top of the GRU features. Li et al. [4] use
only the feature averaging over time.

Word features. Over the years multiple approaches to word embeddings
have been developed. All three mentioned works adopt a pre-trained 500-
dimensional Word2Vec model trained on English tags associated with 30 mil-
lion Flickr images supporting over 1.7 million words [90]. The 2019 version
[106] of W2VV++ system by Li et al. also takes advantage of pre-trained
BERT [96] sub-word embeddings.

Sentence features. One of the simplest representation is bag-of-words
(BoW). The work of Li et al. constructs BoW by taking all words from a
training set, excluding those that occur less than five times and those con-
tained in the NLTK stopword list. Aside from the BoW features, Li et al.
utilize Word2Vec pre-trained embeddings and single layer 1024-dimensional
GRU network. The outputs of both methods are averaged over all words and
concatenated together with BoW into (500 + 1024 + 11147)-dimensional vec-
tor. Works of Wu et al. and Dong et al. embed words using the Word2Vec
pre-trained embeddings and use the same architecture as they use for video
feature extraction. Further, they also allow to fine-tune the embeddings.

Loss function. Li et al. and Dong et al. project sentence features and
video features into the common vector spaces by a single fully-connected layer
followed by hyperbolic tangent or batch normalization respectively. Then
all the approaches adopt max-margin ranking loss (Equation 2.1) with hard
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negatives [111], i.e. N (i) = argmaxj ̸=iS(Vi, Cj) or argmaxj ̸=iS(Vj, Ci) for the
first and the second term respectively. The idea behind the hardest negative
can be intuitively explained by the fact that the hardest negative determines
success or failure in the Recall@1 metric. For practical reasons, the hardest
negative is selected only from mini-batch instead of the whole dataset. The
work of Li et al. further only uses the second term in the max-margin ranking
loss with negatives for videos but not for sentences.
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2.2 Our Method
As already mentioned, text-to-visual matching systems usually employ pre-
trained visual and text feature extractors and learn only the mapping between
these features. While some work focuses on training video feature extractors [8],
to the best of our knowledge, no work trains advanced text feature extractors.
The authors of [8] prove that training the whole video extractor benefits from
the performance if large, even only automatically annotated, datasets are avail-
able. In this work, we experimentally prove the same for the text extractor. For
that we adopt Transformer-based [112] state-of-the-art model RoBERTa [113],
pre-trained on large corpora of English texts from the internet such as Wikipedia
and news articles. Even though Transformers have already been used in the
text-to-visual systems, e.g. Renmin University at TRECVid 2019 [106] and Con-
trastive Bidirectional Transformer [114] both utilized pre-trained BERT or Miech
et al. [8] adopted one Transformer’s attention layer into their language part of
the system; we show that training the whole Transformer network for this task
is beneficial.

2.2.1 Problem Statement
Given a video V = {v1, . . . , vn} with frames vi and a text caption C = {c1, . . . , cm}
with words ci, we aim to learn a mapping of the video f(V ; θf ) into Rd and a
mapping of the caption g(C; θg) to the same space Rd such that similarity S(V, C)
is maximized for a video-caption pair, if the caption describes correctly the video,
and minimized for a pair, if the caption does not describe the video. Note, we will
omit the parameters θf or θg and refer to both the functions and their parameters
by only f or g for simplicity. We define the similarity as cosine of f(V ) and g(C)
as

S(V, C) = f(V )⊤g(C)
∥f(V )∥2∥g(C)∥2

. (2.3)

In this framework, text retrieval in a video database DB is solved by comput-
ing f(Vi) for all videos Vi. Given a query Q, g(Q) is computed and for each video
similarity scores S(Vi, Q) are computed and the videos with the highest scores are
returned. Since f(Vi) can be precomputed and g(Q) can be considered as a con-
stant for a query of limited length, the time complexity is determined by the size
of the database and the dimension d of the joint space Rd, i.e. O(|DB|d). Note,
in practice, a video can contain many unrelated segments while the query usually
describes only one segment; therefore, videos are split into individual shots, i.e.
in the context of this thesis Vi is not the whole video but only a single shot.

2.2.2 Video Representation
For video representation we use the W2VV++ (Word-To-Visual-Vector) sys-
tem [4] developed by Li et al. As described in Section 2.1.2 a frame is extracted
every 0.5 seconds, it is resized into 256 × 256 and features are extracted from
its 10 sub-images. The features are obtained by ResNext-101 [107] and Resnet-
152 [108] both trained on ImageNet. The features are averaged across the image
patches and all the video frames resulting in a fixed 4096-dimensional vector.
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The only trainable part of the video mapping function f is a single fully-
connected layer with hyperbolic tangent, i.e. the whole video mapping function
is as follows:

f(V ) = tanh (WfN (V ) + bf ) (2.4)

where N (·) is the non-trainable mapping to 4096-dimensional space by CNNs
averaged over frames described in the previous paragraph, Wf ∈ Rd×4096 and
bf ∈ Rd are the trainable weights and biases.

2.2.3 Text Representation
Similarly to Li et al. three components are utilized – Bag of Words, Word2Vec,
and newly BERT instead of RNN. Specifically, the Bag of Words component is
defined as

BoW (C) =
(︂
#(w1, C), . . . , #(w|V|, C)

)︂
(2.5)

where wi ∈ V are words from a vocabulary and #(w, C) is number of occurrences
of a word w in the text C. We use the same vocabulary as Li et al. with
|V| = 11147 words.

Word2Vec component utilizes a pre-trained 500-dimensional model trained on
English tags associated with 30 million Flickr images supporting over 1.7 million
words [90]. A text caption C is represented by the average of the individual word
embeddings e(ci). The embedding is not fine-tuned and stays fixed throughout
the whole training.

W2V (C) = 1
|C|

|C|∑︂
i=1

e(ci) (2.6)

The last component of the text architecture is BERT neural network [96].
BERT’s architecture is a multi-layer bidirectional Transformer encoder based on
the work by Vaswani et al. [112] (Figure 2.4). It uses only self-attention and point-
wise, fully connected layers stacked into transformer blocks with information
passing between words (sub-words) only via the self-attention. In our work,
we use the 110 million parameter variant of BERT called BERTBASE with 12
Transformer blocks, size of the hidden layers 768, and 12 self-attention heads.
For detailed architecture description, we point readers to the original work of
Vaswani et al. [112] and the BERT paper [96].

BERT outputs a 768-dimensional vector for each input sub-word. We aver-
age all sub-word vectors to obtain representation BERT (C) of the original text
caption C. We initialize BERT’s weights by the ones provided by the authors of
RoBERTa: A Robustly Optimized BERT Pretraining Approach [113] and further
train them on our dataset.

Similarly to the video network, the text network g ends by concatenating the
text representations and applying a fully-connected layer with hyperbolic tangent
and projects a text caption into the joint text-video space:

g(C) = tanh (Wg [BoW (C); W2V (C); BERT (C)] + bg) . (2.7)

In the equation, [. . .] is vector concatenation, Wg ∈ Rd×(11147+500+768) and bf ∈ Rd

together with all the weights of BERT are the trainable parameters of g.
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Figure 2.4: Schema of Transformer-based encoder such as BERT (left), multi-head
attention (middle), and single scaled dot-product attention (right). Images from [112].

2.2.4 Loss Function
Our work employs the same variant of max-margin ranking loss (Equation 2.1)
as Li et al. Specifically, the term with caption negatives is ignored and the set of
video negatives contains only the hardest negative from a batch B:

min
|B|∑︂
i=1

[︂
δ + argmaxj ̸=iS(Vj, Ci) − S(Vi, Ci)

]︂
+

. (2.8)

We discuss the decision and compare other losses in the next section.
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2.3 Experiments
We first describe datasets used in our experiments for training, validation, and
testing together with metrics used for evaluation. Then in Section 2.3.2 training
details are provided. Section 2.3.3 presents the results of our model and compares
them to the related work, mainly W2VV++ [4]. Finally, an ablation study in
Section 2.3.4 justifies key design choices such as the loss function.

2.3.1 Datasets and Evaluation Metrics
We use the same train, validation and test sets as in the work of Li et al. with the
features provided by the authors1. For train set MSR-VTT [100] and Tumblr GIF
(TGIF) [101] is used. TGIF dataset contains over 100 thousand animated GIFs
with their natural language captions. MSR-VTT dataset contains 200 thousand
short clips each paired with text descriptions in 10 thousand videos. For valida-
tion is used TRECVID 2016 Video-to-Text task dataset [115] with two thousand
Vine videos each described by a sentence by two annotators. To stay consistent
with Li et al. we utilize only 200 videos provided by the authors1. Testing is
performed on the IACC.3 dataset [72] used for TRECVid AVS task from 2016
to 2018 containing approximately 4600 Internet Archive videos with 600 hours of
content. The videos are split into 335,944 short clips by automatically detected
shot boundaries provided by the authors of the dataset. Further for testing we
use over two hundred sentence-based queries manually collected for 20 thousand
frames uniformly sampled from the V3C1 dataset (dubbed 20k-V3C1).

Suppose we have a set Q = {(Ci, Ti)}i of caption-video pairs with the pos-
sibility that a caption Ci can correspond to many target videos V ∈ Ti. Given
a query (text caption) C a model asigns each video V a position (rank) in the
result list r(C, V ). Good model will assign low r(·, ·) → 1 for relevant videos and
large r(·, ·) → |DB| for irrelevant ones. We use the following metrics to measure
model performance. Recall@k (R@k) is defined as:

Recall@k = 1
|Q|

∑︂
(Ci,Ti)∈Q

⎛⎝ 1
|Ti|

∑︂
V ∈Ti

[[r(Ci, V ) ≤ k]]
⎞⎠ (2.9)

where [[·]] is indicator function which is one if the argument is true and zero
otherwise. As we use Recall@k in scenario where there is always only a single
target video (Ti = {Vi}) the expression in the bracket can be simplified into
[[r(Ci, Vi) ≤ k]]. Further, the official TRECVid AVS metric is based on mean
average precision (mAP). The standard mAP is defined as:

mAP = 1
|Q|

∑︂
(Ci,Ti)∈Q

⎛⎝ 1
|Ti|

∑︂
V ∈Ti

|{ν ∈ Ti | r(Ci, ν) ≤ r(Ci, V )}|
r(Ci, V )

⎞⎠ (2.10)

where the innermost fraction is Precision@k with k = r(Ci, V ). If the set of target
videos Ti contains only one video Vi the metric is also called mean reciprocal rank
(MRR) 1/|Q| · ∑︁

(Ci,{Vi})∈Q 1/r(Ci, Vi).
Since it is difficult to evaluate all 335,944 shots from IACC.3 manually, perfor-

mance at TRECVid AVS task is measured by inferred average precision (infAP)
1Publicly available at https://github.com/li-xirong/avs.
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[116]. Compared to standard (mean) average precision it eliminates bias created
by only manually labeling the retrieved shots while unretrieved shots are not
labeled.

2.3.2 Training Details
In all our experiments, unless otherwise stated, the joint space dimension d is
set to 2048. Prior training, weights Wf and Wg are initialized by Glorot initiali-
zer [73], biases bf and bg are initialized by zeros and BERT network by pre-trained
weights from [113]. Batch size of 96 clip-text pairs is selected to fit into 16GB of
VRAM of a Tesla V100 GPU. We use the Adam optimizer [74] with a learning rate
of 10−5 and linear warm-up for the half of the first epoch (approx. 1700 steps).
The learning rate is linearly decayed to zero in a span of 60 epochs; however, the
best performing model on the validation set is selected which is usually achieved
after approximately ten epochs. With the video features extracted beforehand,
the training itself takes a few hours on a single Tesla V100 GPU. Pytorch and
its fairseq2 library with the implementation of BERT has been used for all the
experiments.

2.3.3 Results
We report the results of three variants: A) the whole model as described in Section
2.2 is used. B) the Word2Vec portion of the text encoding network is removed.
C) both Word2Vec and Bag-of-Words parts of the text network are removed, i.e.
only BERT is used for text projection into the joint space. Similarly, we report
results of the original W2VV++ [4] as well as W2VV++ with only Bag-of-Words
in the text network, i.e. without Word2Vec and RNN.

Table 2.1 shows the performance of various models on TRECVid AVS tasks
for years 2016 through 2018. We see slightly lower performance of our BERT
based systems on 2016 and 2018 tasks while we see significantly better results
for 2017 tasks. A single model combining BERT, Word2Vec, and Bag-of-Words
even outperforms the second-best performer of TRECVid AVS 2019 challenge
both in single model setting (infAP 22.8) and also in an ensemble setting where
multiple Dual Encoding models were combined to produce the result (infAP 23.9
[106]). Surprisingly the original W2VV++ system is outperformed by its BoW-
only variant in all three years. We hypothesize it is due to the fact that (inferred)
mean average precision heavily favors results with the target item in the first
position. For example, a model returning a target item always in the top 10
results can achieve worse mAP than a model returning a target item a few times
at the first position but other times not returning it at all.

The described phenomenon can be seen in results on the 20k-V3C1 dataset
show in Table 2.2. BoW-only variant of W2VV++ retrieves the searched frame at
the first position in almost twelve percent of 202 sentence based queries. However,
when we look at the percentage of queries such that the target frame is retrieved
in the top ten positions, BoW-only W2VV++ already performs the worst of all
the models. Further, the difference can be seen for the top 100 positions where
our model outperforms BoW-only W2VV++ by almost 11 percentage points.

2Available at https://github.com/pytorch/fairseq
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Model TV16 TV17 TV18 Average
W2VV++ [4] 15.5 21.5 10.7 15.9
W2VV++ (BoW only)∗ 15.6 21.8 11.0 16.1
Ours (BERT) 13.7 22.5 9.8 15.3
Ours (BERT + BoW) 15.0 23.4 10.3 16.2
Ours (BERT + BoW + Word2Vec) 14.6 24.1 10.2 16.3

Dual Encoding [103]† 16.5 22.8 11.7 17.0
∗ W2VV++ utilizes BoW, Word2Vec and RNN, this version uses only BoW.
† Results taken from [106].

Table 2.1: Model comparison on TRECVid AVS tasks for years 2016 to 2018. Values
are in percents of inferred mean average precision averaged over three runs. Results for
W2VV++ are courtesy of the authors.

Model R@1 R@10 R@100 MRR
W2VV++ [4] 7.9 28.7 60.4 14.6
W2VV++ (BoW only) 11.9 27.2 57.4 16.5
Ours (BERT) 8.9 28.2 65.3 14.8
Ours (BERT + BoW) 9.9 27.2 65.8 16.1
Ours (BERT + BoW + Word2Vec) 9.4 30.2 68.3 16.4

Table 2.2: Model comparison on 20k-V3C1 dataset (20k frames, 202 frame-caption
pairs). Recall@k and mean reciprocal rank shown in percents. Note R@100 represents
recall given 0.5 percent of the original dataset.

Also visual comparison of the full W2VV++ model and our BERT extension can
be seen in Figures 2.5, 2.6 and 2.7.

In Table 2.3 results on TRECVid 2016 Video-to-text dataset are shown. Note
the dataset was used for validation in our experiments as well as experiments of Li
et al. Every video in the dataset is captioned by two annotators – hence the set A
and set B. For validation purposes only the set A was used. The results show that
all our models outperform both W2VV++ variants in all metrics. Surprisingly
the BERT-only model outperforms the other combinations.

Model Set A Set B
R@1 R@10 MRR R@1 R@10 MRR

W2VV++ [4] 42.5 79.0 55.7 43.0 82.5 56.9
W2VV++ (BoW only) 39.5 79.0 52.3 41.0 82.0 54.3
Ours (BERT) 45.0 82.0 58.4 47.5 86.5 59.0
Ours (BERT + BoW) 43.0 82.5 56.3 45.5 85.0 57.8
Ours (BERT + BoW + W2V) 43.5 80.5 57.1 45.0 82.5 57.0

Table 2.3: Model comparison on TRECVid 2016 Video-to-text dataset.
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Loss TV16 TV17 TV18 Average
Max-margin, text-to-visual (Eq. 2.8) 14.6 24.1 10.2 16.3
Max-margin, bidirectional 14.7 23.0 10.0 15.9

Table 2.4: Variants of max-margin loss and their performance on TRECVid AVS
tasks. Results are in percents of inferred mean average precision averaged over three
runs. Our full model (BERT + BoW + W2V) was used.

Loss Batch size TV16 TV17 TV18

NCE
128 12.1 15.4 9.0
512 13.0 19.6 8.7
2048 14.0 20.3 10.1

Max-margin
128 14.8 20.0 10.4
512 12.9 16.9 8.5
2048 10.6 12.1 7.0

Table 2.5: Comparison of NCE loss and max-margin loss on TRECVid AVS tasks.
Our BERT + BoW model without BERT fine-tuning was used.

2.3.4 Ablation Study
We perform multiple ablation studies. In Table 2.4 we compare our text-to-visual
max-margin ranking loss (Equation 2.8) to bidirectional (text-to-visual + visual-
to-text) variant that minimizes not only similarity of hardest negative video to a
caption but also similarity of hardest negative caption to a video (adaptation of
Equation 2.1). We see slightly better results for the text-to-visual version of the
loss on TRECVid AVS tasks with our full model (BERT + BoW + W2V).

Further we compare max-margin ranging loss to noise-contrastive estimation
(NCE) loss used by Miech et al. [8] (Table 2.5). For comparison, we use our
BERT + BoW model without BERT fine-tuning due to large batch sizes that
do not fit into VRAM of a single GPU. Therefore the results are worse than
those reported in Table 2.1. For noise-contrastive estimation loss, we see a poor
performance with small batch size while the performance approaches max-margin
loss for large batch sizes which is consistent with observations of Miech et al.
[8]. On the contrary, increasing the batch size for max-margin loss harms the
performance – we argue it is due to the fact that as batch size increases the
more likely the batch contains similar scenes and therefore the hardest negative
is sometimes actually a viable positive sample.

Retrieval using our joint space model is highly demanding for computational
resources due to the fact that it requires the computation of cosine similarity for
every clip in a database. Reducing the dimension d of the joint space from 2048
to 128 reduces computation time sixteen-fold. However, as shown in Table 2.6, it
severely hampers the performance – it seems the network does not have enough
freedom in the parameter space to learn good mapping. Nonetheless, we were
able to reduce the dimension to 128 without any loss in performance by principal
component analysis (PCA). The projection matrix is computed using only the
video database feature vectors which makes the process suitable for any video
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Joint Space Dimension R@1 R@10 R@100 MRR
128 3.5 23.3 55.9 9.8
512 8.4 26.2 64.4 14.0
2048 (standard) 9.4 30.2 68.3 16.4
2048 + PCA into 128 dimensions 9.9 28.7 67.8 17.4

Table 2.6: Performance dependency on the joint space dimension on our in-house
20k-V3C1 dataset. Our full model (BERT + BoW + W2V) was used.

Model # patches R@1 R@10 R@100

W2VV++ (BoW only) 1 7.9 26.2 52.0
10 11.9 27.2 57.4

Ours (BERT + BoW + W2V) 1 9.9 28.2 67.3
10 9.4 30.2 68.3

Table 2.7: Performance dependency on number of patches per frame. Measured on
20k-V3C1 dataset.

database since the text queries are not needed for the matrix computation. How-
ever, unlike the standard PCA, the feature vectors f(V ) are not centered prior
to the projection matrix computation since the original joint space is optimized
for cosine similarity, not euclidean distance, and the centering does not preserve
angles. With the centering, the results are comparable to directly training the
network with the joint space of dimension 128.

The original W2VV++ system computes visual features for each frame by
averaging features of its 10 patches – one center patch and four corner patches,
all of them also horizontally flipped. This approach however increases extraction
time ten-fold. In Table 2.7 we compare it with an approach that computes the
features only once for the whole frame. We see asignificant drop in performance
for the BoW-only variant of W2VV++; however, our BERT + BoW + Word2Vec
model’s performance does not change much.
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Tiled pavement with green trees next to it and few people sitting on a bench.

Ours: 3

W2VV: 9

A view of a forest in the winter with snow and sunset visible.

Ours: 1

W2VV: 2

A man and woman are depicted in front of coniferous trees.

Ours: 7

W2VV: 71

A bicycle seat with a bag.

Ours: 2

W2VV: 116

A boy sitting at the table and eating breakfast.

Ours: 2

W2VV: 8

Pink and orange gas on the stadium.

Ours: 18

W2VV: 150

Figure 2.5: Comparison between W2VV++ and our BERT extension on 20k-V3C1
dataset, queries in favor of BERT. Show top 5 results of our model (top) and W2VV++
(bottom) for a given query. The target image is shown on the left with its position
according the two models. See Figures 2.6 and 2.7 for more examples.
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An old temple in a desert, blue sky above with a text description.

Ours: 119

W2VV: 4

Duck on the water surface in the dark.

Ours: 23

W2VV: 1

A man examining trophy cups on a table, with several books lying around.

Ours: 38

W2VV: 2

A wooden doors which leads to a room with many chairs.

Ours: 5

W2VV: 1

Figure 2.6: Continuation of Figure 2.5, queries in favor of W2VV++.

A view of a modern house in a city block, with a palm tree in front.

Ours: 101

W2VV: 21

On the left a closeup of a woman face, green background on the right.

Ours: 378

W2VV: 1595

Long asphalt road through savanna with bushes and blue sky.

Ours: 146

W2VV: 5

Figure 2.7: Continuation of Figure 2.5, unclear and wrong queries. Even though
W2VV++ outperforms our model on the first and third query, its top results do not
match the query well.
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Conclusion
This thesis approaches two key problems of video retrieval – shot boundary de-
tection and text-based search. We present TransNet V2, a network for the de-
tection of common shot transitions, which tackles an important initial step of
video analysis processes. We address multiple issues of previous shot detectors
and discuss in detail the training process as well as training data acquisition. We
also reevaluate and compare ourselves to other recent approaches to shot bound-
ary detection. The results show our method can outperform related works on
multiple public benchmarks, and we believe it can be of great help in many video
pre-processing pipelines of various multimedia search/analytics frameworks that
require information about shots.

Further, we investigate text-to-visual matching systems utilized for text-based
search in video collections. We experimentally prove that adding large Trans-
former-based text encoders improves the performance of such systems on some
tasks if the whole encoder is trained. All in all, we believe that both the shot
boundary detector as well as our extension to the text-based search system show
promising future research directions in both areas.
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